WO2018207967A1 - Artificial neuron based on quantum quenching of photoluminescence molecules - Google Patents

Artificial neuron based on quantum quenching of photoluminescence molecules Download PDF

Info

Publication number
WO2018207967A1
WO2018207967A1 PCT/KR2017/005717 KR2017005717W WO2018207967A1 WO 2018207967 A1 WO2018207967 A1 WO 2018207967A1 KR 2017005717 W KR2017005717 W KR 2017005717W WO 2018207967 A1 WO2018207967 A1 WO 2018207967A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecules
light
neurotransmitter
energy
photoluminescent
Prior art date
Application number
PCT/KR2017/005717
Other languages
French (fr)
Korean (ko)
Inventor
이진규
Original Assignee
이진규
김진수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이진규, 김진수 filed Critical 이진규
Publication of WO2018207967A1 publication Critical patent/WO2018207967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light

Definitions

  • the present invention relates to a particular light emission wavelength of a photoluminescent molecule as electrons in the conduction band of the photoluminescence molecule move to the lowest unoccupied molecular orbital of another molecule.
  • a sensor with high sensitivity which uses the principle of quantum quenching in the wavelength region, is used to detect neurotransmitters and hormones in a living body, and specific neurotransmitters. Or when a sensor detects hormones, it delivers transistors and neurotransmitters that cause action potentials of neurons as electrical stimuli, and transports them to the neurotransmitter receptors of nerve cells for chemical stimulation. It relates to a photoluminescent molecule lumen-based artificial neurons having an inducing conduit.
  • the wavelength of the emission energy varies depending on the energy band gap.
  • the emission intensity of a specific wavelength region decreases and this phenomenon is analyzed by quantum quenching.
  • the electron moves to the lowest pore of another molecule in the conduction band of the photoluminescent molecule, the decrease in the intensity of light emission in a specific wavelength region due to the steel sheet is remarkable.
  • the phenomena of the light emission intensity of the light emitting molecules become more remarkable, the sensitivity of the sensor can be improved, and the phenomena of the light emitting molecules can be made more remarkable by adopting a porous semiconductor.
  • Porous semiconductors etch the surface of a semiconductor to increase the intensity of reflection or transmission in specific wavelength regions of light, thereby reducing the full width at half maximum. It has optical and electrical characteristics to improve sensitivity.
  • the light emitting molecules emitting light in the wavelength region overlapping with the wavelength region where the light is incident on the etched semiconductor and the light reflection or transmission intensity is high, the light emission intensity of the light emitting molecule in the emission wavelength region increases and the half width is increased. Decreases.
  • semiconductors such as photodiodes and complementary metal-oxide-semiconductors can measure and analyze the change in intensity of light energy due to steel. When the intensity of the light emission energy decreases to the low, the voltage value generated by the semiconductor analyzing the light emission energy changes.
  • the conductivity from the source to the drain of the field effect transistor is It depends on the voltage supplied to the gate. If the drain and nerve cell of the field effect transistor are connected to the conductor, the electrical potential can cause the action potential of the neuron when the conductivity of the drain increases at the source due to the change in the voltage value supplied to the gate. have.
  • neurotransmitters may be supplied to neurotransmitter receptors (receptors) of nerve cells to induce action potentials by chemical stimulation.
  • neurotransmitter storage for storing neurotransmitters
  • neurotransmitters can be supplied to receptors of nerve cells through a conduit employing a control valve and a check valve.
  • An actuator may be used to control a control valve for adjusting a flow rate carried in a conduit according to a voltage value generated by a semiconductor measuring and analyzing photoluminescence energy.
  • Neurons are classified according to the neurotransmitters they produce. For example, acetylcholine-producing neurons are classified as cholinergic neurons, and dopamine-producing neurons are classified as dopaminergic neurons, respectively.
  • the muscle organs of the living body are activated only when the neurotransmitter called acetylcholine of the cholinergic neuron, the neuronal cell, reaches the receptor of the cholinergic neuron. Therefore, selective and sensitive detection of neurotransmitters is important in the brain.
  • electrical stimulation, optical stimulation, and pharmaceutical stimulation of the brain areas that promote axonal sprouting have been conducted. There is a need for procedures and difficulties that cannot be cured.
  • the present invention causes the action potential of nerve cells when the lumen phenomenon occurs by detecting specific neurotransmitters of photoluminescent molecules.
  • the present invention is a lumen-based artificial neuron having biocompatibility and semiconducting properties and reproduces the function of an actual neuron.
  • Photoluminescent molecules having energy of conduction band higher than that of lowest co-orbit of a specific neurotransmitter;
  • a porous semiconductor having high reflectivity or transmission intensity in a wavelength region similar to that of a light emitting molecule;
  • An optical fiber for supplying light energy for exciting electrons of the light emitting molecules to the light emitting molecules;
  • a light ray which collects the light emission energy of the light emission molecules and conducts the light to the semiconductor for measuring and analyzing the light emission energy;
  • a semiconductor generating voltage by measuring and analyzing light emission energy of photo light emitting molecules;
  • a field effective transistor in which electrons or holes are conducted from a source to a drain when the voltage value supplied to the gate changes;
  • a reservoir for storing neurotransmitters;
  • a conduit for transporting and supplying neurotransmitters to neuronal receptors in neurotransmitter reservoirs;
  • a control valve for controlling a flow rate of a conduit for supplying a neuro
  • the photoluminescent molecular lumen-based artificial neurons of the present invention emit electrons when the electrons in the conduction band of the photoluminescent molecules move to the lowest orbits of specific neurotransmitters and move the energy interval from the conduction band of the photoluminescent molecules to the consumer electronics band. Analysis of the lumen phenomenon of specific wavelength region can detect specific neurotransmitter sensitively.
  • Photoluminescent molecules lumen-based artificial neurons of the present invention can be used as a substitute for destroyed neurons by reproducing the function of the actual neurons by inducing the action potential of the neurons when detecting specific neurotransmitters.
  • the photoluminescent molecules lumen-based artificial neurons of the present invention have biocompatibility and semi-permanent durability, they can be easily installed and used in vivo or in vivo.
  • FIG. 2 is a schematic diagram showing examples of other possible forms of light rays for supplying light energy to electron excitation of the light emitting molecules of the present invention and light rays for collecting the light emission energy of the light emitting molecules.
  • FIG. 3 is a schematic diagram of a porous semiconductor etched with a structure in which a high reflection value or a transmission value of light is emitted in an emission wavelength region of a photoluminescent molecule of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment in which the photoluminescent molecules lumen-based artificial neurons of the present invention cause action potentials of neurons through semiconductors and transistors when detecting specific neurons.
  • Figure 5 is a photoluminescent molecular lumen-based artificial neurons of the present invention when a specific neurons detect specific neurons from the neurotransmitter reservoir for storing the neurotransmitters through the control valve and the check valve is applied to the nerve cell receptor
  • the present invention induces the action potential of nerve cells by using semiconductors, transistors, neurotransmitter reservoirs and pipelines as a result of the small phenomena generated by electrons in the conduction band of photoluminescent molecules at the lowest co-orbit of a specific neurotransmitter. .
  • Embodiments of the present invention will be described in detail.
  • photoluminescent molecules-based lumen-based artificial neurons were manufactured using the advantages of biocompatibility, low cost, semi-permanent durability, and the like.
  • the present invention provides a photoluminescent molecule (10) having a conduction band of higher energy than the lowest orbital of a specific neurotransmitter;
  • a porous semiconductor 20 etched with a structure for amplifying the emission intensity of the wavelength region of the light emission emitted while the electrons of the light emitting molecule 10 move from the conduction band to the sidewalk;
  • a light ray 30 for supplying light energy used for electron excitation of the light emitting molecules;
  • Light rays 40 for collecting the light emission energy of the light emitting molecules;
  • a semiconductor 50 generating voltage by measuring and analyzing emission energy of the photoluminescent molecules 10;
  • a field effect transistor 60 whose conductivity of holes or electrons in the drain is changed in the source according to the generated voltage value of the semiconductor 50.
  • Materials other than the semiconductor 50 may be used to generate a voltage by analyzing the change in the light emission energy of the photoluminescent molecules 10, and induce an action potential of nerve cells based on the luster phenomenon of the photoluminescent molecules 10.
  • an electrical stimulation may cause an action potential.
  • Figure 1 is one or more photoluminescent molecules 10 used for the detection of a particular neurotransmitter of the present invention is attached to the light beam 30 to supply the light energy, collecting the luminous energy of the photoluminescent molecules
  • FIG. 3 is a schematic diagram of the light beam 40 shown.
  • the porous semiconductor illustrated in FIG. 3 is etched in such a way as to amplify the light emission intensity of the light emitting molecules 10 and, if necessary, a light beam 30 for supplying light energy to the light emitting molecules 10 or a light beam for collecting light emission energy. 40 may be attached.
  • the luster phenomenon of the photoluminescent molecules whose light emission intensity is amplified by the influence of the porous semiconductor 20 is more remarkable.
  • the light emitting molecules 10, the light rays 30 for supplying light energy to the light emitting molecules 10, and the light rays 40 for collecting light emission energy of the light emitting molecules 10 may be integrated or separated.
  • the light emitting energy of the light emitting molecules 10 attached to the light beam 30 is collected by the light beam 40 to a semiconductor 50 such as a photodiode or a complementary metal oxide semiconductor that analyzes the light emitting energy of the light emitting molecule 10. Evangelize.
  • the light beam 30 for supplying the light energy to which the light emitting molecules 10 are attached or the light beam 40 for collecting the light emitting energy of the light emitting molecules 10 may be in various forms such as a round cylinder and a polygonal cylinder.
  • the structure can be adopted.
  • it may be a polygonal or circular arch structure having one or more pillars shown in FIG. 2, or another structure not shown in FIG. 2.
  • the photoluminescent molecules 10 may have various shapes other than the sphere shown in the drawing, and the porous semiconductor 20 may also adopt shapes other than those shown in FIG. 3.
  • the luminous energy collected by the light rays 40 collecting the luminous energy of the photoluminescent molecules 10 is conducted to a semiconductor 50 such as a photodiode or a scattering metal oxide semiconductor, and is measured and analyzed. A voltage value is generated in proportion to the luminescence energy.
  • the semiconductor 50 which generates a voltage in proportion to the emission energy of the photoluminescent molecule 10, supplies the generated voltage to the gate of the transistor 60 through a conductor.
  • the generated voltage value of the semiconductor 50 decreases due to the lumen of the light emitting molecules 10, the amount of electrons or holes flowing from the source of the transistor 60 to the drain increases.
  • the drain of the transistor 60 is connected to the nerve cell by the conductor path 70, and when the amount of electrons or holes flowing to the drain of the transistor 60 increases, electrical stimulation is applied to the nerve cell to cause an action potential.
  • FIG. 4 is a schematic diagram illustrating an example of inducing the action potential of nerve cells by analyzing the light emission energy of the photoluminescent molecules 10.
  • the photodiode shown by the symbol in FIG. 4 measures and analyzes the luminous energy to generate a voltage proportional to the luminous energy and supplies it to the n-type transistor shown in the symbol in FIG.
  • the semiconductor 50 generating a voltage in proportion to the emission energy by measuring and analyzing the emission energy of the photoluminescent molecule 10 of the present invention and flowing from the source to the drain when the voltage value generated from the semiconductor 50 decreases.
  • the increase in conductivity does not limit the transistor 60 to photodiodes and n-type transistors.
  • a conduit 90 for supplying a neurotransmitter stored in a neurotransmitter reservoir 80 storing a neurotransmitter as a means for inducing an action potential of the neuron to a neurotransmitter receptor of a neuron is a schematic diagram showing an example of inducing an action potential by supplying a neurotransmitter to a neurotransmitter receptor of a neuron.
  • the control valve 100 and the check valve 110 is mounted to the conduit 90 to adjust the flow rate of the neurotransmitter material flowing into the conduit and prevent backflow.
  • the actuator 120 in the control valve 100 the flow rate of the control valve 100 may be adjusted according to the voltage generated from the semiconductor 50 or the conductivity of the transistor 60.
  • the neurotransmitter reservoir 80, the conduit 90, the control valve 100, the check valve 110 and the actuator 120 shown in FIG. 5 may be installed in various forms in one or more nerve cells.
  • a variety of actuators can be used that can supply the transfer material, and the actuator can finely control the control valve such as the hydraulic actuator, the solenoid actuator, as well as the electric actuator.
  • neurotransmitters stored in neurotransmitter reservoirs may be stored in liquid or solid state.
  • Photoluminescent molecules 10 of photoluminescent molecules lumen-based artificial neurons a ray 30 for supplying light energy required for electron excitation of the photoluminescent molecules, and a ray for collecting the luminous energy of the photoluminescent molecules (40).
  • a conductor 70 for inducing the action potential of the nerve cell by electrical stimulation, and a conduit 90 for transferring the neurotransmitter from the neurotransmitter reservoir 80 to the receptor of the neuron is partially installed in vivo. Other parts may be installed in or other than raw vegetables.
  • the energy of the highest occupied molecular orbital orbitals of acetylcholine is calculated using a software called Chem draw. Identify biocompatible photoluminescent polymers with conduction bands higher than the energy of the lowest orbital acetylcholine.
  • the silicon wafer After cutting the silicon wafer to a suitable size, the silicon wafer is placed on a flat conductor, and the hole of the perforated Teflon block is placed on the silicon wafer to be fixed. Pour a solution of hydrofluoric acid and ethanol into the hole of the Teflon block.
  • the cathode of the current generator is a solution, and the anode etches the silicon wafer into a structure in which a reflection peak similar to the emission wavelength region of the photoluminescent molecules flows through the metal on which the silicon wafer is placed.
  • Example 1 the incident light is incident on the silicon wafer etched, and the wavelength of the reflected light is measured to determine whether the region having the highest intensity of the reflected light is close to the wavelength region having the highest emission intensity of the photoluminescent polymer.
  • a platinum catalyst is used to bind the photoluminescent polymer to the etched silicon wafer surface. When the coupling reaction is complete, the platinum catalyst is removed.
  • a portion of the light beam is physically etched using saw blade scissors, and then the porous silicon bonded to the light emitting polymer of Example 1 is attached to the etched portion of the light beam with epoxy.
  • One end of the light beam is connected to the LED lamp and the other light beam collecting the light emitting energy of the light emitting polymer is connected to the complementary metal oxide semiconductor.
  • the voltage generated in the complementary metal oxide semiconductor is connected to the gate of the oxide semiconductor field effect transistor with a conductor.
  • the source of the oxide semiconductor field effect transistor is connected to a battery.
  • the complementary metal oxide semiconductor when the voltage value conducted to the gate of the oxide semiconductor field effect transistor decreases, the conductivity of electrons flowing from the source to the drain of the oxide semiconductor field effect transistor increases.
  • Teflon-coated silver wire connects the drain of the oxide semiconductor field effect transistor and the Node of Ranvier of the axon of the neuron of Giant Squid.
  • acetylcholine reservoir Store the solution of acetylcholine in an acetylcholine reservoir.
  • the acetylcholine reservoir is connected with a 1 mm inner diameter pipeline.
  • a control valve with an electronic actuator is installed in the middle of the pipeline.
  • the electron actuator is connected to a complementary metal oxide semiconductor and a conductor which measures and analyzes the emission energy of the photoluminescent molecules.
  • a check valve is installed at the other end of the pipeline and installed near the neurotransmitter receptor of the neuron of the giant squid.
  • Acetylcholine was detected using an etched porous semiconductor that amplifies the emission intensity in the photoluminescence wavelength region of the photoluminescent polymer.
  • FIG. 6 light in the wavelength region of 500 to 510 nm was amplified by the light emission polymer 130 in the light of the etched porous semiconductor under specific conditions.
  • the specific material was detected in the 530 ⁇ 540nm wavelength region 140 of the non-amplified section, the lumen of the light emission was greater.

Abstract

The present invention relates to an artificial neuron based on quantum quenching of photoluminescence molecules, and a method for manufacturing the same, the artificial neuron comprising: a sensor for detecting a particular neurotransmitter by using the principle of quantum quenching of photoluminescence molecules; a transistor for inducing a neuron action potential when the phenomenon of quantum quenching of photoluminescence molecules occurs; and a duct for supplying a neurotransmitter to a receptor of a neuron when the phenomenon of quantum quenching of photoluminescence molecules occurs. The present invention can sensitively detect a particular neurotransmitter on the basis of quantum quenching of photoluminescence molecules. The artificial neuron of the present invention, which is based on quantum quenching of photoluminescence molecules, has biocompatible properties and can thus be used to detect neurotransmitters in vivo or in vitro. The artificial neuron of the present invention, which is based on quantum quenching of photoluminescence molecules, sensitively responds to neurotransmitters and, in response thereto, induces a neuron action potential, and can thus be used as a neuron substitute.

Description

[규칙 제26조에 의한 보정 22.06.2017] 광 발광분자 소강 기반 인공 신경세포[Revision 22.06.2017 by Rule 26] Photoluminescent Molecule Lumen-Based Artificial Neurons
본 발명은 광 발광분자(photoluminescence molecule)의 전도대(conduction band)에 있는 전자(electron)가 다른 분자의 최저공궤도(Lowest Unoccupied Molecular Orbital)로 이동하면서 광 발광분자의 특정 발광(light emission) 파장(wavelength)영역의 소강(quantum quenching) 현상의 원리를 실용한 민감도(sensitivity)가 높은 센서(sensor)를 생체의 신경전달물질(neurotransmitter) 및 호르몬(hormone) 등을 탐지하는데 사용하며, 특정 신경전달물질 또는 호르몬을 센서가 탐지했을 때 신경세포(neuron)의 활동전위(action potential)를 전기적 자극으로 유발하는 트랜지스터(transistor)와 신경전달물질을 운반 및 신경세포의 신경전달물질 수용기에 공급하여 화학적 자극으로 유발하는 관로를 구비한 광 발광분자 소강 기반 인공 신경세포에 관한 것이다. The present invention relates to a particular light emission wavelength of a photoluminescent molecule as electrons in the conduction band of the photoluminescence molecule move to the lowest unoccupied molecular orbital of another molecule. A sensor with high sensitivity, which uses the principle of quantum quenching in the wavelength region, is used to detect neurotransmitters and hormones in a living body, and specific neurotransmitters. Or when a sensor detects hormones, it delivers transistors and neurotransmitters that cause action potentials of neurons as electrical stimuli, and transports them to the neurotransmitter receptors of nerve cells for chemical stimulation. It relates to a photoluminescent molecule lumen-based artificial neurons having an inducing conduit.
광 발광(photoluminescence)분자의 전도대(conduction band)에서 가전자대(valance band)로 전자가 이동할 때 에너지 간격(energy band gap)에 따라 발광 에너지의 파장이 달라진다. 하지만 광 발광분자의 전도대의 전자가 다른 분자의 최저공궤도(lowest unoccupied molecular orbital)로 이동 할 경우 특정 파장영역의 발광 강도가 감소하며 이러한 현상을 소강(quantum quenching)으로 분석한다. When electrons move from the conduction band of the photoluminescence molecule to the valence band, the wavelength of the emission energy varies depending on the energy band gap. However, when electrons in the conduction band of photoluminescent molecules move to the lowest unoccupied molecular orbital, the emission intensity of a specific wavelength region decreases and this phenomenon is analyzed by quantum quenching.
광 발광분자의 전도대에서 다른 분자의 최저공궤도로 전자가 많이 이동할수록 소강으로 인한 특정 파장영역의 발광 강도(intensity)의 감소는 현저하다. 광 발광분자의 발광 강도의 소강 현상이 현저 할수록 센서의 민감도를 향상 시킬 수 있으며 다공질 반도체(porous semiconductor)를 채용하여 광 발광분자의 소강 현상을 더욱 현저하게 만들 수 있다. As the electron moves to the lowest pore of another molecule in the conduction band of the photoluminescent molecule, the decrease in the intensity of light emission in a specific wavelength region due to the steel sheet is remarkable. As the phenomena of the light emission intensity of the light emitting molecules become more remarkable, the sensitivity of the sensor can be improved, and the phenomena of the light emitting molecules can be made more remarkable by adopting a porous semiconductor.
다공질 반도체(porous semiconductor)는 반도체의 표면을 식각(etching)하여 빛의 특정 파장영역의 반사(reflectivity) 또는 투과(transmission)의 강도(intensity)를 증가시켜 반치폭(Full width at half maximum)을 감소시킴으로써 민감도를 향상 시키는 광학적 및 전기적인 특성을 가진다. Porous semiconductors etch the surface of a semiconductor to increase the intensity of reflection or transmission in specific wavelength regions of light, thereby reducing the full width at half maximum. It has optical and electrical characteristics to improve sensitivity.
식각된 반도체에 빛이 입사 되어 빛의 반사 또는 투과 강도가 높게 나오는 파장영역과 겹치는 파장영역의 빛을 발광하는 광 발광분자가 부착 될 때, 광 발광분자의 발광 파장영역의 발광 강도는 증가하며 반치폭은 감소한다. When the light emitting molecules emitting light in the wavelength region overlapping with the wavelength region where the light is incident on the etched semiconductor and the light reflection or transmission intensity is high, the light emission intensity of the light emitting molecule in the emission wavelength region increases and the half width is increased. Decreases.
광 발광분자의 발광 에너지와 비례하게 전자가 여기 되는 반도체는 광 발광분자의 소강 현상이 나타날 때 반도체의 전도대로 여기 되는 전자 량이 줄어들게 되므로 반도체의 전도도(conductivity)가 감소하게 된다. 요컨대 광다이오드(photodiode), 상보성 금속 산화막 반도체(complementary metal-oxide-semiconductor) 등의 반도체로 소강으로 인한 빛에너지의 강도 변화를 측정 및 분석할 수 있다. 발광 에너지의 강도가 소강으로 감소할 때 발광 에너지를 분석하는 반도체가 생성하는 전압 값은 변한다. 소강 현상으로 생성 전압 값이 변화하는 반도체가 전기장 효과 트랜지스터(field effective transistor)의 게이트(gate)로 전압을 공급할 때, 전기장 효과 트랜지스터의 소스(source)로부터 드레인(drain)까지의 전도도(conductivity)는 게이트로 공급된 전압에 따라 달라진다. 전기장 효과 트랜지스터의 드레인과 신경세포를 전도체로 연결하면 게이트로 공급되는 전압 값의 변화로 소스에서 드레인의 전도도가 증가할 때 전기적 자극으로 신경세포(neuron)의 활동전위(action potential)를 유발 할 수 있다.A semiconductor in which electrons are excited in proportion to the light emission energy of the photoluminescent molecules decreases the amount of electrons excited by the conduction band of the semiconductor when the luminescence phenomenon of the photoluminescent molecules appears, thereby reducing the conductivity of the semiconductor. In other words, semiconductors such as photodiodes and complementary metal-oxide-semiconductors can measure and analyze the change in intensity of light energy due to steel. When the intensity of the light emission energy decreases to the low, the voltage value generated by the semiconductor analyzing the light emission energy changes. When the semiconductor, in which the value of the generated voltage changes due to the sintering phenomenon, supplies a voltage to the gate of the field effective transistor, the conductivity from the source to the drain of the field effect transistor is It depends on the voltage supplied to the gate. If the drain and nerve cell of the field effect transistor are connected to the conductor, the electrical potential can cause the action potential of the neuron when the conductivity of the drain increases at the source due to the change in the voltage value supplied to the gate. have.
전기적 자극 이외의 방법으로 신경세포의 신경전달물질 수용기(receptor)에 신경전달물질을 공급하여 화학적 자극으로 활동전위를 유발시킬 수 있다. 신경전달물질을 저장하는 신경전달물질 저장소(neurotransmitter storage)에서 조종 밸브(control valve)와 체크 밸브(check valve)가 채용된 관로를 통해 신경세포의 수용기(receptor)에 신경전달물질을 공급할 수 있다. 액추에이터(actuator)를 채용하여 광 발광에너지를 측정 및 분석하는 반도체가 생성하는 전압 값에 따라 관로 내에 운반되는 유량을 조절하는 조종 밸브를 조종할 수 있다. In addition to electrical stimulation, neurotransmitters may be supplied to neurotransmitter receptors (receptors) of nerve cells to induce action potentials by chemical stimulation. In neurotransmitter storage for storing neurotransmitters, neurotransmitters can be supplied to receptors of nerve cells through a conduit employing a control valve and a check valve. An actuator may be used to control a control valve for adjusting a flow rate carried in a conduit according to a voltage value generated by a semiconductor measuring and analyzing photoluminescence energy.
신경세포(neuron)는 생성되는 신경전달물질에 따라 분류된다. 예를 들면, 아세틸콜린(acetylcholine)을 생성하는 신경세포는 콜린작동성 뉴런(cholinergic neuron)로, 도파민(dopamine)을 생성하는 신경세포는 도파민작동성 뉴런(dopaminergic neuron)으로 각각 분류된다. 생체의 근육기관은 담당 신경세포인 콜린작동성 뉴런의 아세틸콜린이라는 신경전달물질이 콜린작동성 뉴런의 수용기(receptor)에 도달 했을 경우만 활성화 된다. 따라서 뇌 분야에서는 신경전달 물질의 선택적이고 민감한 감지가 중요하다. Neurons are classified according to the neurotransmitters they produce. For example, acetylcholine-producing neurons are classified as cholinergic neurons, and dopamine-producing neurons are classified as dopaminergic neurons, respectively. The muscle organs of the living body are activated only when the neurotransmitter called acetylcholine of the cholinergic neuron, the neuronal cell, reaches the receptor of the cholinergic neuron. Therefore, selective and sensitive detection of neurotransmitters is important in the brain.
뇌졸중을 포함한 뇌질환으로 파괴된 신경세포는 본래 상태로 회복되기 매우 어려우며 파괴된 신경세포가 담당했던 생체 기관의 기능 또한 잃게 된다. 현재까지 축색돌기 발아(axonal sprouting)을 도모하는 뇌 부위의 전기적 자극(electrical stimulation), 광학적 자극(optical stimulation), 약물적 자극(pharmaceutical stimulation) 등의 연구가 진행되고 있으나 뇌의 일부분에 인위적인 바이러스 감염 절차가 필요하며 완치가 되지 않는 어려움이 있다.Neurons destroyed by brain diseases, including stroke, are very difficult to recover to their original state and lose the function of the living organs that were in charge of the destroyed neurons. Until now, researches on electrical stimulation, optical stimulation, and pharmaceutical stimulation of the brain areas that promote axonal sprouting have been conducted. There is a need for procedures and difficulties that cannot be cured.
본 발명은 광 발광분자의 특정 신경전달물질 탐지로 소강 현상이 타나날 경우 신경세포의 활동전위를 유발한다. The present invention causes the action potential of nerve cells when the lumen phenomenon occurs by detecting specific neurotransmitters of photoluminescent molecules.
본 발명은 생체 적합성 및 반영구성 특성을 가진 소강 기반 인공 신경세포이며 실제 신경세포의 기능을 재현한다. The present invention is a lumen-based artificial neuron having biocompatibility and semiconducting properties and reproduces the function of an actual neuron.
특정 신경전달물질의 최저공궤도의 에너지보다 높은 전도대의 에너지를 가진 광 발광분자; 광 발광분자의 발광 파장영역과 유사한 파장영역에서 높은 반사(reflectivity) 또는 투과(transmission) 강도를 가진 다공질 반도체; 광 발광분자의 전자를 여기 시키는 빛 에너지를 광 발광분자에게 공급하는 광선(optical fiber); 광 발광분자의 발광 빛에너지를 수집 하여 발광에너지를 측정 및 분석하는 반도체에 전도하는 광선; 광 발광분자의 발광 에너지를 측정 및 분석하여 전압을 생성하는 반도체; 게이트(gate)로 공급받는 전압 값이 변할 때 전자(electron) 또는 양공(hole)이 소스(source)에서 드레인(drain)으로 전도되는 전기장 효과 트랜지스터(field effective transistor); 전기장 효과 트랜지스터의 드레인과 신경세포를 연결하는 전도체; 신경전달물질을 저장하는 저장소; 신경전달물질 저장소에서 신경세포의 수용기에 신경전달물질을 운반 및 공급하는 관로; 신경전달물질을 신경세포에 공급하는 관로의 유량을 조절하는 조종 밸브; 신경전달물질을 신경세포에 공급하는 관로의 역류를 방지하는 체크 밸브; 조종 밸브를 조종하는 액추에이터(actuator);를 사용하여 특정 신경전달물질 탐지 및 신경세포의 활동전위를 유발하여 신경세포의 기능을 제공한다.Photoluminescent molecules having energy of conduction band higher than that of lowest co-orbit of a specific neurotransmitter; A porous semiconductor having high reflectivity or transmission intensity in a wavelength region similar to that of a light emitting molecule; An optical fiber for supplying light energy for exciting electrons of the light emitting molecules to the light emitting molecules; A light ray which collects the light emission energy of the light emission molecules and conducts the light to the semiconductor for measuring and analyzing the light emission energy; A semiconductor generating voltage by measuring and analyzing light emission energy of photo light emitting molecules; A field effective transistor in which electrons or holes are conducted from a source to a drain when the voltage value supplied to the gate changes; A conductor connecting the drain and the nerve cell of the field effect transistor; A reservoir for storing neurotransmitters; A conduit for transporting and supplying neurotransmitters to neuronal receptors in neurotransmitter reservoirs; A control valve for controlling a flow rate of a conduit for supplying a neurotransmitter to nerve cells; A check valve for preventing backflow of a conduit for supplying a neurotransmitter to nerve cells; Actuator (actuator) for manipulating the control valve; to detect the specific neurotransmitter and to induce the action potential of the nerve cells to provide the function of the nerve cells.
본 발명의 광 발광분자 소강 기반 인공 신경세포는 광 발광분자의 전도대의 전자가 특정 신경전달물질의 최저공궤도로 이동하여 광 발광분자의 전도대에서 가전도대까지의 에너지간격을 전자가 이동할 때 방출하는 특정파장영역의 소강 현상을 분석하여 특정 신경전달물질을 민감하게 탐지할 수 있다. The photoluminescent molecular lumen-based artificial neurons of the present invention emit electrons when the electrons in the conduction band of the photoluminescent molecules move to the lowest orbits of specific neurotransmitters and move the energy interval from the conduction band of the photoluminescent molecules to the consumer electronics band. Analysis of the lumen phenomenon of specific wavelength region can detect specific neurotransmitter sensitively.
본 발명의 광 발광분자 소강 기반 인공 신경세포는 특정 신경전달물질을 탐지 했을 때 신경세포의 활동전위를 유발하여 실제 신경세포의 기능을 재현할 수 있으며 파괴된 신경세포의 대체제로 사용 될 수 있다.Photoluminescent molecules lumen-based artificial neurons of the present invention can be used as a substitute for destroyed neurons by reproducing the function of the actual neurons by inducing the action potential of the neurons when detecting specific neurotransmitters.
본 발명의 광 발광분자 소강 기반 인공 신경세포는 생체적합성 및 반영구적 내구성을 가지므로, 생체 내 또는 생체 외에 설치되어 용이하게 사용 될 수 있다.Since the photoluminescent molecules lumen-based artificial neurons of the present invention have biocompatibility and semi-permanent durability, they can be easily installed and used in vivo or in vivo.
도 1은 본 발명의 광 발광분자의 전자 여기에 빛에너지를 공급하는 광선과 광 발광분자의 발광 에너지를 수집하는 광선의 모식도이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the light ray which supplies light energy to the electron excitation of the light emission molecule of this invention, and the light ray which collects the light emission energy of the light emission molecule.
도 2는 본 발명의 광 발광분자의 전자 여기에 빛에너지를 공급하는 광선과 광 발광분자의 발광 에너지를 수집하는 광선의 가능한 다른 형태의 예를 도시한 모식도이다.FIG. 2 is a schematic diagram showing examples of other possible forms of light rays for supplying light energy to electron excitation of the light emitting molecules of the present invention and light rays for collecting the light emission energy of the light emitting molecules.
도 3은 본 발명의 광 발광분자의 발광 파장영역에 빛의 높은 반사 값 또는 투과 값이 나오는 구조로 식각한 다공질 반도체의 모식도이다.3 is a schematic diagram of a porous semiconductor etched with a structure in which a high reflection value or a transmission value of light is emitted in an emission wavelength region of a photoluminescent molecule of the present invention.
도 4는 본 발명의 광 발광분자 소강 기반 인공 신경세포가 특정 신경물질을 탐지할 경우 반도체와 트랜지스터를 통하여 신경세포의 활동전위를 유발하는 실시예의 개략도이다.4 is a schematic diagram of an embodiment in which the photoluminescent molecules lumen-based artificial neurons of the present invention cause action potentials of neurons through semiconductors and transistors when detecting specific neurons.
도 5는 본 발명의 광 발광분자 소강 기반 인공 신경세포가 특정 신경물질을 탐지할 경우 신경전달물질을 저장하는 신경전달물질 저장소로부터 조종 밸브와 체크밸브가 채용된 관로를 통하여 신경세포의 수용기에 신경전달물질을 공급하는 실시예의 개략도이다.Figure 5 is a photoluminescent molecular lumen-based artificial neurons of the present invention when a specific neurons detect specific neurons from the neurotransmitter reservoir for storing the neurotransmitters through the control valve and the check valve is applied to the nerve cell receptor A schematic diagram of an embodiment for supplying a delivery material.
도 6은 특정 탐지하고자하는 물질을 다공질 반도체에 부착된 발광물질의 소강으로 탐지한 결과이다.6 is a result of detecting a specific material to be detected by the lumen of the light emitting material attached to the porous semiconductor.
본 발명은 특정 신경전달 물질의 최저공궤도로 광 발광분자의 전도대의 전자가 이동하여 발생하는 소강현상을 계기로 반도체, 트랜지스터, 신경전달물질 저장소 및 관로 등을 사용하여 신경세포의 활동전위를 유발한다. 본 발명의 구현예를 상세히 설명한다. The present invention induces the action potential of nerve cells by using semiconductors, transistors, neurotransmitter reservoirs and pipelines as a result of the small phenomena generated by electrons in the conduction band of photoluminescent molecules at the lowest co-orbit of a specific neurotransmitter. . Embodiments of the present invention will be described in detail.
본 발명에서는 생체 적합성, 저비용, 반영구적 내구성 등의 장점을 가질 수 있고 소용화로 사용할 수 있다는 우수한 장점을 이용하여 광 발광분자 소강 기반 인공 신경세포를 제조하였다. In the present invention, photoluminescent molecules-based lumen-based artificial neurons were manufactured using the advantages of biocompatibility, low cost, semi-permanent durability, and the like.
하나의 양상에서 본 발명은 특정 신경전달물질의 최저공궤도 보다 높은 에너지의 전도대를 가진 광 발광분자(10); 상기 광 발광분자(10)의 전자가 전도대에서 가도대로 이동하면서 방출되는 광 발광의 파장영역의 발광 강도를 증폭 시키는 구조로 식각된 다공질 반도체(20); 상기 광 발광분자의 전자 여기에 사용되는 빛에너지를 공급하는 광선(30); 상기 광 발광분자의 발광에너지를 수집하는 광선(40); 상기 광 발광분자(10)의 발광 에너지를 측정 및 분석하여 전압을 생성하는 반도체(50); 상기 반도체(50)의 생성된 전압 값에 따라 소스에서 드레인의 양공 또는 전자의 전도도가 변하는 전기장 효과 트랜지스터(60);를 포함하는 광 발광분자 소강 기반 인공 신경세포에 관계한다. In one aspect, the present invention provides a photoluminescent molecule (10) having a conduction band of higher energy than the lowest orbital of a specific neurotransmitter; A porous semiconductor 20 etched with a structure for amplifying the emission intensity of the wavelength region of the light emission emitted while the electrons of the light emitting molecule 10 move from the conduction band to the sidewalk; A light ray 30 for supplying light energy used for electron excitation of the light emitting molecules; Light rays 40 for collecting the light emission energy of the light emitting molecules; A semiconductor 50 generating voltage by measuring and analyzing emission energy of the photoluminescent molecules 10; And a field effect transistor 60 whose conductivity of holes or electrons in the drain is changed in the source according to the generated voltage value of the semiconductor 50.
광 발광분자(10)의 발광 에너지 변화를 분석하여 전압을 생성하기 위해 반도체(50) 이외의 재료를 사용할 수 있으며, 광 발광분자(10)의 소강 현상을 계기로 신경세포의 활동전위를 유발하기 위해 트랜지스터(60)의 드레인과 신경세포를 전도체(70)로 연결하여 전기적인 자극을 가하여 활동전위를 유발할 수 있다. Materials other than the semiconductor 50 may be used to generate a voltage by analyzing the change in the light emission energy of the photoluminescent molecules 10, and induce an action potential of nerve cells based on the luster phenomenon of the photoluminescent molecules 10. In order to connect the drain and the nerve cells of the transistor 60 to the conductor 70 to apply an electrical stimulation may cause an action potential.
이에 관하여, 도 1은 본 발명의 특정 신경전달물질의 탐지를 위해 사용되는 하나 이상의 광 발광분자(10)들이 빛에너지를 공급하는 광선(30)에 부착되어 있으며, 광 발광분자의 발광에너지를 수집하는 광선(40)의 모식도이다. 도 3에 도시된 다공질 반도체는 광 발광분자(10)들의 발광 강도를 증폭시키는 구조로 식각되어 있으며 필요 시 광 발광분자(10)에게 빛 에너지를 공급하는 광선(30) 또는 발광 에너지를 수집하는 광선(40)에 부착될 수 있다. 다공질 반도체(20)의 영향으로 발광강도가 증폭된 광 발광분자의 소강 현상은 더 현저하게 나타난다. 광 발광분자(10), 광 발광분자(10)에게 빛에너지를 공급하는 광선(30), 광 발광분자(10)의 발광 에너지를 수집하는 광선(40)은 일체형 또는 분리형이 될 수 있다. 광선(30)에 부착된 광 발광분자(10)들의 발광 에너지를 광선(40)으로 수집하여 광 발광분자(10)의 발광 에너지를 분석하는 광다이오드 또는 상보성 금속 산화막 반도체 등의 반도체(50)에 전도한다. In this regard, Figure 1 is one or more photoluminescent molecules 10 used for the detection of a particular neurotransmitter of the present invention is attached to the light beam 30 to supply the light energy, collecting the luminous energy of the photoluminescent molecules It is a schematic diagram of the light beam 40 shown. The porous semiconductor illustrated in FIG. 3 is etched in such a way as to amplify the light emission intensity of the light emitting molecules 10 and, if necessary, a light beam 30 for supplying light energy to the light emitting molecules 10 or a light beam for collecting light emission energy. 40 may be attached. The luster phenomenon of the photoluminescent molecules whose light emission intensity is amplified by the influence of the porous semiconductor 20 is more remarkable. The light emitting molecules 10, the light rays 30 for supplying light energy to the light emitting molecules 10, and the light rays 40 for collecting light emission energy of the light emitting molecules 10 may be integrated or separated. The light emitting energy of the light emitting molecules 10 attached to the light beam 30 is collected by the light beam 40 to a semiconductor 50 such as a photodiode or a complementary metal oxide semiconductor that analyzes the light emitting energy of the light emitting molecule 10. Evangelize.
한편, 광 발광분자(10)가 부착 되는 빛에너지를 공급하는 광선(30) 또는 광 발광분자(10)의 발광 에너지를 수집하는 광선(40)의 형태는 둥근 실린더 및 다각 실린더 등의 다양한 형태의 구조를 채용할 수 있다. 그 예로서 도 2에 도시된 하나 이상의 기둥을 가진 다각형 또는 원형 아치(arch) 구조, 또는 도 2에 도시 되지 않은 다른 구조가 될 수 있다. 광 발광분자(10)는 도면에 도시된 구형(sphere) 이외의 다양한 형태를 지닐 수 있으며 다공질 반도체(20) 또한 도 3에 도시된 형태 이외의 형태를 채용할 수 있다.On the other hand, the light beam 30 for supplying the light energy to which the light emitting molecules 10 are attached or the light beam 40 for collecting the light emitting energy of the light emitting molecules 10 may be in various forms such as a round cylinder and a polygonal cylinder. The structure can be adopted. For example, it may be a polygonal or circular arch structure having one or more pillars shown in FIG. 2, or another structure not shown in FIG. 2. The photoluminescent molecules 10 may have various shapes other than the sphere shown in the drawing, and the porous semiconductor 20 may also adopt shapes other than those shown in FIG. 3.
광 발광분자(10)의 발광 에너지를 수집하는 광선(40)으로 수집된 발광 에너지는 광다이오드 또는 산보성 금속 산화막 반도체 등의 반도체(50)로 전도 되어 측정 및 분석 되며 광 발광분자(10)의 발광 에너지와 비례하게 전압 값을 생성된다. 광 발광분자(10)의 발광 에너지와 비례하게 전압을 생성하는 반도체(50)는 생성된 전압을 전도체를 통하여 트랜지스터(60)의 게이트로 공급한다. 광 발광분자(10)의 소강으로 반도체(50)의 생성 전압 값이 감소 될 때, 트랜지스터(60)의 소스에서부터 드레인으로 흐르는 전자 또는 양공의 양은 증가한다. 트랜지스터(60)의 드레인은 전도체로(70)로 신경세포와 연결 되어 트랜지스터(60)의 드레인으로 흐르는 전자 또는 양공의 양이 증가할 때 신경세포에 전기적 자극을 가하여 활동전위를 유발한다.The luminous energy collected by the light rays 40 collecting the luminous energy of the photoluminescent molecules 10 is conducted to a semiconductor 50 such as a photodiode or a scattering metal oxide semiconductor, and is measured and analyzed. A voltage value is generated in proportion to the luminescence energy. The semiconductor 50, which generates a voltage in proportion to the emission energy of the photoluminescent molecule 10, supplies the generated voltage to the gate of the transistor 60 through a conductor. When the generated voltage value of the semiconductor 50 decreases due to the lumen of the light emitting molecules 10, the amount of electrons or holes flowing from the source of the transistor 60 to the drain increases. The drain of the transistor 60 is connected to the nerve cell by the conductor path 70, and when the amount of electrons or holes flowing to the drain of the transistor 60 increases, electrical stimulation is applied to the nerve cell to cause an action potential.
도 4는 광 발광분자(10)의 발광 에너지를 분석하여 신경세포의 활동전위를 유발하는 하나의 예를 도시한 개략도이다. 도 4에 기호로 도시된 광 다이오드는 발광 에너지를 측정 및 분석하여 발광 에너지와 비례한 전압을 생성하여 도 4에 기호로 도시된 n타입 트랜지스터로 공급한다. 본 발명의 광 발광분자(10)의 발광 에너지를 측정 및 분석하여 발광 에너지와 비례하게 전압을 생성하는 반도체(50)와 상기 반도체(50)로부터 생성된 전압 값이 감소할 때 소스에서 드레인으로 흐르는 전도도가 증가는 트랜지스터(60)를 광 다이오드와 n타입 트랜지스터로 한정하는 것은 아니다. 4 is a schematic diagram illustrating an example of inducing the action potential of nerve cells by analyzing the light emission energy of the photoluminescent molecules 10. The photodiode shown by the symbol in FIG. 4 measures and analyzes the luminous energy to generate a voltage proportional to the luminous energy and supplies it to the n-type transistor shown in the symbol in FIG. The semiconductor 50 generating a voltage in proportion to the emission energy by measuring and analyzing the emission energy of the photoluminescent molecule 10 of the present invention and flowing from the source to the drain when the voltage value generated from the semiconductor 50 decreases. The increase in conductivity does not limit the transistor 60 to photodiodes and n-type transistors.
다른 양상에서 본 신경세포의 활동전위를 유발하는 수단으로 신경전달물질을 저장하는 신경전달물질 저장소(80)에 저장된 신경전달물질을 신경세포의 신경전달물질 수용기에 공급하는 관로(90)를 사용하는 화학적 방법 등이 있다. 도 5는 신경세포의 신경전달물질 수용기에 신경전달물질을 공급하여 활동전위를 유발시키는 예를 도시한 개략도이다. 상기 관로(90)에 조종 밸브(100)와 체크 밸브(110)가 장착 되어 있어 관로 내로 흐르는 신경전달물질의 유량을 조절할 수 있으며 역류를 방지할 수 있다. 상기 조종 밸브(100)에 액추에이터(120)를 채용하여 상기 반도체(50)로부터 생성되는 전압 또는 상기 트랜지스터(60)의 전도도에 따라 조종 밸브(100)의 유량 조절을 할 수 있다. In another aspect, using a conduit 90 for supplying a neurotransmitter stored in a neurotransmitter reservoir 80 storing a neurotransmitter as a means for inducing an action potential of the neuron to a neurotransmitter receptor of a neuron. Chemical methods; 5 is a schematic diagram showing an example of inducing an action potential by supplying a neurotransmitter to a neurotransmitter receptor of a neuron. The control valve 100 and the check valve 110 is mounted to the conduit 90 to adjust the flow rate of the neurotransmitter material flowing into the conduit and prevent backflow. By employing the actuator 120 in the control valve 100, the flow rate of the control valve 100 may be adjusted according to the voltage generated from the semiconductor 50 or the conductivity of the transistor 60.
도 5에 도시된 신경전달물질 저장소(80), 관로(90), 조종 밸브(100), 체크 밸브(110) 및 액추에이터(120)는 다양한 형태로 한 개 이상 설치하여 한 개 이상의 신경세포에 신경전달물질을 공급할 수 있으며 액추에이터는 전자 액추에이터(electric actuator) 뿐만 아니라 유압적 액추에이터(hydrolic actuator), 솔레노이드 액추에이터(solenoid actuator) 등 조종 밸브를 미세하게 조절할 수 있는 여러 종류의 액추에이터가 사용될 수 있다. 또한 신경전달물질 저장소에 저장되는 신경전달물질은 액체 또는 고체의 상태로 저장 될 수 있다. The neurotransmitter reservoir 80, the conduit 90, the control valve 100, the check valve 110 and the actuator 120 shown in FIG. 5 may be installed in various forms in one or more nerve cells. A variety of actuators can be used that can supply the transfer material, and the actuator can finely control the control valve such as the hydraulic actuator, the solenoid actuator, as well as the electric actuator. In addition, neurotransmitters stored in neurotransmitter reservoirs may be stored in liquid or solid state.
광 발광분자 소강 기반 인공 신경세포의 광 발광분자(10), 광 발광분자의 전자 여기(electron excitation)에 필요한 빛에너지를 공급해 주는 광선(30), 광 발광분자의 발광에너지를 수집하는 광선(40), 신경세포의 활동전위를 전기적 자극으로 유발 시키는 전도체(70), 및 신경전달물질 저장소(80)로부터 신경전달물질을 신경세포의 수용기에 전달하는 관로(90)는 생체 내에 부분적으로 설치되나 그 이외의 부분은 생채 내 또는 생채 외에 설치 될 수 있다. Photoluminescent molecules 10 of photoluminescent molecules lumen-based artificial neurons, a ray 30 for supplying light energy required for electron excitation of the photoluminescent molecules, and a ray for collecting the luminous energy of the photoluminescent molecules (40). ), A conductor 70 for inducing the action potential of the nerve cell by electrical stimulation, and a conduit 90 for transferring the neurotransmitter from the neurotransmitter reservoir 80 to the receptor of the neuron is partially installed in vivo. Other parts may be installed in or other than raw vegetables.
이하 본 발명의 역학을 다음의 실시 예에 의해 좀 더 상세하게 설명하겠으나, 하기 실시 예는 본 발명의 역학의 원리를 예시하기 위한 것이며 본 발명이 범위를 한정하는 것은 아니다. Hereinafter, the mechanics of the present invention will be described in more detail by the following examples, but the following examples are provided to illustrate the principles of the mechanics of the present invention, and the present invention is not intended to limit the scope thereof.
실시예 1: 전기적 자극으로 신경세포의 활동전위를 유발하는 광 발광분자 소강 기반 인공 신경세포의 제조Example 1 Preparation of Photoluminescent Molecules-Based Artificial Neurons to Induce Action Potential of Neurons by Electrical Stimulation
<아세틸콜린을 탐지할 수 있는 광 발광분자 식별><Identification of photoluminescent molecules that can detect acetylcholine>
켐 드로우(Chem draw)라는 소프트웨어(software)를 사용하여 아세틸콜린의 최고준위 점유 분자궤도와 최저공궤도의 에너지를 계산한다. 아세틸콜린의 최저공궤도의 에너지 보다 높은 전도대를 가진 생체 적합성 광 발광고분자를 식별한다. The energy of the highest occupied molecular orbital orbitals of acetylcholine is calculated using a software called Chem draw. Identify biocompatible photoluminescent polymers with conduction bands higher than the energy of the lowest orbital acetylcholine.
<다공질 반도체의 식각><Etching of Porous Semiconductor>
실리콘웨이퍼(silicon wafer)를 알맞은 크기로 자른 후 평평한 전도체 위에 올린 뒤 구멍이 뚫린 테플론 블록(teflon block)의 구멍 부분을 실리콘웨이퍼 위에 올려 고정시킨다. 테플론 블록의 구멍에 불산과 에탄올이 섞인 용액을 붓는다. 교류 발전기(current generator)의 음극(cathode)은 용액으로 양극(anode)는 실리콘웨이퍼가 놓인 금속에 흘려 광 발광분자의 발광 파장영역과 유사한 반사 피크(reflection peak) 나오는 구조로 실리콘웨이퍼를 식각한다. After cutting the silicon wafer to a suitable size, the silicon wafer is placed on a flat conductor, and the hole of the perforated Teflon block is placed on the silicon wafer to be fixed. Pour a solution of hydrofluoric acid and ethanol into the hole of the Teflon block. The cathode of the current generator is a solution, and the anode etches the silicon wafer into a structure in which a reflection peak similar to the emission wavelength region of the photoluminescent molecules flows through the metal on which the silicon wafer is placed.
<다공질 반도체에 발광분자의 부착><Adhesion of light emitting molecules to porous semiconductor>
상기 실시예 1에서 식각된 실리콘웨이퍼에 조명을 입사시켜 반사되는 빛의 파장을 측정하여 반사되는 빛의 강도가 가장 높은 영역이 광 발광 고분자의 발광 강도가 가장 높은 파장영역과 근접한지 확인한다. 근접할 경우 백금 촉매제를 사용하여 광 발광 고분자를 식각된 실리콘웨이퍼 표면에 결합 반응을 시킨다. 결합 반응이 완료 되면 백금 촉매제를 제거한다. In Example 1, the incident light is incident on the silicon wafer etched, and the wavelength of the reflected light is measured to determine whether the region having the highest intensity of the reflected light is close to the wavelength region having the highest emission intensity of the photoluminescent polymer. In close proximity, a platinum catalyst is used to bind the photoluminescent polymer to the etched silicon wafer surface. When the coupling reaction is complete, the platinum catalyst is removed.
<광 발광 고분자가 결합된 다공질 반도체, 광선 및 상보성 금속 산화막 반도체의 연결><Coupling Porous Semiconductor with Light-Emitting Polymer, Light and Complementary Metal Oxide Semiconductor>
광선 일부분을 톱날 가위를 사용하여 물리적으로 식각한 뒤 상기 실시예 1의 발광고분자가 결합된 다공질 실리콘을 광선의 식각된 부위에 에폭시(epoxy)로 부착한다. 광선의 한쪽 끝은 LED 전등과 연결하며 광 발광고분자의 발광 에너지를 수집하는 다른 한쪽의 광선은 상보성 금속 산화막 반도체에 연결한다. A portion of the light beam is physically etched using saw blade scissors, and then the porous silicon bonded to the light emitting polymer of Example 1 is attached to the etched portion of the light beam with epoxy. One end of the light beam is connected to the LED lamp and the other light beam collecting the light emitting energy of the light emitting polymer is connected to the complementary metal oxide semiconductor.
<상보성 금속 산화막 반도체와 산화막 반도체 전기장 효과 트랜지스터의 연결><Connection of Complementary Metal Oxide Semiconductor and Oxide Semiconductor Electric Field Effect Transistor>
상보성 금속 산화막 반도체에서 생성되는 전압은 전도체로 산화막 반도체 전기장 효과 트랜지스터의 게이트(gate)에 연결된다. 산화막 반도체 전기장 효과 트랜지스터의 소스(source)는 건전지와 연결된다. 상보성 금속 산화막 반도체에서 산화막 반도체 전기장 효과 트랜지스터의 게이트로 전도되는 전압 값이 감소할 때 산화막 반도체 전기장 효과 트랜지스터의 소스(source)에서 드레인(drain)으로 흐르는 전자의 전도도가 증가한다. The voltage generated in the complementary metal oxide semiconductor is connected to the gate of the oxide semiconductor field effect transistor with a conductor. The source of the oxide semiconductor field effect transistor is connected to a battery. In the complementary metal oxide semiconductor, when the voltage value conducted to the gate of the oxide semiconductor field effect transistor decreases, the conductivity of electrons flowing from the source to the drain of the oxide semiconductor field effect transistor increases.
<산화막 반도체 전기장 효과 트랜지스터와 대왕오징어 신경세포의 연결><The connection between oxide semiconductor field effect transistor and giant squid neuron>
테플론코팅 된 은색 선으로 산화막 반도체 전기장 효과 트랜지스터의 드레인과 대왕오징어(Giant Squid)의 신경세포의 축삭돌기의 랑비에결절(Node of Ranvier)에 연결한다. Teflon-coated silver wire connects the drain of the oxide semiconductor field effect transistor and the Node of Ranvier of the axon of the neuron of Giant Squid.
실시예 2: 화학적 자극으로 신경세포의 활동전위를 유발하는 광 발광분자 소강 기반 인공 신경세포의 제조Example 2 Preparation of Photoluminescent Molecules-Based Artificial Neurons That Induce Activity Potential of Neurons by Chemical Stimulation
<아세틸콜린 저장소, 관로, 조종 밸브 및 체크 밸브 설치><Installation of Acetylcholine Reservoir, Pipe, Control Valve and Check Valve>
아세틸콜린이 용해된 용액을 아세틸콜린 저장소에 저장한다. 아세틸콜린 저장소를 1mm 내경 관로와 연결한다. 관로의 중간 부위에 전자 액추에이터가 채용된 조종 밸브를 설치한다. 전자 액추에이터는 광 발광분자의 발광 에너지를 측정 및 분석하는 상보성 금속 산화막 반도체와 전도체로 연결한다. 관로 다른 끝 부분에 체크밸브를 설치하여 대왕 오징어의 신경세포의 신경전달물질 수용기 부근에 설치한다. Store the solution of acetylcholine in an acetylcholine reservoir. The acetylcholine reservoir is connected with a 1 mm inner diameter pipeline. A control valve with an electronic actuator is installed in the middle of the pipeline. The electron actuator is connected to a complementary metal oxide semiconductor and a conductor which measures and analyzes the emission energy of the photoluminescent molecules. A check valve is installed at the other end of the pipeline and installed near the neurotransmitter receptor of the neuron of the giant squid.
실시예 3: 광 발광분자 소강 기반 인공 신경세포의 특정물질 탐지Example 3 Detection of Specific Substances in Photoluminescent Molecules
광 발광고분자의 광 발광 파장영역의 발광 강도를 증폭시키는 식각된 다공질 반도체를 사용하여 아세틸콜린을 탐지하였다. 도 6에서, 식각된 다공질 반도체의 특정 조건의 식각으로 500~510nm 파장영역의 빛을 광 발광고분자의 발광 강도를 증폭(130)시켰다. 증폭되지 않은 구간의 530~540nm 파장영역(140) 대비 특정 물질을 탐지 했을 때 광 발광의 소강은 더 크게 나타났다.Acetylcholine was detected using an etched porous semiconductor that amplifies the emission intensity in the photoluminescence wavelength region of the photoluminescent polymer. In FIG. 6, light in the wavelength region of 500 to 510 nm was amplified by the light emission polymer 130 in the light of the etched porous semiconductor under specific conditions. When the specific material was detected in the 530 ~ 540nm wavelength region 140 of the non-amplified section, the lumen of the light emission was greater.

Claims (12)

  1. 신경전달물질의 최저공궤도 보다 높은 에너지의 전도대를 가진 하나 이상의 광 발광분자를 구비한 센서Sensors with one or more photoluminescent molecules with conduction bands of energy higher than the lowest co-orbit of the neurotransmitter
  2. 제 1항에 있어서, 광 발광분자의 전자 여기에 필요한 빛에너지를 공급하는 광선The light beam of claim 1, wherein the light beam supplies light energy required for electron excitation of the light emitting molecules.
  3. 제 1항에 있어서, 광 발광분자의 발광 에너지를 수집하는 광선The light beam of claim 1, wherein the light beams collect light emission energy of the light emission molecules.
  4. 제 1부터 3항에 있어서, 광 발광분자의 발광 에너지를 측정 및 분석하는 반도체The semiconductor device of claim 1, wherein the semiconductor device measures and analyzes light emission energy of photoluminescent molecules.
  5. 제 1부터 4항에 있어서, 광 발광분자의 발광 에너지를 측정 및 분석하는 반도체의 생성 전압 값에 따라 전자 또는 양공의 전도도가 변하는 트랜지스터The transistor according to claim 1, wherein the conductivity of electrons or holes changes according to the generated voltage value of the semiconductor for measuring and analyzing the emission energy of the photoluminescent molecules.
  6. 제 4와 5항에 있어서, 신경세포와 트랜지스터를 연결하는 전도체The conductor according to claim 4 or 5, wherein the conductor connects the nerve cell to the transistor.
  7. 생체 내 또는 생체 외에 신경전달물질을 저장하는 신경전달물질 저장소Neurotransmitter store for storing neurotransmitters in vivo or ex vivo
  8. 제 7항에 있어서, 신경전달물질 저장소에서 신경전달물질을 운반하여 신경세포의 수용기에 공급하는 관로8. The conduit of claim 7, wherein the neurotransmitter is transported from the neurotransmitter reservoir and supplied to the receptor of the neuron.
  9. 제 7과 8항에 있어서, 신경전달물질이 운반되는 관로 내의 유량을 조절하는 조종 밸브The control valve according to claim 7 or 8, which regulates the flow rate in the pipeline in which the neurotransmitter is carried.
  10. 제 7부터 9항에 있어서, 신경전달물질이 운반되는 관로의 역류를 방지하는 체크밸브10. The check valve of claim 7 to 9, wherein the check valve prevents a backflow of the pipe in which the neurotransmitter is carried.
  11. 제 7부터 10항에 있어서, 신경전달물질이 운반되는 관로 내의 유량을 조절하는 조종 밸브를 조종하는 액추에이터The actuator according to claim 7, wherein the actuator controls a control valve for regulating the flow rate in the pipeline in which the neurotransmitter is carried.
  12. 발광하는 하나 이상의 발광분자의 발광 파장영역과 유사한 파장영역의 빛을 반사 또는 투과시켜 발광 강도를 증폭시키는 구조를 가진 다공질 반도체A porous semiconductor having a structure for amplifying emission intensity by reflecting or transmitting light in a wavelength region similar to the emission wavelength region of at least one light emitting molecule that emits light
PCT/KR2017/005717 2017-05-12 2017-06-01 Artificial neuron based on quantum quenching of photoluminescence molecules WO2018207967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0059028 2017-05-12
KR1020170059028A KR20180124470A (en) 2017-05-12 2017-05-12 Photoluminescent Molecule Quantum Qunching Based Aritifical Neuron

Publications (1)

Publication Number Publication Date
WO2018207967A1 true WO2018207967A1 (en) 2018-11-15

Family

ID=64105275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005717 WO2018207967A1 (en) 2017-05-12 2017-06-01 Artificial neuron based on quantum quenching of photoluminescence molecules

Country Status (2)

Country Link
KR (1) KR20180124470A (en)
WO (1) WO2018207967A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271277A (en) * 1998-03-25 1999-10-05 Hitachi Ltd Mass spectrometry and mass spectrograph for humor
JP2009501600A (en) * 2005-07-21 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for coupling injection electrode and neural tissue
US20110045523A1 (en) * 2009-08-21 2011-02-24 Massachusetts Institute Of Technology Optical Nanosensors Comprising Photoluminescent Nanostructures
KR20130023386A (en) * 2005-04-15 2013-03-07 센서즈 포 메드슨 앤드 사이언스 인코포레이티드 Optical-based sensing devices
KR20140085054A (en) * 2012-12-27 2014-07-07 커스텀 메디컬 애플리케이션즈, 아이엔씨. Safety neural injection system and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271277A (en) * 1998-03-25 1999-10-05 Hitachi Ltd Mass spectrometry and mass spectrograph for humor
KR20130023386A (en) * 2005-04-15 2013-03-07 센서즈 포 메드슨 앤드 사이언스 인코포레이티드 Optical-based sensing devices
JP2009501600A (en) * 2005-07-21 2009-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for coupling injection electrode and neural tissue
US20110045523A1 (en) * 2009-08-21 2011-02-24 Massachusetts Institute Of Technology Optical Nanosensors Comprising Photoluminescent Nanostructures
KR20140085054A (en) * 2012-12-27 2014-07-07 커스텀 메디컬 애플리케이션즈, 아이엔씨. Safety neural injection system and related methods

Also Published As

Publication number Publication date
KR20180124470A (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5178751B2 (en) Nanowire optical sensor and kit including the same
Wang et al. In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor
Wang et al. Rapid determination of the toxicity of quantum dots with luminous bacteria
Wang et al. Thin-film organic photodiodes for integrated on-chip chemiluminescence detection–application to antioxidant capacity screening
CN101438157A (en) Biosensor having nano wire for detecting food additive mono sodium glutamate and manufacturing method thereof
EP1124128A3 (en) Automated optical reader for nucleic acid assays
WO2010090391A2 (en) Turbidity-measuring probe having polymer membranes modified by a hydrophobic sol-gel
ES2721173T3 (en) Fine-grained fillers for photometric reaction films
PT103561A (en) SYSTEM OF DETECTION AND QUANTIFICATION OF BIOLOGICAL MATTER CONSTITUTED BY ONE OR MORE OPTICAL SENSORS AND ONE OR MORE LIGHT SOURCES, ASSOCIATED PROCEDURE AND THEIR RESPECTIVE USES
WO2018207967A1 (en) Artificial neuron based on quantum quenching of photoluminescence molecules
CN108139332A (en) Optical detection unit
CN101310173A (en) Apparatus and method for detecting activity of living cells
CN107255710A (en) Multichannel micro-fluidic fluorescence detection device and method
US8921121B2 (en) Methods, devices, and systems for chemiluminescence-based microfluidic cell counting
Hölzel et al. Dynamic extracellular imaging of biochemical cell activity using InGaN/GaN nanowire arrays as nanophotonic probes
Zand et al. Resistive flow sensing of vital mitochondria with nanoelectrodes
FR2897719B1 (en) NANO-MANUFACTURING INSTALLATION AND METHOD
JP2017504010A (en) Oxygen flow indicator using flow powered lighting
US11524295B2 (en) Channel device and method for concentrating fine particles
CN206056922U (en) The device of light travels efficiency
CN105765366B (en) Use the water quality sensor of positive feedback
CN109897630B (en) Nanowire, preparation method thereof, ratio type fluorescence chemical sensor containing nanowire and application
WO2015065023A1 (en) Water quality sensor using positive feedback
US20110152116A1 (en) Nanoassays
TWI832312B (en) Nucleic acid detection chip detection method and its structure, detection equipment, cleaning device and cleaning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909388

Country of ref document: EP

Kind code of ref document: A1