WO2018207360A1 - Mechanical device and air conditioning device having mechanical device - Google Patents

Mechanical device and air conditioning device having mechanical device Download PDF

Info

Publication number
WO2018207360A1
WO2018207360A1 PCT/JP2017/018074 JP2017018074W WO2018207360A1 WO 2018207360 A1 WO2018207360 A1 WO 2018207360A1 JP 2017018074 W JP2017018074 W JP 2017018074W WO 2018207360 A1 WO2018207360 A1 WO 2018207360A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
vibration transmission
synchronous motors
mechanical device
phase
Prior art date
Application number
PCT/JP2017/018074
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 小林
和憲 坂廼邉
真作 楠部
康彦 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/018074 priority Critical patent/WO2018207360A1/en
Publication of WO2018207360A1 publication Critical patent/WO2018207360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • the present invention relates to a mechanical device having a plurality of motors and an air conditioner having the mechanical device.
  • an air conditioner has a mechanical device provided with a motor as a drive source of a load such as a compressor and a fan.
  • a motor is connected for each load.
  • Some mechanical devices are provided with an inverter that drives a motor.
  • the inverter is connected to an AC power source such as a commercial power source on the input side, and outputs an AC voltage having a frequency and amplitude suitable for the motor operating state to the motor.
  • the AC power source connected to the input side of the inverter may be, for example, a single-phase power source or a multi-phase power source such as a three-phase power source.
  • the power source connected to the input side of the inverter is a DC power source.
  • connection configuration between the inverter and the motor there are usually a configuration in which a single motor is connected to a single inverter and a configuration in which a plurality of motors are connected in parallel to a single inverter.
  • Patent Document 1 An example of an electric device having a configuration in which a plurality of motors are connected in parallel to a single inverter is disclosed in Patent Document 1.
  • the electric device disclosed in Patent Document 1 includes a single multi-phase inverter that drives two motors via an output line common to the two motors including a brushless DC motor and a three-phase induction motor.
  • a fan is connected to each of the brushless DC motor and the three-phase induction motor.
  • the frequency of the AC voltage applied to the two motors is the same, but the rotational speeds of the two motors are not approximate. Since there is a difference between the rotation speeds of the two motors, the frequency of vibration generated due to the rotation of each motor is different for each motor.
  • the sound and vibration caused by the rotation of two motors may be a single unit such as a housing that holds the electric device. Communicate to the configuration. In this case, these vibrations are combined in a single configuration, and noise and vibration due to the difference in rotational speed between the two motors may become noticeable.
  • the present invention has been made to solve the above-described problems, and is a mechanical device that suppresses generation of noise and vibration due to a difference in rotational speed between a plurality of driving motors, and an air conditioner having the mechanical device. Is to provide.
  • a mechanical device is connected to a three-phase voltage type inverter that converts a DC voltage into an AC voltage, a plurality of synchronous motors connected in parallel to the three-phase voltage type inverter, and the plurality of synchronous motors.
  • a plurality of first vibration transmission elements connected to a plurality of loads and the plurality of synchronous motors directly or via the plurality of synchronous motors and the plurality of loads, and transmitting vibrations caused by rotation of the plurality of synchronous motors
  • a second vibration transmission element that contacts the plurality of first vibration transmission elements and transmits the vibration from the plurality of first vibration transmission elements.
  • the air conditioner according to the present invention is a refrigerant in which the mechanical device according to the present invention, a compressor, a heat source side heat exchanger, an expansion device, and a load side heat exchanger are connected via a refrigerant pipe and the refrigerant circulates. And a circuit.
  • FIG. 2 is a block diagram illustrating a configuration example of a three-phase voltage type inverter illustrated in FIG. 1. It is a figure for demonstrating the beat sound which arises when the frequency of two motors differs. It is a figure which shows the example of 1 structure of the mechanical apparatus in Embodiment 2 of this invention. It is the schematic which shows one structural example of the outdoor unit of the air conditioning apparatus which has the machine apparatus shown in FIG. It is a figure which shows the example of 1 structure of the mechanical apparatus in Embodiment 3 of this invention. It is a figure which shows the structural example of the air conditioning apparatus in Embodiment 5 of this invention. It is a figure which shows the structural example of the air conditioning apparatus in Embodiment 6 of this invention.
  • FIG. 1 is a block diagram showing a configuration example of a mechanical device according to Embodiment 1 of the present invention.
  • the mechanical device 100 includes a single three-phase voltage type inverter 2 connected to an AC power source 1, two synchronous motors 3 a and 3 b connected to the three-phase voltage type inverter 2, It has 1st vibration transmission element 5a, 5b which transmits the vibration resulting from rotation of motor 3a, 3b, and the single 2nd vibration transmission element 6 which contacts 1st vibration transmission element 5a, 5b.
  • the three-phase voltage type inverter 2 drives the synchronous motors 3a and 3b.
  • the number of synchronous motors connected to the three-phase voltage type inverter 2 is two will be described.
  • the number of synchronous motors may be three or more.
  • N represents the number of synchronous motors.
  • N is an integer of 2 or more.
  • the synchronous motor 3a is connected to the first vibration transmitting element 5a via a load 4a.
  • the synchronous motor 3b is connected to the first vibration transmission element 5b via a load 4b.
  • the vibration caused by the rotation of the synchronous motor 3a is transmitted to the first vibration transmitting element 5a via the load 4a, and the vibration caused by the rotation of the synchronous motor 3b is first transmitted via the load 4b. It is transmitted to the vibration transmitting element 5b.
  • the vibration caused by the rotation of the synchronous motors 3a and 3b becomes an excitation force that vibrates the first vibration transmitting elements 5a and 5b.
  • the synchronous motor 3a may be directly connected to the first vibration transmission element 5a, and the synchronous motor 3b may be directly connected to the first vibration transmission element 5b.
  • the excitation force resulting from the rotation of the synchronous motor 3a is directly transmitted to the first vibration transmitting element 5a, and the excitation force resulting from the rotation of the synchronous motor 3b is directly transmitted to the first vibration transmitting element 5b.
  • the second vibration transmission element 6 vibrates by transmitting the respective vibrations from the first vibration transmission elements 5a and 5b and synthesizing the transmitted vibrations.
  • the vibration transmitted from the first vibration transmission elements 5 a and 5 b to the second vibration transmission element 6 becomes an excitation force that vibrates the second vibration transmission element 6.
  • the second vibration transmission element 6 is in direct contact with a fixed end 7 such as the ground or a building.
  • the fixed end 7 may be the floor of the building or the ceiling of the building.
  • the second vibration transmission element 6 is not limited to being in direct contact with the fixed end 7, and may be in contact with the fixed end 7 via another vibration transmission element. Specific configuration examples of the loads 4a and 4b, the first vibration transmission elements 5a and 5b, and the second vibration transmission element 6 will be described later.
  • FIG. 2 is a block diagram showing a configuration example of the three-phase voltage type inverter shown in FIG. 2, in order to simplify the drawing, the loads 4a and 4b, the first vibration transmission elements 5a and 5b, the second vibration transmission element 6 and the fixed end 7 shown in FIG. 1 are not shown in the figure. ing.
  • the three-phase voltage type inverter 2 includes a rectifier circuit 21 connected to the AC power source 1 and a plurality of switching circuits that convert a DC voltage output from the rectifier circuit 21 into a three-phase AC voltage and supply the same to the synchronous motors 3a and 3b. Device.
  • the rectifier circuit 21 converts the AC voltage supplied from the AC power source 1 into a DC voltage.
  • the rectifier circuit 21 is, for example, a diode bridge circuit.
  • the capacitor 22 may be connected between the DC buses. By providing the capacitor 22 between the DC buses, the DC voltage can be smoothed and stabilized.
  • FIG. 2 shows a three-phase case of U phase, V phase and W phase.
  • a pair of switching elements is provided for each phase.
  • the switching element 23UP of the upper arm and the switching element 23UN of the lower arm are connected in series.
  • a connection point between the switching element 23UP and the switching element 23UN is connected to U-phase input terminals of the synchronous motors 3a and 3b via an output line.
  • the switching element 23VP of the upper arm and the switching element 23VN of the lower arm are connected in series.
  • a connection point between the switching element 23VP and the switching element 23VN is connected to V-phase input terminals of the synchronous motors 3a and 3b via an output line.
  • the switching element 23WP of the upper arm and the switching element 23WN of the lower arm are connected in series.
  • a connection point between the switching element 23WP and the switching element 23WN is connected to the W-phase input terminals of the synchronous motors 3a and 3b via an output line.
  • Each switching element is provided with a backflow prevention element connected in reverse parallel to the switching element.
  • a configuration in which a backflow prevention element is included in the switching element is shown with reference numerals.
  • the switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the backflow prevention element may be a body diode (parasitic diode) formed structurally in a MOSFET or the like.
  • the plurality of switching elements perform a switching operation based on a control method such as PWM (Pulse Width Modulation). For example, the plurality of switching elements perform a switching operation in accordance with a control signal input to the gate electrode of each switching element from a control device provided outside.
  • PWM Pulse Width Modulation
  • the three-phase voltage type inverter 2 converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3a and 3b, and converts the three-phase AC voltage into the synchronous motors 3a and 3b. To supply.
  • inverters There are several types of inverters, such as voltage type and current type, depending on the circuit system.
  • the same amplitude and the same frequency are used for all of the synchronous motors 3a and 3b connected to the same output line. It is ensured that alternating voltages are applied with the same phase. This is an important key in controlling a plurality of synchronous motors.
  • the three-phase voltage type inverter 2 converts a three-phase AC voltage supplied from the AC power source 1 into a DC voltage.
  • the supplied AC voltage is a single-phase voltage. It may be.
  • the three-phase voltage type inverter 2 may be connected to a DC power source such as a battery. In this case, a three-phase AC voltage is generated using a DC voltage supplied from the DC power source.
  • loads 4a and 4b are connected to two synchronous motors 3a and 3b connected in parallel to a single three-phase voltage type inverter 2, respectively.
  • loads 4a and 4b are connected to two synchronous motors 3a and 3b connected in parallel to a single three-phase voltage type inverter 2, respectively.
  • the synchronous motor 3a rotates, vibration due to this rotation is generated in the synchronous motor 3a.
  • the synchronous motor 3b rotates, vibration due to this rotation is generated in the synchronous motor 3b.
  • vibration in the synchronous motors 3a and 3b There are several possible causes for the occurrence of vibration in the synchronous motors 3a and 3b.
  • One possible cause of vibration is a mechanical imbalance of the motor.
  • a minute deformation of the motor can be considered.
  • the minute deformation of the motor is, for example, deformation on the motor stator side.
  • the minute deformation of the motor is caused by the eccentric movement of the rotor and the periodic change of the electromagnetic attractive force accompanying the rotation between the stator and the rotor of the motor.
  • torque ripple or the like can be considered as another cause of vibration generation.
  • the frequency of vibration generated due to these causes is correlated with the rotational speed of the synchronous motors 3a and 3b.
  • the vibration generated in the synchronous motor 3a is transmitted from the synchronous motor 3a through the load 4a or directly from the synchronous motor 3a to the first vibration transmitting element 5a.
  • the vibration generated in the synchronous motor 3b is transmitted to the first vibration transmitting element 5b through the load 4b or directly from the synchronous motor 3b.
  • the respective excitation forces are synthesized from the first vibration transmission element 5a and the first vibration transmission element 5b. Is done. As a result, a combined excitation force is generated in the second vibration transmission element 6.
  • FIG. 3 is a diagram for explaining a beat sound generated when the frequencies of the two motors are different.
  • the vertical axis of the graph shown in FIG. 3 indicates the amplitude of vibration and sound, and the horizontal axis indicates time.
  • FIG. 3 shows a waveform of vibration V1 periodically generated due to rotation of one of the two motors and a waveform of vibration V2 periodically generated due to rotation of the other motor.
  • the frequency of the vibration V1 is f1
  • the frequency of the vibration V2 is f2. These frequencies correspond to the frequency. Assume that the frequency f1 and the frequency f2 have a relationship of f1 ⁇ f2.
  • T2 T1.
  • the vibration frequencies transmitted by the first vibration transmitting elements 5a and 5b are different, vibrations having a long period shown in the waveform of the beat sound S in FIG. It is conceivable that the vibration is transmitted to the two vibration transmitting elements 6.
  • a long-period vibration is referred to as a long-period vibration.
  • the second vibration transmitting element 6 is configured, for example, as a refrigerant pipe, the amplitude of the vibration can be locally increased at the phase where the amplitude of the vibration V1 and the amplitude of the vibration V2 are intensified. There is a possibility that the second vibration transmitting element 6 may be damaged by the long-period vibration. Details of the case where the second vibration transmitting element 6 is a refrigerant pipe will be described later.
  • the three-phase voltage type inverter 2 generates a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3a and 3b according to the power required by the loads 4a and 4b. Supply to 3a and 3b. Since the synchronous motors 3a and 3b are connected in parallel to the output lines of the respective phases of the three-phase voltage type inverter 2, the synchronous motors 3a and 3b receive a three-phase AC voltage having the same frequency and the same phase. Applied reliably.
  • the rotation mechanism of the synchronous motor is such that the rotor rotates in synchronization with the rotating magnetic field generated by the three-phase armature winding.
  • the rotors of the synchronous motors 3a and 3b rotate at the same rotational speed in synchronization. Therefore, there is no difference between the rotational speed of the synchronous motor 3a and the rotational speed of the synchronous motor 3b.
  • the frequency components of the vibration transmitted to each of the first vibration transmitting elements 5a and 5b are also the same, and the above-described beat sound and long-period vibration can be suppressed.
  • the number of the three-phase voltage type inverters 2 is changed to the synchronous motor 3a, It can be reduced from the number of 3b. Therefore, the manufacturing cost of the mechanical device can be suppressed by the cost of the inverter corresponding to the number of the three-phase voltage type inverters 2 reduced.
  • the plurality of three-phase voltage type inverters apply a three-phase AC voltage having the same frequency and the same phase to the plurality of motors. It is necessary to operate in synchronization with each other in order to perform the control to apply with certainty.
  • a circuit and arithmetic processing necessary for the plurality of three-phase voltage type inverters to operate in synchronization with each other are not required. Necessary cost can be suppressed.
  • the inverter was a voltage type
  • the case where it is a current type is also considered.
  • the control target is set to voltage rather than current
  • the configuration of the control circuit becomes simpler, and the voltage-type inverter applies voltages having the same amplitude, phase and frequency to all motors connected to the same output line.
  • it is desirable to apply a voltage type inverter because it can be applied reliably.
  • the voltage type inverter does not require a reactor provided on the DC power source side of the current type inverter, there is an advantage that the size of the inverter circuit is reduced.
  • the AC voltage output from the inverter is described as being three-phase, but a single-phase case is also conceivable.
  • a method using an alternating magnetic field in which magnetic fields are alternately switched using two coils can be considered.
  • an induction motor is mainly used as a control target rather than a synchronous motor.
  • the motor to be controlled is an induction motor.
  • the induction motor is a motor with a slip that causes the rotation of the rotor to be delayed relative to the synchronous speed of the rotating magnetic field. Therefore, when trying to match the rotation speeds of a plurality of induction motors, if the same voltage is applied to all the motors connected to the same output line using a voltage type inverter, the load application state of each motor Therefore, the rotational speeds do not match unless the slips of the motors are the same under the same load applied to all the motors.
  • the synchronous motor is a motor that does not slide and rotates according to the synchronous speed of the rotating magnetic field. In order to rotate a plurality of motors synchronously at the same frequency, the controlled motor is preferably a synchronous motor.
  • the mechanical device 100 includes a three-phase voltage type inverter 2, synchronous motors 3a and 3b connected in parallel to the three-phase voltage type inverter 2, and loads 4a connected to the synchronous motors 3a and 3b. 4b, first vibration transmission elements 5a and 5b for transmitting vibrations caused by rotation of the synchronous motors 3a and 3b, and a second vibration transmission element 6 for transmitting vibrations from the first vibration transmission elements 5a and 5b It is.
  • the synchronous motors 3a and 3b rotate synchronously at the same frequency. Therefore, it can suppress that the difference in rotational speed generate
  • noise and vibration that are caused by the second vibration transmission element 6 through the plurality of first vibration transmission elements 5a and 5b due to the vibration caused by the difference in rotational speed between the synchronous motors 3a and 3b. Further, noise and vibration due to vibration interference generated by the loads 4a and 4b connected to the synchronous motors 3a and 3b can be suppressed.
  • the first embodiment it is not necessary to provide a plurality of three-phase voltage type inverters as compared with a configuration in which a plurality of three-phase voltage type inverters are provided corresponding to a plurality of synchronous motors. Circuits and arithmetic processing necessary for the type inverters to operate in synchronization with each other are also unnecessary. Therefore, the manufacturing cost of the mechanical device can be suppressed.
  • the three-phase voltage type inverter 2 when there are three or more motors to be controlled, the three-phase voltage type inverter 2 is configured so that three or more synchronous motors rotate synchronously at the same frequency. Good. Therefore, the mechanical device 100 according to the first embodiment has an advantage that the control is not complicated compared to the electric device disclosed in Patent Document 1 even when there are three or more motors to be controlled.
  • FIG. The mechanical device of the second embodiment is a case where the loads 4a and 4b described in the first embodiment are fans.
  • the loads 4a and 4b described in the first embodiment are fans.
  • a configuration different from the first embodiment will be described in detail, and a detailed description of a configuration similar to the configuration described in the first embodiment will be omitted.
  • FIG. 4 is a diagram illustrating a configuration example of the mechanical device according to the second embodiment of the present invention.
  • the machine apparatus 100 includes a three-phase voltage type inverter 2, synchronous motors 3 c and 3 d, fans 41 a and 41 b, and a casing 61.
  • the casing 61 houses the three-phase voltage type inverter 2, the synchronous motors 3c and 3d, and the fans 41a and 41b.
  • synchronous motors 3 c and 3 d are connected in parallel to the three-phase voltage type inverter 2.
  • the blade of the fan 41a is attached to the shaft tip of the synchronous motor 3c.
  • a blade of the fan 41b is attached to the shaft tip of the synchronous motor 3d.
  • the fans 41a and 41b are mainly used for generating a flow of air as a fluid.
  • the blade corresponds to a propeller and a blade that generate an air flow.
  • the synchronous motor 3c drives the fan 41a, and the synchronous motor 3d drives the fan 41b.
  • the fan 41a transmits the driving force supplied from the synchronous motor 3c to the blades, and rotates the blades around the rotation shaft to generate an air flow.
  • the fan 41b transmits the driving force supplied from the synchronous motor 3d to the blades, and rotates the blades around the rotation shaft to generate an air flow.
  • a motor mounting foot 51a for holding the synchronous motor 3c is attached to the casing 61
  • a motor mounting foot 51b for holding the synchronous motor 3d is attached to the casing 61.
  • the motor mounting legs 51 a and 51 b are in contact with the bottom surface of the housing 61, but a beam portion which is a beam-like member is provided on the upper portion of the housing 61, and the motor mounting is attached to the beam portion of the housing 61.
  • a configuration in which the legs 51 a and 51 b are attached and the synchronous motors 3 c and 3 d are disposed on the upper portion of the housing 61 may be employed.
  • the casing 61 is in direct contact with the fixed end 7 such as the ground or a building.
  • the casing 61 and the fixed end 7 are fixed by a fixing bracket such as a bolt, and the casing 61 is brought into contact with the fixed end 7.
  • FIG. 4 shows the case where the fixed end 7 is a floor of a building, the fixed end 7 may be a ceiling of the building.
  • the housing 61 may be in contact with the fixed end 7 via another vibration transmission element.
  • the casing 61 and the fixed end 7 may be brought into contact with each other through a vibration absorbing material such as a vibration proof rubber so as to enhance the effect of the present invention.
  • the three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, converts the DC voltage into a three-phase AC voltage, and supplies the same to the synchronous motors 3c and 3d.
  • the synchronous motors 3c and 3d rotate to drive the fans 41a and 41b, vibrations are generated in each of the synchronous motors 3c and 3d due to these rotations due to the causes described in the first embodiment.
  • the motor mounting feet 51a and 51b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment. Since the motor mounting feet 51a and 51b are in contact with the housing 61, the excitation force is transmitted to the housing 61 from each of the motor mounting feet 51a and 51b. In the casing 61, these excitation forces are combined, and vibration is generated by the combined excitation force.
  • the housing 61 corresponds to the second vibration transmission element 6 described in the first embodiment.
  • the following mechanism is also conceivable with respect to the annoying sound generated in the mechanical device 100 due to the rotation of the synchronous motors 3c and 3d.
  • the vibration is also transmitted to the blade of the fan 41a attached to the shaft tip of the synchronous motor 3c, thereby inducing uneven rotation in the blade.
  • the vibration is also transmitted to the blade of the fan 41b attached to the shaft tip of the synchronous motor 3d, thereby inducing uneven rotation in the blade.
  • the blades of the fans 41a and 41b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment.
  • the air existing around the blades of the fans 41 a and 41 b becomes a medium for transmitting the vibrations of the fans 41 a and 41 b to the casing 61.
  • FIG. 5 is a schematic diagram showing a configuration example of an outdoor unit of an air conditioner having the mechanical device shown in FIG.
  • the outdoor unit has two fans.
  • the illustration of the three-phase voltage type inverter 2 and the synchronous motors 3c and 3d shown in FIG. 4 is omitted.
  • the casing 61 shown in FIG. 4 also serves as the casing of the outdoor unit 80.
  • the casing 61 of the outdoor unit 80 is provided with fans 41a and 41b that form an air flow in a direction opposite to the vertical direction.
  • Heat exchange portions 81 a and 81 b are provided on the wall surface of the housing 61.
  • the casing 61 includes bell mouths 82a and 82b and fan guards 83a and 83b.
  • the casing 61 is in contact with the fixed end 7 such as the ground or a building.
  • the bell mouths 82 a and 82 b are arranged on the upper part of the housing 61.
  • the bell mouth 82a is arranged around the blade along the rotation direction of the blade of the fan 41a, and covers the side surface of the rotating blade.
  • the bell mouth 82a has a role of adjusting the flow of air generated by the rotation of the fan 41a.
  • the bell mouth 82b is arranged around the blade along the rotation direction of the blade of the fan 41b, and covers the side surface of the rotating blade.
  • the bell mouth 82b has a role of adjusting the air flow generated by the rotation of the fan 41b.
  • a fan guard 83a is provided on the bell mouth 82a so as to cover the upper part of the blade of the fan 41a.
  • the fan guard 83a is supported by a bell mouth 82a disposed around the blade of the fan 41a.
  • a fan guard 83b is provided on the bell mouth 82b so as to cover the upper part of the blade of the fan 41b.
  • the fan guard 83b is supported by a bell mouth 82b disposed around the blade of the fan 41b.
  • the fan guard 83a has a frame supported by the bell mouth 82a and a lattice stretched on the frame so as not to hinder the flow of air flowing out of the housing in the direction opposite to the vertical direction.
  • the fan guard 83b Similar to the fan guard 83a, the fan guard 83b has a frame supported by the bell mouth 82b and a lattice stretched on the frame. When the blade of the fan 41b rotates, air flows out in the direction opposite to the vertical direction from the opening between the lattices provided in the fan guard 83b.
  • the lattice provided in the fan guard 83a prevents an object larger than the space between the lattices from coming into contact with the blades of the fan 41a from the outside of the housing 61.
  • the lattice provided in the fan guard 83b prevents an object larger than the space between the lattices from coming into contact with the blades of the fan 41b from the outside of the housing 61.
  • the fan guards 83a and 83b prevent the rotating blade and an object outside the casing from coming into contact with each other and damaging each other, and have a role of protecting these objects.
  • the opening through which air flows is not limited to being formed by a lattice.
  • the fan guards 83a and 83b may have, for example, a configuration having a plurality of concentric circles having different diameters instead of the lattice, and a configuration in which a plurality of linear bars are arranged in a comb-like shape with a space between each other. There may be.
  • the fans 41a and 41b are generated by forming a space surrounded by the casing 61 including the heat exchange parts 81a and 81b, the bell mouths 82a and 82b, and the fan guards 83a and 83b. Air flow is restricted.
  • the air inside the space becomes a medium for transmitting vibrations generated by the fans 41a and 41b, and the excitation forces of the blades of the fans 41a and 41b induce rotation unevenness.
  • the second vibration described in the first embodiment is performed in the air surrounded by the casing 61 including the heat exchanging portions 81a and 81b, the bell mouths 82a and 82b, and the fan guards 83a and 83b. An action corresponding to the transmission element 6 occurs.
  • the three-phase voltage type inverter 2 has a three-phase voltage of an appropriate frequency for driving the synchronous motors 3c and 3d according to the power required by the fans 41a and 41b. Is supplied to the synchronous motors 3c and 3d. As a result, it is possible to suppress beat noise and long-period vibration caused by vibration interference of the synchronous motors 3c and 3d.
  • the fan is mainly used for air volume control, for example, in order to control the air volume generated by each of the plurality of fans in a balanced manner, it is necessary to control the outputs of the plurality of fans to be the same.
  • the torque of each motor must be controlled in accordance with the rotational speed of each motor, and this control is not easy to achieve with a single inverter.
  • a synchronous motor and a three-phase induction motor are used as a plurality of motors. However, the synchronous motor and the three-phase induction motor are even more different because of their different motor characteristics.
  • the same AC voltage having the same amplitude and the same frequency is the same for all the synchronous motors 3c and 3d connected to the same output line. It is ensured that it is applied in phase. Therefore, if all of the synchronous motors 3c and 3d have the same design specifications, the same motor torque can be obtained from each motor. As a result, it becomes easy to control the motor so that the same output can be obtained from each motor, and the second embodiment also has the advantage that the air volume control becomes easy.
  • the first vibration transmission elements 5a and 5b are motor mounting feet 51a and 51b
  • the second vibration transmission element 6 is a housing 61. It will be. According to the second embodiment, the vibration caused by the difference in rotation between the synchronous motors 3c and 3d is suppressed from being transmitted to the housing 61 via the motor mounting feet 51a and 51b, which will be described in the first embodiment. Effect.
  • the loads 4a and 4b are the fans 41a and 41b. According to the second embodiment, it is possible to suppress noise and vibration caused by vibration interference of the fans 41a and 41b. Further, in the second embodiment, in the air volume control using a fan, when it is necessary to control the outputs of a plurality of fans 41a and 41b to be the same, the motors are controlled so that the same output can be obtained from each motor. Can be obtained.
  • Embodiment 3 The mechanical device according to the third embodiment is a case where the loads 4a and 4b described in the first embodiment are compressors.
  • the loads 4a and 4b described in the first embodiment are compressors.
  • a configuration different from the first and second embodiments will be described in detail, and a detailed description of a configuration similar to the configuration described in the first and second embodiments will be omitted.
  • FIG. 6 is a diagram illustrating a configuration example of the mechanical device according to the third embodiment of the present invention.
  • the mechanical device 100 includes a three-phase voltage type inverter 2, compressors 42 a and 42 b, and a casing 61.
  • the housing 61 houses the three-phase voltage type inverter 2 and the compressors 42a and 42b.
  • synchronous motors 3 e and 3 f are connected in parallel to the three-phase voltage type inverter 2.
  • the compressor 42a is connected to the synchronous motor 3e
  • the compressor 42b is connected to the synchronous motor 3f.
  • the compressors 42a and 42b correspond to the loads 4a and 4b described in the first embodiment. 6 shows a configuration in which the compressor 42a includes the synchronous motor 3e and the compressor 42b includes the synchronous motor 3f.
  • the synchronous motor 3e may be configured separately from the compressor 42a, and the synchronous motor 3f is compressed. It is good also as a structure different from the machine 42b.
  • the compressor 42a includes a compression element 43a, a compressor shell 52a that is a sealed container that holds the synchronous motor 3e directly connected to the compression element 43a, and a foot shell 53a for attaching the compressor 42a to the housing 61.
  • the compressor 42b includes a compression element 43b, a compressor shell 52b that is a sealed container that holds the synchronous motor 3f that is directly connected to the compression element 43b, and a foot shell 53b for attaching the compressor 42b to the housing 61.
  • the foot shells 53a and 53b are generally brought into contact with the bottom of the housing 61 with a fixing bracket such as a bolt, but depending on the relative positional relationship between the housing 61 and the compressors 42a and 42b, The compressors 42a and 42b may be fixed to one or both via the foot shells 53a and 53b.
  • the air conditioner is provided with refrigerant pipes 62a to 62c for circulating the refrigerant.
  • the refrigerant pipe 62b is connected to the compressor 42a.
  • the refrigerant pipe 62c is connected to the compressor 42b.
  • the refrigerant pipe 62a is connected to the compressor 42a and the compressor 42b, and is shared by the compressor 42a and the compressor 42b.
  • the synchronous motor 3e drives the compressor 42a.
  • the compressor 42a compresses and discharges the refrigerant by rotating the synchronous motor 3e to change the volume of the compression chamber of the compression element 43a.
  • the synchronous motor 3f drives the compressor 42b.
  • the compressor 42b compresses and discharges the refrigerant by rotating the synchronous motor 3f to change the volume of the compression chamber of the compression element 43b.
  • the casing 61 is in direct contact with the fixed end 7 such as the ground or a building.
  • the casing 61 and the fixed end 7 are fixed by a fixing bracket such as a bolt, and the casing 61 is brought into contact with the fixed end 7.
  • the fixed end 7 is a floor of a building
  • the fixed end 7 may be a ceiling of the building.
  • the housing 61 may be in contact with the fixed end 7 via another vibration transmission element.
  • the casing 61 and the fixed end 7 may be brought into contact with each other through a vibration absorbing material such as a vibration proof rubber so as to enhance the effect of the present invention.
  • the three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, converts the DC voltage into a three-phase AC voltage, and supplies the same to the synchronous motors 3e and 3f.
  • the synchronous motors 3e and 3f rotate to drive the compressors 42a and 42b, vibrations are generated in each of the synchronous motors 3e and 3f due to these rotations due to the causes described in the first embodiment. .
  • the stator of the synchronous motor 3e When a minute deformation occurs in the stator of the synchronous motor 3e, the stator vibrates and the vibration is transmitted to the foot shell 53a. When a minute deformation occurs in the stator of the synchronous motor 3f, the stator vibrates and the vibration is transmitted to the foot shell 53b.
  • the foot shells 53a and 53b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment.
  • the excitation force is transmitted to the housing 61 from each of the foot shells 53a and 53b.
  • these excitation forces are combined, and vibrations are generated by the combined excitation forces.
  • the casing 61 corresponds to the second vibration transmission element 6 described in the first embodiment.
  • the compressors 42a and 42b are connected by a common refrigerant pipe 62a, a large vibration is generated in the refrigerant pipe 62a due to the interference of vibrations generated from the compressors 42a and 42b. Furthermore, the refrigerant pipe 62a receives one or both of tensile stress and compressive stress due to vibration generated from each of the compressors 42a and 42b. Therefore, the common refrigerant pipe 62a may be damaged by vibrations transmitted from the compressors 42a and 42b. In particular, due to design constraints of the mechanical device 100, the refrigerant pipe may not be directly fixed to the casing 61 and the fixed end 7, but may be supported by the compressors 42a, 42b, and the like.
  • the compressors 42a and 42b which are loads of the synchronous motors 3e and 3f correspond to the first vibration transmission elements 5a and 5b described in the first embodiment, and the refrigerant pipe 62a is the second described in the first embodiment. It corresponds to the vibration transmitting element 6.
  • the three-phase voltage type inverter 2 appropriately drives the synchronous motors 3e and 3f according to the power required by the compressors 42a and 42b.
  • a three-phase AC voltage having a proper frequency is supplied to the synchronous motors 3e and 3f.
  • the refrigerant pipe 62a that is connected to the compressors 42a and 42b and is common to the compressors 42a and 42b from being damaged.
  • the loads 4a and 4b are the compressors 42a and 42b in the configuration described in the first embodiment.
  • the first vibration transmission elements 5a and 5b are the foot shells 53a and 53b, and the second vibration transmission element 6 is the casing 61.
  • the vibration caused by the difference in rotation of the synchronous motors 3e and 3f is suppressed from being transmitted to the housing 61 via the foot shells 53a and 53b, which has been described in the first embodiment. Not only can the effect be obtained, but noise and vibration due to vibration interference of the compressors 42a and 42b can be suppressed.
  • the refrigerant pipe 62a to which the compressors 42a and 42b are connected in common may correspond to the second vibration transmission element 6.
  • the vibration caused by the difference in rotation between the synchronous motors 3e and 3f is suppressed from being transmitted to the refrigerant pipe 62a via the compressors 42a and 42b, so that the refrigerant pipe 62a can be prevented from being damaged.
  • Embodiment 4 The mechanical device according to the fourth embodiment is a case where the semiconductor element provided in the three-phase voltage type inverter 2 is manufactured using a wide band gap semiconductor.
  • the second embodiment a configuration different from the first embodiment will be described in detail, and a detailed description of a configuration similar to the configuration described in the first embodiment will be omitted.
  • the switching elements 23UP, 23VP, 23WP, 23UN, 23VN, and 23WN described with reference to FIG. 2 are elements manufactured using a wide band gap semiconductor.
  • the wide band gap semiconductor is a semiconductor made of any one of silicon carbide (SiC), gallium nitride (GaN), and diamond.
  • the switching elements 23UP, 23VP, 23WP, 23UN, 23VN, and 23WN are, for example, SiC-MOSFETs.
  • the backflow prevention element provided in antiparallel with each switching element may be produced using a wide band gap semiconductor. Not only one of the switching element and the backflow prevention element, but both may be manufactured using a wide band gap semiconductor.
  • the withstand voltage and allowable current of semiconductor elements manufactured using a wide band gap semiconductor are manufactured using a semiconductor made of silicon (Si). Higher than conventional semiconductor devices. Therefore, a semiconductor device manufactured using a wide band gap semiconductor has an advantage that the size of the device can be reduced. By producing the switching element and the backflow prevention element using a wide band gap semiconductor, a semiconductor module incorporating these elements can be reduced in size.
  • the advantage that the switching element and the backflow prevention element shown in FIG. 2 are manufactured using a wide band gap semiconductor is attributed to the vibration interference of the load connected to each synchronous motor. This will be described from the viewpoint of suppressing noise and vibration generated.
  • the frequency of the switching operation is generally set to a level that is several tens to several hundred times as large as the fundamental frequency. By setting the frequency of the switching operation high, the harmonic current is shifted to a higher frequency.
  • the fundamental frequency approaches the frequency of the switching operation as the rotational speed increases.
  • the frequency of vibration caused by the rotation of the synchronous motor includes an integer multiple component of the fundamental frequency.
  • a switching element and a backflow prevention element manufactured using a wide band gap semiconductor have higher heat resistance and less loss due to switching operation than conventional semiconductor elements. Utilizing this property, by using a wide bandgap semiconductor as the material of the semiconductor element, the switching operation frequency is increased to a band that does not interfere with the vibration of an integral multiple component of the fundamental frequency caused by the rotation of the synchronous motor. Can be set to
  • a cooling mechanism for radiating Joule heat is required.
  • the cooling mechanism is, for example, a radiation fin or a water cooling mechanism.
  • Such a cooling mechanism can be a vibration transmission element different from the first vibration transmission element and the second vibration transmission element described in the first to third embodiments. Therefore, it is desirable to reduce the size and simplify the cooling mechanism from the viewpoint of reducing noise and vibration.
  • the simplification of the cooling mechanism is, for example, a change from a water cooling method to an air cooling method that has a simpler structure than the water cooling method.
  • the cooling mechanism can be reduced in size and simplified by utilizing the properties of high heat resistance and low switching loss. Therefore, assuming that the cooling mechanism is a vibration transmission element, the vibration transmission element can be reduced, and generation of sound and vibration in the vibration transmission element can be suppressed.
  • any one of these semiconductor elements is It may be formed of a wide band gap semiconductor.
  • the three-phase voltage type inverter 2 includes a switching element and a backflow prevention element, and one of these elements or Both are manufactured using wide band gap semiconductors.
  • the frequency of the switching operation of the inverter can be set to a high value.
  • the frequency band between the vibration component of the next integral multiple of the rotation speed of the motor and the vibration component due to the frequency of the switching operation should be sufficiently widened so that interference of these vibration components does not occur. it can.
  • the above-described noise suppression effect due to the difference in rotational speed of the synchronous motor there is an effect that the generation of sound due to interference of these vibration components can be suppressed.
  • by downsizing and simplifying the cooling mechanism it is possible to reduce the vibration transmitting element derived from the cooling mechanism and to suppress noise and vibration.
  • Embodiment 5 any one of the mechanical devices described in the first to fourth embodiments is applied to an air conditioner.
  • noise and vibration due to interference of vibrations of a load connected to each synchronous motor may cause discomfort to people around the air conditioner. Therefore, the fifth embodiment aims to reduce this discomfort by applying the mechanical device described in any of the first to fourth embodiments to an air conditioner. Is.
  • FIG. 7 is a diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 5 of the present invention.
  • FIG. 7 is a diagram illustrating a configuration when the mechanical device described in the second embodiment is applied to an air conditioner.
  • the air conditioner 150 a includes an outdoor unit 90 a and an indoor unit 93.
  • the outdoor unit 90a includes the mechanical device 100 described in the second embodiment, the three-phase inverter 200, and the compressor 42a.
  • a synchronous motor 3c for driving the fan 41a and a synchronous motor 3d for driving the fan 41b are connected in parallel to the single three-phase voltage type inverter 2.
  • the three-phase inverter 200 is connected to the three-phase voltage type inverter 2 on the DC bus side, and is connected to the compressor 42a on the output side.
  • the DC bus of the three-phase voltage type inverter 2 is branched and connected to the three-phase inverter 200, and the DC voltage is input from the three-phase voltage type inverter 2 to the three-phase inverter 200 via the DC bus.
  • the configuration is shown.
  • the three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3e according to the load of the compressor 42a. In accordance with a control signal input from the outside, a three-phase AC voltage is supplied to the synchronous motor 3e.
  • the synchronous motors 3c and 3d for driving the fans 41a and 41b and the synchronous motor 3e for driving the compressor 42a generally have different motor capacities and different driving frequencies and driving patterns, in the configuration example shown in FIG.
  • a three-phase inverter 200 that drives the synchronous motor 3e is provided.
  • the three-phase inverter 200 may have a configuration in which a rectifier circuit is provided in the same manner as the three-phase voltage type inverter 2 and an AC voltage is directly supplied from the AC power source 1. Further, if the three-phase inverter 200 has only one synchronous motor 3e connected to its own inverter, interference with other compressors does not occur. It may be configured as follows. If there are a plurality of synchronous motors connected to its own inverter, a three-phase voltage type inverter is desirable for the reason described above.
  • the configuration of the refrigerant circuit shown in FIG. 7 is an example, and when the mechanical device 100 described in the second embodiment is applied to a refrigerant circuit other than the configuration shown in FIG. 7, the same effect as the configuration shown in FIG. 7 is obtained. can get.
  • the indoor unit 93 includes a load side heat exchanger 95 and an expansion device 94.
  • the outdoor unit 90a includes a four-way valve 91 and heat source side heat exchangers 92a and 92b.
  • the heat source side heat exchanger 92a and the heat source side heat exchanger 92b are connected in parallel to the refrigerant circuit 63a.
  • the refrigerant circuit 63a the refrigerant passes from the compressor 42a to the original compressor 42a through the four-way valve 91, the heat source side heat exchangers 92a and 92b, the expansion device 94, the load side heat exchanger 95, and the four-way valve 91 in order. It is the structure where these apparatuses were connected through refrigerant
  • the expansion device 94 is provided in the indoor unit 93, but the expansion device 94 may be provided in the outdoor unit 90a. Moreover, the expansion device 94 may be provided in both the indoor unit 93 and the outdoor unit 90a so that air conditioning capability, such as cooling and heating, can be finely controlled.
  • the air conditioner 150a shown in FIG. 7 can also perform a heating operation, and the effect described later can be obtained in the heating operation as well as the cooling operation.
  • the four-way valve 91 allows the refrigerant discharged from the compressor 42a to flow to the heat source side heat exchangers 92a and 92b, and allows the refrigerant flowing out from the load side heat exchanger 95 to flow to the compressor 42a. Assume that the flow path is switched in advance. Although a detailed description of the heating operation is omitted, switching between the cooling operation and the heating operation is performed by the four-way valve 91 switching the flow path.
  • the three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, and then converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3c and 3d.
  • the three-phase AC voltage is supplied to the synchronous motors 3c and 3d.
  • the three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3e, and synchronizes the three-phase AC voltage. Supply to motor 3e.
  • the compression element 43a connected to the synchronous motor 3e compresses the refrigerant.
  • the compressor 42a discharges a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 42a flows into the heat source side heat exchangers 92a and 92b via the four-way valve 91.
  • the heat source side heat exchanger 92a the refrigerant radiates heat by exchanging heat with external air supplied by the fan 41a.
  • the heat source side heat exchanger 92b the refrigerant dissipates heat by exchanging heat with external air supplied by the fan 41b.
  • the refrigerant that has flowed out of the heat source side heat exchangers 92a and 92b is expanded and depressurized by the expansion device 94 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant flows into the load-side heat exchanger 95, the low-temperature low-pressure gas-liquid refrigerant evaporates by exchanging heat with the air in the air-conditioning target space and becomes a low-temperature low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the load-side heat exchanger 95 is sucked into the compressor 42a via the four-way valve 91 and compressed again. The above-described operation is repeated.
  • the mechanical device described in the second embodiment is applied to the air conditioner.
  • the applied mechanical device is not limited to the second embodiment.
  • the apparatus to which any of the mechanical devices of Embodiments 1 to 4 is applied is not limited to an air conditioner, but is applied to a general refrigeration cycle apparatus including a heat pump apparatus, a refrigeration apparatus, and other refrigeration cycle apparatuses. Also good.
  • the air conditioner 150a of the fifth embodiment is an outdoor unit that includes any one of the mechanical devices 100 described in the first to fourth embodiments, the compressor 42a, and the heat source side heat exchangers 92a and 92b. And an indoor unit 93 including an expansion device 94 and a load-side heat exchanger 95.
  • any one of the mechanical devices 100 described in the first to fourth embodiments is applied to the air conditioner 150a, thereby reducing the manufacturing cost of the air conditioner 150a. it can.
  • noise and vibration due to the difference in rotational speed between the synchronous motors 3c and 3d and noise and vibration due to vibration interference of loads connected to the synchronous motors 3c and 3d are suppressed.
  • Embodiment 6 FIG.
  • any one of the mechanical devices described in the first to fourth embodiments is applied to an air conditioner.
  • the mechanical device described in the third embodiment is applied to an air conditioner.
  • a configuration different from the third and fifth embodiments will be described in detail, and a detailed description of a configuration similar to the configuration described in the third and fifth embodiments will be omitted.
  • FIG. 8 is a diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 6 of the present invention.
  • FIG. 8 is a diagram illustrating a configuration when the mechanical device described in the third embodiment is applied to an air conditioner.
  • the air conditioner 150 b includes an outdoor unit 90 b and an indoor unit 93.
  • the outdoor unit 90b includes the mechanical device 100 described in the third embodiment, a three-phase inverter 200, and a synchronous motor 3c.
  • the blade of the fan 41a is attached to the shaft tip of the synchronous motor 3c.
  • the outdoor unit 90b is provided with a motor mounting foot 51a for mounting the synchronous motor 3c.
  • a synchronous motor 3e for driving the compressor 42a and a synchronous motor 3f for driving the compressor 42b are connected in parallel to the single three-phase voltage type inverter 2.
  • the three-phase inverter 200 is connected to the three-phase voltage type inverter 2 on the DC bus side, and is connected to the synchronous motor 3c on the output side.
  • the DC bus of the three-phase voltage type inverter 2 is branched and connected to the three-phase inverter 200, and the DC voltage is input from the three-phase voltage type inverter 2 to the three-phase inverter 200 via the DC bus.
  • the configuration is shown.
  • the three-phase inverter 200 drives the synchronous motor 3c with a DC voltage common to the DC bus of the three-phase voltage type inverter 2 in accordance with the load of the fan 41a, that is, the fan air flow required for heat exchange. Therefore, the three-phase AC voltage is converted into a three-phase AC voltage having an appropriate frequency, and the three-phase AC voltage is supplied to the synchronous motor 3c in accordance with a control signal input from the outside.
  • the synchronous motor 3c that drives the fan 41a and the synchronous motors 3e and 3f that drive the compressors 42a and 42b generally have different motor capacities and drive frequencies and drive patterns, the configuration example shown in FIG.
  • a three-phase inverter 200 that drives the synchronous motor 3c is provided.
  • the three-phase inverter 200 may have a configuration in which a rectifier circuit is provided in the same manner as the three-phase voltage type inverter 2 and an AC voltage is directly supplied from the AC power source 1. Further, the three-phase inverter 200 is not limited to the voltage type inverter, as long as only one synchronous motor 3c is connected to its own inverter. It may be a configuration. If there are a plurality of synchronous motors connected to its own inverter, a three-phase voltage type inverter is desirable for the reason described above.
  • the configuration of the refrigerant circuit shown in FIG. 8 is an example, and when the mechanical device 100 described in the third embodiment is applied to a refrigerant circuit other than the configuration shown in FIG. 8, the same effect as the configuration shown in FIG. can get.
  • the outdoor unit 90b includes a four-way valve 91 and a heat source side heat exchanger 92a.
  • the heat source side heat exchanger 92a is connected in series to the refrigerant circuit 63b.
  • the compressor 42a and the compressor 42b are connected in parallel to the refrigerant circuit 63b.
  • the refrigerant passes from the compressors 42a and 42b to the original compressor 42a through the four-way valve 91, the heat source side heat exchanger 92a, the expansion device 94, the load side heat exchanger 95, and the four-way valve 91 in this order.
  • These devices are connected via a refrigerant pipe so as to return to 42b. As the refrigerant circulates through the refrigerant circuit 63b, the refrigeration cycle is repeated.
  • the expansion device 94 is provided in the indoor unit 93, but the expansion device 94 may be provided in the outdoor unit 90b. Further, the expansion device 94 may be provided in both the indoor unit 93 and the outdoor unit 90b so that the air conditioning capabilities such as cooling and heating can be finely controlled.
  • the air conditioner 150b shown in FIG. 8 can also perform a heating operation, and the effect described later can be obtained in the heating operation as well as the cooling operation.
  • the refrigerant discharged from the compressors 42a and 42b flows to the heat source side heat exchanger 92a, and the refrigerant flowing out from the load side heat exchanger 95 flows to the compressors 42a and 42b.
  • the flow path is switched in advance.
  • switching between the cooling operation and the heating operation is performed by the four-way valve 91 switching the flow path.
  • the three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, and then converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3e and 3f.
  • the three-phase AC voltage is supplied to the synchronous motors 3e and 3f.
  • the three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3c, and synchronizes the three-phase AC voltage. Supply to motor 3c.
  • the compression element 43a connected to the synchronous motor 3e compresses the refrigerant.
  • the compressor 42a discharges a high-temperature and high-pressure refrigerant.
  • the compression element 43b connected to the synchronous motor 3f compresses the refrigerant.
  • the compressor 42b discharges a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressors 42a and 42b flows into the heat source side heat exchanger 92a via the four-way valve 91.
  • the refrigerant radiates heat by exchanging heat with external air supplied by the fan 41a.
  • the refrigerant flowing out of the heat source side heat exchanger 92a is expanded and depressurized by the expansion device 94, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant flows into the load-side heat exchanger 95, the low-temperature low-pressure gas-liquid refrigerant evaporates by exchanging heat with the air in the air-conditioning target space and becomes a low-temperature low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the load-side heat exchanger 95 is sucked into the compressors 42a and 42b via the four-way valve 91 and compressed again. The above-described operation is repeated.
  • the mechanical device described in the third embodiment is described as applied to an air conditioner.
  • the applied mechanical device is not limited to the third embodiment.
  • the apparatus to which any of the mechanical devices of Embodiments 1 to 4 is applied is not limited to an air conditioner, but is applied to a general refrigeration cycle apparatus including a heat pump apparatus, a refrigeration apparatus, and other refrigeration cycle apparatuses. Also good.
  • the air conditioner 150b of the sixth embodiment is an outdoor unit that includes any one of the mechanical devices 100 described in the first to fourth embodiments, the compressors 42a and 42b, and the heat source side heat exchanger 92a.
  • any one of the mechanical devices 100 described in the first to fourth embodiments is applied to the air conditioner 150b, thereby reducing the manufacturing cost of the air conditioner 150b. it can. Further, noise and vibration due to the difference in rotational speed between the synchronous motors 3e and 3f and noise and vibration due to vibration interference of loads connected to the synchronous motors 3e and 3f are suppressed. As a result, there is an effect that it is possible to reduce discomfort for people around the air conditioner 150b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

This mechanical device has: a three-phase voltage type inverter that converts a direct current voltage into an alternating current voltage; a plurality of synchronous motors connected in parallel to the three-phase voltage type inverter; a plurality of loads connected to the synchronous motors; a plurality of first vibration transmission elements, which are connected to the synchronous motors directly or via the loads, and which transmit vibration generated due to rotation of the synchronous motors; and a second vibration transmission element, which is in contact with the first vibration transmission elements, and to which the vibration is transmitted from the first vibration transmission elements.

Description

機械装置及び機械装置を有する空気調和装置Mechanical device and air conditioner having mechanical device
 本発明は、複数のモータを有する機械装置、及びこの機械装置を有する空気調和装置に関する。 The present invention relates to a mechanical device having a plurality of motors and an air conditioner having the mechanical device.
 従来、空気調和装置は、圧縮機及びファン等の負荷の駆動源としてモータを備えた機械装置を有する。負荷毎にモータが接続されている。機械装置には、モータを駆動するインバータが設けられているものもある。インバータは、入力側に商用電源などの交流電源が接続され、モータの運転状態に適した、周波数及び振幅を有する交流電圧をモータに出力する。インバータの入力側に接続される交流電源は、例えば、単相電源の場合もあり、三相電源などの多相電源の場合もある。また、インバータの入力側に接続される電源が直流電源の場合もある。 Conventionally, an air conditioner has a mechanical device provided with a motor as a drive source of a load such as a compressor and a fan. A motor is connected for each load. Some mechanical devices are provided with an inverter that drives a motor. The inverter is connected to an AC power source such as a commercial power source on the input side, and outputs an AC voltage having a frequency and amplitude suitable for the motor operating state to the motor. The AC power source connected to the input side of the inverter may be, for example, a single-phase power source or a multi-phase power source such as a three-phase power source. In some cases, the power source connected to the input side of the inverter is a DC power source.
 インバータとモータとの接続構成として、通常、単一のインバータに対して単一のモータが接続される構成と、単一のインバータに対して複数のモータが並列に接続される構成とがある。 As a connection configuration between the inverter and the motor, there are usually a configuration in which a single motor is connected to a single inverter and a configuration in which a plurality of motors are connected in parallel to a single inverter.
 単一のインバータに単一のモータが接続される構成では、モータ毎にインバータを設けてモータ毎に制御を行う必要がある。この場合、インバータがモータの数だけ必要になるだけでなく、各インバータを制御するための制御回路における演算処理が複雑化する。そのため、複雑な演算処理ができる高価なマイコン等のデバイスが必要になり、機械装置の製造コストが高くなるという不利な点がある。 In a configuration in which a single motor is connected to a single inverter, it is necessary to provide an inverter for each motor and perform control for each motor. In this case, not only the number of inverters is required, but the arithmetic processing in the control circuit for controlling each inverter is complicated. For this reason, an expensive device such as a microcomputer that can perform complicated arithmetic processing is required, and there is a disadvantage that the manufacturing cost of the mechanical device increases.
 単一のインバータに対して複数のモータが並列に接続される構成を有する電動装置の一例が、特許文献1に開示されている。特許文献1に開示された電動装置は、ブラシレスDCモータ及び三相誘導電動機からなる2つのモータと、2つのモータに共通の出力線を介して2つのモータを駆動する単一の多相のインバータ回路と、ブラシレスDCモータの回転速度に応じてインバータ回路の制御を行う制御回路とを有する。ブラシレスDCモータ及び三相誘導電動機のそれぞれにファンが接続されている。 An example of an electric device having a configuration in which a plurality of motors are connected in parallel to a single inverter is disclosed in Patent Document 1. The electric device disclosed in Patent Document 1 includes a single multi-phase inverter that drives two motors via an output line common to the two motors including a brushless DC motor and a three-phase induction motor. A circuit and a control circuit for controlling the inverter circuit in accordance with the rotational speed of the brushless DC motor. A fan is connected to each of the brushless DC motor and the three-phase induction motor.
 特許文献1に開示された電動装置では、すべり量の異なるブラシレスDCモータ及び三相誘導電動機について、これら2つのモータのすべり量の差が2つのモータの回転速度を非近似として機械的な振動音のうなりが生じない値に設定されている。この構成により、複数のモータの回転に伴って発生する、耳障りな機械的な振動音のうなりを緩和している。また、単一のインバータ回路が複数のモータを駆動する構成にすることで、コストの上昇を防いでいる。 In the electric device disclosed in Patent Document 1, regarding brushless DC motors and three-phase induction motors having different slip amounts, the difference in the slip amounts of these two motors is a mechanical vibration sound with the rotational speeds of the two motors being not approximated. It is set to a value that does not cause beats. With this configuration, an unpleasant mechanical vibration sound that occurs with the rotation of a plurality of motors is mitigated. Moreover, the cost increase is prevented by adopting a configuration in which a single inverter circuit drives a plurality of motors.
特許第4305021号公報Japanese Patent No. 4305021
 特許文献1に開示された電動装置においては、2つのモータに印加される交流電圧の周波数が同じだが、2つのモータの回転速度は非近似である。2つのモータの回転速度に差があるため、各モータの回転に起因して発生する振動の周波数がモータ毎に異なる。 In the electric device disclosed in Patent Document 1, the frequency of the AC voltage applied to the two motors is the same, but the rotational speeds of the two motors are not approximate. Since there is a difference between the rotation speeds of the two motors, the frequency of vibration generated due to the rotation of each motor is different for each motor.
 例えば、特許文献1に開示されているように、電動装置が空気調和装置に設けられている場合、2つのモータの回転に起因する音及び振動が、電動装置を保持する筐体など単一の構成に伝達する。この場合、これらの振動がその単一の構成で合成され、2つのモータの回転速度の差に起因する騒音及び振動が顕著化してしまうことがある。 For example, as disclosed in Patent Document 1, when the electric device is provided in an air conditioner, the sound and vibration caused by the rotation of two motors may be a single unit such as a housing that holds the electric device. Communicate to the configuration. In this case, these vibrations are combined in a single configuration, and noise and vibration due to the difference in rotational speed between the two motors may become noticeable.
 本発明は、上記のような課題を解決するためになされたもので、駆動する複数のモータの回転速度の差に起因する騒音及び振動の発生を抑制する機械装置及び機械装置を有する空気調和装置を提供するものである。 The present invention has been made to solve the above-described problems, and is a mechanical device that suppresses generation of noise and vibration due to a difference in rotational speed between a plurality of driving motors, and an air conditioner having the mechanical device. Is to provide.
 本発明に係る機械装置は、直流電圧を交流電圧に変換する三相電圧型インバータと、前記三相電圧型インバータに並列に接続された複数の同期モータと、前記複数の同期モータに接続された複数の負荷と、前記複数の同期モータと直接に又は該複数の同期モータと前記複数の負荷を介して接続され、該複数の同期モータの回転に起因する振動を伝える複数の第1振動伝達要素と、前記複数の第1振動伝達要素と接触し、該複数の第1振動伝達要素から前記振動が伝達される第2振動伝達要素と、を有するものである。 A mechanical device according to the present invention is connected to a three-phase voltage type inverter that converts a DC voltage into an AC voltage, a plurality of synchronous motors connected in parallel to the three-phase voltage type inverter, and the plurality of synchronous motors. A plurality of first vibration transmission elements connected to a plurality of loads and the plurality of synchronous motors directly or via the plurality of synchronous motors and the plurality of loads, and transmitting vibrations caused by rotation of the plurality of synchronous motors And a second vibration transmission element that contacts the plurality of first vibration transmission elements and transmits the vibration from the plurality of first vibration transmission elements.
 本発明に係る空気調和装置は、上記本発明に係る機械装置と、圧縮機、熱源側熱交換器、膨張装置、及び負荷側熱交換器が冷媒配管を介して接続され、冷媒が循環する冷媒回路と、を有するものである。 The air conditioner according to the present invention is a refrigerant in which the mechanical device according to the present invention, a compressor, a heat source side heat exchanger, an expansion device, and a load side heat exchanger are connected via a refrigerant pipe and the refrigerant circulates. And a circuit.
 本発明は、複数の同期モータが同一の周波数で同期して回転するので、複数のモータ間に回転速度の差が発生することを抑制でき、複数のモータの回転速度の差に起因する騒音及び振動の発生を抑制できる。 In the present invention, since a plurality of synchronous motors rotate synchronously at the same frequency, it is possible to suppress the occurrence of a difference in rotational speed among the plurality of motors, noise caused by the difference in rotational speed of the plurality of motors, and Generation of vibration can be suppressed.
本発明の実施の形態1における機械装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the mechanical apparatus in Embodiment 1 of this invention. 図1に示した三相電圧型インバータの一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a three-phase voltage type inverter illustrated in FIG. 1. 2つのモータの振動数が異なる場合に発生するうなり音を説明するための図である。It is a figure for demonstrating the beat sound which arises when the frequency of two motors differs. 本発明の実施の形態2における機械装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the mechanical apparatus in Embodiment 2 of this invention. 図4に示した機械装置を有する空気調和装置の室外ユニットの一構成例を示す概略図である。It is the schematic which shows one structural example of the outdoor unit of the air conditioning apparatus which has the machine apparatus shown in FIG. 本発明の実施の形態3における機械装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the mechanical apparatus in Embodiment 3 of this invention. 本発明の実施の形態5における空気調和装置の構成例を示す図である。It is a figure which shows the structural example of the air conditioning apparatus in Embodiment 5 of this invention. 本発明の実施の形態6における空気調和装置の構成例を示す図である。It is a figure which shows the structural example of the air conditioning apparatus in Embodiment 6 of this invention.
実施の形態1.
 本実施の形態1の機械装置の構成を説明する。図1は、本発明の実施の形態1における機械装置の一構成例を示すブロック図である。
Embodiment 1 FIG.
The configuration of the mechanical device according to the first embodiment will be described. FIG. 1 is a block diagram showing a configuration example of a mechanical device according to Embodiment 1 of the present invention.
 図1に示すように、機械装置100は、交流電源1に接続された単一の三相電圧型インバータ2と、三相電圧型インバータ2に接続された2つの同期モータ3a、3bと、同期モータ3a、3bの回転に起因する振動を伝える第1振動伝達要素5a、5bと、第1振動伝達要素5a、5bと接触する単一の第2振動伝達要素6とを有する。三相電圧型インバータ2は、同期モータ3a、3bを駆動する。 As shown in FIG. 1, the mechanical device 100 includes a single three-phase voltage type inverter 2 connected to an AC power source 1, two synchronous motors 3 a and 3 b connected to the three-phase voltage type inverter 2, It has 1st vibration transmission element 5a, 5b which transmits the vibration resulting from rotation of motor 3a, 3b, and the single 2nd vibration transmission element 6 which contacts 1st vibration transmission element 5a, 5b. The three-phase voltage type inverter 2 drives the synchronous motors 3a and 3b.
 本実施の形態1では、説明を簡単化するため、三相電圧型インバータ2に接続される同期モータの数が2つの場合で説明するが、同期モータの数は3つ以上であってもよい。以下では、Nは同期モータの数を表す。Nは2以上の整数である。 In the first embodiment, in order to simplify the description, the case where the number of synchronous motors connected to the three-phase voltage type inverter 2 is two will be described. However, the number of synchronous motors may be three or more. . In the following, N represents the number of synchronous motors. N is an integer of 2 or more.
 図1に示す構成例では、同期モータ3aは、負荷4aを介して第1振動伝達要素5aと接続されている。また、同期モータ3bは、負荷4bを介して第1振動伝達要素5bと接続されている。図1に示す構成例の場合、同期モータ3aの回転に起因する振動が負荷4aを介して第1振動伝達要素5aに伝わり、同期モータ3bの回転に起因する振動が負荷4bを介して第1振動伝達要素5bに伝わる。これらの同期モータ3a、3bの回転に起因する振動は、第1振動伝達要素5a、5bを振動させる加振力となる。 In the configuration example shown in FIG. 1, the synchronous motor 3a is connected to the first vibration transmitting element 5a via a load 4a. The synchronous motor 3b is connected to the first vibration transmission element 5b via a load 4b. In the case of the configuration example shown in FIG. 1, the vibration caused by the rotation of the synchronous motor 3a is transmitted to the first vibration transmitting element 5a via the load 4a, and the vibration caused by the rotation of the synchronous motor 3b is first transmitted via the load 4b. It is transmitted to the vibration transmitting element 5b. The vibration caused by the rotation of the synchronous motors 3a and 3b becomes an excitation force that vibrates the first vibration transmitting elements 5a and 5b.
 同期モータ3aは第1振動伝達要素5aと直接接続されてもよく、同期モータ3bは第1振動伝達要素5bと直接接続されてもよい。この場合、同期モータ3aの回転に起因する加振力が直接に第1振動伝達要素5aに伝わり、同期モータ3bの回転に起因する加振力が直接に第1振動伝達要素5bに伝わる。 The synchronous motor 3a may be directly connected to the first vibration transmission element 5a, and the synchronous motor 3b may be directly connected to the first vibration transmission element 5b. In this case, the excitation force resulting from the rotation of the synchronous motor 3a is directly transmitted to the first vibration transmitting element 5a, and the excitation force resulting from the rotation of the synchronous motor 3b is directly transmitted to the first vibration transmitting element 5b.
 第2振動伝達要素6は、第1振動伝達要素5a、5bからそれぞれの振動が伝達され、伝達された振動が合成されることで、振動する。第1振動伝達要素5a、5bから第2振動伝達要素6に伝達される振動は、第2振動伝達要素6を振動させる加振力となる。図1に示すように、第2振動伝達要素6は、地面又は建物等の固定端7に直接に接触している。建物の場合、固定端7は、建物の床であってもよく、建物の天井であってもよい。また、第2振動伝達要素6は、固定端7に直接に接触する場合に限らず、他の振動伝達要素を介して固定端7に接触していてもよい。負荷4a、4b、第1振動伝達要素5a、5b及び第2振動伝達要素6の具体的な構成例は後述する。 The second vibration transmission element 6 vibrates by transmitting the respective vibrations from the first vibration transmission elements 5a and 5b and synthesizing the transmitted vibrations. The vibration transmitted from the first vibration transmission elements 5 a and 5 b to the second vibration transmission element 6 becomes an excitation force that vibrates the second vibration transmission element 6. As shown in FIG. 1, the second vibration transmission element 6 is in direct contact with a fixed end 7 such as the ground or a building. In the case of a building, the fixed end 7 may be the floor of the building or the ceiling of the building. Further, the second vibration transmission element 6 is not limited to being in direct contact with the fixed end 7, and may be in contact with the fixed end 7 via another vibration transmission element. Specific configuration examples of the loads 4a and 4b, the first vibration transmission elements 5a and 5b, and the second vibration transmission element 6 will be described later.
 次に、図1に示した三相電圧型インバータ2の構成を説明する。図2は、図1に示した三相電圧型インバータの一構成例を示すブロック図である。図2においては、図面の簡略化のため、図1に示した負荷4a、4b、第1振動伝達要素5a、5b、第2振動伝達要素6及び固定端7を、図に示すことを省略している。 Next, the configuration of the three-phase voltage type inverter 2 shown in FIG. 1 will be described. FIG. 2 is a block diagram showing a configuration example of the three-phase voltage type inverter shown in FIG. 2, in order to simplify the drawing, the loads 4a and 4b, the first vibration transmission elements 5a and 5b, the second vibration transmission element 6 and the fixed end 7 shown in FIG. 1 are not shown in the figure. ing.
 三相電圧型インバータ2は、交流電源1に接続された整流回路21と、整流回路21から出力される直流電圧を三相の交流電圧に変換して同期モータ3a、3bに供給する複数のスイッチング素子とを有する。整流回路21は、交流電源1から供給される交流電圧を直流電圧に変換する。整流回路21は、例えば、ダイオードブリッジ回路である。図2に示すように、コンデンサ22が直流母線間に接続されていてもよい。直流母線間にコンデンサ22が設けられることで、直流電圧の平滑化及び安定化を図ることができる。 The three-phase voltage type inverter 2 includes a rectifier circuit 21 connected to the AC power source 1 and a plurality of switching circuits that convert a DC voltage output from the rectifier circuit 21 into a three-phase AC voltage and supply the same to the synchronous motors 3a and 3b. Device. The rectifier circuit 21 converts the AC voltage supplied from the AC power source 1 into a DC voltage. The rectifier circuit 21 is, for example, a diode bridge circuit. As shown in FIG. 2, the capacitor 22 may be connected between the DC buses. By providing the capacitor 22 between the DC buses, the DC voltage can be smoothed and stabilized.
 図2は、U相、V相及びW相の三相の場合を示す。各相に一対のスイッチング素子が設けられている。U相について、上側アームのスイッチング素子23UP及び下側アームのスイッチング素子23UNが直列に接続されている。スイッチング素子23UPとスイッチング素子23UNとの接続点が、出力線を介して同期モータ3a、3bのU相の入力端子と接続されている。V相について、上側アームのスイッチング素子23VP及び下側アームのスイッチング素子23VNが直列に接続されている。スイッチング素子23VPとスイッチング素子23VNとの接続点が、出力線を介して同期モータ3a、3bのV相の入力端子と接続されている。W相について、上側アームのスイッチング素子23WP及び下側アームのスイッチング素子23WNが直列に接続されている。スイッチング素子23WPとスイッチング素子23WNとの接続点が、出力線を介して同期モータ3a、3bのW相の入力端子と接続されている。 FIG. 2 shows a three-phase case of U phase, V phase and W phase. A pair of switching elements is provided for each phase. For the U phase, the switching element 23UP of the upper arm and the switching element 23UN of the lower arm are connected in series. A connection point between the switching element 23UP and the switching element 23UN is connected to U-phase input terminals of the synchronous motors 3a and 3b via an output line. For the V phase, the switching element 23VP of the upper arm and the switching element 23VN of the lower arm are connected in series. A connection point between the switching element 23VP and the switching element 23VN is connected to V-phase input terminals of the synchronous motors 3a and 3b via an output line. For the W phase, the switching element 23WP of the upper arm and the switching element 23WN of the lower arm are connected in series. A connection point between the switching element 23WP and the switching element 23WN is connected to the W-phase input terminals of the synchronous motors 3a and 3b via an output line.
 各スイッチング素子には、スイッチング素子に逆並列に接続された逆流防止素子が設けられている。図2では、スイッチング素子に逆流防止素子を含めた構成に符号を付して示している。スイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transisitor)及びMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。なお、上記逆流防止素子は、MOSFET等において構造上形成されるボディダイオード(寄生ダイオード)でも良い。 Each switching element is provided with a backflow prevention element connected in reverse parallel to the switching element. In FIG. 2, a configuration in which a backflow prevention element is included in the switching element is shown with reference numerals. The switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) and a MOSFET (Metal Oxide Semiconductor Field Effect Transistor). The backflow prevention element may be a body diode (parasitic diode) formed structurally in a MOSFET or the like.
 これら複数のスイッチング素子は、PWM(Pulse Width Modulation)等の制御方式に基づいて、スイッチング動作する。例えば、これら複数のスイッチング素子は、外部に設けられた制御装置から各スイッチング素子のゲート電極に入力される制御信号にしたがって、スイッチング動作する。三相電圧型インバータ2は、このスイッチング動作によって、直流電圧を同期モータ3a、3bを駆動させるための適切な周波数の三相の交流電圧に変換し、三相の交流電圧を同期モータ3a、3bに供給する。 The plurality of switching elements perform a switching operation based on a control method such as PWM (Pulse Width Modulation). For example, the plurality of switching elements perform a switching operation in accordance with a control signal input to the gate electrode of each switching element from a control device provided outside. By this switching operation, the three-phase voltage type inverter 2 converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3a and 3b, and converts the three-phase AC voltage into the synchronous motors 3a and 3b. To supply.
 インバータには、回路方式の違いによって電圧型及び電流型等の種類がある。本実施の形態1では、インバータとして三相電圧型インバータ2を用いることで、同一の出力線に接続された同期モータ3a、3bの全てに対して、同一の振幅及び同一の周波数を有する同一の交流電圧が同じ位相で印加されることが確保される。このことは、複数の同期モータを制御する上で重要な鍵となる。 There are several types of inverters, such as voltage type and current type, depending on the circuit system. In the first embodiment, by using the three-phase voltage type inverter 2 as the inverter, the same amplitude and the same frequency are used for all of the synchronous motors 3a and 3b connected to the same output line. It is ensured that alternating voltages are applied with the same phase. This is an important key in controlling a plurality of synchronous motors.
 なお、図1及び図2は、三相電圧型インバータ2は、交流電源1から供給される三相の交流電圧を直流電圧に変換する場合を示しているが、供給される交流電圧は単相であってもよい。また、三相電圧型インバータ2は、バッテリ等の直流電源と接続されてもよく、この場合、直流電源から供給される直流電圧を用いて三相の交流電圧を生成する。 1 and 2 show a case where the three-phase voltage type inverter 2 converts a three-phase AC voltage supplied from the AC power source 1 into a DC voltage. The supplied AC voltage is a single-phase voltage. It may be. The three-phase voltage type inverter 2 may be connected to a DC power source such as a battery. In this case, a three-phase AC voltage is generated using a DC voltage supplied from the DC power source.
 次に、本実施の形態1の機械装置100の動作を説明する。 Next, the operation of the mechanical device 100 according to the first embodiment will be described.
 図1を参照して説明したように、単一の三相電圧型インバータ2に並列に接続された2つの同期モータ3a、3bのそれぞれに負荷4a、4bがそれぞれ接続されている。同期モータ3aが回転すると、この回転に起因する振動が同期モータ3aに発生する。同期モータ3bが回転すると、この回転に起因する振動が同期モータ3bに発生する。 As described with reference to FIG. 1, loads 4a and 4b are connected to two synchronous motors 3a and 3b connected in parallel to a single three-phase voltage type inverter 2, respectively. When the synchronous motor 3a rotates, vibration due to this rotation is generated in the synchronous motor 3a. When the synchronous motor 3b rotates, vibration due to this rotation is generated in the synchronous motor 3b.
 同期モータ3a、3bで振動が発生する原因として、いくつか考えられる。振動発生の原因の一つとして、モータの機械的なアンバランスが考えられる。振動発生の他の原因として、微小なモータの変形が考えられる。微小なモータの変形とは、例えば、モータ固定子側の変形である。微小なモータの変形は、回転子の偏心運動、及びモータの固定子と回転子間の回転に伴う電磁吸引力の周期的な変化などによって起こる。さらに、振動発生の他の原因として、トルクリプル等も考えられる。これらの原因で発生する振動の周波数は同期モータ3a、3bの回転速度と相関がある。 There are several possible causes for the occurrence of vibration in the synchronous motors 3a and 3b. One possible cause of vibration is a mechanical imbalance of the motor. As another cause of the occurrence of vibration, a minute deformation of the motor can be considered. The minute deformation of the motor is, for example, deformation on the motor stator side. The minute deformation of the motor is caused by the eccentric movement of the rotor and the periodic change of the electromagnetic attractive force accompanying the rotation between the stator and the rotor of the motor. Further, torque ripple or the like can be considered as another cause of vibration generation. The frequency of vibration generated due to these causes is correlated with the rotational speed of the synchronous motors 3a and 3b.
 同期モータ3aに発生した振動は、同期モータ3aから負荷4aを介して、又は同期モータ3aから直接に、第1振動伝達要素5aに伝達される。また、同期モータ3bに発生した振動は、負荷4bを介して、又は同期モータ3bから直接に、第1振動伝達要素5bに伝達される。続いて、第1振動伝達要素5a及び第1振動伝達要素5bの両方と接触する第2振動伝達要素6において、第1振動伝達要素5a及び第1振動伝達要素5bからそれぞれの加振力が合成される。その結果、合成された加振力が第2振動伝達要素6に発生する。 The vibration generated in the synchronous motor 3a is transmitted from the synchronous motor 3a through the load 4a or directly from the synchronous motor 3a to the first vibration transmitting element 5a. The vibration generated in the synchronous motor 3b is transmitted to the first vibration transmitting element 5b through the load 4b or directly from the synchronous motor 3b. Subsequently, in the second vibration transmission element 6 in contact with both the first vibration transmission element 5a and the first vibration transmission element 5b, the respective excitation forces are synthesized from the first vibration transmission element 5a and the first vibration transmission element 5b. Is done. As a result, a combined excitation force is generated in the second vibration transmission element 6.
 ここで、同期モータ3a、3bの回転速度がモータ毎に異なる場合を考える。この場合、第1振動伝達要素5a、5bのそれぞれに伝達される振動の周波数成分に差が生じる。そして、第2振動伝達要素6において、第1振動伝達要素5a、5bのそれぞれから第2振動伝達要素6に伝達される振動の周波数成分の差に起因する振動が発生し、その振動がうなり音となって表れる。機械装置100に発生するうなり音は、機械装置100の周囲に居る人にとって、耳障りな騒音となる。 Here, consider a case where the rotational speeds of the synchronous motors 3a and 3b are different for each motor. In this case, a difference occurs in the frequency component of the vibration transmitted to each of the first vibration transmission elements 5a and 5b. Then, in the second vibration transmission element 6, a vibration is generated due to a difference in frequency components of vibration transmitted from the first vibration transmission elements 5 a and 5 b to the second vibration transmission element 6, and the vibration is a beat sound. And appear. The beat sound generated in the mechanical device 100 becomes annoying noise for people around the mechanical device 100.
 上記のうなり音について、図3を参照して説明する。図3は、2つのモータの振動数が異なる場合に発生するうなり音を説明するための図である。図3に示すグラフの縦軸は振動及び音の振幅を示し、横軸は時間を示す。 The above roaring sound will be described with reference to FIG. FIG. 3 is a diagram for explaining a beat sound generated when the frequencies of the two motors are different. The vertical axis of the graph shown in FIG. 3 indicates the amplitude of vibration and sound, and the horizontal axis indicates time.
 図3は、2つのモータのうち、一方のモータの回転に起因して周期的に発生する振動V1の波形と、他方のモータの回転に起因して周期的に発生する振動V2の波形とを示す。振動V1の周波数をf1とし、振動V2の周波数をf2とする。これらの周波数は振動数に相当する。周波数f1と周波数f2とは、f1≠f2の関係があるものとする。振動V1の周期T1はT1=1/f1と表され、振動V2の周期T2はT2=1/f2と表される。図3に示す例では、T2<T1である。 FIG. 3 shows a waveform of vibration V1 periodically generated due to rotation of one of the two motors and a waveform of vibration V2 periodically generated due to rotation of the other motor. Show. The frequency of the vibration V1 is f1, and the frequency of the vibration V2 is f2. These frequencies correspond to the frequency. Assume that the frequency f1 and the frequency f2 have a relationship of f1 ≠ f2. The period T1 of the vibration V1 is expressed as T1 = 1 / f1, and the period T2 of the vibration V2 is expressed as T2 = 1 / f2. In the example shown in FIG. 3, T2 <T1.
 振動V1に起因する音と振動V2に起因する音とが重なり合うと、図3に示すうなり音Sが発生する。振動V1の振幅と振動V2の振幅とが強め合う位相では音が強くなり、振動V1の振幅と振動V2の振幅とが弱め合う位相では音が小さくなる。その結果、図3のうなり音Sの波形に示すように、一定の周期で音が大きくなったり小さくなったりする。うなり音Sの周期をTsとすると、Ts=1/|f1-f2|で表される。うなり音Sの周期Tsは、周期T1、T2に比べて長い周期であることがわかる。 3) When the sound caused by the vibration V1 and the sound caused by the vibration V2 overlap, a beat sound S shown in FIG. 3 is generated. The sound is strong at the phase where the amplitude of the vibration V1 and the amplitude of the vibration V2 are strengthened, and the sound is small at the phase where the amplitude of the vibration V1 and the amplitude of the vibration V2 are weakened. As a result, as shown in the waveform of the beat sound S in FIG. 3, the sound increases or decreases at a constant cycle. Assuming that the period of the beat sound S is Ts, Ts = 1 / | f1-f2 |. It can be seen that the period Ts of the beat sound S is longer than the periods T1 and T2.
 また、第1振動伝達要素5a、5bのそれぞれが伝達する振動の周波数が異なっていると、これらの周波数の差に起因して、図3のうなり音Sの波形に示す周期の長い振動が第2振動伝達要素6に伝達することが考えられる。以下では、このような周期の長い振動を長周期振動と称する。第2振動伝達要素6が、例えば、冷媒配管のようなもので構成される場合、振動V1の振幅と振動V2の振幅とが強め合う位相では振動の振幅が局所的に大きくなり得るため、その長周期振動によって第2振動伝達要素6が破損するおそれもある。第2振動伝達要素6が冷媒配管の場合についての詳細は後述する。 Further, if the vibration frequencies transmitted by the first vibration transmitting elements 5a and 5b are different, vibrations having a long period shown in the waveform of the beat sound S in FIG. It is conceivable that the vibration is transmitted to the two vibration transmitting elements 6. Hereinafter, such a long-period vibration is referred to as a long-period vibration. When the second vibration transmitting element 6 is configured, for example, as a refrigerant pipe, the amplitude of the vibration can be locally increased at the phase where the amplitude of the vibration V1 and the amplitude of the vibration V2 are intensified. There is a possibility that the second vibration transmitting element 6 may be damaged by the long-period vibration. Details of the case where the second vibration transmitting element 6 is a refrigerant pipe will be described later.
 よって、第1振動伝達要素5a、5bのそれぞれが伝達する振動の周波数成分に差が生じないようにする必要がある。 Therefore, it is necessary to prevent a difference in frequency component of vibration transmitted by each of the first vibration transmitting elements 5a and 5b.
 本実施の形態1では、三相電圧型インバータ2は、負荷4a、4bが必要とする電力に応じて同期モータ3a、3bを駆動するための適切な周波数の三相の交流電圧を、同期モータ3a、3bに供給する。同期モータ3a、3bは三相電圧型インバータ2の各相の出力線に並列に接続されているため、同期モータ3a、3bには、同一の周波数及び同一の位相を有する三相の交流電圧が確実に印加される。その結果、同期モータ3a、3bのそれぞれの三相電機子巻線には、同期モータ3a、3b間で同じ回転速度で回転し、かつ同期モータ3a、3b間で同期した回転磁界が発生する。同期モータ3a、3bは同一の周波数で同期して回転する。 In the first embodiment, the three-phase voltage type inverter 2 generates a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3a and 3b according to the power required by the loads 4a and 4b. Supply to 3a and 3b. Since the synchronous motors 3a and 3b are connected in parallel to the output lines of the respective phases of the three-phase voltage type inverter 2, the synchronous motors 3a and 3b receive a three-phase AC voltage having the same frequency and the same phase. Applied reliably. As a result, in each three-phase armature winding of the synchronous motors 3a and 3b, a rotating magnetic field is generated that rotates at the same rotational speed between the synchronous motors 3a and 3b and is synchronized between the synchronous motors 3a and 3b. The synchronous motors 3a and 3b rotate synchronously at the same frequency.
 同期モータの回転メカニズムは、三相電機子巻線で発生した回転磁界に同期して回転子が回転するものである。本実施の形態1では、同期モータ3a、3bのそれぞれの回転子は、同期して同一の回転速度で回転する。そのため、同期モータ3aの回転速度と同期モータ3bの回転速度とに差が生じない。その結果、第1振動伝達要素5a、5bのそれぞれに伝達される振動の周波数成分も同一となり、上述した、うなり音及び長周期振動を抑制できる。 The rotation mechanism of the synchronous motor is such that the rotor rotates in synchronization with the rotating magnetic field generated by the three-phase armature winding. In the first embodiment, the rotors of the synchronous motors 3a and 3b rotate at the same rotational speed in synchronization. Therefore, there is no difference between the rotational speed of the synchronous motor 3a and the rotational speed of the synchronous motor 3b. As a result, the frequency components of the vibration transmitted to each of the first vibration transmitting elements 5a and 5b are also the same, and the above-described beat sound and long-period vibration can be suppressed.
 また、同期モータ3a、3bのそれぞれに個別に接続される三相電圧型インバータ2を設けた構成と比較して、本実施の形態1では、三相電圧型インバータ2の台数を同期モータ3a、3bの数よりも低減できる。そのため、三相電圧型インバータ2の台数低減数に応じたインバータのコストの分、機械装置の製造コストを抑制できる。 Further, in comparison with the configuration in which the three-phase voltage type inverter 2 is individually connected to each of the synchronous motors 3a and 3b, in the first embodiment, the number of the three-phase voltage type inverters 2 is changed to the synchronous motor 3a, It can be reduced from the number of 3b. Therefore, the manufacturing cost of the mechanical device can be suppressed by the cost of the inverter corresponding to the number of the three-phase voltage type inverters 2 reduced.
 複数の同期モータに対応して複数の三相電圧型インバータが設けられている場合、複数の三相電圧型インバータは、同一の周波数及び同一の位相を有する三相の交流電圧を複数のモータに確実に印加する制御を行うために、互いに同期して動作する必要がある。これに対して、本実施の形態1の機械装置100では、複数の三相電圧型インバータが互いに同期して動作するために必要な回路及び演算処理が不要となるため、その回路及び演算処理に必要なコストを抑制できる。 When a plurality of three-phase voltage type inverters are provided corresponding to a plurality of synchronous motors, the plurality of three-phase voltage type inverters apply a three-phase AC voltage having the same frequency and the same phase to the plurality of motors. It is necessary to operate in synchronization with each other in order to perform the control to apply with certainty. On the other hand, in the mechanical device 100 according to the first embodiment, a circuit and arithmetic processing necessary for the plurality of three-phase voltage type inverters to operate in synchronization with each other are not required. Necessary cost can be suppressed.
 なお、本実施の形態1では、インバータが電圧型の場合で説明したが、電流型の場合も考えられる。ただし、制御対象を電流よりも電圧とした方が制御回路の構成が簡便になる上、電圧型インバータは同一の出力線に接続されたモータ全てに対して同じ振幅、位相及び周波数を有する電圧を確実に印加できるため、本発明においては電圧型インバータを適用するのが望ましい。また、電圧型インバータは、電流型インバータの直流電源側に設けられるリアクトルが不要なため、インバータ回路のサイズがコンパクトになるという利点もある。 In addition, in this Embodiment 1, although the case where the inverter was a voltage type was demonstrated, the case where it is a current type is also considered. However, if the control target is set to voltage rather than current, the configuration of the control circuit becomes simpler, and the voltage-type inverter applies voltages having the same amplitude, phase and frequency to all motors connected to the same output line. In the present invention, it is desirable to apply a voltage type inverter because it can be applied reliably. Moreover, since the voltage type inverter does not require a reactor provided on the DC power source side of the current type inverter, there is an advantage that the size of the inverter circuit is reduced.
 また、本実施の形態1では、インバータが出力する交流電圧が三相の場合で説明したが、単相の場合も考えられる。単相交流の場合、2個のコイルを用いて交互に磁界が入れ替わる交番磁界を用いる方法が考えられる。交番磁界でモータの回転を制御する場合、制御対象として、同期モータよりも誘導モータが主に用いられる。 In the first embodiment, the AC voltage output from the inverter is described as being three-phase, but a single-phase case is also conceivable. In the case of single-phase alternating current, a method using an alternating magnetic field in which magnetic fields are alternately switched using two coils can be considered. When controlling the rotation of a motor with an alternating magnetic field, an induction motor is mainly used as a control target rather than a synchronous motor.
 制御対象のモータが誘導モータの場合を考える。誘導モータは回転磁界の同期速度に回転子の回転が遅れるすべりのあるモータである。そのため、複数の誘導モータの回転速度を一致させようとすると、電圧型インバータを用いて同一の出力線に接続されたモータ全てに対して同一の電圧を印加した場合、各々のモータの負荷印加状態に応じてすべりにバラツキが生じるため、全てのモータにおいて同一の負荷がかかった状態で各々のモータのすべりが同一とならない限り、回転速度が一致しない。これに対して、同期モータは、すべりがなく、回転磁界の同期速度にしたがって回転するモータである。複数のモータを同一の周波数で同期して回転させるには、制御対象のモータは同期モータが望ましい。 Suppose the motor to be controlled is an induction motor. The induction motor is a motor with a slip that causes the rotation of the rotor to be delayed relative to the synchronous speed of the rotating magnetic field. Therefore, when trying to match the rotation speeds of a plurality of induction motors, if the same voltage is applied to all the motors connected to the same output line using a voltage type inverter, the load application state of each motor Therefore, the rotational speeds do not match unless the slips of the motors are the same under the same load applied to all the motors. On the other hand, the synchronous motor is a motor that does not slide and rotates according to the synchronous speed of the rotating magnetic field. In order to rotate a plurality of motors synchronously at the same frequency, the controlled motor is preferably a synchronous motor.
 本実施の形態1の機械装置100は、三相電圧型インバータ2と、三相電圧型インバータ2に並列に接続された同期モータ3a、3bと、同期モータ3a、3bに接続された負荷4a、4bと、同期モータ3a、3bの回転に起因する振動を伝える第1振動伝達要素5a、5bと、第1振動伝達要素5a、5bから振動が伝達される第2振動伝達要素6とを有するものである。 The mechanical device 100 according to the first embodiment includes a three-phase voltage type inverter 2, synchronous motors 3a and 3b connected in parallel to the three-phase voltage type inverter 2, and loads 4a connected to the synchronous motors 3a and 3b. 4b, first vibration transmission elements 5a and 5b for transmitting vibrations caused by rotation of the synchronous motors 3a and 3b, and a second vibration transmission element 6 for transmitting vibrations from the first vibration transmission elements 5a and 5b It is.
 本実施の形態1によれば、三相電圧型インバータ2が同期モータ3a、3bを駆動することで、同期モータ3a、3bが同一の周波数で同期して回転する。そのため、同期モータ3a、3b間に回転速度の差が発生することを抑制できる。その結果、同期モータ3a、3bの回転速度の差に起因する振動が複数の第1振動伝達要素5a、5bを介して第2振動伝達要素6で生じさせる騒音及び振動を抑制できる。また、同期モータ3a、3bに接続される負荷4a、4bが発生する振動の干渉に起因する騒音及び振動を抑制できる。 According to the first embodiment, when the three-phase voltage type inverter 2 drives the synchronous motors 3a and 3b, the synchronous motors 3a and 3b rotate synchronously at the same frequency. Therefore, it can suppress that the difference in rotational speed generate | occur | produces between synchronous motor 3a, 3b. As a result, it is possible to suppress noise and vibration that are caused by the second vibration transmission element 6 through the plurality of first vibration transmission elements 5a and 5b due to the vibration caused by the difference in rotational speed between the synchronous motors 3a and 3b. Further, noise and vibration due to vibration interference generated by the loads 4a and 4b connected to the synchronous motors 3a and 3b can be suppressed.
 また、本実施の形態1では、複数の同期モータに対応して複数の三相電圧型インバータが設けられる構成と比較して、三相電圧型インバータを複数設ける必要がなく、複数の三相電圧型インバータが互いに同期して動作するために必要な回路及び演算処理も不要となる。そのため、機械装置の製造コストを抑制できる。 In the first embodiment, it is not necessary to provide a plurality of three-phase voltage type inverters as compared with a configuration in which a plurality of three-phase voltage type inverters are provided corresponding to a plurality of synchronous motors. Circuits and arithmetic processing necessary for the type inverters to operate in synchronization with each other are also unnecessary. Therefore, the manufacturing cost of the mechanical device can be suppressed.
 制御対象のモータが2台の場合、特許文献1に開示された電動装置のように、2台のモータの回転速度に意図的に差を設けて機械的な振動音のうなりが生じないようにすることができる。しかし、制御対象のモータが3台以上である場合、特許文献1に開示された電動装置では、3台以上のモータ相互間でうなりが生じないようにモータ間の回転速度の差を調整する必要がある。そのため、特許文献1に開示された電動装置では、モータの数に比例して、単一のインバータで各モータの回転速度を調整することは困難になる。これに対して、本実施の形態1では、制御対象のモータが3台以上である場合、三相電圧型インバータ2は、3台以上の同期モータが同一の周波数で同期して回転させればよい。よって、本実施の形態1の機械装置100は、制御対象のモータが3台以上の場合でも、特許文献1に開示された電動装置に比べて、制御が複雑にならない利点がある。 When there are two motors to be controlled, as in the electric device disclosed in Patent Document 1, a difference is intentionally provided in the rotational speeds of the two motors so that mechanical vibration noise does not occur. can do. However, when there are three or more motors to be controlled, in the electric device disclosed in Patent Document 1, it is necessary to adjust the difference in rotational speed between the motors so that no beat is generated between the three or more motors. There is. Therefore, in the electric device disclosed in Patent Document 1, it is difficult to adjust the rotation speed of each motor with a single inverter in proportion to the number of motors. On the other hand, in the first embodiment, when there are three or more motors to be controlled, the three-phase voltage type inverter 2 is configured so that three or more synchronous motors rotate synchronously at the same frequency. Good. Therefore, the mechanical device 100 according to the first embodiment has an advantage that the control is not complicated compared to the electric device disclosed in Patent Document 1 even when there are three or more motors to be controlled.
実施の形態2.
 本実施の形態2の機械装置は、実施の形態1で説明した負荷4a、4bがファンの場合である。本実施の形態2においては、実施の形態1と異なる構成について詳細に説明し、実施の形態1で説明した構成と同様な構成についての詳細な説明を省略する。
Embodiment 2. FIG.
The mechanical device of the second embodiment is a case where the loads 4a and 4b described in the first embodiment are fans. In the second embodiment, a configuration different from the first embodiment will be described in detail, and a detailed description of a configuration similar to the configuration described in the first embodiment will be omitted.
 本実施の形態2の機械装置の構成を説明する。図4は、本発明の実施の形態2における機械装置の一構成例を示す図である。 The configuration of the mechanical device according to the second embodiment will be described. FIG. 4 is a diagram illustrating a configuration example of the mechanical device according to the second embodiment of the present invention.
 機械装置100は、三相電圧型インバータ2と、同期モータ3c、3dと、ファン41a、41bと、筐体61とを有する。筐体61は、三相電圧型インバータ2、同期モータ3c、3d、及びファン41a、41bを収容する。本実施の形態2では、図4に示すように、三相電圧型インバータ2に同期モータ3c、3dが並列に接続されている。同期モータ3cの軸先にファン41aのブレードが取り付けられている。同期モータ3dの軸先にファン41bのブレードが取り付けられている。 The machine apparatus 100 includes a three-phase voltage type inverter 2, synchronous motors 3 c and 3 d, fans 41 a and 41 b, and a casing 61. The casing 61 houses the three-phase voltage type inverter 2, the synchronous motors 3c and 3d, and the fans 41a and 41b. In the second embodiment, as shown in FIG. 4, synchronous motors 3 c and 3 d are connected in parallel to the three-phase voltage type inverter 2. The blade of the fan 41a is attached to the shaft tip of the synchronous motor 3c. A blade of the fan 41b is attached to the shaft tip of the synchronous motor 3d.
 ファン41a、41bは、流体となる空気の流れを発生させるために主に使用される。ブレードは、空気の流れを発生させるプロペラ及び羽根に相当する。同期モータ3cはファン41aを駆動し、同期モータ3dはファン41bを駆動する。ファン41aは、同期モータ3cから供給される駆動力をブレードに伝え、回転軸を中心にブレードを回転させることで、空気の流れを発生させる。ファン41bは、同期モータ3dから供給される駆動力をブレードに伝え、回転軸を中心にブレードを回転させることで、空気の流れを発生させる。 The fans 41a and 41b are mainly used for generating a flow of air as a fluid. The blade corresponds to a propeller and a blade that generate an air flow. The synchronous motor 3c drives the fan 41a, and the synchronous motor 3d drives the fan 41b. The fan 41a transmits the driving force supplied from the synchronous motor 3c to the blades, and rotates the blades around the rotation shaft to generate an air flow. The fan 41b transmits the driving force supplied from the synchronous motor 3d to the blades, and rotates the blades around the rotation shaft to generate an air flow.
 図4に示すように、筐体61には、同期モータ3cを保持するためのモータ取付足51aが取り付けられ、同期モータ3dを保持するためのモータ取付足51bが取り付けられている。図4においては、モータ取付足51a、51bが筐体61の底面と接しているが、筐体61の上部に梁状の部材である梁部を設け、筐体61の該梁部にモータ取付足51a、51bを取り付け、筐体61の上部に同期モータ3c、3dが配置される構成でも良い。筐体61は、地面又は建物等の固定端7に直接に接触している。具体例としては、筐体61と固定端7とをボルトなどの固定金具により固定させ、筐体61を固定端7に接触させる。図4は、固定端7が建物の床である場合を示すが、固定端7が建物の天井であってもよい。また、筐体61は、他の振動伝達要素を介して固定端7に接触していてもよい。さらには、本発明の効果を上げるべく防振ゴムなどの振動吸収材を介して筐体61と固定端7とを接触させても良い。 As shown in FIG. 4, a motor mounting foot 51a for holding the synchronous motor 3c is attached to the casing 61, and a motor mounting foot 51b for holding the synchronous motor 3d is attached to the casing 61. In FIG. 4, the motor mounting legs 51 a and 51 b are in contact with the bottom surface of the housing 61, but a beam portion which is a beam-like member is provided on the upper portion of the housing 61, and the motor mounting is attached to the beam portion of the housing 61. A configuration in which the legs 51 a and 51 b are attached and the synchronous motors 3 c and 3 d are disposed on the upper portion of the housing 61 may be employed. The casing 61 is in direct contact with the fixed end 7 such as the ground or a building. As a specific example, the casing 61 and the fixed end 7 are fixed by a fixing bracket such as a bolt, and the casing 61 is brought into contact with the fixed end 7. Although FIG. 4 shows the case where the fixed end 7 is a floor of a building, the fixed end 7 may be a ceiling of the building. Further, the housing 61 may be in contact with the fixed end 7 via another vibration transmission element. Furthermore, the casing 61 and the fixed end 7 may be brought into contact with each other through a vibration absorbing material such as a vibration proof rubber so as to enhance the effect of the present invention.
 次に、図4に示す機械装置100の動作を説明する。三相電圧型インバータ2は、交流電源1から入力される交流電圧を直流電圧に変換した後、直流電圧を三相の交流電圧に変換して同期モータ3c、3dに供給する。同期モータ3c、3dがファン41a、41bを駆動するために回転すると、これらの回転に起因して、振動が、実施の形態1で説明した原因により、同期モータ3c、3dのそれぞれに発生する。 Next, the operation of the mechanical device 100 shown in FIG. 4 will be described. The three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, converts the DC voltage into a three-phase AC voltage, and supplies the same to the synchronous motors 3c and 3d. When the synchronous motors 3c and 3d rotate to drive the fans 41a and 41b, vibrations are generated in each of the synchronous motors 3c and 3d due to these rotations due to the causes described in the first embodiment.
 同期モータ3cの固定子に微小変形が発生すると固定子が振動し、モータ取付足51aにその振動が伝達される。同期モータ3dの固定子の微小変形が発生すると固定子が振動し、モータ取付足51bにその振動が伝達される。本実施の形態2では、モータ取付足51a、51bが実施の形態1で説明した第1振動伝達要素5a、5bに相当する。モータ取付足51a、51bが、筐体61に接触しているため、モータ取付足51a、51bのそれぞれから加振力が筐体61に伝達する。筐体61では、これらの加振力が合成され、合成された加振力によって振動が発生する。本実施の形態2では、筐体61が実施の形態1で説明した第2振動伝達要素6に相当する。 When a minute deformation occurs in the stator of the synchronous motor 3c, the stator vibrates and the vibration is transmitted to the motor mounting foot 51a. When a minute deformation of the stator of the synchronous motor 3d occurs, the stator vibrates, and the vibration is transmitted to the motor mounting foot 51b. In the second embodiment, the motor mounting feet 51a and 51b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment. Since the motor mounting feet 51a and 51b are in contact with the housing 61, the excitation force is transmitted to the housing 61 from each of the motor mounting feet 51a and 51b. In the casing 61, these excitation forces are combined, and vibration is generated by the combined excitation force. In the second embodiment, the housing 61 corresponds to the second vibration transmission element 6 described in the first embodiment.
 同期モータ3c、3dの回転速度がモータ毎に異なる場合、モータ取付足51a、51bのそれぞれに伝達される振動の周波数成分に差が生じる。そして、筐体61において、モータ取付足51a、51bのそれぞれから筐体61に伝達される振動の周波数成分の差に起因する振動が発生し、その振動がうなり音となって表れる。機械装置100に発生するうなり音は、機械装置100の周囲に居る人にとって、耳障りな音となる。 When the rotational speeds of the synchronous motors 3c and 3d are different for each motor, a difference occurs in the frequency components of vibrations transmitted to the motor mounting feet 51a and 51b. In the housing 61, vibrations are generated due to the difference in frequency components of vibrations transmitted from the motor mounting feet 51a and 51b to the housing 61, and the vibrations appear as beat sounds. The beat sound generated in the mechanical device 100 is a harsh sound for people around the mechanical device 100.
 また、機械装置100において、同期モータ3c、3dの回転に起因して発生する耳障りな音について、上述したメカニズムの他に、次のようなメカニズムも考えられる。 Further, in addition to the mechanism described above, the following mechanism is also conceivable with respect to the annoying sound generated in the mechanical device 100 due to the rotation of the synchronous motors 3c and 3d.
 同期モータ3cの回転に起因する振動が同期モータ3cで発生すると、同期モータ3cの軸先に取り付けられたファン41aのブレードにもその振動が伝達し、ブレードにおいて回転ムラを誘発する。また、同期モータ3dの回転に起因する振動が同期モータ3dで発生すると、同期モータ3dの軸先に取り付けられたファン41bのブレードにもその振動が伝達し、ブレードにおいて回転ムラを誘発する。この場合、ファン41a、41bのブレードが、実施の形態1で説明した第1振動伝達要素5a、5bに相当する。そして、ファン41a、41bのブレードの周辺に存在する空気が、ファン41a、41bの振動を筐体61に伝達する媒質となる。 When vibration caused by the rotation of the synchronous motor 3c is generated in the synchronous motor 3c, the vibration is also transmitted to the blade of the fan 41a attached to the shaft tip of the synchronous motor 3c, thereby inducing uneven rotation in the blade. Further, when vibration caused by the rotation of the synchronous motor 3d is generated in the synchronous motor 3d, the vibration is also transmitted to the blade of the fan 41b attached to the shaft tip of the synchronous motor 3d, thereby inducing uneven rotation in the blade. In this case, the blades of the fans 41a and 41b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment. The air existing around the blades of the fans 41 a and 41 b becomes a medium for transmitting the vibrations of the fans 41 a and 41 b to the casing 61.
 空気が振動を伝達する媒質となる場合の具体例として、図4に示した機械装置100が空気調和装置の室外ユニットに設けられている場合で説明する。図5は、図4に示した機械装置を有する空気調和装置の室外ユニットの一構成例を示す概略図である。ここでは、室外ユニットが2つのファンを有する場合とする。図5では、図面の簡略化のため、図4に示した三相電圧型インバータ2及び同期モータ3c、3dを図に示すことを省略している。また、図4に示した筐体61が室外ユニット80の筐体の役目も果たしている。 As a specific example of the case where air is a medium for transmitting vibration, a case will be described where the mechanical device 100 shown in FIG. 4 is provided in an outdoor unit of an air conditioner. FIG. 5 is a schematic diagram showing a configuration example of an outdoor unit of an air conditioner having the mechanical device shown in FIG. Here, it is assumed that the outdoor unit has two fans. In FIG. 5, for simplification of the drawing, the illustration of the three-phase voltage type inverter 2 and the synchronous motors 3c and 3d shown in FIG. 4 is omitted. Further, the casing 61 shown in FIG. 4 also serves as the casing of the outdoor unit 80.
 図5に示すように、室外ユニット80の筐体61には、鉛直方向の反対方向に空気の流れを形成するファン41a、41bが設けられている。筐体61の壁面には熱交換部81a、81bが設けられている。筐体61は、ベルマウス82a、82b及びファンガード83a、83bを有する。筐体61は、地面又は建物等の固定端7と接触している。 As shown in FIG. 5, the casing 61 of the outdoor unit 80 is provided with fans 41a and 41b that form an air flow in a direction opposite to the vertical direction. Heat exchange portions 81 a and 81 b are provided on the wall surface of the housing 61. The casing 61 includes bell mouths 82a and 82b and fan guards 83a and 83b. The casing 61 is in contact with the fixed end 7 such as the ground or a building.
 ベルマウス82a、82bは、筐体61の上部に配置されている。ベルマウス82aは、ファン41aのブレードの回転方向に沿ってブレードの周囲に配置され、回転するブレードの側面を覆う構成である。ベルマウス82aは、ファン41aの回転が生成する、空気の流れを整える役割を有する。ベルマウス82bは、ファン41bのブレードの回転方向に沿ってブレードの周囲に配置され、回転するブレードの側面を覆う構成である。ベルマウス82bは、ファン41bの回転が生成する、空気の流れを整える役割を有する。 The bell mouths 82 a and 82 b are arranged on the upper part of the housing 61. The bell mouth 82a is arranged around the blade along the rotation direction of the blade of the fan 41a, and covers the side surface of the rotating blade. The bell mouth 82a has a role of adjusting the flow of air generated by the rotation of the fan 41a. The bell mouth 82b is arranged around the blade along the rotation direction of the blade of the fan 41b, and covers the side surface of the rotating blade. The bell mouth 82b has a role of adjusting the air flow generated by the rotation of the fan 41b.
 さらに、ファンガード83aが、ファン41aのブレードの上部を覆うように、ベルマウス82aの上に設けられている。ファンガード83aは、ファン41aのブレードの周囲に配置されたベルマウス82aで支持されている。ファンガード83bが、ファン41bのブレードの上部を覆うように、ベルマウス82bの上に設けられている。ファンガード83bは、ファン41bのブレードの周囲に配置されたベルマウス82bで支持されている。 Further, a fan guard 83a is provided on the bell mouth 82a so as to cover the upper part of the blade of the fan 41a. The fan guard 83a is supported by a bell mouth 82a disposed around the blade of the fan 41a. A fan guard 83b is provided on the bell mouth 82b so as to cover the upper part of the blade of the fan 41b. The fan guard 83b is supported by a bell mouth 82b disposed around the blade of the fan 41b.
 ファンガード83aは、鉛直方向とは反対方向に筐体内から流出する空気の流れを妨げないように、ベルマウス82aで支持される枠と、枠に張られた格子とを有する。ファン41aのブレードが回転すると、ファンガード83aに設けられた格子間の開口から空気が鉛直方向とは反対方向に流れ出る。ファンガード83bは、ファンガード83aと同様に、ベルマウス82bで支持される枠と、枠に張られた格子とを有する。ファン41bのブレードが回転すると、ファンガード83bに設けられた格子間の開口から空気が鉛直方向とは反対方向に流れ出る。 The fan guard 83a has a frame supported by the bell mouth 82a and a lattice stretched on the frame so as not to hinder the flow of air flowing out of the housing in the direction opposite to the vertical direction. When the blade of the fan 41a rotates, air flows out in the direction opposite to the vertical direction from the opening between the lattices provided in the fan guard 83a. Similar to the fan guard 83a, the fan guard 83b has a frame supported by the bell mouth 82b and a lattice stretched on the frame. When the blade of the fan 41b rotates, air flows out in the direction opposite to the vertical direction from the opening between the lattices provided in the fan guard 83b.
 ファンガード83aに設けられた格子によって、格子間よりも大きな物体が筐体61の外からファン41aのブレードに接触することが回避される。ファンガード83bに設けられた格子によって、格子間よりも大きな物体が筐体61の外からファン41bのブレードに接触することが回避される。ファンガード83a、83bは、回転するブレードと筐体外の物体とが接触して互いに損傷してしまうことを防ぎ、これらの物を保護する役割を有する。 The lattice provided in the fan guard 83a prevents an object larger than the space between the lattices from coming into contact with the blades of the fan 41a from the outside of the housing 61. The lattice provided in the fan guard 83b prevents an object larger than the space between the lattices from coming into contact with the blades of the fan 41b from the outside of the housing 61. The fan guards 83a and 83b prevent the rotating blade and an object outside the casing from coming into contact with each other and damaging each other, and have a role of protecting these objects.
 なお、ファンガード83a、83bにおいて、空気が流れ出る開口は、格子によって形成される場合に限らない。ファンガード83a、83bは、格子の代わりに、例えば、直径の異なる複数の同心円を有する構成であってもよく、複数の直線状の棒が互いに間隔を空けて櫛歯状に配置される構成であってもよい。 In the fan guards 83a and 83b, the opening through which air flows is not limited to being formed by a lattice. The fan guards 83a and 83b may have, for example, a configuration having a plurality of concentric circles having different diameters instead of the lattice, and a configuration in which a plurality of linear bars are arranged in a comb-like shape with a space between each other. There may be.
 上述した空気調和装置においては、熱交換部81a、81bを含む筐体61、ベルマウス82a、82b、ファンガード83a、83bで囲まれる空間が形成されることにより、ファン41a、41bが発生する、空気の流れが制約を受ける。 In the air conditioning apparatus described above, the fans 41a and 41b are generated by forming a space surrounded by the casing 61 including the heat exchange parts 81a and 81b, the bell mouths 82a and 82b, and the fan guards 83a and 83b. Air flow is restricted.
 よって、上記空間の内部の空気が、ファン41a、41bのそれぞれが発生する振動を伝達する媒質となり、ファン41a、41bのブレードのそれぞれの加振力が回転ムラを誘発する。各ブレードで誘発された回転ムラが合成されることで、上記空間の内部の空気に流れの乱れが生じる。そのため、図5に示す構成では、熱交換部81a、81bを含む筐体61、ベルマウス82a、82b及びファンガード83a、83bで囲まれる空間の空気において、実施の形態1で説明した第2振動伝達要素6に相当する作用が生じる。 Therefore, the air inside the space becomes a medium for transmitting vibrations generated by the fans 41a and 41b, and the excitation forces of the blades of the fans 41a and 41b induce rotation unevenness. By combining the rotation irregularities induced by the blades, the air in the space is disturbed. Therefore, in the configuration shown in FIG. 5, the second vibration described in the first embodiment is performed in the air surrounded by the casing 61 including the heat exchanging portions 81a and 81b, the bell mouths 82a and 82b, and the fan guards 83a and 83b. An action corresponding to the transmission element 6 occurs.
 同期モータ3c、3dの回転速度がモータ毎に異なる場合、ファン41a、41bのブレードのそれぞれに伝達される振動の周波数成分に差が生じる。そして、その周波数成分の差に起因して空気の乱れが発生し、その乱れがうなり音となって表れる。機械装置100に発生するうなり音は、機械装置100の周囲に居る人にとって、耳障りな音となる。 When the rotational speeds of the synchronous motors 3c and 3d are different for each motor, a difference occurs in frequency components of vibrations transmitted to the blades of the fans 41a and 41b. Then, air disturbance occurs due to the difference between the frequency components, and the disturbance appears as a roaring sound. The beat sound generated in the mechanical device 100 is a harsh sound for people around the mechanical device 100.
 本実施の形態2では、実施の形態1と同様に、三相電圧型インバータ2は、ファン41a、41bが必要とする電力に応じて、同期モータ3c、3dを駆動させる適切な周波数の三相の交流電圧を同期モータ3c、3dへ供給する。その結果、同期モータ3c、3dの振動の干渉に起因するうなり音及び長周期振動を抑制できる。 In the second embodiment, as in the first embodiment, the three-phase voltage type inverter 2 has a three-phase voltage of an appropriate frequency for driving the synchronous motors 3c and 3d according to the power required by the fans 41a and 41b. Is supplied to the synchronous motors 3c and 3d. As a result, it is possible to suppress beat noise and long-period vibration caused by vibration interference of the synchronous motors 3c and 3d.
 また、ファンは主に風量制御に用いられることから、例えば、複数のファンの各々で発生させる風量をバランス良く同一に制御するためには、複数のファンの出力を同一に制御する必要がある。特許文献1に開示された電動装置では、2つのモータの回転速度が異なるように制御を行っている。そのため、特許文献1に開示された電動装置では、複数のファンに接続された複数のモータについて、モータ出力=回転速度×モータトルクの関係から、複数のファンの出力を同一に制御するためには各々のモータの回転速度に応じて各々のモータのトルクを制御しなければならず、この制御を単一のインバータによって実現するのは容易ではない。また、特許文献1では、複数のモータとして同期モータ及び三相誘導電動機を用いているが、同期モータと三相誘導電動機とでは、モータ特性が異なることからなおさらである。 Also, since the fan is mainly used for air volume control, for example, in order to control the air volume generated by each of the plurality of fans in a balanced manner, it is necessary to control the outputs of the plurality of fans to be the same. In the electric device disclosed in Patent Document 1, control is performed so that the rotational speeds of the two motors are different. Therefore, in the electric device disclosed in Patent Document 1, for the plurality of motors connected to the plurality of fans, in order to control the outputs of the plurality of fans identically from the relationship of motor output = rotational speed × motor torque. The torque of each motor must be controlled in accordance with the rotational speed of each motor, and this control is not easy to achieve with a single inverter. In Patent Document 1, a synchronous motor and a three-phase induction motor are used as a plurality of motors. However, the synchronous motor and the three-phase induction motor are even more different because of their different motor characteristics.
 これに対して、本実施の形態2の機械装置100では、同一の出力線に接続された同期モータ3c、3dの全てに対して、同一の振幅及び同一の周波数を有する同一の交流電圧が同じ位相で印加されることが確保される。そのため、同期モータ3c、3dの全てが同じ設計仕様のモータであれば、各モータから同一のモータトルクが得られることになる。その結果、各モータから同じ出力が得られるようにモータを制御することが容易となり、本実施の形態2では、風量制御が容易になるというメリットも有する。 On the other hand, in the mechanical device 100 according to the second embodiment, the same AC voltage having the same amplitude and the same frequency is the same for all the synchronous motors 3c and 3d connected to the same output line. It is ensured that it is applied in phase. Therefore, if all of the synchronous motors 3c and 3d have the same design specifications, the same motor torque can be obtained from each motor. As a result, it becomes easy to control the motor so that the same output can be obtained from each motor, and the second embodiment also has the advantage that the air volume control becomes easy.
 本実施の形態2の機械装置100は、実施の形態1で説明した構成において、第1振動伝達要素5a、5bがモータ取付足51a、51bであり、第2振動伝達要素6が筐体61となるものである。本実施の形態2によれば、同期モータ3c、3dの回転の差に起因する振動がモータ取付足51a、51bを経由して筐体61に伝達することが抑制され、実施の形態1で説明した効果が得られる。 In the mechanical device 100 according to the second embodiment, in the configuration described in the first embodiment, the first vibration transmission elements 5a and 5b are motor mounting feet 51a and 51b, and the second vibration transmission element 6 is a housing 61. It will be. According to the second embodiment, the vibration caused by the difference in rotation between the synchronous motors 3c and 3d is suppressed from being transmitted to the housing 61 via the motor mounting feet 51a and 51b, which will be described in the first embodiment. Effect.
 また、本実施の形態2は、負荷4a、4bがファン41a、41bとなるものである。本実施の形態2によれば、ファン41a、41bの振動の干渉に起因する騒音及び振動を抑制できる。さらに、本実施の形態2では、ファンを用いた風量制御において、複数のファン41a、41bの出力を同一に制御する必要がある場合、各モータから同じ出力が得られるようにモータを制御することが容易となる効果が得られる。 In the second embodiment, the loads 4a and 4b are the fans 41a and 41b. According to the second embodiment, it is possible to suppress noise and vibration caused by vibration interference of the fans 41a and 41b. Further, in the second embodiment, in the air volume control using a fan, when it is necessary to control the outputs of a plurality of fans 41a and 41b to be the same, the motors are controlled so that the same output can be obtained from each motor. Can be obtained.
実施の形態3.
 本実施の形態3の機械装置は、実施の形態1で説明した負荷4a、4bが圧縮機の場合である。本実施の形態3においては、実施の形態1及び2と異なる構成について詳細に説明し、実施の形態1及び2で説明した構成と同様な構成についての詳細な説明を省略する。
Embodiment 3 FIG.
The mechanical device according to the third embodiment is a case where the loads 4a and 4b described in the first embodiment are compressors. In the third embodiment, a configuration different from the first and second embodiments will be described in detail, and a detailed description of a configuration similar to the configuration described in the first and second embodiments will be omitted.
 本実施の形態3の機械装置の構成を説明する。図6は、本発明の実施の形態3における機械装置の一構成例を示す図である。 The configuration of the mechanical device according to the third embodiment will be described. FIG. 6 is a diagram illustrating a configuration example of the mechanical device according to the third embodiment of the present invention.
 図6に示す機械装置100は空気調和装置に設けられている。機械装置100は、三相電圧型インバータ2と、圧縮機42a、42bと、筐体61とを有する。筐体61は、三相電圧型インバータ2及び圧縮機42a、42bを収容する。本実施の形態3では、図6に示すように、三相電圧型インバータ2に同期モータ3e、3fが並列に接続されている。同期モータ3eに圧縮機42aが接続され、同期モータ3fに圧縮機42bが接続されている。圧縮機42a、42bが実施の形態1で説明した負荷4a、4bに相当する。図6では、圧縮機42aが同期モータ3eを含み、圧縮機42bが同期モータ3fを含む構成を示しているが、同期モータ3eが圧縮機42aとは別構成としてもよく、同期モータ3fが圧縮機42bとは別構成としてもよい。 6 is provided in an air conditioner. The mechanical device 100 includes a three-phase voltage type inverter 2, compressors 42 a and 42 b, and a casing 61. The housing 61 houses the three-phase voltage type inverter 2 and the compressors 42a and 42b. In the third embodiment, as shown in FIG. 6, synchronous motors 3 e and 3 f are connected in parallel to the three-phase voltage type inverter 2. The compressor 42a is connected to the synchronous motor 3e, and the compressor 42b is connected to the synchronous motor 3f. The compressors 42a and 42b correspond to the loads 4a and 4b described in the first embodiment. 6 shows a configuration in which the compressor 42a includes the synchronous motor 3e and the compressor 42b includes the synchronous motor 3f. However, the synchronous motor 3e may be configured separately from the compressor 42a, and the synchronous motor 3f is compressed. It is good also as a structure different from the machine 42b.
 圧縮機42aは、圧縮要素43aと、圧縮要素43aに直結された同期モータ3eを保持する密閉容器である圧縮機シェル52aと、筐体61に圧縮機42aを取り付けるためのフットシェル53aとを有する。圧縮機42bは、圧縮要素43bと、圧縮要素43bに直結された同期モータ3fを保持する密閉容器である圧縮機シェル52bと、筐体61に圧縮機42bを取り付けるためのフットシェル53bとを有する。フットシェル53a、53bは一般的に筐体61の底部にボルトなどの固定金具により接触させるが、筐体61と圧縮機42a、42bとの相対位置関係により、筐体61の壁面及び上面のうち一方又は両方にフットシェル53a、53bを介して圧縮機42a、42bを固定しても良い。 The compressor 42a includes a compression element 43a, a compressor shell 52a that is a sealed container that holds the synchronous motor 3e directly connected to the compression element 43a, and a foot shell 53a for attaching the compressor 42a to the housing 61. . The compressor 42b includes a compression element 43b, a compressor shell 52b that is a sealed container that holds the synchronous motor 3f that is directly connected to the compression element 43b, and a foot shell 53b for attaching the compressor 42b to the housing 61. . The foot shells 53a and 53b are generally brought into contact with the bottom of the housing 61 with a fixing bracket such as a bolt, but depending on the relative positional relationship between the housing 61 and the compressors 42a and 42b, The compressors 42a and 42b may be fixed to one or both via the foot shells 53a and 53b.
 空気調和装置には、冷媒を循環させるための冷媒配管62a~62cが設けられている。冷媒配管62bは圧縮機42aに接続されている。冷媒配管62cは圧縮機42bに接続されている。冷媒配管62aは、圧縮機42a及び圧縮機42bと接続され、圧縮機42a及び圧縮機42bに共用されている。 The air conditioner is provided with refrigerant pipes 62a to 62c for circulating the refrigerant. The refrigerant pipe 62b is connected to the compressor 42a. The refrigerant pipe 62c is connected to the compressor 42b. The refrigerant pipe 62a is connected to the compressor 42a and the compressor 42b, and is shared by the compressor 42a and the compressor 42b.
 同期モータ3eは圧縮機42aを駆動する。圧縮機42aは、同期モータ3eの回転動作が圧縮要素43aの圧縮室の容積を変化させることで、冷媒を圧縮して吐出する。同期モータ3fは圧縮機42bを駆動する。圧縮機42bは、同期モータ3fの回転動作が圧縮要素43bの圧縮室の容積を変化させることで、冷媒を圧縮して吐出する。筐体61は、地面又は建物等の固定端7に直接に接触している。具体例としては、筐体61と固定端7とをボルトなどの固定金具により固定させ、筐体61を固定端7に接触させる。図6は、固定端7が建物の床である場合を示すが、固定端7が建物の天井であってもよい。また、筐体61は、他の振動伝達要素を介して固定端7に接触していてもよい。さらには、本発明の効果を上げるべく防振ゴムなどの振動吸収材を介して筐体61と固定端7とを接触させても良い。 The synchronous motor 3e drives the compressor 42a. The compressor 42a compresses and discharges the refrigerant by rotating the synchronous motor 3e to change the volume of the compression chamber of the compression element 43a. The synchronous motor 3f drives the compressor 42b. The compressor 42b compresses and discharges the refrigerant by rotating the synchronous motor 3f to change the volume of the compression chamber of the compression element 43b. The casing 61 is in direct contact with the fixed end 7 such as the ground or a building. As a specific example, the casing 61 and the fixed end 7 are fixed by a fixing bracket such as a bolt, and the casing 61 is brought into contact with the fixed end 7. Although FIG. 6 shows the case where the fixed end 7 is a floor of a building, the fixed end 7 may be a ceiling of the building. Further, the housing 61 may be in contact with the fixed end 7 via another vibration transmission element. Furthermore, the casing 61 and the fixed end 7 may be brought into contact with each other through a vibration absorbing material such as a vibration proof rubber so as to enhance the effect of the present invention.
 次に、図6に示す機械装置100の動作を説明する。三相電圧型インバータ2は、交流電源1から入力される交流電圧を直流電圧に変換した後、直流電圧を三相の交流電圧に変換して同期モータ3e、3fに供給する。同期モータ3e、3fが圧縮機42a、42bを駆動するために回転すると、これらの回転に起因して、振動が、実施の形態1で説明した原因により、同期モータ3e、3fのそれぞれに発生する。 Next, the operation of the mechanical device 100 shown in FIG. 6 will be described. The three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, converts the DC voltage into a three-phase AC voltage, and supplies the same to the synchronous motors 3e and 3f. When the synchronous motors 3e and 3f rotate to drive the compressors 42a and 42b, vibrations are generated in each of the synchronous motors 3e and 3f due to these rotations due to the causes described in the first embodiment. .
 同期モータ3eの固定子に微小変形が発生すると固定子が振動し、フットシェル53aにその振動が伝達される。同期モータ3fの固定子に微小変形が発生すると固定子が振動し、フットシェル53bにその振動が伝達される。本実施の形態3では、フットシェル53a、53bが実施の形態1で説明した第1振動伝達要素5a、5bに相当する。 When a minute deformation occurs in the stator of the synchronous motor 3e, the stator vibrates and the vibration is transmitted to the foot shell 53a. When a minute deformation occurs in the stator of the synchronous motor 3f, the stator vibrates and the vibration is transmitted to the foot shell 53b. In the third embodiment, the foot shells 53a and 53b correspond to the first vibration transmission elements 5a and 5b described in the first embodiment.
 フットシェル53a、53bが機械装置100を保持する筐体61に接触しているため、フットシェル53a、53bのそれぞれから加振力が筐体61に伝達する。筐体61では、これらの加振力が合成され、合成された加振力による振動が発生する。本実施の形態3では、筐体61が実施の形態1で説明した第2振動伝達要素6に相当する。 Since the foot shells 53a and 53b are in contact with the housing 61 that holds the mechanical device 100, the excitation force is transmitted to the housing 61 from each of the foot shells 53a and 53b. In the casing 61, these excitation forces are combined, and vibrations are generated by the combined excitation forces. In the third embodiment, the casing 61 corresponds to the second vibration transmission element 6 described in the first embodiment.
 同期モータ3e、3fの回転速度がモータ毎に異なる場合、フットシェル53a、53bのそれぞれに伝達される振動の周波数成分に差が生じる。そして、筐体61において、フットシェル53a、53bのそれぞれから筐体61に伝達される振動の周波数成分の差に起因する振動が発生し、その振動がうなり音となって表れる。機械装置100に発生するうなり音は、機械装置100の周囲に居る人にとって、耳障りな音となる。 When the rotational speeds of the synchronous motors 3e and 3f are different for each motor, a difference occurs in the frequency components of vibrations transmitted to the foot shells 53a and 53b. In the housing 61, vibrations are generated due to the difference in frequency components of vibrations transmitted from the foot shells 53a and 53b to the housing 61, and the vibrations appear as beat sounds. The beat sound generated in the mechanical device 100 is a harsh sound for people around the mechanical device 100.
 また、圧縮機42a、42bは、共通の冷媒配管62aによって接続されているため、圧縮機42a、42bのそれぞれから発生した振動の干渉により冷媒配管62aで大きな振動が発生する。さらに、圧縮機42a、42bのそれぞれから発生した振動により、冷媒配管62aが引張り応力及び圧縮応力の一方又は両方を受ける。そのため、共通の冷媒配管62aにおいて、圧縮機42a、42bのそれぞれから伝達する振動により、破損が発生するおそれがある。特に、機械装置100の設計制約により、冷媒配管は筐体61及び固定端7に直接的に固定されず、圧縮機42a、42b等で支えられていることもある。 Further, since the compressors 42a and 42b are connected by a common refrigerant pipe 62a, a large vibration is generated in the refrigerant pipe 62a due to the interference of vibrations generated from the compressors 42a and 42b. Furthermore, the refrigerant pipe 62a receives one or both of tensile stress and compressive stress due to vibration generated from each of the compressors 42a and 42b. Therefore, the common refrigerant pipe 62a may be damaged by vibrations transmitted from the compressors 42a and 42b. In particular, due to design constraints of the mechanical device 100, the refrigerant pipe may not be directly fixed to the casing 61 and the fixed end 7, but may be supported by the compressors 42a, 42b, and the like.
 この場合、同期モータ3e、3fの負荷である圧縮機42a、42bが実施の形態1で説明した第1振動伝達要素5a、5bに相当し、冷媒配管62aが実施の形態1で説明した第2振動伝達要素6に相当する。 In this case, the compressors 42a and 42b which are loads of the synchronous motors 3e and 3f correspond to the first vibration transmission elements 5a and 5b described in the first embodiment, and the refrigerant pipe 62a is the second described in the first embodiment. It corresponds to the vibration transmitting element 6.
 同期モータ3e、3fの回転速度がモータ毎に異なる場合、圧縮機42a、42bのそれぞれに伝達される振動の周波数成分に差が生じる。そして、冷媒配管62aにおいて、圧縮機42a、42bのそれぞれから冷媒配管62aに伝達される振動の周波数成分の差に起因する振動が発生し、その振動が冷媒配管62aの破損の原因となり得る。 When the rotational speeds of the synchronous motors 3e and 3f are different for each motor, a difference occurs in the frequency components of vibrations transmitted to the compressors 42a and 42b. And in the refrigerant | coolant piping 62a, the vibration resulting from the difference of the frequency component of the vibration transmitted from each of the compressor 42a, 42b to the refrigerant | coolant piping 62a generate | occur | produces, and the vibration can cause the failure | damage of the refrigerant | coolant piping 62a.
 例えば、図3を参照して説明したうなり音Sに対応する長周期振動が冷媒配管62aに発生する場合を考える。ある物体の支持点にかかる引張り応力が一定の場合に比べて、引張り応力が大きくなったり、小さくなったりする場合の方が支持点にかかる負荷が大きくなる傾向がある。そのため、長周期振動によって、圧縮機42a、42bが冷媒配管62aを支持する箇所で破損するおそれがある。 For example, let us consider a case where long-period vibration corresponding to the beat sound S described with reference to FIG. 3 occurs in the refrigerant pipe 62a. The load applied to the support point tends to increase when the tensile stress increases or decreases as compared with the case where the tensile stress applied to the support point of a certain object is constant. Therefore, there is a possibility that the compressors 42a and 42b may be damaged at the portion where the refrigerant pipe 62a is supported by the long-period vibration.
 よって、本実施の形態3でも、実施の形態1及び2と同様に、三相電圧型インバータ2が、圧縮機42a、42bが必要とする電力に応じて、同期モータ3e、3fを駆動させる適切な周波数の三相の交流電圧を同期モータ3e、3fに供給する。その結果、同期モータ3e、3fの振動の干渉に起因するうなり音及び長周期振動を抑制できる。さらに、圧縮機42a、42bと接続され、圧縮機42a、42bに共通の冷媒配管62aが破損することを抑制できる。 Therefore, also in the third embodiment, as in the first and second embodiments, the three-phase voltage type inverter 2 appropriately drives the synchronous motors 3e and 3f according to the power required by the compressors 42a and 42b. A three-phase AC voltage having a proper frequency is supplied to the synchronous motors 3e and 3f. As a result, it is possible to suppress beat noise and long-period vibration caused by vibration interference of the synchronous motors 3e and 3f. Further, it is possible to suppress the refrigerant pipe 62a that is connected to the compressors 42a and 42b and is common to the compressors 42a and 42b from being damaged.
 本実施の形態3の機械装置100は、実施の形態1で説明した構成において、負荷4a、4bが圧縮機42a、42bとなるものである。本実施の形態3では、第1振動伝達要素5a、5bがフットシェル53a、53bであり、第2振動伝達要素6が筐体61となるものである。 In the mechanical device 100 according to the third embodiment, the loads 4a and 4b are the compressors 42a and 42b in the configuration described in the first embodiment. In the third embodiment, the first vibration transmission elements 5a and 5b are the foot shells 53a and 53b, and the second vibration transmission element 6 is the casing 61.
 本実施の形態3によれば、同期モータ3e、3fの回転の差に起因する振動がフットシェル53a、53bを経由して筐体61に伝達することが抑制され、実施の形態1で説明した効果が得られるだけでなく、圧縮機42a、42bの振動の干渉に起因する騒音及び振動を抑制できる。 According to the third embodiment, the vibration caused by the difference in rotation of the synchronous motors 3e and 3f is suppressed from being transmitted to the housing 61 via the foot shells 53a and 53b, which has been described in the first embodiment. Not only can the effect be obtained, but noise and vibration due to vibration interference of the compressors 42a and 42b can be suppressed.
 さらに、本実施の形態3では、圧縮機42a、42bが共通に接続される冷媒配管62aが第2振動伝達要素6に相当してもよい。この場合、同期モータ3e、3fの回転の差に起因する振動が圧縮機42a、42bを経由して冷媒配管62aに伝達することが抑制され、冷媒配管62aの破損を抑制できる効果がある。 Furthermore, in the third embodiment, the refrigerant pipe 62a to which the compressors 42a and 42b are connected in common may correspond to the second vibration transmission element 6. In this case, the vibration caused by the difference in rotation between the synchronous motors 3e and 3f is suppressed from being transmitted to the refrigerant pipe 62a via the compressors 42a and 42b, so that the refrigerant pipe 62a can be prevented from being damaged.
実施の形態4.
 本実施の形態4の機械装置は、三相電圧型インバータ2に設けられた半導体素子がワイドバンドギャップ半導体を用いて作製されている場合である。本実施の形態2においては、実施の形態1と異なる構成について詳細に説明し、実施の形態1で説明した構成と同様な構成についての詳細な説明を省略する。
Embodiment 4 FIG.
The mechanical device according to the fourth embodiment is a case where the semiconductor element provided in the three-phase voltage type inverter 2 is manufactured using a wide band gap semiconductor. In the second embodiment, a configuration different from the first embodiment will be described in detail, and a detailed description of a configuration similar to the configuration described in the first embodiment will be omitted.
 本実施の形態4においては、図2を参照して説明したスイッチング素子23UP、23VP、23WP、23UN、23VN、23WNは、ワイドバンドギャップ半導体を用いて作製された素子である。ワイドバンドギャップ半導体とは、炭化珪素(SiC)、窒化ガリウム(GaN)及びダイヤモンドのうち、いずれかを材料とする半導体である。スイッチング素子23UP、23VP、23WP、23UN、23VN、23WNは、例えば、SiC-MOSFETである。また、各スイッチング素子に逆並列に設けられた逆流防止素子が、ワイドバンドギャップ半導体を用いて作製されていてもよい。スイッチング素子及び逆流防止素子のうち、いずれか一方の場合に限らず、両方がワイドバンドギャップ半導体を用いて作製されていてもよい。 In the fourth embodiment, the switching elements 23UP, 23VP, 23WP, 23UN, 23VN, and 23WN described with reference to FIG. 2 are elements manufactured using a wide band gap semiconductor. The wide band gap semiconductor is a semiconductor made of any one of silicon carbide (SiC), gallium nitride (GaN), and diamond. The switching elements 23UP, 23VP, 23WP, 23UN, 23VN, and 23WN are, for example, SiC-MOSFETs. Moreover, the backflow prevention element provided in antiparallel with each switching element may be produced using a wide band gap semiconductor. Not only one of the switching element and the backflow prevention element, but both may be manufactured using a wide band gap semiconductor.
 スイッチング素子及び逆流防止素子を含む半導体素子について、耐電圧性及び許容電流は、ワイドバンドギャップ半導体を用いて作製された半導体素子の方が、珪素(Si)を材料とする半導体を用いて作製された従来の半導体素子よりも高い。そのため、ワイドバンドギャップ半導体を用いて作製された半導体素子は、素子のサイズを小型化できる利点がある。スイッチング素子及び逆流防止素子を、ワイドバンドギャップ半導体を用いて作製することで、これらの素子を組み込んだ半導体モジュールを小型化できる。 With respect to semiconductor elements including switching elements and backflow prevention elements, the withstand voltage and allowable current of semiconductor elements manufactured using a wide band gap semiconductor are manufactured using a semiconductor made of silicon (Si). Higher than conventional semiconductor devices. Therefore, a semiconductor device manufactured using a wide band gap semiconductor has an advantage that the size of the device can be reduced. By producing the switching element and the backflow prevention element using a wide band gap semiconductor, a semiconductor module incorporating these elements can be reduced in size.
 本実施の形態4では、図2に示したスイッチング素子及び逆流防止素子がワイドバンドギャップ半導体を用いて作製されていることの利点について、各同期モータに接続される負荷の振動の干渉に起因して発生する騒音及び振動を抑制する観点で説明する。 In the fourth embodiment, the advantage that the switching element and the backflow prevention element shown in FIG. 2 are manufactured using a wide band gap semiconductor is attributed to the vibration interference of the load connected to each synchronous motor. This will be described from the viewpoint of suppressing noise and vibration generated.
 はじめに、一般的な三相電圧型インバータの動作について説明する。ここでは、N個の同期モータが三相電圧型インバータに並列に接続されているものとする。三相電圧型インバータが、PWM等の制御方式に基づいてスイッチング素子をスイッチング動作させると、スイッチング動作に起因して高次の周波数の電流である高調波電流が三相電圧型インバータの出力電流に重畳する。その結果、三相電圧型インバータに並列に接続されたN個の同期モータに磁気振動及び磁気騒音が発生する。また、上記のスイッチング動作に起因する損失としてジュール熱が発生する。 First, the operation of a general three-phase voltage type inverter will be described. Here, it is assumed that N synchronous motors are connected in parallel to the three-phase voltage type inverter. When a three-phase voltage type inverter performs switching operation of a switching element based on a control method such as PWM, a harmonic current that is a current of a higher frequency due to the switching operation becomes an output current of the three-phase voltage type inverter. Superimpose. As a result, magnetic vibration and magnetic noise are generated in the N synchronous motors connected in parallel to the three-phase voltage type inverter. In addition, Joule heat is generated as a loss due to the switching operation.
 同期モータの回転に対応する周波数を基本周波数と称すると、一般に、スイッチング動作の周波数は、基本周波数に対して数十倍から数百倍の大きさのレベルに引き離して設定される。スイッチング動作の周波数を高く設定することで、高調波電流がより高次の周波数に移行される。一方、同期モータの回転速度が上昇すると、回転速度の上昇に伴って基本周波数がスイッチング動作の周波数に近づくことになる。また、同期モータの回転に起因する振動の周波数は、基本周波数の整数倍成分を含んでいる。そのため、スイッチング動作の周波数が高く設定されていない場合、同期モータの回転速度が上昇すると、同期モータの回転に起因する、基本周波数の整数倍成分の振動の周波数と、スイッチング動作の周波数とが近くなり、新たな干渉が発生するおそれがある。 When the frequency corresponding to the rotation of the synchronous motor is referred to as a fundamental frequency, the frequency of the switching operation is generally set to a level that is several tens to several hundred times as large as the fundamental frequency. By setting the frequency of the switching operation high, the harmonic current is shifted to a higher frequency. On the other hand, when the rotational speed of the synchronous motor increases, the fundamental frequency approaches the frequency of the switching operation as the rotational speed increases. The frequency of vibration caused by the rotation of the synchronous motor includes an integer multiple component of the fundamental frequency. For this reason, if the frequency of the switching operation is not set high and the rotational speed of the synchronous motor increases, the frequency of the vibration that is an integral multiple of the fundamental frequency caused by the rotation of the synchronous motor is close to the frequency of the switching operation. Therefore, new interference may occur.
 珪素を材料とする半導体を用いて作製された従来のスイッチング素子の場合、耐熱性が高くなく、スイッチング動作に起因する損失が大きいため、スイッチング動作の周波数を高く設定できない。そのため、従来の半導体素子では、上述したように、新たな干渉が発生するおそれがある。 In the case of a conventional switching element manufactured using a semiconductor made of silicon, the heat resistance is not high and the loss due to the switching operation is large, so the frequency of the switching operation cannot be set high. Therefore, in the conventional semiconductor element, there is a possibility that new interference occurs as described above.
 これに対して、ワイドバンドギャップ半導体を用いて作製されたスイッチング素子及び逆流防止素子は、従来の半導体素子と比較すると、耐熱性が高く、スイッチング動作に起因する損失が小さい。この性質を利用して、半導体素子の材料にワイドバンドギャップ半導体を用いることで、同期モータの回転に起因する、基本周波数の整数倍成分の振動に干渉しない帯域まで、スイッチング動作の周波数を高い値に設定することができる。 In contrast, a switching element and a backflow prevention element manufactured using a wide band gap semiconductor have higher heat resistance and less loss due to switching operation than conventional semiconductor elements. Utilizing this property, by using a wide bandgap semiconductor as the material of the semiconductor element, the switching operation frequency is increased to a band that does not interfere with the vibration of an integral multiple component of the fundamental frequency caused by the rotation of the synchronous motor. Can be set to
 また、三相電圧型インバータにおいて、ジュール熱を放熱するための冷却機構が必要となる。冷却機構とは、例えば、放熱フィン及び水冷機構などである。このような冷却機構は、実施の形態1~3で説明した第1振動伝達要素及び第2振動伝達要素とは別の振動伝達要素となり得る。そのため、騒音及び振動を低減する観点では、冷却機構を小型化及び簡素化する方が望ましい。冷却機構の簡素化とは、例えば、水冷方式から、水冷方式に比べて構造が簡素な空冷方式に変更することである。 Also, in the three-phase voltage type inverter, a cooling mechanism for radiating Joule heat is required. The cooling mechanism is, for example, a radiation fin or a water cooling mechanism. Such a cooling mechanism can be a vibration transmission element different from the first vibration transmission element and the second vibration transmission element described in the first to third embodiments. Therefore, it is desirable to reduce the size and simplify the cooling mechanism from the viewpoint of reducing noise and vibration. The simplification of the cooling mechanism is, for example, a change from a water cooling method to an air cooling method that has a simpler structure than the water cooling method.
 半導体素子の材料にワイドバンドギャップ半導体を用いることで、耐熱性が高く、スイッチング損失が小さいという性質を利用して、冷却機構の小型化及び簡素化を図ることができる。そのため、冷却機構を振動伝達要素と仮定すると、振動伝達要素を小さくでき、振動伝達要素における音及び振動の発生を抑制できる。 By using a wide band gap semiconductor as the material of the semiconductor element, the cooling mechanism can be reduced in size and simplified by utilizing the properties of high heat resistance and low switching loss. Therefore, assuming that the cooling mechanism is a vibration transmission element, the vibration transmission element can be reduced, and generation of sound and vibration in the vibration transmission element can be suppressed.
 スイッチング素子及び逆流防止素子の両方がワイドバンドギャップ半導体を用いて作製されていることが望ましいが、三相電圧型インバータ2のコスト等を鑑み、これらの半導体素子のうち、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよい。 Although it is desirable that both the switching element and the backflow prevention element are manufactured using a wide band gap semiconductor, in view of the cost of the three-phase voltage type inverter 2, any one of these semiconductor elements is It may be formed of a wide band gap semiconductor.
 本実施の形態4の機械装置100は、実施の形態1~3のうち、いずれかの構成において、三相電圧型インバータ2はスイッチング素子及び逆流防止素子を含み、これらの素子のうち、一方又は両方がワイドバンドギャップ半導体を用いて作製されているものである。 In the mechanical device 100 of the fourth embodiment, in any of the configurations of the first to third embodiments, the three-phase voltage type inverter 2 includes a switching element and a backflow prevention element, and one of these elements or Both are manufactured using wide band gap semiconductors.
 本実施の形態4によれば、三相電圧型インバータ2に含まれるスイッチング素子及び逆流防止素子のうち、一方又は両方がワイドバンドギャップ半導体を用いて作成されているため、インバータのスイッチング動作の周波数を高い値に設定することができる。そのため、モータの回転速度の次の整数倍の振動成分とスイッチング動作の周波数に起因する振動成分との間の周波数帯域を十分広くして、これらの振動成分の干渉が起きないようにすることができる。その結果、上述した、同期モータの回転速度差に起因する騒音の抑制効果に加え、これらの振動成分の干渉による音の発生を抑制できる効果がある。また、冷却機構の小型化及び簡素化を行うことで、冷却機構に由来する振動伝達要素を小さくでき、騒音及び振動を抑制できる効果がある。 According to the fourth embodiment, since one or both of the switching element and the backflow prevention element included in the three-phase voltage type inverter 2 are formed using the wide band gap semiconductor, the frequency of the switching operation of the inverter Can be set to a high value. For this reason, the frequency band between the vibration component of the next integral multiple of the rotation speed of the motor and the vibration component due to the frequency of the switching operation should be sufficiently widened so that interference of these vibration components does not occur. it can. As a result, in addition to the above-described noise suppression effect due to the difference in rotational speed of the synchronous motor, there is an effect that the generation of sound due to interference of these vibration components can be suppressed. Further, by downsizing and simplifying the cooling mechanism, it is possible to reduce the vibration transmitting element derived from the cooling mechanism and to suppress noise and vibration.
実施の形態5.
 本実施の形態5は、実施の形態1~4で説明した機械装置のうち、いずれかの機械装置を空気調和装置に適用したものである。空気調和装置の場合、各同期モータに接続される負荷の振動の干渉による騒音及び振動が空気調和装置の周囲に居る人に対して不快感を与えるおそれがある。そのため、本実施の形態5では、実施の形態1~4のうち、いずれかの実施の形態で説明した機械装置を、空気調和装置に適用することでこの不快感を低減することを目的とするものである。
Embodiment 5 FIG.
In the fifth embodiment, any one of the mechanical devices described in the first to fourth embodiments is applied to an air conditioner. In the case of an air conditioner, noise and vibration due to interference of vibrations of a load connected to each synchronous motor may cause discomfort to people around the air conditioner. Therefore, the fifth embodiment aims to reduce this discomfort by applying the mechanical device described in any of the first to fourth embodiments to an air conditioner. Is.
 本実施の形態5では、実施の形態2で説明した機械装置を空気調和装置に適用した場合で説明する。また、実施の形態2と異なる構成について詳細に説明し、実施の形態2で説明した構成と同様な構成についての詳細な説明を省略する。 In the fifth embodiment, the case where the mechanical device described in the second embodiment is applied to an air conditioner will be described. Further, a configuration different from that of the second embodiment will be described in detail, and a detailed description of a configuration similar to the configuration described in the second embodiment will be omitted.
 本実施の形態5における空気調和装置の構成を説明する。図7は、本発明の実施の形態5における空気調和装置の構成例を示す図である。図7は、実施の形態2で説明した機械装置を空気調和装置に適用した場合の構成を示す図である。図7に示すように、空気調和装置150aは、室外機90a及び室内機93を有する。 The configuration of the air conditioner in the fifth embodiment will be described. FIG. 7 is a diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 5 of the present invention. FIG. 7 is a diagram illustrating a configuration when the mechanical device described in the second embodiment is applied to an air conditioner. As shown in FIG. 7, the air conditioner 150 a includes an outdoor unit 90 a and an indoor unit 93.
 図7に示すように、室外機90aは、実施の形態2で説明した機械装置100と、三相インバータ200と、圧縮機42aとを有する。ファン41aを駆動する同期モータ3cとファン41bを駆動する同期モータ3dとが、単一の三相電圧型インバータ2に並列に接続されている。三相インバータ200は、直流母線側において三相電圧型インバータ2と接続され、出力側において圧縮機42aと接続されている。 As shown in FIG. 7, the outdoor unit 90a includes the mechanical device 100 described in the second embodiment, the three-phase inverter 200, and the compressor 42a. A synchronous motor 3c for driving the fan 41a and a synchronous motor 3d for driving the fan 41b are connected in parallel to the single three-phase voltage type inverter 2. The three-phase inverter 200 is connected to the three-phase voltage type inverter 2 on the DC bus side, and is connected to the compressor 42a on the output side.
 図7では、三相電圧型インバータ2の直流母線が分岐して三相インバータ200に接続され、直流母線を介して直流電圧が三相電圧型インバータ2から三相インバータ200に入力される場合の構成を示している。 In FIG. 7, the DC bus of the three-phase voltage type inverter 2 is branched and connected to the three-phase inverter 200, and the DC voltage is input from the three-phase voltage type inverter 2 to the three-phase inverter 200 via the DC bus. The configuration is shown.
 三相インバータ200は、三相電圧型インバータ2の直流母線と共通の直流電圧を、圧縮機42aの負荷に応じて同期モータ3eを駆動するための適切な周波数の三相の交流電圧へ変換し、外部から入力される制御信号にしたがって、三相の交流電圧を同期モータ3eに供給する。 The three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3e according to the load of the compressor 42a. In accordance with a control signal input from the outside, a three-phase AC voltage is supplied to the synchronous motor 3e.
 ファン41a、41bを駆動する同期モータ3c、3dと圧縮機42aを駆動する同期モータ3eとでは一般的にはモータ容量が異なり、駆動周波数及び駆動パターンも異なるため、図7に示す構成例では、同期モータ3c、3dを駆動する三相電圧型インバータ2とは別に、同期モータ3eを駆動する三相インバータ200が設けられている。 Since the synchronous motors 3c and 3d for driving the fans 41a and 41b and the synchronous motor 3e for driving the compressor 42a generally have different motor capacities and different driving frequencies and driving patterns, in the configuration example shown in FIG. In addition to the three-phase voltage type inverter 2 that drives the synchronous motors 3c and 3d, a three-phase inverter 200 that drives the synchronous motor 3e is provided.
 なお、三相インバータ200は、三相電圧型インバータ2と同様に内部に整流回路が設けられ、交流電源1から直接に交流電圧の供給を受ける構成であってもよい。また、三相インバータ200は、自身のインバータに接続される同期モータ3eが1台のみならば、他の圧縮機との干渉が生じないため、電圧型インバータに限らず電流型インバータ及びマトリクスコンバータ等の構成であってもよい。また、自身のインバータに接続される同期モータが複数ならば、先述の理由により三相電圧型インバータが望ましい。 The three-phase inverter 200 may have a configuration in which a rectifier circuit is provided in the same manner as the three-phase voltage type inverter 2 and an AC voltage is directly supplied from the AC power source 1. Further, if the three-phase inverter 200 has only one synchronous motor 3e connected to its own inverter, interference with other compressors does not occur. It may be configured as follows. If there are a plurality of synchronous motors connected to its own inverter, a three-phase voltage type inverter is desirable for the reason described above.
 続いて、図7を参照して、空気調和装置150aが実行する冷凍サイクルに関係する冷媒回路の構成を説明する。図7に示す冷媒回路の構成は一例であり、図7に示す構成以外の冷媒回路に実施の形態2で説明した機械装置100を適用した場合にも、図7に示す構成と同等の効果が得られる。 Subsequently, the configuration of the refrigerant circuit related to the refrigeration cycle executed by the air conditioner 150a will be described with reference to FIG. The configuration of the refrigerant circuit shown in FIG. 7 is an example, and when the mechanical device 100 described in the second embodiment is applied to a refrigerant circuit other than the configuration shown in FIG. 7, the same effect as the configuration shown in FIG. 7 is obtained. can get.
 室内機93は、負荷側熱交換器95及び膨張装置94を有する。室外機90aは、四方弁91及び熱源側熱交換器92a、92bを有する。本実施の形態5では、図7に示すように、熱源側熱交換器92a及び熱源側熱交換器92bは冷媒回路63aに対して並列に接続されている。冷媒回路63aは、冷媒が圧縮機42aから、四方弁91、熱源側熱交換器92a、92b、膨張装置94、負荷側熱交換器95及び四方弁91を順に経由して元の圧縮機42aに戻るように、これらの機器が冷媒配管を介して接続された構成である。この冷媒回路63aを冷媒が循環することで、冷凍サイクルが繰り返される。 The indoor unit 93 includes a load side heat exchanger 95 and an expansion device 94. The outdoor unit 90a includes a four-way valve 91 and heat source side heat exchangers 92a and 92b. In the fifth embodiment, as shown in FIG. 7, the heat source side heat exchanger 92a and the heat source side heat exchanger 92b are connected in parallel to the refrigerant circuit 63a. In the refrigerant circuit 63a, the refrigerant passes from the compressor 42a to the original compressor 42a through the four-way valve 91, the heat source side heat exchangers 92a and 92b, the expansion device 94, the load side heat exchanger 95, and the four-way valve 91 in order. It is the structure where these apparatuses were connected through refrigerant | coolant piping so that it might return. As the refrigerant circulates through the refrigerant circuit 63a, the refrigeration cycle is repeated.
 図7に示す構成例では、膨張装置94が室内機93に設けられているが、膨張装置94は室外機90aに設けられていてもよい。また、冷房及び暖房等の空調能力を細かく制御できるように、膨張装置94が室内機93及び室外機90aの両方に設けられていてもよい。 7, the expansion device 94 is provided in the indoor unit 93, but the expansion device 94 may be provided in the outdoor unit 90a. Moreover, the expansion device 94 may be provided in both the indoor unit 93 and the outdoor unit 90a so that air conditioning capability, such as cooling and heating, can be finely controlled.
 次に、図7に示した空気調和装置150aの動作を説明する。ここでは、冷房運転の場合で動作を説明する。図7に示す空気調和装置150aは暖房運転を行うこともでき、暖房運転においても冷房運転と同様に、後述する効果を得ることができる。 Next, the operation of the air conditioner 150a shown in FIG. 7 will be described. Here, the operation will be described in the case of the cooling operation. The air conditioner 150a shown in FIG. 7 can also perform a heating operation, and the effect described later can be obtained in the heating operation as well as the cooling operation.
 冷房運転では、四方弁91は、圧縮機42aから吐出される冷媒が熱源側熱交換器92a、92bへ流通し、かつ負荷側熱交換器95から流出する冷媒が圧縮機42aへ流通するように、予め流路を切り替えているものとする。暖房運転については、その詳細な説明を省略するが、四方弁91が流路を切り替えることで、冷房運転と暖房運転との切り替えが行われる。 In the cooling operation, the four-way valve 91 allows the refrigerant discharged from the compressor 42a to flow to the heat source side heat exchangers 92a and 92b, and allows the refrigerant flowing out from the load side heat exchanger 95 to flow to the compressor 42a. Assume that the flow path is switched in advance. Although a detailed description of the heating operation is omitted, switching between the cooling operation and the heating operation is performed by the four-way valve 91 switching the flow path.
 三相電圧型インバータ2は、交流電源1から入力される交流電圧を直流電圧に変換した後、直流電圧を同期モータ3c、3dを駆動するための適切な周波数の三相の交流電圧へ変換し、三相の交流電圧を同期モータ3c、3dに供給する。三相インバータ200は、三相電圧型インバータ2の直流母線と共通の直流電圧を、同期モータ3eを駆動するための適切な周波数の三相の交流電圧へ変換し、三相の交流電圧を同期モータ3eに供給する。 The three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, and then converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3c and 3d. The three-phase AC voltage is supplied to the synchronous motors 3c and 3d. The three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3e, and synchronizes the three-phase AC voltage. Supply to motor 3e.
 圧縮機42aを駆動する同期モータ3eが回転駆動することで、同期モータ3eに連結した圧縮要素43aが冷媒を圧縮する。圧縮機42aは、高温高圧の冷媒を吐出する。圧縮機42aから吐出した高温高圧の冷媒は、四方弁91を経由して、熱源側熱交換器92a、92bに流入する。熱源側熱交換器92aにおいて、冷媒は、ファン41aによって供給される外部の空気と熱交換を行って放熱する。また、熱源側熱交換器92bにおいて、冷媒は、ファン41bによって供給される外部の空気と熱交換を行って放熱する。 When the synchronous motor 3e that drives the compressor 42a is driven to rotate, the compression element 43a connected to the synchronous motor 3e compresses the refrigerant. The compressor 42a discharges a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 42a flows into the heat source side heat exchangers 92a and 92b via the four-way valve 91. In the heat source side heat exchanger 92a, the refrigerant radiates heat by exchanging heat with external air supplied by the fan 41a. In the heat source side heat exchanger 92b, the refrigerant dissipates heat by exchanging heat with external air supplied by the fan 41b.
 熱源側熱交換器92a、92bから流出した冷媒は、膨張装置94によって膨張及び減圧され、低温低圧の気液二相冷媒となる。低温低圧の気液二相冷媒は、負荷側熱交換器95に流入すると、空調対象空間の空気と熱交換を行って蒸発し、低温低圧のガス冷媒となる。負荷側熱交換器95から流出する低温低圧のガス冷媒は、四方弁91を経由して圧縮機42aに吸入され、再び圧縮される。上述した動作が繰り返される。 The refrigerant that has flowed out of the heat source side heat exchangers 92a and 92b is expanded and depressurized by the expansion device 94 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. When the low-temperature low-pressure gas-liquid two-phase refrigerant flows into the load-side heat exchanger 95, the low-temperature low-pressure gas-liquid refrigerant evaporates by exchanging heat with the air in the air-conditioning target space and becomes a low-temperature low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the load-side heat exchanger 95 is sucked into the compressor 42a via the four-way valve 91 and compressed again. The above-described operation is repeated.
 なお、本実施の形態5では、実施の形態2で説明した機械装置を空気調和装置へ適用した場合で説明したが、適用する機械装置は実施の形態2に限定されない。また、実施の形態1~4のいずれかの機械装置を適用する装置は、空気調和装置に限らず、ヒートポンプ装置、冷凍装置及びその他の冷凍サイクル装置を含む一般的な冷凍サイクル装置に適用してもよい。 In the fifth embodiment, the mechanical device described in the second embodiment is applied to the air conditioner. However, the applied mechanical device is not limited to the second embodiment. The apparatus to which any of the mechanical devices of Embodiments 1 to 4 is applied is not limited to an air conditioner, but is applied to a general refrigeration cycle apparatus including a heat pump apparatus, a refrigeration apparatus, and other refrigeration cycle apparatuses. Also good.
 本実施の形態5の空気調和装置150aは、実施の形態1~4で説明した機械装置100のうち、いずれかの機械装置100と、圧縮機42a及び熱源側熱交換器92a、92bを含む室外機90aと、膨張装置94及び負荷側熱交換器95を含む室内機93とを有するものである。 The air conditioner 150a of the fifth embodiment is an outdoor unit that includes any one of the mechanical devices 100 described in the first to fourth embodiments, the compressor 42a, and the heat source side heat exchangers 92a and 92b. And an indoor unit 93 including an expansion device 94 and a load-side heat exchanger 95.
 本実施の形態5によれば、実施の形態1~4で説明した機械装置100のうち、いずれかの機械装置100を空気調和装置150aに適用することで、空気調和装置150aの製造コストを抑制できる。また、同期モータ3c、3d間の回転速度差に起因する騒音及び振動と、同期モータ3c、3dに接続される負荷の振動の干渉による騒音及び振動とが抑制される。その結果、空気調和装置150aの周囲に居る人に対する不快感を低減できる効果がある。 According to the fifth embodiment, any one of the mechanical devices 100 described in the first to fourth embodiments is applied to the air conditioner 150a, thereby reducing the manufacturing cost of the air conditioner 150a. it can. In addition, noise and vibration due to the difference in rotational speed between the synchronous motors 3c and 3d and noise and vibration due to vibration interference of loads connected to the synchronous motors 3c and 3d are suppressed. As a result, there is an effect that it is possible to reduce discomfort for people around the air conditioner 150a.
実施の形態6.
 本実施の形態6は、実施の形態5と同様に、実施の形態1~4で説明した機械装置のうち、いずれかの機械装置を空気調和装置に適用したものである。本実施の形態6では、実施の形態3で説明した機械装置を空気調和装置に適用した場合で説明する。本実施の形態6においては、実施の形態3及び5と異なる構成について詳細に説明し、実施の形態3及び5で説明した構成と同様な構成についての詳細な説明を省略する。
Embodiment 6 FIG.
In the sixth embodiment, as in the fifth embodiment, any one of the mechanical devices described in the first to fourth embodiments is applied to an air conditioner. In the sixth embodiment, a case will be described where the mechanical device described in the third embodiment is applied to an air conditioner. In the sixth embodiment, a configuration different from the third and fifth embodiments will be described in detail, and a detailed description of a configuration similar to the configuration described in the third and fifth embodiments will be omitted.
 本実施の形態6に係る空気調和装置の構成を説明する。図8は、本発明の実施の形態6における空気調和装置の構成例を示す図である。図8は、実施の形態3で説明した機械装置を空気調和装置に適用した場合の構成を示す図である。図8に示すように、空気調和装置150bは、室外機90b及び室内機93を有する。 The configuration of the air conditioner according to the sixth embodiment will be described. FIG. 8 is a diagram illustrating a configuration example of an air-conditioning apparatus according to Embodiment 6 of the present invention. FIG. 8 is a diagram illustrating a configuration when the mechanical device described in the third embodiment is applied to an air conditioner. As shown in FIG. 8, the air conditioner 150 b includes an outdoor unit 90 b and an indoor unit 93.
 図8に示すように、室外機90bは、実施の形態3で説明した機械装置100と、三相インバータ200と、同期モータ3cとを有する。同期モータ3cの軸先にファン41aのブレードが取り付けられている。室外機90bには、同期モータ3cを取り付けるためのモータ取付足51aが設けられている。圧縮機42aを駆動する同期モータ3eと圧縮機42bを駆動する同期モータ3fとが、単一の三相電圧型インバータ2に並列に接続されている。三相インバータ200は、直流母線側において三相電圧型インバータ2と接続され、出力側において同期モータ3cと接続されている。 As shown in FIG. 8, the outdoor unit 90b includes the mechanical device 100 described in the third embodiment, a three-phase inverter 200, and a synchronous motor 3c. The blade of the fan 41a is attached to the shaft tip of the synchronous motor 3c. The outdoor unit 90b is provided with a motor mounting foot 51a for mounting the synchronous motor 3c. A synchronous motor 3e for driving the compressor 42a and a synchronous motor 3f for driving the compressor 42b are connected in parallel to the single three-phase voltage type inverter 2. The three-phase inverter 200 is connected to the three-phase voltage type inverter 2 on the DC bus side, and is connected to the synchronous motor 3c on the output side.
 図8では、三相電圧型インバータ2の直流母線が分岐して三相インバータ200に接続され、直流母線を介して直流電圧が三相電圧型インバータ2から三相インバータ200に入力される場合の構成を示している。 In FIG. 8, the DC bus of the three-phase voltage type inverter 2 is branched and connected to the three-phase inverter 200, and the DC voltage is input from the three-phase voltage type inverter 2 to the three-phase inverter 200 via the DC bus. The configuration is shown.
 三相インバータ200は、三相電圧型インバータ2の直流母線と共通の直流電圧を、ファン41aの負荷、すなわち熱交換を行う上で必要となるファンの風量に応じて、同期モータ3cを駆動するための適切な周波数の三相の交流電圧へ変換し、外部から入力される制御信号にしたがって、三相の交流電圧を同期モータ3cに供給する。 The three-phase inverter 200 drives the synchronous motor 3c with a DC voltage common to the DC bus of the three-phase voltage type inverter 2 in accordance with the load of the fan 41a, that is, the fan air flow required for heat exchange. Therefore, the three-phase AC voltage is converted into a three-phase AC voltage having an appropriate frequency, and the three-phase AC voltage is supplied to the synchronous motor 3c in accordance with a control signal input from the outside.
 ファン41aを駆動する同期モータ3cと圧縮機42a、42bを駆動する同期モータ3e、3fとでは一般的にはモータ容量が異なり、駆動周波数及び駆動パターンも異なるため、図8に示す構成例では、同期モータ3e、3fを駆動する三相電圧型インバータ2とは別に、同期モータ3cを駆動する三相インバータ200が設けられている。 Since the synchronous motor 3c that drives the fan 41a and the synchronous motors 3e and 3f that drive the compressors 42a and 42b generally have different motor capacities and drive frequencies and drive patterns, the configuration example shown in FIG. In addition to the three-phase voltage type inverter 2 that drives the synchronous motors 3e and 3f, a three-phase inverter 200 that drives the synchronous motor 3c is provided.
 なお、三相インバータ200は、三相電圧型インバータ2と同様に内部に整流回路が設けられ、交流電源1から直接に交流電圧の供給を受ける構成であってもよい。また、三相インバータ200は、自身のインバータに接続される同期モータ3cが1台のみならば、他のファンとの干渉が生じないため、電圧型インバータに限らず電流型インバータ及びマトリクスコンバータ等の構成であってもよい。また、自身のインバータに接続される同期モータが複数ならば、先述の理由により三相電圧型インバータが望ましい。 The three-phase inverter 200 may have a configuration in which a rectifier circuit is provided in the same manner as the three-phase voltage type inverter 2 and an AC voltage is directly supplied from the AC power source 1. Further, the three-phase inverter 200 is not limited to the voltage type inverter, as long as only one synchronous motor 3c is connected to its own inverter. It may be a configuration. If there are a plurality of synchronous motors connected to its own inverter, a three-phase voltage type inverter is desirable for the reason described above.
 続いて、図8を参照して、空気調和装置150bが実行する冷凍サイクルに関係する冷媒回路の構成を説明する。図8に示す冷媒回路の構成は一例であり、図8に示す構成以外の冷媒回路に実施の形態3で説明した機械装置100を適用した場合にも、図8に示す構成と同等の効果が得られる。 Subsequently, the configuration of the refrigerant circuit related to the refrigeration cycle executed by the air conditioner 150b will be described with reference to FIG. The configuration of the refrigerant circuit shown in FIG. 8 is an example, and when the mechanical device 100 described in the third embodiment is applied to a refrigerant circuit other than the configuration shown in FIG. 8, the same effect as the configuration shown in FIG. can get.
 室外機90bは、四方弁91及び熱源側熱交換器92aを有する。本実施の形態6では、図8に示すように、熱源側熱交換器92aは冷媒回路63bに対して直列に接続されている。圧縮機42a及び圧縮機42bは冷媒回路63bに対して並列に接続されている。冷媒回路63bは、冷媒が圧縮機42a、42bから、四方弁91、熱源側熱交換器92a、膨張装置94、負荷側熱交換器95及び四方弁91を順に経由して元の圧縮機42a、42bに戻るように、これらの機器が冷媒配管を介して接続された構成である。この冷媒回路63bを冷媒が循環することで、冷凍サイクルが繰り返される。 The outdoor unit 90b includes a four-way valve 91 and a heat source side heat exchanger 92a. In the sixth embodiment, as shown in FIG. 8, the heat source side heat exchanger 92a is connected in series to the refrigerant circuit 63b. The compressor 42a and the compressor 42b are connected in parallel to the refrigerant circuit 63b. In the refrigerant circuit 63b, the refrigerant passes from the compressors 42a and 42b to the original compressor 42a through the four-way valve 91, the heat source side heat exchanger 92a, the expansion device 94, the load side heat exchanger 95, and the four-way valve 91 in this order. These devices are connected via a refrigerant pipe so as to return to 42b. As the refrigerant circulates through the refrigerant circuit 63b, the refrigeration cycle is repeated.
 図8に示す構成例では、膨張装置94が室内機93に設けられているが、膨張装置94は室外機90bに設けられていてもよい。また、冷房及び暖房等の空調能力を細かく制御できるように、膨張装置94が室内機93及び室外機90bの両方に設けられていてもよい。 In the configuration example shown in FIG. 8, the expansion device 94 is provided in the indoor unit 93, but the expansion device 94 may be provided in the outdoor unit 90b. Further, the expansion device 94 may be provided in both the indoor unit 93 and the outdoor unit 90b so that the air conditioning capabilities such as cooling and heating can be finely controlled.
 次に、図8に示した空気調和装置150bの動作を説明する。ここでは、冷房運転の場合で動作を説明する。図8に示す空気調和装置150bは暖房運転を行うこともでき、暖房運転においても冷房運転と同様に、後述する効果を得ることができる。 Next, the operation of the air conditioner 150b shown in FIG. 8 will be described. Here, the operation will be described in the case of the cooling operation. The air conditioner 150b shown in FIG. 8 can also perform a heating operation, and the effect described later can be obtained in the heating operation as well as the cooling operation.
 冷房運転では、四方弁91は、圧縮機42a、42bから吐出される冷媒が熱源側熱交換器92aへ流通し、かつ負荷側熱交換器95から流出する冷媒が圧縮機42a、42bへ流通するように、予め流路を切り替えているものとする。暖房運転については、その詳細な説明を省略するが、四方弁91が流路を切り替えることで、冷房運転と暖房運転との切り替えが行われる。 In the cooling operation, in the four-way valve 91, the refrigerant discharged from the compressors 42a and 42b flows to the heat source side heat exchanger 92a, and the refrigerant flowing out from the load side heat exchanger 95 flows to the compressors 42a and 42b. Thus, it is assumed that the flow path is switched in advance. Although a detailed description of the heating operation is omitted, switching between the cooling operation and the heating operation is performed by the four-way valve 91 switching the flow path.
 三相電圧型インバータ2は、交流電源1から入力される交流電圧を直流電圧に変換した後、直流電圧を同期モータ3e、3fを駆動するための適切な周波数の三相の交流電圧へ変換し、三相の交流電圧を同期モータ3e、3fに供給する。三相インバータ200は、三相電圧型インバータ2の直流母線と共通の直流電圧を、同期モータ3cを駆動するための適切な周波数の三相の交流電圧へ変換し、三相の交流電圧を同期モータ3cに供給する。 The three-phase voltage type inverter 2 converts the AC voltage input from the AC power source 1 into a DC voltage, and then converts the DC voltage into a three-phase AC voltage having an appropriate frequency for driving the synchronous motors 3e and 3f. The three-phase AC voltage is supplied to the synchronous motors 3e and 3f. The three-phase inverter 200 converts a DC voltage common to the DC bus of the three-phase voltage type inverter 2 into a three-phase AC voltage having an appropriate frequency for driving the synchronous motor 3c, and synchronizes the three-phase AC voltage. Supply to motor 3c.
 圧縮機42aを駆動する同期モータ3eが回転駆動することで、同期モータ3eに連結した圧縮要素43aが冷媒を圧縮する。圧縮機42aは、高温高圧の冷媒を吐出する。また、圧縮機42bを駆動する同期モータ3fが回転駆動することで、同期モータ3fに連結した圧縮要素43bが冷媒を圧縮する。圧縮機42bは、高温高圧の冷媒を吐出する。圧縮機42a、42bから吐出した高温高圧の冷媒は、四方弁91を経由して、熱源側熱交換器92aに流入する。熱源側熱交換器92aにおいて、冷媒は、ファン41aによって供給される外部の空気と熱交換を行って放熱する。 When the synchronous motor 3e that drives the compressor 42a is driven to rotate, the compression element 43a connected to the synchronous motor 3e compresses the refrigerant. The compressor 42a discharges a high-temperature and high-pressure refrigerant. Further, when the synchronous motor 3f that drives the compressor 42b is driven to rotate, the compression element 43b connected to the synchronous motor 3f compresses the refrigerant. The compressor 42b discharges a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressors 42a and 42b flows into the heat source side heat exchanger 92a via the four-way valve 91. In the heat source side heat exchanger 92a, the refrigerant radiates heat by exchanging heat with external air supplied by the fan 41a.
 熱源側熱交換器92aから流出した冷媒は、膨張装置94によって膨張及び減圧され、低温低圧の気液二相冷媒となる。低温低圧の気液二相冷媒は、負荷側熱交換器95に流入すると、空調対象空間の空気と熱交換を行って蒸発し、低温低圧のガス冷媒となる。負荷側熱交換器95から流出する低温低圧のガス冷媒は、四方弁91を経由して圧縮機42a、42bに吸入され、再び圧縮される。上述した動作が繰り返される。 The refrigerant flowing out of the heat source side heat exchanger 92a is expanded and depressurized by the expansion device 94, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. When the low-temperature low-pressure gas-liquid two-phase refrigerant flows into the load-side heat exchanger 95, the low-temperature low-pressure gas-liquid refrigerant evaporates by exchanging heat with the air in the air-conditioning target space and becomes a low-temperature low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flowing out from the load-side heat exchanger 95 is sucked into the compressors 42a and 42b via the four-way valve 91 and compressed again. The above-described operation is repeated.
 なお、本実施の形態6では、実施の形態3で説明した機械装置を空気調和装置へ適用した場合で説明したが、適用する機械装置は実施の形態3に限定されない。また、実施の形態1~4のいずれかの機械装置を適用する装置は、空気調和装置に限らず、ヒートポンプ装置、冷凍装置及びその他の冷凍サイクル装置を含む一般的な冷凍サイクル装置に適用してもよい。 In the sixth embodiment, the mechanical device described in the third embodiment is described as applied to an air conditioner. However, the applied mechanical device is not limited to the third embodiment. The apparatus to which any of the mechanical devices of Embodiments 1 to 4 is applied is not limited to an air conditioner, but is applied to a general refrigeration cycle apparatus including a heat pump apparatus, a refrigeration apparatus, and other refrigeration cycle apparatuses. Also good.
 本実施の形態6の空気調和装置150bは、実施の形態1~4で説明した機械装置100のうち、いずれかの機械装置100と、圧縮機42a、42b及び熱源側熱交換器92aを含む室外機90bと、膨張装置94及び負荷側熱交換器95を含む室内機93とを有するものである。 The air conditioner 150b of the sixth embodiment is an outdoor unit that includes any one of the mechanical devices 100 described in the first to fourth embodiments, the compressors 42a and 42b, and the heat source side heat exchanger 92a. A unit 90b and an indoor unit 93 including an expansion device 94 and a load-side heat exchanger 95.
 本実施の形態6によれば、実施の形態1~4で説明した機械装置100のうち、いずれかの機械装置100を空気調和装置150bに適用することで、空気調和装置150bの製造コストを抑制できる。また、同期モータ3e、3f間の回転速度差に起因する騒音及び振動と、同期モータ3e、3fに接続される負荷の振動の干渉による騒音及び振動とが抑制される。その結果、空気調和装置150bの周囲に居る人に対する不快感を低減できる効果がある。 According to the sixth embodiment, any one of the mechanical devices 100 described in the first to fourth embodiments is applied to the air conditioner 150b, thereby reducing the manufacturing cost of the air conditioner 150b. it can. Further, noise and vibration due to the difference in rotational speed between the synchronous motors 3e and 3f and noise and vibration due to vibration interference of loads connected to the synchronous motors 3e and 3f are suppressed. As a result, there is an effect that it is possible to reduce discomfort for people around the air conditioner 150b.
 1 交流電源、2 三相電圧型インバータ、3a~3f 同期モータ、4a、4b 負荷、5a、5b 第1振動伝達要素、6 第2振動伝達要素、7 固定端、21 整流回路、22 コンデンサ、23UN、23UP、23VN、23VP、23WN、23WP スイッチング素子、41a、41b ファン、42a、42b 圧縮機、43a、43b 圧縮要素、51a、51b モータ取付足、52a、52b 圧縮機シェル、53a、53b フットシェル、61 筐体、62a~62c 冷媒配管、63a、63b 冷媒回路、80 室外ユニット、81a、81b 熱交換部、82a、82b ベルマウス、83a、83b ファンガード、90a、90b 室外機、91 四方弁、92a、92b 熱源側熱交換器、93 室内機、94 膨張装置、95 負荷側熱交換器、100 機械装置、150a、150b 空気調和装置、200 三相インバータ。 1 AC power supply, 2 three-phase voltage type inverter, 3a-3f synchronous motor, 4a, 4b load, 5a, 5b first vibration transmission element, 6 second vibration transmission element, 7 fixed end, 21 rectifier circuit, 22 capacitor, 23UN , 23UP, 23VN, 23VP, 23WN, 23WP switching element, 41a, 41b fan, 42a, 42b compressor, 43a, 43b compression element, 51a, 51b motor mounting foot, 52a, 52b compressor shell, 53a, 53b foot shell, 61 Housing, 62a-62c Refrigerant piping, 63a, 63b Refrigerant circuit, 80 Outdoor unit, 81a, 81b Heat exchange part, 82a, 82b Bell mouth, 83a, 83b Fan guard, 90a, 90b Outdoor unit, 91 Four-way valve, 92a 92b Heat source side heat exchanger, 93 Indoor, 94 expansion device, 95 the load-side heat exchanger, 100 machine, 150a, 150b air conditioner, 200 a three-phase inverter.

Claims (12)

  1.  直流電圧を交流電圧に変換する三相電圧型インバータと、
     前記三相電圧型インバータに並列に接続された複数の同期モータと、
     前記複数の同期モータに接続された複数の負荷と、
     前記複数の同期モータと直接に又は該複数の同期モータと前記複数の負荷を介して接続され、該複数の同期モータの回転に起因する振動を伝える複数の第1振動伝達要素と、
     前記複数の第1振動伝達要素と接触し、該複数の第1振動伝達要素から前記振動が伝達される第2振動伝達要素と、
    を有する機械装置。
    A three-phase voltage type inverter that converts DC voltage to AC voltage;
    A plurality of synchronous motors connected in parallel to the three-phase voltage type inverter;
    A plurality of loads connected to the plurality of synchronous motors;
    A plurality of first vibration transmission elements that are directly connected to the plurality of synchronous motors or connected to the plurality of synchronous motors via the plurality of loads and transmit vibrations caused by rotation of the plurality of synchronous motors;
    A second vibration transmission element that is in contact with the plurality of first vibration transmission elements, and wherein the vibration is transmitted from the plurality of first vibration transmission elements;
    Machine equipment.
  2.  前記複数の負荷は複数のファンである、請求項1に記載の機械装置。 The mechanical device according to claim 1, wherein the plurality of loads are a plurality of fans.
  3.  前記複数の第1振動伝達要素は、前記複数の同期モータを前記第2振動伝達要素に接続する複数のモータ取付足である、請求項1又は2に記載の機械装置。 The mechanical device according to claim 1 or 2, wherein the plurality of first vibration transmission elements are a plurality of motor mounting legs that connect the plurality of synchronous motors to the second vibration transmission element.
  4.  前記複数の第1振動伝達要素は、前記複数の同期モータを前記第2振動伝達要素に接続する複数の梁部である、請求項1又は2に記載の機械装置。 The mechanical device according to claim 1 or 2, wherein the plurality of first vibration transmission elements are a plurality of beam portions that connect the plurality of synchronous motors to the second vibration transmission element.
  5.  前記第2振動伝達要素は、前記三相電圧型インバータ、前記複数の同期モータ、前記複数の負荷、及び前記複数の第1振動伝達要素を収容する筐体である、請求項1~4のいずれか1項に記載の機械装置。 5. The method according to claim 1, wherein the second vibration transmission element is a housing that houses the three-phase voltage type inverter, the plurality of synchronous motors, the plurality of loads, and the plurality of first vibration transmission elements. The mechanical device according to claim 1.
  6.  前記複数の負荷は複数の圧縮機である、請求項1に記載の機械装置。 The mechanical device according to claim 1, wherein the plurality of loads are a plurality of compressors.
  7.  前記複数の第1振動伝達要素は、前記複数の同期モータを前記第2振動伝達要素に接続する複数のフットシェルであり、
     前記第2振動伝達要素は、前記三相電圧型インバータ、前記複数の同期モータ、前記複数の負荷、及び前記複数の第1振動伝達要素を収容する筐体である、請求項6に記載の機械装置。
    The plurality of first vibration transmission elements are a plurality of foot shells connecting the plurality of synchronous motors to the second vibration transmission element,
    The machine according to claim 6, wherein the second vibration transmission element is a housing that houses the three-phase voltage type inverter, the plurality of synchronous motors, the plurality of loads, and the plurality of first vibration transmission elements. apparatus.
  8.  前記第2振動伝達要素は前記複数の圧縮機が共通に接続される冷媒配管である、請求項6に記載の機械装置。 The mechanical device according to claim 6, wherein the second vibration transmission element is a refrigerant pipe to which the plurality of compressors are connected in common.
  9.  前記第2振動伝達要素は、地面及び建物を含む固定端に固定金具で固定されている、請求項1~7のいずれか1項に記載の機械装置。 The mechanical device according to any one of claims 1 to 7, wherein the second vibration transmission element is fixed to a fixed end including a ground and a building with a fixing bracket.
  10.  前記第2振動伝達要素は、振動吸収材を介して前記固定端と固定されている、請求項9に記載の機械装置。 The mechanical device according to claim 9, wherein the second vibration transmission element is fixed to the fixed end via a vibration absorbing material.
  11.  前記三相電圧型インバータは、スイッチング素子と該スイッチング素子に逆並列に接続された逆流防止素子とを含み、
     前記スイッチング素子及び前記逆流防止素子のうち、一方又は両方がワイドバンドギャップ半導体を用いて作製された素子である、請求項1~10のいずれか1項に記載の機械装置。
    The three-phase voltage type inverter includes a switching element and a backflow prevention element connected in reverse parallel to the switching element,
    The mechanical device according to any one of claims 1 to 10, wherein one or both of the switching element and the backflow prevention element is an element manufactured using a wide band gap semiconductor.
  12.  請求項1~11のいずれか1項に記載の機械装置と、
     圧縮機、熱源側熱交換器、膨張装置、及び負荷側熱交換器が冷媒配管を介して接続され、冷媒が循環する冷媒回路と、
    を有する空気調和装置。
    A machine device according to any one of claims 1 to 11,
    A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion device, and a load side heat exchanger are connected via a refrigerant pipe and the refrigerant circulates;
    An air conditioner.
PCT/JP2017/018074 2017-05-12 2017-05-12 Mechanical device and air conditioning device having mechanical device WO2018207360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018074 WO2018207360A1 (en) 2017-05-12 2017-05-12 Mechanical device and air conditioning device having mechanical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018074 WO2018207360A1 (en) 2017-05-12 2017-05-12 Mechanical device and air conditioning device having mechanical device

Publications (1)

Publication Number Publication Date
WO2018207360A1 true WO2018207360A1 (en) 2018-11-15

Family

ID=64104629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018074 WO2018207360A1 (en) 2017-05-12 2017-05-12 Mechanical device and air conditioning device having mechanical device

Country Status (1)

Country Link
WO (1) WO2018207360A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128079Y2 (en) * 1981-06-03 1986-08-20
JPH033879Y2 (en) * 1986-10-29 1991-01-31
JPH0566029A (en) * 1991-04-01 1993-03-19 Mitsubishi Electric Corp Air conditioner, and outdoor unit and compressor supporter apparatus of air conditioner
JPH07317839A (en) * 1994-05-26 1995-12-08 Tadaaki Suzuki Vibration isolating rubber device
JP2005245058A (en) * 2004-02-24 2005-09-08 Fuji Electric Fa Components & Systems Co Ltd Parallel drive method of dc brushless motor
JP4305021B2 (en) * 2003-03-26 2009-07-29 ダイキン工業株式会社 Electric device and motor driving method
JP2014009619A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Method for suppressing vibration of compressor, and compressor
WO2017042889A1 (en) * 2015-09-08 2017-03-16 三菱電機株式会社 Power conversion device and air conditioning device provided with power conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128079Y2 (en) * 1981-06-03 1986-08-20
JPH033879Y2 (en) * 1986-10-29 1991-01-31
JPH0566029A (en) * 1991-04-01 1993-03-19 Mitsubishi Electric Corp Air conditioner, and outdoor unit and compressor supporter apparatus of air conditioner
JPH07317839A (en) * 1994-05-26 1995-12-08 Tadaaki Suzuki Vibration isolating rubber device
JP4305021B2 (en) * 2003-03-26 2009-07-29 ダイキン工業株式会社 Electric device and motor driving method
JP2005245058A (en) * 2004-02-24 2005-09-08 Fuji Electric Fa Components & Systems Co Ltd Parallel drive method of dc brushless motor
JP2014009619A (en) * 2012-06-29 2014-01-20 Mitsubishi Electric Corp Method for suppressing vibration of compressor, and compressor
WO2017042889A1 (en) * 2015-09-08 2017-03-16 三菱電機株式会社 Power conversion device and air conditioning device provided with power conversion device

Similar Documents

Publication Publication Date Title
EP2803922B1 (en) Heat pump device, air conditioner, and refrigerator
US8336323B2 (en) Variable speed drive with pulse-width modulated speed control
JP5308474B2 (en) Refrigeration equipment
JP4818145B2 (en) Motor drive control device and ventilation fan, liquid pump, refrigerant compressor, blower, air conditioner and refrigerator
WO2007049473A1 (en) Inverter apparatus
JP2012055119A (en) Driving device for permanent magnet type motor, and compressor
JP2014166081A (en) Motor control device and air conditioner using the same
JP2012055117A (en) Permanent magnet type motor, and compressor
WO2017208873A1 (en) Motor drive apparatus, and electric device having compressor using same
JP6000801B2 (en) Motor control device and air conditioner using the same
JP2022173520A (en) Open winding motor driving device and refrigeration cycle device
JP4744505B2 (en) Motor drive control device, motor drive control method and coordinate conversion method, ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner, and refrigerator
JP5289415B2 (en) Method for manufacturing synchronous motor
JP3650012B2 (en) Compressor control device
WO2018207360A1 (en) Mechanical device and air conditioning device having mechanical device
JP2004364492A (en) Motor-driving device and air-conditioning equipment
JPWO2017187536A1 (en) Motor drive device, refrigeration cycle device and air conditioner
JP6537731B2 (en) Motor drive and air conditioner
JP4770399B2 (en) Heat pump equipment
JP7260814B2 (en) motor drive and cooling
KR102516063B1 (en) Systems and methods for dual-feed variable speed drives
JP6530306B2 (en) Two-phase induction motor, air conditioner having two-phase induction motor and program
JP2014166082A (en) Motor control device and air conditioner using the same
JP7201952B2 (en) Motor controllers, motors, compressors, refrigerators and vehicles
JP2019083594A (en) Motor drive device, and refrigerator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP