WO2018207274A1 - 油分離装置および冷凍サイクル装置 - Google Patents

油分離装置および冷凍サイクル装置 Download PDF

Info

Publication number
WO2018207274A1
WO2018207274A1 PCT/JP2017/017647 JP2017017647W WO2018207274A1 WO 2018207274 A1 WO2018207274 A1 WO 2018207274A1 JP 2017017647 W JP2017017647 W JP 2017017647W WO 2018207274 A1 WO2018207274 A1 WO 2018207274A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
refrigerating machine
compressor
storage chamber
amount
Prior art date
Application number
PCT/JP2017/017647
Other languages
English (en)
French (fr)
Inventor
宗希 石山
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780090173.9A priority Critical patent/CN110573809B/zh
Priority to US16/491,634 priority patent/US11199347B2/en
Priority to PCT/JP2017/017647 priority patent/WO2018207274A1/ja
Priority to JP2019516785A priority patent/JP6932773B2/ja
Publication of WO2018207274A1 publication Critical patent/WO2018207274A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Definitions

  • the present invention relates to an oil separation device and a refrigeration cycle device.
  • Lubricating oil (refrigerating machine oil) is enclosed in the compressor mounted on the refrigeration cycle apparatus.
  • the refrigeration oil flows out of the compressor together with the refrigerant.
  • the refrigerating machine oil is exhausted from the compressor and the refrigerating machine oil in the compressor is depleted, the reliability of the compressor is lowered.
  • the refrigerating machine oil that has flowed out of the compressor flows into the piping such as the inside of the heat exchanger, thereby causing a decrease in heat transfer performance and an increase in pressure loss in the heat exchanger. Thereby, the fall of the heat exchange performance in a heat exchanger arises.
  • the refrigeration cycle apparatus is provided with an oil separation apparatus for separating the refrigeration oil flowing out from the compressor and the refrigerant.
  • the refrigerating machine oil separated from the refrigerant by the oil separator is returned from the oil separator to the compressor.
  • the refrigerating machine oil and the refrigerant that have flowed out of the compressor are separated by the oil separation device, the refrigerating machine oil can be suppressed from flowing into the piping such as the heat exchanger together with the refrigerant. Thereby, the fall of the heat transfer performance in a heat exchanger and the increase in a pressure loss can be suppressed.
  • Patent Document 1 divides an oil separation apparatus into a separation chamber for separating refrigeration oil and refrigerant and a storage chamber for refrigeration oil separated from the refrigerant.
  • An oil separation device having a partition plate has been proposed.
  • the amount of the refrigerating machine oil separated from the refrigerant is stored in a large amount in the storage chamber, so that the liquid level of the refrigerating machine oil exceeds the height of the partition plate. May occur.
  • the separation efficiency between the refrigerant and the refrigerating machine oil decreases.
  • the refrigerating machine oil flows into the piping such as the heat exchanger from the oil separation device. For this reason, the heat transfer performance in the heat exchanger is lowered and the pressure loss is increased.
  • This invention is made
  • the objective is providing the oil separation apparatus which can suppress the fall of the isolation
  • the oil separation device of the present invention is for separating the refrigerating machine oil from the mixed fluid of the refrigerant discharged from the compressor and the refrigerating machine oil.
  • the oil separation device includes a container, an inflow pipe, an outflow pipe, an oil return pipe, and an oil return adjustment valve.
  • the container includes a separation chamber for separating the refrigerating machine oil from the mixed fluid, a storage chamber for storing the refrigerating machine oil separated from the mixed fluid, and a partition that partially partitions the separation chamber and the storage chamber.
  • the inflow pipe allows the mixed fluid to flow into the separation chamber of the container.
  • the outflow pipe causes the refrigerant separated from the mixed fluid flowing into the separation chamber from the inflow pipe to flow out of the separation chamber.
  • the oil return pipe returns the refrigeration oil separated from the refrigerant flowing out from the outflow pipe from the storage chamber to the compressor.
  • the oil return regulating valve is connected to the oil return pipe.
  • the partition portion is configured such that the refrigerating machine oil separated from the mixed fluid flows from the separation chamber to the storage chamber.
  • the oil return adjustment valve is configured to adjust the amount of refrigerating machine oil returned from the storage chamber to the compressor.
  • the amount of refrigerating machine oil stored in the storage chamber is adjusted by adjusting the amount of refrigerating machine oil returned from the storage chamber to the compressor by the oil return regulating valve. For this reason, generation
  • Embodiment 1 FIG. The configuration of the refrigeration cycle apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the refrigeration cycle apparatus 10 in the present embodiment includes a compressor 1, a high-pressure side heat exchanger 2, a decompression device 3, a low-pressure side heat exchanger 4, an oil separation device 5, and a control device 100. And mainly.
  • the compressor 1, the high pressure side heat exchanger 2, the decompression device 3, and the low pressure side heat exchanger 4 are connected by piping in the order of the compressor 1, the high pressure side heat exchanger 2, the decompression device 3, and the low pressure side heat exchanger 4. ing. Thereby, the refrigerant circuit is constituted. The refrigerant flows through the refrigerant circuit in the order of the compressor 1, the high-pressure side heat exchanger 2, the decompression device 3, and the low-pressure side heat exchanger 4.
  • the compressor 1 is configured to compress and discharge the sucked refrigerant. Since the compressor 1 is filled with refrigerating machine oil, the compressor 1 is configured to discharge a mixed fluid of refrigerant and refrigerating machine oil.
  • the compressor 1 has a variable capacity.
  • the compressor 1 of the present embodiment is configured to be able to variably control the rotational speed. Specifically, the compressor 1 adjusts the rotation speed of the compressor 1 by changing the drive frequency based on an instruction from the control device 100. Thereby, the capacity
  • the capacity of the compressor 1 is an amount for sending out refrigerant per unit time. That is, the compressor 1 can be operated by changing the capacity.
  • the operation is performed by increasing the flow rate of the refrigerant circulating in the refrigerant circuit by increasing the drive frequency of the compressor 1.
  • the operation is performed by reducing the flow rate of the refrigerant circulating in the refrigerant circuit by lowering the drive frequency of the compressor 1.
  • the high-pressure side heat exchanger 2 is configured to condense the refrigerant compressed by the compressor 1.
  • the high pressure side heat exchanger 2 is an air heat exchanger composed of, for example, pipes and fins.
  • the decompression device 3 is configured to decompress the refrigerant condensed by the high-pressure side heat exchanger 2. That is, the decompression device 3 has a function as an expansion valve.
  • the decompression device 3 is, for example, an electromagnetic valve.
  • the low pressure side heat exchanger 4 is configured to evaporate the refrigerant decompressed by the decompression device 3.
  • the low-pressure side heat exchanger 4 is an air heat exchanger composed of, for example, pipes and fins.
  • the oil separator 5 is for separating the refrigerating machine oil from the mixed fluid of the refrigerant discharged from the compressor 1 and the refrigerating machine oil. As shown in FIGS. 1 and 2, the oil separator 5 mainly has an inflow pipe 51, an outflow pipe 52, an oil return pipe 53, a container 54, and an oil return adjustment valve 57.
  • the container 54 has a partition 56, a separation chamber 58, and a storage chamber 59.
  • the container 54 has a cylindrical shape.
  • the container 54 has an internal space.
  • the container 54 is divided into a separation chamber 58 and a storage chamber 59 by a partition 56. That is, the partition 56 is configured to partially partition the separation chamber 58 and the storage chamber 59.
  • the partition part 56 is configured such that the refrigeration oil separated from the mixed fluid flows from the separation chamber 58 to the storage chamber 59.
  • the partition portion 56 includes a partition plate 56 a that partitions the separation chamber 58 and the storage chamber 59.
  • the partition plate 56 a closes the space between the separation chamber 58 and the storage chamber 59.
  • the partition part 56 has the opening part 55 provided in the partition plate 56a.
  • the opening 55 is disposed at the center of the partition plate 56a.
  • the opening 55 is configured to communicate the separation chamber 58 and the storage chamber 59.
  • the opening 55 is provided so as to penetrate the partition 56 from the separation chamber 58 side to the storage chamber 59 side. That is, the separation chamber 58 and the storage chamber 59 are not completely partitioned.
  • the separation chamber 58 is for separating the refrigeration oil from the mixed fluid.
  • the storage chamber 59 is configured to store refrigeration oil separated from the mixed fluid.
  • the inflow pipe 51 is configured to allow the mixed fluid to flow into the separation chamber 58.
  • the end of the inflow pipe 51 is installed on the separation chamber 58 side of the container 54.
  • the inflow pipe 51 is connected to the side surface of the container 54.
  • the inflow pipe 51 is connected to the compressor 1 by a pipe.
  • the outflow pipe 52 is configured to cause the refrigerant separated from the mixed fluid flowing into the separation chamber 58 from the inflow pipe 51 to flow out from the separation chamber 58.
  • the end of the outflow pipe 52 is installed on the separation chamber 58 side of the container 54.
  • the outflow pipe 52 is connected to the upper surface of the container 54.
  • the outflow pipe 52 is connected to the high-pressure side heat exchanger 2 by a pipe.
  • the oil return pipe 53 is configured to return the refrigeration oil separated from the refrigerant flowing out from the outflow pipe 52 from the storage chamber 59 to the compressor 1.
  • the end of the oil return pipe 53 is installed on the storage chamber 59 side of the container 54.
  • the oil return pipe 53 is connected to a low pressure pipe between the compressor 1 and the low pressure side heat exchanger 4 via an oil return adjustment valve 57.
  • the oil return adjustment valve 57 is connected to the oil return pipe 53.
  • the oil return adjustment valve 57 is installed between the oil return pipe 53 and the low pressure pipe.
  • the oil return adjustment valve 57 is configured to adjust the amount of refrigerating machine oil returned from the storage chamber 59 to the compressor 1.
  • the oil return adjusting valve 57 is configured such that the valve opening when the frequency change amount of the compressor 1 is equal to or greater than the specified change amount is larger than the valve opening amount when the frequency change amount of the compressor 1 is less than the specified change amount. It is configured.
  • Examples of the operation in which the compressor oil is depleted in the compressor 1 include start-up, defrosting operation, and intermittent operation. That is, when the frequency of the compressor 1 is increased from 0 Hz and the operation mode is clearly changed, there is a concern about the exhaustion of refrigeration oil in the compressor 1. For example, when the compressor 1 is started, the frequency increases from 0 Hz to 48 Hz in the first minute, and thereafter the frequency increases by 10 Hz every minute. When stable or near the set temperature, the frequency hardly changes over 10 Hz in one minute. Therefore, in this case, the specified change amount of the frequency of the compressor 1 is set to 10 Hz.
  • the control device 100 is configured to control each means, device, and the like of the refrigeration cycle apparatus 10 by performing calculations, instructions, and the like.
  • the control device 100 is electrically connected to each of the compressor 1, the pressure reducing device 3, and the oil return regulating valve 57, and is configured to control these operations.
  • the control device 100 mainly includes a control unit 101, a timer 102, a compressor driving unit 103, a decompression device driving unit 104, and a valve driving unit 105.
  • the control unit 101 is for controlling the timer 102, the compressor driving unit 103, the decompression device driving unit 104, and the valve driving unit 105.
  • the timer 102 is for measuring time and transmitting a signal based on the time to the control unit 101.
  • the compressor driving unit 103 is for driving the compressor 1 based on a signal from the control unit 101. Specifically, the compressor drive unit 103 controls the rotation speed of the motor of the compressor 1 by controlling the frequency of the alternating current that flows to the motor (not shown) of the compressor 1.
  • the decompression device driving unit 104 is for driving the decompression device 3 based on a signal from the control unit 101. Specifically, the decompression device driving unit 104 controls the valve opening degree of the decompression device 3 by controlling a drive source such as a motor attached to the decompression device 3.
  • the valve drive unit 105 is for driving the oil return adjustment valve 57 based on a signal from the control unit 101. Specifically, the valve drive unit 105 controls the opening degree of the oil return adjustment valve 57 by controlling a drive source such as a motor attached to the oil return adjustment valve 57.
  • the refrigerant flows in the order of the compressor 1, the high-pressure side heat exchanger 2, the decompression apparatus 3, and the low-pressure side heat exchanger 4. Further, the refrigerant flows from the compressor 1 to the oil separator 5.
  • Refrigerator oil sealed in the compressor 1 differs in the amount of oil (appropriate oil amount) required by the compressor 1 according to the operating state.
  • the appropriate oil amount of the compressor 1 differs between the stable time and the transient time. When stable, it is during normal operation.
  • the transition time is an operation time during which the actuator changes transiently, for example, at the time of start-up or defrosting operation. Since the appropriate amount of oil at the time of stability is less than the appropriate amount of oil at the time of transition, if the refrigeration oil is sealed in the compressor 1 in consideration of the appropriate amount of oil at the time of transition, Refrigerating machine oil is left over. This surplus refrigeration oil becomes surplus oil.
  • the refrigeration cycle apparatus 10 has a storage mode in which refrigeration oil is stored in the storage chamber 59 of the oil separation apparatus 5, and an oil return mode in which the refrigeration oil is returned from the storage chamber 59 of the oil separation apparatus 5 to the compressor 1. Can be switched.
  • the fluid mixture of the refrigerant discharged from the compressor 1 and the refrigerating machine oil flows into the oil separator 5.
  • the mixed fluid of the refrigerant and the refrigerating machine oil flows into the container 54 through the inflow pipe 51 of the oil separator 5.
  • the refrigerant and the refrigerating machine oil are separated from each other in the separation chamber 58 in the container 54.
  • the refrigerant separated in the separation chamber 58 flows out from the oil separation device 5 through the outflow pipe 52 and flows into the high-pressure side heat exchanger 2 through the pipe.
  • the refrigerating machine oil separated in the separation chamber 58 flows into the storage chamber 59 through the opening 55 of the partition portion 56.
  • the refrigerating machine oil that has flowed into the storage chamber 59 flows out from the storage chamber 59 to the oil return pipe 53.
  • the refrigerating machine oil that has flowed into the oil return pipe 53 flows out of the oil separation device 5 through the oil return regulating valve 57, and flows into the low pressure pipe between the compressor 1 and the low pressure side heat exchanger 4.
  • the refrigeration oil that has flowed into the low-pressure pipe is returned to the compressor 1 through the low-pressure pipe.
  • the refrigerating machine oil separated in the separation chamber 58 flows into the storage chamber 59 through the opening 55 of the partition 56 as in the oil return mode.
  • a certain amount of the refrigeration oil that flows into the storage chamber 59 flows into the oil return pipe 53, and the other refrigeration oil is stored in the storage chamber 59. For this reason, the liquid level of the refrigerating machine oil stored in the storage chamber 59 rises.
  • the refrigerating machine oil that has flowed into the oil return pipe 53 is returned to the compressor 1 through the same path as in the oil return mode.
  • step S1 the operating state of the refrigeration cycle apparatus 10 is detected (step S1). Subsequently, it is determined whether or not the frequency change amount of the compressor 1 is equal to or greater than a specified change amount (step S2). This determination is performed by the control unit 101 based on signals from the timer 102 and the compressor driving unit 103. When the frequency change amount of the compressor 1 is equal to or greater than the specified change amount, the operation mode is switched to the oil return mode (step S3). In the oil return mode, the oil return adjustment valve 57 is controlled by the valve drive unit 105 based on a signal from the control unit 101 so that the valve opening degree is increased (step S4).
  • step S5 when the frequency change amount of the compressor 1 is less than the specified change amount, the operation mode is switched to the storage mode (step S5).
  • the oil return regulating valve 57 is controlled by the valve drive unit 105 based on the signal from the control unit 101 so that the valve opening degree becomes small (step S6).
  • the operation mode of the refrigeration cycle apparatus 10 is switched from the storage mode to the oil return mode when the frequency of the compressor 1 changes by a predetermined value or more.
  • the valve opening degree of the oil return adjustment valve 57 is controlled by the control device 100 so that the valve opening degree of the oil return adjustment valve 57 is smaller than that in the oil return mode.
  • the valve opening degree of the oil return adjustment valve 57 is controlled by the control device 100 so that the valve opening degree of the oil return adjustment valve 57 is larger than that in the storage mode. That is, the opening degree of the oil return adjustment valve 57 is controlled by the control device 100 according to the operation mode.
  • the oil separation device 5 in the present embodiment the amount of refrigerating machine oil returned from the storage chamber 59 to the compressor 1 is adjusted by the oil return regulating valve 57, so that the refrigerating machine oil stored in the storage chamber 59 can be reduced.
  • the amount is adjusted. For this reason, generation
  • the container 54 of the oil separator 5 has the storage chamber 59, it is possible to store excess oil in the oil separator 5. For this reason, compared with the case where the oil separation apparatus 5 is not provided in the refrigerating cycle apparatus 10, it can suppress that refrigeration oil flows into piping, such as in a heat exchanger, with a refrigerant
  • the container 54 of the oil separation device 5 has the storage chamber 59, the refrigerating machine oil stays in the storage chamber 59 in the oil separation device 5. For this reason, compared with the case where the refrigerating cycle apparatus 10 is not equipped with the storage chamber 59, the fall of the separation efficiency of a refrigerant
  • coolant and refrigeration oil can be suppressed.
  • the container 54 of the oil separation device 5 has the storage chamber 59, another container for storing the refrigerating machine oil is not necessary. Therefore, space saving can be achieved compared with the case where another container is provided.
  • the amount of the refrigeration oil flowing into the storage chamber 59 is greater in the transient period when the frequency change amount of the compressor 1 is equal to or greater than the predetermined change amount than when the frequency change amount of the compressor 1 is less than the predetermined change amount. More.
  • the oil return regulating valve 57 has a prescribed change in the frequency change amount of the compressor 1 rather than the valve opening when the frequency change amount of the compressor 1 is less than the prescribed change amount. It is comprised so that the valve opening degree when it is more than quantity may become large. For this reason, generation
  • the partition 56 has the opening 55 that allows the separation chamber 58 and the storage chamber 59 to communicate with each other. For this reason, the refrigerant and the refrigerating machine oil can be separated by flowing the refrigerating machine oil from the separation chamber 58 to the storage chamber 59 through the opening 55.
  • the oil separation device 5 of each modified example has the same configuration as the oil separation device 5 of the present embodiment, and thus the same configuration is denoted by the same reference numeral. Do not repeat the explanation.
  • the oil separation device 5 of Modification 1 in the present embodiment will be described.
  • the refrigerant and the refrigerating machine oil are separated by a centrifugal separation method or a collision separation method.
  • the centrifugal separation method is one of the separation methods of the gas-liquid separator.
  • centrifugal force is used for the principle of separation, and the swirling flow of the mixed fluid of the refrigerant and the refrigerating machine oil is generated by the centrifugal force.
  • the refrigerating machine oil is captured on the inner wall surface of the gas-liquid separator container and separated from the refrigerant gas.
  • Collision separation method is one of gas-liquid separator separation methods.
  • the collision separation method the refrigerant gas and the refrigerating machine oil flowing into the gas-liquid separator collide with the inner wall surface, the refrigerating machine oil is captured by the inner wall surface, and the refrigerant gas flows into the inflow pipe without being supplemented by the inner wall surface.
  • refrigeration oil is isolate
  • the refrigeration oil is separated from the refrigerant by a centrifugal separation method.
  • a swirling flow of a mixed fluid of refrigerant and refrigerating machine oil is generated in the separation chamber 58.
  • the container 54 has an inner wall surface.
  • the inflow pipe 51 protrudes inward from the inner wall surface of the container 54.
  • the mixed fluid of the refrigerant and the refrigerating machine oil flows into the container 54 from the inlet of the inflow pipe 51 and flows so as to swirl along the inner wall surface.
  • the refrigerating machine oil is captured by the inner wall surface of the container 54 and flows downward along the inner wall surface of the container 54.
  • the opening 55 is provided between the inner wall surface of the container 54 and the partition plate 56a. That is, the opening 55 is provided at the connection portion between the partition wall 56 and the inner wall surface of the container 54. Therefore, the opening 55 is disposed along the inner wall surface of the container 54.
  • the refrigerant oil flows from the separation chamber 58 into the storage chamber 59 through the opening 55.
  • the refrigerant separated from the refrigerating machine oil flows out from the separation chamber 58 through the outflow pipe 52.
  • the refrigerant and the refrigerating machine oil are separated by a centrifugal separation method.
  • a swirling flow of a mixed fluid of refrigerant and refrigerating machine oil is generated in the inflow pipe 51.
  • a swivel part 51 a is provided in the inflow pipe 51.
  • the turning unit 51a is, for example, a turning blade.
  • a swirl flow generated by the swirl vanes flows into the separation chamber 58.
  • the inner diameter of the inflow pipe 51 is preferably larger than the inner diameter of the outflow pipe 52.
  • the refrigerating machine oil is captured by the inner wall surface of the container 54 and flows downward along the inner wall surface of the container 54.
  • the refrigerant oil flows from the separation chamber 58 into the storage chamber 59 through the opening 55 provided between the inner wall surface of the container 54 and the partition plate 56a.
  • the refrigerant separated from the refrigerating machine oil flows out from the oil separation device 5 through the outflow pipe 52.
  • the refrigerant and the refrigerating machine oil are separated by the collision separation method.
  • the mixed fluid that flows into the separation chamber 58 from the inflow pipe 51 collides with the inner wall surface.
  • the refrigerating machine oil is captured by the inner wall surface and flows downward along the inner wall surface of the container 54.
  • the refrigerant oil flows from the separation chamber 58 into the storage chamber 59 through the opening 55 provided between the inner wall surface of the container 54 and the partition plate 56a.
  • the refrigerant flows out of the separation chamber 58 through the outflow pipe 52 without being supplemented by the inner wall surface.
  • the refrigeration oil flows from the separation chamber 58 to the storage chamber 59 along the inner wall surface of the container 54, the refrigeration oil stays in the separation chamber 58. Can be suppressed. Thereby, the fall of the separation efficiency of a refrigerant
  • the opening 55 is provided between the inner wall surface and the partition plate 56a, it is possible to prevent the refrigerant from entering the storage chamber 59. Therefore, the pressure loss due to the oil separator 5 can be reduced.
  • the oil separator 5 of the modification 2 in this Embodiment is demonstrated.
  • the refrigerant and the refrigerating machine oil are separated by a gravity separation method.
  • the gravity separation method is one of the separation methods of the gas-liquid separator.
  • Refrigerant gas and refrigerating machine oil flow into the capturing material 60a.
  • a mesh or the like is used for the capturing material 60a.
  • the capturing material 60a has, for example, a conical shape.
  • the bottom surface of the conical surface is connected to the inflow pipe 51.
  • the bottom surface of the conical surface is disposed at the upper end of the capturing material 60a, and the tip of the conical surface is disposed at the lower end of the capturing material 60a.
  • the refrigerant gas passes through the capturing material 60a and flows into the outflow pipe 52, and the refrigerating machine oil is captured by the capturing material 60a.
  • the captured refrigerating machine oil flows downward by gravity and moves to the oil return pipe 53. Thereby, refrigeration oil is isolate
  • the refrigerating machine oil floating in the container 54 without being collided with the inner wall surface is captured by the capturing material 60a.
  • the refrigerating machine oil captured by the capturing material 60 a flows into the storage chamber 59 through the opening 55.
  • the inflow pipe 51 has an inlet that allows the mixed fluid to flow into the separation chamber 58.
  • the opening 55 is disposed directly below the inlet of the inflow pipe 51. For this reason, the refrigerating machine oil captured by the capturing material 60a flows into the storage chamber 59 through the opening 55 by gravity.
  • the opening 55 is disposed directly below the inflow port of the inflow pipe 51. For this reason, it can suppress that refrigeration oil retains in the separation chamber 58. Therefore, the fall of the separation efficiency of a refrigerant and refrigerating machine oil can be controlled. Further, the opening 55 is provided at a location where the oil droplets captured by the capturing material 60a pass, so that the refrigerant gas can be prevented from entering the storage chamber 59. Therefore, the pressure loss due to the oil separator 5 can be reduced.
  • an oil separation device 5 of Modification 3 in the present embodiment will be described.
  • the oil separation device 5 of Modification 3 in the present embodiment all of the centrifugal separation method, the collision separation method, and the gravity separation method can be applied.
  • the refrigerant and the refrigerating machine oil are separated by a centrifugal separation method.
  • a swirling flow of a mixed fluid of refrigerant and refrigerating machine oil is generated in the separation chamber 58.
  • the refrigerant and the refrigerating machine oil are separated by a centrifugal separation method.
  • the swirling flow generated in the separation chamber 58 flows into the separation chamber 58.
  • the refrigerant and the refrigerating machine oil are separated by a centrifugal separation method.
  • a swirling flow is generated in the inflow pipe 51. This swirling flow flows into the separation chamber 58.
  • the refrigerant and the refrigerating machine oil are separated by a gravity separation method.
  • the refrigerant gas and the refrigeration oil flow into the capturing material 60a.
  • the refrigerating machine oil is captured by the capturing material 60a.
  • the partition portion 56 includes the trapping material 60 having a porosity that can propagate the refrigerating machine oil.
  • the trapping material 60 has a porosity that is greater than or equal to a specified porosity that allows the refrigerating machine oil to propagate from the separation chamber 58 to the storage chamber 59.
  • the capturing material 60 for example, a material in which a plurality of meshes are stacked is used.
  • a metal foam is used for the capturing material 60.
  • the foam metal is a structure including bubbles in the metal, and the bubbles are connected to each other. That is, the metal foam is configured to vent.
  • the material of the foam metal is, for example, aluminum.
  • the partition portion 56 is configured such that the refrigeration oil flows from the separation chamber 58 to the storage chamber 59 through the capturing material 60.
  • the whole partition part 56 may be configured by the capturing material 60, and a part of the partition part 56 may be configured by the capturing material 60.
  • the partition 56 is configured such that the refrigeration oil flows from the separation chamber 58 to the storage chamber 59 through the trapping material 60, so that the refrigerant gas is stored in the storage chamber. Intrusion to 59 can be suppressed. Therefore, the pressure loss due to the oil separator 5 can be reduced. Moreover, since the opening part 55 is not provided like the oil separation apparatus 5 of this Embodiment, it can suppress that refrigerant
  • the capturing material 60 captures the refrigerating machine oil, the refrigerating machine oil can be prevented from scattering again. Thereby, the separation efficiency between the refrigerant and the refrigerating machine oil can be improved.
  • Embodiment 2 The configuration of the refrigeration cycle apparatus in Embodiment 2 of the present invention will be described with reference to FIGS.
  • the same components as those of the first embodiment of the present invention described above are provided unless otherwise described. Therefore, the same reference numerals are given to the same elements, and the description thereof is not repeated.
  • the oil separation device 5 in the present embodiment is mainly different from the first embodiment in that the oil amount detection means 200 is provided.
  • the refrigeration cycle apparatus in the present embodiment includes oil amount detection means 200.
  • the oil amount detection means 200 for example, a capacitance sensor, a self-heating sensor, an ultrasonic sensor, an optical sensor, or the like is used.
  • the capacitance sensor detects the amount of oil by detecting the capacitance between the electrodes inserted into the container and discriminating between the gas and the liquid.
  • the self-heating sensor detects the amount of oil from the temperature change of the container heated by resistance heating.
  • the ultrasonic sensor detects the amount of oil by measuring the transmission speed of sound.
  • the optical sensor detects the amount of oil by measuring the light transmittance.
  • the oil amount detection means 200 is installed in the storage chamber 59.
  • the oil amount detection means 200 is installed in the storage chamber 59 at a position where the oil amount of the refrigerating machine oil becomes the specified oil amount.
  • the specified oil amount is, for example, an excess oil amount.
  • the refrigerating machine oil is enclosed in the compressor 1 more than the appropriate amount of oil at the time of stability. Since the refrigerating machine oil is hardly depleted when stable, the compressor 1 is filled with surplus refrigerating machine oil. The surplus oil amount at this time is set to the specified oil amount.
  • the specified oil amount (excess oil amount) is changed from the enclosed oil amount Mtotal to the oil.
  • the oil amount (Mtotal-Mcomp) is obtained by subtracting the amount Mcomp.
  • the refrigeration oil more than the oil amount Mcomp is taken out from the compressor 1 into the refrigeration circuit.
  • the specified oil amount may be constant, and may vary depending on the frequency of the compressor 1, the refrigerant flow rate, the suction pressure and the discharge pressure of the compressor 1.
  • the control device 100 has an oil amount detection unit 106.
  • the oil amount detection unit 106 is for detecting the oil amount of the refrigerating machine oil in the storage chamber 59 based on the signal from the oil amount detection means 200.
  • the oil return adjustment valve 57 is controlled by the control device 100 so that the oil amount becomes a constant amount based on the detection value detected by the oil amount detection means 200.
  • the refrigeration oil flows in the oil return mode as in the first embodiment.
  • the refrigerating machine oil separated in the separation chamber 58 flows into the storage chamber 59 as in the oil return mode.
  • Refrigeration oil that has flowed into the storage chamber 59 flows into the oil return pipe 53.
  • the amount of refrigerating machine oil flowing into the storage chamber 59 is less than the specified oil amount, the amount of refrigerating machine oil flowing into the oil return pipe 53 is reduced. Thereby, refrigeration oil is stored in the storage chamber 59 and the liquid level in the storage chamber 59 rises.
  • the inflow amount of the refrigerating machine oil to the oil return pipe 53 is increased. That is, the inflow amount changes so that the amount of the refrigerating machine oil in the storage chamber 59 becomes the specified oil amount.
  • the refrigerating machine oil that has flowed into the oil return pipe 53 is returned to the compressor 1 through the same path as in the oil return mode.
  • step S1 the operating state of the refrigeration cycle apparatus 10 is detected (step S1). Subsequently, it is determined whether or not the frequency change amount of the compressor 1 is equal to or greater than a specified change amount (step S2). This determination is performed by the control unit 101 based on signals from the timer 102 and the compressor driving unit 103. When the frequency change amount of the compressor 1 is equal to or greater than the specified change amount, the operation mode is switched to the oil return mode (step S3). In the oil return mode, the oil return adjustment valve 57 is controlled by the valve drive unit 105 based on the signal from the control unit 101 so that the valve opening degree is increased (step S4).
  • the operation mode is switched to the storage mode (step S5).
  • the oil amount detection unit 106 Based on the signal from the oil amount detection means 200, the oil amount detection unit 106 detects the oil amount (step S6).
  • step S12 it is determined whether or not the detected value of the oil amount is greater than or equal to the specified oil amount. This determination is performed by the control unit 101 based on a signal from the oil amount detection unit 106.
  • the oil return adjusting valve 57 is controlled by the valve drive unit 105 based on the signal from the control unit 101 so that the valve opening degree becomes medium (step). S13). If the detected value of the oil amount is less than the specified oil amount, the oil return regulating valve 57 is controlled by the valve drive unit 105 so that the valve opening degree is reduced based on the signal from the control unit 101 (step S14). .
  • the specified oil amount is detected by the oil amount detection means 200.
  • the oil return adjusting valve 57 is configured such that the detected value detected by the oil amount detecting means 200 is greater than or equal to the specified oil amount than the valve opening when the detected value detected by the oil amount detecting means 200 is less than the specified oil amount. In this case, the valve opening degree is increased. For this reason, an appropriate amount of refrigerating machine oil can always be stored in the storage chamber 59 with respect to the operating state.
  • Embodiment 3 With reference to FIG. 18 and FIG. 19, the structure of the refrigerating cycle apparatus in Embodiment 3 of this invention is demonstrated.
  • the same components as those of the first embodiment of the present invention are provided unless otherwise described. Therefore, the same elements are denoted by the same reference numerals, and the description thereof is not repeated.
  • the oil separator according to the present embodiment is mainly different from the first embodiment in that a bypass pipe 61 is provided.
  • the refrigeration cycle apparatus in the present embodiment includes a bypass pipe 61.
  • the bypass pipe 61 is connected to the storage chamber 59.
  • the bypass pipe 61 is connected to the storage chamber 59 between the partition portion 56 and the oil return pipe 53 in the height direction.
  • the bypass pipe 61 is disposed below the partition portion 56.
  • bypass pipe 61 One end of the bypass pipe 61 is installed at a position where a specified oil amount (for example, excess oil) is obtained in the storage chamber 59.
  • the other end of the bypass pipe 61 is connected to a low pressure pipe between the compressor 1 and the low pressure side heat exchanger 4 by a pipe.
  • the refrigeration oil flows in the oil return mode as in the first embodiment.
  • the flow rate of the refrigerating machine oil separated from the separation chamber 58 is larger than the flow rate flowing into the oil return pipe 53
  • the refrigerating machine oil is stored in the storage chamber 59, and the liquid level reaches the separation chamber 58 and the outflow pipe 52. Overflow may occur. Therefore, in the refrigeration cycle apparatus 10 according to the present embodiment, the refrigeration oil flows into the bypass pipe 61 when the amount of the refrigeration oil reaches the specified oil amount in the storage chamber 59. Thereby, overflow is suppressed.
  • the refrigeration oil that has flowed into the bypass pipe 61 flows into the low pressure pipe between the low pressure side heat exchanger 4 and the compressor 1.
  • the oil that has flowed into the low-pressure pipe flows into the compressor 1.
  • the refrigerating machine oil separated as in the oil return mode flows into the storage chamber 59.
  • the refrigerating machine oil that has flowed into the storage chamber 59 flows into the oil return pipe 53.
  • the oil amount of the refrigerating machine oil is less than the specified oil amount, the inflow amount of the refrigerating machine oil into the oil return pipe 53 is reduced.
  • the refrigerating machine oil is stored in the storage chamber 59, and the liquid level in the refrigerating machine oil storage chamber 59 is raised.
  • the refrigerating machine oil flows into the bypass pipe 61.
  • the refrigerating machine oil that has flowed into the return oil pipe 53 and the bypass pipe 61 flows into the compressor 1 through the same path as in the oil return mode.
  • the oil separation device 5 of the present embodiment when the liquid level in the refrigerating machine oil storage chamber 59 rises to the position of the specified oil amount, the refrigerating machine oil flows into the bypass pipe 61, so that the separation chamber 58 or the outflow An overflow in which the liquid level rises to the pipe 52 can be suppressed.
  • Embodiment 4 The configuration of the refrigeration cycle apparatus according to Embodiment 4 of the present invention will be described with reference to FIGS.
  • the same components as those of the third embodiment of the present invention are provided unless otherwise described. Therefore, the same elements are denoted by the same reference symbols, and the description thereof is not repeated.
  • the oil separator according to the present embodiment is mainly different from the third embodiment in that a bypass valve 62 is provided.
  • the refrigeration cycle apparatus in the present embodiment includes a bypass valve 62.
  • the bypass valve 62 is installed in the bypass pipe 61.
  • the bypass valve 62 is configured to be closed when the frequency change amount of the compressor 1 is less than the specified change amount, and to be opened when the frequency change amount of the compressor 1 is equal to or greater than the specified change amount.
  • the valve drive unit 105 is for driving the bypass valve 62 based on a signal from the control unit 101. Specifically, the valve drive unit 105 controls the valve opening degree of the bypass valve 62 by controlling a drive source such as a motor attached to the bypass valve 62.
  • the refrigeration oil flows in the oil return mode, as in the third embodiment.
  • the refrigeration oil flows into the bypass pipe 61 when the amount of the refrigeration oil reaches the specified oil amount in the storage chamber 59.
  • the refrigerating machine oil separated as in the oil return mode flows into the storage chamber 59.
  • the oil amount of the refrigerating machine oil is less than the specified oil amount, the inflow amount of the refrigerating machine oil into the oil return pipe 53 is reduced.
  • the liquid level in the refrigerating machine oil storage chamber 59 rises so that the oil quantity of the refrigerating machine oil becomes equal to or greater than the specified oil quantity, the refrigerating machine oil flows into the bypass pipe 61.
  • the refrigerating machine oil that has flowed into the return oil pipe 53 and the bypass pipe 61 flows into the compressor 1 through the same path as in the oil return mode.
  • the operating state of the refrigeration cycle apparatus 10 is detected (step S1). Subsequently, it is determined whether or not the frequency change amount of the compressor 1 is equal to or greater than a specified change amount (step S2). This determination is performed by the control unit 101 based on signals from the timer 102 and the compressor driving unit 103.
  • the operation mode is switched to the oil return mode (step S3).
  • the oil return adjustment valve 57 is controlled by the valve drive unit 105 based on the signal from the control unit 101 so that the valve opening degree is increased (step S4). Based on the signal from the control unit 101, the valve drive unit 105 controls the bypass valve 62 to open (step S21).
  • the operation mode is switched to the storage mode (step S5).
  • the oil return regulating valve 57 is controlled by the valve drive unit 105 based on a signal from the control unit 101 so that the valve opening degree is reduced (step S14).
  • the valve driving unit 105 controls the bypass valve 62 to close (step S21).
  • the oil separation device 5 of the present embodiment when the liquid level of the refrigerating machine oil storage chamber 59 rises to the specified oil amount, the bypass valve 62 is opened and the refrigerating machine oil flows out through the bypass pipe 61. By doing so, it is possible to suppress an overflow in which the liquid level rises to the separation chamber 58 or the outflow pipe 52.
  • the bypass valve 62 when the operation state is stable (storage mode), the bypass valve 62 is closed, so that the refrigerant gas that has flowed into the bypass pipe 61 flows into the outflow pipe 52. It is possible to suppress a decrease in heat transfer performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

油分離装置(5)は、容器(54)と、流入配管(51)と、流出配管(52)と、返油管(53)と、返油調整弁(57)とを備えている。容器(54)は、分離室(58)と、貯留室(59)と、仕切部(56)とを有する。返油調整弁(57)は返油管(53)に接続されている。仕切部(56)は、混合流体から分離された冷凍機油が分離室(58)から貯留室(59)に流れるように構成されている。返油調整弁(57)は、貯留室(59)から圧縮機に返される冷凍機油の量を調整するように構成されている。

Description

油分離装置および冷凍サイクル装置
 本発明は、油分離装置および冷凍サイクル装置に関するものである。
 冷凍サイクル装置に搭載された圧縮機には、潤滑油(冷凍機油)が封入されている。冷凍サイクル装置の運転中、冷凍機油は冷媒と一緒に圧縮機から流出する。冷凍機油が圧縮機から流出することによって圧縮機内の冷凍機油が枯渇した場合、圧縮機の信頼性が低下する。一方で、圧縮機から流出した冷凍機油が熱交換器内等の配管に流入することによって熱交換器における伝熱性能の低下および圧力損失の増大が生じる。これにより、熱交換器における熱交換性能の低下が生じる。
 そこで、従来、冷凍サイクル装置には、圧縮機から流出した冷凍機油と冷媒とを分離するための油分離装置が設置されている。油分離装置によって冷媒と分離された冷凍機油は油分離装置から圧縮機に返される。これにより、圧縮機内の冷凍機油が枯渇することが抑制されるため、圧縮機の信頼性の低下が抑制され得る。また、油分離装置で圧縮機から流出した冷凍機油と冷媒とが分離されるため、冷凍機油が冷媒と一緒に熱交換器内等の配管に流入することが抑制され得る。これにより、熱交換器における伝熱性能の低下および圧力損失の増大が抑制され得る。
 圧縮機から流出する冷凍機油の量は、圧縮機の運転状態によって異なる。このため、圧縮機の運転状態によっては冷凍機油が油分離装置に多量に滞留することで冷媒と冷凍機油との分離効率が低下する。たとえば、特開2015-215148号公報(特許文献1)には、油分離装置内を、冷凍機油と冷媒とを分離するための分離室と、冷媒と分離された冷凍機油の貯留室とに仕切る仕切板を備えた油分離装置が提案されている。
特開2015-215148号公報
 しかしながら、上記の公報に記載された油分離装置では、冷媒と分離された冷凍機油が貯留室に多量に貯留されることにより冷凍機油の液面の高さが仕切板の高さ以上となるオーバーフローが発生することがある。このオーバーフローが発生すると、冷媒と冷凍機油との分離効率が低下する。オーバーフローが発生することによって冷媒と冷凍機油との分離効率が低下すると、油分離装置から熱交換器等の配管に冷凍機油が流入する。このため、熱交換器における伝熱性能の低下および圧力損失の増大が生じる。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、冷媒と冷凍機油との分離効率の低下を抑制することができる油分離装置およびそれを備えた冷凍サイクル装置を提供することである。
 本発明の油分離装置は、圧縮機から吐出された冷媒と冷凍機油との混合流体から冷凍機油を分離するためのものである。油分離装置は、容器と、流入配管と、流出配管と、返油管と、返油調整弁とを備えている。容器は、混合流体から冷凍機油を分離するための分離室と、混合流体から分離された冷凍機油を貯留する貯留室と、分離室と貯留室とを部分的に仕切る仕切部とを有する。流入配管は混合流体を容器の分離室に流入させる。流出管は流入配管から分離室に流入した混合流体から分離された冷媒を分離室から流出させる。返油管は流出配管から流出する冷媒から分離された冷凍機油を貯留室から圧縮機に返す。返油調整弁は返油管に接続されている。仕切部は、混合流体から分離された冷凍機油が分離室から貯留室に流れるように構成されている。返油調整弁は、貯留室から圧縮機に返される冷凍機油の量を調整するように構成されている。
 本発明の油分離装置によれば、返油調整弁によって貯留室から圧縮機に返される冷凍機油の量が調整されることで、貯留室に貯留された冷凍機油の量が調整される。このため、貯留室に貯留された冷凍機油の液面の高さが仕切部の高さ以上となるオーバーフローの発生を抑制することができる。これにより、冷媒と冷凍機油との分離効率の低下を抑制することができる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態1に係る油分離装置の断面図である。 本発明の実施の形態1に係る冷凍サイクル装置の機能ブロック図である。 本発明の実施の形態1に係る冷凍サイクル装置の動作を示すフロー図である。 本発明の実施の形態1における変形例1に係る第1の油分離装置の断面図である。 本発明の実施の形態1の変形例1に係る第2の油分離装置の断面図である。 図6のVII部分の拡大斜視図である。 本発明の実施の形態1における変形例1に係る第3の油分離装置の断面図である。 本発明の実施の形態1における変形例2に係る油分離装置の断面図である。 本発明の実施の形態1における変形例3に係る第1の油分離装置の断面図である。 本発明の実施の形態1における変形例3に係る第2の油分離装置の断面図である。 本発明の実施の形態1における変形例3に係る第3の油分離装置の断面図である。 本発明の実施の形態1における変形例3に係る第4の油分離装置の断面図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態2に係る油分離装置の断面図である。 本発明の実施の形態2に係る冷凍サイクル装置の機能ブロック図である。 本発明の実施の形態2に係る冷凍サイクル装置の動作を示すフロー図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態3に係る油分離装置の断面図である。 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態4に係る油分離装置の断面図である。 本発明の実施の形態4に係る冷凍サイクル装置の機能ブロック図である。 本発明の実施の形態4に係る冷凍サイクル装置の動作を示すフロー図である。
 以下、本発明の実施の形態について図に基づいて説明する。
 実施の形態1.
 図1~図3を参照して、本発明の実施の形態1における冷凍サイクル装置10の構成について説明する。
 図1に示されるように、本実施の形態における冷凍サイクル装置10は、圧縮機1、高圧側熱交換器2、減圧装置3、低圧側熱交換器4、油分離装置5と、制御装置100とを主に備えている。
 圧縮機1、高圧側熱交換器2、減圧装置3および低圧側熱交換器4は、圧縮機1、高圧側熱交換器2、減圧装置3、低圧側熱交換器4の順に配管で接続されている。これにより、冷媒回路が構成されている。冷媒は、冷媒回路を圧縮機1、高圧側熱交換器2、減圧装置3、低圧側熱交換器4の順に流れる。
 圧縮機1は吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1には冷凍機油が封入されているため、圧縮機1は冷媒と冷凍機油との混合流体を吐出するように構成されている。圧縮機1は容量可変に構成されている。本実施の形態の圧縮機1は、回転数を可変に制御可能に構成されている。具体的には、圧縮機1は、制御装置100からの指示に基づいて駆動周波数が変更されることにより、圧縮機1の回転数が調整される。これにより、圧縮機1の容量が変化する。この圧縮機1の容量は単位時間あたりの冷媒を送り出す量である。つまり、圧縮機1は容量を変化させて運転を行うことができる。たとえば、高容量の運転では、圧縮機1の駆動周波数を高くすることにより冷媒回路を循環する冷媒の流量を多くして運転が行われる。また、低容量の運転では、圧縮機1の駆動周波数を低くすることにより冷媒回路を循環する冷媒の流量を少なくして運転が行われる。
 高圧側熱交換器2は、圧縮機1により圧縮された冷媒を凝縮するように構成されている。高圧側熱交換器2は、たとえばパイプとフィンとで構成された空気熱交換器である。減圧装置3は、高圧側熱交換器2により凝縮された冷媒を減圧するように構成されている。つまり、減圧装置3は、膨張弁としての機能を有している。減圧装置3は、たとえば、電磁弁である。低圧側熱交換器4は、減圧装置3により減圧された冷媒を蒸発させるように構成されている。低圧側熱交換器4は、たとえばパイプとフィンとで構成された空気熱交換器である。
 油分離装置5は、圧縮機1から吐出された冷媒と冷凍機油との混合流体から冷凍機油を分離するためのものである。図1および図2に示されるように、油分離装置5は、流入配管51、流出配管52、返油管53、容器54、返油調整弁57を主に有している。
 容器54は、仕切部56と、分離室58と、貯留室59とを有している。容器54は円筒形状を有している。容器54は内部空間を有している。容器54は、仕切部56によって分離室58と貯留室59とに分けられている。つまり、仕切部56は、分離室58と貯留室59とを部分的に仕切るように構成されている。仕切部56は、混合流体から分離された冷凍機油が分離室58から貯留室59に流れるように構成されている。仕切部56は、分離室58と貯留室59とを仕切る仕切板56aを有している。仕切板56aは分離室58と貯留室59との間の空間を塞いでいる。仕切部56は、仕切板56aに設けられた開口部55を有している。開口部55は仕切板56aの中央に配置されている。開口部55は、分離室58と貯留室59とを連通するように構成されている。開口部55は、仕切部56を分離室58側から貯留室59側に貫通するように設けられている。すなわち、分離室58と貯留室59の間は完全に仕切られているわけではない。分離室58は混合流体から冷凍機油を分離するためのものである。貯留室59は混合流体から分離された冷凍機油を貯留するように構成されている。
 流入配管51は混合流体を分離室58に流入させるように構成されている。流入配管51の端部は容器54の分離室58側に設置されている。流入配管51は容器54の側面に接続されている。流入配管51は、圧縮機1に配管で接続されている。
 流出配管52は流入配管51から分離室58に流入した混合流体から分離された冷媒を分離室58から流出させるように構成されている。流出配管52の端部は容器54の分離室58側に設置されている。流出配管52は容器54の上面に接続されている。流出配管52は、高圧側熱交換器2に配管で接続されている。
 返油管53は流出配管52から流出する冷媒から分離された冷凍機油を貯留室59から圧縮機1に返すように構成されている。返油管53の端部は、容器54の貯留室59側に設置されている。返油管53は、圧縮機1と低圧側熱交換器4との間の低圧配管に返油調整弁57を介して接続されている。
 返油調整弁57は返油管53に接続されている。返油調整弁57は、返油管53と低圧配管との間に設置されている。返油調整弁57は、貯留室59から圧縮機1に返される冷凍機油の量を調整するように構成されている。返油調整弁57は、圧縮機1の周波数変化量が規定変化量未満のときの弁開度よりも圧縮機1の周波数変化量が規定変化量以上のときの弁開度が大きくなるように構成されている。
 圧縮機1における冷凍機油の枯渇が懸念される運転として、例えば、起動時、除霜運転時、断続運転時などがある。つまり、圧縮機1の周波数が0Hzから上昇した場合、運転モードが明らかに変わった場合に、圧縮機1における冷凍機油の枯渇が懸念される。例えば、圧縮機1の起動時には、最初の1分間で周波数が0Hzから48Hzまで増加し、その後1分間毎に周波数が10Hzずつ増加する。安定時および設定温度に近くなった場合などでは、1分間で周波数が10Hz以上変化することはほとんどない。そのため、この場合には、圧縮機1の周波数の規定変化量は10Hzに設定される。
 制御装置100は、演算、指示等を行って冷凍サイクル装置10の各手段、機器等を制御するように構成されている。制御装置100は、特に、圧縮機1、減圧装置3、返油調整弁57のそれぞれに電気的に接続されており、これらの動作を制御するように構成されている。
 続いて、図3を参照して、本実施の形態における制御装置100についてさらに詳しく説明する。図3に示されるように、制御装置100は、制御部101と、タイマー102と、圧縮機駆動部103と、減圧装置駆動部104と、弁駆動部105とを主に有している。制御部101は、タイマー102、圧縮機駆動部103、減圧装置駆動部104および弁駆動部105を制御するためのものである。
 タイマー102は、時間を測定し、時間に基づく信号を制御部101に送信するためのものである。圧縮機駆動部103は、制御部101からの信号に基づいて圧縮機1を駆動させるためのものである。具体的には、圧縮機駆動部103は、圧縮機1のモータ(図示せず)に流す交流電流の周波数を制御することにより圧縮機1のモータの回転数を制御する。
 減圧装置駆動部104は、制御部101からの信号に基づいて減圧装置3を駆動させるためのものである。具体的には、減圧装置駆動部104は、減圧装置3に取り付けられたモータなどの駆動源を制御することにより減圧装置3の弁開度を制御する。
 弁駆動部105は、制御部101からの信号に基づいて返油調整弁57を駆動させるためのものである。具体的には、弁駆動部105は、返油調整弁57に取り付けられたモータなどの駆動源を制御することにより返油調整弁57の弁開度を制御する。
 次に、図1および図2を参照して、本実施の形態における冷凍サイクル装置10の動作について説明する。
 図1および図2に示されるように、本実施の形態における冷凍サイクル装置10では、圧縮機1、高圧側熱交換器2、減圧装置3と、低圧側熱交換器4の順に冷媒が流れる。また、圧縮機1から油分離装置5に冷媒が流れる。
 圧縮機1に封入された冷凍機油は、運転状態に応じて、圧縮機1が必要とする油量(適正油量)が異なる。特に、安定時と過渡時とで圧縮機1の適正油量が異なる。安定時は通常運転時である。過渡時は、過渡的にアクチュエータの変化が生じる運転時であり、たとえば起動時または除霜運転時である。安定時の適正油量は過渡時の適正油量よりも少ないため、過渡時の適正油量を考慮して圧縮機1に冷凍機油が封入されていた場合、安定時の適正油量に対して冷凍機油が余る。この余った冷凍機油は余剰油となる。
 本実施の形態における冷凍サイクル装置10は、油分離装置5の貯留室59に冷凍機油を貯留する貯留モードと、油分離装置5の貯留室59から圧縮機1に冷凍機油を返す返油モードとを切替え可能に構成されている。
 返油モードでは、圧縮機1から吐出された冷媒と冷凍機油との混合流体が油分離装置5に流入する。冷媒と冷凍機油との混合流体は、油分離装置5の流入配管51を通って容器54内に流入する。容器54内の分離室58で冷媒と冷凍機油とが互いに分離される。分離室58で分離された冷媒は、流出配管52を通って油分離装置5から流出し、配管を経由して高圧側熱交換器2に流入する。分離室58で分離された冷凍機油は、仕切部56の開口部55を通って貯留室59に流入する。貯留室59に流入した冷凍機油は、貯留室59から返油管53へ流出する。返油管53に流入した冷凍機油は、返油調整弁57を通って油分離装置5から流出し、圧縮機1と低圧側熱交換器4との間の低圧配管に流入する。低圧配管に流入した冷凍機油は、低圧配管を通って圧縮機1へ返される。
 貯留モードでは、返油モードと同様に分離室58で分離された冷凍機油は、仕切部56の開口部55を通って貯留室59に流入する。貯留室59に流入した冷凍機油のうち一定量の冷凍機油は返油管53へ流入し、その他の冷凍機油は貯留室59内に貯留される。このため、貯留室59内に貯められた冷凍機油の液面は上昇する。返油管53に流入した冷凍機油は、返油モードと同様の経路で圧縮機1へ返される。
 油分離装置5に流入する冷凍機油の流量が、返油管53に流入する冷凍機油の流量よりも多い場合、油分離装置5内において冷凍機油の液面は上昇する。このようにして、分離室58まで液面が上昇する現象をオーバーフローという。なお、オーバーフローが進行すると、流出配管52まで液面が上昇し、冷凍機油が流出配管52から流出することがある。この場合には、冷媒と冷凍機油との分離効率が極端に低下する。
 続いて、図3および図4を参照して、本実施の形態における冷凍サイクル装置10の運転モードの切替えについて説明する。
 まず、冷凍サイクル装置10の運転状態が検知される(ステップS1)。続いて、圧縮機1の周波数変化量が規定変化量以上か否かが判定される(ステップS2)。この判定は、タイマー102および圧縮機駆動部103からの信号に基づいて制御部101により行われる。圧縮機1の周波数変化量が規定変化量以上の場合には、運転モードが返油モードに切替えられる(ステップS3)。返油モードでは、制御部101からの信号に基づいて弁駆動部105によって返油調整弁57は弁開度が大きくなるように制御される(ステップS4)。他方、圧縮機1の周波数変化量が規定変化量未満の場合には、運転モードが貯留モードに切替えられる(ステップS5)。貯留モードでは、制御部101からの信号に基づいて弁駆動部105によって返油調整弁57は弁開度が小さくなるように制御される(ステップS6)。
 つまり、冷凍サイクル装置10の運転モードは、圧縮機1の周波数がある規定値以上変化した場合、貯留モードから返油モードに切替えられる。貯留モードでは、返油モードよりも返油調整弁57の弁開度が小さくなるように、制御装置100によって返油調整弁57の弁開度が制御される。返油モードでは、貯留モードよりも返油調整弁57の弁開度が大きくなるように、制御装置100によって返油調整弁57の弁開度が制御される。すなわち、運転モードに応じて制御装置100によって返油調整弁57の弁開度が制御される。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態における油分離装置5によれば、返油調整弁57によって貯留室59から圧縮機1に返される冷凍機油の量が調整されることで、貯留室59に貯留された冷凍機油の量が調整される。このため、貯留室59に貯留された冷凍機油の液面の高さが仕切部56の高さ以上となるオーバーフローの発生を抑制することができる。これにより、冷媒と冷凍機油との分離効率の低下を抑制することができる。
 また、油分離装置5の容器54は貯留室59を有しているため、油分離装置5内に余剰油を貯留することができる。このため、冷凍サイクル装置10に油分離装置5が備えられていない場合に比べて、冷凍機油が冷媒と一緒に熱交換器内等の配管に流入することを抑制することができる。これにより、熱交換器における伝熱性能の低下および圧力損失の増大を抑制することができる。したがって、熱交換器における熱交換性能を向上させることができる。
 また、油分離装置5の容器54は貯留室59を有しているため、油分離装置5内の貯留室59に冷凍機油が滞留する。このため、冷凍サイクル装置10に貯留室59が備えられていない場合に比べて、冷媒と冷凍機油との分離効率の低下を抑制することができる。
 また、油分離装置5の容器54が貯留室59を有しているため、冷凍機油を貯めるための別の容器は必要ない。したがって、別の容器が備えられている場合に比べて、省スペース化を図ることができる。
 また、貯留室59に流入する冷凍機油の油量は、圧縮機1の周波数変化量が規定変化量未満である安定時よりも圧縮機1の周波数変化量が規定変化量以上である過渡時の方が多くなる。本実施の形態の油分離装置5によれば、返油調整弁57は、圧縮機1の周波数変化量が規定変化量未満のときの弁開度よりも圧縮機1の周波数変化量が規定変化量以上のときの弁開度が大きくなるように構成されている。このため、貯留室59に貯留された冷凍機油の液面の高さが仕切部56の高さ以上となるオーバーフローの発生を抑制することができる。
 また、本実施の形態の油分離装置5によれば、仕切部56は、分離室58と貯留室59とを連通する開口部55を有している。このため、開口部55を通して、分離室58から貯留室59へ冷凍機油を流すことで、冷媒と冷凍機油とを分離することができる。
 次に、本実施の形態の油分離装置5の各変形例について説明する。なお、特に言及しない限り、各変形例の油分離装置5は上記の本実施の形態の油分離装置5と同様の構成を備えているため、同一の構成には同一の符号を付し、その説明を繰り返さない。
 図5~図8を参照して、本実施の形態における変形例1の油分離装置5について説明する。本実施の形態の変形例1の油分離装置5においては、遠心分離方式または衝突分離方式で冷媒と冷凍機油とが分離される。
 遠心分離方式とは、気液分離器の分離方式の一つである。遠心分離方式では、分離する原理に遠心力が用いられており、遠心力によって冷媒と冷凍機油との混合流体の旋回流れが生じる。冷凍機油は、気液分離器の容器の内壁面に捕捉され、冷媒ガスと分離される。遠心分離方式の一例としてサイクロン式がある。
 衝突分離方式とは、気液分離器の分離方式の一つである。衝突分離方式は、気液分離器に流入した冷媒ガスと冷凍機油とが内壁面に衝突し、冷凍機油は内壁面に捕捉され、冷媒ガスは内壁面に補足されずに流入配管へ流入する。これにより、冷凍機油が冷媒ガスと分離される。
 図5に示されるように、本実施の形態における変形例1の第1の油分離装置5では、遠心分離方式で冷凍機油が冷媒と分離される。本実施の形態における変形例1の第1の油分離装置5では、分離室58内で冷媒と冷凍機油との混合流体の旋回流が生じる。
 容器54は内壁面を有している。流入配管51は容器54の内壁面から内側に突出している。冷媒と冷凍機油との混合流体は、流入配管51の流入口から容器54内に流入し、内壁面に沿って旋回するように流れる。冷凍機油は、容器54の内壁面に捕捉され、容器54の内壁面に沿って下方に流れる。開口部55は、容器54の内壁面と仕切板56aとの間に設けられている。つまり、開口部55は、仕切部56において容器54の内壁面との接続部に設けられている。したがって、開口部55は容器54の内壁面に沿って配置されている。開口部55を通って分離室58から貯留室59に冷媒機油が流入する。冷凍機油と分離された冷媒は、流出配管52を通って分離室58から流出する。
 図6および図7に示されるように、本実施の形態における変形例1の第2の油分離装置5では、遠心分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例1の第2の油分離装置5では、流入配管51で冷媒と冷凍機油との混合流体の旋回流が生じる。流入配管51内に旋回部51aが設けられている。旋回部51aは、例えば旋回羽根である。この旋回羽根によって生じた旋回流が分離室58内に流入する。流入配管51の内径は流出配管52の内径よりも大きいことが好ましい。
 冷凍機油は、容器54の内壁面に捕捉され、容器54の内壁面に沿って下方に流れる。容器54の内壁面と仕切板56aとの間に設けられた開口部55を通って分離室58から貯留室59に冷媒機油が流入する。冷凍機油と分離された冷媒は、流出配管52を通って油分離装置5から流出する。
 図8に示されるように、本実施の形態における変形例1の第3の油分離装置5では、衝突分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例1の第3の油分離装置5では、流入配管51から分離室58に流入した混合流体が内壁面に衝突する。冷凍機油は内壁面に捕捉され、容器54の内壁面に沿って下方に流れる。容器54の内壁面と仕切板56aとの間に設けられた開口部55を通って分離室58から貯留室59に冷媒機油が流入する。冷媒は内壁面に補足されずに流出配管52を通って分離室58から流出する。
 本実施の形態の変形例1における油分離装置5によれば、容器54の内壁面を伝って冷凍機油が分離室58から貯留室59に流れるため、冷凍機油が分離室58内で滞留することを抑制することができる。これにより、冷媒と冷凍機油との分離効率の低下を抑制することができる。
 また、開口部55が内壁面と仕切板56aとの間に設けられているため、冷媒が貯留室59へ侵入することを抑制することができる。したがって、油分離装置5による圧力損失を低減することができる。
 図9を参照して、本実施の形態における変形例2の油分離装置5について説明する。本実施の形態における変形例2の油分離装置5においては、重力分離方式で冷媒と冷凍機油とが分離される。重力分離方式とは、気液分離器の分離方式の一つである。冷媒ガスと冷凍機油とが捕捉材60aに流入する。捕捉材60aには、例えばメッシュ等が用いられる。捕捉材60aは、例えば円錐面からなる形状を有している。円錐面の底面が流入配管51に接続されている。円錐面の底面が捕捉材60aの上端に配置されており、円錐面の先端が捕捉材60aの下端に配置されている。
 冷媒ガスは捕捉材60aを通り抜けて流出配管52へ流入し、冷凍機油は捕捉材60aに捕捉される。捕捉された冷凍機油は重力によって下方に流れ、返油管53へと移動する。これにより、冷凍機油が冷媒と分離される。
 図9に示されるように、本実施の形態における変形例2の油分離装置5では、内壁面に衝突せずに容器54内に浮遊する冷凍機油が捕捉材60aに捕捉される。捕捉材60aに捕捉された冷凍機油は開口部55を通って貯留室59に流入する。流入配管51は、混合流体を分離室58に流入させる流入口を有している。開口部55は流入配管51の流入口の真下に配置されている。このため、捕捉材60aに捕捉された冷凍機油は重力により開口部55を通って貯留室59に流入する。
 本実施の形態の変形例2の油分離装置5によれば、開口部55は、流入配管51の流入口の真下に配置されている。このため、冷凍機油が分離室58内で滞留することを抑制することができる。したがって、冷媒と冷凍機油との分離効率の低下を抑制することができる。また、捕捉材60aで捕捉された油滴の通る箇所に開口部55が設けられることにより、冷媒ガスが貯留室59へ侵入することを抑制することができる。したがって、油分離装置5による圧力損失を低減することができる。
 図10~図13を参照して、本実施の形態における変形例3の油分離装置5について説明する。本実施の形態における変形例3の油分離装置5においては、遠心分離方式、衝突分離方式および重力分離方式の全てを適用可能である。
 図10に示されるように、本実施の形態における変形例3の第1の油分離装置5では、遠心分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例3の第1の油分離装置5では、分離室58内で冷媒と冷凍機油との混合流体の旋回流が生じる。
 図11に示されるように、本実施の形態における変形例3の第2の油分離装置5では、遠心分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例3の第2の油分離装置5では、分離室58内で生じた旋回流が分離室58に流入する。
 図12に示されるように、本実施の形態における変形例3の第3の油分離装置5では、遠心分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例3の第3の油分離装置5では、流入配管51で旋回流が生じる。この旋回流が分離室58内に流入する。
 図13に示されるように、本実施の形態における変形例3の第4の油分離装置5では、重力分離方式で冷媒と冷凍機油とが分離される。本実施の形態における変形例3の第4の油分離装置5では、冷媒ガスと冷凍機油とが捕捉材60aに流入する。冷凍機油は捕捉材60aに捕捉される。
 上記のいずれの分離方式においても本実施の形態の変形例3の油分離装置5においては、仕切部56は、冷凍機油を伝搬可能な空隙率を有する捕捉材60を有している。捕捉材60は、分離室58から貯留室59へと冷凍機油を伝搬できる規定空隙率以上の空隙率を有している。捕捉材60には、例えばメッシュが複数枚積層されたものが用いられる。また、捕捉材60には、例えば発泡金属が用いられる。発泡金属は、金属内に気泡を含んだ構造体であり、気泡は互いにつながっているものである。つまり、発泡金属は通気するように構成されている。発泡金属の材質は、例えばアルミニウムである。仕切部56は、冷凍機油が捕捉材60を通して分離室58から貯留室59へ流れるように構成されている。仕切部56の全部が捕捉材60により構成されていてもよく、仕切部56の一部が捕捉材60により構成されていてもよい。
 本実施の形態の変形例3の油分離装置5によれば、仕切部56は冷凍機油が捕捉材60を通して分離室58から貯留室59へ流れるように構成されているため、冷媒ガスが貯留室59へ侵入することを抑制することができる。したがって、油分離装置5による圧力損失を低減することができる。また、本実施の形態の油分離装置5のように開口部55が設けられていないため、開口部55が設けられている場合よりも貯留室59へ冷媒ガスが侵入することを抑制することができる。
 また、分離方式に関係なく、冷凍機油が分離室58内で滞留することを抑制することができる。したがって、分離方式に関係なく、冷媒と冷凍機油との分離効率の低下を抑制することができる。
 また、捕捉材60が冷凍機油を捕捉するため、冷凍機油が再び飛散することを抑制することができる。これにより、冷媒と冷凍機油との分離効率を向上させることができる。
 実施の形態2.
 図14~図16を参照して、本発明の実施の形態2における冷凍サイクル装置の構成について説明する。本発明の実施の形態2では、特に説明しない限り、上記の本発明の実施の形態1と同様の構成を備えているため、同一の要素については同一の符号を付し、その説明を繰り返さない。本実施の形態における油分離装置5は、実施の形態1と比べて、油量検知手段200を備えている点で主に異なっている。
 図14および図15に示されるように、本実施の形態における冷凍サイクル装置は、油量検知手段200を備えている。油量検知手段200には、例えば静電容量センサ、自己発熱式センサ、超音波センサ、光センサなどが用いられる。静電容量センサは、容器内に差し込まれた電極間の静電容量を検知してガスか液かを判別することで油量を検知する。自己発熱式センサは、抵抗加熱によって加熱された容器の温度変化から油量を検知する。超音波センサは、音の伝達速度を測定して油量を検知する。光センサは、光の透過度を測定して油量を検知する。
 油量検知手段200は貯留室59に設置されている。油量検知手段200は、貯留室59内で冷凍機油の油量が規定油量となる位置に設置されている。規定油量は、例えば余剰油量である。起動時などの冷凍機油の枯渇を抑制するため、圧縮機1には安定時の適正油量よりも多く冷凍機油が封入されている。安定時には冷凍機油の枯渇は生じにくいため、圧縮機1には余剰に冷凍機油が封入されている。この際の余剰油量が規定油量に設定される。
 例えば、圧縮機1のモータ部の下端まで満液である場合の油量Mcompよりも封入油量Mtotalが多い場合(Mcomp<Mtotal)、規定油量(余剰油量)は封入油量Mtotalから油量Mcompを引いた油量(Mtotal-Mcomp)となる。なお、油量Mcomp以上の冷凍機油は圧縮機1から冷凍回路内に持ち出される。
 また、規定油量は一定であってもよく、圧縮機1の周波数、冷媒流量、圧縮機1の吸入圧力および吐出圧力により変動してもよい。
 図16に示されるように、制御装置100は、油量検知部106を有している。油量検知部106は、油量検知手段200からの信号に基づいて貯留室59内の冷凍機油の油量を検知するためのものである。貯留モードでは、油量検知手段200で検知された検知値により、油量が一定量となるように返油調整弁57が制御装置100により制御される。
 次に、図14および図15を参照して、本実施の形態における冷凍サイクル装置10の動作について説明する。
 図14および図15に示されるように、本実施の形態における冷凍サイクル装置10においては、返油モードでは、実施の形態1と同様に冷凍機油は流れる。貯留モードでは、返油モードと同様に分離室58で分離された冷凍機油は、貯留室59へ流入する。
 貯留室59に流入した冷凍機油は返油管53へ流入する。貯留室59に流入した冷凍機油の油量が規定油量未満の場合、冷凍機油の返油管53への流入量が減少される。これにより、冷凍機油が貯留室59内に貯留されて貯留室59内の液面が上昇する。冷凍機油の油量が規定油量以上となるように液面が上昇すると、冷凍機油の返油管53への流入量が増加される。つまり、貯留室59内の冷凍機油の油量が規定油量となるように流入量が変化する。返油管53に流入した冷凍機油は、返油モードと同様の経路で圧縮機1へ返される。
 続いて、図16および図17を参照して、本実施の形態における冷凍サイクル装置10の運転モードの切替えについて説明する。
 まず、冷凍サイクル装置10の運転状態が検知される(ステップS1)。続いて、圧縮機1の周波数変化量が規定変化量以上か否かが判定される(ステップS2)。この判定は、タイマー102および圧縮機駆動部103からの信号に基づいて制御部101により行われる。圧縮機1の周波数変化量が規定変化量以上の場合には、運転モードが返油モードに切替えられる(ステップS3)。返油モードでは、制御部101からの信号に基づいて弁駆動部105により返油調整弁57は弁開度が大きくなるように制御される(ステップS4)。他方、圧縮機1の周波数変化量が規定変化量未満の場合には、運転モードが貯留モードに切替えられる(ステップS5)。油量検知手段200からの信号に基づいて油量検知部106が油量を検知する(ステップS6)。
 続いて、油量の検知値が規定油量以上か否かが判定される(ステップS12)。この判定は、油量検知部106からの信号に基づいて制御部101により行われる。油量の検知値が規定油量以上の場合には、制御部101からの信号に基づいて弁駆動部105により返油調整弁57は弁開度が中程度になるように制御される(ステップS13)。油量の検知値が規定油量未満の場合には、制御部101からの信号に基づいて弁駆動部105により返油調整弁57は弁開度が小さくなるように制御される(ステップS14)。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の油分離装置5によれば、規定油量が油量検知手段200で検知される。そして、返油調整弁57は、油量検知手段200で検知された検知値が規定油量未満の場合の弁開度よりも油量検知手段200で検知された検知値が規定油量以上の場合の弁開度が大きくなるように構成されている。このため、常に運転状態に対して適正量の冷凍機油を貯留室59に貯めることができる。
 なお、規定油量が圧縮機1の周波数、冷媒流量、圧縮機1の吸入圧力および吐出圧力により変動する場合でも、運転状態を把握するセンサによって各運転状態の適正量が記録され、その記録に基づいて返油調整弁57が制御されることにより、常に冷凍機油を適正量に制御することができる。
 実施の形態3.
 図18および図19を参照して、本発明の実施の形態3における冷凍サイクル装置の構成について説明する。本発明の実施の形態3では、特に説明しない限り、上記の本発明の実施の形態1と同様の構成を備えているため、同一の要素については同一の符号を付し、その説明を繰り返さない。本実施の形態の油分離装置は、実施の形態1と比べて、バイパス管61を備えている点で主に異なっている。
 図18および図19に示されるように、本実施の形態における冷凍サイクル装置は、バイパス管61を備えている。バイパス管61は、貯留室59に接続されている。バイパス管61は、高さ方向において仕切部56と返油管53との間において貯留室59に接続されている。バイパス管61は仕切部56よりも下方に配置されている。
 バイパス管61の一方の端部は、貯留室59内において規定油量(例えば余剰油)となる位置に設置されている。バイパス管61の他方の端部は、圧縮機1と低圧側熱交換器4の間の低圧配管に配管で接続されている。
 次に、本実施の形態における冷凍サイクル装置10の動作について説明する。
 本実施の形態における冷凍サイクル装置10においては、返油モードでは、実施の形態1と同様に冷凍機油は流れる。ただし、分離室58から分離された冷凍機油の流量が、返油管53へ流入される流量よりも多い場合、貯留室59に冷凍機油が貯まり、分離室58さらには流出配管52まで液面が達するオーバーフローが生ずるおそれがある。そこで、本実施の形態における冷凍サイクル装置10では、冷凍機油の油量が貯留室59の規定油量になったときに、冷凍機油はバイパス管61へ流入する。これにより、オーバーフローが抑制される。バイパス管61へ流入した冷凍機油は、低圧側熱交換器4と圧縮機1との間の低圧配管へ流入する。低圧配管へ流入した油は、圧縮機1へ流入する。
 貯留モードでは、返油モードと同様に分離された冷凍機油は、貯留室59に流入する。貯留室59に流入した冷凍機油は、返油管53へ流入する。冷凍機油の油量が規定油量未満の場合、冷凍機油の返油管53への流入量が減少される。これにより、冷凍機油は貯留室59内に貯留され、冷凍機油の貯留室59内の液面を上昇させる。冷凍機油の油量が規定油量以上となるように液面が上昇すると、冷凍機油はバイパス管61に流入する。返油管53およびバイパス管61に流入した冷凍機油は、返油モードと同様の経路で圧縮機1へ流入する。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の油分離装置5によれば、冷凍機油の貯留室59の液面が規定油量の位置まで上昇した場合、バイパス管61に冷凍機油が流入することで、分離室58または流出配管52まで液面が上昇するオーバーフローを抑制することができる。
 実施の形態4.
 図20~図22を参照して、本発明の実施の形態4における冷凍サイクル装置の構成について説明する。本発明の実施の形態4では、特に説明しない限り、上記の本発明の実施の形態3と同様の構成を備えているため、同一の要素については同一の符号を付し、その説明を繰り返さない。本実施の形態の油分離装置は、実施の形態3と比べて、バイパス弁62を備えている点で主に異なっている。
 図20および図21に示されるように、本実施の形態における冷凍サイクル装置は、バイパス弁62を備えている。バイパス弁62は、バイパス管61に設置されている。バイパス弁62は、圧縮機1の周波数変化量が規定変化量未満のときに閉じられ、圧縮機1の周波数変化量が規定変化量以上のときに開かれるように構成されている。
 図22に示されるように、弁駆動部105は、制御部101からの信号に基づいてバイパス弁62を駆動させるためのものである。具体的には、弁駆動部105は、バイパス弁62に取り付けられたモータなどの駆動源を制御することによりバイパス弁62の弁開度を制御する。
 次に、本実施の形態における冷凍サイクル装置10の動作について説明する。
 本実施の形態における冷凍サイクル装置10においては、返油モードでは、実施の形態3と同様に冷凍機油は流れる。本実施の形態における冷凍サイクル装置10では、冷凍機油の油量が貯留室59の規定油量になったときに、冷凍機油はバイパス管61へ流入する。
 貯留モードでは、返油モードと同様に分離された冷凍機油は、貯留室59に流入する。冷凍機油の油量が規定油量未満の場合、冷凍機油の返油管53への流入量が減少される。冷凍機油の貯留室59内の液面が冷凍機油の油量が規定油量以上となるように上昇すると、冷凍機油はバイパス管61に流入する。返油管53およびバイパス管61に流入した冷凍機油は、返油モードと同様の経路で圧縮機1へ流入する。
 続いて、図22および図23を参照して、本実施の形態における冷凍サイクル装置10の運転モードの切替えについて説明する。
 まず、冷凍サイクル装置10の運転状態が検知される(ステップS1)。続いて、圧縮機1の周波数変化量が規定変化量以上か否かが判定される(ステップS2)。この判定は、タイマー102および圧縮機駆動部103からの信号に基づいて制御部101により行われる。圧縮機1の周波数変化量が規定変化量以上の場合には、運転モードが返油モードに切替えられる(ステップS3)。返油モードでは、制御部101からの信号に基づいて弁駆動部105により返油調整弁57は弁開度が大きくなるように制御される(ステップS4)。そして、制御部101からの信号に基づいて弁駆動部105によりバイパス弁62は開くように制御される(ステップS21)。
 他方、圧縮機1の周波数変化量が規定変化量未満の場合には、運転モードが貯留モードに切替えられる(ステップS5)。貯留モードでは、制御部101からの信号に基づいて弁駆動部105により返油調整弁57は弁開度が小さくなるように制御される(ステップS14)。そして、制御部101からの信号に基づいて弁駆動部105によりバイパス弁62は閉じるように制御される(ステップS21)。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態の油分離装置5によれば、冷凍機油の貯留室59の液面が規定油量の位置まで上昇した場合、バイパス弁62が開かれてバイパス管61を通って冷凍機油が流出することで、分離室58または流出配管52まで液面が上昇するオーバーフローを抑制することができる。
 本実施の形態の油分離装置5によれば、運転状態の安定時(貯留モード)には、バイパス弁62が閉じられるため、バイパス管61に流入した冷媒ガスを流出配管52へ流入させることで、伝熱性能の低下を抑制することができる。
 なお、本実施の形態の構成は適宜組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 高圧側熱交換器、3 減圧装置、4 低圧側熱交換器、5 油分離装置、10 冷凍サイクル装置、51 流入配管、52 流出配管、53 油管、54 容器、55 開口部、56 仕切部、56a 仕切板、57 油調整弁、58 分離室、59 貯留室、60 捕捉材、61 バイパス管、62 バイパス弁、100 制御装置、101 制御部、102 タイマー、103 圧縮機駆動部、104 減圧装置駆動部、105 弁駆動部、106 油量検知部、200 油量検知手段。

Claims (10)

  1.  圧縮機から吐出された冷媒と冷凍機油との混合流体から前記冷凍機油を分離するための油分離装置であって、
     前記混合流体から前記冷凍機油を分離するための分離室と、前記混合流体から分離された前記冷凍機油を貯留する貯留室と、前記分離室と前記貯留室とを部分的に仕切る仕切部とを有する容器と、
     前記混合流体を前記容器の前記分離室に流入させる流入配管と、
     前記流入配管から前記分離室に流入した前記混合流体から分離された前記冷媒を前記分離室から流出させる流出配管と、
     前記流出配管から流出する前記冷媒から分離された前記冷凍機油を前記貯留室から前記圧縮機に返す返油管と、
     前記返油管に接続された返油調整弁とを備え、
     前記仕切部は、前記混合流体から分離された前記冷凍機油が前記分離室から前記貯留室に流れるように構成されており、
     前記返油調整弁は、前記貯留室から前記圧縮機に返される前記冷凍機油の量を調整するように構成されている、油分離装置。
  2.  前記返油調整弁は、前記圧縮機の周波数変化量が規定変化量未満のときの弁開度よりも前記圧縮機の周波数変化量が規定変化量以上のときの弁開度が大きくなるように構成されている、請求項1に記載の油分離装置。
  3.  前記仕切部は、前記分離室と前記貯留室とを仕切る仕切板と、前記仕切板に設けられかつ前記分離室と前記貯留室とを連通する開口部を有する、請求項1または2に記載の油分離装置。
  4.  前記容器は、内壁面を有し、
     前記開口部は、前記容器の前記内壁面と前記仕切板との間に設けられている、請求項3に記載の油分離装置。
  5.  前記流入配管は、前記混合流体を前記分離室に流入させる流入口を有し、
     前記開口部は、前記流入口の真下に配置されている、請求項3または4に記載の油分離装置。
  6.  前記仕切部は、前記冷凍機油を伝搬可能な空隙率を有する捕捉材を有し、
     前記仕切部は、前記冷凍機油が前記捕捉材を通して前記分離室から前記貯留室へ流れるように構成されている、請求項1または2に記載の油分離装置。
  7.  前記貯留室に貯留された前記冷凍機油の油量を検知する油量検知手段をさらに備え、
     前記返油調整弁は、前記油量検知手段で検知された検知値が規定油量未満の場合の弁開度よりも前記油量検知手段で検知された検知値が規定油量以上の場合の弁開度が大きくなるように構成されている、請求項1~6のいずれか1項に記載の油分離装置。
  8.  前記貯留室に接続されたバイパス管をさらに備え、
     前記バイパス管は、高さ方向において前記仕切部と前記返油管との間において前記貯留室に接続されている、請求項1~6のいずれか1項に記載の油分離装置。
  9.  前記バイパス管に設置されたバイパス弁をさらに備え、
     前記バイパス弁は、前記圧縮機の周波数変化量が規定変化量未満のときに閉じられ、前記圧縮機の周波数変化量が規定変化量以上のときに開かれるように構成されている、請求項8に記載の油分離装置。
  10.  請求項1~9のいずれか1項に記載の前記油分離装置と、
     前記冷媒と前記冷凍機油との前記混合流体を吐出する圧縮機とを備えた、冷凍サイクル装置。
PCT/JP2017/017647 2017-05-10 2017-05-10 油分離装置および冷凍サイクル装置 WO2018207274A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780090173.9A CN110573809B (zh) 2017-05-10 2017-05-10 油分离装置及制冷循环装置
US16/491,634 US11199347B2 (en) 2017-05-10 2017-05-10 Oil separation device and refrigeration cycle apparatus
PCT/JP2017/017647 WO2018207274A1 (ja) 2017-05-10 2017-05-10 油分離装置および冷凍サイクル装置
JP2019516785A JP6932773B2 (ja) 2017-05-10 2017-05-10 油分離装置および冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017647 WO2018207274A1 (ja) 2017-05-10 2017-05-10 油分離装置および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018207274A1 true WO2018207274A1 (ja) 2018-11-15

Family

ID=64104498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017647 WO2018207274A1 (ja) 2017-05-10 2017-05-10 油分離装置および冷凍サイクル装置

Country Status (4)

Country Link
US (1) US11199347B2 (ja)
JP (1) JP6932773B2 (ja)
CN (1) CN110573809B (ja)
WO (1) WO2018207274A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131048A1 (ja) * 2019-12-27 2021-07-01 三菱電機株式会社 気液分離装置および冷凍サイクル装置
WO2024029028A1 (ja) * 2022-08-04 2024-02-08 三菱電機株式会社 油分離器および冷凍サイクル装置
WO2024111097A1 (ja) * 2022-11-24 2024-05-30 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108958301B (zh) * 2018-06-27 2021-08-31 北京小米移动软件有限公司 控制设备排水的方法、装置及存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240053U (ja) * 1975-09-16 1977-03-22
JPS5690680U (ja) * 1979-12-17 1981-07-20
JPH0240947B2 (ja) * 1982-11-19 1990-09-13 Hasuman Corp
JPH0611214A (ja) * 1992-06-25 1994-01-21 Daikin Ind Ltd 油分離器
US5502984A (en) * 1993-11-17 1996-04-02 American Standard Inc. Non-concentric oil separator
JP2003130474A (ja) * 2001-10-19 2003-05-08 Toshiba Kyaria Kk 冷凍装置
JP2005076902A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd 冷凍機の圧縮ユニット
US7810351B2 (en) * 2005-03-02 2010-10-12 Westermeyer Gary W Multiple outlet vertical oil separator
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
JP2015169381A (ja) * 2014-03-07 2015-09-28 住友重機械工業株式会社 オイルセパレータ
JP2016176664A (ja) * 2015-03-20 2016-10-06 ダイキン工業株式会社 冷凍装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240053A (en) 1975-09-25 1977-03-28 Aiwa Co Ltd Demodulator
JPS5690680A (en) 1979-12-24 1981-07-22 Fujitsu Ltd Electrostatic latent-image reader
DE102008047447B4 (de) * 2007-09-19 2019-03-14 Denso Corporation Ölabscheider und Kältemittelkompressor mit diesem
JP2012083010A (ja) * 2010-10-08 2012-04-26 Mitsubishi Electric Corp 冷凍サイクル装置
JP5914806B2 (ja) * 2011-11-18 2016-05-11 パナソニックIpマネジメント株式会社 冷凍装置
WO2013073065A1 (ja) * 2011-11-18 2013-05-23 三洋電機株式会社 冷凍装置
WO2015045129A1 (ja) * 2013-09-27 2015-04-02 三菱電機株式会社 油面検知装置及びこの油面検知装置を搭載した冷凍空調装置
JP2015215148A (ja) 2014-05-13 2015-12-03 ダイキン工業株式会社 油分離装置
CN107076487B (zh) 2014-10-23 2021-03-19 三菱电机株式会社 油分离器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240053U (ja) * 1975-09-16 1977-03-22
JPS5690680U (ja) * 1979-12-17 1981-07-20
JPH0240947B2 (ja) * 1982-11-19 1990-09-13 Hasuman Corp
JPH0611214A (ja) * 1992-06-25 1994-01-21 Daikin Ind Ltd 油分離器
US5502984A (en) * 1993-11-17 1996-04-02 American Standard Inc. Non-concentric oil separator
JP2003130474A (ja) * 2001-10-19 2003-05-08 Toshiba Kyaria Kk 冷凍装置
JP2005076902A (ja) * 2003-08-28 2005-03-24 Daikin Ind Ltd 冷凍機の圧縮ユニット
US7810351B2 (en) * 2005-03-02 2010-10-12 Westermeyer Gary W Multiple outlet vertical oil separator
JP2015038407A (ja) * 2013-08-19 2015-02-26 ダイキン工業株式会社 冷凍装置
JP2015169381A (ja) * 2014-03-07 2015-09-28 住友重機械工業株式会社 オイルセパレータ
JP2016176664A (ja) * 2015-03-20 2016-10-06 ダイキン工業株式会社 冷凍装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131048A1 (ja) * 2019-12-27 2021-07-01 三菱電機株式会社 気液分離装置および冷凍サイクル装置
JPWO2021131048A1 (ja) * 2019-12-27 2021-07-01
EP4083541A4 (en) * 2019-12-27 2022-12-07 Mitsubishi Electric Corporation GAS-LIQUID SEPARATOR AND REFRIGERATION CYCLE DEVICE
JP7343611B2 (ja) 2019-12-27 2023-09-12 三菱電機株式会社 気液分離装置および冷凍サイクル装置
WO2024029028A1 (ja) * 2022-08-04 2024-02-08 三菱電機株式会社 油分離器および冷凍サイクル装置
WO2024111097A1 (ja) * 2022-11-24 2024-05-30 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN110573809B (zh) 2022-04-05
US11199347B2 (en) 2021-12-14
JPWO2018207274A1 (ja) 2020-02-27
US20200056818A1 (en) 2020-02-20
JP6932773B2 (ja) 2021-09-08
CN110573809A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2018207274A1 (ja) 油分離装置および冷凍サイクル装置
JP5169295B2 (ja) 冷凍装置
EP2357432B1 (en) Refrigerating air-conditioning apparatus
EP0887603B1 (en) Accumulator
JP4027990B2 (ja) 冷却システム及びそれのための分離装置
US9372015B2 (en) Heat pump system capable of adjusting amount of refrigerant stored in liquid receiver
WO2013076971A1 (ja) 気液分離器および冷凍サイクル装置
WO2007123087A1 (ja) 冷凍装置
WO2017221300A1 (ja) 空気調和装置
US11365923B2 (en) Refrigeration cycle apparatus
JP2012083010A (ja) 冷凍サイクル装置
JP5977952B2 (ja) エコノマイザ及び冷凍機
WO2014196168A1 (ja) 油分離器および油分離器を製造する製造方法
KR102201746B1 (ko) 이코노마이저를 포함하는 응축기 및 이를 포함하는 터보 냉동기
JP2009008349A (ja) 気液分離器
JP5914806B2 (ja) 冷凍装置
JP2016070567A (ja) オイルセパレータおよび冷凍サイクル装置
JP5225895B2 (ja) 空気調和装置
JP2003028523A (ja) 冷凍装置、及びオイルタンク一体型アキュムレータ
JP4176694B2 (ja) 空気調和装置
US11306952B2 (en) Refrigeration cycle apparatus
JP6340681B2 (ja) 冷凍回路
JP2006038400A (ja) エジェクタ式ヒートポンプサイクル
JPH08159035A (ja) 気液分離装置
JP6788073B2 (ja) サイクロン式油分離器および冷凍システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516785

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909272

Country of ref document: EP

Kind code of ref document: A1