WO2018205902A1 - 防抖控制方法和装置 - Google Patents

防抖控制方法和装置 Download PDF

Info

Publication number
WO2018205902A1
WO2018205902A1 PCT/CN2018/085859 CN2018085859W WO2018205902A1 WO 2018205902 A1 WO2018205902 A1 WO 2018205902A1 CN 2018085859 W CN2018085859 W CN 2018085859W WO 2018205902 A1 WO2018205902 A1 WO 2018205902A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
coordinate value
lens group
focus coordinate
factor
Prior art date
Application number
PCT/CN2018/085859
Other languages
English (en)
French (fr)
Inventor
王欢
尤灿
马伟民
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2018205902A1 publication Critical patent/WO2018205902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction

Definitions

  • the present application relates to the field of monitoring, and in particular, to an anti-shake control method and apparatus.
  • the surveillance camera may be shaken during the shooting process due to the influence of its environment. For example, when a vehicle passes through the bridge, the surveillance camera mounted on the bridge may be shaken. Become blurred.
  • the embodiment of the present application provides an anti-shake control method and apparatus for effectively eliminating the influence of jitter on a captured image.
  • the technical solution is as follows:
  • an anti-shake control method comprising:
  • the optical anti-shake lens group including at least one optical anti-shake lens, the optical anti-shake lens
  • Each type of optical image stabilization lens in the group is a concave lens or a convex lens, or the type of optical image stabilization lens in the optical image stabilization lens group includes a concave lens and a convex lens.
  • an anti-shake control device comprising:
  • a determining module configured to determine a jitter angle and a jitter direction of the camera device when detecting that the camera device is shaken
  • a calculation module configured to calculate a current image stabilization degree of the image capturing device according to a current magnification of the image capturing device and a current focus coordinate value
  • a first control module configured to control movement of the optical anti-shake lens group according to the image stabilization sensitivity, the shaking angle, the current magnification, and the shaking direction, wherein the optical anti-shake lens group includes at least one optical anti-shake lens
  • the type of the optical image stabilization lens in the optical anti-shake lens group is a concave lens or a convex lens, or the type of the optical image stabilization lens in the optical image stabilization lens group includes a concave lens and a convex lens.
  • an anti-shake control device comprising:
  • At least one processor At least one processor
  • At least one memory At least one memory
  • the at least one memory stores one or more programs, the one or more programs configured to be executed by the at least one processor, the one or more programs comprising for performing the first aspect or the first aspect An instruction in any of the optional methods.
  • a non-transitory computer readable storage medium for storing a computer program, the computer program being loaded by a processor to perform the first aspect or any of the optional methods of the first aspect Instructions.
  • the current image stabilization sensitivity of the imaging device is affected by its current magnification and the focus coordinate value. Therefore, the image stabilization sensitivity of the imaging device is calculated according to the current magnification of the imaging device and the current focus coordinate value, thereby improving the accuracy of the calculated image stabilization sensitivity.
  • the OIS lens group movement is controlled according to the image stabilization sensitivity, the shake angle, the current magnification, and the shake direction, so that the influence of the shake on the captured image can be effectively eliminated.
  • FIG. 1A is a schematic structural diagram of an image pickup apparatus provided in an embodiment of the present application.
  • 1B is a flowchart of an anti-shake control method provided in an embodiment of the present application.
  • Figure 3 is a schematic diagram of a curve provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of controlling movement of an OIS lens group in one embodiment of the present application.
  • Figure 5 is a schematic view of an OIS lens set provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a compensation control force provided in an embodiment of the present application.
  • FIG. 7 is a flow chart of a PT motion method provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an anti-shake control apparatus provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus provided in an embodiment of the present application.
  • the "camera device” as used herein may include a smart phone, a tablet computer, a smart TV, an e-book reader, a laptop portable computer, a desktop computer, a surveillance camera, a video camera, a camera, and the like.
  • a zoom lens 11, an OIS lens group 12, and a focal plane 13 are disposed in the image pickup apparatus.
  • the OIS lens group 12 is generally in an initial position, and when the OIS lens group 12 is in the initial position, the central optical axis of the OIS lens group 12 and the central optical axis of the zoom lens 11 are on the same line.
  • OIS is an abbreviation of "Optical Image Stabilization", which is commonly known as optical image stabilization in the industry.
  • the imaging apparatus changes the focal length of the captured image through the zoom lens 11 before shooting.
  • light taken by the image pickup apparatus can be projected onto the focal plane 13 through the zoom lens 11 and the OIS lens group 12, and an image is formed on the focal plane 13.
  • the imaging device can eliminate the effect of jitter on the captured image through the OIS lens group 12.
  • Anti-shake When the camera detects that it is shaking, it controls the OIS lens group 12 in the camera device to move in the opposite direction of the opposite direction of the dithering direction in the target plane to eliminate the influence of the blurring caused by the image blurring. .
  • the target plane is the plane passing through the OIS lens set and perpendicular to the central optical axis of the OIS lens set.
  • the OIS lens set includes at least one OIS lens, and each of the OIS lens groups is of a concave lens or a convex lens, or the type of OIS lens in the OIS lens group includes a concave lens and a convex lens.
  • the camera device When the camera device detects that it is shaking, it needs to calculate the moving distance D of the OIS lens group 12 in the shaking direction.
  • is the angle of jitter when the imaging device is shaken
  • f is the focal length when the imaging device is shaken
  • the image stabilization sensitivity SR is the distance per unit of movement of the OIS lens group 12, and the intersection of the optical axis and the focal plane of the OIS lens group 12 is at the focal plane.
  • the unit distance can be a value of 1 mm, 2 mm or 3 mm.
  • FIG. 1B is a flowchart of an anti-shake control method provided by an embodiment of the present application, which is applied to an image pickup apparatus with variable focal length and/or variable focus coordinate value.
  • the anti-shake control method may include the following steps.
  • step 110 when it is detected that the imaging device is shaken, the jitter angle and the shaking direction of the camera device jitter are determined.
  • Step 120 Calculate the current image stabilization sensitivity of the imaging device according to the current magnification of the imaging device and the current focus coordinate value.
  • Step 130 controlling OIS lens group movement according to the image stabilization sensitivity, the shake angle, the current magnification and the shake direction, the OIS lens group includes at least one OIS lens, and each of the OIS lens groups is of a concave lens or a convex lens.
  • the types of OIS lenses in the OIS lens set include concave and convex lenses.
  • the moving distance of the OIS lens group may be calculated according to the image stabilization sensitivity, the shaking angle, and the current magnification; and the OIS lens group is controlled to move the moving distance in the opposite direction of the shaking direction on the target plane.
  • the current image stabilization sensitivity of the imaging device is affected by the current focal length and the focus coordinate value (the current magnification is the ratio of the current focal length to the minimum focal length, that is, stable).
  • the image sensitivity is affected by the current magnification and the focus coordinate value. Therefore, the image stabilization accuracy of the image pickup device can be calculated according to the current magnification of the image pickup device and the current focus coordinate value, so that the accuracy of the calculated image stabilization sensitivity can be improved, according to the image stabilization.
  • Sensitivity, jitter angle, current magnification and jitter direction control the OIS lens group movement, which can effectively eliminate the effect of jitter on the captured image.
  • FIG. 2 is a flowchart of an anti-shake control method provided by an embodiment of the present application, which is applied to an image pickup apparatus with variable focal length and/or variable focus coordinate value.
  • the anti-shake control method may include the following steps.
  • Step 210 Determine a jitter angle and a jitter direction of the camera device when detecting that the camera device is shaken.
  • a motion sensor may be disposed in the imaging device.
  • the motion sensor may detect motion information, the motion information is a vector, and then send the detected motion information to a microprocessor in the imaging device.
  • the microprocessor of the imaging device receives the motion information, and determines an angle and a direction of movement of the imaging device according to the motion information; when the angle is less than a predetermined angle, determining that the imaging device is shaken, determining a moving angle as The angle of jitter of the camera device jitter, and the direction in which the camera device is shaken according to the direction.
  • the motion sensor can be a gyroscope or an electronic compass.
  • the motion information may be an angular velocity detected by the gyroscope;
  • the motion information may be the magnetic information detected by the electronic compass.
  • the gyroscope when the imaging device is shaken, the gyroscope can detect the angular velocity of the gyroscope during the shaking process, and transmit the detected angular velocity to the microprocessor in the imaging device, which is described herein.
  • the angular velocity is a vector, including the velocity value of the angular velocity and the velocity direction.
  • the implementation of this step may be: when the microprocessor in the imaging device receives the angular velocity of the gyroscope feedback, calculate the angle and direction of the movement of the imaging device according to the angular velocity; when the angle is less than the predetermined angle, it is determined that the imaging device has occurred. Jitter, the angle of movement is determined as the angle of jitter of the camera device jitter, and the direction is determined as the direction in which the camera device shakes.
  • Step 220 Acquire a first object distance, a second object distance, a first focus coordinate value, and a second focus coordinate value according to the current magnification, the current focus coordinate value, and the first curve set, where the current focus coordinate value is located at the first focus coordinate value. And the second focus coordinate value.
  • the current magnification refers to the ratio between the current focal length of the imaging device and its minimum focal length.
  • the user sends an instruction to adjust the magnification to the imaging device, and the imaging device adjusts the focal length according to the magnification indicated by the instruction, and the ratio of the adjusted focal length to the minimum focal length is the magnification indicated by the instruction.
  • the microprocessor in the camera device After adjusting the focal length, the microprocessor in the camera device performs autofocus and continuously adjusts the focus coordinate value (English: focus), so that the object captured by the camera device can be clearly imaged, that is, a clear image is obtained. The microprocessor stops adjusting the focus coordinate value when it determines that the captured image is clear.
  • the current focal length and the minimum focal length of the imaging device may be acquired from the imaging device, and the current magnification of the imaging device is acquired according to the current focal length and the minimum focal length.
  • the current focus coordinate value is a focus coordinate value after the microprocessor stops adjusting.
  • the current focus coordinate value can be obtained from the microprocessor of the imaging device.
  • the instruction can carry the magnification indicated by the instruction.
  • the camera device changes the size of the object image in the captured picture by adjusting the focal length; after adjusting the focal length, the object image in the captured picture is focused by adjusting the focus coordinate value to make the object in the captured picture The image becomes clear.
  • the surveillance camera sends the captured image to the monitoring terminal (for example, a computer), and the monitoring personnel can view the image captured by the surveillance camera in real time on the monitoring terminal.
  • the monitoring personnel can use the monitoring terminal to send an instruction to increase the magnification to the monitoring camera, and the monitoring camera increases the focal length according to the instruction to achieve the magnification increase and auto focus.
  • a first curve set is stored in the camera device, the first curve set includes M colored light focusing curves, each colored light focusing curve corresponds to an object distance, a total of M object distances, and M is a preset integer value, for example, M may It is a value of 100, 90 or 80.
  • the object distance referred to herein refers to the distance between the object and the zoom lens in the image pickup apparatus, and may be the distance between the object and the outermost zoom lens in the image pickup apparatus.
  • the colored light focusing curve is a function of the magnification and the focus coordinate value, and the coordinate value of the point on each colored light focusing curve is composed of the magnification and the focus coordinate value.
  • the imaging device shoots the object whose object distance is the object distance corresponding to the colored light focusing curve. , able to capture clear images.
  • the illustration is based on the fact that only three colored light focusing curves are stored in the imaging device. In fact, the number of colored light focusing curves stored in the imaging device can be more.
  • the colored light focusing curve indicated by reference numeral 31 corresponds to the object distance of 20 m
  • the colored light focusing curve indicated by the reference numeral 32 corresponds to the object distance of 10 m
  • the colored light focusing curve indicated by the reference numeral 33 corresponds to the object. Distance 3m.
  • the colored light focusing curves indicated by reference numerals 31, 32, and 33 are referred to as colored light focusing focusing curves 31, 32, and 33, respectively.
  • the coordinate of the point 34 on the colored light focusing curve 33 includes the magnification z 1 , and the focus coordinate value is d 1 , indicating that the imaging device has the object distance when the magnification of the imaging device is z 1 and the focus coordinate value is d 1 .
  • the 3m target is shot and a clear image can be obtained.
  • the implementation of this step may be: calculating M focus coordinate values according to the current magnification and each colored light focus curve in the first curve set, selecting from the M focus coordinate values that are greater than or equal to the current focus coordinate value and current focus a first focus coordinate value closest to the coordinate value, selecting a second focus coordinate value that is less than or equal to the current focus coordinate value and closest to the current focus coordinate value from the M focus coordinate values; acquiring the current magnification and the first focus coordinate a first colored light focusing curve corresponding to the value and a second colored light focusing curve corresponding to the current magnification and the second focusing coordinate value; obtaining the first object distance and the second colored color corresponding to the first colored light focusing curve from the first curve set The second object distance corresponding to the light focusing curve.
  • the current magnification is z 1
  • the corresponding focus coordinate value of z 1 in the colored light focusing curve 33 is d 1
  • the focus coordinate value corresponding to the colored light focusing curve 32 of z 1 is d 2
  • the focus coordinate value corresponding to the colored light focusing curve 31 is d 4 . If the current focus coordinate value is d 3 and d 1 >d 3 >d 2 >d 4 , then d 1 is the first focus coordinate value, and d 2 is the second focus coordinate value.
  • the first object distance corresponding to the focus curve 33 is 3 m and the second object distance corresponding to the second colored light focusing curve 32 is 10 m.
  • the imaging device can clearly capture the object whose object distance from the zoom lens is equal to the first object distance when the focus coordinate value is the first focus coordinate value. And, the imaging device can clearly capture the object whose object distance from the zoom lens is equal to the second object distance when the focus coordinate value thereof is the second focus coordinate value. Since the imaging device can clearly capture the target of the current object distance under the current focus coordinate value, the first focus coordinate value is greater than or equal to the current focus coordinate value, and it can be inferred that the current object distance is greater than or equal to the first object distance; The focus coordinate value is less than or equal to the current focus coordinate value, and it can be inferred that the current object distance is less than or equal to the second object distance.
  • the first object distance obtained is 3 m and the second object distance is 10 m.
  • the current focus coordinate value d 3 ⁇ d 1 it can be seen that the current object distance is greater than or equal to the first object distance corresponding to the first colored light focus curve 33 by 3 m; the current focus coordinate value d 3 >d 2 , and the current object distance is less than or
  • the second object distance corresponding to the second colored light focusing curve 32 is 10 m, so that the current object distance can be inferred to be between 3 m and 10 m.
  • Step 230 Calculate the first factor and the second factor according to the current magnification, the first factor curve of the first object distance, and the second factor curve of the second object distance.
  • the camera device further stores a second curve set, where the second curve set includes a factor curve of the M object distances, and the factor curve is a function curve of the magnification and the factor.
  • the imaging device not only stores the colored light focusing curve corresponding to the object distance L m but also stores the object distance L m . Corresponding factor curve.
  • the factor is used to reflect the effect of the OIS lens group per unit distance of movement on the image frame offset in the case of different magnification and focus coordinate values.
  • the factor curve corresponding to the object distance L m can be obtained by the following operation flow:
  • Flow 1 Adjust the magnification of the imaging device to the maximum magnification z 0 , place the target (for example, a piece of white paper) at the outermost zoom lens L m of the imaging device, adjust the OIS lens group to the initial position, and capture the image.
  • the device automatically shoots a clear image p m11 , adjusts the OIS lens group to move a distance d, and takes a clear image p m12 again, and calculates the pixel point of the image p m12 and the image p m11 offset in the moving direction of the OIS lens group.
  • the quantity y 0 Adjust the magnification of the imaging device to the maximum magnification z 0 , place the target (for example, a piece of white paper) at the outermost zoom lens L m of the imaging device, adjust the OIS lens group to the initial position, and capture the image.
  • the device automatically shoots a clear image p m11 , adjusts the OIS lens group to move a distance d
  • the magnification of the camera device is adjusted by adjusting the focal length of the camera device.
  • the magnification of the imaging apparatus is also adjusted to the maximum magnification z 0 .
  • the direction of movement of the OIS lens set here is parallel to a lens in the OIS lens set and points upward.
  • the distance d can be a preset distance value or can be a random value.
  • Flow 2 Adjust the magnification of the camera to other magnifications z n , adjust the OIS lens group to the initial position, the camera device performs autofocus to capture a clear image p m21 , adjusts the OIS lens group to move a distance d, and shoots another
  • the image p m22 calculates the number y n of pixel points at which the image p m22 and the image p m21 are shifted in the moving direction of the OIS lens group.
  • the method of adjusting the magnification of the imaging device to other magnifications z n may be various.
  • other magnifications z n can be obtained by the imaging apparatus by reducing the focal length thereof; in implementation, the imaging apparatus can reduce its focal length by a preset value, or randomly reduce its focal length by a certain value to obtain other magnifications z n .
  • Process 4 The object distance determined plurality of points on the curve factor corresponding to L m, L m automatic product from a factor corresponding to the curve.
  • the imaging device also stores a virtual parameter T corresponding to each object distance, and the virtual parameter T satisfies the relationship in the imaging device.
  • f is the focal length of the imaging device
  • SR is the image stabilization sensitivity
  • m is a factor.
  • the virtual parameter is a parameter for indicating the effect of eliminating the jitter.
  • a dummy parameter T is set in the imaging apparatus and the imaging magnification is adjusted to the maximum apparatus z 0.
  • the imaging device is placed on the vibration table, and the imaging device is shaken by the vibration of the vibration table.
  • moving the OIS lens group in a direction opposite to the shaking direction on the target plane according to the calculated moving distance to eliminate the jitter, and acquiring an image captured by the imaging device, thus obtaining the set virtual parameter T corresponding to the set virtual parameter T image.
  • the parameter T is set to the virtual distance L m parameter corresponding to the virtual object images corresponding to T m.
  • the above virtual parameters can be set by a technician, and one image that eliminates the best jitter can also be selected by a technician.
  • step 230 can be implemented by the following sub-steps:
  • Step S1 Acquire a first factor curve corresponding to the first object distance from the second curve set, and determine a first factor corresponding to the current magnification in the first factor curve.
  • a first factor curve corresponding to the first object distance of 3 m (indicated by reference numeral 35) is obtained, and the first factor m 1 corresponding to the current magnification z 1 on the first factor curve is determined.
  • Step S2 Obtain a second factor curve corresponding to the second object distance from the second curve set, and determine a second factor corresponding to the current magnification in the second factor curve.
  • a second factor curve corresponding to the second object distance 10m (indicated by reference numeral 36) is obtained, and the second factor m 2 corresponding to the current magnification z 1 on the second factor curve is determined.
  • Step 240 Calculate a current image stabilization sensitivity of the imaging device according to the current magnification, the current focus coordinate value, the first focus coordinate value, the second focus coordinate value, the first factor, and the second factor.
  • This step can be implemented by the following three steps (1)-(3), respectively:
  • the third factor is represented by m 3
  • the third factor m 3 according to the first focus coordinate value d 1 , the second focus coordinate value d 2 , the current focus coordinate value d 3 , the first factor m 1 and the second factor m 2 .
  • the value of the third factor m 3 is calculated.
  • the first virtual parameter T m1 corresponding to the first object distance and the second virtual parameter T m2 corresponding to the second object distance are stored in the imaging device. Therefore, the first virtual parameter T m1 corresponding to the first object distance and the second virtual parameter T m2 corresponding to the second object distance can be directly obtained from the imaging device.
  • the third virtual parameter T m3 corresponding to the current object distance is calculated.
  • the image capturing of the target object of the current object distance has the best anti-shake effect.
  • the minimum focal length of the camera device can be obtained, and the current focal length f is calculated according to the current magnification and the minimum focal length, and the calculation formula is used.
  • the current image stabilization sensitivity SR of the imaging device is obtained.
  • Step 250 Calculate the moving distance of the optical anti-shake OIS lens group according to the current image stabilization sensitivity, the shake angle, and the current focal length.
  • the moving distance D of the OIS lens group can be calculated by the following formula.
  • is the jitter angle at which the imaging device shakes when it is shaken
  • f is the current focal length when the imaging device is shaken.
  • Step 260 controlling the OIS lens group to move the moving distance in a direction opposite to the shaking direction on the target plane.
  • the direction of the jitter includes an upward jitter direction or a downward jitter direction.
  • the OIS lens group can be controlled to move the moving distance downward on the target plane.
  • the OIS lens group can be controlled to move the moving distance upward on the target plane.
  • the OIS lens group may be far away from the initial position, at which time the light that illuminates the edge of the focal plane is more than the light that illuminates the center of the focal plane. The distance is far away, so that the light that illuminates the edge of the focal plane is darker than the light that illuminates the center of the focal plane, which tends to cause vignetting around the image.
  • the imaging device determines whether the current position of the OIS lens group exceeds the position range of the OIS lens group during the movement of the OIS lens group, and if it is exceeded, stops moving the OIS lens group.
  • the foregoing operation of determining whether the current position of the OIS lens group exceeds the position range of the OIS lens group may be implemented by several steps shown in FIG. 4 .
  • Step 2601 obtaining a position range of the OIS lens group according to the current magnification.
  • the corresponding relationship between the range of the focal length and the position range is stored in advance in the imaging device.
  • the range of each focal length in the correspondence and the range of positions corresponding to the range of each focal length may be set by a technology developer.
  • the current focal length of the imaging device is calculated according to the current magnification, the range of the current focal length is determined, and the position range of the OIS lens group is obtained from the correspondence between the range of the focal length and the position range according to the range of the current focal length. .
  • a two-dimensional coordinate system is established inside the imaging device, wherein the direction of the coordinate axis x of the two-dimensional coordinate system is parallel to an OIS lens in the OSI lens group, and the origin is located on the optical center of the zoom lens.
  • Each of the range of positions described herein includes a first range of values of x and a second range of values of y.
  • the origin of the two-dimensional coordinate system is located at the optical center of the zoom lens, that is, the OIS lens group is at the origin when the OIS lens group is in the initial position, and the OIS lens group position here can be the center light of the OIS lens group.
  • the range of positions corresponding to the range of each focal length stored in the imaging device can be set in advance as follows:
  • the control OIS lens group moves in the negative direction of the coordinate axis x.
  • the coordinate value of the OIS lens group in the y-axis is always 0, and the position of the OIS lens group is determined on the coordinate axis x when the vignetting angle of the captured image is determined. Corresponding coordinate value x1.
  • the case where the image has a vignetting angle means that when there is at least one pixel in the pixel located at the edge of the image, the brightness of the pixel is lower than half of the brightness of the pixel located at the center of the image, and the image is considered to have a vignetting angle.
  • the pixel points at the edge of the image as referred to herein include other pixels than the pixels located at the center of the image.
  • the OIS lens group is controlled to move in the positive direction of the coordinate axis x, and at this time, the coordinate value of the OIS lens group in the y-axis is always 0, and the position of the OIS lens group corresponding to the coordinate axis x is determined when the vignetting angle of the captured image is determined.
  • the coordinate value x2, the coordinate value x of the coordinate value x is greater than x1 and less than x2, which can be expressed as (x1, x2).
  • the OIS lens group is controlled to move in the negative direction of the coordinate axis y, and at this time, the coordinate value of the OIS lens group on the x-axis is always 0, and the position of the OIS lens group corresponding to the coordinate axis y is determined when the vignetting angle of the captured image is determined.
  • Coordinate value y1 Then control the OIS lens group to move in the positive direction of the coordinate axis y, and at this time, the coordinate value of the OIS lens group on the x-axis is always 0, and determine the position of the OIS lens group on the coordinate axis y when the vignetting angle of the captured image is determined.
  • the coordinate value y2 when the vignetting angle is not obtained, the value range of y is greater than y1 and less than y2, which can be expressed as (y1, y2).
  • [H*x1, H*x2] is determined as the first range corresponding to the range of the focal length
  • [H*y1, H*y2] is determined as the second range corresponding to the range of the focal length.
  • H is the preset coefficient
  • * indicates the multiplication operation
  • [H*x1, H*x2] indicates the range greater than or equal to H*x1 and less than or equal to H*x2
  • [H*y1, H*y2] Represents a range greater than or equal to H*y1 and less than or equal to H*y2.
  • the value of the preset coefficient H may be a value of 0.9, 0.8, or 0.7. Assuming that the value of H is 0.8, the technician determines [0.8*x1, 0.8*x2] as the first range corresponding to the range of the focal length range, and [0.8*y1, 0.8*y2] is determined as the range corresponding to the focal length. The second range. The range of positions corresponding to the range of each of the other focal lengths in the image pickup apparatus can be obtained as described above.
  • Step 2602 in the process of controlling the movement of the OIS lens group, determine whether the current position of the OIS lens group exceeds the acquired position range, and if it is exceeded, stop continuing to move the OIS lens group.
  • the acquired range of positions includes a first range of x-axis coordinates and a second range of y-axis coordinates.
  • the implementation of this step may be: in the process of controlling the movement of the OIS lens group, real-time detecting whether the x-axis coordinate value of the current position of the OIS lens group exceeds the first range, and whether the y-axis coordinate value of the current position of the OIS lens group is Beyond the second range, when it is detected that the first range or the second range is exceeded, the continued movement of the OIS lens group is stopped.
  • the imaging device detects whether the range of the focal length of the imaging device changes every other frame time, and when it detects that the range of the camera device changes, step 2601 is performed.
  • control force for controlling the movement of the OIS lens group is adjusted according to the angle between the central optical axis of the OIS lens group and the direction of gravity.
  • the camera device includes a driving motor, and the driving motor is used to drive the OIS lens group to move, so according to the angle between the central optical axis of the OIS lens group and the gravity direction, the operating current of the driving motor is adjusted to achieve adjustment. Controlling the movement of the OIS lens set.
  • the above operation of adjusting the operating current can be implemented by several steps shown in FIG. 6.
  • Step 2603 obtaining an angle between an optical axis of the OIS lens group and a gravity direction.
  • Step 2604 determining the gravity component of the gravity of the OIS lens group on the target plane according to the gravity of the OIS lens group and the angle.
  • Step 2605 increasing or decreasing the operating current of the driving motor according to the gravity component and the shaking direction.
  • the drive motor Since the OIS lens group moves in the opposite direction of the shaking direction, the drive motor provides a control force for controlling the movement of the OIS lens group. Therefore, when the dithering direction is the upward dithering direction, the driving motor drives the OIS lens group to move downward. At this time, the operating current of the driving motor is reduced according to the gravity component G*sin ⁇ , so as to reduce the driving motor for providing the OIS lens group.
  • the control force of the movement when the direction of the shaking is the direction of the downward shaking, the driving motor drives the OIS lens group to move upward, and at this time, the operating current of the driving motor is increased according to the gravity component G*sin ⁇ to increase the driving motor for providing control. OIS lens group movement control.
  • is the angle between the central optical axis of the OIS lens group and the direction of gravity
  • G is the gravity of the OIS lens group.
  • the camera device is usually installed on the pan/tilt, and the camera device can control the pan/tilt to rotate, thereby achieving the purpose of rotating the camera device and changing the shooting direction of the camera device.
  • the motion sensor of the camera device also detects the motion information, and sends the detected motion information to the microprocessor, and the microprocessor may erroneously detect that the camera device is shaken, in the opposite direction to the rotation of the camera device.
  • the direction of moving the OIS lens group caused a delay in its captured image.
  • the pan/tilt of the imaging device controls the rotation of the imaging device.
  • the steps 210 to 260 are performed, and when it is determined that the pan-tilt control camera device is rotated, the image is stopped. Perform the steps of 210 to 260 above.
  • the problem can be solved by performing several steps as shown in FIG.
  • Step 710 Receive a rotation instruction, the imaging device stops anti-shake, and the imaging device rotates through the pan-tilt according to the rotation instruction.
  • Stopping the anti-shake is to stop the flow of the embodiment shown in Fig. 2.
  • the monitoring personnel can send a rotation command to the camera device at the monitoring end, and the rotation command includes a rotation direction of the pan/tilt head and a rotation angle.
  • the imaging device turns off its anti-shake function. That is to say, in the process of controlling the rotation of the image pickup apparatus, even if the image pickup apparatus receives the angular velocity transmitted by the gyroscope, any one of steps 210 to 260 is not performed, but step 720 can be performed.
  • Step 720 controlling the OIS lens group to be relatively stationary within the imaging device, or controlling the OIS lens group to move to the initial position at a preset speed.
  • the camera device can provide the user with a first level and at least one second level.
  • the step of performing the control OIS lens group is relatively static in the imaging device; when the user selects the second level in advance At this step, the step of controlling the movement of the OIS lens group to the initial position at a preset speed is performed in this step, and the preset speed corresponds to the second level selected by the user.
  • the OIS lens group since the OIS lens group remains stationary, it can ensure that the image captured by the camera device has no delay, but the camera device is moved below the initial position after the movement, and if the camera device is up, If the camera shakes, the camera device will control the OIS lens group to continue to move downward, resulting in an increase in the distance of the OIS lens group from the initial position. At this time, the image captured by the camera device may have a vignetting angle, or, because the current position of the OIS lens group is exceeded.
  • the position range of the OIS lens group causes the OIS lens group not to move the distance D in the direction of the shake, and the problem of blurring of the captured image occurs.
  • the moving direction of the OIS lens group may be the same as the direction in which the imaging device rotates, which may easily cause delay of the captured image.
  • the larger the preset speed corresponding to the second level selected by the user the more obvious the delay effect.
  • it is possible to ensure that the distance of the OIS lens group from the initial position is reduced when the imaging apparatus stops moving, which reduces the possibility of occurrence of a vignetting angle or blurring of a captured image.
  • Step 730 after controlling the camera device to stop moving, waiting for a preset time, and turning on the anti-shake function.
  • the preset time is set by the system developer.
  • the pan/tilt may continue to rotate due to its motion inertia.
  • the camera device After controlling the camera device to stop moving, after waiting for the preset time, the camera device has stopped rotating, and the anti-shake function is turned on at this time, so that the camera device can detect the rotation when the camera device is rotated by the inertia.
  • the OIS lens group is controlled to move in the opposite direction of the rotation direction of the imaging device to avoid the problem of image delay.
  • the anti-shake control method because the current image stabilization sensitivity of the imaging device is affected by the current focal length and the current focus coordinate value, (the current magnification is the ratio of the current focal length to the minimum focal length, that is, It is said that the image stabilization sensitivity is affected by the current magnification and the current focus coordinate value. Therefore, the image stabilization sensitivity of the image pickup device is calculated according to the current magnification of the image pickup device and the current focus coordinate value, so that the calculated image stabilization sensitivity is accurate, and then according to the image stabilization image. Sensitivity, jitter angle, and current magnification calculate the moving distance of the OIS lens group, which improves the accuracy of the calculated moving distance, thereby effectively eliminating the influence of jitter on the captured image.
  • an embodiment of the present application provides an anti-shake control apparatus 800.
  • the apparatus 800 includes a determination module 801, a calculation module 802, and a first control module 803.
  • a determining module 801 configured to determine a jitter angle and a jitter direction of the camera device when detecting that the camera device is shaken;
  • the calculating module 802 is configured to calculate a current image stabilization degree of the image capturing device according to a current magnification of the image capturing device and a current focus coordinate value;
  • the first control module 803 is configured to control the movement of the optical anti-shake lens group according to the image stabilization sensitivity, the shaking angle, the current magnification, and the shaking direction, wherein the optical anti-shake lens group includes at least one optical image stabilization
  • each of the optical anti-shake lens groups is of a concave lens or a convex lens, or the type of the optical anti-shake lens in the optical anti-shake lens group includes a concave lens and a convex lens.
  • the first control module 803 includes:
  • a first calculating unit configured to calculate a moving distance of the optical anti-shake lens group according to the image stabilization sensitivity, the shaking angle, and the current magnification
  • control unit configured to control the optical anti-shake lens group to move the moving distance in a direction opposite to the shaking direction on a target plane, the target plane being through the optical anti-shake lens group and perpendicular to the optical The plane of the central optical axis of the anti-shake lens set.
  • the first calculating unit is configured to:
  • D is the moving distance
  • f is the current focal length
  • is the shaking angle
  • SR is the image stabilization sensitivity
  • the imaging device stores a first curve set and a second curve set, where the first curve set includes a colored object focus curve of M object distances, and the second curve set includes the M items
  • the factor curve of the distance, M is an integer greater than one;
  • the colored light focusing curve of each object distance in the first curve set is a function curve of the magnification and the focus coordinate value
  • the factor curve of each object distance in the second curve set is a function of the magnification and the factor.
  • the calculating module 802 includes:
  • a first acquiring unit configured to acquire a first object distance, a second object distance, a first focus coordinate value, and a second focus coordinate value according to the current magnification, the current focus coordinate value, and the first curve set,
  • the current focus coordinate value is located between the first focus coordinate value and the second focus coordinate value;
  • a second calculating unit configured to calculate a first factor and a second factor according to the current magnification, a first factor curve of the first object distance, and a second factor curve of the second object distance;
  • a third calculating unit configured to calculate, according to the current magnification, the current focus coordinate value, the first focus coordinate value, the second focus coordinate value, the first factor, and the second factor The current image stabilization of the camera device.
  • the first acquiring unit is configured to:
  • the third calculating unit is configured to:
  • the first formula is: Where d 1 is the first focus coordinate value, d 2 is the second focus coordinate value, d 3 is the current focus coordinate value, m 1 is the first factor, m 2 is the second factor, and m 3 is the third factor;
  • T m1 is the first virtual parameter
  • T m2 is the second virtual parameter
  • T m3 is the third virtual parameter
  • the third formula is: Where f is the current focal length and SR is the image stabilization sensitivity.
  • the device 800 further includes:
  • a judging module configured to determine whether a current position of the optical anti-shake lens group exceeds a position range of the optical anti-shake lens group during control of movement of the optical anti-shake lens group, and if it is exceeded, stop moving The optical anti-shake lens set.
  • the device 800 further includes:
  • an acquiring module configured to acquire a position range of the optical anti-shake lens group according to the current magnification.
  • the determining module 801 is configured to:
  • the device 800 further includes:
  • a second control module configured to control the optical anti-shake lens group to be relatively stationary in the imaging device when determining that the pan-tilt controls the rotation of the imaging device, or to control the optical defense at a preset speed
  • the shake lens group moves to the initial position.
  • the device 800 further includes:
  • an adjusting module configured to adjust the movement of the optical anti-shake lens group according to an angle between a central optical axis of the optical anti-shake lens group and a gravity direction when controlling movement of the optical anti-shake lens group Control.
  • the imaging device includes a driving motor, and the driving motor is configured to drive the optical anti-shake lens group to move,
  • the adjusting module is configured to adjust an operating current of the driving motor according to an angle between a central optical axis of the optical anti-shake lens group and a gravity direction to implement adjustment for controlling the optical anti-shake lens group The control of movement.
  • the adjusting module includes:
  • a second acquiring unit configured to acquire an angle between a central optical axis of the optical anti-shake lens group and a gravity direction
  • a determining unit configured to determine a gravity component of the gravity in the target plane according to gravity of the optical anti-shake lens group and the included angle
  • an adjusting unit configured to increase or decrease an operating current of the driving motor according to the gravity component and the moving direction.
  • FIG. 9 is a block diagram of an apparatus 900 for anti-shake control, according to an exemplary embodiment.
  • the device 900 may be a smart phone, a tablet computer, a smart TV, an e-book reader, a laptop portable computer, a desktop computer, a surveillance camera, a video camera, a camera, and the like.
  • device 900 can include one or more of the following components: processing component 902, memory 904, power component 906, multimedia component 908, audio component 910, input/output (I/O) interface 912, sensor component 914, And a communication component 916.
  • Processing component 902 typically controls the overall operation of device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 902 can include one or more processors 920 to execute instructions to perform all or part of the steps described above.
  • processing component 902 can include one or more modules to facilitate interaction between component 902 and other components.
  • processing component 902 can include a multimedia module to facilitate interaction between multimedia component 908 and processing component 902.
  • Memory 904 is configured to store various types of data to support operation at device 900. Examples of such data include instructions for any application or method operating on device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 906 provides power to various components of device 900.
  • Power component 906 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 900.
  • the multimedia component 908 includes a screen between the device 900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 908 includes a front camera and/or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 910 is configured to output and/or input an audio signal.
  • audio component 910 includes a microphone (MIC) that is configured to receive an external audio signal when device 900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 904 or transmitted via communication component 916.
  • the audio component 910 also includes a speaker for outputting an audio signal.
  • the I/O interface 912 provides an interface between the processing component 902 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 914 includes one or more sensors for providing device 900 with various aspects of status assessment.
  • sensor component 914 can detect an open/closed state of device 900, a relative positioning of components, such as the display and keypad of device 900, and sensor component 914 can also detect a change in position of one component of device 900 or device 900. The presence or absence of user contact with device 900, device 900 orientation or acceleration/deceleration, and temperature variation of device 900.
  • Sensor assembly 914 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 914 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 916 is configured to facilitate wired or wireless communication between device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 916 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 916 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 904 comprising instructions executable by processor 920 of apparatus 900 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium that, when executed by a processor of apparatus 900, enables apparatus 900 to perform an anti-shake control method.
  • the anti-shake control device provided in the above embodiment is only exemplified by the division of the above-mentioned functional modules. In actual applications, the functions may be allocated by different functional modules as needed. Upon completion, the internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
  • the anti-shake control device and the anti-shake control method embodiment are provided in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本申请公开了一种防抖控制方法和装置,属于监控领域。所述方法包括:在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向;根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备当前的稳像感度;根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,所述光学防抖镜片组包括至少一个光学防抖镜片,所述光学防抖镜片组中的每个光学防抖镜片的类型为凹镜片或凸镜片,或者,所述光学防抖镜片组中的光学防抖镜片的类型包括凹镜片和凸镜片。本申请能够提高摄像设备消除其抖动对拍摄影像的影响。

Description

防抖控制方法和装置
本申请要求于2017年5月9日提交中国国家知识产权局、申请号为201710322554.7、发明名称为“防抖控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及监控领域,特别涉及一种防抖控制方法和装置。
背景技术
监控摄像机在拍摄过程中,可能会收到其所在环境的影响而发生抖动,例如,桥梁上有车辆通过时,安装在该桥梁上的监控摄像机可能会发生抖动,此时监控摄像机拍摄的影像会变得模糊。
发明内容
本申请实施例提供了一种防抖控制方法和装置,用于能够有效消除抖动对拍摄影像的影响。所述技术方案如下:
第一方面,提供了一种防抖控制方法,所述方法包括:
在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向;
根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备当前的稳像感度;
根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,所述光学防抖镜片组包括至少一个光学防抖镜片,所述光学防抖镜片组中的每个光学防抖镜片的类型为凹镜片或凸镜片,或者,所述光学防抖镜片组中的光学防抖镜片的类型包括凹镜片和凸镜片。
第二方面,提供了一种防抖控制装置,所述装置包括:
确定模块,用于在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向;
计算模块,用于根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备当前的稳像感度;
第一控制模块,用于根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,所述光学防抖镜片组包括至少一个光学防抖镜片,所述光学防抖镜片组中的每个光学防抖镜片的类型为凹镜片或凸镜片,或者,所述光学防抖镜片组中的光学防抖镜片的类型包括凹镜片和凸镜片。
第三方面,提供了一种防抖控制装置,所述装置包括:
至少一个处理器;和
至少一个存储器;
所述至少一个存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述至少一个处理器执行,所述一个或多个程序包含用于进行第一方面或第一方面中的任一可选的方法的指令。
第四方面,提供了一种非易失性计算机可读存储介质,用于存储计算机程序,所述计算机程序通过处理器进行加载来执行第一方面或第一方面中的任一可选的方法的指令。
本申请实施例提供的技术方案带来的有益效果是:
摄像设备当前的稳像感度受到其当前倍率以及对焦坐标值影响,因此根据摄像设备的当前倍率以及当前对焦坐标值计算摄像设备的稳像感度,提高了计算出的稳像感度的准确度,因此根据该稳像感度、抖动角度、当前倍率和抖动方向控制OIS镜片组移动,从而能够有效消除抖动对拍摄影像的影响。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本申请一个实施例中提供摄像设备的结构示意图;
图1B是本申请一个实施例中提供的防抖控制方法流程图;
图2是本申请另一个实施例中提供的防抖控制方法流程图;
图3是本申请一个实施例中提供的曲线示意图;
图4是本申请一个实施例中控制OIS镜片组移动的示意图;
图5是本申请一个实施例中提供的OIS镜片组示意图;
图6是本申请一个实施例中提供的补偿控制力示意图;
图7是本申请一个实施例中提供的PT运动方法流程图;
图8是本申请一个实施例中提供的防抖控制装置结构示意图;
图9是本申请一个实施例中提供的一种装置结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。文中所讲的“摄像设备”可以包括智能手机、平板电脑、智能电视、电子书阅读器、膝上型便携计算机、台式计算机、监控摄像机、摄像机、照相机等等具备拍摄功能的电子设备。
在对本申请的实施例进行详细说明之前,首先对本申请实施例中涉及的一些概念或设备功能或计算公式进行如下说明:
1、如图1A所示,摄像设备内设置有变焦镜头11、OIS镜片组12以及焦平面13。OIS镜片组12通常处于初始位置,当OIS镜片组12处于初始位置时,OIS镜片组12的中心光轴和变焦镜头11的中心光轴在同一直线上。OIS是“Optical Image Stabilization”的缩写,业界俗称光学防抖。
摄像设备在拍摄前通过变焦镜头11来变换拍摄影像的焦距。在拍摄时,摄像设备拍摄的光线可以穿过变焦镜头11和OIS镜片组12投射到焦平面13上,并在焦平面13上形成影像。在拍摄过程中,摄像设备可以通过OIS镜片组12消除抖动对拍摄影像的影响。
2、防抖:摄像设备在检测到其发生抖动时,通过控制摄像设备内的OIS镜片组12在目标平面内沿抖动方向相反的方向相反的方向移动,以消除抖动导致其拍摄影像模糊的影响。
目标平面为经过OIS镜片组与垂直于OIS镜片组的中心光轴的平面。OIS镜片组包括至少一个OIS镜片,OIS镜片组中的每个OIS镜片的类型为凹镜片或凸镜片,或者,OIS镜片组中的OIS镜片的类型包括凹镜片和凸镜片。
3、摄像设备在检测到其发生抖动时,需要计算OIS镜片组12在抖动方向上的移动距离D,
Figure PCTCN2018085859-appb-000001
α为摄像设备发生抖动时的抖动角度,f 为摄像设备发生抖动时的焦距,稳像感度SR为OIS镜片组12每移动单位距离,OIS镜片组12的光轴与焦平面的交点在焦平面13上移动的距离。由于
Figure PCTCN2018085859-appb-000002
且摄像设备抖动时抖动角度很小,大多数情况下小于0.1°,由此可推断出tanα=α,从而得出
Figure PCTCN2018085859-appb-000003
可选的,单位距离可以为1mm,2mm或3mm等数值。
请参考图1B,其示出了本申请一个实施例提供的防抖控制方法的流程图,该防抖控制方法应用于焦距可变和/或对焦坐标值可变的摄像设备中。如图1B所示,该防抖控制方法可以包括如下几个步骤。
步骤110,在检测到摄像设备发生抖动时,确定摄像设备抖动的抖动角度和抖动方向。
步骤120,根据摄像设备的当前倍率以及当前对焦坐标值计算摄像设备当前的稳像感度。
步骤130,根据该稳像感度、抖动角度、当前倍率和抖动方向控制OIS镜片组移动,OIS镜片组包括至少一个OIS镜片,OIS镜片组中的每个OIS镜片的类型为凹镜片或凸镜片,或者,OIS镜片组中的OIS镜片的类型包括凹镜片和凸镜片。
可选的,在本步骤中可以根据该稳像感度、抖动角度和当前倍率计算出OIS镜片组的移动距离;控制OIS镜片组在目标平面上沿该抖动方向相反的方向移动该移动距离。
综上所述,本申请实施例提供的防抖控制方法,摄像设备当前的稳像感度受到其当前焦距以及对焦坐标值影响,(当前倍率为其当前焦距与最小焦距的比值,也就是说稳像感度会受到当前倍率以及对焦坐标值影响),因此根据摄像设备的当前倍率以及当前对焦坐标值计算摄像设备的稳像感度,可以提高计算出的稳像感度的准确度,如此根据该稳像感度、抖动角度、当前倍率和抖动方向控制OIS镜片组移动,能够有效消除抖动对拍摄影像的影响。
请参考图2,其示出了本申请一个实施例提供的防抖控制方法的流程图,该防抖控制方法应用于焦距可变和/或对焦坐标值可变的摄像设备中。如图2所示,该防抖控制方法可以包括如下几个步骤。
步骤210,在检测到摄像设备发生抖动时,确定摄像设备抖动的抖动角度 和抖动方向。
摄像设备内可以设置有运动传感器,在摄像设备发生抖动时,运动传感器可以检测到运动信息,该运动信息是矢量,然后将检测到的运动信息发送给摄像设备内的微处理器。
在本步骤中,摄像设备的微处理器接收该运动信息,根据该运动信息确定摄像设备移动的角度以及方向;在该角度小于预定角度时,确定该摄像设备发生抖动,将移动的角度确定为摄像设备抖动的抖动角度,以及根据该方向确定摄像设备抖动的方向。
运动传感器可以为陀螺仪或电子罗盘等。当运动传感器为陀螺仪时,运动信息可以为陀螺仪检测的角速度;当运动传感器为电子罗盘时,运动信息可以为电子罗盘检测的磁力信息。
例如,假设摄像设备内设置有陀螺仪,在摄像设备发生抖动时,陀螺仪能够检测到抖动过程中陀螺仪的角速度,将检测到的角速度发送至摄像设备内的微处理器,这里所讲的角速度是矢量,包括角速度的速度数值以及速度方向。
本步骤的实现可以为:摄像设备内的微处理器在接收到陀螺仪反馈的角速度时,根据该角速度计算摄像设备移动的角度以及方向;在该角度小于预定角度时,确定该摄像设备发生了抖动,将移动的角度确定为摄像设备抖动的抖动角度,以及将该方向确定为摄像设备抖动的方向。
步骤220,根据当前倍率、当前对焦坐标值和第一曲线集合,获取第一物距、第二物距、第一对焦坐标值和第二对焦坐标值,当前对焦坐标值位于第一对焦坐标值和第二对焦坐标值之间。
当前倍率是指摄像设备的当前焦距与其最小焦距之间的比值。一般来讲,由用户向摄像设备下发调节倍率的指令,摄像设备根据该指令指示的倍率调整焦距,调整后的焦距与最小焦距的比值为该指令指示的倍率。调整完焦距后,摄像设备内的微处理器进行自动对焦,不断地调整对焦坐标值(英文:focus),使摄像设备拍摄的物体能够清晰成像,也即,得到清晰的影像。微处理器判断出拍摄的影像清晰时停止调整对焦坐标值。
可选的,对于当前倍率,在摄像设备调整完焦距后可以从摄像设备中获取摄像设备的当前焦距和最小焦距,根据该当前焦距和最小焦距获取摄像设备的当前倍率。
可选的,当前对焦坐标值为微处理器停止调整后的对焦坐标值。对于当前 对焦坐标值,可以从摄像设备的微处理器中获取当前对焦坐标值。
可选的,该指令可以携带该指令指示的倍率。
通常情况下,摄像设备通过调整焦距改变拍摄的图片中的物体图像大小;调整完焦距后,再通过调整对焦坐标值,对拍摄的图片中的物体图像进行对焦,以使拍摄的图片中的物体图像变的清晰。
以摄像设备为监控摄像机来举例说明,监控摄像机将其拍摄的影像发送至监控端(例如,电脑),监控人员可在监控端实时观看该监控摄像机此时拍摄的影像。监控人员可利用监控端向监控摄像机发送增大倍率的指令,监控摄像机根据该指令增加焦距来实现增大倍率以及进行自动对焦。
摄像设备内存储有第一曲线集合,第一曲线集合包括M条有色光聚焦曲线,每条有色光聚焦曲线对应于一个物距,一共M个物距,M为预设整数值,例如M可以为100、90或80等数值。这里所讲的物距是指目标物到摄像设备内的变焦镜头之间的距离,可以是目标物到摄像设备内的最外层变焦镜头之间的距离。
有色光聚焦曲线是倍率与对焦坐标值的函数曲线,每条有色光聚焦曲线上的点的坐标值由倍率和对焦坐标值组成。对于有色光聚焦曲线上的一点,在摄像设备的倍率和对焦坐标值分别为该点对应的倍率和对焦坐标值时,摄像设备对物距为该有色光聚焦曲线对应物距的目标物进行拍摄,能够拍摄得到清晰的影像。
仅以摄像设备内存储有3条有色光聚焦曲线来举例说明,实际上摄像设备内存储的有色光聚焦曲线的数量可以更多。请参见图3(1),标号31所指示的有色光聚焦曲线对应于物距20m,标号32所指示的有色光聚焦曲线对应于物距10m,标号33所指示的有色光聚焦曲线对应于物距3m。
为了便于说明,标号31、32和33所指示的有色光聚焦曲线,分别称为有色光聚光聚焦曲线31、32和33。有色光聚焦曲线33上的一点34的坐标包括的倍率为z 1,对焦坐标值为d 1,则表示在摄像设备的倍率为z 1、对焦坐标值为d 1时,摄像设备对物距为3m的目标物进行拍摄,能够得到清晰的影像。
本步骤的实现可以为:根据当前倍率和第一曲线集合中的每条有色光聚焦曲线计算M个对焦坐标值,从该M个对焦坐标值中选择大于或等于当前对焦坐标值且与当前对焦坐标值最接近的第一对焦坐标值,从该M个对焦坐标值中选择小于或等于当前对焦坐标值且与当前对焦坐标值最接近的第二对焦坐 标值;获取当前倍率和第一对焦坐标值对应的第一有色光聚焦曲线以及当前倍率和第二对焦坐标值对应的第二有色光聚焦曲线;从第一曲线集合中获取第一有色光聚焦曲线对应的第一物距和第二有色光聚焦曲线对应的第二物距。
举例来讲,仍旧参见图3(1),当前倍率为z 1,z 1在有色光聚焦曲线33中对应的对焦坐标值为d 1,z 1在有色光聚焦曲线32对应的对焦坐标值为d 2,z 1在有色光聚焦曲线31对应的对焦坐标值为d 4。若当前对焦坐标值为d 3且d 1>d 3>d 2>d 4,则d 1为第一对焦坐标值,d 2为第二对焦坐标值。
获取当前倍率z 1和第一对焦坐标值d 1对应的第一有色光聚焦曲线33以及当前倍率z 1和第二对焦坐标值d 2对应的第二有色光聚焦曲线32;获取第一有色光聚焦曲线33对应的第一物距为3m以及第二有色光聚焦曲线32对应的第二物距为10m。
需要说明的一点是,为了便于说明,摄像设备在当前倍率下,摄像设备在其对焦坐标值为第一对焦坐标值时能够清晰拍摄距离其变焦镜头的物距等于第一物距的目标物,以及,摄像设备在其对焦坐标值为第二对焦坐标值时能够清晰拍摄距离其变焦镜头的物距等于第二物距的目标物。由于摄像设备在当前对焦坐标值下也能够清晰拍摄当前物距的目标物,第一对焦坐标值大于或等于当前对焦坐标值,可推断出当前物距大于或等于第一物距;由于第二对焦坐标值小于或等于当前对焦坐标值,可推断出当前物距小于或等于第二物距。
举例来讲,获取的第一物距为3m以及第二物距为10m。又由于当前对焦坐标值d 3<d 1,可见当前物距大于或等于第一有色光聚焦曲线33对应的第一物距3m;当前对焦坐标值d 3>d 2,可见当前物距小于或等于第二有色光聚焦曲线32对应的第二物距10m,从而可推断出当前物距在3m与10m之间。
步骤230,根据当前倍率、第一物距的第一因数曲线和第二物距的第二因数曲线,计算第一因数和第二因数。
可选的,摄像设备还保存有第二曲线集合,第二曲线集合中包括M个物距的因数曲线,因数曲线是倍率与因数的函数曲线。
所以说对于该M个物距中的每个物距L m,m=1、2……M,摄像设备不仅存储了物距L m对应的有色光聚焦曲线,还存储了该物距L m对应的因数曲线。
因数用于反映在不同倍率和对焦坐标值的情况中,OIS镜片组每移动单位距离对图像画面偏移量的影响。
可选的,物距L m对应的因数曲线,可以通过如下操作流程得到:
流程1:将摄像设备的倍率调整到最大倍率z 0,在距离摄像设备的最外层变焦镜头L m处放置目标物(例如,一张白纸),将OIS镜片组调整至初始位置,摄像设备自动对焦拍摄一张清晰图像p m11,调整OIS镜片组移动一段距离d,再次拍摄一张清晰图像p m12,计算图像p m12与图像p m11在OIS镜片组移动方向上偏移的像素点的数量y 0
可选的,通过调整摄像设备的焦距来调整摄像设备的倍率。例如,将摄像设备的焦距调整到最大时,摄像设备的倍率也被调整到最大倍率z 0
为了便于统计该偏移的像素点的数量,这里OIS镜片组的移动方向平行于OIS镜片组中的一镜片且指向上方。该距离d可以是预设距离值或者可以是随机值。
流程2:将摄像设备的倍率调整至其他倍率z n,将OIS镜片组调整至初始位置,摄像设备进行自动对焦拍摄一张清晰图像p m21,调整OIS镜片组移动一段距离d,再次拍摄一张图像p m22,计算这图像p m22与图像p m21在OIS镜片组移动方向上偏移的像素点的数量y n
可选的,将摄像设备的倍率调整至其他倍率z n的方式可以多种。例如,可以由摄像设备通过减小其焦距,得到其他倍率z n;在实现时,摄像设备可以将其焦距减小预设值,或者将其焦距随机减小一定值,得到其他倍率z n
流程3:令因数Y n=y n/y 0,计算此时Y n的取值,将(z n,Y n)确定为物距L m对应的因数曲线上的一点,多次重复执行流程2后,得到物距L m对应的因数曲线上的多个点,执行流程4。
流程4:根据确定出的物距L m对应的因数曲线上的多个点,自动生成物距L m对应的因数曲线。
重复执行上述流程1至4,生成物距L 1对应的因数曲线,物距L 2对应的因数曲线,……,物距L M对应的因数曲线。
对于该M个物距,摄像设备还存储了每个物距对应的虚拟参数T,在摄像设备中虚拟参数T满足关系式
Figure PCTCN2018085859-appb-000004
f为摄像设备的焦距,SR为稳像感度,m为因数。其中,虚拟参数是用于表示消除抖动效果的参数。
对于物距L m,m=1、2……M,物距L m对应的虚拟参数T m可以通过如下方式测量得到,且在测量物距L m对应的虚拟参数T m时,令m=1,所以根据虚拟参数T满足的关系式
Figure PCTCN2018085859-appb-000005
推导出关系式SR=-f×T,测量的详细实现如下:
在距离摄像设备的最外层变焦镜头L m处放置目标物,在摄像设备中设定一个虚拟参数T以及将摄像设备的倍率调整到最大z 0。将摄像设备放置在振动台上,通过振动台的振动使摄像设备抖动。摄像设备检测出发生抖动时,获取当前焦距、抖动角度α和抖动方向,根据设定的虚拟参数T和当前焦距f计算稳像感度SR,SR=-f×T,计算出移动距离
Figure PCTCN2018085859-appb-000006
根据计算的该移动距离在目标平面上沿抖动方向相反的方向移动OIS镜片组以消除抖动,并获取摄像设备拍摄的图像,如此得到设定的虚拟参数T和该设定的虚拟参数T对应的图像。
继续设定其他多个虚拟参数,并按上述方式拍摄得到每个其他虚拟参数T对应的图像。然后从获取的所有图像中选择消除抖动最好的一个张图像,将该张图像对应的虚拟参数T设置为物距L m对应的虚拟参数T m
可选的,上述虚拟参数可以由技术人员来设定,消除抖动最好的一个张图像也可以由技术人员来选择。
重复执行上述方式得到物距L 1对应的虚拟参数T 1,物距L 2对应的虚拟参数T 2,……,物距L M对应的虚拟参数T M
可选的,步骤230可通过以下几个子步骤实现:
步骤S1,从第二曲线集合中获取第一物距对应的第一因数曲线,确定第一因数曲线中当前倍率对应的第一因数。
举例来讲,参见图3(2),获取第一物距3m对应的第一因数曲线(标号35指示),确定第一因数曲线上当前倍率z 1对应的第一因数m 1
步骤S2,从第二曲线集合中获取第二物距对应的第二因数曲线,确定第二因数曲线中当前倍率对应的第二因数。
举例来讲,仍旧参见图3(2)获取第二物距10m对应的第二因数曲线(标号36指示),确定第二因数曲线上当前倍率z 1对应的第二因数m 2
步骤240,根据当前倍率、当前对焦坐标值、第一对焦坐标值、第二对焦坐标值、第一因数和第二因数,计算摄像设备当前的稳像感度。
本步骤可以通过如下(1)-(3)三个步骤来实现,分别为:
(1),根据第一对焦坐标值、第二对焦坐标值、当前对焦坐标值、第一因数和第二因数,计算第三因数。
第一对焦坐标值、第二对焦坐标值、当前对焦坐标值、第一因数、第二因数和摄像设备当前的第三因数具备如下关系:(第一对焦坐标值-当前对焦坐 标值)/(当前对焦坐标值-第二对焦坐标值)=(第一因数-第三因数)/(第三因数-第二因数),可以根据该关系计算出第三因数。
举例来讲,若第三因数用m 3表示,则根据第一对焦坐标值d 1、第二对焦坐标值d 2、当前对焦坐标值d 3、第一因数m 1和第二因数m 2,按公式:
Figure PCTCN2018085859-appb-000007
计算出第三因数m 3的取值。
(2),根据第一对焦坐标值、第二对焦坐标值、当前对焦坐标值、第一物距对应的第一虚拟参数、第二物距对应的第二虚拟参数计算摄像设备当前物距对应的第三虚拟参数。
第一对焦坐标值、第二对焦坐标值、摄像设备的当前对焦坐标值、第一虚拟参数、第二虚拟参数和第三虚拟参数具备如下关系:(第一对焦坐标值-当前对焦坐标值)/(当前对焦坐标值-第二对焦坐标值)=(第一虚拟参数-第三虚拟参数)/(第三虚拟参数-第二虚拟参数)。
由于摄像设备内存储有第一物距对应的第一虚拟参数T m1以及第二物距对应的第二虚拟参数T m2。因此可以直接从摄像设备中获取到第一物距对应的第一虚拟参数T m1以及第二物距对应的第二虚拟参数T m2
根据第一对焦坐标值d 1、第二对焦坐标值d 2、当前对焦坐标值d 3、第一虚拟参数T m1和第二虚拟参数T m2,按公式
Figure PCTCN2018085859-appb-000008
计算出当前物距对应的第三虚拟参数T m3
其中,摄像设备的虚拟参数为第三虚拟参数T m3时,对当前物距的目标物进行图像拍摄,其防抖效果最好。
(3),根据当前倍率获取摄像设备的当前焦距,根据当前焦距、第三因数和第三虚拟参数,计算摄像设备当前的稳像感度。
可选的,可以获取摄像设备的最小焦距,根据当前倍率和最小焦距计算出当前焦距f,利用计算公式
Figure PCTCN2018085859-appb-000009
得到摄像设备当前的稳像感度SR。
步骤250,根据当前的稳像感度、抖动角度、当前焦距计算出光学防抖OIS镜片组的移动距离。
本步骤可利用以下公式计算OIS镜片组的移动距离D,
Figure PCTCN2018085859-appb-000010
α为摄像设备发生抖动时抖动的抖动角度,f为摄像设备发生抖动时的当前焦 距。
步骤260,控制OIS镜片组在目标平面上沿抖动方向相反的方向移动该移动距离。
可选的,抖动方向包括向上抖动方向或向下抖动方向等。当抖动方向为向上抖动方向时,可以控制OIS镜片组在目标平面上向下移动该移动距离。当抖动方向为向下抖动方向时,可以控制OIS镜片组在目标平面上向上移动该移动距离。
在控制OIS镜片组在目标平面沿抖动方向相反方向移动的过程中,可能导致OIS镜片组偏离初始位置较远,此时照射到焦平面边缘的光要比照射到焦平面中央的光的途经的距离较远,造成了照射到焦平面边缘的光要比照射到焦平面中央的光要暗,容易导致影像的四周出现暗角。为了避免暗角的出现,摄像设备在控制OIS镜片组移动的过程中,判断OIS镜片组的当前位置是否超出OIS镜片组的位置范围,如果超出,则停止继续移动OIS镜片组。
可选的,上述判断OIS镜片组的当前位置是否超出OIS镜片组的位置范围的操作,可以通过图4所示的几个步骤来实现。
步骤2601,根据当前倍率获取OIS镜片组的位置范围。
其中,摄像设备内预先存储了焦距的范围与位置范围的对应关系。可选的,该对应关系中的每个焦距的范围和每个焦距的范围对应的位置范围可以由技术开发人员设定。
在本步骤中,根据当前倍率计算出摄像设备的当前焦距,确定该当前焦距所在的范围,根据该当前焦距所在的范围,从焦距的范围与位置范围的对应关系中获取OIS镜片组的位置范围。
摄像设备内部建立了一个二维坐标系,其中,该二维坐标系的坐标轴x的方向平行于OSI镜片组中一OIS镜片,原点位于变焦镜头的光学中心上。这里所讲的每个位置范围包括x取值的第一范围和y取值的第二范围。
一般来讲,二维坐标系的原点位于变焦镜头的光学中心,也就是说,OIS镜片组位于初始位置时OIS镜片组位于原点,这里所讲的OIS镜片组位置可以为OIS镜片组的中心光轴与二维坐标系的交点。
摄像设备内存储的每个焦距的范围对应的位置范围,可以事先通过如下方式设定:
如图5所示,对于某一个焦距的范围,首先调整摄像设备的焦距位于该范 围内,再控制摄像设备实时拍摄图像。在拍摄过程中,控制OIS镜片组在坐标轴x负方向上移动,此时OIS镜片组在y轴的坐标值始终为0,确定拍摄图像出现暗角时OIS镜片组所在位置在坐标轴x上对应的坐标值x1。其中,图像出现暗角的情况是指在位于该图像边缘的像素点中,存在至少一个像素点的亮度低于位于该图像中心的像素点亮度的一半时,认为该图像出现了暗角。这里所讲的图像边缘的像素点包括除位于图像中心的像素点以外的其他像素点。然后再控制OIS镜片组在坐标轴x的正方向上移动,且此时OIS镜片组在y轴的坐标值仍始终为0,确定拍摄图像出现暗角时OIS镜片组所在位置在坐标轴x上对应的坐标值x2,则得到不出现暗角时坐标值x的取值范围为大于x1且小于x2,可以表示为(x1,x2)。
然后再控制OIS镜片组在坐标轴y负方向上移动,且此时OIS镜片组在x轴的坐标值始终为0,确定拍摄图像出现暗角时OIS镜片组所在位置在坐标轴y上对应的坐标值y1。再控制OIS镜片组在坐标轴y的正方向上移动,且此时OIS镜片组在x轴的坐标值仍始终为0,确定拍摄图像出现暗角时OIS镜片组所在位置在坐标轴y上对应的坐标值y2,则得到不出现暗角时y的取值范围为大于y1且小于y2,可以表示为(y1,y2)。
通常,将[H*x1,H*x2]确定为该焦距的范围对应的第一范围,将[H*y1,H*y2]确定为该焦距的范围对应的第二范围。其中,H为预设系数,*表示乘运算,[H*x1,H*x2]表示大于或等于H*x1且小于或等于H*x2的范围,同理[H*y1,H*y2]表示大于或等于H*y1且小于或等于H*y2的范围。
其中,预设系数H的取值可以为0.9、0.8或0.7等数值。假设H取值为0.8,则技术人员将[0.8*x1,0.8*x2]确定为该焦距范的范围对应的第一范围、[0.8*y1,0.8*y2]确定为该焦距的范围对应的第二范围。对于摄像设备内其他的每个焦距的范围对应的位置范围,可以按上述方式得到。
步骤2602,在控制OIS镜片组移动的过程中,判断OIS镜片组的当前位置是否超出获取的位置范围,如果超出,则停止继续移动OIS镜片组。
获取的位置范围包括x轴坐标的第一范围和y轴坐标的第二范围。本步骤的实现可以为:在控制OIS镜片组移动的过程中,实时检测OIS镜片组的当前位置的x轴坐标值是否超出该第一范围,以及OIS镜片组的当前位置的y轴坐标值是否超出该第二范围,在检测到超出该第一范围或该第二范围时,停止继续移动OIS镜片组。
需要说明的一点是,摄像设备每隔一帧时间检测摄像设备的焦距所在范围是否发生变化,在检测到其所在的范围发生变化时,执行步骤2601。
可选的,在控制OIS镜片组移动的过程中,根据OIS镜片组的中心光轴与重力方向之间的夹角,调整用于控制OIS镜片组移动的控制力。
可选的,摄像设备中包括驱动电机,驱动电机用于带动OIS镜片组移动,所以根据OIS镜片组的中心光轴与重力方向之间的夹角,调整驱动电机的工作电流,以实现调整用于控制OIS镜片组移动的控制力。
可选的,上述调整工作电流的操作可以通过图6所示的几个步骤来实现。
步骤2603,获取OIS镜片组的光轴与重力方向之间夹角。
步骤2604,根据OIS镜片组的重力以及该夹角,确定对OIS镜片组的重力在目标平面上的重力分量。
步骤2605,根据该重力分量和该抖动方向增加或减小驱动电机的工作电流。
由于OIS镜片组沿抖动方向相反的方向移动,驱动电机提供用于控制OIS镜片组移动的控制力。所以当抖动方向为向上抖动方向时,驱动电机会带动OIS镜片组向下移动,此时根据该重力分量G*sinβ减小驱动电机的工作电流,以减小驱动电机提供用于控制OIS镜片组移动的控制力;当抖动方向为向下抖动方向时,驱动电机会带动OIS镜片组向上移动,此时根据该重力分量G*sinβ增加驱动电机的工作电流,以增大驱动电机提供用于控制OIS镜片组移动的控制力。
其中β是OIS镜片组的中心光轴与重力方向之间夹角,G为OIS镜片组的重力。
摄像设备通常安装在云台上,摄像设备可通过控制云台旋转,从而达到转动摄像设备,改变摄像设备拍摄方向的目的。由于云台转动时,摄像设备的运动传感器也会检测到运动信息,将检测到的运动信息发送给微处理器,微处理器可能误测出摄像设备发生抖动,沿与摄像设备转动的方向相反的方向移动OIS镜片组,造成其拍摄图像的拖延。
为了解决该问题,可以判断摄像设备的云台是否控制摄像设备转动,在判断出云台未控制摄像设备转动时,执行上述210至260的步骤,在判断出云台控制摄像设备转动时,停止执行上述210至260的步骤。
可选的,可以通过执行如图7所示的几个步骤解决该问题。
步骤710,接收转动指令,该摄像设备停止防抖,摄像设备根据该转动指令通过云台进行转动。
停止防抖就是停止执行图2所示实施例的流程。一般来讲,监控人员可在监控端向摄像设备下发转动指令,该转动指令包括云台的转动方向以及转动角度。
具体的,摄像设备在接收到该转动指令后,关闭其防抖动功能。也就是说,在控制摄像设备转动的过程中,即使摄像设备接收到陀螺仪发送的角速度,也不会执行步骤210至步骤260中的任一步骤,但可以执行步骤720。
步骤720,控制OIS镜片组在摄像设备内相对静止,或,以预设速度控制OIS镜片组移动至初始位置。
摄像设备可向用户提供一个第一级别和至少一个第二级别,在用户预先选择了第一级别的情况下,本步骤执行控制OIS镜片组在摄像设备内相对静止;当用户预先选择第二级别时,本步骤中执行以预设速度控制OIS镜片组移动至初始位置的步骤,且预设速度与用户选择的第二级别对应。
需要说明的是,当用户选择第一级别时,由于OIS镜片组保持静止不动,能够保证摄像设备拍摄的影像无拖延,但摄像设备完成移动后在初始位置的下方,若此时摄像设备向上抖动,则摄像设备会控制OIS镜片组继续向下移动,导致OIS镜片组偏离初始位置的距离增大,此时摄像设备拍摄的影像可能会出现暗角,或者,由于OIS镜片组的当前位置超出OIS镜片组的位置范围,导致OIS镜片组未在抖动方向上移动距离D,出现拍摄影像模糊的问题。
当用户选择第二级别时,由于OIS镜片组向初始位置移动,此时OIS镜片组的移动方向可能与摄像设备转动的方向相同,容易造成摄像影像的拖延。而且,用户选择的第二级别对应的预设速度越大,拖延影响越明显。但是,能够保证摄像设备停止运动时,OIS镜片组偏离初始位置的距离减小,降低了出现暗角或者拍摄拍摄影像模糊的可能性。
步骤730,在控制摄像设备停止移动后,等待预设时间,开启防抖功能。
其中,预设时间由***开发人员设定。
由于摄像设备在控制云台旋转至目标位置后,云台可能受到其运动惯性的影响而继续转动。本步骤中,在控制摄像设备停止移动后,等待预设时间后,摄像设备已停止转动,此时才开启防抖功能,能够避免在摄像设备受到惯性影 响而转动时,摄像设备检测到该转动,控制OIS镜片组沿摄像设备的转动方向相反的方向移动,避免出现图像拖延的问题。
综上所述,本申请实施例提供的防抖控制方法,由于摄像设备当前的稳像感度受到其当前焦距以及当前对焦坐标值影响,(当前倍率为其当前焦距与最小焦距的比值,也就是说稳像感度会受到当前倍率以及当前对焦坐标值影响),因此根据摄像设备的当前倍率以及当前对焦坐标值计算摄像设备的稳像感度,使得计算出的稳像感度准确,再根据该稳像感度、抖动角度、当前倍率计算出OIS镜片组的移动距离,提高了计算出的移动距离的准确性,从而能够有效消除抖动对拍摄影像的影响。
参见图8,本申请实施例提供了一种防抖控制装置800,所述装置800包括:确定模块801、计算模块802和第一控制模块803。
确定模块801,用于在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向;
计算模块802,用于根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备当前的稳像感度;
第一控制模块803,用于根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,所述光学防抖镜片组包括至少一个光学防抖镜片,所述光学防抖镜片组中的每个光学防抖镜片的类型为凹镜片或凸镜片,或者,所述光学防抖镜片组中的光学防抖镜片的类型包括凹镜片和凸镜片。
可选的,所述第一控制模块803包括:
第一计算单元,用于根据所述稳像感度、所述抖动角度、所述当前倍率计算出光学防抖镜片组的移动距离;
控制单元,用于控制所述光学防抖镜片组在目标平面上沿所述抖动方向相反的方向移动所述移动距离,所述目标平面为经过所述光学防抖镜片组且垂直于所述光学防抖镜片组的中心光轴的平面。
可选的,所述第一计算单元,用于:
根据所述当前倍率获取所述摄像设备的当前焦距;
根据所述稳像感度、所述抖动角度和所述当前焦距,按如下公式计算出光学防抖镜片组的移动距离;
Figure PCTCN2018085859-appb-000011
其中,在上述公式中,D为所述移动距离,f为所述当前焦距、α为所述抖动角度,SR为所述稳像感度。
可选的,所述摄像设备中存储有第一曲线集合和第二曲线集合,所述第一曲线集合包括M个物距的有色光聚焦曲线,所述第二曲线集合包括所述M个物距的因数曲线,M为大于1的整数;
所述第一曲线集合中的每个物距的有色光聚焦曲线为倍率与对焦坐标值的函数曲线,所述第二曲线集合中的每个物距的因数曲线为倍率与因数的函数曲线。
可选的,所述计算模块802包括:
第一获取单元,用于根据所述当前倍率、所述当前对焦坐标值和第一曲线集合,获取第一物距、第二物距、第一对焦坐标值和第二对焦坐标值,所述当前对焦坐标值位于所述第一对焦坐标值和所述第二对焦坐标值之间;
第二计算单元,用于根据所述当前倍率、所述第一物距的第一因数曲线和所述第二物距的第二因数曲线,计算第一因数和第二因数;
第三计算单元,用于根据所述当前倍率、所述当前对焦坐标值、所述第一对焦坐标值、所述第二对焦坐标值、所述第一因数和所述第二因数计算所述摄像设备当前的稳像感度。
可选的,所述第一获取单元,用于:
根据所述当前倍率和第一曲线集合中的每个物距的有色光聚集曲线,计算M个对焦坐标值;
从所述M个对焦坐标值中选择大于或等于所述当前对焦坐标值且与所述当前对焦坐标值最接近的第一对焦坐标值,以及选择小于或等于所述当前对焦坐标值且与所述当前对焦坐标值最接近的第二对焦坐标值;
获取所述当前倍率和所述第一对焦坐标值对应的第一有色光聚焦曲线以及所述当前倍率和所述第二对焦坐标值对应的第二有色光聚焦曲线;
获取所述第一有色光聚焦曲线对应的第一物距和所述第二有色光聚焦曲线对应的第二物距。
可选的,所述第三计算单元,用于:
根据所述第一对焦坐标值、所述第二对焦坐标值、所述当前对焦坐标值、 所述第一因数和所述第二因数,按如下第一公式计算第三因数;
第一公式为:
Figure PCTCN2018085859-appb-000012
其中d 1为第一对焦坐标值,d 2为第二对焦坐标值,d 3为当前对焦坐标值,m 1为第一因数,m 2为第二因数,m 3为第三因数;
根据所述第一对焦坐标值、所述第二对焦坐标值、所述当前对焦坐标值、所述第一物距对应的第一虚拟参数、所述第二物距对应的第二虚拟参数,按如下第二公式计算所述摄像设备的当前物距对应的第三虚拟参数;
第二公式为:
Figure PCTCN2018085859-appb-000013
其中T m1为第一虚拟参数,T m2为第二虚拟参数,T m3为第三虚拟参数;
根据所述当前倍率获取所述摄像设备的当前焦距,根据所述当前焦距、所述第三因数和所述第三虚拟参数,按如下第三公式计算所述摄像设备当前的稳像感度;
第三公式为:
Figure PCTCN2018085859-appb-000014
其中f为当前焦距,SR为稳像感度。
可选的,所述装置800还包括:
判断模块,用于在控制所述光学防抖镜片组移动的过程中,判断所述光学防抖镜片组的当前位置是否超出所述光学防抖镜片组的位置范围,如果超出,则停止继续移动所述光学防抖镜片组。
可选的,所述装置800还包括:
获取模块,用于根据所述当前倍率获取所述光学防抖镜片组的位置范围。
可选的,所述确定模块801,用于:
判断所述摄像设备的云台是否控制所述摄像设备转动,在判断出所述云台未控制所述摄像设备转动时,执行所述在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向的步骤。
可选的,所述装置800还包括:
第二控制模块,用于在判断出所述云台控制所述摄像设备转动时,控制所述光学防抖镜片组在所述摄像设备内相对静止,或,以预设速度控制所述光学防抖镜片组移动至初始位置。
可选的,所述装置800还包括:
调整模块,用于在控制所述光学防抖镜片组移动时,根据所述光学防抖镜 片组的中心光轴与重力方向之间的夹角,调整用于控制所述光学防抖镜片组移动的控制力。
可选的,所述摄像设备包括驱动电机,所述驱动电机用于带动所述光学防抖镜片组移动,
所述调整模块,用于根据所述光学防抖镜片组的中心光轴与重力方向之间的夹角,调整所述驱动电机的工作电流,以实现调整用于控制所述光学防抖镜片组移动的控制力。
可选的,所述调整模块包括:
第二获取单元,用于获取所述光学防抖镜片组的中心光轴与重力方向之间的夹角;
确定单元,用于根据所述光学防抖镜片组的重力以及所述夹角,确定所述重力在所述目标平面中的重力分量;
调整单元,用于根据所述重力分量和所述移动方向增加或减小所述驱动电机的工作电流。
图9是根据一示例性实施例示出的一种用于防抖控制的装置900的框图。例如,装置900可以是智能手机、平板电脑、智能电视、电子书阅读器、膝上型便携计算机、台式计算机、监控摄像机、摄像机、照相机等等具备拍摄功能的电子设备。
参照图9,装置900可以包括以下一个或多个组件:处理组件902,存储器904,电源组件906,多媒体组件908,音频组件910,输入/输出(I/O)的接口912,传感器组件914,以及通信组件916。
处理组件902通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器904可以由任何类型的易失 性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件906为装置900的各种组件提供电力。电源组件906可以包括电源管理***,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件908包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件908包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件910被配置为输出和/或输入音频信号。例如,音频组件910包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器904或经由通信组件916发送。在一些实施例中,音频组件910还包括一个扬声器,用于输出音频信号。
I/O接口912为处理组件902和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件914包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件914可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件914还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体 的存在。传感器组件914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件916被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件916经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由装置900的处理器920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由装置900的处理器执行时,使得装置900能够执行一种防抖控制方法。
需要说明的是:上述实施例中提供的防抖控制装置在防抖控制时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的防抖控制装置与防抖控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘 或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种防抖控制方法,其特征在于,所述方法包括:
    在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向;
    根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备当前的稳像感度;
    根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,所述光学防抖镜片组包括至少一个光学防抖镜片,所述光学防抖镜片组中的每个光学防抖镜片的类型为凹镜片或凸镜片,或者,所述光学防抖镜片组中的光学防抖镜片的类型包括凹镜片和凸镜片。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述稳像感度、所述抖动角度、所述当前倍率和所述抖动方向控制光学防抖镜片组移动,包括:
    根据所述稳像感度、所述抖动角度、所述当前倍率计算出光学防抖镜片组的移动距离;
    控制所述光学防抖镜片组在目标平面上沿所述抖动方向相反的方向移动所述移动距离,所述目标平面为经过所述光学防抖镜片组且垂直于所述光学防抖镜片组的中心光轴的平面。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述稳像感度、所述抖动角度、所述当前倍率计算出光学防抖镜片组的移动距离,包括:
    根据所述当前倍率获取所述摄像设备的当前焦距;
    根据所述稳像感度、所述抖动角度和所述当前焦距,按如下公式计算出光学防抖镜片组的移动距离;
    Figure PCTCN2018085859-appb-100001
    其中,在上述公式中,D为所述移动距离,f为所述当前焦距、α为所述抖动角度,SR为所述稳像感度。
  4. 根据权利要求1所述的方法,其特征在于,所述摄像设备中存储有第一 曲线集合和第二曲线集合,所述第一曲线集合包括M个物距的有色光聚焦曲线,所述第二曲线集合包括所述M个物距的因数曲线,M为大于1的整数;
    所述第一曲线集合中的每个物距的有色光聚焦曲线为倍率与对焦坐标值的函数曲线,所述第二曲线集合中的每个物距的因数曲线为倍率与因数的函数曲线。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述摄像设备的当前倍率以及当前对焦坐标值计算所述摄像设备的稳像感度,包括:
    根据所述当前倍率、所述当前对焦坐标值和第一曲线集合,获取第一物距、第二物距、第一对焦坐标值和第二对焦坐标值,所述当前对焦坐标值位于所述第一对焦坐标值和所述第二对焦坐标值之间;
    根据所述当前倍率、所述第一物距的第一因数曲线和所述第二物距的第二因数曲线,计算第一因数和第二因数;
    根据所述当前倍率、所述当前对焦坐标值、所述第一对焦坐标值、所述第二对焦坐标值、所述第一因数和所述第二因数计算所述摄像设备当前的稳像感度。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述当前倍率、所述当前对焦坐标值和第一曲线集合获取第一物距、第二物距、第一对焦坐标值和第二对焦坐标值,包括:
    根据所述当前倍率和第一曲线集合中的每个物距的有色光聚集曲线,计算M个对焦坐标值;
    从所述M个对焦坐标值中选择大于或等于所述当前对焦坐标值且与所述当前对焦坐标值最接近的第一对焦坐标值,以及选择小于或等于所述当前对焦坐标值且与所述当前对焦坐标值最接近的第二对焦坐标值;
    获取所述当前倍率和所述第一对焦坐标值对应的第一有色光聚焦曲线以及所述当前倍率和所述第二对焦坐标值对应的第二有色光聚焦曲线;
    获取所述第一有色光聚焦曲线对应的第一物距和所述第二有色光聚焦曲线对应的第二物距。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述当前倍率、所述当前对焦坐标值、所述第一对焦坐标值、所述第二对焦坐标值、所述第一因 数和所述第二因数计算所述摄像设备当前的稳像感度,包括:
    根据所述第一对焦坐标值、所述第二对焦坐标值、所述当前对焦坐标值、所述第一因数和所述第二因数,按如下第一公式计算第三因数;
    第一公式为:
    Figure PCTCN2018085859-appb-100002
    其中d 1为第一对焦坐标值,d 2为第二对焦坐标值,d 3为当前对焦坐标值,m 1为第一因数,m 2为第二因数,m 3为第三因数;
    根据所述第一对焦坐标值、所述第二对焦坐标值、所述当前对焦坐标值、所述第一物距对应的第一虚拟参数、所述第二物距对应的第二虚拟参数,按如下第二公式计算所述摄像设备的当前物距对应的第三虚拟参数;
    第二公式为:
    Figure PCTCN2018085859-appb-100003
    其中T m1为第一虚拟参数,T m2为第二虚拟参数,T m3为第三虚拟参数;
    根据所述当前倍率获取所述摄像设备的当前焦距,根据所述当前焦距、所述第三因数和所述第三虚拟参数,按如下第三公式计算所述摄像设备当前的稳像感度;
    第三公式为:
    Figure PCTCN2018085859-appb-100004
    其中f为当前焦距,SR为稳像感度。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在控制所述光学防抖镜片组移动的过程中,判断所述光学防抖镜片组的当前位置是否超出所述光学防抖镜片组的位置范围,如果超出,则停止继续移动所述光学防抖镜片组。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述当前倍率获取所述光学防抖镜片组的位置范围。
  10. 根据权利要求1所述的方法,其特征在于,所述在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向,包括:
    判断所述摄像设备的云台是否控制所述摄像设备转动,在判断出所述云台未控制所述摄像设备转动时,执行所述在检测到摄像设备发生抖动时,确定所述摄像设备抖动的抖动角度和抖动方向的步骤。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    在判断出所述云台控制所述摄像设备转动时,控制所述光学防抖镜片组在所述摄像设备内相对静止,或,以预设速度控制所述光学防抖镜片组移动至初始位置。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在控制所述光学防抖镜片组移动时,根据所述光学防抖镜片组的中心光轴与重力方向之间的夹角,调整用于控制所述光学防抖镜片组移动的控制力。
  13. 根据权利要求12所述的方法,其特征在于,所述摄像设备包括驱动电机,所述驱动电机用于带动所述光学防抖镜片组移动,
    所述根据所述光学防抖镜片组的中心光轴与重力方向之间的夹角,调整用于控制所述光学防抖镜片组移动的控制力,包括:
    根据所述光学防抖镜片组的中心光轴与重力方向之间的夹角,调整所述驱动电机的工作电流,以实现调整用于控制所述光学防抖镜片组移动的控制力。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述光学防抖镜片组的中心光轴与重力方向之间的夹角,调整所述驱动电机的工作电流,包括:
    获取所述光学防抖镜片组的中心光轴与重力方向之间的夹角;
    根据所述光学防抖镜片组的重力以及所述夹角,确定所述重力在所述目标平面中的重力分量;
    根据所述重力分量和所述移动方向增加或减小所述驱动电机的工作电流。
  15. 一种防抖控制装置,其特征在于,所述装置包括:
    至少一个处理器;和
    至少一个存储器;
    所述至少一个存储器存储有一个或多个程序,所述一个或多个程序被配置成由所述至少一个处理器执行,所述一个或多个程序包含用于进行如权利要求1至14任一项权利要求所述的方法的指令。
  16. 一种非易失性计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序通过处理器进行加载来执行如权利要求1至14任一项权利要求所述的方法的指令。
PCT/CN2018/085859 2017-05-09 2018-05-07 防抖控制方法和装置 WO2018205902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710322554.7A CN108881703B (zh) 2017-05-09 2017-05-09 防抖控制方法和装置
CN201710322554.7 2017-05-09

Publications (1)

Publication Number Publication Date
WO2018205902A1 true WO2018205902A1 (zh) 2018-11-15

Family

ID=64104326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085859 WO2018205902A1 (zh) 2017-05-09 2018-05-07 防抖控制方法和装置

Country Status (2)

Country Link
CN (1) CN108881703B (zh)
WO (1) WO2018205902A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110810A (zh) * 2019-12-25 2021-07-13 Oppo广东移动通信有限公司 防抖区间调节方法、装置、移动终端以及存储介质
CN113676667A (zh) * 2021-08-23 2021-11-19 Oppo广东移动通信有限公司 抑制比测试方法、装置、电子设备和存储介质
WO2022057723A1 (zh) * 2020-09-18 2022-03-24 荣耀终端有限公司 一种视频的防抖处理方法及电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110620871B (zh) * 2018-06-19 2021-01-26 北京小米移动软件有限公司 视频拍摄方法及电子设备
CN110933266B (zh) * 2019-07-15 2021-12-21 华为技术有限公司 摄像装置、方法及调节元件
CN111031246A (zh) * 2019-12-24 2020-04-17 维沃移动通信有限公司 拍摄方法及电子设备
CN111147757B (zh) * 2020-01-03 2021-08-03 浙江大华技术股份有限公司 摄像设备的光学防抖方法及装置
CN112291476B (zh) * 2020-10-30 2021-10-12 维沃移动通信(杭州)有限公司 拍摄防抖处理方法、装置和电子设备
CN114531539B (zh) * 2020-11-23 2024-03-19 华为技术有限公司 拍摄方法及电子设备
CN113747077B (zh) * 2021-09-26 2023-05-12 维沃移动通信有限公司 摄像抖动补偿方法、装置、设备、介质及摄像组件
CN113992842B (zh) * 2021-10-08 2024-05-31 上海艾为电子技术股份有限公司 抖动角度、距离的检测方法和***、电子设备、芯片
CN114071013B (zh) * 2021-10-13 2023-06-20 浙江大华技术股份有限公司 一种用于车载摄像机的目标抓拍与跟踪方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942309A2 (en) * 1998-03-12 1999-09-15 Canon Kabushiki Kaisha Variable magnification lens having image stabilizing function
CN1744668A (zh) * 2004-08-31 2006-03-08 三洋电机株式会社 手抖动校正装置以及摄像机器
CN101025540A (zh) * 2006-02-17 2007-08-29 佳能株式会社 摄像设备
US20120019925A1 (en) * 2010-07-20 2012-01-26 Panasonic Corporation Zoom lens system, imaging device and camera
CN102854700A (zh) * 2011-07-01 2013-01-02 佳能株式会社 抖动补偿控制设备和方法、光学装置以及摄像设备
CN102907083A (zh) * 2010-05-21 2013-01-30 松下电器产业株式会社 摄像装置、图像处理装置、图像处理方法及图像处理程序
CN105074562A (zh) * 2013-02-28 2015-11-18 奥林巴斯株式会社 抖动量检测装置和摄像装置
CN105323465A (zh) * 2014-06-27 2016-02-10 佳能株式会社 图像处理装置及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942309A2 (en) * 1998-03-12 1999-09-15 Canon Kabushiki Kaisha Variable magnification lens having image stabilizing function
CN1744668A (zh) * 2004-08-31 2006-03-08 三洋电机株式会社 手抖动校正装置以及摄像机器
CN101025540A (zh) * 2006-02-17 2007-08-29 佳能株式会社 摄像设备
CN102907083A (zh) * 2010-05-21 2013-01-30 松下电器产业株式会社 摄像装置、图像处理装置、图像处理方法及图像处理程序
US20120019925A1 (en) * 2010-07-20 2012-01-26 Panasonic Corporation Zoom lens system, imaging device and camera
CN102854700A (zh) * 2011-07-01 2013-01-02 佳能株式会社 抖动补偿控制设备和方法、光学装置以及摄像设备
CN105074562A (zh) * 2013-02-28 2015-11-18 奥林巴斯株式会社 抖动量检测装置和摄像装置
CN105323465A (zh) * 2014-06-27 2016-02-10 佳能株式会社 图像处理装置及其控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113110810A (zh) * 2019-12-25 2021-07-13 Oppo广东移动通信有限公司 防抖区间调节方法、装置、移动终端以及存储介质
WO2022057723A1 (zh) * 2020-09-18 2022-03-24 荣耀终端有限公司 一种视频的防抖处理方法及电子设备
US11750926B2 (en) 2020-09-18 2023-09-05 Honor Device Co., Ltd. Video image stabilization processing method and electronic device
CN113676667A (zh) * 2021-08-23 2021-11-19 Oppo广东移动通信有限公司 抑制比测试方法、装置、电子设备和存储介质
CN113676667B (zh) * 2021-08-23 2023-08-18 Oppo广东移动通信有限公司 抑制比测试方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN108881703B (zh) 2020-07-21
CN108881703A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2018205902A1 (zh) 防抖控制方法和装置
US10877353B2 (en) Continuous autofocus mechanisms for image capturing devices
RU2634323C2 (ru) Способ и устройство для съемки изображения
KR101772177B1 (ko) 사진을 획득하기 위한 방법 및 장치
EP2991336B1 (en) Image capturing method and apparatus
WO2016101481A1 (zh) 自动对焦方法及装置
EP3496391B1 (en) Method and device for capturing image and storage medium
CN106210496B (zh) 照片拍摄方法及装置
WO2021047077A1 (zh) 基于多摄像模块的图像处理方法、装置、设备及介质
EP3544286B1 (en) Focusing method, device and storage medium
CN109922253B (zh) 镜头防抖方法及装置、移动设备
CN110769147B (zh) 拍摄方法及电子设备
WO2023072088A1 (zh) 对焦方法及装置
WO2018133388A1 (zh) 智能飞行设备的拍摄方法及智能飞行设备
WO2018219210A1 (zh) 防抖行程调节方法、移动设备和计算机存储介质
WO2018053722A1 (zh) 全景照片拍摄方法及装置
CN108111751B (zh) 拍摄角度调整方法及装置
CN114430453B (zh) 一种摄像头防抖动***、控制方法、设备及介质
CN110620871A (zh) 视频拍摄方法及电子设备
US11555696B2 (en) Electronic terminal, photographing method and device, and storage medium
CN114765663A (zh) 防抖处理方法、装置、移动设备及存储介质
WO2023225910A1 (zh) 视频显示方法及装置、终端设备及计算机存储介质
WO2023230860A1 (zh) 变焦方法、变焦装置、电子设备及存储介质
CN118102085A (zh) 一种控制方法、装置及电子设备
CN115134507A (zh) 拍摄方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18798048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18798048

Country of ref document: EP

Kind code of ref document: A1