WO2018205537A1 - 一种显示面板及其制作方法、显示装置 - Google Patents

一种显示面板及其制作方法、显示装置 Download PDF

Info

Publication number
WO2018205537A1
WO2018205537A1 PCT/CN2017/111322 CN2017111322W WO2018205537A1 WO 2018205537 A1 WO2018205537 A1 WO 2018205537A1 CN 2017111322 W CN2017111322 W CN 2017111322W WO 2018205537 A1 WO2018205537 A1 WO 2018205537A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
film layer
sub
light
display panel
Prior art date
Application number
PCT/CN2017/111322
Other languages
English (en)
French (fr)
Inventor
刘莎
杨照坤
冯翔
孙晓
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/775,251 priority Critical patent/US11094751B2/en
Publication of WO2018205537A1 publication Critical patent/WO2018205537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a display panel, a method for fabricating the same, and a display device.
  • Flat panel displays (F1at Pane1 Disp1ay, FPD) have become mainstream products on the market, and there are more and more types of flat panel displays, such as liquid crystal displays (Liquid Crysta1 Disp1ay, LCD), Organic Light Emitted Diode (OLED) displays. , plasma display panel (P1asma Disp1ay Pane1, PDP) and Field Emission Display (FED).
  • liquid crystal displays Liquid Crysta1 Disp1ay, LCD
  • OLED Organic Light Emitted Diode
  • P1asma Disp1ay Pane1, PDP Plasma display panel
  • FED Field Emission Display
  • a color resist film layer is usually used.
  • an LCD display panel usually has a color resist film layer on the light emitting side of the backlight module to convert the light of the backlight module into light of different colors.
  • the OLED display panel can also realize color display through a white light OLED device with a color resist film layer.
  • the light of the display panel generally reduces the brightness of the display panel after passing through the color resistive film layer.
  • the color resist film layer produced by the multiple exposure also causes the manufacturing process of the display panel to be complicated, and the manufacturing cost is high.
  • the embodiment of the present invention provides a display panel including a plurality of pixel units distributed in an array, each of the pixel units including a plurality of sub-pixel units, and the display panel is provided with a photonic crystal film layer on a light emitting side of the pixel unit.
  • the photonic crystal film layer has a photonic crystal region in one-to-one correspondence with each of the sub-pixel units; wherein each of the photonic crystal regions is provided with a plurality of uniform arrangements And a micropore structure, and an aperture of the micropore structure in each of the photonic crystal regions matches a color of the sub-pixel unit display light corresponding to the photonic crystal region.
  • the embodiment of the present application further provides a display device, including the display panel provided by the embodiment of the present application.
  • the embodiment of the present invention further provides a method for fabricating a display panel, wherein the display panel includes a plurality of pixel units distributed in an array, and each of the pixel units includes a plurality of sub-pixel units, and the manufacturing method includes:
  • each of the photonic crystal regions having a micropore structure matching a color of the sub-pixel unit display light color, the micro The pore structure is uniformly arranged in each of the photonic crystal regions.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for preparing a display panel according to an embodiment of the present application
  • FIG. 4 is a schematic structural view of a display panel in which a first film layer is prepared in the first embodiment of the present application;
  • FIG. 5 is a schematic structural view of a display panel in which a photoresist layer is prepared in the first embodiment of the present application;
  • FIG. 6 is a schematic structural view of a display panel prepared with polymer molecules in the first embodiment of the present application.
  • FIG. 7 is a schematic diagram of the first embodiment when the display panel is illuminated at a first tilt angle
  • FIG. 8 is a schematic view of the first embodiment of the present application, when the display panel is illuminated at a second tilt angle;
  • FIG. 9 is a schematic diagram of the first embodiment of the present application, when the display panel is illuminated at a third tilt angle
  • FIG. 10 is a schematic structural view of a display panel forming a patterned photoresist layer according to Embodiment 1 of the present application;
  • FIG. 11 is a first embodiment of the present invention, in which micropores having different apertures are formed in different photonic crystal regions. Schematic diagram of the structure of the display panel;
  • FIG. 12 is a schematic structural view of a display panel in which a photoresist layer is prepared in the second embodiment of the present application;
  • FIG. 13 is a schematic structural view of a display panel prepared with polymer molecules in the second embodiment of the present application.
  • FIG. 14 is a schematic diagram of a second embodiment of the present application, when the display panel is illuminated at a first tilt angle
  • Figure 15 is a schematic view showing the second embodiment of the present application, when the display panel is illuminated at a second tilt angle;
  • 16 is a schematic view of the second embodiment of the present application, when the display panel is illuminated at a third tilt angle;
  • FIG. 17 is a schematic structural view of a display panel in which microporous structures having different apertures are formed in different photonic crystal regions in the second embodiment of the present application.
  • an embodiment of the present application provides a display panel including a plurality of pixel units 2 distributed in an array, each pixel unit 2 including a plurality of sub-pixel units 21 , 22 , and 23 , and a display panel in the pixel unit 2 .
  • the light-emitting side is provided with a photonic crystal film layer 3 having photonic crystal regions 31, 32 and 33 corresponding to each of the sub-pixel units 21, 22 and 23; wherein each photonic crystal region 31, 32 And a plurality of uniformly arranged microporous structures 34 are disposed in the 33 and the sub-pixel units 21 corresponding to the photonic crystal regions 31, 32 and 33, and the apertures of the microporous structures 34 in each of the photonic crystal regions 31, 32 and 33, 22 and 23 show that the light colors match.
  • the display panel includes a plurality of pixel units 2 disposed on the base substrate 1, which is illustrated by one of the pixel sheets 2 in FIG. 1, and each of the pixel units 2 may include three sub-pixel units 21, 22, and 23.
  • each pixel unit 2 includes: a first sub-pixel unit 21, a second sub-pixel unit 22, and a third sub-pixel unit 23.
  • the photonic crystal film layer 3 includes a plurality of photonic crystal units distributed in an array, each photonic crystal unit including: a first sub image a first photonic crystal region 31 corresponding to the pixel unit 21, a second photonic crystal region 32 corresponding to the second sub-pixel unit 22, and a third photonic crystal region 33 corresponding to the third sub-pixel unit 23; the first photonic crystal region 31
  • the aperture of the microporous structure 34 matches the color of the first sub-pixel unit 21, and the aperture of the microporous structure 34 of the second photonic crystal region 32 matches the color of the second sub-pixel unit 22, the third photonic crystal.
  • the aperture of the microporous structure 34 of the region 33 matches the color of the light displayed by the third sub-pixel unit 23.
  • the micro-hole structure 34 corresponding to the red light may be disposed in the first photonic crystal region 31; if necessary, in the second sub-pixel unit 22 When the green light is emitted, the microporous structure 34 having the aperture corresponding to the green light may be disposed in the second photonic crystal region 32. If it is necessary to emit blue light in the third sub-pixel unit 23, the aperture and the blue light may be disposed in the third photonic crystal region 33. Corresponding microporous structure 34.
  • the color of the transmitted light due to the photonic crystal regions 31, 32, and 33 is proportional to the aperture of the microporous structure 34.
  • the microporous structure 34 generally required to transmit red light has a larger aperture, a smaller aperture for transmitting blue light, and a smaller aperture for transmitting green light. While the color of the light generally corresponds to the wavelength, in order to allow different sub-pixel units 21, 22, and 23 to display different colors of light, an aperture of the microporous structure 34 of each photonic crystal region 31, 32, and 33 may be disposed.
  • the sub-pixel units 21, 22, and 23 corresponding to the photonic crystal regions 31, 32, and 33 are proportional to the wavelength of light.
  • the photonic crystal is a novel optical material that exhibits a periodic distribution in space.
  • Photonic crystals are capable of modulating electromagnetic waves having corresponding wavelengths. When electromagnetic waves propagate in a photonic crystal structure, they are modulated by Bragg scattering. The electromagnetic wave energy forms an energy band structure, and a band gap occurs between the energy band and the energy band, that is, a photonic band gap. All photons with energy in the photonic band gap cannot enter the crystal. That is, only light of a certain frequency will be completely forbidden to propagate in a certain photonic crystal with a certain periodic distance, and thus transmitted.
  • the present application has microporous structures 34 having different apertures through different photonic crystal regions 31, 32 and 33.
  • FIG. 2 is a photonic crystal film layer 3 having a specific aperture according to an embodiment of the present application.
  • the pitch of the centers of the adjacent two microporous structures 34 is required to be in the range of 100 nm to 1000 nm, and the centers of the adjacent two microporous structures 34 in the same photonic crystal regions 31, 32 and 33 have the same pitch.
  • the microporous structure 34 is distributed in a single layer on the photonic crystal film layer 3.
  • the depth of the microporous structure 34 is equal to the thickness of the photonic crystal film layer 3, that is, as shown in FIG. 1, the microporous structure 34 is penetrating through the photonic crystal film layer 3.
  • the material of the photonic crystal film layer 3 may be a material such as a photosensitive resin material, a silicon-based semiconductor material, or a metal oxide semiconductor material.
  • the OLED display panel of the prior art generally has two structures, one is a white light OLED device with a color film to realize color display, and the OLED display panel of the structure has a relatively long process flow, and the device is light and thin. Limitations.
  • Another OLED device with RGB three primary colors is independently displayed.
  • the OLED display panel of this structure needs to use a high-quality mask (FMM) in the evaporation process during the manufacturing process, and the current technical level of the FMM is only A pixel density (Pixels Per Inch, PPI) range of less than 1000 can be achieved, thus also limiting the application of the OLED display panel of this structure in higher PPI products.
  • the OLED display panel of the RGB three primary colors independently displays the problem that the lifetime of the OLED display panel is short due to the short life of the blue light material.
  • the display panel provided by the embodiment of the present application may be an OLED display panel.
  • the pixel unit 2 includes a white light OLED device.
  • the white light emitted by each white light OLED device is emitted through a microporous structure in a corresponding photonic crystal region. monochromatic light.
  • a photonic crystal thin film layer 3 is prepared on a white light OLED device, and the photonic crystal film layer 3 has three or more photonic crystal regions 31, 32, and 33 for transmitting at least including red, green, and blue.
  • the display panel provided by the embodiment of the present application can achieve high brightness and high color gamut of the OLED display panel, and can ensure the device has a longer display life and more. High pixel density.
  • the foregoing display panel provided by the embodiment of the present application may also be a liquid crystal display panel, like
  • the element unit 2 includes a liquid crystal layer.
  • the micropore structure 34 in each photonic crystal region 31, 32, and 33 may have the same surface with respect to the surface of the photonic crystal film layer 3.
  • the tilt angle such as shown in Figure 1, is a micropore structure 34 that is perpendicular to the surface of the photonic crystal film layer 3.
  • each micropore structure is opposite to The surface of the photonic crystal film layer has the same inclination angle. For example, in FIG. 17
  • each microporous structure 34 is perpendicular to the surface of the photonic crystal film layer 3; In the photonic crystal region corresponding to the sub-pixel unit 23, each of the microporous structures 34 is inclined to the right at the same angle with respect to the surface of the photonic crystal film layer 3. Meanwhile, the micropore structure in each photonic crystal region corresponding to the sub-pixel unit of different display light colors has different inclination angles with respect to the surface of the photonic crystal film layer, for example, two sub-pixel units in the middle and the right side in FIG. 22 and 23 show different light colors, and therefore, the microporous structure 34 in the corresponding photonic crystal region has a different tilt angle with respect to the surface of the photonic crystal film layer.
  • the embodiment of the present application further provides a display device, including the above display panel provided by the embodiment of the present application.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the embodiment of the present application further provides a method for fabricating a display panel, wherein the display panel includes a plurality of pixel units distributed in an array, each pixel unit includes a plurality of sub-pixel units, and the manufacturing method thereof include:
  • Step 101 forming a first thin film layer on a light emitting side of the pixel unit
  • Step 102 forming a photonic crystal region corresponding to each sub-pixel unit in the first thin film layer; each of the photonic crystal regions has a microporous structure matching the aperture of the sub-pixel unit to display light color, and the microporous structure is in each The photonic crystal regions are evenly arranged.
  • each pixel unit of the display panel may include a first sub-pixel unit, a second sub-pixel unit, and a third sub-pixel unit; and with respect to step 102, forming and sub-pixels in the first thin film layer
  • the photonic crystal region corresponding to the unit may specifically include: forming a first photonic crystal region corresponding to the first sub-pixel unit in the first thin film layer, and the first photonic crystal region has a micropore structure of the first aperture; Forming a second photonic crystal region corresponding to the second sub-pixel unit in a thin film layer, and the second photonic crystal region has a micropore structure of the second aperture; forming a first corresponding to the third sub-pixel unit in the first thin film layer A three-photonic crystal region, and the third photonic crystal region has a microporous structure forming a third aperture.
  • the first film layer may be a silicon-based semiconductor material or a metal oxide semiconductor material, or may be a photosensitive resin material, and of course, any other material that can be etched to have a pore structure.
  • the first film layer is selected from a silicon-based semiconductor material.
  • the first film layer is a silicon-based semiconductor material or a metal oxide semiconductor material which can be etched into a microporous structure, which is commonly used in the display panel of the prior art. Then, step 102 forms a sub-pixel in the first film layer.
  • the photonic crystal region corresponding to the unit specifically includes:
  • the polymer molecular film layer has polymer molecules uniformly arranged at a predetermined pitch, wherein the predetermined pitch may be the center of two adjacent polymer molecules spacing;
  • a portion of the first thin film layer that is not blocked by the pattern of the photoresist layer is removed, and a microporous structure of each photonic crystal region is formed in the first thin film layer.
  • step 102 forms a photonic crystal region corresponding to each sub-pixel unit in the first film layer, and specifically includes:
  • a portion of the first film layer that is blocked by the polymer molecules is removed by development, and a microporous structure of the photonic crystal region is formed in the first film layer.
  • the method may include:
  • the polymer solution was dripped in the area to be coated by the method of dripping.
  • the manufacturing method may further include: forming a white light OLED device;
  • Forming the first thin film layer on the light exiting side of the pixel unit includes: forming a first thin film layer on the light emitting side of the white light OLED device.
  • the above is only to realize the microporous structure of different photonic crystal regions in different photonic crystal regions in the first thin film layer by moving the reticle and different exposure directions, and in the specific implementation, one can also be coated.
  • Layer polymer molecules by adjusting the distance between the light source and the display panel covering the polymer molecules in different photonic crystal regions, to realize the formation of microporous structures with different apertures in different photonic regions, that is, due to the different exposure distances A microporous structure having a different pore diameter is formed.
  • the embodiment of the present application provides a method for preparing a first specific display panel, including:
  • Step one forming the pixel unit 2 on the base substrate 1, for example, forming an OLED white light device on the glass substrate.
  • the steps of specifically forming the OLED white light device are the same as those of the prior art for forming the OLED white light device, and are not described herein again.
  • Step 2 forming a first thin film layer 30 on the light emitting side of the pixel unit 2.
  • the first film layer herein is a silicon-based semiconductor material.
  • a schematic view after forming the first thin film layer 30 over the pixel unit 2 is as shown in FIG.
  • Step 3 Apply a photoresist layer 40 on the first film layer 30.
  • a schematic view of the photoresist layer 40 formed on the first thin film layer 30 is shown in FIG.
  • Step 4 forming a polymer molecule 5 periodically and uniformly arranged on the photoresist layer 40 by a colloidal self-organization method.
  • a schematic view of the formation of polymer molecules 5 over photoresist layer 40 is shown in FIG.
  • the steps of forming a periodic polymer molecule on the photoresist layer by using a colloidal self-organization method include:
  • the volume of the desired polymer solution according to the number of polymer molecules required and the density of the polymer solution, where the density of the polymer solution may refer to the number of polymer molecules contained in the solution per unit volume;
  • the polymer solution was dripped in the area to be coated by the method of dripping.
  • the polymer molecules provided in the examples of the present application have been prepared,
  • the suspension has a clear specification, the molecular diameter of the polymer molecule and the density of the polymer solution are known. It is a raw material, and DuPont and other companies have related products.
  • the colloidal self-organization method is one of the commonly used methods for preparing photonic crystals.
  • polymer molecules such as polystyrene
  • the polymer molecules are generally on the order of submicron, and each polymer molecule accumulates in a precise and orderly manner under the action of short-range electrostatic action and long-range van der Waals force. Together, spontaneous arrangement forms an ordered structure of rules.
  • Step 5 Under the occlusion of the mask 6, the first preset duration of the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with light at a first oblique angle, as shown in FIG. The distance of one sub-pixel unit 21 of the masking plate 6 is shifted, and the second predetermined length of time of the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with the light of the second oblique angle, as shown in FIG. The distance of one sub-pixel unit 22 of the mask 6 is shifted, and the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with the light of the third oblique angle for a third predetermined duration, as shown in FIG. Finally, the mask is removed.
  • the specific mask 6 may be provided with an opening in a corresponding area of one sub-pixel unit in each pixel unit, and then through the movement of the mask 6 and the adjustment of the illumination direction, finally forming photons of microporous structures having different apertures. Crystal area.
  • Step 6 Remove the polymer molecular film layer.
  • Step 7 Forming a patterned photoresist layer 40 by development, wherein the patterned photoresist layer 40 includes photoresist layer microvias 41 of different apertures corresponding to different pixel elements. Since the photoresist layer blocked by the polymer molecules is not exposed to light, it is removed after the development process.
  • a schematic view after forming the patterned photoresist layer 40 is shown in FIG.
  • Step 8 removing the portion of the first film layer 30 that is not blocked by the pattern of the photoresist layer 40 under the occlusion of the patterned photoresist layer 40 to form the first sub-pixel in the first film layer 30.
  • the first photonic crystal region corresponding to the unit 21 has a first aperture microporous structure 34, and in the first thin film layer 30, a second aperture of the second photonic crystal region corresponding to the second sub-pixel unit 22 is formed.
  • Structure 34 forming a third aperture microporous structure 34 of the third photonic crystal region corresponding to the third sub-pixel unit 23 in the first thin film layer 30, and de-patterning the photoresist layer 40 to form a final Photonic crystal film layer 3.
  • a schematic view after forming the photonic crystal film layer 3 is shown in FIG.
  • the embodiment of the present application provides a second method for preparing a display panel, including:
  • Step one forming the pixel unit 2 on the base substrate 1, for example, forming an OLED white light device on the glass substrate.
  • the steps of specifically forming the OLED white light device are the same as those of the prior art for forming the OLED white light device, and are not described herein again.
  • Step 2 Apply a photoresist layer 40 on the light emitting side of the pixel unit 2.
  • the photoresist layer 40 herein is the first film layer, that is, the first film layer is a photosensitive resin material.
  • a schematic view of the photoresist layer 40 formed on the light exiting side of the pixel unit 2 is shown in FIG.
  • Step 4 forming a polymer molecule 5 periodically and uniformly arranged on the photoresist layer 40 by a colloidal self-organization method.
  • a schematic view of the formation of polymer molecules 5 over photoresist layer 40 is shown in FIG.
  • the step of forming a periodic polymer molecule on the photoresist layer by using a colloidal self-organization method is the same as that of the first embodiment, and details are not described herein again.
  • Step 5 Under the occlusion of the mask 6, the first preset duration of the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with the light of the first oblique angle, as shown in FIG. The distance of one sub-pixel unit 21 of the mask 6 is shifted, and the second predetermined length of time of the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with the light of the second oblique angle, as shown in FIG. The distance of one sub-pixel unit 22 of the mask 6 is shifted, and the photoresist layer 40 blocked by the polymer molecules 5 is irradiated with light having a third oblique angle for a third predetermined duration, as shown in FIG. Finally, the mask is removed.
  • the specific mask 6 is provided with an opening in a corresponding area of one sub-pixel unit in each pixel unit, and then through the movement of the mask 6 and the adjustment of the illumination direction, finally forming photons of microporous structures having different apertures. Crystal area.
  • Step 6 Remove the polymer molecular film layer.
  • Step 7 removing the portion of the photoresist layer 40 that is blocked by the polymer molecules 5 by development, and forming a first aperture of the first photonic crystal region corresponding to the first sub-pixel unit 21 in the photoresist layer 40.
  • the microporous structure 34 forms a second aperture microporous structure 34 of the second photonic crystal region corresponding to the second sub-pixel unit 22 in the photoresist layer 40, and forms a third sub-layer in the photoresist layer 40.
  • the third photonic crystal region corresponding to the pixel unit 23 has a micropore structure 34 of a third aperture, thereby forming a final photonic crystal film layer 3.
  • a schematic view after forming the photonic crystal film layer 3 is shown in FIG.
  • the beneficial effects of the embodiments of the present application are as follows:
  • the display panel provided by the embodiment of the present application has a photonic crystal film layer disposed on the light exiting side, the photonic crystal film layer having a photonic crystal region corresponding to the sub-pixel unit, each photonic crystal region.
  • a plurality of uniformly arranged microporous structures are disposed therein, and an aperture of the micropore structure in each photonic crystal region matches a sub-pixel unit display light color corresponding to the photonic crystal region. Since the microporous structure having a certain aperture and being periodically and uniformly arranged can transmit light of a corresponding wavelength and block light of other wavelengths, the light of the display panel can be converted into light of different colors after passing through different photonic crystal regions.
  • the photonic crystal film layer can replace the conventional color resist film layer, thereby improving the brightness of the display panel, and solving the problem that the manufacturing process of the display panel caused by the multiple exposure of the color resist film layer is complicated and the manufacturing cost is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制作方法、显示装置,以提高显示面板的亮度,以及解决通过多次曝光制作色阻膜层导致的显示面板的制作工序较为复杂,制作成本较高的问题。显示面板,包括多个呈阵列分布的像素单元(2),每一像素单元包括多个子像素单元(21、22、23),显示面板在像素单元的出光侧设置有光子晶体膜层(3),光子晶体膜层具有与每一子像素单元一一对应的光子晶体区域(31、32、33),每一光子晶体区域内设置有多个均匀排列的微孔结构(34),且每一光子晶体区域内微孔结构的孔径与光子晶体区域对应的子像素单元显示光颜色相匹配。

Description

一种显示面板及其制作方法、显示装置
本申请要求在2017年5月11日提交中国专利局、申请号为201710329176.5、发明名称为“一种显示面板及其制作方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,尤其涉及一种显示面板及其制作方法、显示装置。
背景技术
平面显示器(F1at Pane1 Disp1ay,FPD)己成为市场上的主流产品,平面显示器的种类也越来越多,如液晶显示器(Liquid Crysta1 Disp1ay,LCD)、有机发光二极管(Organic Light Emitted Diode,OLED)显示器、等离子体显示面板(P1asma Disp1ay Pane1,PDP)及场发射显示器(Field Emission Display,FED)等。
现有技术的显示面板通常会用到色阻膜层,例如,LCD显示面板通常会在背光模组的出光侧设置色阻膜层,以将背光模组的光转换为不同颜色的光。OLED显示面板也可以通过白光OLED器件搭配色阻膜层实现彩色显示。
但对于现有技术的显示面板,显示面板的光在经过色阻膜层后,通常会使显示面板的亮度降低。而且,通过多次曝光制作的色阻膜层也导致显示面板的制作工序较为复杂,出现制作成本较高的问题。
发明内容
本申请实施例提供一种显示面板,包括多个呈阵列分布的像素单元,每一所述像素单元包括多个子像素单元;所述显示面板在所述像素单元的出光侧设置有光子晶体膜层,所述光子晶体膜层具有与每一所述子像素单元一一对应的光子晶体区域;其中,每一所述光子晶体区域内设置有多个均匀排列 的微孔结构,且每一所述光子晶体区域内所述微孔结构的孔径与该所述光子晶体区域对应的所述子像素单元显示光颜色相匹配。
本申请实施例还提供一种显示装置,包括本申请实施例提供的所述的显示面板。
本申请实施例还提供一种显示面板的制作方法,其中,所述显示面板包括多个呈阵列分布的像素单元,每一所述像素单元包括多个子像素单元,所述制作方法包括:
在所述像素单元的出光侧形成第一薄膜层;
在所述第一薄膜层中形成与各所述子像素单元对应的光子晶体区域;各所述光子晶体区域具有与该所述子像素单元显示光颜色相匹配孔径的微孔结构,所述微孔结构在每一所述光子晶体区域内均匀排列。
附图说明
图1为本申请实施例提供的一种显示面板的结构示意图;
图2为本申请实施例提供的一种具有相等孔径的光子晶体膜层;
图3为本申请实施例提供的一种显示面板的制备方法的流程图;
图4为本申请实施例一中,制备完成第一薄膜层的显示面板的结构示意图;
图5为本申请实施例一中,制备完成光刻胶层的显示面板的结构示意图;
图6为本申请实施例一中,制备完成聚合物分子的显示面板的结构示意图;
图7为本申请实施例一中,以第一倾斜角照射显示面板时的示意图;
图8为本申请实施例一中,以第二倾斜角照射显示面板时的示意图;
图9为本申请实施例一中,以第三倾斜角照射显示面板时的示意图;
图10为本申请实施例一中,形成图案化的光刻胶层的显示面板结构示意图;
图11为本申请实施例一中,在不同的光子晶体区域形成不同孔径的微孔 结构的显示面板的结构示意图;
图12为本申请实施例二中,制备完成光刻胶层的显示面板的结构示意图;
图13为本申请实施例二中,制备完成聚合物分子的显示面板的结构示意图;
图14为本申请实施例二中,以第一倾斜角照射显示面板时的示意图;
图15为本申请实施例二中,以第二倾斜角照射显示面板时的示意图;
图16为本申请实施例二中,以第三倾斜角照射显示面板时的示意图;
图17为本申请实施例二中,在不同的光子晶体区域形成不同孔径的微孔结构的显示面板的结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例的实现过程进行详细说明。需要注意的是,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
参见图1所示,本申请实施例提供一种显示面板,包括多个呈阵列分布的像素单元2,每一像素单元2包括多个子像素单元21、22和23,显示面板在像素单元2的出光侧设置有光子晶体膜层3,光子晶体膜层3具有与每一子像素单元21、22和23一一对应的光子晶体区域31、32和33;其中,每一光子晶体区域31、32和33内设置有多个均匀排列的微孔结构34,且每一光子晶体区域31、32和33内微孔结构34的孔径与该光子晶体区域31、32和33对应的子像素单元21、22和23显示光颜色相匹配。
例如,显示面板包括设置在衬底基板1上的多个像素单元2,图1中以其中的一个像素单2进行举例说明,每一像素单元2可以包括有三个子像素单元21、22和23。具体地,如图1所示,每一像素单元2包括:第一子像素单元21、第二子像素单元22以及第三子像素单元23。具体地,光子晶体膜层3包括多个呈阵列分布的光子晶体单元,每一光子晶体单元包括:与第一子像 素单元21对应的第一光子晶体区域31、与第二子像素单元22对应的第二光子晶体区域32以及与第三子像素单元23对应的第三光子晶体区域33;第一光子晶体区域31的微孔结构34的孔径与第一子像素单元21显示光颜色相匹配,第二光子晶体区域32的微孔结构34的孔径与第二子像素单元22显示光颜色相匹配,第三光子晶体区域33的微孔结构34的孔径与第三子像素单元23显示光颜色相匹配。即,在具体实施时,若需要使第一子像素单元21出射红光,则可以在第一光子晶体区域31设置孔径与红光对应的微孔结构34;若需要在第二子像素单元22出射绿光,则可以在第二光子晶体区域32设置孔径与绿光对应的微孔结构34,若需要在第三子像素单元23出射蓝光,在可以在第三光子晶体区域33设置孔径与蓝光对应的微孔结构34。
具体地,由于光子晶体区域31、32和33透射光的颜色与微孔结构34的孔径成正比。例如,透射红光一般需要的微孔结构34的孔径较大,透射蓝光的孔径较小,透射绿光的孔径居于二者之间。而光的颜色一般与波长对应,为了实现让不同的子像素单元21、22和23显示不同颜色的光,可以设置使每一光子晶体区域31、32和33的微孔结构34的孔径与该光子晶体区域31、32和33对应的子像素单元21、22和23显示光波长成正比。
需要说明的是,光子晶体是一种空间呈现周期性分布的新型光学材料。光子晶体够调制具有相应波长的电磁波,当电磁波在光子晶体结构中传播时,由于存在布拉格散射而受到调制,电磁波能量形成能带结构,能带与能带之间出现带隙,即光子带隙,所有能量处在光子带隙的光子,不能进入该晶体,即,只有某种频率的光才会在某种周期距离一定的光子晶体中被完全禁止传播,从而被透射出来。本申请通过不同光子晶体区域31、32和33具有孔径不同的微孔结构34,由于孔径大小不同,使光子晶体膜层3的不同光子晶体区域31、32和33具有不同的介质复合折射率,进而可以出射不同颜色的光。图2为本申请实施例提供的一种具有特定孔径的光子晶体膜层3。
由于一般只有周期性间距在亚微米级范围内的微孔结构34才可以起到对光的调制作用,因此,本申请实施例中任一光子晶体区域31、32和33内, 相邻两个微孔结构34的中心的间距均需在100nm~1000nm范围内,且同一光子晶体区域31、32和33内的相邻两个微孔结构34的中心的间距相同。
可选地,为了使显示面板具有较高的亮度,微孔结构34在光子晶体膜层3上单层分布。可选地,微孔结构34的深度等于光子晶体膜层3的厚度,即如图1所示,微孔结构34是贯穿光子晶体膜层3的。
在具体实施时,光子晶体膜层3的材质可以为感光树脂材料、硅基半导体材料或金属氧化物半导体材料等材料。
目前,现有技术的OLED显示面板通常有两种结构,一种是白光OLED器件搭配彩膜实现彩色显示,该种结构的OLED显示面板,工艺制作流程相对较长,同时器件的轻薄化方面存在局限。另一种为RGB三基色的OLED器件独立显示,这种结构的OLED显示面板在制作过程中的蒸镀工艺需要用到高精度掩模板(Fine Metal Mask,FMM),而FMM目前的技术水平仅可以实现在1000以下的像素密度(Pixels Per Inch,PPI)范围,因此也限制了该结构的OLED显示面板在更高PPI产品中的应用。而且,RGB三基色独立显示的OLED显示面板,还存在由于蓝光材料的寿命较短而导致OLED显示面板的寿命较短的问题。
可选地,本申请实施例提供的上述显示面板可以为OLED显示面板,此时,像素单元2包括白光OLED器件;各白光OLED器件发出的白光经过对应的光子晶体区域中的微孔结构出射成单色光。本申请实施例通过在白光OLED器件上制备一层光子晶体薄膜层3,该光子晶体膜层3存在三种及以上的光子晶体区域31、32和33,分别用于透射至少包括红绿蓝三个波段的光线,以取代传统色阻膜层中红色色阻、绿色色阻、以及蓝色色阻的位置及功能,避免了传统工艺中彩膜色阻对光亮度的损失,以及多次曝光引起的成本增加和工艺复杂的问题。相对于现有的RGB三基色独立显示的OLED显示面板,本申请实施例提供的显示面板可以使OLED显示面板实现高亮度、高色域的同时,还能够确保器件具有更长的显示寿命、更高的像素密度。
可选地,本申请实施例提供的上述显示面板也可以为液晶显示面板,像 素单元2包括液晶层。
可选地,在本申请实施例提供的上述显示面板中,如图1所示,各光子晶体区域31、32和33内的微孔结构34相对于光子晶体膜层3的表面可以具有相同的倾斜角度,例如图1所示,均微孔结构34均垂直光子晶体膜层3的表面。或者,根据制作工艺的不同,在本申请实施例提供的上述显示面板中,如图17所示,与相同显示光颜色的各子像素单元对应的各光子晶体区域内,各微孔结构相对于光子晶体膜层的表面具有相同的倾斜角度,例如图17中,在左侧的子像素单元21对应的光子晶体区域内,各微孔结构34垂直于光子晶体膜层3的表面;在右侧的子像素单元23对应的光子晶体区域内,各微孔结构34相对于光子晶体膜层3的表面以相同的角度向右倾斜。同时,与不同显示光颜色的子像素单元对应的各光子晶体区域内的微孔结构,相对于光子晶体膜层表面具有不同的倾斜角度,例如图17中,中间和右侧的两个子像素单元22和23显示光颜色不同,因此,对应的光子晶体区域内的微孔结构34相对于光子晶体膜层表面具有不同的倾斜角度。
基于同一发明构思,本申请实施例还提供一种显示装置,包括本申请实施例提供的上述显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述显示面板的实施例,重复之处不再赘述。
基于同一发明构思,参见图3,本申请实施例还提供了一种显示面板的制作方法,其中,显示面板包括多个呈阵列分布的像素单元,每一像素单元包括多个子像素单元,制作方法包括:
步骤101、在像素单元的出光侧形成第一薄膜层;
步骤102、在第一薄膜层中形成与各子像素单元对应的光子晶体区域;各所述光子晶体区域具有与该子像素单元显示光颜色相匹配孔径的微孔结构,微孔结构在每一光子晶体区域内均匀排列。
可选地,显示面板的每一像素单元可以包括第一子像素单元、第二子像素单元以及第三子像素单元;关于步骤102,在第一薄膜层中形成与各子像素 单元对应的光子晶体区域,可以具体包括:在第一薄膜层的中形成与第一子像素单元对应的第一光子晶体区域,且第一光子晶体区域具有第一孔径的微孔结构;在第一薄膜层中形成与第二子像素单元对应的第二光子晶体区域,且第二光子晶体区域具有第二孔径的微孔结构;在第一薄膜层中形成与第三子像素单元对应的第三光子晶体区域,且第三光子晶体区域具有形成第三孔径的微孔结构。
在具体实施时,第一薄膜层可以为硅基半导体材料或金属氧化物半导体材料,也可以为感光树脂材料时,当然,也可以为其它可以刻蚀成具有孔洞结构的任意材料。可选地,为了简化工艺制作,第一薄膜层选取硅基半导体材料。
关于步骤102如何在第一薄膜层中形成与各子像素单元对应的光子晶体区域,以下分别进行详细举例说明。
例如,第一薄膜层为现有技术中的显示面板常用的可以刻蚀成微孔结构的硅基半导体材料或金属氧化物半导体材料,则,步骤102在第一薄膜层中形成与各子像素单元对应的光子晶体区域,具体包括:
在第一薄膜层之上涂覆一层光刻胶层;
在光刻胶层之上形成聚合物分子膜层,其中,聚合物分子膜层具有以预设间距均匀排列的聚合物分子,其中,预设间距可以为相邻两个聚合物分子的中心的间距;
利用掩模板遮挡其他显示光颜色的子像素单元且仅露出一显示光颜色的子像素单元,在聚合物分子的遮挡下,以第一倾斜角度的光照射光刻胶层第一预设时长;
移动掩模遮挡其他显示光颜色的子像素单元且仅露出另一显示光颜色的子像素单元,在聚合物分子的遮挡下,以第二倾斜角度的光照射光刻胶层第二预设时长,直至全部显示光颜色的子像素单元均被露出过为止;
去除聚合物分子膜层;
通过显影,形成光刻胶层的图案;
去除部分第一薄膜层中未被光刻胶层的图案遮挡的部分,在第一薄膜层中形成各光子晶体区域具有的微孔结构。
又例如,第一薄膜层的材质为感光树脂材料时,步骤102在第一薄膜层中形成与各子像素单元对应的光子晶体区域,具体包括:
在第一薄膜层之上形成聚合物分子膜层,其中,聚合物分子膜层具有以预设间距均匀排列的聚合物分子;
利用掩模板遮挡其他显示光颜色的子像素单元且仅露出一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第一倾斜角度的光照射所述第一薄膜层第一预设时长;
移动所述掩模遮挡其他显示光颜色的子像素单元且仅露出另一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第二倾斜角度的光照射所述第一薄膜层第二预设时长后,直至全部显示光颜色的子像素单元均被露出过为止;
去除聚合物分子膜层;
通过显影,去除部分第一薄膜层中被所述聚合物分子遮挡的部分,在所述第一薄膜层中形成所述光子晶体区域具有的微孔结构。
在具体实施时,关于形成聚合物分子膜层,具体可以包括:
根据需涂覆的面积以及聚合物分子直径,获取需要的聚合物分子的数量;
根据需要的聚合物分子的数量以及聚合物溶液的密度,获取需要的聚合物溶液的体积;
采用滴注的方法,在需要涂覆的区域滴注聚合物溶液。
在具体实施时,对于显示面板为OLED显示面板,在像素单元的出光侧形成第一薄膜层之前,制作方法还可以包括:形成白光OLED器件;
在像素单元的出光侧形成第一薄膜层,具体包括:在白光OLED器件的出光侧形成第一薄膜层。
当然,以上仅是通过移动掩模板与不同的曝光方向实现在第一薄膜层中不同光子晶体区域形成不同孔径的微孔结构,在具体实施时,还可以涂覆一 层聚合物分子,通过在不同光子晶体区域调节光源与覆盖聚合物分子的显示面板的距离,来实现在不同的光子区域形成不同孔径的微孔结构,即,由于曝光距离的远近不同也可以实现形成的孔径不同的微孔结构。另外,还可以通过在不同的光子晶体区域形成分子直径大小的聚合物,进而实现在不同光子晶体区域形成不同孔径的微孔结构。
为了更详细的对本申请提供的金属氧化物薄膜晶体管的制备方法进行说明,结合附图4至附图17举例如下:
实施例一
本申请实施例提供第一种具体的显示面板的制备方法,包括:
步骤一,在衬底基板1上形成像素单元2,例如,在玻璃基板上形成OLED白光器件。具体形成OLED白光器件的步骤与现有技术形成OLED白光器件的步骤相同,在此不再赘述。
步骤二、在像素单元2的出光侧形成第一薄膜层30。此处的第一薄膜层为硅基半导体材料。在像素单元2之上形成第一薄膜层30后的示意图如图4所示。
步骤三、在第一薄膜层30上涂覆一层光刻胶层40。在第一薄膜层30之上形成光刻胶层40后的示意图如图5所示。
步骤四、采用胶体自组织的方法在光刻胶层40上形成周期性均匀排列的聚合物分子5。在光刻胶层40之上形成聚合物分子5后的示意图如图6所示。
具体采用胶体自组织的方法在光刻胶层上形成周期性的聚合物分子的步骤包括:
根据需涂覆的面积以及聚合物分子直径,获取需要的聚合物分子的数量;
根据需要的聚合物分子的数量以及聚合物溶液的密度,获取需要的聚合物溶液的体积,此处聚合物溶液的密度可指单位体积溶液中包含的聚合物分子数量;
采用滴注的方法,在需要涂覆的区域滴注聚合物溶液。
需要说明的是,本申请实施例提供的聚合物分子是已经制备出来的,为 具有明确规格的悬浊液,聚合物分子的分子直径大小以及聚合物溶液的密度均为已知,为一种原材料,杜邦等公司均有相关的产品。胶体自组织的方法是目前制备光子晶体常用的方法之一。通过将聚合物分子(如聚苯乙烯)分散在溶液里,聚合物分子一般为亚微米数量级,各聚合物分子在短程静电作用及长程范德华力的作用下以一种精确有序的方式聚集在一起,自发排列形成规则的有序结构。
步骤五、在掩模板6的遮挡下,以第一倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第一预设时长,参见图7所示。平移掩模板6一个子像素单元21的距离,以第二倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第二预设时长,参见图8所示。平移掩模板6一个子像素单元22的距离,以第三倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第三预设时长,参见图9所示。最后,移去掩模板。具体的掩模板6可以为在与每一个像素单元中的一个子像素单元的对应区域设置有开口,进而通过掩模板6的移动以及光照方向的调整,最终形成具有不同孔径的微孔结构的光子晶体区域。
步骤六、去除聚合物分子膜层。
步骤七、通过显影,形成图案化的光刻胶层40,其中,图案化的光刻胶层40包括与不同像子素单元对应的不同孔径的光刻胶层微孔41。由于被聚合物分子遮挡的光刻胶层未受到光照,经过显影工艺后就会被去除。形成图案化的光刻胶层40后的示意图如图10所示。
步骤八、在图案化的光刻胶层40的遮挡下,去除第一薄膜层30中未被光刻胶层40的图案遮挡的部分,以在第一薄膜层30中形成与第一子像素单元21对应的第一光子晶体区域具有的第一孔径的微孔结构34,在第一薄膜层30中形成与第二子像素单元22对应的第二光子晶体区域具有的第二孔径的微孔结构34,在第一薄膜层30中形成与第三子像素单元23对应的第三光子晶体区域具有的第三孔径的微孔结构34,去图案化的光刻胶层40,进而形成最终的光子晶体膜层3。形成光子晶体膜层3后的示意图如图11所示。
实施例二
本申请实施例提供第二种具体地显示面板的制备方法,包括:
步骤一,在衬底基板1上形成像素单元2,例如,在玻璃基板上形成OLED白光器件。具体形成OLED白光器件的步骤与现有技术形成OLED白光器件的步骤相同,在此不再赘述。
步骤二、在像素单元2的出光侧涂覆一层光刻胶层40。此处的光刻胶层40即为第一薄膜层,也即,第一薄膜层为感光树脂材料。在像素单元2的出光侧形成光刻胶层40后的示意图如图12所示。
步骤四、采用胶体自组织的方法在光刻胶层40上形成周期性均匀排列的聚合物分子5。在光刻胶层40之上形成聚合物分子5后的示意图如图13所示。
具体采用胶体自组织的方法在光刻胶层上形成周期性的聚合物分子的步骤与实施例一相同,在此不再赘述。
步骤五、在掩模板6的遮挡下,以第一倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第一预设时长,参见图14所示。平移掩模板6一个子像素单元21的距离,以第二倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第二预设时长,参见图15所示。平移掩模板6一个子像素单元22的距离,以具有第三倾斜角度的光照射被聚合物分子5遮挡的光刻胶层40第三预设时长,参见图16所示。最后,移去掩模板。具体的掩模板6为在与每一个像素单元中的一个子像素单元的对应区域设置有一个开口,进而通过掩模板6的移动以及光照方向的调整,最终形成具有不同孔径的微孔结构的光子晶体区域。
步骤六、去除聚合物分子膜层。
步骤七、通过显影,去除光刻胶层40中被聚合物分子5遮挡的部分,在光刻胶层40中形成与第一子像素单元21对应的第一光子晶体区域具有的第一孔径的微孔结构34,在光刻胶层40中形成与第二子像素单元22对应的第二光子晶体区域具有的第二孔径的微孔结构34,在光刻胶层40中形成与第三子像素单元23对应的第三光子晶体区域具有的第三孔径的微孔结构34,进而形成最终的光子晶体膜层3。形成光子晶体膜层3后的示意图如图17所示。
本申请实施例有益效果如下:本申请实施例提供的显示面板,通过在出光侧设置光子晶体膜层,该光子晶体膜层具有与子像素单元一一对应的光子晶体区域,每一光子晶体区域内设置有多个均匀排列的微孔结构,且每一光子晶体区域内微孔结构的孔径与该光子晶体区域对应的子像素单元显示光颜色相匹配。由于具有一定孔径且周期性均匀排列的微孔结构可以透过相应波长的光,而阻挡其它波长的光,进而显示面板的光在经过不同的光子晶体区域后,可以转换为不同颜色的光,使得光子晶体膜层可以替代传统的色阻膜层,进而可以提高显示面板的亮度,以及解决通过多次曝光制作色阻膜层导致的显示面板的制作工序较为复杂,制作成本较高的问题。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示面板,包括多个呈阵列分布的像素单元,每一所述像素单元包括多个子像素单元;所述显示面板在所述像素单元的出光侧设置有光子晶体膜层,所述光子晶体膜层具有与每一所述子像素单元一一对应的光子晶体区域;其中,每一所述光子晶体区域内设置有多个均匀排列的微孔结构,且每一所述光子晶体区域内所述微孔结构的孔径与该所述光子晶体区域对应的所述子像素单元显示光颜色相匹配。
  2. 如权利要求1所述的显示面板,每一所述光子晶体区域的所述微孔结构的孔径与该所述光子晶体区域对应的所述子像素单元显示光波长成正比。
  3. 如权利要求1或2所述的显示面板,所述微孔结构在所述光子晶体膜层内单层分布。
  4. 如权利要求3所述的显示面板,所述微孔结构的深度等于所述光子晶体膜层的厚度。
  5. 如权利要求1所述的显示面板,每一所述光子晶体区域内,相邻两个所述微孔结构的中心的间距为100nm~1000nm。
  6. 如权利要求1所述的显示面板,所述光子晶体膜层的材质为感光树脂材料、硅基半导体材料或金属氧化物半导体材料。
  7. 如权利要求1所述的显示面板,每一所述像素单元包括:第一子像素单元、第二子像素单元以及第三子像素单元;
    所述光子晶体膜层包括:与所述第一子像素单元对应的第一光子晶体区域、与所述第二子像素单元对应的第二光子晶体区域以及与所述第三子像素单元对应的第三光子晶体区域;
    所述第一光子晶体区域的所述微孔结构的孔径与所述第一子像素单元显示光颜色相匹配,所述第二光子晶体区域的所述微孔结构的孔径与所述第二子像素单元显示光颜色相匹配,所述第三光子晶体区域的所述微孔结构的孔径与所述第三子像素单元显示光颜色相匹配。
  8. 如权利要求1所述的显示面板,所述显示面板为OLED显示面板,所述像素单元包括白光OLED器件;各所述白光OLED器件发出的白光经过对应的光子晶体区域中的微孔结构出射成单色光。
  9. 如权利要求1所述的显示面板,与相同显示光颜色的各所述子像素单元对应的各所述光子晶体区域内,各所述微孔结构相对于所述光子晶体膜层的表面具有相同的倾斜角度;
    与不同显示光颜色的所述子像素单元对应的各所述光子晶体区域内的微孔结构,相对于所述光子晶体膜层表面具有不同的倾斜角度。
  10. 一种显示装置,其特征在于,包括如权利要求1-9任一项所述的显示面板。
  11. 一种显示面板的制作方法,其中,所述显示面板包括多个呈阵列分布的像素单元,每一所述像素单元包括多个子像素单元;
    所述制作方法包括:
    在所述像素单元的出光侧形成第一薄膜层;
    在所述第一薄膜层中形成与各所述子像素单元对应的光子晶体区域;各所述光子晶体区域具有与该所述子像素单元显示光颜色相匹配孔径的微孔结构,所述微孔结构在每一所述光子晶体区域内均匀排列。
  12. 如权利要求11所述的制作方法,其特征在于,所述第一薄膜层为硅基半导体材料或金属氧化物半导体材料;
    所述在所述第一薄膜层中形成与各所述子像素单元对应的光子晶体区域,具体包括:
    在所述第一薄膜层之上涂覆光刻胶层;
    在所述光刻胶层之上形成聚合物分子膜层,其中,所述聚合物分子膜层具有以预设间距均匀排列的聚合物分子;
    利用掩模板遮挡其他显示光颜色的子像素单元且仅露出一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第一倾斜角度的光照射所述光刻胶层第一预设时长;
    移动所述掩模遮挡其他显示光颜色的子像素单元且仅露出另一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第二倾斜角度的光照射所述光刻胶层第二预设时长,直至全部显示光颜色的子像素单元均被露出过为止;
    去除所述聚合物分子膜层;
    通过显影,形成所述光刻胶层的图案;
    去除所述第一薄膜层中未被所述光刻胶层的图案遮挡的部分,在所述第一薄膜层中形成各所述光子晶体区域具有的微孔结构。
  13. 如权利要求11所述的制作方法,其特征在于,所述第一薄膜层的材质为感光树脂材料;
    所述在所述第一薄膜层中形成与各所述子像素单元对应的光子晶体区域,具体包括:
    在所述第一薄膜层之上形成聚合物分子膜层,其中,所述聚合物分子膜层具有以预设间距均匀排列的聚合物分子;
    利用掩模板遮挡其他显示光颜色的子像素单元且仅露出一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第一倾斜角度的光照射所述第一薄膜层第一预设时长;
    移动所述掩模遮挡其他显示光颜色的子像素单元且仅露出另一显示光颜色的子像素单元,在所述聚合物分子的遮挡下,以第二倾斜角度的光照射所述第一薄膜层第二预设时长后,直至全部显示光颜色的子像素单元均被露出过为止;
    去除所述聚合物分子膜层;
    通过显影,去除所述第一薄膜层中被所述聚合物分子遮挡的部分,在所述第一薄膜层中形成所述光子晶体区域具有的微孔结构。
  14. 如权利要求12或13所述的制作方法,其特征在于,所述形成聚合物分子膜层,具体包括:
    根据需涂覆的面积以及聚合物分子直径,获取需要的聚合物分子的数量;
    根据需要的聚合物分子的数量以及聚合物溶液的密度,获取需要的聚合物溶液的体积;
    采用滴注的方法,在需要涂覆的区域滴注聚合物溶液。
  15. 如权利要求11所述的制作方法,其特征在于,所述显示面板为OLED显示面板;
    所述像素单元的出光侧形成第一薄膜层之前,所述制作方法还包括:形成白光OLED器件;
    所述在像素单元的出光侧形成第一薄膜层,具体包括:在所述白光OLED器件的出光侧形成第一薄膜层。
PCT/CN2017/111322 2017-05-11 2017-11-16 一种显示面板及其制作方法、显示装置 WO2018205537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/775,251 US11094751B2 (en) 2017-05-11 2017-11-16 Display panel, method for fabricating the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710329176.5 2017-05-11
CN201710329176.5A CN107123665A (zh) 2017-05-11 2017-05-11 一种显示面板及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018205537A1 true WO2018205537A1 (zh) 2018-11-15

Family

ID=59727821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111322 WO2018205537A1 (zh) 2017-05-11 2017-11-16 一种显示面板及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US11094751B2 (zh)
CN (1) CN107123665A (zh)
WO (1) WO2018205537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581162A (zh) * 2019-09-27 2019-12-17 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107123665A (zh) 2017-05-11 2017-09-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN108363249B (zh) 2018-03-14 2023-06-13 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置
CN108919554B (zh) * 2018-07-26 2022-08-26 京东方科技集团股份有限公司 反射式显示基板及其制造方法、显示面板
CN109103232A (zh) * 2018-08-30 2018-12-28 上海天马微电子有限公司 一种oled显示面板及oled显示装置
CN112750963B (zh) * 2018-08-30 2022-07-01 武汉天马微电子有限公司 有机发光显示面板和显示装置
CN110809120B (zh) * 2019-11-01 2021-04-27 深圳创维-Rgb电子有限公司 拍摄画面的补光方法、智能电视及计算机可读存储介质
CN110970540B (zh) * 2019-12-18 2022-09-09 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN111490082A (zh) * 2020-04-17 2020-08-04 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806975A (zh) * 2009-11-16 2010-08-18 上海交通大学 子像素匹配型光子晶体导光板
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN107123665A (zh) * 2017-05-11 2017-09-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563059B1 (ko) 2003-11-28 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 디스플레이 장치 및 이의 제조에 사용되는레이저 열전사용 도너 필름
US8363185B2 (en) * 2008-10-10 2013-01-29 Samsung Electronics Co., Ltd. Photonic crystal optical filter, transmissive color filter, transflective color filter, and display apparatus using the color filters
KR20120113072A (ko) * 2011-04-04 2012-10-12 삼성전자주식회사 광 결정 컬러 인쇄지 및 인쇄방법
FR2994602B1 (fr) * 2012-08-16 2014-09-12 Commissariat Energie Atomique Dispositif de filtrage spectral dans les domaines visible et infrarouge
CN103066178B (zh) 2012-12-29 2015-07-29 映瑞光电科技(上海)有限公司 一种倒装光子晶体led芯片及其制造方法
CN103545173A (zh) * 2013-10-28 2014-01-29 中国科学院半导体研究所 一种带有大面积纳米图形的蓝宝石模板制作方法
JP6158248B2 (ja) * 2014-05-27 2017-07-05 ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイThe Board Of Trustees Of The University Of Illinois ナノ構造材料の方法および素子
CN105487239B (zh) * 2015-11-13 2018-03-02 苏州苏大维格光电科技股份有限公司 指向性彩色滤光片和裸眼3d显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806975A (zh) * 2009-11-16 2010-08-18 上海交通大学 子像素匹配型光子晶体导光板
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN107123665A (zh) * 2017-05-11 2017-09-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581162A (zh) * 2019-09-27 2019-12-17 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN110581162B (zh) * 2019-09-27 2022-06-03 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
US11094751B2 (en) 2021-08-17
CN107123665A (zh) 2017-09-01
US20210134888A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2018205537A1 (zh) 一种显示面板及其制作方法、显示装置
US11467325B2 (en) Optical filter and manufacturing method therefor, display substrate, and display apparatus
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
KR100790866B1 (ko) 컬러 필터용 블랙 매트릭스 및 그 제조방법
US11244985B2 (en) Color film assembly, display substrate and method for fabricating same, and display apparatus
WO2017092090A1 (zh) 量子点彩膜基板的制作方法
US20100091224A1 (en) Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
WO2017084149A1 (zh) 彩色滤光基板的制作方法
CN108153041A (zh) 一种显示面板、背光模组及显示装置
WO2014166179A1 (zh) 液晶显示屏、显示装置及量子点层图形化的方法
WO2015039557A1 (zh) 反射式滤光片及其制备方法、显示装置
WO2013143301A1 (zh) 彩膜基板、显示装置及彩膜基板的制备方法
JP2016018734A (ja) 表示装置及びその製造方法
KR20150033927A (ko) 편광시트 및 이의 제조 방법과 상기 편광시트를 포함하는 액정표시장치
US10847685B2 (en) Photoluminescence apparatus, method of manufacturing the same and display apparatus having the same
JP2005099467A (ja) 電気光学装置
US7952660B2 (en) Method of fabricating black matrices of color filter
US20070184363A1 (en) Method of manufacturing a black matrix of color filter
KR20200028574A (ko) 디스플레이 모듈, 이를 포함하는 디스플레이 장치 및 디스플레이 모듈 제조 방법
KR20130131337A (ko) 컬러 필터의 제조 방법, 표시 소자 및 컬러 필터
EP3454113B1 (en) Light-modulated quantum dot color display and method for manufacturing the same
US10061163B2 (en) Color filter plate and fabrication method thereof, display panel
US20180088408A1 (en) Color film substrate, manufacturing metho, and liquid crystal device
TW201621419A (zh) 顯示面板及其製造方法
KR102617140B1 (ko) 노광용 마스크 및 이를 이용한 노광 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909109

Country of ref document: EP

Kind code of ref document: A1