WO2018203615A1 - Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst - Google Patents

Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst Download PDF

Info

Publication number
WO2018203615A1
WO2018203615A1 PCT/KR2018/004832 KR2018004832W WO2018203615A1 WO 2018203615 A1 WO2018203615 A1 WO 2018203615A1 KR 2018004832 W KR2018004832 W KR 2018004832W WO 2018203615 A1 WO2018203615 A1 WO 2018203615A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxidative dehydrogenation
coprecipitation
dehydrogenation reaction
preparing
Prior art date
Application number
PCT/KR2018/004832
Other languages
French (fr)
Korean (ko)
Other versions
WO2018203615A9 (en
Inventor
한상진
고동현
차경용
한준규
황선환
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180047836A external-priority patent/KR102173583B1/en
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US16/307,676 priority Critical patent/US11247195B2/en
Priority to CN201880002461.9A priority patent/CN109311004B/en
Priority to JP2018565339A priority patent/JP6790319B2/en
Priority to EP18795175.1A priority patent/EP3453454B1/en
Publication of WO2018203615A1 publication Critical patent/WO2018203615A1/en
Publication of WO2018203615A9 publication Critical patent/WO2018203615A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury

Definitions

  • the present invention relates to a method for preparing a catalyst for oxidative dehydrogenation and a method for oxidative dehydrogenation using the catalyst, which is inactive ⁇ -Fe 2 O 3 It provides a catalyst for oxidative dehydrogenation reaction of high oxidative dehydrogenation which reduces the crystal structure, and furthermore, it is utilized in the production of butadiene to suppress side reactions, and improves the selectivity of butadiene to improve butadiene productivity. It relates to a method for producing a catalyst for the digestion reaction.
  • 1,3-butadiene is one of the main raw materials of synthetic rubber, whose price fluctuates rapidly in connection with the supply and demand of the petrochemical industry.
  • Methods for producing 1,3-butadiene include naphtha cracking, direct dehydrogenation of normal butenes, and oxidative dehydrogenation of normal butenes.
  • the oxidative dehydrogenation of normal butene is a reaction in which butene and oxygen react to produce 1,3-butadiene and water in the presence of a metal oxide catalyst. Thus, stable water is produced, which is very thermodynamically advantageous.
  • ferrite-based catalysts which are widely known as catalysts for oxidative dehydrogenation of butenes, are generally synthesized by coprecipitation.
  • the catalysts synthesized by coprecipitation have a crystal structure active in oxidative dehydrogenation and an inert Fe 2 O. It is known that three crystal structures coexist. Therefore, it is necessary to reduce the inert Fe 2 O 3 crystal structure in the synthesis of the catalyst, or to study a technique for producing a catalyst having excellent activity even if the inert crystal structure is more than a certain level.
  • the present invention provides a method for producing a catalyst excellent in oxidative dehydrogenation reaction activity even in the presence of a certain level of inert Fe 2 O 3 crystal structure, and further inert using a coprecipitation
  • An object of the present invention is to provide a method for preparing a catalyst for oxidative dehydrogenation which can reduce the phosphorus Fe 2 O 3 crystal structure.
  • the present invention is to provide an oxidative dehydrogenation method that can suppress side reactions using a catalyst prepared by the method for producing a catalyst for the oxidative dehydrogenation reaction, and can greatly improve the yield, selectivity, etc. of butadiene. The purpose.
  • the present invention comprises the steps of adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; Co-precipitating iron and A metal by adding the metal precursor aqueous solution and the basic aqueous solution to a coprecipitation tank prepared with an aqueous solution or water having a pH adjusted to 6 or more; And calcining the coprecipitated coprecipitate, wherein the oxidizing method comprises supplying an inert gas or air to the coprecipitation tank during the coprecipitation, after the coprecipitation or after the coprecipitation.
  • a method for preparing a catalyst for the dehydrogenation reaction is provided.
  • the present invention includes the step of performing an oxidative dehydrogenation reaction while passing a reactant containing oxygen and a C4 mixture containing normal butene in a reactor filled with a catalyst for oxidative dehydrogenation reaction according to the production method An oxidative dehydrogenation method is provided.
  • a process of injecting an inert gas or air into a coprecipitation at a specific point of time improves the activity of the catalyst, and optionally, a metal precursor aqueous solution is added to the bottom of the coprecipitation.
  • a metal precursor aqueous solution is added to the bottom of the coprecipitation.
  • Example 1 is XRD data showing the crystal structure of the zinc ferrite catalyst prepared according to Example 1 (Air supply) and Comparative Example 1 (existing synthesis method).
  • Figure 2 shows the crystal structure of the zinc ferrite catalyst prepared according to Example 2 (N 2 supply + metal precursor aqueous solution bottom), Example 3 (Air supply + metal precursor aqueous solution bottom) and Comparative Example 1 (conventional synthesis method). XRD data showing.
  • Figure 3 is a graph showing a comparison of the particle size distribution of the coprecipitation slurry prepared in Examples 1 to 3 and Comparative Example 1.
  • the present inventors confirmed that when synthesizing a ferrite catalyst using the coprecipitation method, an inert Fe 2 O 3 crystal structure is observed, which affects the activity of oxidative dehydrogenation reaction, and the inert Fe 2 O 3 crystal structure is constant. In order to increase the reaction activity and to reduce the inert crystal structure itself even in the presence of abnormal state, it was sought to supply nitrogen (N 2 ) gas or air to the coprecipitation solution at a certain point in the synthesis of the catalyst.
  • N 2 nitrogen
  • the degree of dispersion of the co-precipitation corresponding to the ferritic catalyst precursor is maximized, and has an advantageous effect on the crystal structure of the ferritic catalyst. It is confirmed that the above-mentioned problem is solved, and based on this, the present invention has been completed.
  • the method for preparing a catalyst for the oxidative dehydrogenation reaction of the present disclosure includes, for example, adding a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor to water to prepare a metal precursor aqueous solution; Co-precipitating iron and A metal by adding the metal precursor aqueous solution and the basic aqueous solution to a coprecipitation bath prepared with an aqueous solution or water having a pH adjusted to 6 or more; And firing the co-precipitated coprecipitate; After copulation; Or from copulation to after copulation; Characterized in that the process of supplying an inert gas or air (air) to the coprecipitation tank.
  • Fe trivalent cation iron
  • A divalent cation metal
  • the process of supplying inert gas or air to the coprecipitation tank is a process of supplying an inert gas or air into the coprecipitation tank while stirring the solution in the coprecipitation tank by using an agitator such as an impeller, or by connecting a pipe to the bottom of the coprecipitation tank.
  • the pipe may be a process of supplying inert gas or air into the coprecipitation tank, or a tube, for example, a Teflon tube may be installed in the coprecipitation tank, and a process of supplying inert gas or air to the solution through the pipe.
  • the pipe and the pipe may have an inner diameter of, for example, 1/8 "to 1/2" or 1/6 "to 1/2", and its position is below the coprecipitation tank, that is, below the water surface of the solution in the coprecipitation tank
  • it may be located at the lower end of the coprecipitation tank, specifically, within a half of the distance from the bottom of the coprecipitation tank to the water surface.
  • the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor in the metal precursor aqueous solution preparation step are, for example, a group consisting of nitrate, ammonium salt, sulfate or chloride. It may be one or more selected independently from. Preferably, it can be selected from nitrate or chloride in consideration of the cost of preparing the catalyst for mass production as it is inexpensive and easy to purchase.
  • the divalent cation metal (A) is, for example, copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg) ), Manganese (Mn) and cobalt (Co) may be one or more selected from the group consisting of, preferably selected from zinc (Zn) or manganese (Mn) exhibiting a particularly high activity in the oxidative dehydrogenation of butene. And zinc (Zn) may be most preferred in terms of yield and selectivity of butadiene.
  • the trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed with water to prepare an aqueous solution.
  • the metal precursor is dissolved in water and is present in the liquid phase, the iron and the divalent cationic metal
  • the ion exchange is easy, so that the desired coprecipitation can be easily prepared.
  • the water may be, for example, distilled water.
  • an appropriate mixing ratio of the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor in the aqueous metal precursor solution is based on one mole of the divalent cation metal (A) precursor. Is 1.5 to 10 moles, 1.5 to 4 moles or 1.5 to 2.5 moles. Within this range, the crystal structure active for the oxidative dehydrogenation reaction can be easily formed and the catalyst activity is excellent.
  • the metal precursor aqueous solution may have a pH of 0 to 4, 1 to 3 or 1 to 2, for example, there is an effect that the desired active ingredient is stably formed within this range.
  • a coprecipitation bath prepared with an aqueous solution or water having a pH adjusted to 6 or more for coprecipitation of iron and A metal is prepared, and the metal precursor aqueous solution is added to the coprecipitation bath to form iron and A metal. Copulates.
  • the pH-adjusted aqueous solution may be at least one selected from, for example, an aqueous sodium hydroxide solution and ammonia water, and the pH of the coprecipitation bath is 6 or more, 6 to 10 or 7 before dropping the aqueous metal precursor solution.
  • pre-adjusting to 8 it is possible to reduce the initial pH change due to the addition of the aqueous metal precursor solution to stably form a catalyst of a uniform composition.
  • the method for preparing a catalyst of the present disclosure may, for example, perform a process of injecting an inert gas or air into a coprecipitation during the coprecipitation step, and by performing such a process, the oxygen and the metal precursor may be uniformly combined and mixed.
  • the mixing effect may be enhanced and ultimately may provide an effect of improving the oxidative dehydrogenation reaction activity.
  • the catalyst prepared according to the present invention is applied to the oxidative dehydrogenation of butene, butene conversion, butadiene selectivity, yield, etc. are improved, and the production of side reaction materials is reduced.
  • a hot spot refers to a portion where the temperature is highest during the reaction in the catalyst layer filled in the reactor.
  • Conditions for adding the inert gas or air to the coprecipitation bath are not particularly limited.
  • the inert gas or air may be used at 0.1 to 2 L / min or 0.5 to 1 L / min per 1 L of the solution in the coprecipitation bath. It can be supplied for from 200 minutes, 30-100 minutes or 40-90 minutes, and there is an advantage in the small and uniform particle size distribution of the catalyst and the active crystal structure within this range.
  • the coprecipitation solution may be preferably maintained at a pH of, for example, 7 to 10, or 7 to 8, and there is an effect of excellent activity or stability of the catalyst within this range.
  • it may be preferable to add a basic aqueous solution simultaneously with the aqueous metal precursor solution for the purpose of maintaining a pH of 7 to 10.
  • the metal precursor aqueous solution and the basic aqueous solution may be co-precipitated with the metal and the A metal, and the basic aqueous solution may be, for example, one or more selected from sodium hydroxide or ammonia water.
  • a drop means, for example, dropping two or more solutions onto the same point or a container, and the same point indicates a range within or below the point where the dropping solution splashes on the surface of the water. Includes a range within a point that does not mix thoroughly and retains its properties.
  • the aqueous metal precursor solution may be supplied through the bottom of the coprecipitation tank, and the basic aqueous solution may be dropped into the coprecipitation tank to co-precipitate iron and A metal.
  • the aqueous metal precursor solution is directly supplied into the coprecipitation tank separately from the basic aqueous solution, a uniform crystal structure is formed by increasing the rate at which the metal precursor diffuses into the solution provided in the coprecipitation bath, and the inactive crystal structure is reduced to a high degree. Catalysts that exhibit activity can be provided.
  • the method of injecting the coprecipitation bottom of the aqueous metal precursor solution is not particularly limited when the metal precursor aqueous solution is directly injected below the water surface without passing through the surface of the solution in the coprecipitation bath.
  • the metal precursor aqueous solution may be supplied through this piping, or the metal precursor aqueous solution may be supplied through a tube installed so that one end is immersed in the solution in the coprecipitation tank, and in this case, the metal precursor solution is supplied into the solution by supplying the aqueous metal precursor solution through the lower coprecipitation tank. Can increase the rate at which it spreads.
  • the co-precipitate is present in a slurry state in the co-precipitation bath, such slurry particles have, for example, a median size of 7 ⁇ m or less, or 1 to 7 ⁇ m, and a mode size of the particle of 7 ⁇ m or less, or It may be 1 to 7 ⁇ m, within this range has the effect of securing a high yield of butadiene compared to the existing zinc ferrite catalyst.
  • the median diameter and the mode diameter of the slurry particles are measured by Horiba's Laser Particle Size Analyzer-960, and the required refractive index is set based on Fe, which is most present in the slurry state.
  • the method for preparing a catalyst according to the present disclosure may perform a process of supplying an inert gas or air while stirring the coprecipitation solution after the coprecipitation is completed, and the catalyst prepared as described above may have an oxidative dehydrogenation activity.
  • the catalyst prepared as described above may have an oxidative dehydrogenation activity.
  • the method for preparing a catalyst according to the present invention performs a process of supplying an inert gas or air into a coprecipitation bath during the step of coprecipitation by adding the aqueous metal precursor solution and the basic aqueous solution, and after the coprecipitation is completed, While stirring, an inert gas or air may be additionally supplied into the coprecipitation bath, and in this case, the oxidative dehydrogenation reaction activity of the catalyst may be further improved.
  • the method of preparing a catalyst according to the present invention continuously adds the metal precursor aqueous solution and the basic aqueous solution into a coprecipitation bath, and then stirs the coprecipitation solution after the coprecipitation is completed, that is, from the coprecipitation time. Afterwards, a process of supplying an inert gas or air into the coprecipitation tank may be performed. In this case, the oxidative dehydrogenation activity of the catalyst may be improved.
  • the inert gas may be, for example, nitrogen (N 2 ).
  • stirring and aging may be performed for 30 minutes to 3 hours or 30 minutes to 2 hours, respectively, but are not limited thereto.
  • the drying and filtration are not particularly limited as long as they are commonly carried out in the art, and the filtration may be, for example, vacuum filtration, and may further include a process of washing after filtration as necessary.
  • the drying may be performed using a conventional dryer, for example, may be dried for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours at 60 to 100 °C, 70 to 100 °C, or 80 to 100 °C. Can be.
  • the firing may use a conventional firing furnace, for example, may be carried out at 400 to 800 °C, 500 to 800 °C, or 550 to 750 °C for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours Specifies that it is not limited.
  • the catalyst obtained through the calcination may include an AFe 2 O 4 crystal structure, and as a specific example, may be a mixed phase including an AFe 2 O 4 crystal structure and an ⁇ -Fe 2 O 3 crystal structure.
  • Catalysts obtained according to one embodiment of the present invention may include, for example, at least 93.7 wt%, at least 94.0 wt%, at least 94.5 wt%, at least 94.8 wt% or at 94.8 to 96.0 wt% of the AFe 2 O 4 crystal structure; And 6.3 wt% or less, 6.0 wt% or less, 5.5 wt% or less, 5.2 wt% or less, or 4.0 to 5.2 wt% of the ⁇ -Fe 2 O 3 crystal structure.
  • the weight ratio of AFe 2 O 4 to ⁇ -Fe 2 O 3 is based on the AFe 2 O 4 peak (2theta: 29.5 to 30.5 °, 34.5 to 35.5 °, 42 to 43 °, 52.5 to 53.5 °, and 56.5 in XRD diffraction analysis. To 57.5 °, 62 to 63 °) and an ⁇ -Fe 2 O 3 peak (2theta: 33 to 34 °).
  • AFe 2 O 4 as a diffraction peak due to the surface where each peak exists is (220), (311), (222), (400), (422), (511), (440). Position is present, and ⁇ -Fe 2 O 3 is present at position (104).
  • the catalyst preparation method of the present invention comprises the steps of 1) adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; 2) co-precipitating iron and A metal by dropping the aqueous metal precursor solution together with a basic aqueous solution in a coprecipitation solution prepared with an aqueous solution or pH adjusted to 6 to 10; And 3) stirring the coprecipitation solution of which the coprecipitation is completed; Or stirring and aging; and then, firing the co-precipitated coprecipitate; wherein the co-precipitating step and the step of injecting nitrogen or air into the co-precipitation bath may be performed.
  • a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution
  • co-precipitating iron and A metal by dropping the aqueous metal precursor solution together with a basic aque
  • the catalytic method of the present disclosure includes the steps of 1) adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; 2) supplying the aqueous metal precursor solution through a coprecipitation bottom having an aqueous solution adjusted to pH 6 to 10 or water, and dropping a basic aqueous solution into the coprecipitation bath to co-precipitate iron and A metal; And 3) stirring the coprecipitation solution of which the coprecipitation is completed; Or stirring and aging; and then, firing the co-precipitated coprecipitate; and the co-precipitating step and supplying nitrogen or air into the co-precipitation bath during the stirring.
  • a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution
  • the catalyst according to the production method of the present disclosure may be characterized by satisfying the following equation (1).
  • T2 is a ⁇ -Fe contained in a total of 100% by weight of the catalyst prepared according to the catalyst production method of the present invention including a metal precursor aqueous solution supplied to the bottom of the coprecipitation, inert gas or air input process 2 O 3
  • T1 is the content of the crystal structure
  • T1 is contained in 100% by weight of the catalyst prepared by dropping and coprecipitating with a basic aqueous solution instead of supplying a metal precursor aqueous solution to the lower part of the coprecipitation in the catalyst preparation method, omitting an inert gas or air input process ⁇ -Fe 2 O 3 and the content of crystal structure, ⁇ -Fe 2 O content of 3 crystal structure of the XRD diffraction patterns of the catalyst ⁇ -Fe 2 O 3 crystal structure peak: measured by the size (2theta 33 to 34 °) do.)
  • the T2 / T1 may be 0 to 0.75, 0 to 0.70 or 0 to 0.68, the activity of the catalyst is excellent within this range, the yield or selectivity of butadiene when applied to the oxidative dehydrogenation reaction
  • the back has been improved to provide high quality butadiene with high productivity, and exhibits high activity at low hot spot temperatures.
  • the catalyst for the oxidative dehydrogenation reaction prepared according to the present disclosure may be used in the reaction for forming butadiene from the oxidative dehydrogenation of butene, and the oxidative dehydrogenation method of the present disclosure will be described.
  • the oxidative dehydrogenation method of the present disclosure undergoes an oxidative dehydrogenation reaction while passing a reactant containing oxygen and a C4 mixture containing normal butene into a reactor filled with a catalyst for oxidative dehydrogenation reaction according to the above-mentioned production method. It may be characterized by comprising the step of performing.
  • the oxidative dehydrogenation method may be, for example, a method for producing butadiene.
  • butadiene production method of the present invention comprises the steps of: i) filling the reactor with a catalyst for oxidative dehydrogenation reaction; And ii) carrying out an oxidative dehydrogenation reaction while continuously passing a reactant comprising a C4 mixture containing normal butene and oxygen into the catalyst layer of the reactor filled with the catalyst.
  • the C4 mixture includes, for example, at least one normal butene selected from 2-butene (trans-2-Butene, cis-2-Butene) and 1-butene (1-Butene), and optionally normal butane or C4 raffinate. It may further comprise -3.
  • the reactant may further include one or more selected from air, nitrogen, steam, and carbon dioxide.
  • the reactants may include a C4 mixture, oxygen, steam and nitrogen in a molar ratio of 1: 0.01 to 1.5: 1 to 15: 1 to 10 or 1: 0.5 to 1.2: 5 to 15: 1 to 10. Within this range, the heat of reaction can be easily controlled, and the butadiene yield is excellent.
  • the oxidative dehydrogenation reaction may be performed at a reaction temperature of, for example, 250 to 430 ° C., 300 to 425 ° C. or 350 to 425 ° C., but the butadiene is excellent in the reaction efficiency without significantly increasing the energy cost within this range. Can provide high productivity while maintaining high catalytic activity and stability.
  • the oxidative dehydrogenation is a space velocity of 50, based on the normal butene as an example to 2000h -1, from 50 to 1500 h -1, or 50 to 1000 h -1: can be carried out by (GHSV Gas Hourly Space Velocity), Within this range, the reaction efficiency is excellent, and thus the conversion, selectivity, and yield are excellent.
  • the metal precursor aqueous solution was added to the coprecipitation tank prepared with distilled water together with ammonia water having a concentration of 9-10% by weight to co-precipitate iron and zinc and to supply nitrogen.
  • nitrogen was injected for 80-90 minutes in an amount of 1 L / min per 1 liter of distilled water.
  • a process of stirring the coprecipitation solution for 1 hour was performed so that sufficient coprecipitation was achieved, wherein nitrogen was injected at an amount of 0.5 L / min per 1 L of the distilled water.
  • the precipitate was left to stand at room temperature for 1 hour so that all the precipitates were settled.
  • the coprecipitation solution which had been stirred and aged, was filtered under reduced pressure using a vacuum filter to obtain a coprecipitate.
  • the coprecipitate was washed and then dried at 90 ° C. for 24 hours. Heat treatment to prepare a zinc ferrite catalyst.
  • Example 1 Except for omitting all the steps for supplying nitrogen into the coprecipitation tank in Example 1 was carried out in the same manner as in Example 1.
  • Example 1 The following test analysis was performed using the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1.
  • the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 is ZnFe 2 O 4 ⁇ -Fe 2 O 3 ratio of the crystal structure of the catalyst according to the crystal structure as ⁇ -Fe 2 O 3 in Example 1 to check the combination of the crystal structure merchant, this was confirmed to be significantly lower. From this, it was found that the nitrogen gas supply in the coprecipitation tank has a favorable effect on the crystal structure of the ferrite catalyst.
  • Butadiene was produced by the following oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized in Example 1 and Comparative Example 1, and the results are shown in Examples 1a to 1c and Comparative Examples 1a to 1d in Table 2, respectively. Indicated.
  • a catalyst prepared in Example 1 or Comparative Example 1 was fixed to a catalyst layer of 30 cc in a metal tubular reactor having a diameter of 1.8 cm, and 40 wt% cis-2-butene and 60 wt% of trans-2-butene were used as the reactants.
  • Butene mixture and oxygen were used and nitrogen and steam were introduced.
  • the reactant ratio was set to a molar ratio of oxygen / butene 1, steam / butene 8 and nitrogen / butene 1, and the steam was vaporized in a vaporizer at 340 ° C. and introduced into the reactor with the reactants.
  • the amount of butene mixture was controlled at 0.625 cc / min using a mass flow controller for liquid, oxygen and nitrogen were controlled using a mass flow controller for gas, and the amount of steam was controlled using a liquid pump.
  • the gas hourly space velocity (GHSV, gas hourly space velocity) of the reactor was set at 66 h ⁇ 1 and reacted at atmospheric pressure (pressure gauge 0) under the temperature conditions shown in Table 2 below.
  • Butadiene yield (%) (moles of 1,3-butadiene produced / moles of butene supplied) ⁇ 100
  • Comparative Example 1b 330 82.8 88.8 73.5 10.3 1.0 97.8 484.9
  • Comparative Example 1d 335 83.7 89.6 75.0 9.4 1.0 99.2 - Reaction conditions: GHSV 66h -1 , oxygen: steam: nitrogen 1: 8: 1 (based on moles of butene)
  • Example 1 and Comparative Example 1 both exhibit the highest activity under the conditions that consume a lot of oxygen, the catalyst of Example 1 synthesized by performing a nitrogen supply process at a specific time point is not Comparative Example 1 It was confirmed that the conversion of butenes and butadiene selectivity and yield compared to the catalyst of, and the CO x selectivity of the side reaction material decreases. In addition, it was confirmed that the catalyst of Example 1 exhibited excellent reaction activity at a lower hot spot temperature than the catalyst of Comparative Example 1 during the oxidative dehydrogenation reaction. In other words, it was found that the nitrogen dosing process performed during the synthesis of zinc ferrite catalyst contributed to both the reduction of the inactive ⁇ -Fe 2 O 3 crystal structure and the increase in the reaction activity.
  • a metal precursor aqueous solution was prepared under the same conditions as in Example 1, except that the aqueous solution was supplied through a co-precipitation bottom, and ammonia water was dropped to co-precipitate iron and zinc.
  • Example 2 Except for supplying air instead of nitrogen (N 2 ) in Example 2 was carried out in the same manner as in Example 2.
  • the zinc ferrite catalyst prepared in Examples 2 and 3 is a mixed phase of the ZnFe 2 O 4 crystal structure and ⁇ -Fe 2 O 3 crystal structure, coprecipitation of the metal precursor solution
  • the catalyst (Example 2 or 3) prepared by supplying through the bottom and supplying nitrogen or oxygen into the coprecipitation is an ⁇ -Fe 2 O 3 crystal structure which is an inert crystal structure compared to the catalyst of Comparative Example 1 that is not Was found to decrease.
  • the particle size analysis results of the ferrite catalyst precursor slurry prepared in Examples 1 to 3 and Comparative Example 1 are shown in Table 4 and FIG. 3.
  • the particle size analysis of the slurry was measured by Horiba's Laser Particle Size Analyzer-960, and the required refractive index was set based on Fe, the main component in the slurry.
  • Example 2 Example 3 Comparative Example 1 Median size ( ⁇ m) 6.9 5.8 6.0 8.4 Mode size ( ⁇ m) 7.2 6.2 6.3 8.3
  • Examples 1 to 3 was confirmed that the slurry particles compared to Comparative Example 1 has a relatively small and uniform particle size, and also Examples 2 and 3 compared to the slurry particles of Example 1 was found to have a relatively small and uniform particle size. From these results, it was confirmed that nitrogen injection was effective in having a small and uniform particle size of the catalyst precursor, and the addition of air and a change in the injection position of the metal precursor aqueous solution were effective in having a smaller and uniform particle size.
  • Butadiene was produced through an oxidative dehydrogenation reaction using a zinc ferrite catalyst synthesized according to Examples 2 and 3 in the same manner and conditions as described above, and the results are shown in Examples 5a and 2d and Table 5, respectively. 3a to 3c, and Comparative Examples 1a to 1d are rewritten for comparison.
  • the metal precursor aqueous solution is supplied through the bottom of the coprecipitation, and the nitrogen or air input process performed at a specific time point not only reduces the inert crystal structure of the zinc ferrite catalyst, It was found that it also contributed to the increase in reaction activity.

Abstract

The present invention relates to a method for preparing a catalyst for an oxidative dehydrogenation reaction and an oxidative dehydrogenation process using the same. More specifically, the present invention includes a process of supplying an inert gas or air at specific time when preparing a catalyst for an oxidative dehydrogenation reaction by co-precipitation, thereby reducing an inactive α-Fe2O3 crystal structure and improving the activity of the catalyst, and furthermore, the present invention applies the same to an oxidative dehydrogenation reaction of butene so as to suppress side reactions and improve the selectivity of butadiene, thereby providing a high productivity of butadiene.

Description

산화적 탈수소화 반응용 촉매의 제조방법 및 이 촉매를 이용한 산화적 탈수소화 방법Method for preparing catalyst for oxidative dehydrogenation reaction and method for oxidative dehydrogenation using this catalyst
〔출원(들)과의 상호 인용〕[Reciprocal citation with application (s)]
본 출원은 2017년 05월 04일자 한국특허출원 제10-2017-0056741호 및 상기 특허를 우선권으로하여 2018년 04월 25일자로 재출원된 한국특허출원 제10-2018-0047836호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application is subject to priority based on Korean Patent Application No. 10-2017-0056741 dated May 04, 2017 and Korean Patent Application No. 10-2018-0047836, re- filed April 25, 2018, with priority given to the patent. Claiming the benefit, all contents disclosed in the literature of the relevant Korean patent application are incorporated as part of this specification.
본 발명은 산화적 탈수소화 반응용 촉매의 제조방법 및 상기 촉매를 이용한 산화적 탈수소화 방법에 관한 것으로, 비활성인 α-Fe2O3 결정구조를 감소시키고, 높은 활성의 산화적 탈수소화 반응용 촉매를 제공하며, 나아가 이를 부타디엔 제조시 활용하여 부반응을 억제하고, 부타디엔의 선택도를 향상시켜 부타디엔을 생산성 높게 제공할 수 있는 산화적 탈수소화 반응용 촉매의 제조방법 등에 관한 것이다. The present invention relates to a method for preparing a catalyst for oxidative dehydrogenation and a method for oxidative dehydrogenation using the catalyst, which is inactive α-Fe 2 O 3 It provides a catalyst for oxidative dehydrogenation reaction of high oxidative dehydrogenation which reduces the crystal structure, and furthermore, it is utilized in the production of butadiene to suppress side reactions, and improves the selectivity of butadiene to improve butadiene productivity. It relates to a method for producing a catalyst for the digestion reaction.
1,3-부타디엔은 합성고무의 대표적인 원재료로서 석유화학 산업의 수급상황과 연계되어 가격이 급격히 변동하는 주요 기초 유분 중 하나이다. 1,3-부타디엔을 제조하는 방법으로는 납사 크래킹, 노르말 부텐의 직접 탈수소화 반응, 노르말 부텐의 산화적 탈수소화 반응 등이 있다. 노르말 부텐의 산화적 탈수소화 반응은 금속산화물 촉매의 존재 하에 부텐과 산소가 반응하여 1,3-부타디엔과 물을 생성하는 반응으로, 안정한 물이 생성되므로 열역학적으로 매우 유리한 이점이 있다. 또한, 노르말 부텐의 산화적 탈수소화 반응은 직접 탈수소화 반응과 달리 발열 반응이므로, 낮은 온도에서 반응공정이 운전되어 에너지가 절감되면서도 높은 수율의 1,3-부타디엔을 얻을 수 있고, 산화제를 첨가함으로써 촉매를 피독시켜 촉매수명을 단축시키는 탄소 침적물의 생성이 적고, 이의 제거가 용이하여 상용화 공정으로 매우 적합한 이점이 있다. 1,3-butadiene is one of the main raw materials of synthetic rubber, whose price fluctuates rapidly in connection with the supply and demand of the petrochemical industry. Methods for producing 1,3-butadiene include naphtha cracking, direct dehydrogenation of normal butenes, and oxidative dehydrogenation of normal butenes. The oxidative dehydrogenation of normal butene is a reaction in which butene and oxygen react to produce 1,3-butadiene and water in the presence of a metal oxide catalyst. Thus, stable water is produced, which is very thermodynamically advantageous. In addition, since the oxidative dehydrogenation of normal butene is exothermic, unlike direct dehydrogenation, a high yield of 1,3-butadiene can be obtained while saving energy by operating the reaction process at a low temperature. The production of carbon deposits that shortens the catalyst life by poisoning the catalyst is small, and there is an advantage that it is easy to remove them and is very suitable as a commercialization process.
한편, 부텐의 산화적 탈수소화 반응용 촉매로 널리 알려진 페라이트 계열 촉매는 일반적으로 공침법에 의해 합성되는데, 공침법으로 합성된 촉매는 산화적 탈수소화 반응에 활성인 결정구조와 비활성인 Fe2O3 결정구조가 공존하는 것으로 알려져 있다. 따라서 촉매 합성 시 비활성인 Fe2O3 결정구조를 감소시키거나, 비활성인 결정구조가 일정 수준 이상 존재하더라도 활성이 우수한 촉매를 제조하는 기술에 대한 연구를 필요로 하였다. On the other hand, ferrite-based catalysts, which are widely known as catalysts for oxidative dehydrogenation of butenes, are generally synthesized by coprecipitation. The catalysts synthesized by coprecipitation have a crystal structure active in oxidative dehydrogenation and an inert Fe 2 O. It is known that three crystal structures coexist. Therefore, it is necessary to reduce the inert Fe 2 O 3 crystal structure in the synthesis of the catalyst, or to study a technique for producing a catalyst having excellent activity even if the inert crystal structure is more than a certain level.
또한, 공침법을 이용하여 촉매를 합성하는 경우 기술 및 공간적 제약으로 1회 생산량이 작아 목표량을 채우기 위해서는 동일 과정을 수차례 반복하여 촉매를 제조해야 하므로 생산성 향상에 어려움이 있으며, 이러한 문제로 농축하여 촉매를 합성하는 것이 바람직하나, 이 경우에는 비활성 결정구조의 함량이 증가하여 활성이나 안정성이 떨어지는 문제점을 야기하였다. In addition, when synthesizing the catalyst using the coprecipitation method, it is difficult to improve the productivity because it is necessary to manufacture the catalyst by repeating the same process several times in order to fill the target amount due to technology and space constraints. It is preferable to synthesize the catalyst, but in this case, the content of the inert crystal structure is increased, which causes a problem of poor activity or stability.
〔선행기술문헌〕[Prior art document]
〔특허문헌〕[Patent Documents]
한국 등록특허 제10-0847206호Korea Patent Registration No. 10-0847206
한국 등록특허 제10-1071230호Korean Patent Registration No. 10-1071230
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 비활성인 Fe2O3 결정구조가 일정 수준 존재함에도 산화적 탈수소화 반응 활성이 우수한 촉매의 제조방법을 제공하고, 나아가 공침법을 이용하면서도 비활성인 Fe2O3 결정구조를 감소시킬 수 있는 산화적 탈수소화 반응용 촉매 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention provides a method for producing a catalyst excellent in oxidative dehydrogenation reaction activity even in the presence of a certain level of inert Fe 2 O 3 crystal structure, and further inert using a coprecipitation An object of the present invention is to provide a method for preparing a catalyst for oxidative dehydrogenation which can reduce the phosphorus Fe 2 O 3 crystal structure.
또한, 본 발명은 상기 산화적 탈수소화 반응용 촉매의 제조방법으로 제조된 촉매를 사용하여 부반응을 억제하고, 부타디엔의 수율이나 선택도 등을 크게 향상시킬 수 있는 산화적 탈수소화 방법을 제공하는 것을 목적으로 한다. In addition, the present invention is to provide an oxidative dehydrogenation method that can suppress side reactions using a catalyst prepared by the method for producing a catalyst for the oxidative dehydrogenation reaction, and can greatly improve the yield, selectivity, etc. of butadiene. The purpose.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하고, 상기 공침 시, 공침 후 또는 공침 시부터 공침 후까지 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 하는 산화적 탈수소화 반응용 촉매의 제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; Co-precipitating iron and A metal by adding the metal precursor aqueous solution and the basic aqueous solution to a coprecipitation tank prepared with an aqueous solution or water having a pH adjusted to 6 or more; And calcining the coprecipitated coprecipitate, wherein the oxidizing method comprises supplying an inert gas or air to the coprecipitation tank during the coprecipitation, after the coprecipitation or after the coprecipitation. Provided is a method for preparing a catalyst for the dehydrogenation reaction.
또한, 본 발명은 상기 제조방법에 따른 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 산화적 탈수소화 방법을 제공한다.In addition, the present invention includes the step of performing an oxidative dehydrogenation reaction while passing a reactant containing oxygen and a C4 mixture containing normal butene in a reactor filled with a catalyst for oxidative dehydrogenation reaction according to the production method An oxidative dehydrogenation method is provided.
본 발명에 따르면 공침법으로 산화적 탈수소화 반응용 촉매를 제조할 시 특정 시점에서 비활성 가스 또는 공기를 공침조에 투입하는 공정을 수행하여 촉매의 활성을 향상시키고, 선택적으로 금속 전구체 수용액을 공침조 하부를 통해 공급하는 경우 촉매 내 비활성인 Fe2O3 결정구조를 감소시켜 활성을 더욱 향상시킬 수 있으며, 이렇게 제조된 촉매를 부텐의 산화적 탈수소화 반응에 적용하여 부반응을 감소시키고, 부타디엔의 선택성 및 수율을 향상시켜 고품질의 부타디엔을 생산성 높게 제공하는 효과가 있다. According to the present invention, when preparing a catalyst for the oxidative dehydrogenation reaction by coprecipitation, a process of injecting an inert gas or air into a coprecipitation at a specific point of time improves the activity of the catalyst, and optionally, a metal precursor aqueous solution is added to the bottom of the coprecipitation. In the case of the feed through, it is possible to further improve the activity by reducing the inert Fe 2 O 3 crystal structure in the catalyst, by applying the catalyst prepared in the oxidative dehydrogenation of butenes to reduce side reactions, butadiene selectivity and It is effective to provide high quality butadiene with high productivity by improving the yield.
도 1은 실시예 1(Air 공급) 및 비교예 1(기존 합성법)에 따라 제조된 아연 페라이트 촉매의 결정구조를 찍은 XRD 데이터이다.1 is XRD data showing the crystal structure of the zinc ferrite catalyst prepared according to Example 1 (Air supply) and Comparative Example 1 (existing synthesis method).
도 2는 실시예 2(N2 공급 + 금속전구체 수용액 하부 투입), 실시예 3(Air 공급 + 금속전구체 수용액 하부 투입) 및 비교예 1(기존 합성법)에 따라 제조된 아연 페라이트 촉매의 결정구조를 보여주는 XRD 데이터이다.Figure 2 shows the crystal structure of the zinc ferrite catalyst prepared according to Example 2 (N 2 supply + metal precursor aqueous solution bottom), Example 3 (Air supply + metal precursor aqueous solution bottom) and Comparative Example 1 (conventional synthesis method). XRD data showing.
도 3은 실시예 1 내지 3 및 비교예 1에서 제조된 공침물 슬러리의 입도 분포를 비교해서 보여주는 그래프이다.Figure 3 is a graph showing a comparison of the particle size distribution of the coprecipitation slurry prepared in Examples 1 to 3 and Comparative Example 1.
이하 본 기재의 산화적 탈수소화 반응용 촉매의 제조방법을 상세하게 설명한다. Hereinafter, the method for preparing the catalyst for oxidative dehydrogenation reaction of the present disclosure will be described in detail.
본 발명자들은 공침법을 이용하여 페라이트계 촉매를 합성하는 경우, 산화적 탈수소화 반응 활성에 영향을 미치는 비활성 Fe2O3 결정구조가 관찰되는 것을 확인하고, 비활성 Fe2O3 결정구조가 일정 수준 이상 존재하는 상태에서도 반응 활성을 증가시킬 수 있는 방안 및 비활성 결정구조 자체를 감소시킬 수 있는 방안을 모색하였으며, 촉매 합성 시 특정 시점에서 공침 용액에 질소(N2) 가스 또는 에어(air)를 공급하는 공정을 수행하고, 선택적으로 공침 단계에서 공침조 하부를 통해 금속 전구체 수용액을 공급하는 경우, 페라이트계 촉매 전구체에 해당하는 공침물의 분산 정도가 극대화 되고, 페라이트계 촉매의 결정 구조에 유리한 영향을 미쳐, 전술한 문제점이 해소되는 것을 확인하고, 이를 토대로 본 발명을 완성하였다. The present inventors confirmed that when synthesizing a ferrite catalyst using the coprecipitation method, an inert Fe 2 O 3 crystal structure is observed, which affects the activity of oxidative dehydrogenation reaction, and the inert Fe 2 O 3 crystal structure is constant. In order to increase the reaction activity and to reduce the inert crystal structure itself even in the presence of abnormal state, it was sought to supply nitrogen (N 2 ) gas or air to the coprecipitation solution at a certain point in the synthesis of the catalyst. In the case of supplying the aqueous metal precursor solution through the lower co-precipitation tank in the co-precipitation step, the degree of dispersion of the co-precipitation corresponding to the ferritic catalyst precursor is maximized, and has an advantageous effect on the crystal structure of the ferritic catalyst. It is confirmed that the above-mentioned problem is solved, and based on this, the present invention has been completed.
본 기재의 산화적 탈수소화 반응용 촉매의 제조방법은, 일례로 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을, pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하며, 상기 공침 시; 공침 후; 또는 공침 시부터 공침 후까지; 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 한다. The method for preparing a catalyst for the oxidative dehydrogenation reaction of the present disclosure includes, for example, adding a trivalent cation iron (Fe) precursor and a divalent cation metal (A) precursor to water to prepare a metal precursor aqueous solution; Co-precipitating iron and A metal by adding the metal precursor aqueous solution and the basic aqueous solution to a coprecipitation bath prepared with an aqueous solution or water having a pH adjusted to 6 or more; And firing the co-precipitated coprecipitate; After copulation; Or from copulation to after copulation; Characterized in that the process of supplying an inert gas or air (air) to the coprecipitation tank.
상기 공침조에 비활성 가스 또는 에어를 공급하는 공정은 일례로 임펠러 등과 같은 교반수단을 이용하여 공침조 내 용액을 교반하면서 공침조 안으로 비활성 가스 또는 에어를 공급하는 공정이거나, 공침조 하부에 배관을 연결하여 이 배관을 통해 비활성 가스 또는 에어를 공침조 내로 공급하는 공정, 또는 관, 일례로 테플론 관을 공침조 내에 설치하고, 관을 통해 용액에 비활성 가스 또는 에어(air)를 공급하는 공정일 수 있다. 또한 상기 배관 및 관은 내경이 일례로 1/8" 내지 1/2" 또는 1/6" 내지 1/2"일 수 있고, 그 위치는 공침조 하부, 즉 공침조 내 용액의 수면 아래인 경우 특별히 제한되지 않으나, 일례로 공침조의 하단, 구체적으로는 공침조의 저면으로부터 수면까지의 거리 중 1/2 이내인 지점에 위치할 수 있다. The process of supplying inert gas or air to the coprecipitation tank is a process of supplying an inert gas or air into the coprecipitation tank while stirring the solution in the coprecipitation tank by using an agitator such as an impeller, or by connecting a pipe to the bottom of the coprecipitation tank. The pipe may be a process of supplying inert gas or air into the coprecipitation tank, or a tube, for example, a Teflon tube may be installed in the coprecipitation tank, and a process of supplying inert gas or air to the solution through the pipe. In addition, the pipe and the pipe may have an inner diameter of, for example, 1/8 "to 1/2" or 1/6 "to 1/2", and its position is below the coprecipitation tank, that is, below the water surface of the solution in the coprecipitation tank Although not particularly limited, for example, it may be located at the lower end of the coprecipitation tank, specifically, within a half of the distance from the bottom of the coprecipitation tank to the water surface.
이하, 상기 산화적 탈수소화 반응용 촉매의 제조방법을 각 단계별로 상술하기로 한다. Hereinafter, a method of preparing the catalyst for the oxidative dehydrogenation reaction will be described in detail for each step.
상기 금속 전구체 수용액 제조 단계에서 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체는 일례로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군으로부터 독립적으로 선택된 1종 이상일 수 있다. 바람직하게는 값이 싸고 쉽게 구입이 용이함에 따라 대량생산을 위한 촉매 제조 비용을 고려하여 질산염이나 염화물 중에서 선택될 수 있다. The trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor in the metal precursor aqueous solution preparation step are, for example, a group consisting of nitrate, ammonium salt, sulfate or chloride. It may be one or more selected independently from. Preferably, it can be selected from nitrate or chloride in consideration of the cost of preparing the catalyst for mass production as it is inexpensive and easy to purchase.
상기 2가 양이온 금속(A)은 일례로, 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 부텐의 산화적 탈수소화 반응에 특히 높은 활성을 나타내는 아연(Zn)이나 망간(Mn) 중에서 선택될 수 있고, 부타디엔의 수율이나 선택도 측면에서 아연(Zn)을 포함하는 것이 가장 바람직할 수 있다. The divalent cation metal (A) is, for example, copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg) ), Manganese (Mn) and cobalt (Co) may be one or more selected from the group consisting of, preferably selected from zinc (Zn) or manganese (Mn) exhibiting a particularly high activity in the oxidative dehydrogenation of butene. And zinc (Zn) may be most preferred in terms of yield and selectivity of butadiene.
상기 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체는 물에 혼합되어 수용액으로 제조되며, 이와 같이 금속 전구체가 물에 용해되어 액상으로 존재하는 경우, 철과 2가 양이온 금속의 이온교환이 용이하여 목적하는 공침물을 쉽게 제조할 수 있다. The trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are mixed with water to prepare an aqueous solution. As such, when the metal precursor is dissolved in water and is present in the liquid phase, the iron and the divalent cationic metal The ion exchange is easy, so that the desired coprecipitation can be easily prepared.
상기 물은 일례로 증류수일 수 있다. The water may be, for example, distilled water.
통상적으로 금속 전구체 수용액 내 3가 양이온 철(Fe) 전구체와 2가 양이온 금속(A) 전구체의 적절한 혼합 비율은 상기 2가 양이온 금속(A) 전구체 1몰에 대해 상기 3가 양이온 철(Fe) 전구체가 1.5 내지 10몰, 1.5 내지 4몰 또는 1.5 내지 2.5몰인 것이며, 이 범위 내에서 산화적 탈수소화 반응에 활성인 결정구조의 형성이 용이하여 촉매 활성이 우수한 효과가 있다.Typically, an appropriate mixing ratio of the trivalent cation iron (Fe) precursor and the divalent cation metal (A) precursor in the aqueous metal precursor solution is based on one mole of the divalent cation metal (A) precursor. Is 1.5 to 10 moles, 1.5 to 4 moles or 1.5 to 2.5 moles. Within this range, the crystal structure active for the oxidative dehydrogenation reaction can be easily formed and the catalyst activity is excellent.
또한, 상기 금속 전구체 수용액은 pH가 일례로 0 내지 4, 1 내지 3 또는 1 내지 2일 수 있고, 이 범위 내에서 목적하는 활성성분이 안정적으로 형성되는 효과가 있다. In addition, the metal precursor aqueous solution may have a pH of 0 to 4, 1 to 3 or 1 to 2, for example, there is an effect that the desired active ingredient is stably formed within this range.
상기 금속 전구체 수용액이 준비된 후에는, 철 및 A 금속의 공침을 위해 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조를 마련하고, 이 공침조에 상기 금속 전구체 수용액을 첨가하여 철과 A 금속을 공침시킨다.After the aqueous metal precursor solution is prepared, a coprecipitation bath prepared with an aqueous solution or water having a pH adjusted to 6 or more for coprecipitation of iron and A metal is prepared, and the metal precursor aqueous solution is added to the coprecipitation bath to form iron and A metal. Copulates.
상기 공침시키는 단계에서 pH가 6 이상으로 조절된 수용액은 일례로 수산화나트륨 수용액 및 암모니아수 중에서 선택된 1종 이상일 수 있고, 상기 금속 전구체 수용액을 적가하기 이전에 공침조의 pH를 6 이상, 6 내지 10 또는 7 내지 8로 미리 조절하는 경우, 금속 전구체 수용액의 투입으로 인한 초반 pH 변화 폭을 줄여주어 균일한 조성의 촉매가 안정적으로 형성되도록 할 수 있다. In the coprecipitation step, the pH-adjusted aqueous solution may be at least one selected from, for example, an aqueous sodium hydroxide solution and ammonia water, and the pH of the coprecipitation bath is 6 or more, 6 to 10 or 7 before dropping the aqueous metal precursor solution. In the case of pre-adjusting to 8, it is possible to reduce the initial pH change due to the addition of the aqueous metal precursor solution to stably form a catalyst of a uniform composition.
본 기재의 촉매 제조방법은 일례로 상기 공침시키는 단계 중에 비활성 가스 또는 에어(air)를 공침조에 투입하는 공정을 행할 수 있으며, 이러한 공정을 수행함으로써 산소와 금속 전구체가 균일하게 결합할 수 있도록 하며 믹싱(mixing) 효과가 증대되고, 궁극적으로는 산화적 탈수소화 반응 활성을 향상시키는 효과를 제공할 수 있다. 일례로 본 기재에 따라 제조된 촉매를 부텐의 산화적 탈수소화 반응에 적용 시 부텐의 전환율, 부타디엔의 선택도, 수율 등을 향상시키며, 부반응 물질의 생성은 감소시키는 효과를 제공한다. 또한, 상대적으로 낮은 핫 스팟(hot spot) 온도에서 우수한 반응활성을 나타내는 이점이 있다. The method for preparing a catalyst of the present disclosure may, for example, perform a process of injecting an inert gas or air into a coprecipitation during the coprecipitation step, and by performing such a process, the oxygen and the metal precursor may be uniformly combined and mixed. The mixing effect may be enhanced and ultimately may provide an effect of improving the oxidative dehydrogenation reaction activity. For example, when the catalyst prepared according to the present invention is applied to the oxidative dehydrogenation of butene, butene conversion, butadiene selectivity, yield, etc. are improved, and the production of side reaction materials is reduced. In addition, there is an advantage that exhibits excellent reaction activity at a relatively low hot spot temperature.
본 기재에서 핫 스팟(hot spot)은 반응기 내에 충진된 촉매층에서 반응 시 온도가 가장 높은 부분을 의미한다.In the present description, a hot spot refers to a portion where the temperature is highest during the reaction in the catalyst layer filled in the reactor.
상기 비활성 가스 또는 에어의 공침조 투입 조건은 특별히 제한되지 않으나, 일례로 비활성 기체 또는 에어를 공침조 내 용액 1L 당 0.1 내지 2 L/min 또는 0.5 내지 1 L/min으로, 1 내지 300분, 10 내지 200분, 30 내지 100분 또는 40 내지 90분 동안 공급할 수 있고, 이 범위 내에서 촉매의 작고 균일한 입도 분포 및 활성 결정구조에 유리한 이점이 있다. Conditions for adding the inert gas or air to the coprecipitation bath are not particularly limited. For example, the inert gas or air may be used at 0.1 to 2 L / min or 0.5 to 1 L / min per 1 L of the solution in the coprecipitation bath. It can be supplied for from 200 minutes, 30-100 minutes or 40-90 minutes, and there is an advantage in the small and uniform particle size distribution of the catalyst and the active crystal structure within this range.
상기 공침시키는 단계에서 공침 용액은 pH가 일례로 7 내지 10, 또는 7 내지 8로 유지되는 것이 바람직할 수 있으며, 이 범위 내에서 촉매의 활성이나 안정성이 우수한 효과가 있다. 이에 공침시키는 단계에서는 pH를 7 내지 10으로 유지하기 위한 목적으로 염기성 수용액을 금속 전구체 수용액과 동시에 첨가하는 것이 바람직할 수 있다.In the coprecipitation step, the coprecipitation solution may be preferably maintained at a pH of, for example, 7 to 10, or 7 to 8, and there is an effect of excellent activity or stability of the catalyst within this range. In the coprecipitation step, it may be preferable to add a basic aqueous solution simultaneously with the aqueous metal precursor solution for the purpose of maintaining a pH of 7 to 10.
일례로 상기 공침시키는 단계에서, 공침조에 상기 금속 전구체 수용액과 염기성 수용액을 함께 점적하여 철과 A 금속을 공침시킬 수 있으며, 상기 염기성 수용액은 일례로 수산화나트륨 또는 암모니아수 중에서 선택된 1종 이상일 수 있다.For example, in the coprecipitation step, the metal precursor aqueous solution and the basic aqueous solution may be co-precipitated with the metal and the A metal, and the basic aqueous solution may be, for example, one or more selected from sodium hydroxide or ammonia water.
본 기재에서 점적은 일례로 2종 또는 그 이상의 용액을 같은 지점 또는 용기 등에 드롭핑(dropping)하는 것을 의미하고, 상기 '같은 지점'은 드롭핑 되는 용액이 수면 위에서 튀기는 지점 이내 범위 또는 수면 아래에서 완전히 섞이지 않고 그 성질을 유지하는 지점 이내의 범위를 포함한다.In the present description, a drop means, for example, dropping two or more solutions onto the same point or a container, and the same point indicates a range within or below the point where the dropping solution splashes on the surface of the water. Includes a range within a point that does not mix thoroughly and retains its properties.
다른 일례로 상기 공침시키는 단계에서, 금속 전구체 수용액은 공침조 하부를 통해 공급하고, 염기성 수용액은 공침조에 드롭핑하여 철과 A 금속을 공침시킬 수 있다. 이와 같이 금속 전구체 수용액을 염기성 수용액과는 별도로 공침조 내부로 직접 공급하는 경우, 공침조에 마련된 용액 내로 금속 전구체가 확산되는 속도를 증가시킴으로써 균일한 결정 구조를 형성시키고, 비활성인 결정구조가 감소되어 높은 활성을 나타내는 촉매를 제공할 수 있다. As another example, in the co-precipitation step, the aqueous metal precursor solution may be supplied through the bottom of the coprecipitation tank, and the basic aqueous solution may be dropped into the coprecipitation tank to co-precipitate iron and A metal. As such, when the aqueous metal precursor solution is directly supplied into the coprecipitation tank separately from the basic aqueous solution, a uniform crystal structure is formed by increasing the rate at which the metal precursor diffuses into the solution provided in the coprecipitation bath, and the inactive crystal structure is reduced to a high degree. Catalysts that exhibit activity can be provided.
본 기재에서 금속 전구체 수용액의 공침조 하부 투입 방법은 금속 전구체 수용액이 공침조 내 용액의 수면을 통하지 않고 수면 아래로 직접 투입되는 방법인 경우 특별히 제한되지 않으며, 일례로 공침조 하부에 배관을 연결하여 이 배관을 통해 금속 전구체 수용액을 공급하거나, 공침조 내 용액에 한쪽 끝단이 잠기도록 설치된 관을 통해 금속 전구체 수용액을 공급할 수 있고, 이 경우 공침조 하부를 통해 금속 전구체 수용액을 공급함으로써 용액 내로 금속 전구체가 확산되는 속도를 증가시킬 수 있다. In the present description, the method of injecting the coprecipitation bottom of the aqueous metal precursor solution is not particularly limited when the metal precursor aqueous solution is directly injected below the water surface without passing through the surface of the solution in the coprecipitation bath. The metal precursor aqueous solution may be supplied through this piping, or the metal precursor aqueous solution may be supplied through a tube installed so that one end is immersed in the solution in the coprecipitation tank, and in this case, the metal precursor solution is supplied into the solution by supplying the aqueous metal precursor solution through the lower coprecipitation tank. Can increase the rate at which it spreads.
상기 공침물은 공침조 내에서 슬러리 상태로 존재하고, 이러한 슬러리 입자는 일례로 메디안 지름(median size)이 7 ㎛ 이하 또는 1 내지 7 ㎛이고, 입자의 모드 지름(mode size)이 7 ㎛ 이하 또는 1 내지 7 ㎛일 수 있으며, 이 범위 내에서 기존 아연페라이트 촉매 대비 높은 수율의 부타디엔을 확보하는 효과가 있다.The co-precipitate is present in a slurry state in the co-precipitation bath, such slurry particles have, for example, a median size of 7 μm or less, or 1 to 7 μm, and a mode size of the particle of 7 μm or less, or It may be 1 to 7 ㎛, within this range has the effect of securing a high yield of butadiene compared to the existing zinc ferrite catalyst.
본 기재에서 슬러리 입자의 메디안 지름 및 모드 지름은 Horiba 사의 Laser Particle Size Analyzer-960으로 측정하며, 이때 필요한 굴절률은 slurry 상태에서 가장 많이 존재하는 Fe를 기준으로 설정한다.In this description, the median diameter and the mode diameter of the slurry particles are measured by Horiba's Laser Particle Size Analyzer-960, and the required refractive index is set based on Fe, which is most present in the slurry state.
상기 공침이 완료된 공침 용액으로부터 수득된 공침물을 소성하기에 앞서, 공침 용액을 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함할 수 있고, 이 경우 충분한 공침이 이루어지도록 하는 효과를 제공한다.Stirring the coprecipitation solution prior to firing the coprecipitate obtained from the coprecipitation solution in which the coprecipitation is completed; ferment; Or stirring and aging; further comprising the step of providing a sufficient coprecipitation effect.
본 기재의 촉매 제조방법은 일례로, 상기 공침이 완료된 후 공침 용액을 교반하는 중에 비활성 가스 또는 에어(air)를 공급하는 공정을 행할 수 있으며, 이와 같이 제조된 촉매는 산화적 탈수소화 반응 활성이 더욱 우수한 효과가 있으며, 일례로 부텐의 산화적 탈수소화 반응에 적용 시 부텐의 전환율, 부타디엔의 선택도 등을 향상시키며, 부반응 물질의 생성은 감소시키는 효과를 제공한다. 또한, 상대적으로 낮은 핫 스팟(hot spot) 온도에서 우수한 반응활성을 나타내는 이점이 있다.For example, the method for preparing a catalyst according to the present disclosure may perform a process of supplying an inert gas or air while stirring the coprecipitation solution after the coprecipitation is completed, and the catalyst prepared as described above may have an oxidative dehydrogenation activity. There is a more excellent effect, for example, when applied to the oxidative dehydrogenation of butenes improve the conversion of butenes, butadiene selectivity, etc., and provides the effect of reducing the production of side reactions. In addition, there is an advantage that exhibits excellent reaction activity at a relatively low hot spot temperature.
다른 일례로, 본 기재의 촉매 제조방법은 상기 금속 전구체 수용액과 염기성 수용액을 첨가하여 공침시키는 단계 중에 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행하고, 공침이 완료된 후 공침 용액을 교반하며 추가적으로 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행할 수 있으며, 이 경우 촉매의 산화적 탈수소화 반응 활성이 더욱 향상되는 효과를 제공할 수 있다.In another example, the method for preparing a catalyst according to the present invention performs a process of supplying an inert gas or air into a coprecipitation bath during the step of coprecipitation by adding the aqueous metal precursor solution and the basic aqueous solution, and after the coprecipitation is completed, While stirring, an inert gas or air may be additionally supplied into the coprecipitation bath, and in this case, the oxidative dehydrogenation reaction activity of the catalyst may be further improved.
또 다른 일례로, 본 기재의 촉매 제조방법은 상기 금속 전구체 수용액과 염기성 수용액을 공침조 내에 첨가하여 공침시키는 단계부터 상기 공침이 완료된 후 공침 용액을 교반하는 단계에 걸쳐 연속적으로, 즉 공침 시부터 공침 후까지 비활성 가스 또는 에어(air)를 공침조 내로 공급하는 공정을 수행할 수 있으며, 이 경우 촉매의 산화적 탈수소화 반응 활성이 향상되는 효과가 있다. In another example, the method of preparing a catalyst according to the present invention continuously adds the metal precursor aqueous solution and the basic aqueous solution into a coprecipitation bath, and then stirs the coprecipitation solution after the coprecipitation is completed, that is, from the coprecipitation time. Afterwards, a process of supplying an inert gas or air into the coprecipitation tank may be performed. In this case, the oxidative dehydrogenation activity of the catalyst may be improved.
상기 비활성 기체는 일례로 질소(N2)일 수 있다. The inert gas may be, for example, nitrogen (N 2 ).
상기 교반 및 숙성은 일례로 각각 30분 내지 3시간 또는 30분 내지 2시간 동안 실시될 수 있으나, 이에 한정되는 것은 아님을 명시한다. For example, the stirring and aging may be performed for 30 minutes to 3 hours or 30 minutes to 2 hours, respectively, but are not limited thereto.
상기 공침 용액을 건조; 여과; 또는 건조 및 여과;시켜 공침물을 수득할 수 있으며, 이를 소성하여 AFe2O4 결정구조를 포함하는 촉매를 수득할 수 있다.Drying the coprecipitation solution; percolation; Or drying and filtration; to obtain a coprecipitate, which may be calcined to obtain a catalyst comprising AFe 2 O 4 crystal structure.
상기 건조 및 여과는 각각 당업에서 통상적으로 실시되고 있는 방법이라면 특별히 제한되지 않고, 상기 여과는 일례로 감압 여과일 수 있으며, 필요에 따라 여과 후 세척하는 공정을 더 포함할 수 있다. The drying and filtration are not particularly limited as long as they are commonly carried out in the art, and the filtration may be, for example, vacuum filtration, and may further include a process of washing after filtration as necessary.
상기 건조는 통상의 건조기를 사용하여 수행될 수 있고, 일례로 60 내지 100 ℃, 70 내지 100 ℃, 혹은 80 내지 100 ℃에서 12 내지 20시간, 14 내지 20시간, 혹은 14 내지 18시간 동안 건조될 수 있다.The drying may be performed using a conventional dryer, for example, may be dried for 12 to 20 hours, 14 to 20 hours, or 14 to 18 hours at 60 to 100 ℃, 70 to 100 ℃, or 80 to 100 ℃. Can be.
상기 소성은 통상의 소성로를 사용할 수 있고, 일례로 400 내지 800 ℃, 500 내지 800 ℃, 혹은 550 내지 750 ℃에서 1 내지 10 시간, 3 내지 8시간, 혹은 5 내지 7시간 동안 수행할 수 있으나 이에 제한되는 것은 아님을 명시한다. The firing may use a conventional firing furnace, for example, may be carried out at 400 to 800 ℃, 500 to 800 ℃, or 550 to 750 ℃ for 1 to 10 hours, 3 to 8 hours, or 5 to 7 hours Specifies that it is not limited.
상기 소성을 통해 수득되는 촉매는 AFe2O4 결정구조를 포함할 수 있고, 구체적인 일례로 AFe2O4 결정구조 및 α-Fe2O3 결정구조를 포함하는 혼합상일 수 있다.The catalyst obtained through the calcination may include an AFe 2 O 4 crystal structure, and as a specific example, may be a mixed phase including an AFe 2 O 4 crystal structure and an α-Fe 2 O 3 crystal structure.
본 발명의 일실시예에 따라 수득되는 촉매는 일례로 AFe2O4 결정구조 93.7 중량% 이상, 94.0 중량% 이상, 94.5 중량% 이상, 94.8 중량% 이상 또는 94.8 내지 96.0 중량%; 및 α-Fe2O3 결정구조 6.3 중량% 이하, 6.0 중량% 이하, 5.5 중량% 이하, 5.2 중량% 이하, 또는 4.0 내지 5.2 중량%를 포함할 수 있다. Catalysts obtained according to one embodiment of the present invention may include, for example, at least 93.7 wt%, at least 94.0 wt%, at least 94.5 wt%, at least 94.8 wt% or at 94.8 to 96.0 wt% of the AFe 2 O 4 crystal structure; And 6.3 wt% or less, 6.0 wt% or less, 5.5 wt% or less, 5.2 wt% or less, or 4.0 to 5.2 wt% of the α-Fe 2 O 3 crystal structure.
본 기재에서 AFe2O4와 α-Fe2O3의 중량비는 XRD 회절분석의 AFe2O4 피크(2theta: 29.5 내지 30.5°, 34.5 내지 35.5°, 42 내지 43°, 52.5 내지 53.5°, 56.5 내지 57.5°, 62 내지 63°)와 α-Fe2O3 피크(2theta: 33 내지 34°)의 크기로부터 측정할 수 있다. In the present description, the weight ratio of AFe 2 O 4 to α-Fe 2 O 3 is based on the AFe 2 O 4 peak (2theta: 29.5 to 30.5 °, 34.5 to 35.5 °, 42 to 43 °, 52.5 to 53.5 °, and 56.5 in XRD diffraction analysis. To 57.5 °, 62 to 63 °) and an α-Fe 2 O 3 peak (2theta: 33 to 34 °).
또한, XRD 회절분석에서 각각의 피크가 존재하는 면에 의한 회절 피크로서 AFe2O4는 (220), (311), (222), (400), (422), (511), (440) 위치에 존재하고, α-Fe2O3는 (104) 위치에 존재한다. Also, in the XRD diffraction analysis, AFe 2 O 4 as a diffraction peak due to the surface where each peak exists is (220), (311), (222), (400), (422), (511), (440). Position is present, and α-Fe 2 O 3 is present at position (104).
보다 구체적인 일례로, 본 기재의 촉매 제조방법은 1) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 2) 상기 금속 전구체 수용액을 pH가 6 내지 10으로 조절된 수용액 또는 물이 준비된 공침조에 염기성 수용액과 함께 점적하여 철과 A 금속을 공침시키는 단계; 및 3) 상기 공침이 완료된 공침 용액을 교반; 또는 교반 및 숙성;시킨 후, 공침된 공침물을 소성하는 단계;를 포함하되, 상기 공침시키는 단계 및 상기 교반 시 질소 또는 에어를 공침조 내로 투입하는 공정을 수행하는 것을 특징으로 할 수 있다.In a more specific example, the catalyst preparation method of the present invention comprises the steps of 1) adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; 2) co-precipitating iron and A metal by dropping the aqueous metal precursor solution together with a basic aqueous solution in a coprecipitation solution prepared with an aqueous solution or pH adjusted to 6 to 10; And 3) stirring the coprecipitation solution of which the coprecipitation is completed; Or stirring and aging; and then, firing the co-precipitated coprecipitate; wherein the co-precipitating step and the step of injecting nitrogen or air into the co-precipitation bath may be performed.
구체적인 다른 일례로, 본 기재의 촉매 방법은 1) 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 2) 상기 금속 전구체 수용액을, pH가 6 내지 10으로 조절된 수용액 또는 물이 준비된 공침조 하부를 통해 공급하고, 염기성 수용액은 상기 공침조에 드롭핑하여 철과 A 금속을 공침시키는 단계; 및 3) 상기 공침이 완료된 공침 용액을 교반; 또는 교반 및 숙성;시킨 후, 공침된 공침물을 소성하는 단계;를 포함하되, 상기 공침시키는 단계 및 상기 교반 시 질소 또는 에어를 공침조 내로 공급하는 공정을 수행하는 것을 특징으로 할 수 있다.In another specific example, the catalytic method of the present disclosure includes the steps of 1) adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water to prepare a metal precursor aqueous solution; 2) supplying the aqueous metal precursor solution through a coprecipitation bottom having an aqueous solution adjusted to pH 6 to 10 or water, and dropping a basic aqueous solution into the coprecipitation bath to co-precipitate iron and A metal; And 3) stirring the coprecipitation solution of which the coprecipitation is completed; Or stirring and aging; and then, firing the co-precipitated coprecipitate; and the co-precipitating step and supplying nitrogen or air into the co-precipitation bath during the stirring.
또한, 상기 본 기재의 제조방법에 따른 촉매는 일례로 하기 수학식 1을 만족하는 것을 특징으로 할 수 있다. In addition, the catalyst according to the production method of the present disclosure may be characterized by satisfying the following equation (1).
[수학식 1][Equation 1]
0 ≤ T2/T1 ≤ 0.800 ≤ T2 / T1 ≤ 0.80
(상기 수학식 1에서, T2는 금속 전구체 수용액을 공침조 하부로 공급하고, 비활성 가스 또는 에어 투입 공정을 포함하는 본 기재의 촉매 제조방법에 따라 제조된 촉매 총 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이고, T1은 상기 촉매 제조방법에서 금속 전구체 수용액을 공침조 하부로 공급하는 대신 염기성 수용액과 점적하여 공침시키고, 비활성 가스 또는 에어 투입 공정을 생략하여 제조된 촉매 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이며, α-Fe2O3 결정구조의 함량은 촉매의 XRD 회절분석의 α-Fe2O3 결정구조 피크(2theta: 33 내지 34°)의 크기로부터 측정된다.)(In Equation 1, T2 is a α-Fe contained in a total of 100% by weight of the catalyst prepared according to the catalyst production method of the present invention including a metal precursor aqueous solution supplied to the bottom of the coprecipitation, inert gas or air input process 2 O 3 T1 is the content of the crystal structure, T1 is contained in 100% by weight of the catalyst prepared by dropping and coprecipitating with a basic aqueous solution instead of supplying a metal precursor aqueous solution to the lower part of the coprecipitation in the catalyst preparation method, omitting an inert gas or air input process α-Fe 2 O 3 and the content of crystal structure, α-Fe 2 O content of 3 crystal structure of the XRD diffraction patterns of the catalyst α-Fe 2 O 3 crystal structure peak: measured by the size (2theta 33 to 34 °) do.)
보다 바람직하게 상기 T2/T1는 0 내지 0.75, 0 내지 0.70 또는 0 내지 0.68일 수 있으며, 이 범위 내에서 촉매의 활성이 우수하고, 이를 산화적 탈수소화 반응에 적용할 시 부타디엔의 수율이나 선택도 등이 개선되어 고품질의 부타디엔을 생산성 높게 제공하고, 낮은 핫 스팟(hot spot) 온도에서 높은 활성을 나타내는 효과가 있다. More preferably the T2 / T1 may be 0 to 0.75, 0 to 0.70 or 0 to 0.68, the activity of the catalyst is excellent within this range, the yield or selectivity of butadiene when applied to the oxidative dehydrogenation reaction The back has been improved to provide high quality butadiene with high productivity, and exhibits high activity at low hot spot temperatures.
본 기재에 따라 제조된 산화적 탈수소화 반응용 촉매는 부텐의 산화적 탈수소화 반응으로부터 부타디엔을 형성하는 반응에 이용될 수 있으며, 이하 본 기재의 산화적 탈수소화 방법을 설명하기로 한다. The catalyst for the oxidative dehydrogenation reaction prepared according to the present disclosure may be used in the reaction for forming butadiene from the oxidative dehydrogenation of butene, and the oxidative dehydrogenation method of the present disclosure will be described.
본 기재의 산화적 탈수소화 방법은 일례로 상기 제조방법에 따른 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 할 수 있다. The oxidative dehydrogenation method of the present disclosure, for example, undergoes an oxidative dehydrogenation reaction while passing a reactant containing oxygen and a C4 mixture containing normal butene into a reactor filled with a catalyst for oxidative dehydrogenation reaction according to the above-mentioned production method. It may be characterized by comprising the step of performing.
상기 산화적 탈수소화 방법은 일례로 부타디엔의 제조방법일 수 있다.The oxidative dehydrogenation method may be, for example, a method for producing butadiene.
구체적인 일례로, 본 기재의 부타디엔 제조방법은 i) 산화적 탈수소화 반응용 촉매를 반응기에 충진시키는 단계; 및 ii) 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 상기 촉매가 충진된 반응기의 촉매층에 연속적으로 통과시키면서 산화적 탈수소화 반응을 수행하는 단계;를 포함할 수 있다.As a specific example, butadiene production method of the present invention comprises the steps of: i) filling the reactor with a catalyst for oxidative dehydrogenation reaction; And ii) carrying out an oxidative dehydrogenation reaction while continuously passing a reactant comprising a C4 mixture containing normal butene and oxygen into the catalyst layer of the reactor filled with the catalyst.
상기 C4 혼합물은 일례로 2-부텐(trans-2-Butene, cis-2-Butene), 1-부텐(1-Butene) 중에서 선택된 1종 이상의 노르말 부텐을 포함하며, 선택적으로 노르말 부탄이나 C4 라피네이트-3을 더 포함할 수 있다.The C4 mixture includes, for example, at least one normal butene selected from 2-butene (trans-2-Butene, cis-2-Butene) and 1-butene (1-Butene), and optionally normal butane or C4 raffinate. It may further comprise -3.
상기 반응물은 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함할 수 있다. The reactant may further include one or more selected from air, nitrogen, steam, and carbon dioxide.
구체적인 일례로, 상기 반응물은 C4 혼합물, 산소, 스팀 및 질소를 1:0.01~1.5:1~15:1~10 또는 1:0.5~1.2:5~15:1~10의 몰비로 포함할 수 있으며, 이 범위 내에서 반응열의 제어가 용이하고, 부타디엔의 수율이 우수한 효과가 있다.As a specific example, the reactants may include a C4 mixture, oxygen, steam and nitrogen in a molar ratio of 1: 0.01 to 1.5: 1 to 15: 1 to 10 or 1: 0.5 to 1.2: 5 to 15: 1 to 10. Within this range, the heat of reaction can be easily controlled, and the butadiene yield is excellent.
상기 산화적 탈수소화 반응은 일례로 250 내지 430℃, 300 내지 425℃ 또는 350 내지 425℃의 반응온도에서 수행할 수 있으며, 이 범위 내에서 에너지 비용을 크게 증가시키지 않으면서 반응효율이 우수하여 부타디엔을 생산성 높게 제공할 수 있으면서도, 촉매 활성 및 안정성이 높게 유지될 수 있다. The oxidative dehydrogenation reaction may be performed at a reaction temperature of, for example, 250 to 430 ° C., 300 to 425 ° C. or 350 to 425 ° C., but the butadiene is excellent in the reaction efficiency without significantly increasing the energy cost within this range. Can provide high productivity while maintaining high catalytic activity and stability.
상기 산화적 탈수소화 반응은 일례로 노르말 부텐을 기준으로 50 내지 2000h-1, 50 내지 1500 h-1 또는 50 내지 1000 h-1의 공간속도(GHSV: Gas Hourly Space Velocity)로 수행할 수 있으며, 이 범위 내에서 반응효율이 우수하여 전환율, 선택도, 수율 등이 우수한 효과가 있다. The oxidative dehydrogenation is a space velocity of 50, based on the normal butene as an example to 2000h -1, from 50 to 1500 h -1, or 50 to 1000 h -1: can be carried out by (GHSV Gas Hourly Space Velocity), Within this range, the reaction efficiency is excellent, and thus the conversion, selectivity, and yield are excellent.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
[실시예]EXAMPLE
실시예 1Example 1
염화아연(ZnCl2) 0.122 몰 및 염화제이철(FeCl36H2O) 0.243 몰을 물 12.778몰에 용해시켜 금속 전구체 수용액을 제조하였다. 이때, 상기 금속 전구체 수용액 내에 포함된 금속 성분들의 몰비는 Fe:Zn = 2:1이었다. 0.122 mol of zinc chloride (ZnCl 2 ) and 0.243 mol of ferric chloride (FeCl 3 6H 2 O) were dissolved in 12.778 mol of water to prepare an aqueous metal precursor solution. In this case, the molar ratio of the metal components included in the aqueous metal precursor solution was Fe: Zn = 2: 1.
다음으로 증류수가 준비된 공침조에 상기 금속 전구체 수용액을 농도 9-10 중량%의 암모니아수와 함께 점적하여 철과 아연을 공침시키며 질소를 공급하는 공정을 수행하였다. 이때 질소는 상기 증류수 1L당 1L/min의 양으로 80-90분 동안 주입되었다. 공침이 완료된 후, 충분한 공침이 이루어지도록 공침 용액을 1시간 동안 교반하는 공정을 수행하였으며, 이때 질소는 상기 증류수 1L 당 0.5L/min의 양으로 주입되었다. 이후 교반을 멈춘 뒤 침전물이 모두 가라앉도록 상온에서 1시간 동안 방치하여 공침물을 숙성시켰다. Next, the metal precursor aqueous solution was added to the coprecipitation tank prepared with distilled water together with ammonia water having a concentration of 9-10% by weight to co-precipitate iron and zinc and to supply nitrogen. In this case, nitrogen was injected for 80-90 minutes in an amount of 1 L / min per 1 liter of distilled water. After the coprecipitation was completed, a process of stirring the coprecipitation solution for 1 hour was performed so that sufficient coprecipitation was achieved, wherein nitrogen was injected at an amount of 0.5 L / min per 1 L of the distilled water. After the stirring was stopped, the precipitate was left to stand at room temperature for 1 hour so that all the precipitates were settled.
교반 및 숙성이 완료된 공침 용액을 감압 여과기를 사용하여 감압 여과하여 공침물을 수득하였고, 이를 세척한 다음 90℃에서 24 시간 동안 건조시킨 뒤, 건조된 공침물을 소성로에 넣어 650℃에서 5시간 동안 열처리하여 아연 페라이트 촉매를 제조하였다. The coprecipitation solution, which had been stirred and aged, was filtered under reduced pressure using a vacuum filter to obtain a coprecipitate. The coprecipitate was washed and then dried at 90 ° C. for 24 hours. Heat treatment to prepare a zinc ferrite catalyst.
비교예 1Comparative Example 1
상기 실시예 1에서 공침조 내로 질소를 공급하는 공정을 모두 생략하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Except for omitting all the steps for supplying nitrogen into the coprecipitation tank in Example 1 was carried out in the same manner as in Example 1.
[시험예][Test Example]
상기 실시예 1 및 비교예 1에서 제조된 아연 페라이트 촉매를 사용하여 다음과 같은 시험분석을 수행하였다. The following test analysis was performed using the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1.
시험예 1: XRD 분석Test Example 1: XRD Analysis
상기 실시예 1 및 비교예 1에서 제조된 촉매의 결정구조 및 비율을 확인하기 위해 XRD 분석을 실시하였으며, XRD 분석 결과를 도 1 및 하기 표 1에 나타내었다. XRD analysis was carried out to confirm the crystal structure and the ratio of the catalysts prepared in Example 1 and Comparative Example 1, and the XRD analysis results are shown in FIG. 1 and Table 1 below.
구분division 실시예 1Example 1 비교예 1Comparative Example 1
ZnFe2O4 결정구조(중량%)ZnFe 2 O 4 crystal structure (wt%) 96.096.0 92.492.4
α-Fe2O3 결정구조(중량%)α-Fe 2 O 3 crystal structure (wt%) 4.04.0 7.67.6
도 1 및 표 1을 참조하면, 실시예 1과 비교예 1에서 제조된 아연 페라이트 촉매는 ZnFe2O4 결정구조와 α-Fe2O3 결정구조의 혼합상인 것을 확인할 수 있으며, 실시예 1에 따른 촉매의 α-Fe2O3 결정구조 비율이 상당히 낮아진 것을 확인하였다. 이로부터 공침조 내 질소 가스 공급은 페라이트계 촉매의 결정 구조에 유리한 영향을 미치는 것을 알 수 있었다.1 and Table 1, the zinc ferrite catalyst prepared in Example 1 and Comparative Example 1 is ZnFe 2 O 4 Α-Fe 2 O 3 ratio of the crystal structure of the catalyst according to the crystal structure as α-Fe 2 O 3 in Example 1 to check the combination of the crystal structure merchant, this was confirmed to be significantly lower. From this, it was found that the nitrogen gas supply in the coprecipitation tank has a favorable effect on the crystal structure of the ferrite catalyst.
시험예 2: 산화적 탈수소화 반응Test Example 2: Oxidative Dehydrogenation
상기 실시예 1 및 비교예 1에서 합성된 아연 페라이트 촉매를 사용하여 하기 산화적 탈수소화 반응을 거쳐 부타디엔을 생성하였으며, 그 결과를 하기 표 2에 각각 실시예 1a 내지 1c 및 비교예 1a 내지 1d로 나타내었다. Butadiene was produced by the following oxidative dehydrogenation reaction using the zinc ferrite catalyst synthesized in Example 1 and Comparative Example 1, and the results are shown in Examples 1a to 1c and Comparative Examples 1a to 1d in Table 2, respectively. Indicated.
반응기로서 지름 1.8 cm의 금속 관형 반응기에 실시예 1 혹은 비교예 1에서 제조된 촉매를 촉매층 부피 30cc로 고정하고, 반응물로 시스-2-부텐 40 중량%, 트랜스-2-부텐 60 중량%의 2-부텐 혼합물과 산소를 사용하였고 질소와 스팀을 유입시켰다. 상기 반응물 비는 산소/부텐 1, 스팀/부텐 8 및 질소/부텐 1의 몰비로 셋팅하였고, 스팀은 물을 340 ℃의 기화기에서 기화시켜 반응물과 함께 반응기에 유입시켰다.As a reactor, a catalyst prepared in Example 1 or Comparative Example 1 was fixed to a catalyst layer of 30 cc in a metal tubular reactor having a diameter of 1.8 cm, and 40 wt% cis-2-butene and 60 wt% of trans-2-butene were used as the reactants. Butene mixture and oxygen were used and nitrogen and steam were introduced. The reactant ratio was set to a molar ratio of oxygen / butene 1, steam / butene 8 and nitrogen / butene 1, and the steam was vaporized in a vaporizer at 340 ° C. and introduced into the reactor with the reactants.
부텐 혼합물의 양은 액체용 질량유속조절기를 사용하여 0.625 cc/min으로 제어하였고, 산소 및 질소는 기체용 질량유속조절기를 사용하여 제어하였으며, 스팀의 양은 액체 펌프를 이용해 주입 속도를 제어하였다. 상기 반응기의 기상 공간속도(GHSV, gas hourly space velocity)는 66h-1로 설정하고 상압(압력 게이지 0)에서, 하기 표 2에 기재된 온도 조건하에서 반응시켰다. The amount of butene mixture was controlled at 0.625 cc / min using a mass flow controller for liquid, oxygen and nitrogen were controlled using a mass flow controller for gas, and the amount of steam was controlled using a liquid pump. The gas hourly space velocity (GHSV, gas hourly space velocity) of the reactor was set at 66 h −1 and reacted at atmospheric pressure (pressure gauge 0) under the temperature conditions shown in Table 2 below.
반응 후 생성물을 가스 크로마토그래피(GC)로 분석하였고, 혼합물 내 각 부텐의 전환율(BE_Conv.), 1,3-부타디엔 선택도(S_BD), 1,3-부타디엔 수율(Y), COx 선택도(S_COx), 헤비(heavy) 성분 선택도(S_heavy) 및 O2의 전환율(O2_Conv.)을 하기 수학식 2 내지 4에 따라 계산하였으며, 핫 스팟 온도는 열전대(Thermo-Couple; TC)를 이송장치에 연결한 뒤, 반응기 상단부터 하단까지 등속으로 이동시키며 주사(scan)하여 측정하였다. After the reaction the product was analyzed by gas chromatography (GC) and the conversion of each butene in the mixture (BE_Conv.), 1,3-butadiene selectivity (S_BD), 1,3-butadiene yield (Y), COx selectivity ( S_COx), heavy component selectivity (S_heavy) and O 2 conversion (O 2 _Conv.) Were calculated according to the following equations (2) to (4), and the hot spot temperature was transferred to Thermo-Couple (TC). After connecting to the apparatus, it was measured by scanning at a constant speed from the top to the bottom of the reactor.
[수학식 2][Equation 2]
전환율(%) = (반응한 부텐 또는 산소의 몰수/공급된 부텐 또는 산소의 몰수)×100% Conversion = (moles of reacted butenes or oxygen / moles of supplied butenes or oxygen) × 100
[수학식 3][Equation 3]
선택도(%) = (생성된 1,3-부타디엔 또는 COx 또는 헤비 성분의 몰수/반응한 부텐의 몰수)×100Selectivity (%) = (moles of 1,3-butadiene or COx or heavy component produced / moles of reacted butenes) × 100
[수학식 4][Equation 4]
부타디엔 수율(%) = (생성된 1,3-부타디엔의 몰수/공급된 부텐의 몰수)×100Butadiene yield (%) = (moles of 1,3-butadiene produced / moles of butene supplied) × 100
구분division 반응온도(℃)Reaction temperature (℃) BE_Conv.(%)BE_Conv. (%) S_BD(%)S_BD (%) Y(%)Y (%) S_COx(%)S_COx (%) S_heavy(%)S_heavy (%) O2_Conv. (%)O 2 _Conv. (%) 핫스팟 온도(℃)Hot Spot Temperature (℃)
실시예1aExample 1a 330330 83.283.2 89.589.5 74.474.4 9.59.5 1.01.0 96.496.4 475475
실시예1bExample 1b 334334 85.485.4 89.789.7 76.676.6 9.29.2 1.11.1 99.099.0 --
실시예1cExample 1c 335335 85.585.5 89.289.2 76.376.3 9.99.9 1.01.0 99.699.6 476476
비교예1aComparative Example 1a 325325 79.779.7 88.588.5 70.670.6 10.510.5 1.01.0 95.395.3 478478
비교예1bComparative Example 1b 330330 82.882.8 88.888.8 73.573.5 10.310.3 1.01.0 97.897.8 484.9484.9
비교예1cComparative Example 1c 334334 84.184.1 88.588.5 74.474.4 10.510.5 1.01.0 99.999.9 485.8485.8
비교예1dComparative Example 1d 335335 83.783.7 89.689.6 75.075.0 9.49.4 1.01.0 99.299.2 --
반응조건: GHSV 66h-1, 산소:스팀:질소 = 1:8:1(부텐의 몰수를 기준으로 함)Reaction conditions: GHSV 66h -1 , oxygen: steam: nitrogen = 1: 8: 1 (based on moles of butene)
상기 표 2를 참조하면, 실시예 1 및 비교예 1 모두 산소를 많이 소모하는 조건에서 가장 높은 활성을 나타내며, 특정 시점에 질소 공급 공정을 수행하여 합성된 실시예 1의 촉매는 그렇지 않은 비교예 1의 촉매 대비 부텐의 전환율과 부타디엔 선택도 및 수율이 증가하고, 부반응 물질인 COx 선택도가 감소하는 것을 확인할 수 있었다. 또한, 실시예 1의 촉매는 산화적 탈수소화 반응 시 비교예 1의 촉매 대비 낮은 핫 스팟 온도에서 우수한 반응 활성을 나타내는 것을 확인하였다. 즉, 아연 페라이트 촉매 합성 시 수행한 질소 투입 공정은 비활성인 α-Fe2O3 결정구조의 감소 및 반응 활성 증대에 모두 기여하는 것을 알 수 있었다.Referring to Table 2, Example 1 and Comparative Example 1 both exhibit the highest activity under the conditions that consume a lot of oxygen, the catalyst of Example 1 synthesized by performing a nitrogen supply process at a specific time point is not Comparative Example 1 It was confirmed that the conversion of butenes and butadiene selectivity and yield compared to the catalyst of, and the CO x selectivity of the side reaction material decreases. In addition, it was confirmed that the catalyst of Example 1 exhibited excellent reaction activity at a lower hot spot temperature than the catalyst of Comparative Example 1 during the oxidative dehydrogenation reaction. In other words, it was found that the nitrogen dosing process performed during the synthesis of zinc ferrite catalyst contributed to both the reduction of the inactive α-Fe 2 O 3 crystal structure and the increase in the reaction activity.
실시예 2Example 2
상기 실시예 1과 동일한 조건으로 금속 전구체 수용액을 제조하되, 이를 공침조 하부를 통해 공급하고, 암모니아수는 드롭핑하여 철과 아연을 공침시키는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하였다. A metal precursor aqueous solution was prepared under the same conditions as in Example 1, except that the aqueous solution was supplied through a co-precipitation bottom, and ammonia water was dropped to co-precipitate iron and zinc.
실시예 3Example 3
상기 실시예 2에서 질소(N2) 대신에 에어(air)를 공급한 것을 제외하고는 실시예 2와 동일한 방법으로 실시하였다. Except for supplying air instead of nitrogen (N 2 ) in Example 2 was carried out in the same manner as in Example 2.
시험예 3: XRD 분석Test Example 3: XRD Analysis
상기 실시예 1 내지 3에서 제조된 촉매의 결정구조 및 그 비율을 확인하기 위해 XRD 분석을 실시하였으며, XRD 분석 결과를 상기 비교예 1의 XRD 분석결과와 함께 도 2 및 하기 표 3에 나타내었다.XRD analysis was carried out to confirm the crystal structure and the ratio of the catalysts prepared in Examples 1 to 3, and the XRD analysis results are shown in FIG. 2 and Table 3 together with the XRD analysis results of Comparative Example 1.
구분division 실시예 2Example 2 실시예3Example 3 비교예 1Comparative Example 1
ZnFe2O4 결정구조(중량%)ZnFe 2 O 4 crystal structure (wt%) 95.395.3 94.894.8 92.492.4
α-Fe2O3 결정구조(중량%)α-Fe 2 O 3 crystal structure (wt%) 4.74.7 5.25.2 7.67.6
도 2 및 표 3을 참조하면, 실시예 2 및 3에서 제조된 아연 페라이트 촉매는 ZnFe2O4 결정구조와 α-Fe2O3 결정구조의 혼합상인 것을 확인할 수 있으며, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 질소 또는 산소를 공침조 내에 공급하는 공정을 포함하여 제조된 촉매(실시예 2 또는 3)는 그렇지 않은 비교예 1의 촉매 대비 비활성 결정구조인 α-Fe2O3 결정 구조가 감소하는 것을 확인할 수 있었다. 즉, 공침법을 통한 아연 페라이트 촉매 합성 시, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 질소 가스 또는 에어 공급 공정을 수행하는 경우, 아연 페라이트 촉매의 결정구조에 유리한 영향을 주는 것을 알 수 있었다. 2 and Table 3, it can be seen that the zinc ferrite catalyst prepared in Examples 2 and 3 is a mixed phase of the ZnFe 2 O 4 crystal structure and α-Fe 2 O 3 crystal structure, coprecipitation of the metal precursor solution The catalyst (Example 2 or 3) prepared by supplying through the bottom and supplying nitrogen or oxygen into the coprecipitation is an α-Fe 2 O 3 crystal structure which is an inert crystal structure compared to the catalyst of Comparative Example 1 that is not Was found to decrease. That is, when synthesizing the zinc ferrite catalyst through the coprecipitation method, it was found that when the metal precursor aqueous solution was supplied through the bottom of the coprecipitation tank and the nitrogen gas or air supply process was performed, the crystal structure of the zinc ferrite catalyst had an advantageous effect. .
시험예 4: 입도 분석Test Example 4: Particle Size Analysis
상기 실시예 1 내지 3 및 비교예 1에서 제조된 페라이트계 촉매 전구체 슬러리의 입도분석 결과를 하기 표 4 및 도 3에 나타내었다. 여기에서 슬러리의 입도분석은 Horiba 사의 Laser Particle Size Analyzer-960으로 측정하였으며, 이때 필요한 굴절률은 슬러리에서 주성분인 Fe를 기준으로 설정하였다.The particle size analysis results of the ferrite catalyst precursor slurry prepared in Examples 1 to 3 and Comparative Example 1 are shown in Table 4 and FIG. 3. The particle size analysis of the slurry was measured by Horiba's Laser Particle Size Analyzer-960, and the required refractive index was set based on Fe, the main component in the slurry.
구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1
Median size(㎛)Median size (㎛) 6.96.9 5.85.8 6.06.0 8.48.4
Mode size(㎛)Mode size (㎛) 7.27.2 6.26.2 6.36.3 8.38.3
* Median size: 중간에 분포하는 입자 지름 * Mode size: 가장 많이 분포하는 입자 지름* Median size: Particle diameter distributed in the middle * Mode size: Particle diameter distributed most
상기 표 4 및 도 3에 나타낸 바와 같이, 실시예 1 내지 3은 비교예 1 대비 슬러리 입자가 상대적으로 작고 균일한 입도를 가짐을 확인할 수 있었고, 또한 실시예 2와 3은 실시예 1 대비 슬러리 입자가 상대적으로 작고 균일한 입도를 가짐을 확인할 수 있었다. 이러한 결과로부터 질소 투입은 촉매 전구체가 작고 균일한 입도를 갖는데 효과적이고, 또한 공기 투입과 금속 전구체 수용액의 투입 위치 변경은 더욱 작고 균일한 입도를 갖는데 효과적인 것을 확인할 수 있었다.As shown in Table 4 and Figure 3, Examples 1 to 3 was confirmed that the slurry particles compared to Comparative Example 1 has a relatively small and uniform particle size, and also Examples 2 and 3 compared to the slurry particles of Example 1 Was found to have a relatively small and uniform particle size. From these results, it was confirmed that nitrogen injection was effective in having a small and uniform particle size of the catalyst precursor, and the addition of air and a change in the injection position of the metal precursor aqueous solution were effective in having a smaller and uniform particle size.
시험예 5: 산화적 탈수소화 반응Test Example 5: Oxidative Dehydrogenation
상기와 동일한 방법 및 조건으로 실시예 2 및 3에 따라 합성된 아연 페라이트 촉매를 사용하여 산화적 탈수소화 반응을 거쳐 부타디엔을 생성하였으며, 그 결과를 하기 표 5에 각각 실시예 2a 내지 2d 및 실시예 3a 내지 3c로 나타내었고, 비교를 위해 비교예 1a 내지 1d를 재기재하였다.Butadiene was produced through an oxidative dehydrogenation reaction using a zinc ferrite catalyst synthesized according to Examples 2 and 3 in the same manner and conditions as described above, and the results are shown in Examples 5a and 2d and Table 5, respectively. 3a to 3c, and Comparative Examples 1a to 1d are rewritten for comparison.
구분division 반응온도(℃)Reaction temperature (℃) BE_Conv.(%)BE_Conv. (%) S_BD(%)S_BD (%) Y(%)Y (%) S_COx(%)S_COx (%) S_heavy(%)S_heavy (%) O2_Conv. (%)O 2 _Conv. (%) 핫스팟 온도(℃)Hot Spot Temperature (℃)
실시예2aExample 2a 340340 86.786.7 89.489.4 77.577.5 9.69.6 1.01.0 99.899.8 --
실시예2bExample 2b 330330 86.286.2 89.589.5 77.177.1 9.49.4 1.11.1 97.697.6 474.2474.2
실시예2cExample 2c 335335 86.586.5 89.389.3 77.277.2 9.69.6 1.11.1 99.899.8 486.9486.9
실시예2dExample 2d 325325 81.181.1 90.090.0 73.073.0 9.09.0 1.01.0 94.494.4 468.2468.2
실시예3aExample 3a 330330 85.585.5 89.289.2 76.376.3 9.89.8 1.01.0 99.599.5 --
실시예3bExample 3b 334334 86.686.6 89.589.5 77.577.5 9.49.4 1.11.1 97.797.7 476.0476.0
실시예3cExample 3c 339339 87.187.1 89.489.4 77.977.9 9.69.6 1.01.0 99.999.9 478.8478.8
비교예1aComparative Example 1a 325325 79.779.7 88.588.5 70.670.6 10.510.5 1.01.0 95.395.3 478478
비교예1bComparative Example 1b 330330 82.882.8 88.888.8 73.573.5 10.310.3 1.01.0 97.897.8 484.9484.9
비교예1cComparative Example 1c 334334 84.184.1 88.588.5 74.474.4 10.510.5 1.01.0 99.999.9 485.8485.8
비교예1dComparative Example 1d 335335 83.783.7 89.689.6 75.075.0 9.49.4 1.01.0 99.299.2 --
반응조건: GHSV 66h-1, 산소:스팀:질소 = 1:8:1(부텐의 몰수를 기준으로 함)Reaction conditions: GHSV 66h -1 , oxygen: steam: nitrogen = 1: 8: 1 (based on moles of butene)
상기 표 5를 참조하면, 실시예 2, 3 및 비교예 1에 따른 촉매를 사용한 산화적 탈수소화 반응 모두 산소를 많이 소모하는 조건에서 높은 활성을 나타내는 것을 확인할 수 있었고, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 특정 시점에서 질소 또는 에어를 공급하여 제조된 아연 페라이트 촉매(실시예 2 및 3)는 그렇지 않은 비교예 1의 촉매를 사용하여 반응하는 경우와 비교하여 부텐의 전환율과 부타디엔 선택도 및 수율이 높은 반면에 부반응 물질인 COx 선택도는 낮은 것을 확인할 수 있다. 또한, 본 발명에 따른 실시예 2 및 3의 아연 페라이트 촉매를 사용하는 경우에는 비교예 1 대비 낮은 핫 스팟 온도에서도 반응 활성이 우수한 것을 확인할 수 있었다. Referring to Table 5, it was confirmed that all of the oxidative dehydrogenation reaction using the catalyst according to Examples 2, 3 and Comparative Example 1 exhibits high activity under the conditions of high oxygen consumption, the aqueous solution of the metal precursor co-precipitation bottom Zinc ferrite catalysts (Examples 2 and 3) prepared by feeding through nitrogen and supplying nitrogen or air at a specific time point were converted to butene and selectivity of butene compared with the case of reacting with the catalyst of Comparative Example 1, And while the yield is high, it can be seen that the COx selectivity of the side reaction material is low. In addition, when using the zinc ferrite catalyst of Examples 2 and 3 according to the present invention it was confirmed that the reaction activity is excellent even at a low hot spot temperature compared to Comparative Example 1.
즉, 공침법을 통한 아연 페라이트 촉매 합성 시, 금속 전구체 수용액을 공침조 하부를 통해 공급하고, 특정 시점에서 수행한 질소 또는 에어 투입 공정은 아연 페라이트 촉매의 비활성 결정구조를 감소시키는 것은 물론, 촉매의 반응활성 증대에도 기여하는 것을 알 수 있었다. That is, when synthesizing the zinc ferrite catalyst through coprecipitation, the metal precursor aqueous solution is supplied through the bottom of the coprecipitation, and the nitrogen or air input process performed at a specific time point not only reduces the inert crystal structure of the zinc ferrite catalyst, It was found that it also contributed to the increase in reaction activity.

Claims (14)

  1. 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체를 물에 첨가하여 금속 전구체 수용액을 제조하는 단계; 상기 금속 전구체 수용액과 염기성 수용액을 pH가 6 이상으로 조절된 수용액 또는 물이 준비된 공침조에 첨가하여 철과 A 금속을 공침시키는 단계; 및 상기 공침된 공침물을 소성하는 단계;를 포함하고,Preparing an aqueous metal precursor solution by adding a trivalent cationic iron (Fe) precursor and a divalent cationic metal (A) precursor to water; Co-precipitating iron and A metal by adding the metal precursor aqueous solution and the basic aqueous solution to a coprecipitation tank prepared with an aqueous solution or water having a pH adjusted to 6 or more; And firing the co-precipitated co-precipitate.
    상기 공침 시; 공침 후; 또는 상기 공침 시부터 공침 후까지; 비활성 가스 또는 에어(air)를 상기 공침조에 공급하는 공정을 수행하는 것을 특징으로 하는 At the co-precipitation; After copulation; Or from the co-precipitation to after the co-precipitation; Characterized in that to perform the process of supplying an inert gas or air (air) to the coprecipitation tank
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  2. 제 1항에 있어서, The method of claim 1,
    상기 공침시키는 단계에서, 상기 금속 전구체 수용액은 상기 공침조 하부를 통해 공급되는 것을 특징으로 하는 In the coprecipitation step, the aqueous metal precursor solution is supplied through the bottom of the coprecipitation tank
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  3. 제 1항에 있어서,The method of claim 1,
    상기 공침이 완료된 공침 용액을 교반; 숙성; 또는 교반 및 숙성;시키는 단계를 더 포함하는 것을 특징으로 하는Stirring the coprecipitation solution of the coprecipitation complete; ferment; Or stirring and aging; further comprising the step of
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 교반 중에 공침 용액에 질소(N2) 가스를 투입하는 공정을 수행하는 것을 특징으로 하는 Characterized in that to perform the process of injecting nitrogen (N 2 ) gas into the coprecipitation solution during the stirring
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  5. 제 1항에 있어서,The method of claim 1,
    상기 3가 양이온 철(Fe) 전구체 및 2가 양이온 금속(A) 전구체는 독립적으로 질산염(nitrate), 암모늄염(ammonium salt), 황산염(sulfate) 또는 염화물(chloride)로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 The trivalent cationic iron (Fe) precursor and the divalent cationic metal (A) precursor are independently one or more selected from the group consisting of nitrate, ammonium salt, sulfate or chloride. Characterized
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  6. 제 1항에 있어서, The method of claim 1,
    상기 2가 양이온 금속(A)은 구리(Cu), 라듐(Ra), 바륨(Ba), 스트론튬(Sr), 칼슘(Ca), 베릴륨(Be), 아연(Zn), 마그네슘(Mg), 망간(Mn) 및 코발트(Co)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 The divalent cation metal (A) is copper (Cu), radium (Ra), barium (Ba), strontium (Sr), calcium (Ca), beryllium (Be), zinc (Zn), magnesium (Mg), manganese (Mn) and cobalt (Co) characterized in that at least one member selected from the group consisting of
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  7. 제 1항에 있어서,The method of claim 1,
    상기 공침시키는 단계에서 공침 용액의 pH는 7 내지 10으로 유지되는 것을 특징으로 하는 In the coprecipitation step, the pH of the coprecipitation solution is characterized in that it is maintained at 7 to 10
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  8. 제 1항에 있어서, The method of claim 1,
    상기 촉매는 AFe2O4 결정구조를 포함하는 것을 특징으로 하는 The catalyst is characterized in that it comprises an AFe 2 O 4 crystal structure
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  9. 제 1항에 있어서, The method of claim 1,
    상기 촉매는 AFe2O4 결정구조 및 α-Fe2O3 결정구조를 포함하는 혼합상인 것을 특징으로 하는 The catalyst is characterized in that the mixed phase comprising the AFe 2 O 4 crystal structure and α-Fe 2 O 3 crystal structure
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  10. 제 1항에 있어서, The method of claim 1,
    상기 공침물은 상기 공침 용액을 건조; 여과; 또는 건조 및 여과;시켜 수득되는 것을 특징으로 하는 The coprecipitates dry the coprecipitate solution; percolation; Or dried and filtered; obtained by
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
  11. 제 1항에 있어서, The method of claim 1,
    상기 촉매는 하기 수학식 1을 만족하는 것을 특징으로 하는 The catalyst is characterized in that the following formula
    산화적 탈수소화 반응용 촉매의 제조방법.Method for preparing a catalyst for oxidative dehydrogenation reaction.
    [수학식 1][Equation 1]
    0 ≤ T2/T1 ≤ 0.800 ≤ T2 / T1 ≤ 0.80
    (상기 수학식 1에서, T2는 제 2항에 따른 방법으로 제조된 촉매 총 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이고, T1은 상기 제 1항의 제조방법 중 비활성 가스 또는 에어 공급 공정을 생략하고 제조된 촉매 100 중량% 내 포함된 α-Fe2O3 결정구조의 함량이며, α-Fe2O3 결정구조의 함량은 촉매의 XRD 회절분석의 α-Fe2O3 결정구조 피크(2theta: 33 내지 34°)의 크기로부터 측정된다.)(In Formula 1, T2 is α-Fe 2 O 3 contained in 100% by weight of the total catalyst prepared by the method according to claim 2 The content of the crystal structure, T1 is the content of the α-Fe 2 O 3 crystal structure contained in 100% by weight of the catalyst prepared by omitting the inert gas or air supply step of the method of claim 1, α-Fe 2 O The content of the 3 crystal structure is determined from the size of the α-Fe 2 O 3 crystal structure peak (2theta: 33 to 34 °) in the XRD diffraction analysis of the catalyst.)
  12. 제 1항 내지 제 11항 중 어느 한 항의 제조방법으로 제조된 산화적 탈수소화 반응용 촉매가 충진된 반응기에 노르말 부텐을 함유하는 C4 혼합물 및 산소를 포함하는 반응물을 통과시키면서 산화적 탈수소화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 The oxidative dehydrogenation reaction is carried out while passing a reactant containing oxygen and a C4 mixture containing normal butene into a reactor filled with a catalyst for oxidative dehydrogenation reaction prepared according to any one of claims 1 to 11. Characterized in that it comprises the step of performing
    산화적 탈수소화 방법.Oxidative Dehydrogenation Method.
  13. 제 12항에 있어서,The method of claim 12,
    상기 반응물은 공기, 질소, 스팀 및 이산화탄소 중에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 The reactant further comprises one or more selected from air, nitrogen, steam and carbon dioxide
    산화적 탈수소화 방법.Oxidative Dehydrogenation Method.
  14. 제 12항에 있어서, The method of claim 12,
    상기 산화적 탈수소화 반응은 250 내지 430℃의 반응온도 및 50 내지 2000h-1(부텐 기준)의 기체공간속도(GHSV: Gas Hourly Space Velocity)에서 수행하는 것을 특징으로 하는The oxidative dehydrogenation reaction is performed at a reaction temperature of 250 to 430 ° C. and a gas hourly space velocity (GHSV) of 50 to 2000 h −1 (butene basis).
    산화적 탈수소화 방법.Oxidative Dehydrogenation Method.
PCT/KR2018/004832 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst WO2018203615A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/307,676 US11247195B2 (en) 2017-05-04 2018-04-26 Method of preparing catalyst for oxidative dehydrogenation and method of performing oxidative dehydrogenation using catalyst
CN201880002461.9A CN109311004B (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation and method for oxidative dehydrogenation using catalyst
JP2018565339A JP6790319B2 (en) 2017-05-04 2018-04-26 A method for producing a catalyst for an oxidative dehydrogenation reaction and a method for oxidative dehydrogenation using the catalyst.
EP18795175.1A EP3453454B1 (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0056741 2017-05-04
KR20170056741 2017-05-04
KR1020180047836A KR102173583B1 (en) 2017-05-04 2018-04-25 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using the same catalyst
KR10-2018-0047836 2018-04-25

Publications (2)

Publication Number Publication Date
WO2018203615A1 true WO2018203615A1 (en) 2018-11-08
WO2018203615A9 WO2018203615A9 (en) 2019-02-28

Family

ID=64016077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004832 WO2018203615A1 (en) 2017-05-04 2018-04-26 Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst

Country Status (1)

Country Link
WO (1) WO2018203615A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847206B1 (en) 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20090031760A (en) * 2006-07-17 2009-03-27 바스프 에스이 Process for hydrogenating unsaturated hydrocarbons over catalysts comprising copper and zinc
KR20090034139A (en) * 2007-10-02 2009-04-07 에스케이에너지 주식회사 Method of preparing zinc ferrite catalysts using buffer solution and method of preparing 1,3-butadiene using said catalysts
JP2010094674A (en) * 2008-10-17 2010-04-30 Kumho Petrochemical Co Ltd Bismuth-molybdenum-iron composite oxide catalyst for oxidatively dehydrogenating 1-butene to produce 1,3-butadiene and method of producing the catalyst
KR20110036290A (en) * 2009-10-01 2011-04-07 서울대학교산학협력단 Sulfated zinc ferrite catalyst, preparation method therof and production method of 1,3-butadiene using said catalyst
KR20170056741A (en) 2015-11-13 2017-05-24 심동복 Instant food cooking apparatus containing the cleaning function of the steam nozzle
KR20180047836A (en) 2016-11-01 2018-05-10 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated caboxylic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090031760A (en) * 2006-07-17 2009-03-27 바스프 에스이 Process for hydrogenating unsaturated hydrocarbons over catalysts comprising copper and zinc
KR100847206B1 (en) 2007-05-10 2008-07-17 에스케이에너지 주식회사 Zinc ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
KR20090034139A (en) * 2007-10-02 2009-04-07 에스케이에너지 주식회사 Method of preparing zinc ferrite catalysts using buffer solution and method of preparing 1,3-butadiene using said catalysts
JP2010094674A (en) * 2008-10-17 2010-04-30 Kumho Petrochemical Co Ltd Bismuth-molybdenum-iron composite oxide catalyst for oxidatively dehydrogenating 1-butene to produce 1,3-butadiene and method of producing the catalyst
KR20110036290A (en) * 2009-10-01 2011-04-07 서울대학교산학협력단 Sulfated zinc ferrite catalyst, preparation method therof and production method of 1,3-butadiene using said catalyst
KR101071230B1 (en) 2009-10-01 2011-10-10 서울대학교산학협력단 Sulfated zinc ferrite catalyst, preparation method therof and production method of 1,3-butadiene using said catalyst
KR20170056741A (en) 2015-11-13 2017-05-24 심동복 Instant food cooking apparatus containing the cleaning function of the steam nozzle
KR20180047836A (en) 2016-11-01 2018-05-10 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated caboxylic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453454A4

Also Published As

Publication number Publication date
WO2018203615A9 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017213360A1 (en) Oxidative dehydrogenation reaction catalyst and preparation method therefor
WO2013002459A1 (en) High yield production method for 1,3-butadiene
WO2017150830A1 (en) Ferrite-based catalyst composite, method for preparing same, and method for preparing butadiene
WO2016195162A1 (en) Method for preparing ferrite metal oxide catalyst
EP1473083B1 (en) Process for preparing activated metathesis catalysts
WO2019132392A1 (en) Method for manufacturing zinc ferrite catalyst and zinc ferrite catalyst manufactured thereby
WO2018203615A1 (en) Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using same catalyst
WO2018080025A1 (en) Method for preparing butadiene with excellent catalyst reproducibility
WO2017164492A1 (en) Catalyst for oxidative dehydrogenation reaction, and preparation method therefor
WO2018139776A1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2018190642A2 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
WO2019160259A1 (en) Catalyst loading method and method for preparation of butadiene by using same
KR101973614B1 (en) Method of preparing catalyst for oxidative dehydrogenation
WO2021060681A1 (en) Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby
WO2014182026A1 (en) Oxidation catalyst for preparing butadiene and method for preparing same
WO2017160071A1 (en) Method for preparing catalyst for oxidative dehydrogenation
WO2018190641A1 (en) Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
KR102173583B1 (en) Method for preparing catalyst for oxidative dehydrogenation reaction and oxidative dehydrogenation method using the same catalyst
WO2021137532A1 (en) Method for producing catalyst for oxidative dehydrogenation reaction, catalyst for oxidative dehydrogenation reaction, and method for producing butadiene using same
WO2019177285A1 (en) Method for producing ferrite-based coating catalyst and method for producing butadiene by using same
WO2019199042A1 (en) Method for producing metal complex catalyst, and metal complex catalyst produced by same
WO2013108979A1 (en) Method for preparing magnesia-zirconia composite carrier for catalyzing oxidative dehydration of normal-butane, method for preparing magnesium orthovanadate catalyst supported by magnesia-zirconia composite carrier prepared thereby, and method for preparing normal-butene and 1,3-butadiene using magnesium orthovanadate catalyst
WO2022045640A1 (en) Method for preparing ceria-zirconia composite oxide, ceria-zirconia composite oxide, catalyst comprising same, and method for preparing butadiene
KR20190005521A (en) Method for preparing catalyst for oxidative dehydrogenation reaction and method for preparing butadiene using the same catalyst

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565339

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018795175

Country of ref document: EP

Effective date: 20181205

NENP Non-entry into the national phase

Ref country code: DE