WO2018203520A1 - Flight function addition device and rotor unit - Google Patents

Flight function addition device and rotor unit Download PDF

Info

Publication number
WO2018203520A1
WO2018203520A1 PCT/JP2018/017166 JP2018017166W WO2018203520A1 WO 2018203520 A1 WO2018203520 A1 WO 2018203520A1 JP 2018017166 W JP2018017166 W JP 2018017166W WO 2018203520 A1 WO2018203520 A1 WO 2018203520A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotor
master unit
units
flight function
Prior art date
Application number
PCT/JP2018/017166
Other languages
French (fr)
Japanese (ja)
Inventor
紀代一 菅木
和雄 市原
河野 雅一
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Publication of WO2018203520A1 publication Critical patent/WO2018203520A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals

Definitions

  • the present invention relates to unmanned aircraft technology.
  • the multicopter For example, consider transporting heavy or large items using the multicopter. If it is not possible to lift it with a single multicopter, it is necessary to use a large multicopter with a higher power rotor or multiple multicopters.
  • the latter method has an advantage that the lift can be flexibly adjusted according to the weight and size of the transported object by appropriately changing the number of multicopters. On the other hand, simply increasing the number of multicopters will not allow them to fly together.
  • the problem to be solved by the present invention is to attach a plurality of rotor units to a transported object, and to connect a flight function adding device that enables the transported object to fly by linking the operations of these rotor units, and the rotor unit. It is to provide.
  • the flight function adding device of the present invention includes a plurality of rotor units, and each rotor unit includes a rotor having a driving source and a propeller connected to the driving source, and the rotor unit.
  • the master unit includes an inertial measurement device, configuration acquisition means for specifying a direction in which the thrust of each rotor unit changes the posture of the mounting target, and cooperative driving means for controlling the motor rotation speed of each slave unit. It is characterized by having.
  • a plurality of rotor units are attached to the mounting target, and the direction in which the thrust of each rotor unit changes the posture of the mounting target is specified by the configuration acquisition means of the master unit. And the motor rotation speed of these rotor units is managed centrally by the cooperative drive means which a master unit has. That is, according to the flight function adding device of the present invention, it is possible to configure a multicopter having the mounting target as a body frame. Furthermore, the flight function addition device of the present invention can flexibly adjust its lift by appropriately changing the number of slave units according to the weight and size of the mounting target.
  • the position of the center of gravity of the mounting target and the arrangement configuration of the rotor unit also change.
  • the position of the center of gravity of the mounting target and the arrangement configuration of the rotor unit also change.
  • this is automatically specified by the configuration acquisition means of the master unit, it is not necessary to manually adjust the parameters of the flight software for each mounting target, and the flight function is efficiently added to various mounting targets. It becomes possible to do.
  • each slave unit has an inertial measurement device, and the master unit can acquire a detection value of the inertial measurement device of each slave unit or a processing value of the detection value.
  • the master unit can more accurately grasp the change in the position and orientation of each slave unit. Thereby, the flight accuracy of the mounting target by the flight function adding device can be increased.
  • the configuration acquisition unit may change the orientation of the mounting target for each rotor unit including the master unit and / or a combination of the rotor units.
  • the direction in which the thrust of each rotor unit changes the posture of the mounting target can be specified.
  • the position of the center of gravity of the mounting target and the arrangement configuration of the rotor unit also change.
  • the mounting target is a hard article
  • a change in the position or posture of any one of the rotor units also appears as a change in the position or posture of another rotor unit via the mounting target. Therefore, prior to the flight of the mounting target, each rotor unit and a combination thereof are sequentially tested and detected, and the change in the posture of the mounting target at that time is detected, so that the thrust of each rotor unit changes the posture of the mounting target.
  • the direction can be specified. This also makes it possible to estimate the approximate arrangement direction of each slave unit around the position of the main rotor and the position of the center of gravity of the mounting target.
  • the master unit includes a photographing unit capable of photographing an image around the master unit, and an image recognizing unit that detects each slave unit from an image photographed by the photographing unit, and the configuration obtaining unit May be configured to specify the arrangement direction of these slave units centered on the position of the master unit from the position of each slave unit in the image.
  • the arrangement configuration of the rotor unit Prior to flight, by detecting each rotor unit from an image taken around the master unit, the arrangement configuration of the rotor unit can be specified. Thereby, the configuration acquisition means can identify or predict the direction in which the thrust of each rotor unit changes the posture of the mounting target. Based on the arrangement configuration, it becomes possible to conduct a more detailed test or to omit a part of the test.
  • the master unit preferably further includes an orientation sensor, an altitude sensor, and a GPS antenna.
  • the master unit When the master unit includes these sensors, it is possible to specify the position information of the master unit including the longitude and latitude and the azimuth angle of the nose based on an absolute index. Thereby, it becomes possible to fly the mounting target autonomously.
  • the plurality of rotor units include a CW unit in which the propeller rotates clockwise in a plan view and a CCW unit in which the propeller rotates counterclockwise in a plan view.
  • the CW unit and the CCW unit are The configuration may be such that the mounting target is alternately arranged along the circumferential direction of the mounting target.
  • the rotation direction of the propellers of these rotor units needs to be specified. Further, in order to stably perform this while canceling the counter torque of the propeller during the operation of the aileron and elevator to be mounted, it is convenient that the CW units and the CCW units are alternately arranged in the circumferential direction. By alternately arranging the CW units and CCW units constituting the flight function adding device in advance along the circumferential direction of the mounting target, it becomes possible to fly the mounting target in the same control method as a general multicopter. .
  • each rotor unit may be a counter-rotating rotor in which a pair of propellers rotating in opposite directions are arranged in the axial direction.
  • each rotor unit By making the rotor of each rotor unit a counter-rotating rotor capable of canceling the counter-torque independently, even in a configuration using an odd number of rotor units such as a tricopter, a special for processing the counter-torque There is no need to implement a separate mechanism. As a result, the lift of the flight function adding device can be adjusted in units of one rotor unit, and the lift can be adjusted more flexibly according to the weight and size of the mounting target.
  • the rotor unit of the present invention is a master unit of the flight function adding device, and the master unit can also operate as the slave unit.
  • a flight function addition device can be configured with a single type of rotor unit. Thereby, it is not necessary to be aware of the master / slave model when the rotor unit is mounted, and the master unit can be freely changed after the rotor unit is mounted.
  • the flight function adding device and the rotor unit of the present invention it is possible to link the operations of a plurality of rotor units to fly the mounting target.
  • FIG. 6 is a schematic plan view showing the rotation direction of each rotor unit R of the flight function addition device F.
  • 3 is a block diagram schematically showing a functional configuration of a master unit 10.
  • FIG. 3 is a block diagram schematically illustrating a functional configuration of a slave unit 50.
  • FIG. It is a plane schematic diagram which shows the mode of the test drive of the rotor unit R by the structure acquisition program CA.
  • FIG. 6 is a perspective view showing a state in which a flight function adding device F is attached to a chair 93. It is a perspective view which shows the external appearance of rotor unit Rb concerning 2nd Embodiment. It is a perspective view which shows a mode that the flight function addition apparatus Fb which consists of three rotor units Rb was attached to the desk 92 which is the mounting object of 2nd Embodiment. It is a perspective view which shows the external appearance of rotor unit Rc (master unit 10c) concerning 3rd Embodiment. It is a block diagram showing typically the functional composition of master unit 10c.
  • FIG. 1 is a perspective view showing an appearance of a rotor unit R according to the first embodiment.
  • FIG. 2 is a perspective view showing a state in which a flight function adding device F including four rotor units R is attached to a table 91 that is a mounting target of this example.
  • the rotor unit R is provided at a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 that extends from the outer surface of the main body portion 11 to the outside in the radial direction of the main body portion 11, and the tip of the arm portion 12.
  • the clamp part 13 is provided.
  • the main body portion 11 of this example includes a case 11a that is a hollow container body and a spinner cap 11b disposed above the main body portion 11a.
  • the clamp portion 13 is a coupling portion that fixes the rotor unit R to the table 91.
  • the clamp part 13 of this example has a structure that can suitably tighten the circular pipe part or flat plate part to be mounted, the coupling part of the present invention is not limited to the form of the clamp part 13. As long as the rotor unit can be firmly fixed to the mounting target, the shape, structure, and coupling means for the mounting target are not limited.
  • the rotor unit R includes a rotor 27 including a motor 271 as a driving source and a fixed pitch propeller 272 (hereinafter simply referred to as “propeller 272”) attached to an output shaft of the motor 271.
  • the motor 271 is accommodated in the case body 11a. Further, a spinner cap 11 a is put on the blade root portion of the propeller 272.
  • the flight function addition device F of this example includes four rotor units R.
  • the rotor unit R of the flight function adding device F is roughly divided into a master unit 10 and a slave unit 50.
  • the master unit 10 is one of the plurality of rotor units R.
  • the master unit 10 is a unit that controls the motor rotation speed (throttle) of these rotor units R in a unified manner and operates the flight function adding device F as a unit.
  • the slave unit 50 is a rotor unit R other than the master unit 10.
  • the slave unit 50 is a unit that rotates the rotor 27 at a speed instructed by the master unit 10.
  • the master unit 10 in this example is linked to each slave unit 50 so as to be capable of wireless communication.
  • “link” means pairing of the rotor unit R that designates a communication partner, and means that the master unit 10 and each slave unit 50 are connected by a wireless virtual cable.
  • the communication method between the master unit 10 and the slave unit 50 is not limited to wireless communication, and these may be wired with a communication cable.
  • FIG. 3 is a schematic plan view showing the rotation direction of each rotor unit R of the flight function adding device F.
  • the rotor unit R of the flight function adding device F includes a CW unit (the master unit 10 and the slave unit 50 at the upper left in FIG. 3) in which the propeller 272 rotates in a plan view and a propeller 272 in a counterclockwise view in a plan view.
  • CCW units upper right and lower left slave units 50 in FIG. 3). These CW units and CCW units are alternately arranged along the circumferential direction of the table 91.
  • the rotation direction of the propeller 272 of each rotor unit R needs to be specified. Further, in order to stably perform this while canceling the counter torque of the propeller 272 during the aileron and elevator operations of the table 91, it is convenient that the CW units and the CCW units are alternately arranged in the circumferential direction. . In this example, the CW unit and the CCW unit constituting the flight function adding device F are alternately arranged in advance along the circumferential direction of the table 91, so that the table 91 is controlled by the same control method as a general multicopter. It is possible to fly.
  • FIG. 4 is a block diagram schematically illustrating the functional configuration of the master unit 10.
  • the master unit 10 mainly includes a flight controller FC that is a control unit of the flight function adding device F, a receiver 32 that receives a control signal from an operator (control terminal 31), a rotor 27, and an ESC 26 that is a drive circuit of the rotor 27. (Electric Speed Controller) and a battery 29 for supplying power to them.
  • FC flight controller
  • FC receives a control signal from an operator (control terminal 31)
  • a rotor 27 that is a drive circuit of the rotor 27.
  • Electric Speed Controller Electric Speed Controller
  • the rotor 27 includes a motor 271 that is a drive source and a propeller 272 attached to the motor 271.
  • the ESC 26 is connected to the motor 271 and controls the rotation speed of the motor 271 at a speed instructed from the flight controller FC.
  • the flight controller FC includes a control device 20 that is a microcontroller.
  • the control device 20 includes a CPU 21 that is a central processing unit, a memory 22 that is a storage device such as a ROM and a RAM, and a flash memory, and a PWM (Pulse Width Modulation) controller 25 that sends a PWM signal to the ESC 26.
  • a CPU 21 that is a central processing unit
  • a memory 22 that is a storage device such as a ROM and a RAM, and a flash memory
  • PWM Pulse Width Modulation
  • the flight controller FC further includes a flight control sensor group 23 and a GPS antenna 24 (hereinafter collectively referred to as “sensors”), which are connected to the control device 20.
  • the GPS antenna 24 is precisely a navigation satellite system (NSS) receiver.
  • the GPS antenna 24 acquires current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS).
  • GNSS global navigation satellite system
  • RNSS regional navigation satellite system
  • the flight control sensor group 23 of the master unit 10 in this example includes an IMU (Inertial Measurement Unit) 231 having a triaxial acceleration sensor and a triaxial angular velocity sensor, an atmospheric pressure sensor (altitude sensor), a triaxial geomagnetic sensor ( Orientation sensor).
  • the control device 20 can acquire position information including the latitude and longitude of the master unit 10, the altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the master unit 10, using these sensors and the like.
  • cooperation is a program that controls the attitude and basic flight operation of the table 91 (hereinafter also simply referred to as “table 91”) on which the flight function addition device F is mounted.
  • a drive program CD is stored.
  • the cooperative driving program CD adjusts the motor rotation speed of each rotor unit R based on the information acquired from the sensor or the like according to the control signal of the operator (control terminal 31), and corrects the attitude of the table 91 and the disturbance of the flight position.
  • the table 91 is allowed to fly.
  • the cooperative driving program CD inputs a PWM signal to the rotor 27 of the master unit 10 and drives the rotor 27 of each slave unit 50 based on the configuration of each rotor unit R specified by the configuration acquisition program CA described later.
  • These signals are transmitted from the communication device 35 to each slave unit 50. Thereby, the drive of each rotor unit R is linked and the flight operation
  • the flight function adding device F is manually operated by the operator using the control terminal 31 and the flight plan FP including the flight path and speed of the master unit 10, altitude parameters, and commands of the prescribed operation in the autonomous flight program AP. And the flight function adding device F can be allowed to fly autonomously (hereinafter, such autonomous flight is referred to as “autopilot”).
  • the master unit 10 in this embodiment has an advanced flight control function.
  • the master unit in the present invention is not limited to the form of the master unit 10, and a part of the sensor is omitted from the sensor or the like, for example, as a requirement that it has a function corresponding to the IMU 231 and the cooperative driving program CD. It is also possible to use one that does not have an autopilot function and can fly only by manual operation.
  • FIG. 5 is a block diagram schematically illustrating the functional configuration of the slave unit 50.
  • the same components as those of the master unit 10 are denoted by the same reference numerals as those of the master unit 10, and detailed description thereof is omitted.
  • the appearance of the slave unit 10 is the same as that of the master unit 10 (see FIG. 1).
  • the slave unit 50 mainly includes a communication device 36 that receives a control signal from the master unit 10, an ESC 26 that is a drive circuit for the rotor 27, and a battery 29 that supplies power to these.
  • the rotor 27 of the slave unit 50 includes a motor 271 as a drive source and a propeller 272 attached to the motor 271.
  • the ESC 26 is connected to the motor 271 and controls the rotation speed of the motor 271 in accordance with a control signal input from the communication device 36.
  • the slave unit 50 of this example includes an IMU 231.
  • the displacement amount of the slave unit 50 detected by the IMU 231 is fed back to the master unit 10 via the communication device 36.
  • the master unit 10 and the slave unit 50 are configured as different models.
  • the master unit 10 includes the slave unit 50. It has all the functions that. Therefore, the master unit 10 can also operate as the slave unit 50. Therefore, all the rotor units R of the flight function adding device F are configured by the model of the master unit 10, and by selecting the rotor unit R to be the master unit 10 from among the settings, the rotor unit R of a single model can be selected.
  • the flight function addition device F can be configured. This eliminates the need to be aware of the master / slave model when the rotor unit R is mounted, and the master unit 10 can be freely changed after the rotor unit R is mounted.
  • FIG. 6 is a schematic plan view showing a state of test drive of the rotor unit R by the configuration acquisition program CA.
  • the thrust of each rotor unit R In order to maintain the attitude of the table 91 during flight and to perform the elevator, aileron, and ladder operation of the table 91 (hereinafter, such operations are collectively referred to as “steering control”), the thrust of each rotor unit R
  • the direction in which the posture of the table 91 is changed needs to be specified. That is, it is necessary to specify the balance of the motor rotation speed of each rotor unit R when steering control of the table 91 (hereinafter, such balance is referred to as “throttle balance”).
  • the present invention if the shape or size of the mounting target changes, the position of the center of gravity of the mounting target and the mounting position of the rotor unit R also change.
  • the master unit 10 of this example automatically specifies the throttle balance at the time of steering control of the table 91 by the configuration acquisition program CA.
  • the above-described cooperative drive program CD adjusts the motor rotation speed of each rotor unit R based on the throttle balance specified by the configuration acquisition program CA, and maintains the attitude of the table 91 in units of the entire flight function adding device F. Steering control is performed.
  • the “posture of the table 91” refers to the inclination of the table 91 and the direction in the circumferential direction.
  • the circumferential direction of the table 91 appears as the nose direction (heading) of the flight function adding device F, but the direction as the nose can be arbitrarily set.
  • the flight function adding device F may be defined as a quad plus configuration, and the opposite side of the extension direction of the arm 12 of the master unit 10 (the direction indicated by the arrow H in FIG. 6) may be set as the nose direction manually. -It may be automatically set in another direction.
  • the configuration acquisition program CA of this example test-drives each rotor unit R including the master unit 10 and a combination thereof at a motor rotational speed at which the posture of the table 91 changes, Whether or not the steering control of the table 91 is possible and its control method are specified from the change in the posture of 91.
  • the table 91 in this example is a hard article, and the change in the position or posture of any one of the rotor units R also appears as a change in the position or posture of another rotor unit R via the table 91. Therefore, each rotor unit R or a combination of these is automatically and sequentially tested, and the change in the attitude of the table 91 at that time (inclination of the IMU 231 of the master unit 10) is detected, so that the throttle balance of each rotor unit R is detected. Can be specified. This also makes it possible to specify the approximate arrangement direction of each slave unit 50 around the position of the main rotor 10 and the position of the center of gravity of the table 91.
  • each slave unit 50 is a unit B, C, or D clockwise from the unit A. Further, it is assumed that the center of gravity g of the table 91 is in the center of the table 91.
  • the configuration acquisition program CA of this example increases the throttle (motor rotational speed) of each unit one by one clockwise from the unit A until the posture of the table 91 changes, and from the detected value of the IMU 231 of the unit A
  • the inclination direction of unit A at that time is acquired.
  • the top of the unit A is inclined in the a direction.
  • the unit B is test-driven, the top of the unit A is tilted in the b direction
  • the unit C is test-driven, it is tilted in the c direction
  • the unit D is test-driven, it is tilted in the d direction.
  • the center of gravity g of the table 91 is at the center of the table 91, and each rotor unit R is arranged line-symmetrically and point-symmetrically so as to pass through the center of gravity g. Further, the rotation direction of each rotor unit R is also known in advance. Therefore, even with the above-described test drive alone, the aircraft is ready for flight. On the other hand, when the position of the center of gravity of the mounting target is biased or the arrangement of each rotor unit R is irregular, not only each rotor unit is tested and driven, but also a combination of these rotor units is tested. By driving, it is possible to specify whether or not the steering control of the mounting target is possible and the control method thereof.
  • the four rotor units R are attached to the table 91, and the throttle balance at the time of steering control of the table 91 is specified by the configuration acquisition program CA included in the master unit 10. .
  • the operations of the rotor units R are centrally managed by the cooperative drive program CD that the master unit 10 has.
  • the flight function addition device F constitutes a multicopter having the table 91 as a body frame.
  • the flight function addition apparatus F of this example can adjust a lift flexibly by changing suitably the number of the slave units 50 according to the weight and size of mounting
  • the slave unit 50 of this example has the IMU 231, and the master unit 10 can acquire the detection value of the IMU 231 of the slave unit 50. Thereby, the master unit 10 can grasp
  • FIG. 7 is a perspective view showing a state in which the flight function adding device F of this example is attached to a chair 93 that is a mounting target of the present invention.
  • the master unit 10 of the present example performs a test drive of each rotor unit R, thereby specifying the throttle balance during steering control. Therefore, for example, as in the chair 93 in FIG. 7, even when the rotor unit R is a special mounting target that is arranged at different heights, the posture is maintained and the throttle balance for performing the steering control is specified. be able to.
  • FIG. 8 is a perspective view showing an appearance of the rotor unit Rb according to the second embodiment.
  • FIG. 9 is a perspective view showing a state in which a flight function adding device Fb including three rotor units Rb is attached to a desk 92 that is a mounting target of this example.
  • the same components as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
  • the rotor unit Rb of this example includes a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 that extends from the outer surface of the main body portion 11 to the radially outer side of the main body portion 11, and the arm portion 12. It has the clamp part 13 provided in the front-end
  • the rotor unit Rb includes two rotors 27 including a motor 271 as a drive source and a propeller 272 attached to the motor 271. These two rotors 27 are counter-rotating rotors in which a pair of propellers 272 rotating in opposite directions are arranged in the axial direction.
  • each rotor unit Rb is a counter-rotating rotor capable of canceling the counter-torque alone, an odd number of rotor units Rb are used as in the flight function adding device Fb shown in FIG. There is no need to implement a special mechanism for handling anti-torque. As a result, the lift of the flight function adding device Fb can be adjusted in units of the rotor unit Rb, and more flexible adjustment of the lift according to the weight and size of the mounting target is possible.
  • the basic functions of the master unit 10b and the slave unit 50b constituting the flight function adding device Fb are the master unit 10 and the slave unit 50 of the flight function adding device F, except that the rotor 27 is a counter-rotating propeller. It is the same.
  • FIG. 10 is a perspective view showing an appearance of a rotor unit Rc (master unit 10c) according to the third embodiment.
  • Rc master unit 10c
  • the rotor unit Rc of this example includes a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 extending from the outer surface of the main body portion 11 to the radially outer side of the main body portion 11, and the arm portion 12. It has the clamp part 13 provided in the front-end
  • the rotor unit Rc includes a rotor 27 including a motor 271 that is a drive source and a propeller 272 attached to the motor 271.
  • rotor units Rc of this example are mounted in line symmetry and point symmetry along the circumferential direction of the table 91, and the rotation direction thereof is also the first embodiment. It is the same as the rotor unit R of the embodiment.
  • the main unit 11 of the master unit 10c has a movable camera that is a photographing unit capable of changing the photographing direction in the circumferential direction of the master unit 10c and a predetermined angular range in the vertical direction with the motor 41 as a drive source. 40 is provided.
  • FIG. 11 is a block diagram schematically illustrating the functional configuration of the master unit 10c. Since the function regarding the flight control of the master unit 10c is the same as that of the master unit 10 of the first embodiment, the description thereof is omitted. The difference between the master unit 10c and the master unit 10 is that the master unit 10c includes the movable camera 40 and that the configuration acquisition program CA has an image recognition program IR.
  • the image recognition program IR is a program for detecting the rotor unit Rc from an image photographed by the movable camera 40.
  • the master unit 10c Prior to the flight, the master unit 10c images the entire circumference of the master unit 10c with the movable camera 40, and detects each rotor unit Rc from the image. Thereby, the arrangement direction of each slave unit (rotor unit Rc other than the master unit 10c) around the position of the master unit 10c can be specified.
  • each rotor unit Rc can be detected more accurately and easily. It is also possible to specify the distance between the master unit 10c and each slave unit from the size. Further, the distance between the master unit 10c and each slave unit can also be specified by using a stereo camera as the movable camera 40. In addition, for example, a receiver compatible with a short-range wireless communication protocol capable of estimating a distance from a radio wave source from the attenuation of radio wave intensity due to propagation loss is mounted on the master unit 10c, and each slave unit supports the same protocol. By mounting the transmitter, it is possible to estimate the distance between the master unit 10c and each slave unit from the radio wave intensity detected by the receiver of the master unit 10c.
  • each rotor unit Rc By performing this test drive, it becomes possible to specify a more accurate throttle balance. Further, it is considered that the preparation for flight may be completed by specifying the positional relationship of each rotor unit Rc by limiting the shape of the mounting target, the position of its center of gravity, and the arrangement of each rotor unit Rc.
  • a motor is used as a propeller drive source, but this may be an engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

The purpose of the present invention is to provide: a flight function addition device in which a plurality of rotor units are mounted on an article to be transported and the movement of the rotor units is coordinated, whereby the article being transported is made capable of flight; and the rotor units for the flight function addition device. The problem is solved by: a flight function addition device comprising a plurality of rotor units, wherein the flight function addition device is characterized in that each of the rotor units has a rotor having a drive source and a propeller connected to the drive source, and a joining part for fixing the rotor unit to an object to which the rotor unit is mounted, and with one of the plurality of rotor units being deemed to be a master unit and other rotor units linked to the master unit being deemed to be slave units, the master unit has an inertia measurement device, a configuration acquisition means for specifying the direction in which the orientation of the object to which the rotor unit is mounted is to be changed by the thrust from the rotor units, and a cooperative driving means for controlling the motor rotation speed of each of the slave units; and the rotor units of the flight function addition device.

Description

飛行機能付加装置およびロータユニットFlight function addition device and rotor unit
 本発明は、無人航空機技術に関する。 The present invention relates to unmanned aircraft technology.
 近年、無人航空機の姿勢制御や自律飛行に用いられるセンサ類およびソフトウェアの改良、低価格化が進み、これにより無人航空機の操作性が飛躍的に向上した。特に小型のマルチコプターについては、ヘリコプターに比べてローター構造が簡単であり、設計およびメンテナンスが容易であることから、趣味目的だけでなく、広範な産業分野における種々のミッションへの応用が試行されている。 In recent years, improvements in sensor and software used for attitude control and autonomous flight of unmanned aerial vehicles and price reduction have advanced, and this has dramatically improved the operability of unmanned aerial vehicles. Especially for small multicopters, the rotor structure is simpler than helicopters, and the design and maintenance is easy. Yes.
特開2005-319970号公報JP 2005-319970 A
 例えば、上記マルチコプターを使って重量物やサイズの大きな物を運搬することを考える。一機のマルチコプターではこれを持ち上げることができない場合、より高出力のロータを備える大型のマルチコプターを使うか、または複数のマルチコプターを使う必要がある。ここで、後者の方法には、マルチコプターの数を適宜変更することで、運搬物の重量やサイズに合わせて揚力を柔軟に調節することができるという長所がある。一方、単にマルチコプターの数を増やしただけでは、これらを互いに連携させて飛行させることはできない。 For example, consider transporting heavy or large items using the multicopter. If it is not possible to lift it with a single multicopter, it is necessary to use a large multicopter with a higher power rotor or multiple multicopters. Here, the latter method has an advantage that the lift can be flexibly adjusted according to the weight and size of the transported object by appropriately changing the number of multicopters. On the other hand, simply increasing the number of multicopters will not allow them to fly together.
 そこで、本発明が解決しようとする課題は、複数のロータユニットを搬送物に装着し、これらロータユニットの動作を連携させることで搬送物を飛行可能とする飛行機能付加装置、およびそのロータユニットを提供することにある。 Accordingly, the problem to be solved by the present invention is to attach a plurality of rotor units to a transported object, and to connect a flight function adding device that enables the transported object to fly by linking the operations of these rotor units, and the rotor unit. It is to provide.
 上記課題を解決するため、本発明の飛行機能付加装置は、複数のロータユニットにより構成され、前記各ロータユニットは、駆動源および該駆動源に接続されたプロペラを有するロータと、該ロータユニットをその装着対象に固定する結合部と、を有しており、前記複数のロータユニットのうちの一つをマスタユニット、該マスタユニットにリンクされた他のロータユニットをスレーブユニットとしたときに、前記マスタユニットは、慣性計測装置と、前記各ロータユニットの推力が前記装着対象の姿勢を変化させる方向を特定する構成取得手段と、前記各スレーブユニットのモータ回転数を制御する協調駆動手段と、を有していることを特徴とする。 In order to solve the above-described problem, the flight function adding device of the present invention includes a plurality of rotor units, and each rotor unit includes a rotor having a driving source and a propeller connected to the driving source, and the rotor unit. A coupling portion for fixing to the mounting target, and when one of the plurality of rotor units is a master unit and another rotor unit linked to the master unit is a slave unit, The master unit includes an inertial measurement device, configuration acquisition means for specifying a direction in which the thrust of each rotor unit changes the posture of the mounting target, and cooperative driving means for controlling the motor rotation speed of each slave unit. It is characterized by having.
 本発明では、装着対象に複数のロータユニットが取り付けられ、マスタユニットの構成取得手段により、各ロータユニットの推力が装着対象の姿勢を変化させる方向が特定される。そして、マスタユニットの有する協調駆動手段により、これらロータユニットのモータ回転数が一元的に管理される。すなわち、本発明の飛行機能付加装置によれば、装着対象を機体フレームとするマルチコプターを構成することができる。さらに、本発明の飛行機能付加装置は、装着対象の重量やサイズに合わせてスレーブユニットの数を適宜変更することで、その揚力を柔軟に調節することができる。 In the present invention, a plurality of rotor units are attached to the mounting target, and the direction in which the thrust of each rotor unit changes the posture of the mounting target is specified by the configuration acquisition means of the master unit. And the motor rotation speed of these rotor units is managed centrally by the cooperative drive means which a master unit has. That is, according to the flight function adding device of the present invention, it is possible to configure a multicopter having the mounting target as a body frame. Furthermore, the flight function addition device of the present invention can flexibly adjust its lift by appropriately changing the number of slave units according to the weight and size of the mounting target.
 また、本発明では、装着対象の形状やサイズが変われば、装着対象の重心位置やロータユニットの配置構成も変化する。一方、飛行中の装着対象の姿勢を維持し、装着対象のエレベータ、エルロン、ラダー操作を行うためには、各ロータユニットの推力が装着対象の姿勢に作用する方向が特定されている必要がある。本発明では、マスタユニットの構成取得手段によりこれが自動的に特定されるため、装着対象ごとにフライトソフトウェアのパラメータを手動で調整する手間が省かれ、様々な装着対象に効率的に飛行機能を付加することが可能となる。 In the present invention, if the shape or size of the mounting target changes, the position of the center of gravity of the mounting target and the arrangement configuration of the rotor unit also change. On the other hand, in order to maintain the posture of the mounting target in flight and perform the elevator, aileron, and ladder operations of the mounting target, it is necessary to specify the direction in which the thrust of each rotor unit acts on the mounting target posture. . In the present invention, since this is automatically specified by the configuration acquisition means of the master unit, it is not necessary to manually adjust the parameters of the flight software for each mounting target, and the flight function is efficiently added to various mounting targets. It becomes possible to do.
 また、前記各スレーブユニットは慣性計測装置を有し、前記マスタユニットは、前記各スレーブユニットの慣性計測装置の検出値または該検出値の加工値を取得可能であることが好ましい。 Further, it is preferable that each slave unit has an inertial measurement device, and the master unit can acquire a detection value of the inertial measurement device of each slave unit or a processing value of the detection value.
 スレーブユニットにも慣性計測装置を搭載し、その検出値をマスタユニットが取得可能であることにより、マスタユニットが各スレーブユニットの位置や姿勢の変化をより正確に把握することが可能となる。これにより飛行機能付加装置による装着対象の飛行精度を高めることができる。 Since the inertial measurement device is mounted on the slave unit and the master unit can acquire the detected value, the master unit can more accurately grasp the change in the position and orientation of each slave unit. Thereby, the flight accuracy of the mounting target by the flight function adding device can be increased.
 また、前記装着対象が硬質の物品である場合には、前記構成取得手段が、前記マスタユニットを含む前記各ロータユニットおよび/またはこれらロータユニットの組み合わせを、前記装着対象の姿勢に変化が生じるモータ回転数で試験駆動することで、前記各ロータユニットの推力が前記装着対象の姿勢を変化させる方向を特定することができる。 In addition, when the mounting target is a hard article, the configuration acquisition unit may change the orientation of the mounting target for each rotor unit including the master unit and / or a combination of the rotor units. By performing test drive at the number of rotations, the direction in which the thrust of each rotor unit changes the posture of the mounting target can be specified.
 上でも述べたように、本発明では装着対象の形状や大きさが変われば、装着対象の重心位置やロータユニットの配置構成も変化する。ここで、装着対象が硬質の物品であるときには、いずれか一つのロータユニットの位置や姿勢の変化は、装着対象を介して他のロータユニットの位置や姿勢の変化としても表れる。そこで、装着対象の飛行に先立ち、各ロータユニットやこれらの組み合わせを順次試験駆動し、そのときの装着対象の姿勢の変化を検出することで、各ロータユニットの推力が装着対象の姿勢を変化させる方向を特定することができる。また、これにより、メインロータの位置を中心とする各スレーブユニットのおおまかな配置方向や、装着対象の重心位置を推測することもできる。 As described above, in the present invention, when the shape and size of the mounting target change, the position of the center of gravity of the mounting target and the arrangement configuration of the rotor unit also change. Here, when the mounting target is a hard article, a change in the position or posture of any one of the rotor units also appears as a change in the position or posture of another rotor unit via the mounting target. Therefore, prior to the flight of the mounting target, each rotor unit and a combination thereof are sequentially tested and detected, and the change in the posture of the mounting target at that time is detected, so that the thrust of each rotor unit changes the posture of the mounting target. The direction can be specified. This also makes it possible to estimate the approximate arrangement direction of each slave unit around the position of the main rotor and the position of the center of gravity of the mounting target.
 また、前記マスタユニットが、該マスタユニットの周囲の画像を撮影可能な撮影手段と、該撮影手段で撮影した画像から前記各スレーブユニットを検出する画像認識手段と、を有し、前記構成取得手段は、前記画像内の前記各スレーブユニットの位置から、前記マスタユニットの位置を中心とするこれらスレーブユニットの配置方向を特定する構成としてもよい。 In addition, the master unit includes a photographing unit capable of photographing an image around the master unit, and an image recognizing unit that detects each slave unit from an image photographed by the photographing unit, and the configuration obtaining unit May be configured to specify the arrangement direction of these slave units centered on the position of the master unit from the position of each slave unit in the image.
 飛行に先立ち、マスタユニットの周囲を撮影した画像から各ロータユニットを検出することにより、ロータユニットの配置構成を特定することができる。これにより、構成取得手段は、各ロータユニットの推力が装着対象の姿勢を変化させる方向を特定または予測することができ、併せて各ロータユニットについて上記試験駆動を行う場合には、ロータユニットの実際の配置構成に基づいてより綿密な試験を行ったり、試験の一部を省略したりすることが可能となる。 Prior to flight, by detecting each rotor unit from an image taken around the master unit, the arrangement configuration of the rotor unit can be specified. Thereby, the configuration acquisition means can identify or predict the direction in which the thrust of each rotor unit changes the posture of the mounting target. Based on the arrangement configuration, it becomes possible to conduct a more detailed test or to omit a part of the test.
 また、前記マスタユニットはさらに、方位センサ、高度センサ、およびGPSアンテナを有することが好ましい。 The master unit preferably further includes an orientation sensor, an altitude sensor, and a GPS antenna.
 マスタユニットがこれらセンサ類を備えることにより、飛行中の経緯度、高度、および機首の方位角を含むマスタユニットの位置情報を絶対的な指標に基づいて特定することが可能となる。これにより、装着対象を自律的に飛行させることが可能となる。 When the master unit includes these sensors, it is possible to specify the position information of the master unit including the longitude and latitude and the azimuth angle of the nose based on an absolute index. Thereby, it becomes possible to fly the mounting target autonomously.
 また、前記複数のロータユニットは、前記プロペラが平面視時計回りに回転するCWユニットと、前記プロペラが平面視反時計回りに回転するCCWユニットとにより構成されており、前記CWユニットおよびCCWユニットは、前記装着対象に対して該装着対象の周方向に沿って交互に配置される構成としてもよい。 The plurality of rotor units include a CW unit in which the propeller rotates clockwise in a plan view and a CCW unit in which the propeller rotates counterclockwise in a plan view. The CW unit and the CCW unit are The configuration may be such that the mounting target is alternately arranged along the circumferential direction of the mounting target.
 複数のロータユニットにより装着対象をラダー操作するときには、これらロータユニットのプロペラの回転方向が特定されている必要がある。また、装着対象のエルロン、エレベータ操作時にプロペラの反トルクを相殺しながらこれを安定して行うためには、CWユニットとCCWユニットとが周方向に交互に配置されていると都合がよい。飛行機能付加装置を構成するCWユニットおよびCCWユニットを予め装着対象の周方向に沿って交互に配置することにより、一般的なマルチコプターと同様の制御方法で装着対象を飛行させることが可能となる。 ¡When performing a ladder operation on a mounting target with a plurality of rotor units, the rotation direction of the propellers of these rotor units needs to be specified. Further, in order to stably perform this while canceling the counter torque of the propeller during the operation of the aileron and elevator to be mounted, it is convenient that the CW units and the CCW units are alternately arranged in the circumferential direction. By alternately arranging the CW units and CCW units constituting the flight function adding device in advance along the circumferential direction of the mounting target, it becomes possible to fly the mounting target in the same control method as a general multicopter. .
 または、前記各ロータユニットのロータは、互いに反対方向に回転する一対のプロペラが軸線方向に並べられた二重反転ロータであってもよい。 Alternatively, the rotor of each rotor unit may be a counter-rotating rotor in which a pair of propellers rotating in opposite directions are arranged in the axial direction.
 各ロータユニットのロータを、単独で反トルクを相殺可能な二重反転ロータとすることにより、例えばトライコプターのように奇数のロータユニットを用いる構成であっても、反トルクを処理するための特別な機構を別途実装する必要がない。これにより、飛行機能付加装置の揚力をロータユニット一基単位で調節することが可能となり、装着対象の重量やサイズに合わせたより柔軟な揚力の調節が可能となる。 By making the rotor of each rotor unit a counter-rotating rotor capable of canceling the counter-torque independently, even in a configuration using an odd number of rotor units such as a tricopter, a special for processing the counter-torque There is no need to implement a separate mechanism. As a result, the lift of the flight function adding device can be adjusted in units of one rotor unit, and the lift can be adjusted more flexibly according to the weight and size of the mounting target.
 また、上記課題を解決するため、本発明のロータユニットは、上記飛行機能付加装置のマスタユニットであり、前記マスタユニットは前記スレーブユニットとしても動作可能であることを特徴とする。 In order to solve the above problems, the rotor unit of the present invention is a master unit of the flight function adding device, and the master unit can also operate as the slave unit.
 マスタユニットがスレーブユニットとしても動作可能であることにより、単一機種のロータユニットで飛行機能付加装置を構成することが可能となる。これにより、ロータユニットの装着時にマスタ・スレーブの機種を意識する必要がなくなり、また、ロータユニットの装着後に、マスタユニットを自由に変更することが可能となる。 Since the master unit can also operate as a slave unit, a flight function addition device can be configured with a single type of rotor unit. Thereby, it is not necessary to be aware of the master / slave model when the rotor unit is mounted, and the master unit can be freely changed after the rotor unit is mounted.
 このように、本発明の飛行機能付加装置およびロータユニットによれば、複数のロータユニットの動作を連係させてその装着対象を飛行させることが可能となる。 As described above, according to the flight function adding device and the rotor unit of the present invention, it is possible to link the operations of a plurality of rotor units to fly the mounting target.
第1実施形態にかかるロータユニットRの外観を示す斜視図である。It is a perspective view which shows the external appearance of the rotor unit R concerning 1st Embodiment. 4基のロータユニットRからなる飛行機能付加装置Fが、第1実施形態の装着対象であるテーブル91に取り付けられた様子を示す斜視図である。It is a perspective view which shows a mode that the flight function addition apparatus F which consists of four rotor units R was attached to the table 91 which is the mounting object of 1st Embodiment. 飛行機能付加装置Fの各ロータユニットRの回転方向を示す平面模式図である。FIG. 6 is a schematic plan view showing the rotation direction of each rotor unit R of the flight function addition device F. マスタユニット10の機能構成を模式的に表すブロック図である。3 is a block diagram schematically showing a functional configuration of a master unit 10. FIG. スレーブユニット50の機能構成を模式的に表すブロック図である。3 is a block diagram schematically illustrating a functional configuration of a slave unit 50. FIG. 構成取得プログラムCAによるロータユニットRの試験駆動の様子を示す平面模式図である。It is a plane schematic diagram which shows the mode of the test drive of the rotor unit R by the structure acquisition program CA. 飛行機能付加装置Fがイス93に取り付けられた様子を示す斜視図である。FIG. 6 is a perspective view showing a state in which a flight function adding device F is attached to a chair 93. 第2実施形態にかかるロータユニットRbの外観を示す斜視図である。It is a perspective view which shows the external appearance of rotor unit Rb concerning 2nd Embodiment. 3基のロータユニットRbからなる飛行機能付加装置Fbが、第2実施形態の装着対象であるデスク92に取り付けられた様子を示す斜視図である。It is a perspective view which shows a mode that the flight function addition apparatus Fb which consists of three rotor units Rb was attached to the desk 92 which is the mounting object of 2nd Embodiment. 第3実施形態にかかるロータユニットRc(マスタユニット10c)の外観を示す斜視図である。It is a perspective view which shows the external appearance of rotor unit Rc (master unit 10c) concerning 3rd Embodiment. マスタユニット10cの機能構成を模式的に表すブロック図である。It is a block diagram showing typically the functional composition of master unit 10c.
 以下、本発明の飛行機能付加装置およびロータユニットの実施形態について図面を用いて説明する。 Hereinafter, embodiments of the flight function addition device and the rotor unit of the present invention will be described with reference to the drawings.
[第1実施形態]
(構成概要)
 図1は、第1実施形態にかかるロータユニットRの外観を示す斜視図である。図2は、4基のロータユニットRからなる飛行機能付加装置Fが、本例の装着対象であるテーブル91に取り付けられた様子を示す斜視図である。
[First Embodiment]
(Configuration overview)
FIG. 1 is a perspective view showing an appearance of a rotor unit R according to the first embodiment. FIG. 2 is a perspective view showing a state in which a flight function adding device F including four rotor units R is attached to a table 91 that is a mounting target of this example.
 図1に示すように、ロータユニットRは、略紡錘形状の本体部11、本体部11の外面から本体部11の径方向外側に延びる棒状のアーム部12、および、アーム部12の先端に設けられたクランプ部13を有している。本例の本体部11は、中空の容器体であるケース11aと、本体部11aの上方に配置されたスピナーキャップ11bとにより構成されている。クランプ部13は、ロータユニットRをテーブル91に固定する結合部である。本例のクランプ部13には、装着対象の円管部や平板部を好適に締め付け可能な構造のものが採用されているが、本発明の結合部はクランプ部13の形態には限定されず、ロータユニットをその装着対象に強固に固定できるものであれば、その形状や構造、装着対象に対する結合手段は問わない。 As shown in FIG. 1, the rotor unit R is provided at a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 that extends from the outer surface of the main body portion 11 to the outside in the radial direction of the main body portion 11, and the tip of the arm portion 12. The clamp part 13 is provided. The main body portion 11 of this example includes a case 11a that is a hollow container body and a spinner cap 11b disposed above the main body portion 11a. The clamp portion 13 is a coupling portion that fixes the rotor unit R to the table 91. Although the clamp part 13 of this example has a structure that can suitably tighten the circular pipe part or flat plate part to be mounted, the coupling part of the present invention is not limited to the form of the clamp part 13. As long as the rotor unit can be firmly fixed to the mounting target, the shape, structure, and coupling means for the mounting target are not limited.
 また、ロータユニットRは、駆動源であるモータ271、およびモータ271の出力軸に装着された固定ピッチプロペラ272(以下、単に「プロペラ272」という。)からなるロータ27を備えている。モータ271はケース体11aに収容されている。また、プロペラ272の翼根部にはスピナーキャップ11aが被せられている。 Further, the rotor unit R includes a rotor 27 including a motor 271 as a driving source and a fixed pitch propeller 272 (hereinafter simply referred to as “propeller 272”) attached to an output shaft of the motor 271. The motor 271 is accommodated in the case body 11a. Further, a spinner cap 11 a is put on the blade root portion of the propeller 272.
 図2に示すように、本例の飛行機能付加装置Fは、4基のロータユニットRにより構成されている。飛行機能付加装置FのロータユニットRは、マスタユニット10とスレーブユニット50とに大別される。マスタユニット10は、これら複数のロータユニットRのうちの一基である。マスタユニット10は、これらロータユニットRのモータ回転数(スロットル)を一元的に制御し、飛行機能付加装置Fを一体として動作させるユニットである。スレーブユニット50は、マスタユニット10以外のロータユニットRである。スレーブユニット50は、マスタユニット10に指示された速度でロータ27を回転させるユニットである。 As shown in FIG. 2, the flight function addition device F of this example includes four rotor units R. The rotor unit R of the flight function adding device F is roughly divided into a master unit 10 and a slave unit 50. The master unit 10 is one of the plurality of rotor units R. The master unit 10 is a unit that controls the motor rotation speed (throttle) of these rotor units R in a unified manner and operates the flight function adding device F as a unit. The slave unit 50 is a rotor unit R other than the master unit 10. The slave unit 50 is a unit that rotates the rotor 27 at a speed instructed by the master unit 10.
 本例のマスタユニット10は各スレーブユニット50と無線通信可能にリンクされている。なお、ここでいう「リンク」とは、通信相手を指定したロータユニットRのペアリングを意味しており、無線による仮想的なケーブルでマスタユニット10と各スレーブユニット50とを接続することをいう。マスタユニット10とスレーブユニット50との通信方法は無線には限られず、これらを通信ケーブルで有線接続してもよい。 The master unit 10 in this example is linked to each slave unit 50 so as to be capable of wireless communication. Here, “link” means pairing of the rotor unit R that designates a communication partner, and means that the master unit 10 and each slave unit 50 are connected by a wireless virtual cable. . The communication method between the master unit 10 and the slave unit 50 is not limited to wireless communication, and these may be wired with a communication cable.
 図3は、飛行機能付加装置Fの各ロータユニットRの回転方向を示す平面模式図である。飛行機能付加装置FのロータユニットRは、プロペラ272が平面視時計回りに回転するCWユニット(マスタユニット10および図3視左上のスレーブユニット50)と、プロペラ272が平面視反時計回りに回転するCCWユニット(図3視右上および左下のスレーブユニット50)と、により構成されている。これらCWユニットおよびCCWユニットは、テーブル91の周方向に沿って交互に配置されている。 FIG. 3 is a schematic plan view showing the rotation direction of each rotor unit R of the flight function adding device F. FIG. The rotor unit R of the flight function adding device F includes a CW unit (the master unit 10 and the slave unit 50 at the upper left in FIG. 3) in which the propeller 272 rotates in a plan view and a propeller 272 in a counterclockwise view in a plan view. CCW units (upper right and lower left slave units 50 in FIG. 3). These CW units and CCW units are alternately arranged along the circumferential direction of the table 91.
 テーブル91をラダー制御するときには、各ロータユニットRのプロペラ272の回転方向が特定されている必要がある。また、テーブル91のエルロン、エレベータ操作時に、プロペラ272の反トルクを相殺しながらこれを安定して行うためには、CWユニットとCCWユニットとが周方向に交互に配置されていると都合がよい。本例では、飛行機能付加装置Fを構成するCWユニットおよびCCWユニットが予めテーブル91の周方向に沿って交互に配置されていることにより、一般的なマルチコプターと同様の制御方法でテーブル91を飛行させることが可能とされている。 When performing ladder control of the table 91, the rotation direction of the propeller 272 of each rotor unit R needs to be specified. Further, in order to stably perform this while canceling the counter torque of the propeller 272 during the aileron and elevator operations of the table 91, it is convenient that the CW units and the CCW units are alternately arranged in the circumferential direction. . In this example, the CW unit and the CCW unit constituting the flight function adding device F are alternately arranged in advance along the circumferential direction of the table 91, so that the table 91 is controlled by the same control method as a general multicopter. It is possible to fly.
(マスタユニットの機能構成)
 図4は、マスタユニット10の機能構成を模式的に表すブロック図である。マスタユニット10は、主に、飛行機能付加装置Fの制御部であるフライトコントローラFC、オペレータ(操縦端末31)からの操縦信号を受信する受信器32、ロータ27、ロータ27の駆動回路であるESC26(Electric Speed Controller)、およびこれらに電力を供給するバッテリー29により構成されている。以下、マスタユニット10の基本的な飛行機能について説明する。
(Functional configuration of master unit)
FIG. 4 is a block diagram schematically illustrating the functional configuration of the master unit 10. The master unit 10 mainly includes a flight controller FC that is a control unit of the flight function adding device F, a receiver 32 that receives a control signal from an operator (control terminal 31), a rotor 27, and an ESC 26 that is a drive circuit of the rotor 27. (Electric Speed Controller) and a battery 29 for supplying power to them. Hereinafter, basic flight functions of the master unit 10 will be described.
 上でも述べたように、ロータ27は、駆動源であるモータ271と、モータ271に装着されたプロペラ272とにより構成されている。ESC26はモータ271に接続されており、フライトコントローラFCから指示された速度でモータ271の回転数を制御する。 As described above, the rotor 27 includes a motor 271 that is a drive source and a propeller 272 attached to the motor 271. The ESC 26 is connected to the motor 271 and controls the rotation speed of the motor 271 at a speed instructed from the flight controller FC.
 フライトコントローラFCはマイクロコントローラである制御装置20を備えている。制御装置20は、中央処理装置であるCPU21、ROMやRAM、フラッシュメモリなどの記憶装置であるメモリ22、および、ESC26にPWM信号を送出するPWM(Pulse Width Modulation)コントローラ25を有している。 The flight controller FC includes a control device 20 that is a microcontroller. The control device 20 includes a CPU 21 that is a central processing unit, a memory 22 that is a storage device such as a ROM and a RAM, and a flash memory, and a PWM (Pulse Width Modulation) controller 25 that sends a PWM signal to the ESC 26.
 フライトコントローラFCはさらに、飛行制御センサ群23およびGPSアンテナ24(以下、これらを総称して「センサ等」ともいう。)を備えており、これらは制御装置20に接続されている。GPSアンテナ24は、正確には航法衛星システム(NSS)の受信器である。GPSアンテナ24は、全地球航法衛星システム(GNSS)または地域航法衛星システム(RNSS)から現在の経緯度値および時刻情報を取得する。本例におけるマスタユニット10の飛行制御センサ群23には、3軸加速度センサおよび3軸角速度センサを有するIMU(Inertial Measurement Unit:慣性計測装置)231、気圧センサ(高度センサ)、3軸地磁気センサ(方位センサ)などが含まれている。制御装置20は、これらセンサ等により、マスタユニット10の傾きや回転のほか、飛行中の緯度経度、高度、および機首の方位角を含む位置情報を取得することができる。 The flight controller FC further includes a flight control sensor group 23 and a GPS antenna 24 (hereinafter collectively referred to as “sensors”), which are connected to the control device 20. The GPS antenna 24 is precisely a navigation satellite system (NSS) receiver. The GPS antenna 24 acquires current longitude and latitude values and time information from a global navigation satellite system (GNSS) or a regional navigation satellite system (RNSS). The flight control sensor group 23 of the master unit 10 in this example includes an IMU (Inertial Measurement Unit) 231 having a triaxial acceleration sensor and a triaxial angular velocity sensor, an atmospheric pressure sensor (altitude sensor), a triaxial geomagnetic sensor ( Orientation sensor). The control device 20 can acquire position information including the latitude and longitude of the master unit 10, the altitude, and the azimuth angle of the nose, in addition to the tilt and rotation of the master unit 10, using these sensors and the like.
 制御装置20のメモリ22には、飛行機能付加装置Fが装着されたテーブル91(以下、単に「テーブル91」ともいう。)の飛行時における姿勢や基本的な飛行動作を制御するプログラムである協調駆動プログラムCDが記憶されている。協調駆動プログラムCDは、オペレータ(操縦端末31)の操縦信号に従い、センサ等から取得した情報を基に各ロータユニットRのモータ回転数を調節し、テーブル91の姿勢や飛行位置の乱れを補正しながらテーブル91を飛行させる。 In the memory 22 of the control device 20, cooperation is a program that controls the attitude and basic flight operation of the table 91 (hereinafter also simply referred to as “table 91”) on which the flight function addition device F is mounted. A drive program CD is stored. The cooperative driving program CD adjusts the motor rotation speed of each rotor unit R based on the information acquired from the sensor or the like according to the control signal of the operator (control terminal 31), and corrects the attitude of the table 91 and the disturbance of the flight position. The table 91 is allowed to fly.
 ここで、協調駆動プログラムCDは、後述する構成取得プログラムCAにより特定した各ロータユニットRの構成に基づき、マスタユニット10のロータ27にPWM信号を入力するとともに、各スレーブユニット50のロータ27を駆動するPWM信号、または、PPM信号、PCM信号など、PWM信号に変換可能な制御信号も生成する。そしてこれらの信号を通信装置35から各スレーブユニット50に送信する。これにより、各ロータユニットRの駆動を連係させ、飛行機能付加装置Fの全体を単位とする飛行動作を実現する。 Here, the cooperative driving program CD inputs a PWM signal to the rotor 27 of the master unit 10 and drives the rotor 27 of each slave unit 50 based on the configuration of each rotor unit R specified by the configuration acquisition program CA described later. A control signal that can be converted into a PWM signal, such as a PWM signal, a PPM signal, or a PCM signal, is also generated. These signals are transmitted from the communication device 35 to each slave unit 50. Thereby, the drive of each rotor unit R is linked and the flight operation | movement which united the whole flight function addition apparatus F is implement | achieved.
 飛行機能付加装置Fの操縦は、オペレータが操縦端末31を用いて手動で行うほか、自律飛行プログラムAPにマスタユニット10の飛行経路や速度、高度のパラメータ、および規定動作のコマンドからなる飛行計画FPを登録し、飛行機能付加装置Fを自律的に飛行させることも可能である(以下、このような自律飛行のことを「オートパイロット」という。)。 The flight function adding device F is manually operated by the operator using the control terminal 31 and the flight plan FP including the flight path and speed of the master unit 10, altitude parameters, and commands of the prescribed operation in the autonomous flight program AP. And the flight function adding device F can be allowed to fly autonomously (hereinafter, such autonomous flight is referred to as “autopilot”).
 このように、本実施形態におけるマスタユニット10は高度な飛行制御機能を備えている。ただし、本発明におけるマスタユニットはマスタユニット10の形態には限定されず、IMU231と協調駆動プログラムCDに相当する機能を備えることを要件として、例えばセンサ等から一部のセンサが省略されたものや、オートパイロット機能を備えず手動操縦のみにより飛行可能なものを用いることも可能である。 Thus, the master unit 10 in this embodiment has an advanced flight control function. However, the master unit in the present invention is not limited to the form of the master unit 10, and a part of the sensor is omitted from the sensor or the like, for example, as a requirement that it has a function corresponding to the IMU 231 and the cooperative driving program CD. It is also possible to use one that does not have an autopilot function and can fly only by manual operation.
(スレーブユニットの機能構成)
 図5は、スレーブユニット50の機能構成を模式的に表すブロック図である。なお、以下の説明では、マスタユニット10の各構成と同様の構成については、マスタユニット10と同一の符号を付してその詳細な説明を省略する。なお、スレーブユニット10の外観は、マスタユニット10と同様である(図1参照)。
(Function configuration of slave unit)
FIG. 5 is a block diagram schematically illustrating the functional configuration of the slave unit 50. In the following description, the same components as those of the master unit 10 are denoted by the same reference numerals as those of the master unit 10, and detailed description thereof is omitted. The appearance of the slave unit 10 is the same as that of the master unit 10 (see FIG. 1).
 スレーブユニット50は、主に、マスタユニット10からの制御信号を受信する通信装置36、ロータ27の駆動回路であるESC26、およびこれらに電力を供給するバッテリー29により構成されている。 The slave unit 50 mainly includes a communication device 36 that receives a control signal from the master unit 10, an ESC 26 that is a drive circuit for the rotor 27, and a battery 29 that supplies power to these.
 スレーブユニット50のロータ27もマスタユニット10と同様に、駆動源であるモータ271と、モータ271に装着されたプロペラ272とにより構成されている。ESC26はモータ271に接続されており、通信装置36から入力された制御信号に従ってモータ271の回転数を制御する。 Similarly to the master unit 10, the rotor 27 of the slave unit 50 includes a motor 271 as a drive source and a propeller 272 attached to the motor 271. The ESC 26 is connected to the motor 271 and controls the rotation speed of the motor 271 in accordance with a control signal input from the communication device 36.
 また、本例のスレーブユニット50はIMU231を備えている。IMU231が検出したスレーブユニット50の変位量は、通信装置36を介してマスタユニット10にフィードバックされる。 Further, the slave unit 50 of this example includes an IMU 231. The displacement amount of the slave unit 50 detected by the IMU 231 is fed back to the master unit 10 via the communication device 36.
 なお、本例の飛行機能付加装置Fでは、マスタユニット10とスレーブユニット50とが別々の機種として構成されているが、図4および図5に示されるように、マスタユニット10は、スレーブユニット50が備える全ての機能を備えている。そのため、マスタユニット10はスレーブユニット50としても動作可能である。そこで、飛行機能付加装置Fの全てのロータユニットRをマスタユニット10の機種で構成し、設定によりその中からマスタユニット10とするロータユニットRを選択することにより、単一機種のロータユニットRで飛行機能付加装置Fを構成することができる。これにより、ロータユニットRの装着時にマスタ・スレーブの機種を意識する必要がなくなり、また、ロータユニットRの装着後に、マスタユニット10を自由に変更することが可能となる。 In the flight function addition device F of this example, the master unit 10 and the slave unit 50 are configured as different models. However, as shown in FIGS. 4 and 5, the master unit 10 includes the slave unit 50. It has all the functions that. Therefore, the master unit 10 can also operate as the slave unit 50. Therefore, all the rotor units R of the flight function adding device F are configured by the model of the master unit 10, and by selecting the rotor unit R to be the master unit 10 from among the settings, the rotor unit R of a single model can be selected. The flight function addition device F can be configured. This eliminates the need to be aware of the master / slave model when the rotor unit R is mounted, and the master unit 10 can be freely changed after the rotor unit R is mounted.
(構成取得手段)
 図6は、構成取得プログラムCAによるロータユニットRの試験駆動の様子を示す平面模式図である。
(Configuration acquisition means)
FIG. 6 is a schematic plan view showing a state of test drive of the rotor unit R by the configuration acquisition program CA.
 飛行中のテーブル91の姿勢維持や、テーブル91のエレベータ・エルロン・ラダー操作(以下、このような操作を総称して「操舵制御」という。)を実現するためには、各ロータユニットRの推力がテーブル91の姿勢を変化させる方向が特定されている必要がある。すなわち、テーブル91を操舵制御するときの各ロータユニットRのモータ回転数のバランス(以下、このようなバランスを「スロットルバランス」という。)が特定されている必要がある。一方、本発明では、装着対象の形状や大きさが変われば、装着対象の重心位置やロータユニットRの装着位置も変化する。 In order to maintain the attitude of the table 91 during flight and to perform the elevator, aileron, and ladder operation of the table 91 (hereinafter, such operations are collectively referred to as “steering control”), the thrust of each rotor unit R However, the direction in which the posture of the table 91 is changed needs to be specified. That is, it is necessary to specify the balance of the motor rotation speed of each rotor unit R when steering control of the table 91 (hereinafter, such balance is referred to as “throttle balance”). On the other hand, in the present invention, if the shape or size of the mounting target changes, the position of the center of gravity of the mounting target and the mounting position of the rotor unit R also change.
 そして、本例のマスタユニット10は、構成取得プログラムCAによりテーブル91の操舵制御時のスロットルバランスを自動的に特定する。上述の協調駆動プログラムCDは、構成取得プログラムCAにより特定されたスロットルバランスに基づいて、各ロータユニットRのモータ回転数を調節し、飛行機能付加装置Fの全体を単位としてテーブル91の姿勢維持や操舵制御を行う。なお、ここでいう「テーブル91の姿勢」とは、テーブル91の傾きや周方向の向きをいう。ここで、テーブル91の周方向の向きは飛行機能付加装置Fの機首方向(ヘディング)として表れるが、機首とする方向は任意に設定することができる。例えば、飛行機能付加装置Fをクアッドプラス構成と定めて、画一的にマスタユニット10のアーム12の延出方向の反対側(図6の矢示H方向)を機首方向としてもよく、手動・自動で他の方向に設定してもよい。 And the master unit 10 of this example automatically specifies the throttle balance at the time of steering control of the table 91 by the configuration acquisition program CA. The above-described cooperative drive program CD adjusts the motor rotation speed of each rotor unit R based on the throttle balance specified by the configuration acquisition program CA, and maintains the attitude of the table 91 in units of the entire flight function adding device F. Steering control is performed. Here, the “posture of the table 91” refers to the inclination of the table 91 and the direction in the circumferential direction. Here, the circumferential direction of the table 91 appears as the nose direction (heading) of the flight function adding device F, but the direction as the nose can be arbitrarily set. For example, the flight function adding device F may be defined as a quad plus configuration, and the opposite side of the extension direction of the arm 12 of the master unit 10 (the direction indicated by the arrow H in FIG. 6) may be set as the nose direction manually. -It may be automatically set in another direction.
 具体的には、本例の構成取得プログラムCAは、飛行に先立って、マスタユニット10を含む各ロータユニットRおよびその組み合わせを、テーブル91の姿勢に変化が生じるモータ回転数で試験駆動し、テーブル91の姿勢の変化から、テーブル91の操舵制御の可否およびその制御方法を特定する。 Specifically, prior to flight, the configuration acquisition program CA of this example test-drives each rotor unit R including the master unit 10 and a combination thereof at a motor rotational speed at which the posture of the table 91 changes, Whether or not the steering control of the table 91 is possible and its control method are specified from the change in the posture of 91.
 本例のテーブル91は硬質の物品であり、いずれか一つのロータユニットRの位置や姿勢の変化は、テーブル91を介して他のロータユニットRの位置や姿勢の変化としても表れる。そこで、各ロータユニットRやこれらの組み合わせを順次自動的に試験駆動し、そのときのテーブル91の姿勢の変化(マスタユニット10のIMU231の傾き)を検出することで、各ロータユニットRのスロットルバランスを特定することができる。また、これにより、メインロータ10の位置を中心とする各スレーブユニット50のおおまかな配置方向や、テーブル91の重心位置を特定することもできる。 The table 91 in this example is a hard article, and the change in the position or posture of any one of the rotor units R also appears as a change in the position or posture of another rotor unit R via the table 91. Therefore, each rotor unit R or a combination of these is automatically and sequentially tested, and the change in the attitude of the table 91 at that time (inclination of the IMU 231 of the master unit 10) is detected, so that the throttle balance of each rotor unit R is detected. Can be specified. This also makes it possible to specify the approximate arrangement direction of each slave unit 50 around the position of the main rotor 10 and the position of the center of gravity of the table 91.
 以下、図6を参照してより具体的に説明する。以下の説明では、マスタユニット10をユニットAとし、各スレーブユニット50を、ユニットAから時計回りにユニットB、C、Dとする。また、テーブル91の重心gはテーブル91の中央にあるものとする。 Hereinafter, a more specific description will be given with reference to FIG. In the following description, it is assumed that the master unit 10 is a unit A, and each slave unit 50 is a unit B, C, or D clockwise from the unit A. Further, it is assumed that the center of gravity g of the table 91 is in the center of the table 91.
 本例の構成取得プログラムCAは、ユニットAから時計回りに一基ずつ、テーブル91の姿勢に変化が生じるまで各ユニットのスロットル(モータ回転数)を上げていき、ユニットAのIMU231の検出値から、そのときのユニットAの傾斜方向を取得する。本例では、ユニットAを試験駆動するとユニットAの頂部はa方向に傾くこととなる。同様に、ユニットBを試験駆動するとユニットAの頂部はb方向に、ユニットCを試験駆動するとc方向に、ユニットDを試験駆動するとd方向に傾くこととなる。このように、飛行に先立って各ロータユニットRを試験駆動することで、各ロータユニットRの推力がテーブルの姿勢をどのように変化させるのかを実際に即して特定することができる。 The configuration acquisition program CA of this example increases the throttle (motor rotational speed) of each unit one by one clockwise from the unit A until the posture of the table 91 changes, and from the detected value of the IMU 231 of the unit A The inclination direction of unit A at that time is acquired. In this example, when the unit A is test-driven, the top of the unit A is inclined in the a direction. Similarly, when the unit B is test-driven, the top of the unit A is tilted in the b direction, when the unit C is test-driven, it is tilted in the c direction, and when the unit D is test-driven, it is tilted in the d direction. Thus, by driving each rotor unit R prior to flight, it is possible to actually identify how the thrust of each rotor unit R changes the posture of the table.
 本例ではテーブル91の重心gがテーブル91の中心にあり、各ロータユニットRが重心gを通るように線対称・点対称に配置されており、さらに、各ロータユニットRの回転方向も予め分かっているため、上述の試験駆動のみでも一応の飛行準備は整う。一方、装着対象の重心位置が偏っていたり、各ロータユニットRの配置が不規則であったりする場合には、各ロータユニットを単体で試験駆動するだけでなく、これらロータユニットの組み合わせについても試験駆動することにより、装着対象の操舵制御の可否およびその制御方法を特定することができる。 In this example, the center of gravity g of the table 91 is at the center of the table 91, and each rotor unit R is arranged line-symmetrically and point-symmetrically so as to pass through the center of gravity g. Further, the rotation direction of each rotor unit R is also known in advance. Therefore, even with the above-described test drive alone, the aircraft is ready for flight. On the other hand, when the position of the center of gravity of the mounting target is biased or the arrangement of each rotor unit R is irregular, not only each rotor unit is tested and driven, but also a combination of these rotor units is tested. By driving, it is possible to specify whether or not the steering control of the mounting target is possible and the control method thereof.
 このように、本例の飛行機能付加装置Fでは、テーブル91に4基のロータユニットRが取り付けられ、マスタユニット10が有する構成取得プログラムCAによりテーブル91の操舵制御時におけるスロットルバランスが特定される。そして、マスタユニット10の有する協調駆動プログラムCDにより、これらロータユニットRの動作が一元的に管理される。すなわち、飛行機能付加装置Fにより、テーブル91を機体フレームとするマルチコプターが構成される。さらに、本例の飛行機能付加装置Fは、装着対象の重量やサイズに合わせてスレーブユニット50の数を適宜変更することで、揚力を柔軟に調節することができる。 As described above, in the flight function adding device F of the present example, the four rotor units R are attached to the table 91, and the throttle balance at the time of steering control of the table 91 is specified by the configuration acquisition program CA included in the master unit 10. . The operations of the rotor units R are centrally managed by the cooperative drive program CD that the master unit 10 has. In other words, the flight function addition device F constitutes a multicopter having the table 91 as a body frame. Furthermore, the flight function addition apparatus F of this example can adjust a lift flexibly by changing suitably the number of the slave units 50 according to the weight and size of mounting | wearing object.
 また、上でも述べたように、本例のスレーブユニット50はIMU231を有しており、マスタユニット10はスレーブユニット50のIMU231の検出値を取得することができる。これにより、マスタユニット10がスレーブユニット50の実際の変位量を把握することができ、協調駆動プログラムCDによるテーブル91の飛行精度が高められている。 Further, as described above, the slave unit 50 of this example has the IMU 231, and the master unit 10 can acquire the detection value of the IMU 231 of the slave unit 50. Thereby, the master unit 10 can grasp | ascertain the actual displacement amount of the slave unit 50, and the flight precision of the table 91 by the cooperative drive program CD is improved.
(変形例)
 図7は、本発明の装着対象であるイス93に本例の飛行機能付加装置Fが取り付けられた様子を示す斜視図である。本例のマスタユニット10は、各ロータユニットRを試験駆動してこれにより操舵制御時のスロットルバランスを特定する。そのため、例えば図7のイス93のように、ロータユニットRが異なる高さに配置されるような特殊な装着対象の場合でも、その姿勢を維持し、操舵制御を行うためのスロットルバランスを特定することができる。
(Modification)
FIG. 7 is a perspective view showing a state in which the flight function adding device F of this example is attached to a chair 93 that is a mounting target of the present invention. The master unit 10 of the present example performs a test drive of each rotor unit R, thereby specifying the throttle balance during steering control. Therefore, for example, as in the chair 93 in FIG. 7, even when the rotor unit R is a special mounting target that is arranged at different heights, the posture is maintained and the throttle balance for performing the steering control is specified. be able to.
[第2実施形態]
(構成概要)
 以下、本発明の第2実施形態について説明する。図8は、第2実施形態にかかるロータユニットRbの外観を示す斜視図である。図9は、3基のロータユニットRbからなる飛行機能付加装置Fbが、本例の装着対象であるデスク92に取り付けられた様子を示す斜視図である。なお、以下の説明では、先の実施形態と同様の構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
[Second Embodiment]
(Configuration overview)
Hereinafter, a second embodiment of the present invention will be described. FIG. 8 is a perspective view showing an appearance of the rotor unit Rb according to the second embodiment. FIG. 9 is a perspective view showing a state in which a flight function adding device Fb including three rotor units Rb is attached to a desk 92 that is a mounting target of this example. In the following description, the same components as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 図8に示すように、本例のロータユニットRbは、略紡錘形状の本体部11、本体部11の外面から本体部11の径方向外側に延びる棒状のアーム部12、および、アーム部12の先端に設けられたクランプ部13を有している。 As shown in FIG. 8, the rotor unit Rb of this example includes a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 that extends from the outer surface of the main body portion 11 to the radially outer side of the main body portion 11, and the arm portion 12. It has the clamp part 13 provided in the front-end | tip.
(二重反転ロータ)
 ロータユニットRbは、駆動源であるモータ271、およびモータ271に装着されたプロペラ272からなるロータ27を2基備えている。これら2基のロータ27は、互いに反対方向に回転する一対のプロペラ272が軸線方向に並べられた二重反転ロータである。
(Counterrotating rotor)
The rotor unit Rb includes two rotors 27 including a motor 271 as a drive source and a propeller 272 attached to the motor 271. These two rotors 27 are counter-rotating rotors in which a pair of propellers 272 rotating in opposite directions are arranged in the axial direction.
 各ロータユニットRbのロータ27が、単独で反トルクを相殺可能な二重反転ロータであることにより、図9に示す飛行機能付加装置Fbのように奇数のロータユニットRbを用いる構成であっても、反トルクを処理するための特別な機構を実装する必要がない。これにより、飛行機能付加装置Fbの揚力をロータユニットRb一基単位で調節することが可能となり、装着対象の重量やサイズに合わせたより柔軟な揚力の調節が可能とされている。 Even if the rotor 27 of each rotor unit Rb is a counter-rotating rotor capable of canceling the counter-torque alone, an odd number of rotor units Rb are used as in the flight function adding device Fb shown in FIG. There is no need to implement a special mechanism for handling anti-torque. As a result, the lift of the flight function adding device Fb can be adjusted in units of the rotor unit Rb, and more flexible adjustment of the lift according to the weight and size of the mounting target is possible.
 なお、飛行機能付加装置Fbを構成するマスタユニット10bおよびスレーブユニット50bの基本的な機能は、ロータ27が二重反転プロペラであることを除き、飛行機能付加装置Fのマスタユニット10およびスレーブユニット50と同様である。 The basic functions of the master unit 10b and the slave unit 50b constituting the flight function adding device Fb are the master unit 10 and the slave unit 50 of the flight function adding device F, except that the rotor 27 is a counter-rotating propeller. It is the same.
[第3実施形態]
(構成概要)
 以下、本発明の第3実施形態について説明する。図10は、第3実施形態にかかるロータユニットRc(マスタユニット10c)の外観を示す斜視図である。なお、以下の説明では、先の実施形態と同様の構成については、先の実施形態と同一の符号を付してその詳細な説明を省略する。
[Third Embodiment]
(Configuration overview)
Hereinafter, a third embodiment of the present invention will be described. FIG. 10 is a perspective view showing an appearance of a rotor unit Rc (master unit 10c) according to the third embodiment. In the following description, the same components as those of the previous embodiment are denoted by the same reference numerals as those of the previous embodiment, and detailed description thereof is omitted.
 図10に示すように、本例のロータユニットRcは、略紡錘形状の本体部11、本体部11の外面から本体部11の径方向外側に延びる棒状のアーム部12、および、アーム部12の先端に設けられたクランプ部13を有している。また、ロータユニットRcは、駆動源であるモータ271、およびモータ271に装着されたプロペラ272からなるロータ27を備えている。 As shown in FIG. 10, the rotor unit Rc of this example includes a substantially spindle-shaped main body portion 11, a rod-shaped arm portion 12 extending from the outer surface of the main body portion 11 to the radially outer side of the main body portion 11, and the arm portion 12. It has the clamp part 13 provided in the front-end | tip. The rotor unit Rc includes a rotor 27 including a motor 271 that is a drive source and a propeller 272 attached to the motor 271.
 本例のロータユニットRcは、第1実施形態のロータユニットRと同様に、テーブル91の周方向に沿って線対称・点対称に4基装着されているものとし、その回転方向も第1実施形態のロータユニットRと同様であるものとする。 As with the rotor unit R of the first embodiment, four rotor units Rc of this example are mounted in line symmetry and point symmetry along the circumferential direction of the table 91, and the rotation direction thereof is also the first embodiment. It is the same as the rotor unit R of the embodiment.
 そして、マスタユニット10cの本体部11には、モータ41を駆動源として、マスタユニット10cの周方向における全周、および上下方向の所定角度範囲において、撮影方向を変更可能な撮影手段である可動カメラ40が設けられている。 The main unit 11 of the master unit 10c has a movable camera that is a photographing unit capable of changing the photographing direction in the circumferential direction of the master unit 10c and a predetermined angular range in the vertical direction with the motor 41 as a drive source. 40 is provided.
(構成取得手段)
 図11は、マスタユニット10cの機能構成を模式的に表すブロック図である。マスタユニット10cの飛行制御に関する機能は第1実施形態のマスタユニット10と同様であるため、その説明を省略する。マスタユニット10cとマスタユニット10の違いは、マスタユニット10cが上記可動カメラ40を備えること、および、構成取得プログラムCAが画像認識プログラムIRを有していることにある。画像認識プログラムIRは、可動カメラ40で撮影した画像からロータユニットRcを検出するプログラムである。
(Configuration acquisition means)
FIG. 11 is a block diagram schematically illustrating the functional configuration of the master unit 10c. Since the function regarding the flight control of the master unit 10c is the same as that of the master unit 10 of the first embodiment, the description thereof is omitted. The difference between the master unit 10c and the master unit 10 is that the master unit 10c includes the movable camera 40 and that the configuration acquisition program CA has an image recognition program IR. The image recognition program IR is a program for detecting the rotor unit Rc from an image photographed by the movable camera 40.
 マスタユニット10cは、飛行に先立ち、可動カメラ40でマスタユニット10cの全周を撮影し、その画像から各ロータユニットRcを検出する。これにより、マスタユニット10cの位置を中心とする各スレーブユニット(マスタユニット10c以外のロータユニットRc)の配置方向を特定することができる。 Prior to the flight, the master unit 10c images the entire circumference of the master unit 10c with the movable camera 40, and detects each rotor unit Rc from the image. Thereby, the arrangement direction of each slave unit (rotor unit Rc other than the master unit 10c) around the position of the master unit 10c can be specified.
 ここで、例えば各ロータユニットRcの本体部11外面に、画像認識プログラムIRで検出可能なマーカを設けることで、各ロータユニットRcをより正確かつ容易に検出することが可能となり、検出されたマーカのサイズから、マスタユニット10cと各スレーブユニットとの距離を特定することもできる。また、可動カメラ40としてステレオカメラを用いることによっても、マスタユニット10cと各スレーブユニットとの距離を特定することができる。その他、例えば、伝搬損失による電波強度の減衰量から電波発信源との距離を推定可能な近距離無線通信プロトコルに対応した受信器をマスタユニット10cに搭載し、各スレーブユニットには同プロトコルに対応した送信器を搭載することで、マスタユニット10cの受信器で検出した電波強度からマスタユニット10cと各スレーブユニットとの距離を推定することも可能である。 Here, for example, by providing a marker that can be detected by the image recognition program IR on the outer surface of the main body 11 of each rotor unit Rc, each rotor unit Rc can be detected more accurately and easily. It is also possible to specify the distance between the master unit 10c and each slave unit from the size. Further, the distance between the master unit 10c and each slave unit can also be specified by using a stereo camera as the movable camera 40. In addition, for example, a receiver compatible with a short-range wireless communication protocol capable of estimating a distance from a radio wave source from the attenuation of radio wave intensity due to propagation loss is mounted on the master unit 10c, and each slave unit supports the same protocol. By mounting the transmitter, it is possible to estimate the distance between the master unit 10c and each slave unit from the radio wave intensity detected by the receiver of the master unit 10c.
 装着対象の重心位置が不明である場合、各ロータユニットRcの位置関係を特定するだけでは、装着対象の姿勢制御や操舵制御を行うには不十分であるが、これに加えて各ロータユニットRcの試験駆動を行うことで、より正確なスロットルバランスを特定することが可能となる。また、装着対象の形状やその重心位置、各ロータユニットRcの配置に制限を設けることにより、各ロータユニットRcの位置関係を特定するだけ飛行準備が整う場合もあるものと考えられる。 When the position of the center of gravity of the mounting target is unknown, it is not sufficient to perform the posture control and steering control of the mounting target only by specifying the positional relationship of each rotor unit Rc, but in addition to this, each rotor unit Rc By performing this test drive, it becomes possible to specify a more accurate throttle balance. Further, it is considered that the preparation for flight may be completed by specifying the positional relationship of each rotor unit Rc by limiting the shape of the mounting target, the position of its center of gravity, and the arrangement of each rotor unit Rc.
 以上、本発明の実施形態について説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えることができる。例えば上記各実施形態のロータユニットでは、プロペラの駆動源としてモータが用いられていたが、これはエンジンであってもよい。

 
As mentioned above, although embodiment of this invention was described, the range of this invention is not limited to this, A various change can be added in the range which does not deviate from the main point of invention. For example, in the rotor unit of each of the above embodiments, a motor is used as a propeller drive source, but this may be an engine.

Claims (8)

  1.  複数のロータユニットにより構成される飛行機能付加装置であって、
     前記各ロータユニットは、駆動源および該駆動源に接続されたプロペラを有するロータと、該ロータユニットをその装着対象に固定する結合部と、を有しており、
     前記複数のロータユニットのうちの一つをマスタユニット、該マスタユニットにリンクされた他のロータユニットをスレーブユニットとしたときに、
     前記マスタユニットは、慣性計測装置と、前記各ロータユニットの推力が前記装着対象の姿勢を変化させる方向を特定する構成取得手段と、前記各スレーブユニットのモータ回転数を制御する協調駆動手段と、を有していることを特徴とする飛行機能付加装置。
    A flight function adding device composed of a plurality of rotor units,
    Each of the rotor units includes a rotor having a drive source and a propeller connected to the drive source, and a coupling portion that fixes the rotor unit to the mounting target.
    When one of the plurality of rotor units is a master unit and another rotor unit linked to the master unit is a slave unit,
    The master unit includes an inertial measurement device, a configuration acquisition unit that identifies a direction in which the thrust of each rotor unit changes the posture of the mounting target, a cooperative drive unit that controls the motor rotation speed of each slave unit, And a flight function adding device.
  2.  前記各スレーブユニットは慣性計測装置を有し、
     前記マスタユニットは、前記各スレーブユニットの慣性計測装置の検出値または該検出値の加工値を取得可能であることを特徴とする請求項1に記載の飛行機能付加装置。
    Each slave unit has an inertial measurement device,
    2. The flight function adding device according to claim 1, wherein the master unit can acquire a detection value of the inertial measurement device of each slave unit or a processing value of the detection value.
  3.  前記装着対象は硬質の物品であり、
     前記構成取得手段は、前記マスタユニットを含む前記各ロータユニットおよび/またはこれらロータユニットの組み合わせを、前記装着対象の姿勢に変化が生じるモータ回転数で試験駆動し、該装着対象の姿勢の変化から、前記各ロータユニットの推力が前記装着対象の姿勢を変化させる方向を特定することを特徴とする請求項1または請求項2に記載の飛行機能付加装置。
    The mounting object is a hard article,
    The configuration acquisition means test-drives each of the rotor units including the master unit and / or a combination of these rotor units at a motor rotational speed at which the posture of the mounting target changes, and from the change in the posture of the mounting target The flight function addition device according to claim 1 or 2, wherein a direction in which a thrust of each rotor unit changes a posture of the mounting target is specified.
  4.  前記マスタユニットは、該マスタユニットの周囲の画像を撮影可能な撮影手段と、該撮影手段で撮影した画像から前記各スレーブユニットを検出する画像認識手段と、を有し、
     前記構成取得手段は、前記画像内の前記各スレーブユニットの位置から、前記マスタユニットの位置を中心とするこれらスレーブユニットの配置方向を特定することを特徴とする請求項1に記載の飛行機能付加装置。
    The master unit has photographing means capable of photographing an image around the master unit, and image recognition means for detecting each slave unit from an image photographed by the photographing means,
    2. The flight function addition according to claim 1, wherein the configuration acquisition unit identifies an arrangement direction of the slave units centered on the position of the master unit from the position of each slave unit in the image. apparatus.
  5.  前記マスタユニットはさらに、方位センサ、高度センサ、およびGPSアンテナを有することを特徴とする請求項1に記載の飛行機能付加装置。 The flight function adding device according to claim 1, wherein the master unit further includes an orientation sensor, an altitude sensor, and a GPS antenna.
  6.  前記複数のロータユニットは、前記プロペラが平面視時計回りに回転するCWユニットと、前記プロペラが平面視反時計回りに回転するCCWユニットとにより構成されており、
     前記CWユニットおよびCCWユニットは、前記装着対象に対して該装着対象の周方向に沿って交互に配置されることを特徴とする請求項1に記載の飛行機能付加装置。
    The plurality of rotor units include a CW unit in which the propeller rotates in a clockwise direction in a plan view and a CCW unit in which the propeller rotates in a counterclockwise direction in a plan view.
    The flight function adding device according to claim 1, wherein the CW unit and the CCW unit are alternately arranged along a circumferential direction of the mounting target with respect to the mounting target.
  7.  前記各ロータユニットのロータは、互いに反対方向に回転する一対のプロペラが軸線方向に並べられた二重反転ロータであることを特徴とする請求項1に記載の飛行機能付加装置。 The flight function adding device according to claim 1, wherein the rotor of each rotor unit is a counter rotating rotor in which a pair of propellers rotating in opposite directions are arranged in an axial direction.
  8.  請求項7に記載のマスタユニットであり、
     前記マスタユニットは前記スレーブユニットとしても動作可能であることを特徴とするロータユニット。
    The master unit according to claim 7,
    The rotor unit characterized in that the master unit can also operate as the slave unit.
PCT/JP2018/017166 2017-05-02 2018-04-27 Flight function addition device and rotor unit WO2018203520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-091912 2017-05-02
JP2017091912A JP6579523B2 (en) 2017-05-02 2017-05-02 Flight function addition device and rotor unit

Publications (1)

Publication Number Publication Date
WO2018203520A1 true WO2018203520A1 (en) 2018-11-08

Family

ID=64016187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017166 WO2018203520A1 (en) 2017-05-02 2018-04-27 Flight function addition device and rotor unit

Country Status (2)

Country Link
JP (1) JP6579523B2 (en)
WO (1) WO2018203520A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200409393A1 (en) * 2018-03-23 2020-12-31 Nec Corporation Mobile object, remote-control device, remote-control system, remote-control method, and recording medium having remote-control program recorded thereon
JP2020157922A (en) * 2019-03-26 2020-10-01 三菱日立パワーシステムズ株式会社 Support position determination device, support position determination method, and program
WO2023203675A1 (en) * 2022-04-20 2023-10-26 株式会社クボタ Grouped flying object system and flying objects

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039397A (en) * 1999-08-02 2001-02-13 Komatsu Ltd Flying body having horizontal rotary wing
JP2014039417A (en) * 2012-08-17 2014-02-27 Ricoh Co Ltd Motor control device and motor control method, and image forming apparatus
JP2016043927A (en) * 2014-08-26 2016-04-04 パロット Method for dynamically controlling unmanned aircraft of rotor blade in throw start
WO2016059877A1 (en) * 2014-10-17 2016-04-21 ソニー株式会社 Controller, control method, and flight vehicle device
JP2016138854A (en) * 2015-01-29 2016-08-04 株式会社ゼンリンデータコム Navigation system, navigation device, flying object, navigation cooperation control method, cooperation control program for navigation device, and cooperation control program for flying object
WO2016134193A1 (en) * 2015-02-19 2016-08-25 Amazon Technologies, Inc. Collective unmanned aerial vehicle configurations
JP2016173739A (en) * 2015-03-17 2016-09-29 セコム株式会社 Flying robot control system and flying robot
JP2016208255A (en) * 2015-04-22 2016-12-08 みこらった株式会社 Movable projection device
WO2016193884A1 (en) * 2015-05-29 2016-12-08 Verity Studios Ag An aerial vehicle
WO2017038809A1 (en) * 2015-09-04 2017-03-09 株式会社プロドローン Flight position control device
US9605926B1 (en) * 2016-01-07 2017-03-28 DuckDrone, LLC Drone-target hunting/shooting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189025B2 (en) * 1994-02-24 2001-07-16 ヤマハ発動機株式会社 Aircraft attitude control device
JP3185081B2 (en) * 1994-03-10 2001-07-09 ヤマハ発動機株式会社 Unmanned helicopter attitude control system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039397A (en) * 1999-08-02 2001-02-13 Komatsu Ltd Flying body having horizontal rotary wing
JP2014039417A (en) * 2012-08-17 2014-02-27 Ricoh Co Ltd Motor control device and motor control method, and image forming apparatus
JP2016043927A (en) * 2014-08-26 2016-04-04 パロット Method for dynamically controlling unmanned aircraft of rotor blade in throw start
WO2016059877A1 (en) * 2014-10-17 2016-04-21 ソニー株式会社 Controller, control method, and flight vehicle device
JP2016138854A (en) * 2015-01-29 2016-08-04 株式会社ゼンリンデータコム Navigation system, navigation device, flying object, navigation cooperation control method, cooperation control program for navigation device, and cooperation control program for flying object
WO2016134193A1 (en) * 2015-02-19 2016-08-25 Amazon Technologies, Inc. Collective unmanned aerial vehicle configurations
JP2016173739A (en) * 2015-03-17 2016-09-29 セコム株式会社 Flying robot control system and flying robot
JP2016208255A (en) * 2015-04-22 2016-12-08 みこらった株式会社 Movable projection device
WO2016193884A1 (en) * 2015-05-29 2016-12-08 Verity Studios Ag An aerial vehicle
WO2017038809A1 (en) * 2015-09-04 2017-03-09 株式会社プロドローン Flight position control device
US9605926B1 (en) * 2016-01-07 2017-03-28 DuckDrone, LLC Drone-target hunting/shooting system

Also Published As

Publication number Publication date
JP2018188011A (en) 2018-11-29
JP6579523B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6239619B2 (en) Flying camera with a string assembly for positioning and interaction
EP3698464B1 (en) Multi-rotor tonal noise control for uav
US20220137643A1 (en) Aircraft control method and aircraft
JP6671375B2 (en) How to fly a drone
US8953933B2 (en) Aerial photogrammetry and aerial photogrammetric system
JP6390013B2 (en) Control method for small unmanned aerial vehicles
US11447235B2 (en) Unmanned aerial vehicle
WO2018203520A1 (en) Flight function addition device and rotor unit
JP2017065467A (en) Drone and control method thereof
JP5713231B2 (en) Flying object
WO2018214155A1 (en) Method, device and system for device posture adjustment, and computer-readable storage medium
KR20120081500A (en) The aerial device having rotors and the control method
EP3269639B1 (en) Aircraft and roll method thereof
WO2020062356A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
US10882600B2 (en) Foldable unmanned aerial vehicle
WO2020017486A1 (en) Unmanned aerial vehicle
US20200249019A1 (en) Attachable-detachable unit and sensor calibrating method using the same
JP2019077207A (en) Rotary wing aircraft
JP2019043394A (en) Rotary wing aircraft
JP2009096369A (en) Control support device for unmanned radio-controlled helicopter
JP6547109B2 (en) Flight control device and unmanned aerial vehicle equipped with the same
JP2006282034A (en) Horizontal speed heading indicator
JP2017193250A (en) Unmanned flight vehicle
WO2018016514A1 (en) Attitude stabilization device and unmanned airplane equipped with same
WO2019044865A1 (en) Unmanned mobile body and unmanned mobile body system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795269

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18795269

Country of ref document: EP

Kind code of ref document: A1