WO2018203412A1 - User device, and communication method - Google Patents

User device, and communication method Download PDF

Info

Publication number
WO2018203412A1
WO2018203412A1 PCT/JP2017/017311 JP2017017311W WO2018203412A1 WO 2018203412 A1 WO2018203412 A1 WO 2018203412A1 JP 2017017311 W JP2017017311 W JP 2017017311W WO 2018203412 A1 WO2018203412 A1 WO 2018203412A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user apparatus
buffer
signal
carrier
Prior art date
Application number
PCT/JP2017/017311
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
チュン ジョウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/017311 priority Critical patent/WO2018203412A1/en
Publication of WO2018203412A1 publication Critical patent/WO2018203412A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a user apparatus in a wireless communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G New Radio
  • D2D Device to Device
  • D2D reduces the traffic between the user apparatus and the base station, or enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
  • D2D includes D2D discovery (also referred to as D2D discovery, D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between user devices And so on).
  • D2D discovery also referred to as D2D discovery, D2D discovery
  • D2D communication D2D direct communication, D2D communication, direct communication between terminals
  • D2D is referred to as “sidelink”, but in this specification, D2D, which is a more general term, is used. However, in the description of the embodiments described later, sidelink is also used as necessary.
  • V2X Vehicle to Everything
  • ITS Intelligent Transport Systems
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to, which means a communication mode between a car and a driver's mobile terminal
  • Nomadic device Nomadic device
  • V2P Vehicle to Pedestrian
  • Mode 3 and Mode 4 are defined for resource allocation for V2X communication to user apparatuses.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) sent from the base station to the user apparatus.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the user apparatus autonomously selects transmission resources from the resource pool.
  • Mode 3 it is possible to specify the carrier used by the user apparatus for transmitting the D2D signal from the base station to the user apparatus by DCI.
  • the carrier indicator for specifying a carrier is 3 bits (Non-Patent Document 2)
  • the base station can specify eight types of carriers to the user apparatus.
  • the user apparatus transmits a D2D signal using a carrier specified by scheduling from the base station.
  • the D2D signal is assumed to be SCI (Sidelink Control Information), data, or a combination of SCI and data (eg, when SCI and data are transmitted simultaneously).
  • SCI Systemlink Control Information
  • data eg, when SCI and data are transmitted simultaneously.
  • “simultaneous” means the same subframe (may be referred to as TTI).
  • the user apparatus transmits two D2D signals related to the data simultaneously by carrier aggregation of carrier A and carrier B. (Case 1).
  • the carrier A and the carrier B may be allocated at different times (different subframes) for two pieces of data that the user apparatus has in the buffer (case 2).
  • both cases 1 and 2 are referred to as multi-carrier transmission.
  • a multi-carrier may be called a plurality of carriers.
  • a certain carrier can be used only for a specific purpose.
  • a certain carrier can be used only for data related to safety applications.
  • the base station when the base station performs resource allocation for transmission of the D2D signal to the user apparatus, the base station cannot identify a carrier that can be used for transmission of the D2D signal. There was a problem that could not be done.
  • the present invention has been made in view of the above points, and provides a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication. For the purpose.
  • a user apparatus used in a wireless communication system supporting D2D communication A list in which the data type and the frequency identification information are associated is transmitted to the base station, and a buffer status report including information corresponding to the data type stored in the buffer and the size of the buffer is transmitted to the base station.
  • a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • V2X It is a figure for demonstrating D2D. It is a figure for demonstrating D2D. It is a figure for demonstrating MAC PDU used for D2D communication. It is a figure for demonstrating the format of SL-SCH subheader. It is a figure for demonstrating the example of the channel structure used by D2D. It is a figure which shows the structural example of PSDCH. It is a figure which shows the structural example of PSDCH. It is a figure which shows the structural example of PSCCH and PSSCH. It is a figure which shows the structural example of PSCCH and PSSCH. It is a figure which shows a resource pool configuration. It is a figure which shows a resource pool configuration.
  • FIG. It is a figure which shows the structural example of the radio
  • FIG. It is a figure which shows the example of transmission frequency information. It is a figure which shows the example of BSR. It is a figure which shows the example of mapping of a message type and LCG ID. It is a figure which shows the example of the transmission method of D2D signal. It is a figure which shows the example of the transmission method of D2D signal. It is a figure which shows the example of the mapping of destination ID and frequency in Example 2-3. It is a figure which shows the sequence in Example 3.
  • FIG. It is a figure which shows the example of TrafficPatternInfo.
  • LTE corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP.
  • 5G, NR fifth generation
  • the present embodiment is mainly intended for V2X
  • the technology according to the present embodiment is not limited to V2X and can be widely applied to D2D in general.
  • “D2D” includes V2X as its meaning.
  • the term “D2D” is not limited to LTE but refers to communication between terminals in general.
  • this embodiment to be described later mainly targets “D2D communication”, the present invention can be applied not only to “D2D communication” but also to “D2D discovery”.
  • D2D signal may be SCI, data, or a set of SCI and data.
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery as shown in FIG. 2A, a resource pool for a Discovery message is secured for each Discovery period, and the user apparatus transmits a Discovery message (discovery signal) in the resource pool. More specifically, there are Type 1 and Type 2b.
  • Type1 the user apparatus UE autonomously selects a transmission resource from the resource pool.
  • Type 2b a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
  • D2D communication As shown in FIG. 2B, a resource pool for SCI (Sidelink Control Information) / data transmission is periodically secured.
  • the user apparatus on the transmission side notifies the reception side of a data transmission resource (PSSCH resource pool) or the like by SCI using a resource selected from the Control resource pool (PSCCH resource pool), and transmits data using the data transmission resource.
  • PSSCH resource pool a data transmission resource
  • PSCCH resource pool a resource selected from the Control resource pool
  • “D2D communication” includes Mode1 and Mode2. In Mode 1, resources are dynamically allocated by (E) PDCCH sent from the base station to the user apparatus. In Mode 2, the user apparatus autonomously selects transmission resources from the resource pool. The resource pool is notified by SIB or a predefined one is used.
  • Rel-14 has Mode3 and Mode4 in addition to Mode1 and Mode2.
  • SCI and data can be transmitted simultaneously (in one subframe) in resource blocks adjacent in the frequency direction.
  • PSDCH Physical Sidelink Discovery Channel
  • PSCCH Physical Sidelink Control data
  • PSSCH Physical Sidelink Shared Channel
  • a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D includes at least a MAC header, a MAC Control element, and a MAC SDU (Service Data Unit), and Padding.
  • the MAC PDU may contain other information.
  • the MAC header is composed of one SL-SCH (Shared Shared Channel) subheader and one or more MAC PDU subheaders.
  • the SL-SCH subheader includes a MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like.
  • V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus.
  • Information relating to the transmission source is set in the transmission source information.
  • An identifier related to the ProSe UE ID may be set in the transmission source information.
  • Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
  • FIG. 5 An example of the D2D channel structure is shown in FIG. As shown in FIG. 5, a PSCCH resource pool and a PSSCH resource pool used for “D2D communication” are allocated. Also, a PSDCH resource pool used for “D2D discovery” is assigned with a period longer than the period of the channel of “D2D communication”.
  • PSSS Primary Sidelink Synchronization signal
  • SSSS Secondary Sidelink Synchronization signal
  • PSBCH Physical Sidelink Broadcast Channel
  • PSSS / SSSS and PSBCH are transmitted in one subframe.
  • FIG. 6A shows an example of a PSDCH resource pool used for “D2D discovery”. Since the resource pool is set by the bitmap of the subframe, it becomes an image resource pool as shown in FIG. 6A. The same applies to the resource pools of other channels.
  • the PSDCH is repeatedly transmitted while being frequency hopped. The number of repetitions can be set from 0 to 4, for example. Also, as shown in FIG. 6B, PSDCH has a PUSCH-based structure in which DM-RS (demodulation reference signal) is inserted.
  • DM-RS demodulation reference signal
  • FIG. 7A shows an example of the PSCCH and PSSCH resource pool used for “D2D communication”.
  • the PSCCH is repeatedly transmitted (repetition) twice including the first time while performing frequency hopping.
  • the PSSCH is repeatedly transmitted (repetition) four times including the first time while performing frequency hopping.
  • PSCCH and PSSCH have a PUSCH-based structure and have a structure in which DMRS is inserted.
  • FIGS. 8A and 8B show examples of resource pool configurations in PSCCH, PSDCH, and PSSCH.
  • the resource pool is represented as a subframe bitmap.
  • the bitmap is num. Repeated for the number of repetitions. Also, an offset indicating the start position in each cycle is specified.
  • the bit map is also referred to as T-RPT (Time-Resource Pattern).
  • the start PRB, the end PRB, and the number of PRBs are designated as illustrated.
  • FIG. 9 is a diagram illustrating a configuration example of a radio communication system according to the present embodiment.
  • the radio communication system according to the present embodiment includes a base station 10, a user apparatus UE1, and a user apparatus UE2.
  • the user apparatus UE1 is intended for the transmission side
  • the user apparatus UE2 is intended for the reception side.
  • user apparatus UE when the user apparatus UE1 and the user apparatus UE2 are not particularly distinguished, they are simply described as “user apparatus UE”.
  • the user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 9 each have a cellular communication function as the user apparatus UE in LTE (in addition to the existing LTE, LTE in a sense including 5G, NR, and so on), and D2D function including signal transmission / reception on the selected channel. Moreover, user apparatus UE1 and user apparatus UE2 have a function which performs the operation
  • the user apparatus UE may be any apparatus having a D2D function.
  • the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function), or the like. is there.
  • the base station 10 the function of cellular communication as the base station 10 in LTE and the function for enabling the communication of the user apparatus UE in the present embodiment (carrier based on information from the user apparatus UE) Etc.).
  • the base station 10 may be an RSU (eNB type RSU having an eNB function).
  • Example 1 With reference to FIG. 10, the processing content of the user apparatus UE and the base station 10 in Example 1 is demonstrated.
  • the user apparatus UE and the base station 10 are RRC connected (RRC connected).
  • the user apparatus UE transmits information on the frequency used by the user apparatus UE for transmitting the D2D signal. More specifically, the user apparatus UE associates a data type used by the user apparatus UE (this is referred to as a message type here) with a frequency that can be used when transmitting data (message) of the message type.
  • the list is transmitted to the base station 10 (step S101).
  • FIG. 11A shows an example of a list of transmission frequency information transmitted from the user apparatus UE to the base station 10.
  • frequency identification information is associated with the message type ID.
  • the user apparatus UE transmits the list including, for example, a Sidelink UE Information message described in Non-Patent Document 3.
  • the SidelinkUEInformation message is a message that the user apparatus UE transmits to the base station 10 when the user apparatus UE desires to perform D2D communication (eg, V2X transmission).
  • the conventional Sidelink UE Information message does not include a list in which the message type ID and the frequency are associated with each other.
  • the SidelinkUEInformation message transmitted in step S101 may include v2x-DestinationInfoList, v2x-TypeTxSyncList, etc. described in Non-Patent Document 3, in addition to the list.
  • the base station 10 transmits setting information to the user apparatus UE.
  • the setting information is, for example, SL-V2X-ConfigDedicated information element (Non-patent Document 3).
  • the said setting information is the setting information of the user apparatus UE for V2X sidelink communication (dedicated configuration information).
  • the setting information includes, for example, “scheduled”. This shows a configuration in the case where the base station 10 performs scheduling of transmission resources based on a sidelink specific BSR (Buffer Status Report) (hereinafter, BSR) received from the user apparatus UE.
  • BSR Buffer Status Report
  • “Scheduled” includes sl-V-RNTI, mac-MainConfig, mcs, logicalChGroupInfoList, and the like.
  • the message type ID that can be used by the user apparatus UE may be included in the setting information in step S102.
  • the user apparatus UE transmits a BSR to the base station 10.
  • the BSR is a MAC control element for transmitting the size of data (data stored in the buffer of the user apparatus UE) that the user apparatus UE intends to transmit in D2D to the base station 10.
  • Example 1 there are two types of information as information included in the BSR. Hereinafter, these will be described as Example 1-1 and Example 1-2.
  • Example 1-1 the user apparatus 10 includes a message type ID in the BSR.
  • the base station 10 selects a carrier corresponding to the message type ID included in the BSR as a carrier for D2D signal transmission related to the data in the corresponding buffer.
  • the base station 10 transmits DCI including the index of the carrier to the user apparatus UE.
  • the user apparatus UE transmits a D2D signal using the carrier (step S105).
  • the D2D signal in step S105 is SCI, data, or a set of SCI and data.
  • the resource of carrier B corresponding to F1 is allocated.
  • the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE.
  • the user apparatus UE transmits a D2D signal using the carrier A and the carrier B (step S105).
  • FIG. 11B shows an example of BSR (excerpt from Non-Patent Document 4).
  • an LCG ID that is an ID of a logical channel group and a buffer (buffer size) are associated with each other.
  • a logical channel group is associated with one or more logical channels.
  • Example 1-2 the BSR having the structure shown in FIG. 11B can be used as the BSR.
  • the LCG ID is mapped to the message type.
  • the conventional LCG ID is 2 bits, it is extended (for example, 3 bits) so that the message type can be associated with the LCG ID. If the number of message types is small, the conventional LCG ID may be used without extending the LCG ID.
  • FIG. 11C is an example of mapping between the message type ID and the LCG ID.
  • mapping information as illustrated in FIG. 11C is defined in the specification, and is set in advance in the user apparatus UE and the base station 10. Alternatively, the mapping information may be transmitted from the base station 10 to the user apparatus UE as information included in the setting information in step S102.
  • the resource of carrier B corresponding to F1 is allocated to the data of.
  • the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE.
  • the user apparatus UE performs data transmission using the carrier A and the carrier B (step S105).
  • Example 1-1 The above is the description of Example 1-1 and Example 1-2.
  • Example 1 (the same applies to Example 2), an example of a D2D signal transmission operation performed by the user apparatus UE in step S105 of FIG. 10 will be described with reference to FIGS. 12A and 12B.
  • 12A and 12B are examples in which carrier 1 and carrier 2 are used.
  • both FIG. 12A and FIG. 12B are examples in the case of transmitting using resource blocks adjacent in the frequency direction when the user apparatus UE transmits SCI and data.
  • PSSCH (data) scheduling of carrier 1 is performed by SCI in carrier 1
  • PSSCH scheduling of carrier 2 is performed by SCI in carrier 2.
  • scheduling of PSSCH of carrier 1 is performed and scheduling of PSSCH of carrier 2 is performed by SCI in carrier 1.
  • the technique according to the first embodiment enables the user apparatus UE to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • the base station 10 since the message type is designated by BSR, the base station 10 can quickly determine the frequency (carrier). Further, in the embodiment 1-2, since the LCG ID is used, the same BSR as the existing BSR can be used, and the mounting becomes relatively simple.
  • Example 2 Next, Example 2 will be described. Since the entire sequence in the second embodiment is the same as that in the first embodiment, processing contents will be described in the second embodiment with reference to FIG. Similarly to the first embodiment, the user apparatus UE and the base station 10 are RRC connected (RRC connected) in the stage before step S101 in FIG.
  • the user apparatus UE transmits transmission frequency information that is information on a frequency used by the user apparatus UE for transmitting a D2D signal.
  • the transmission frequency information is identification information of a frequency that the user apparatus UE desires to use for transmission.
  • the user apparatus UE transmits a conventional Sidelink UE Information message (Non-Patent Document 3).
  • the SidelinkUEInformation message includes v2x-CommTxFreqList (corresponding to the transmission frequency information), v2x-DestinationInfoList, v2x-TypeTxSyncList, and the like.
  • the value 1 in the v2x-CommTxFreqList indicates the frequency of the first entry in the v2x-InterFreqInfoList broadcasted in the SIB21, and the value 2 indicates the frequency of the second entry in the v2x-InterFreqInfoList broadcast in the SIB21. The same applies thereafter.
  • step S102 of FIG. 10 the base station 10 transmits setting information to the user apparatus UE. Similar to the first embodiment, the setting information is, for example, SL-V2X-ConfigDedicated information element (Non-Patent Document 3).
  • step S103 of FIG. 10 the user apparatus UE transmits a BSR (Buffer Status Report) to the base station 10.
  • BSR Buffer Status Report
  • Example 2 there are three types of information as information included in the BSR. Hereinafter, these will be described as Example 2-1, Example 2-2, and Example 2-3.
  • the user apparatus UE includes identification information (index) of usable frequencies in the BSR.
  • the frequency identification information selected from the transmission frequency information transmitted in step S101 is used as the frequency identification information.
  • frequency identification information is associated with a buffer.
  • step S103 of FIG. 10 the user apparatus 10 transmits a BSR including “(frequency A, buffer size 1), ((frequency B, buffer size 2)” to the base station 10.
  • the base station 10 allocates the carrier A resource to the buffer size 1 data, and allocates the carrier B resource to the buffer size 2 data.
  • the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information, to the user apparatus UE.
  • the user apparatus UE performs D2D signal transmission using the carrier A and the carrier B (step S105).
  • Example 2-2 the user apparatus UE stores, in the BSR, a list of identification information (index) of a plurality of frequencies (or one frequency) allowed for transmission of the data for a certain buffer.
  • the frequency identification information the frequency identification information selected from the transmission frequency information transmitted in step S101 can be used as in the case of Example 2-1.
  • signaling overhead may be reduced by reporting identification information for the frequency group notified by the base station 10.
  • the frequencies that can be used for data transmission in the buffer 1 are the frequency A (corresponding to the carrier A) and the frequency B (corresponding to the carrier B), and the frequencies that can be used for data transmission in the buffer 2 are It is assumed that the frequency is A (corresponding to carrier A).
  • step S103 of FIG. 10 the user apparatus UE transmits a BSR including “((frequency A, frequency B), buffer size 1), ((frequency A), buffer size 2)” to the base station 10. To do.
  • the base station 10 allocates, for example, a carrier B resource selected from the carrier A and the carrier B to the buffer size 1 data, and allocates a carrier A resource to the buffer size 2 data.
  • the base station 10 transmits, to the user apparatus UE, the DCI including the carrier B index and its resource information, and the carrier A index and the DCI including the resource information.
  • the user apparatus UE performs D2D signal transmission using the carrier A and the carrier B (step S105).
  • Example 2-3 the conventional BSR as shown in FIG. 11B can be used as the BSR transmitted in step S103.
  • a destination ID (destination ID) indicating a destination of the D2D signal and a buffer (buffer size) are associated with each other.
  • the destination ID and the frequency are associated with each other.
  • the destination ID may be a unicast Layer-2 ID, or a Layer-2 Group ID that is a groupcast Layer-2 ID.
  • FIG. 13 shows an example of mapping between the destination ID and the frequency.
  • mapping information as shown in FIG. 13 is defined in the specification, and is set in advance in the user apparatus UE and the base station 10.
  • the mapping information may be transmitted from the base station 10 to the user apparatus UE as information included in the setting information in step S102.
  • the user apparatus UE bases the scheduling of these two data on Consider requesting the station 10.
  • step S103 of FIG. 10 the user apparatus UE transmits a BSR including “(destination ID1, buffer size 1), (destination ID2, buffer size 2)” to the base station 10.
  • the base station 10 identifies the carrier corresponding to the destination ID by referring to the mapping information in FIG. That is, for example, the base station 10 allocates the resource of the carrier A corresponding to F1 to the data corresponding to the destination ID1, and allocates the resource of the carrier B corresponding to F2 to the data corresponding to the destination ID2. .
  • the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE.
  • the user apparatus UE transmits a D2D signal using the carrier A and the carrier B (step S105).
  • the technique according to the second embodiment enables the user apparatus UE to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • the user apparatus UE can specify a specific frequency.
  • the base station 10 can select from a plurality of usable frequencies, and can select a more appropriate frequency (carrier).
  • a BSR similar to the existing BSR can be used, and the mounting becomes relatively simple.
  • the base station 10A to the base station 10B may receive various context information about the user apparatus UE (examples) : RRC context inclusion the C-RNTI of the UE in the source eNB, AS-configuration, E-RAB context, etc.).
  • FIG. 14 is a diagram showing an example of a traffic pattern, showing a UE Assistance Information message (excerpt from Non-Patent Document 3, underlined for the present application).
  • the UE Assistance Information message is a message transmitted from the user apparatus UE to the base station 10.
  • SPS-AssistanceInformation is information that assists the base station 10 to perform SPS settings for the user apparatus UE, and includes traffic PatternInfo indicating the period of D2D signal transmission executed by the user apparatus UE.
  • the base station 10A can transmit the information on the SPS traffic pattern of the user apparatus UE acquired by the UE Assistance Information message to the base station 10B. Thereby, the base station 10B can quickly set the SPS for the user apparatus UE after the handover.
  • the base station 10A transmits frequency information to the base station 10B.
  • the user apparatus UE notifies the base station 10A of the used frequency for each traffic pattern (eg, for each SPS cycle).
  • 10 A of base stations transmit the use frequency for every traffic pattern to the base station 10B with the information of a traffic pattern.
  • the base station 10B can set the SPS including the used carrier for the user apparatus 10 without receiving information on the frequency from the user apparatus UE.
  • the base station 10A transmits the frequency information received from the user apparatus UE by the base station 10A (referred to as the base station 10 described above) in the first and second embodiments to the base station 10B. Also good.
  • examples of frequency information transmitted from the base station 10A to the base station 10B are as follows.
  • Frequency information (base list associated with message type ID and frequency) received by the base station 10 from the user apparatus UE in step S101 of the first embodiment.
  • the base station 10B When the base station 10B acquires the above information, the base station 10B can quickly schedule D2D communication without receiving the information in step S101.
  • FIG. 15 illustrates an example in which the user apparatus UE performs a handover from the cell (connected cell) of the base station 10A to the cell (adjacent cell) of the base station 10B.
  • the user apparatus UE measures the signal strength and the like of the connected cell and the adjacent cell, and transmits the measurement result to the base station 10A.
  • the base station 10A determines that the user apparatus UE is to perform handover based on the measurement result (step S202)
  • the base station 10A transmits a handover request to the base station 10B (step S203).
  • the above-described frequency information and the like are included in this handover request.
  • the frequency information may be notified by a message other than the handover request.
  • FIG. 15 shows an example in which information is directly transmitted from the base station 10A to the base station 10B through the X2 interface, but this is an example.
  • Information may be transmitted from the base station 10A to the base station 10B via a device (eg, MME) in the core network.
  • a device eg, MME
  • the base station 10A transmits a handover instruction to the user apparatus UE (step S204) and transmits packet information (untransmitted packets to the user apparatus UE, sequence numbers, etc.) to the base station 10B (step S205). Thereafter, the user apparatus UE and the base station 10B are connected.
  • the user apparatus UE and the base station 10 may have all the functions of the first embodiment, the second embodiment, and the third embodiment, or may have the function of only one of the three embodiments. The function of only two of the three embodiments may be provided.
  • FIG. 16 is a diagram illustrating an example of a functional configuration of the user apparatus UE.
  • the user apparatus 10 includes a signal transmission unit 101, a signal reception unit 102, and a setting information management unit 103.
  • the functional configuration shown in FIG. 16 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 101 creates a transmission from the transmission data and transmits the transmission signal wirelessly.
  • the signal receiving unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals.
  • the signal transmission unit 101 includes a buffer that is a size report target in the BSR.
  • Each of the signal transmission unit 101 and the signal reception unit 102 includes a D2D function and a cellular communication function.
  • the signal transmission unit 101 includes a function of executing the signal transmission operation described in the first to third embodiments, and the signal reception unit 102 includes a function of executing the signal reception operation described in the first to third embodiments.
  • the setting information management unit 103 stores various setting information received from the base station 10 by the signal receiving unit 102, and preset setting information.
  • the signal transmission unit 101 transmits a list in which the data type and the frequency identification information are associated with each other to the base station, and further displays the information corresponding to the data type stored in the buffer and the size of the buffer. Including a buffer status report to the base station.
  • the signal receiving unit 102 receives control information including identification information of a carrier used for transmission of a D2D signal related to data stored in the buffer from the base station.
  • the signal transmission unit 101 transmits the D2D signal using the carrier specified by the identification information included in the control information received by the signal reception unit 102.
  • the signal transmission unit 101 can also transmit to the base station 10 a buffer status report including identification information of a frequency that can be used for transmission of the D2D signal regarding the data stored in the buffer and the size of the buffer. Further, the signal transmission unit 101 transmits, to the base station, a buffer status report including destination identification information associated with a frequency that can be used for transmission of the D2D signal related to data stored in the buffer and the size of the buffer. You can also.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the base station 10.
  • the base station 10 includes a signal transmission unit 201, a signal reception unit 202, a setting information management unit 203, and an NW communication 204.
  • the functional configuration shown in FIG. 17 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus UE side and transmitting the signal wirelessly.
  • the signal reception unit 202 includes a function of receiving various signals transmitted from the user apparatus UE and acquiring, for example, higher layer information from the received signals.
  • the signal transmission unit 201 includes a function of executing the operation of signal transmission to the user apparatus UE described in the first to third embodiments, and the signal reception unit 202 is transmitted from the user apparatus UE described in the first to third embodiments.
  • Including a function of executing the signal receiving operation of The signal transmission operation includes scheduling.
  • the setting information management unit 203 stores various setting information transmitted to the user apparatus UE, various setting information received from the user apparatus UE, and setting information set in advance.
  • the NW communication unit 204 performs information communication between base stations described in the third embodiment.
  • each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
  • both the user apparatus UE and the base station 10 may function as a computer that performs processing according to the present embodiment.
  • FIG. 18 is a diagram illustrating an example of a hardware configuration of the user apparatus UE and the base station 10 according to the present embodiment.
  • Each of the above-described user apparatus UE and base station 10 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the user apparatus 10 and the base station 20 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
  • Each function in the user apparatus UE and the base station 10 is performed by causing the processor 1001 to perform calculation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004 and the memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 101, the signal reception unit 102, and the setting information management unit 103 of the user apparatus UE illustrated in FIG. 16 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information management unit 203, and the NW communication unit 204 of the base station 10 illustrated in FIG.
  • the 17 are stored in the memory 1002, and are controlled by the processor 1001. It may be realized by a program. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. May be.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 101 and the signal reception unit 102 of the user device 10 may be realized by the communication device 1004.
  • the signal transmission unit 201, the signal reception unit 202, and the NW communication unit 204 of the base station 20 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the user equipment UE and the base station 10 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), an ASIC (Application Logic Integrated Circuit), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • a user apparatus used in a wireless communication system that supports D2D communication, in which a list in which a data type and frequency identification information are associated with each other is And transmitting a buffer status report including information corresponding to the type of data stored in the buffer and the size of the buffer to the base station, and a D2D signal related to the data stored in the buffer
  • a receiving unit that receives from the base station control information including identification information of a carrier used for transmission of the base station, and the transmitting unit includes the identification information included in the control information received by the receiving unit.
  • a user apparatus is provided that transmits the D2D signal using the carrier specified by (1).
  • a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • the information corresponding to the data type is, for example, a logical channel group ID.
  • a BSR having the same configuration as a conventional BSR can be used.
  • a user apparatus used in a wireless communication system that supports D2D communication the frequency identification information that can be used for transmitting D2D signals related to data stored in the buffer, and the size of the buffer
  • a transmission unit that transmits a buffer status report including: a transmission unit to the base station; and a reception unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station.
  • a user apparatus is provided, wherein the unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the receiving unit.
  • a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • the frequency identification information that can be used for transmission of the D2D signal is, for example, a list that includes identification information of a plurality of frequencies permitted for transmission of the D2D signal.
  • the base station can select from a plurality of usable frequencies, and can select a more appropriate frequency (carrier).
  • destination identification information associated with a frequency that can be used for transmission of a D2D signal related to data stored in a buffer which is a user apparatus used in a wireless communication system that supports D2D communication
  • a transmission unit that transmits a buffer status report including the size of the buffer to the base station, and a reception unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station; And the transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit.
  • a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • a communication method executed by a user apparatus used in a wireless communication system that supports D2D communication wherein a list in which a data type and frequency identification information are associated is transmitted to a base station. Transmitting a buffer status report including information corresponding to the type of data stored in the buffer and the size of the buffer to the base station, and transmitting a D2D signal related to the data stored in the buffer. Receiving control information including identification information of a carrier used for transmission from the base station, and transmitting the D2D signal using the carrier specified by the identification information included in the control information;
  • a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the user apparatus UE and the base station 10 have been described using functional block diagrams. However, such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor of the user apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the base station 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
  • the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods.
  • the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Accu), signaling (MediaColl). It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be referred to as an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
  • RRC message for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fure Radio Access), and W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
  • the specific operation performed by the base station 10 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user apparatus UE are performed in addition to the base station 20 and / or other than the base station 10.
  • a network node for example, but not limited to MME or S-GW.
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • the user equipment UE is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • Base station 10 may also be referred to by those skilled in the art as NB (NodeB), eNB (enhanced NodeB), base station (Base Station), gNB, or some other appropriate terminology.
  • NB NodeB
  • eNB enhanced NodeB
  • Base Station Base Station
  • gNB Base Station
  • determining may encompass a wide variety of actions.
  • “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like.
  • “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”.
  • determination and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • UE user apparatus 101 signal transmission section 102 signal reception section 103 setting information management section 10 base station 201 signal transmission section 202 signal reception section 203 setting information management section 204 NW communication section 1001 processor 1002 memory 1003 storage 1004 communication apparatus 1005 input apparatus 1006 output apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user device, which is used in a wireless communication system that supports device-to-device (D2D) communication, is provided with: a transmission unit which transmits, to a base station, a list in which types of data are associated with frequency identification information, and transmits, to the base station, a buffer state report including information corresponding to the type of data stored in a buffer and the size of the buffer; and a reception unit which receives, from the base station, control information including identification information for a carrier to be used in order to transmit a D2D signal related to the data stored in the buffer. The transmission unit transmits the D2D signal using the carrier identified by the identification information included in the control information received by the reception unit.

Description

ユーザ装置、及び通信方法User device and communication method
 本発明は、無線通信システムにおけるユーザ装置に関連するものである。 The present invention relates to a user apparatus in a wireless communication system.
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gとも呼ぶ))では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている。 In LTE (Long Term Evolution) and LTE successor systems (for example, LTE-A (LTE Advanced), NR (New Radio) (also referred to as 5G)), user apparatuses directly communicate with each other without using a radio base station. D2D (Device to Device) technology is being studied.
 D2Dは、ユーザ装置と基地局との間のトラフィックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。 D2D reduces the traffic between the user apparatus and the base station, or enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。 D2D includes D2D discovery (also referred to as D2D discovery, D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between user devices And so on). Hereinafter, when D2D communication, D2D discovery, and the like are not particularly distinguished, they are simply referred to as D2D. A signal transmitted and received in D2D is referred to as a D2D signal.
 なお、3GPP(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてsidelinkも使用している。 In 3GPP (3rd Generation Partnership Project), D2D is referred to as “sidelink”, but in this specification, D2D, which is a more general term, is used. However, in the description of the embodiments described later, sidelink is also used as necessary.
 また、3GPPでは、上記のD2D機能を拡張することでV2X(Vehicle to Everything)を実現することが検討され、仕様化が進められている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。 Also, in 3GPP, it is studied to realize V2X (Vehicle to Everything) by extending the above D2D function, and specification is being advanced. Here, V2X is a part of ITS (Intelligent Transport Systems), and as shown in FIG. 1, V2V (Vehicle to Vehicle), which means a communication mode performed between automobiles, is installed on the side of automobiles and roads. V2I (Vehicle to Infrastructure), which means a communication mode performed with a roadside unit (RSU: Road-Side Unit), and V2N (Vehicle to, which means a communication mode between a car and a driver's mobile terminal) Nomadic device) and V2P (Vehicle to Pedestrian) which means a communication mode performed between a car and a pedestrian mobile terminal.
 LTEのRel-14において、V2Xの幾つかの機能に関する仕様化がなされている(例えば非特許文献1)。当該仕様では、ユーザ装置へのV2X通信用のリソース割当に関してMode3とMode4が規定されている。Mode3では、基地局からユーザ装置に送られるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、ユーザ装置はリソースプールから自律的に送信リソースを選択する。 In Rel-14 of LTE, specifications regarding some functions of V2X are made (for example, Non-Patent Document 1). In this specification, Mode 3 and Mode 4 are defined for resource allocation for V2X communication to user apparatuses. In Mode 3, transmission resources are dynamically allocated by DCI (Downlink Control Information) sent from the base station to the user apparatus. In Mode 3, SPS (Semi Persistent Scheduling) is also possible. In Mode 4, the user apparatus autonomously selects transmission resources from the resource pool.
 DCIによるリソース割当を行うMode3では、ユーザ装置がD2D信号の送信に使用するキャリアをDCIにより基地局からユーザ装置に指定することが可能である。一例として、キャリアを指定するキャリアインジケータが3ビットの場合(非特許文献2)、基地局は、8種類のキャリアをユーザ装置に指定することができる。ユーザ装置は、基地局からのスケジューリングにより指定されたキャリアを使用してD2D信号の送信を行う。ここで、D2D信号とは、SCI(Sidelink Control Informaiton)、データ、又は、SCIとデータの組み合わせ(例:SCIとデータを同時に送信する場合)であるものとする。なお、ここでの「同時」とは、同じサブフレーム(TTIと称してもよい)でという意味である。 In Mode 3 in which resource allocation by DCI is performed, it is possible to specify the carrier used by the user apparatus for transmitting the D2D signal from the base station to the user apparatus by DCI. As an example, when the carrier indicator for specifying a carrier is 3 bits (Non-Patent Document 2), the base station can specify eight types of carriers to the user apparatus. The user apparatus transmits a D2D signal using a carrier specified by scheduling from the base station. Here, the D2D signal is assumed to be SCI (Sidelink Control Information), data, or a combination of SCI and data (eg, when SCI and data are transmitted simultaneously). Here, “simultaneous” means the same subframe (may be referred to as TTI).
 例えば、ユーザ装置がバッファに有する2つのデータに対し、キャリアAとキャリアBが同時に割り当てられた場合、ユーザ装置はキャリアAとキャリアBのキャリアアグリゲーションにより、当該データに関する2つのD2D信号を同時に送信する(ケース1)。また、例えば、ユーザ装置がバッファに有する2つのデータに対し、キャリアAとキャリアBが異なる時間(異なるサブフレーム)で割り当てられる場合もある(ケース2)。本明細書では、ケース1とケース2のいずれの場合もマルチキャリア(Multiple Carrier)送信と呼ぶ。マルチキャリアを複数キャリアと呼んでもよい。 For example, when carrier A and carrier B are simultaneously assigned to two pieces of data that the user apparatus has in the buffer, the user apparatus transmits two D2D signals related to the data simultaneously by carrier aggregation of carrier A and carrier B. (Case 1). Further, for example, the carrier A and the carrier B may be allocated at different times (different subframes) for two pieces of data that the user apparatus has in the buffer (case 2). In this specification, both cases 1 and 2 are referred to as multi-carrier transmission. A multi-carrier may be called a plurality of carriers.
 とこで、V2Xでは、あるキャリアが特定の用途のみにしか使用できないことが想定される。例えば、あるキャリアはセーフティアプリケーションに関わるデータのみにしか使用できないことが考えられる。しかしながら、従来技術では、基地局がユーザ装置に対し、D2D信号の送信のためのリソース割当を行う際に、基地局は、当該D2D信号の送信に使用できるキャリアを識別できないので、適切にリソース割当を行うことができないという課題があった。 Here, in V2X, it is assumed that a certain carrier can be used only for a specific purpose. For example, a certain carrier can be used only for data related to safety applications. However, in the prior art, when the base station performs resource allocation for transmission of the D2D signal to the user apparatus, the base station cannot identify a carrier that can be used for transmission of the D2D signal. There was a problem that could not be done.
 本発明は上記の点に鑑みてなされたものであり、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above points, and provides a technique that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication. For the purpose.
 開示の技術によれば、D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
 データの種別と周波数の識別情報とを対応付けたリストを基地局に送信し、更に、バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信する送信部と、
 前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信する受信部と、を備え、
 前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信する
 ことを特徴とするユーザ装置が提供される。
According to the disclosed technique, a user apparatus used in a wireless communication system supporting D2D communication,
A list in which the data type and the frequency identification information are associated is transmitted to the base station, and a buffer status report including information corresponding to the data type stored in the buffer and the size of the buffer is transmitted to the base station. A transmission unit for transmitting to
A receiving unit that receives control information including identification information of a carrier used for transmission of a D2D signal related to data stored in the buffer from the base station;
The transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit. A user apparatus is provided.
 開示の技術によれば、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術が提供される。 According to the disclosed technique, a technique is provided that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
V2Xを説明するための図である。It is a figure for demonstrating V2X. D2Dを説明するための図である。It is a figure for demonstrating D2D. D2Dを説明するための図である。It is a figure for demonstrating D2D. D2D通信に用いられるMAC PDUを説明するための図である。It is a figure for demonstrating MAC PDU used for D2D communication. SL-SCH subheaderのフォーマットを説明するための図である。It is a figure for demonstrating the format of SL-SCH subheader. D2Dで使用されるチャネル構造の例を説明するための図である。It is a figure for demonstrating the example of the channel structure used by D2D. PSDCHの構造例を示す図である。It is a figure which shows the structural example of PSDCH. PSDCHの構造例を示す図である。It is a figure which shows the structural example of PSDCH. PSCCHとPSSCHの構造例を示す図である。It is a figure which shows the structural example of PSCCH and PSSCH. PSCCHとPSSCHの構造例を示す図である。It is a figure which shows the structural example of PSCCH and PSSCH. リソースプールコンフィギュレーションを示す図である。It is a figure which shows a resource pool configuration. リソースプールコンフィギュレーションを示す図である。It is a figure which shows a resource pool configuration. 実施の形態に係る無線通信システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communications system which concerns on embodiment. 実施例1、実施例2におけるシーケンスを示す図である。It is a figure which shows the sequence in Example 1 and Example 2. FIG. 送信周波数情報の例を示す図である。It is a figure which shows the example of transmission frequency information. BSRの例を示す図である。It is a figure which shows the example of BSR. メッセージタイプとLCG IDのマッピング例を示す図である。It is a figure which shows the example of mapping of a message type and LCG ID. D2D信号の送信方法の例を示す図である。It is a figure which shows the example of the transmission method of D2D signal. D2D信号の送信方法の例を示す図である。It is a figure which shows the example of the transmission method of D2D signal. 実施例2-3における宛先IDと周波数とのマッピングの例を示す図である。It is a figure which shows the example of the mapping of destination ID and frequency in Example 2-3. 実施例3におけるシーケンスを示す図である。It is a figure which shows the sequence in Example 3. FIG. TrafficPatternInfoの例を示す図である。It is a figure which shows the example of TrafficPatternInfo. 実施の形態に係るユーザ装置UEの機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user apparatus UE which concerns on embodiment. 実施の形態に係る基地局10の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the base station 10 which concerns on embodiment. 実施の形態に係る基地局10及びユーザ装置UEのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the base station 10 and user apparatus UE which concern on embodiment.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代(5G、NR)の通信方式も含む広い意味で使用する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is only an example, and the embodiment to which the present invention is applied is not limited to the following embodiment. For example, although the wireless communication system according to the present embodiment assumes a system based on LTE, the present invention is not limited to LTE and can be applied to other systems. In addition, in this specification and claims, “LTE” corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. The fifth generation (5G, NR) communication method is also used in a broad sense.
 また、本実施の形態は、主にV2Xを対象としているが、本実施の形態に係る技術は、V2Xに限らず、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含むものである。また、「D2D」の用語は、LTEに限定されず、端末間通信全般を指すものである。また、後述する本実施の形態は、主に「D2Dコミュニケーション」を対象としているが、本発明は、「D2Dコミュニケーション」のみならず、「D2Dディスカバリ」にも適用可能である。 In addition, although the present embodiment is mainly intended for V2X, the technology according to the present embodiment is not limited to V2X and can be widely applied to D2D in general. “D2D” includes V2X as its meaning. Further, the term “D2D” is not limited to LTE but refers to communication between terminals in general. In addition, although this embodiment to be described later mainly targets “D2D communication”, the present invention can be applied not only to “D2D communication” but also to “D2D discovery”.
 また、特に断らない限り、以下で使用する「D2D信号」は、SCIであってもよいし、データであってもよいし、SCIとデータの組であってもよい。 Unless otherwise specified, the “D2D signal” used below may be SCI, data, or a set of SCI and data.
 (D2Dの概要)
 本実施の形態では、D2Dを基本技術とすることから、まず、LTEで規定されているD2Dの概要について説明する。なお、V2Xにおいても、ここで説明するD2Dの技術を使用することは可能であり、本実施の形態におけるユーザ装置は、当該技術によるD2D信号の送受信を行うことができる。
(Outline of D2D)
In this embodiment, since D2D is a basic technology, first, an outline of D2D defined in LTE will be described. Note that the D2D technology described here can also be used in V2X, and the user apparatus in the present embodiment can transmit and receive a D2D signal according to the technology.
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図2Aに示すように、Discovery period毎に、Discoveryメッセージ用のリソースプールが確保され、ユーザ装置はそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、ユーザ装置UEが自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。 As already explained, D2D is broadly divided into “D2D discovery” and “D2D communication”. As for “D2D discovery”, as shown in FIG. 2A, a resource pool for a Discovery message is secured for each Discovery period, and the user apparatus transmits a Discovery message (discovery signal) in the resource pool. More specifically, there are Type 1 and Type 2b. In Type1, the user apparatus UE autonomously selects a transmission resource from the resource pool. In Type 2b, a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
 「D2Dコミュニケーション」についても、図2Bに示すように、SCI(Sidelink Control Information)/データ送信用のリソースプールが周期的に確保される。送信側のユーザ装置はControlリソースプール(PSCCHリソースプール)から選択されたリソースでSCIによりデータ送信用リソース(PSSCHリソースプール)等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、基地局からユーザ装置に送られる(E)PDCCHによりダイナミックにリソースが割り当てられる。Mode2では、ユーザ装置はリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIBで通知されたり、予め定義されたものが使用される。 As for "D2D communication", as shown in FIG. 2B, a resource pool for SCI (Sidelink Control Information) / data transmission is periodically secured. The user apparatus on the transmission side notifies the reception side of a data transmission resource (PSSCH resource pool) or the like by SCI using a resource selected from the Control resource pool (PSCCH resource pool), and transmits data using the data transmission resource. More specifically, “D2D communication” includes Mode1 and Mode2. In Mode 1, resources are dynamically allocated by (E) PDCCH sent from the base station to the user apparatus. In Mode 2, the user apparatus autonomously selects transmission resources from the resource pool. The resource pool is notified by SIB or a predefined one is used.
 また、既に説明したとおり、Rel-14では、Mode1とMode2に加えて、Mode3とMode4がある。Rel-14では、SCIとデータとを同時に(1サブフレームで)、周波数方向に隣接したリソースブロックで送信することが可能である。 Also, as already described, Rel-14 has Mode3 and Mode4 in addition to Mode1 and Mode2. In Rel-14, SCI and data can be transmitted simultaneously (in one subframe) in resource blocks adjacent in the frequency direction.
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCH(Physical Sidelink Discovery Channel)と称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCH(Physical Sidelink Control Channel)と称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される。 In LTE, a channel used for “D2D discovery” is called PSDCH (Physical Sidelink Discovery Channel), and a channel for transmitting control information such as SCI in “D2D communication” is called PSCCH (Physical Sidelink Control data). The channel for transmitting is called PSSCH (Physical Sidelink Shared Channel).
 D2Dに用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、図3に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。 As shown in FIG. 3, a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D includes at least a MAC header, a MAC Control element, and a MAC SDU (Service Data Unit), and Padding. The MAC PDU may contain other information. The MAC header is composed of one SL-SCH (Shared Shared Channel) subheader and one or more MAC PDU subheaders.
 図4に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、ユーザ装置が用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。 As shown in FIG. 4, the SL-SCH subheader includes a MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like. V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and is used by the user apparatus. Information relating to the transmission source is set in the transmission source information. An identifier related to the ProSe UE ID may be set in the transmission source information. Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
 D2Dのチャネル構造の例を図5に示す。図5に示すように、「D2Dコミュニケーション」に使用されるPSCCHのリソースプール及びPSSCHのリソースプールが割り当てられている。また、「D2Dコミュニケーション」のチャネルの周期よりも長い周期で「D2Dディスカバリ」に使用されるPSDCHのリソースプールが割り当てられている。 An example of the D2D channel structure is shown in FIG. As shown in FIG. 5, a PSCCH resource pool and a PSSCH resource pool used for “D2D communication” are allocated. Also, a PSDCH resource pool used for “D2D discovery” is assigned with a period longer than the period of the channel of “D2D communication”.
 また、D2D用の同期信号としてPSSS(Primary Sidelink Synchronization signal)とSSSS(Secondary Sidelink Synchronization signal)が用いられる。また、例えばカバレッジ外動作のためにD2Dのシステム帯域、フレーム番号、リソース構成情報等の報知情報(broadcast information)を送信するPSBCH(Physical Sidelink Broadcast Channel)が用いられる。PSSS/SSSS及びPSBCHは、1つのサブフレームで送信される。 Also, PSSS (Primary Sidelink Synchronization signal) and SSSS (Secondary Sidelink Synchronization signal) are used as synchronization signals for D2D. Further, for example, PSBCH (Physical Sidelink Broadcast Channel) that transmits broadcast information such as a D2D system band, a frame number, and resource configuration information is used for an out-of-coverage operation. PSSS / SSSS and PSBCH are transmitted in one subframe.
 図6Aに、「D2Dディスカバリ」に使用されるPSDCHのリソースプールの例を示す。リソースプールは、サブフレームのビットマップで設定されるため、図6Aに示すようなイメージのリソースプールになる。他のチャネルのリソースプールも同様である。また、PSDCHは、周波数ホッピングしながら繰り返し送信(repetition)がなされる。繰り返し回数は例えば0~4で設定可能である。また、図6Bに示すように、PSDCHはPUSCHベースの構造を有し、DM-RS(demodulation reference signal)が挿入される構造になっている。 FIG. 6A shows an example of a PSDCH resource pool used for “D2D discovery”. Since the resource pool is set by the bitmap of the subframe, it becomes an image resource pool as shown in FIG. 6A. The same applies to the resource pools of other channels. The PSDCH is repeatedly transmitted while being frequency hopped. The number of repetitions can be set from 0 to 4, for example. Also, as shown in FIG. 6B, PSDCH has a PUSCH-based structure in which DM-RS (demodulation reference signal) is inserted.
 図7Aに、「D2Dコミュニケーション」に使用されるPSCCHとPSSCHのリソースプールの例を示す。図7Aに示す例では、PSCCHは、周波数ホッピングしながら、初回を含めて2回繰り返し送信(repetition)がなされる。PSSCHは、周波数ホッピングしながら、初回を含めて4回繰り返し送信(repetition)がなされる。また、図7Bに示すように、PSCCHとPSSCHはPUSCHベースの構造を有し、DMRSが挿入される構造になっている。 FIG. 7A shows an example of the PSCCH and PSSCH resource pool used for “D2D communication”. In the example shown in FIG. 7A, the PSCCH is repeatedly transmitted (repetition) twice including the first time while performing frequency hopping. The PSSCH is repeatedly transmitted (repetition) four times including the first time while performing frequency hopping. Also, as shown in FIG. 7B, PSCCH and PSSCH have a PUSCH-based structure and have a structure in which DMRS is inserted.
 図8A、Bに、PSCCH、PSDCH、PSSCHにおけるリソースプールコンフィギュレーションの一例を示す。図8Aに示すように、時間方向では、リソースプールはサブフレームビットマップとして表される。また、ビットマップは、num.reprtitionの回数だけ繰り返される。また、各周期における開始位置を示すoffsetが指定される。なお、当該ビットマップは、T-RPT(Time-Resource Pattern)とも呼ばれる。 FIGS. 8A and 8B show examples of resource pool configurations in PSCCH, PSDCH, and PSSCH. As shown in FIG. 8A, in the time direction, the resource pool is represented as a subframe bitmap. The bitmap is num. Repeated for the number of repetitions. Also, an offset indicating the start position in each cycle is specified. The bit map is also referred to as T-RPT (Time-Resource Pattern).
 周波数方向では、連続割り当て(contiguous)と不連続割り当て(non-contiguous)が可能である。図8Bの例では、図示のとおり、開始PRB、終了PRB、PRB数(numPRB)が指定される。 In the frequency direction, continuous allocation and non-continuous allocation are possible. In the example of FIG. 8B, the start PRB, the end PRB, and the number of PRBs (numPRB) are designated as illustrated.
 (システム構成)
 図9は、本実施の形態に係る無線通信システムの構成例を示す図である。図9に示すように、本実施の形態に係る無線通信システムは、基地局10、ユーザ装置UE1、及びユーザ装置UE2を有する。図9において、ユーザ装置UE1は送信側、ユーザ装置UE2は受信側を意図しているが、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2を特に区別しない場合、単に「ユーザ装置UE」と記述する。
(System configuration)
FIG. 9 is a diagram illustrating a configuration example of a radio communication system according to the present embodiment. As illustrated in FIG. 9, the radio communication system according to the present embodiment includes a base station 10, a user apparatus UE1, and a user apparatus UE2. In FIG. 9, the user apparatus UE1 is intended for the transmission side, and the user apparatus UE2 is intended for the reception side. Hereinafter, when the user apparatus UE1 and the user apparatus UE2 are not particularly distinguished, they are simply described as “user apparatus UE”.
 図9に示すユーザ装置UE1及びユーザ装置UE2は、それぞれ、LTE(既存のLTEに加え、5G、NRを含む意味でのLTE、以下同様)におけるユーザ装置UEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、ユーザ装置UE1、ユーザ装置UE2は、本実施の形態で説明する動作を実行する機能を有している。 The user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 9 each have a cellular communication function as the user apparatus UE in LTE (in addition to the existing LTE, LTE in a sense including 5G, NR, and so on), and D2D function including signal transmission / reception on the selected channel. Moreover, user apparatus UE1 and user apparatus UE2 have a function which performs the operation | movement demonstrated by this Embodiment.
 また、ユーザ装置UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、ユーザ装置UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。 The user apparatus UE may be any apparatus having a D2D function. For example, the user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function), or the like. is there.
 また、基地局10については、LTEにおける基地局10としてのセルラ通信の機能、及び、本実施の形態におけるユーザ装置UEの通信を可能ならしめるための機能(ユーザ装置UEからの情報に基づいてキャリアを割り当てる等)を有している。また、基地局10は、RSU(eNBの機能を有するeNBタイプRSU)であってもよい。 Further, for the base station 10, the function of cellular communication as the base station 10 in LTE and the function for enabling the communication of the user apparatus UE in the present embodiment (carrier based on information from the user apparatus UE) Etc.). Further, the base station 10 may be an RSU (eNB type RSU having an eNB function).
 以下、本実施の形態における具体例として実施例1~3を説明する。 Hereinafter, Examples 1 to 3 will be described as specific examples in the present embodiment.
 (実施例1)
 図10を参照して、実施例1におけるユーザ装置UEと基地局10の処理内容を説明する。図10のステップS101の前の段階で、ユーザ装置UEと基地局10はRRC接続(RRC Connected)されている。
Example 1
With reference to FIG. 10, the processing content of the user apparatus UE and the base station 10 in Example 1 is demonstrated. In the stage before step S101 in FIG. 10, the user apparatus UE and the base station 10 are RRC connected (RRC connected).
 まず、ステップS101において、ユーザ装置UEは、ユーザ装置UEがD2D信号の送信に使用する周波数の情報を送信する。より詳細には、ユーザ装置UEは、自身が使用するデータ種別(これをここではメッセージタイプと呼ぶ)と、当該メッセージタイプのデータ(メッセージ)を送信する際に使用可能な周波数とを対応付けたリストを基地局10に送信する(ステップS101)。 First, in step S101, the user apparatus UE transmits information on the frequency used by the user apparatus UE for transmitting the D2D signal. More specifically, the user apparatus UE associates a data type used by the user apparatus UE (this is referred to as a message type here) with a frequency that can be used when transmitting data (message) of the message type. The list is transmitted to the base station 10 (step S101).
 図11Aに、ユーザ装置UEから基地局10に送信される送信周波数情報のリストの例を示す。図11Aに示すように、メッセージタイプIDに周波数の識別情報が対応付られている。ユーザ装置UEは、当該リストを、例えば、非特許文献3に記載されているSidelinkUEInformation messageに含めて送信する。SidelinkUEInformation messageは、ユーザ装置UEがD2D通信(例:V2X送信)行うことを希望するときに、ユーザ装置UEが基地局10に送信するメッセージである。なお、従来のSidelinkUEInformation messageには、メッセージタイプIDと周波数とを対応付けたリストは含まれない。ステップS101で送信するSidelinkUEInformation messageには、当該リスト以外に、非特許文献3に記載されているv2x-DestinationInfoList、v2x-TypeTxSyncList等が含まれていてもよい。 FIG. 11A shows an example of a list of transmission frequency information transmitted from the user apparatus UE to the base station 10. As shown in FIG. 11A, frequency identification information is associated with the message type ID. The user apparatus UE transmits the list including, for example, a Sidelink UE Information message described in Non-Patent Document 3. The SidelinkUEInformation message is a message that the user apparatus UE transmits to the base station 10 when the user apparatus UE desires to perform D2D communication (eg, V2X transmission). The conventional Sidelink UE Information message does not include a list in which the message type ID and the frequency are associated with each other. The SidelinkUEInformation message transmitted in step S101 may include v2x-DestinationInfoList, v2x-TypeTxSyncList, etc. described in Non-Patent Document 3, in addition to the list.
 図10のステップS102において、基地局10はユーザ装置UEに対して設定情報を送信する。当該設定情報は、例えば、SL-V2X-ConfigDedicated information element(非特許文献3)である。当該設定情報は、V2X sidelink communicationのためのユーザ装置UE個別の設定情報である(dedicated configuration information)。当該設定情報は、例えば、「scheduled」を含む。これは、ユーザ装置UEから受信するsidelink specific BSR(Buffer Status Report)(以下、BSR)に基づいて、基地局10が送信リソースのスケジューリングを行う場合のコンフィギュレーションを示す。「scheduled」には、sl-V-RNTI、mac-MainConfig、mcs、logicalChGroupInfoList等が含まれる。また、後述する実施例1-1を実施する場合においては、ステップS102の設定情報の中に、ユーザ装置UEが使用できるメッセージタイプIDが含まれていてもよい。 In step S102 of FIG. 10, the base station 10 transmits setting information to the user apparatus UE. The setting information is, for example, SL-V2X-ConfigDedicated information element (Non-patent Document 3). The said setting information is the setting information of the user apparatus UE for V2X sidelink communication (dedicated configuration information). The setting information includes, for example, “scheduled”. This shows a configuration in the case where the base station 10 performs scheduling of transmission resources based on a sidelink specific BSR (Buffer Status Report) (hereinafter, BSR) received from the user apparatus UE. “Scheduled” includes sl-V-RNTI, mac-MainConfig, mcs, logicalChGroupInfoList, and the like. In the case of carrying out Example 1-1 described later, the message type ID that can be used by the user apparatus UE may be included in the setting information in step S102.
 図10のステップS103において、ユーザ装置UEは、BSRを基地局10に送信する。当該BSRは、ユーザ装置UEがD2Dで送信しようとするデータ(ユーザ装置UEのバッファに格納されているデータ)のサイズを基地局10に送信するためのMACコントロールエレメントである。 10, the user apparatus UE transmits a BSR to the base station 10. The BSR is a MAC control element for transmitting the size of data (data stored in the buffer of the user apparatus UE) that the user apparatus UE intends to transmit in D2D to the base station 10.
 実施例1において、BSRに含める情報として2種類の情報がある。以下、それらを実施例1-1、実施例1-2として説明する。 In Example 1, there are two types of information as information included in the BSR. Hereinafter, these will be described as Example 1-1 and Example 1-2.
 <実施例1-1>
 実施例1-1では、ユーザ装置10は、BSRの中に、メッセージタイプIDを含める。一例として、メッセージタイプIDはバッファサイズと対応付けられる。例えば、メッセージタイプID=1のメッセージ(データ)のバッファサイズがバッファサイズ1であり、メッセージタイプID=2のメッセージ(データ)のバッファサイズがバッファサイズ2であるとして、ユーザ装置UEが、これら2つのデータのスケジューリングを基地局10に要求することを考える。
<Example 1-1>
In Example 1-1, the user apparatus 10 includes a message type ID in the BSR. As an example, the message type ID is associated with the buffer size. For example, assuming that the buffer size of the message (data) with message type ID = 1 is buffer size 1, and the buffer size of the message (data) with message type ID = 2 is buffer size 2, the user apparatus UE Consider requesting the base station 10 to schedule one piece of data.
 この場合、図10のステップS103において、ユーザ装置10は、「(メッセージタイプID=1,バッファサイズ1)、(メッセージタイプID=2,バッファサイズ2)」を含むBSRを基地局10に送信する。 In this case, in step S103 of FIG. 10, the user apparatus 10 transmits a BSR including “(message type ID = 1, buffer size 1), (message type ID = 2, buffer size 2)” to the base station 10. .
 基地局10は、BSRに含まれるメッセージタイプIDに対応するキャリアを、対応するバッファのデータに関するD2D信号送信のためのキャリアとして選択する。そして、ステップS104において、基地局10は、当該キャリアのインデックスを含むDCIをユーザ装置UEに送信する。ユーザ装置UEは、当該キャリアを使用してD2D信号の送信を行う(ステップS105)。なお、既に説明したように、ステップS105におけるD2D信号は、SCI、データ、又は、SCIとデータの組である。 The base station 10 selects a carrier corresponding to the message type ID included in the BSR as a carrier for D2D signal transmission related to the data in the corresponding buffer. In step S104, the base station 10 transmits DCI including the index of the carrier to the user apparatus UE. The user apparatus UE transmits a D2D signal using the carrier (step S105). As described above, the D2D signal in step S105 is SCI, data, or a set of SCI and data.
 より具体的な例として、前述したように、ユーザ装置UEが、「(メッセージタイプID=1,バッファサイズ1)、(メッセージタイプID=2,バッファサイズ2)」を含むBSRを基地局10に送信した場合を考える。 As a more specific example, as described above, the user apparatus UE transmits a BSR including “(message type ID = 1, buffer size 1), (message type ID = 2, buffer size 2)” to the base station 10. Consider the case of sending.
 この場合、基地局10は、図11Aに示した情報に基づき、例えば、メッセージタイプID=1のデータに対して、F2に対応するキャリアAのリソースを割り当て、メッセージタイプID=2のデータに対して、F1に対応するキャリアBのリソースを割り当てる。そして、ステップS104において、基地局10はユーザ装置UEに対して、キャリアAのインデックスとそのリソース情報を含むDCIと、キャリアBのインデックスとそのリソース情報を含むDCIとをユーザ装置UEに送信する。ユーザ装置UEは、キャリアAとキャリアBを使用してD2D信号の送信を行う(ステップS105)。 In this case, based on the information shown in FIG. 11A, for example, the base station 10 allocates the resource of the carrier A corresponding to F2 to the data of the message type ID = 1, and the data of the message type ID = 2 Thus, the resource of carrier B corresponding to F1 is allocated. In step S104, the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE. The user apparatus UE transmits a D2D signal using the carrier A and the carrier B (step S105).
 <実施例1-2>
 図11Bは、BSRの例を示している(非特許文献4からの抜粋)。図11Bに示すように、ロジカルチャネルグループのIDであるLCG IDとバッファ(バッファサイズ)が対応付られている。なお、ロジカルチャネルグループは、1つ又は複数のロジカルチャネルに対応付られている。
<Example 1-2>
FIG. 11B shows an example of BSR (excerpt from Non-Patent Document 4). As shown in FIG. 11B, an LCG ID that is an ID of a logical channel group and a buffer (buffer size) are associated with each other. A logical channel group is associated with one or more logical channels.
 実施例1-2では、BSRとしては図11Bに示す構造のBSRを使用することができる。ただし、実施例1-2では、LCG IDがメッセージタイプにマッピングされる。一例として、従来のLCG IDが2ビットであるとすると、それを拡張(例えば3ビット)して、メッセージタイプとLCG IDとを対応付けられるようにする。なお、メッセージタイプの数が少ない場合には、LCG IDを拡張せずに、従来のLCG IDを使用することとしてもよい。 In Example 1-2, the BSR having the structure shown in FIG. 11B can be used as the BSR. However, in Example 1-2, the LCG ID is mapped to the message type. As an example, if the conventional LCG ID is 2 bits, it is extended (for example, 3 bits) so that the message type can be associated with the LCG ID. If the number of message types is small, the conventional LCG ID may be used without extending the LCG ID.
 図11Cは、メッセージタイプIDとLCG IDとのマッピングの例である。実施例1-2では、例えば、図11Cのようなマッピング情報が仕様で定められ、ユーザ装置UEと基地局10に予め設定される。あるいは、ステップS102の設定情報に含まれる情報として、当該マッピング情報が基地局10からユーザ装置UEに送信されることとしてもよい。 FIG. 11C is an example of mapping between the message type ID and the LCG ID. In Example 1-2, for example, mapping information as illustrated in FIG. 11C is defined in the specification, and is set in advance in the user apparatus UE and the base station 10. Alternatively, the mapping information may be transmitted from the base station 10 to the user apparatus UE as information included in the setting information in step S102.
 例えば、メッセージタイプID=1に対応するLCG ID=100のメッセージ(データ)のバッファサイズがバッファサイズ1であり、メッセージタイプID=2に対応するLCG ID=110のメッセージ(データ)のバッファサイズがバッファサイズ2であるとして、ユーザ装置UEが、これら2つのデータのスケジューリングを基地局10に要求することを考える。 For example, the buffer size of the message (data) of LCG ID = 100 corresponding to message type ID = 1 is buffer size 1, and the buffer size of the message (data) of LCG ID = 110 corresponding to message type ID = 2 is Considering that the buffer size is 2, the user apparatus UE requests the base station 10 to schedule these two data.
 この場合、図10のステップS103において、ユーザ装置UEは、「(LCG ID=100,バッファサイズ1)、(LCG ID=110,バッファサイズ2)」を含むBSRを基地局10に送信する。 In this case, in step S103 of FIG. 10, the user apparatus UE transmits a BSR including “(LCG ID = 100, buffer size 1), (LCG ID = 110, buffer size 2)” to the base station 10.
 基地局10は、マッピング情報を参照することで、LCG IDに対応するメッセージタイプを把握するとともに、図11Aのマッピング情報に基づいてメッセージタイプに対応するキャリアを識別する。すなわち、例えば、基地局10は、LCG ID=100に対応するメッセージタイプID=1のデータに対して、F2に対応するキャリアAのリソースを割り当て、LCG ID=110に対応するメッセージタイプID=2のデータに対して、F1に対応するキャリアBのリソースを割り当てる。そして、ステップS104において、基地局10はユーザ装置UEに対して、キャリアAのインデックスとそのリソース情報を含むDCIと、キャリアBのインデックスとそのリソース情報を含むDCIとをユーザ装置UEに送信する。ユーザ装置UEは、キャリアAとキャリアBを使用してデータ送信を行う(ステップS105)。 The base station 10 refers to the mapping information to grasp the message type corresponding to the LCG ID and identifies the carrier corresponding to the message type based on the mapping information of FIG. 11A. That is, for example, the base station 10 allocates the resource of the carrier A corresponding to F2 to the data of the message type ID = 1 corresponding to the LCG ID = 100, and the message type ID = 2 corresponding to the LCG ID = 110. The resource of carrier B corresponding to F1 is allocated to the data of. In step S104, the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE. The user apparatus UE performs data transmission using the carrier A and the carrier B (step S105).
 以上が、実施例1-1と実施例1-2の説明である。 The above is the description of Example 1-1 and Example 1-2.
 実施例1(実施例2も同様)において、図10のステップS105でユーザ装置UEが実行するD2D信号の送信動作例を図12A、図12Bを参照して説明する。図12A、図12Bはいずれも、キャリア1とキャリア2を使用する例である。また、図12A、図12Bはいずれも、ユーザ装置UEがSCIとデータを送信する場合に、周波数方向で隣接するリソースブロックを使用して送信する場合の例である。 In Example 1 (the same applies to Example 2), an example of a D2D signal transmission operation performed by the user apparatus UE in step S105 of FIG. 10 will be described with reference to FIGS. 12A and 12B. 12A and 12B are examples in which carrier 1 and carrier 2 are used. Moreover, both FIG. 12A and FIG. 12B are examples in the case of transmitting using resource blocks adjacent in the frequency direction when the user apparatus UE transmits SCI and data.
 図12Aの場合、キャリア1におけるSCIによりキャリア1のPSSCH(データ)のスケジューリングが行われ、キャリア2におけるSCIによりキャリア2のPSSCHのスケジューリングが行われる。図12Bの場合、キャリア1におけるSCIにより、キャリア1のPSSCHのスケジューリングが行われるとともに、キャリア2のPSSCHのスケジューリングが行われる。 In the case of FIG. 12A, PSSCH (data) scheduling of carrier 1 is performed by SCI in carrier 1, and PSSCH scheduling of carrier 2 is performed by SCI in carrier 2. In the case of FIG. 12B, scheduling of PSSCH of carrier 1 is performed and scheduling of PSSCH of carrier 2 is performed by SCI in carrier 1.
 実施例1に係る技術により、D2D通信をサポートする無線通信システムにおいて、ユーザ装置UEが、適切なキャリアを使用してD2D信号を送信することが可能となる。特に、実施例1-1では、メッセージタイプをBSRで指定するので、基地局10は、迅速に周波数(キャリア)を判断できる。また、実施例1-2では、LCG IDを使用するので、既存のBSRと同様のBSRを使用でき、実装が比較的簡易となる。 The technique according to the first embodiment enables the user apparatus UE to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication. In particular, in Example 1-1, since the message type is designated by BSR, the base station 10 can quickly determine the frequency (carrier). Further, in the embodiment 1-2, since the LCG ID is used, the same BSR as the existing BSR can be used, and the mounting becomes relatively simple.
 (実施例2)
 次に、実施例2を説明する。実施例2における全体シーケンスは実施例1と同じであるので、実施例2でも図10を参照しながら処理内容を説明する。実施例1と同様に、図10のステップS101の前の段階で、ユーザ装置UEと基地局10はRRC接続(RRC Connected)されている。
(Example 2)
Next, Example 2 will be described. Since the entire sequence in the second embodiment is the same as that in the first embodiment, processing contents will be described in the second embodiment with reference to FIG. Similarly to the first embodiment, the user apparatus UE and the base station 10 are RRC connected (RRC connected) in the stage before step S101 in FIG.
 まず、ステップS101において、ユーザ装置UEは、ユーザ装置UEがD2D信号の送信に使用する周波数の情報である送信周波数情報を送信する。送信周波数情報は、ユーザ装置UEが送信に使用することを希望する周波数の識別情報である。実施例2では、ユーザ装置UEは、一例として、従来のSidelinkUEInformation message(非特許文献3)を送信する。当該SidelinkUEInformation messageには、v2x-CommTxFreqList(上記送信周波数情報に相当する)、v2x-DestinationInfoList、v2x-TypeTxSyncList等が含まれる。v2x-CommTxFreqListにおける値1は、SIB21でブロードキャストされるv2x-InterFreqInfoListにおける最初のエントリの周波数を示し、値2は、SIB21でブロードキャストされるv2x-InterFreqInfoListにおける2番目のエントリの周波数を示す。以降も同様である。 First, in step S101, the user apparatus UE transmits transmission frequency information that is information on a frequency used by the user apparatus UE for transmitting a D2D signal. The transmission frequency information is identification information of a frequency that the user apparatus UE desires to use for transmission. In Example 2, as an example, the user apparatus UE transmits a conventional Sidelink UE Information message (Non-Patent Document 3). The SidelinkUEInformation message includes v2x-CommTxFreqList (corresponding to the transmission frequency information), v2x-DestinationInfoList, v2x-TypeTxSyncList, and the like. The value 1 in the v2x-CommTxFreqList indicates the frequency of the first entry in the v2x-InterFreqInfoList broadcasted in the SIB21, and the value 2 indicates the frequency of the second entry in the v2x-InterFreqInfoList broadcast in the SIB21. The same applies thereafter.
 図10のステップS102において、基地局10はユーザ装置UEに対して設定情報を送信する。実施例1と同様に、当該設定情報は、例えば、SL-V2X-ConfigDedicated information element(非特許文献3)である。図10のステップS103において、ユーザ装置UEは、BSR(Buffer Status Report)を基地局10に送信する。 In step S102 of FIG. 10, the base station 10 transmits setting information to the user apparatus UE. Similar to the first embodiment, the setting information is, for example, SL-V2X-ConfigDedicated information element (Non-Patent Document 3). In step S103 of FIG. 10, the user apparatus UE transmits a BSR (Buffer Status Report) to the base station 10.
 実施例2において、BSRに含める情報として3種類の情報がある。以下、それらを実施例2-1、実施例2-2、実施例2-3として説明する。 In Example 2, there are three types of information as information included in the BSR. Hereinafter, these will be described as Example 2-1, Example 2-2, and Example 2-3.
 <実施例2-1>
 実施例2-1では、ユーザ装置UEは、BSRの中に、使用可能な周波数の識別情報(インデックス)を含める。例えば、当該周波数の識別情報として、ステップS101で送信した送信周波数情報の中から選択された周波数の識別情報を使用する。一例として、周波数の識別情報はバッファと対応付けられる。例えば、バッファ1(例:LCG ID=1のメッセージ(データ)に対応)のバッファサイズがバッファサイズ1であり、バッファ2(例:LCG ID=2のメッセージ(データ)に対応)のバッファサイズがバッファサイズ2であるとして、ユーザ装置UEが、これら2つのデータのスケジューリングを基地局10に要求することを考える。また、ユーザ装置UEは、バッファ1のデータを周波数A(キャリアAに対応する)で送信し、バッファ2のデータを周波数B(キャリアBに対応する)で送信することを希望しているものとする。
<Example 2-1>
In Example 2-1, the user apparatus UE includes identification information (index) of usable frequencies in the BSR. For example, the frequency identification information selected from the transmission frequency information transmitted in step S101 is used as the frequency identification information. As an example, frequency identification information is associated with a buffer. For example, the buffer size of buffer 1 (eg, corresponding to a message (data) with LCG ID = 1) is buffer size 1, and the buffer size of buffer 2 (eg, corresponding to a message (data) with LCG ID = 2) is Considering that the buffer size is 2, the user apparatus UE requests the base station 10 to schedule these two data. Further, the user apparatus UE wishes to transmit the data in the buffer 1 at the frequency A (corresponding to the carrier A) and to transmit the data in the buffer 2 at the frequency B (corresponding to the carrier B). To do.
 この場合、図10のステップS103において、ユーザ装置10は、「(周波数A,バッファサイズ1)、((周波数B,バッファサイズ2)」を含むBSRを基地局10に送信する。 In this case, in step S103 of FIG. 10, the user apparatus 10 transmits a BSR including “(frequency A, buffer size 1), ((frequency B, buffer size 2)” to the base station 10.
 そして、基地局10は、バッファサイズ1のデータに対して、キャリアAのリソースを割り当て、バッファサイズ2のデータに対して、キャリアBのリソースを割り当てる。ステップS104において、基地局10は、ユーザ装置UEに対して、キャリアAのインデックスとそのリソース情報を含むDCIと、キャリアBのインデックスとそのリソース情報を含むDCIとをユーザ装置UEに送信する。ユーザ装置UEは、キャリアAとキャリアBを使用してD2D信号送信を行う(ステップS105)。 Then, the base station 10 allocates the carrier A resource to the buffer size 1 data, and allocates the carrier B resource to the buffer size 2 data. In step S104, the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information, to the user apparatus UE. The user apparatus UE performs D2D signal transmission using the carrier A and the carrier B (step S105).
 <実施例2-2>
 実施例2-2では、ユーザ装置UEは、BSRの中に、あるバッファのデータについて、当該データの送信に許容される複数の周波数(1つの周波数でもよい)の識別情報(インデックス)のリストを含める。周波数の識別情報としては、実施例2-1と同様に、ステップS101で送信した送信周波数情報の中から選択された周波数の識別情報を使用することができる。複数の周波数の識別情報を報告する代わりに、基地局10が通知した周波数グループに対する識別情報を報告することでシグナリングのオーバーヘッドを削減してもよい。
<Example 2-2>
In Example 2-2, the user apparatus UE stores, in the BSR, a list of identification information (index) of a plurality of frequencies (or one frequency) allowed for transmission of the data for a certain buffer. include. As the frequency identification information, the frequency identification information selected from the transmission frequency information transmitted in step S101 can be used as in the case of Example 2-1. Instead of reporting identification information of a plurality of frequencies, signaling overhead may be reduced by reporting identification information for the frequency group notified by the base station 10.
 一例として、バッファ1(例:LCG ID=1のメッセージ(データ)に対応)のバッファサイズがバッファサイズ1であり、バッファ2(例:LCG ID=2のメッセージ(データ)に対応)のバッファサイズがバッファサイズ2であるとして、ユーザ装置UEが、これら2つのデータのスケジューリングを基地局10に要求することを考える。また、バッファ1のデータの送信に使用可能な周波数は、周波数A(キャリアAに対応する)と周波数B(キャリアBに対応する)であり、バッファ2のデータの送信に使用可能な周波数は、周波数A(キャリアAに対応する)であるとする。 As an example, the buffer size of buffer 1 (example: corresponding to message (data) with LCG ID = 1) is buffer size 1, and buffer size of buffer 2 (example: corresponding to message (data) with LCG ID = 2) Suppose that the user apparatus UE requests the base station 10 to schedule these two data. The frequencies that can be used for data transmission in the buffer 1 are the frequency A (corresponding to the carrier A) and the frequency B (corresponding to the carrier B), and the frequencies that can be used for data transmission in the buffer 2 are It is assumed that the frequency is A (corresponding to carrier A).
 この場合、図10のステップS103において、ユーザ装置UEは、「((周波数A,周波数B),バッファサイズ1)、((周波数A),バッファサイズ2)」を含むBSRを基地局10に送信する。 In this case, in step S103 of FIG. 10, the user apparatus UE transmits a BSR including “((frequency A, frequency B), buffer size 1), ((frequency A), buffer size 2)” to the base station 10. To do.
 そして、基地局10は、バッファサイズ1のデータに対して、例えばキャリアAとキャリアBの中から選択したキャリアBのリソースを割り当て、バッファサイズ2のデータに対して、キャリアAのリソースを割り当てる。ステップS104において、基地局10は、ユーザ装置UEに対して、キャリアBのインデックスとそのリソース情報を含むDCIと、キャリアAのインデックスとそのリソース情報を含むDCIとを送信する。ユーザ装置UEは、キャリアAとキャリアBを使用してD2D信号送信を行う(ステップS105)。 The base station 10 allocates, for example, a carrier B resource selected from the carrier A and the carrier B to the buffer size 1 data, and allocates a carrier A resource to the buffer size 2 data. In step S104, the base station 10 transmits, to the user apparatus UE, the DCI including the carrier B index and its resource information, and the carrier A index and the DCI including the resource information. The user apparatus UE performs D2D signal transmission using the carrier A and the carrier B (step S105).
 <実施例2-3>
 実施例2-3では、ステップS103で送信するBSRとして、図11Bに示したような従来のBSRを使用することができる。図11Bに示したように、当該BSRにおいて、D2D信号の宛先を示す宛先ID(destination ID)と、バッファ(バッファサイズ)が対応付られている。ただし、実施例2-3では、宛先IDと周波数とが対応付けられる。また、宛先IDは、ユニキャストのLayer-2 IDであってもよいし、グループキャストのLayer-2 IDであるLayer-2 Group IDであってもよい。
<Example 2-3>
In Example 2-3, the conventional BSR as shown in FIG. 11B can be used as the BSR transmitted in step S103. As shown in FIG. 11B, in the BSR, a destination ID (destination ID) indicating a destination of the D2D signal and a buffer (buffer size) are associated with each other. However, in Example 2-3, the destination ID and the frequency are associated with each other. The destination ID may be a unicast Layer-2 ID, or a Layer-2 Group ID that is a groupcast Layer-2 ID.
 図13は、宛先IDと周波数とのマッピングの例である。実施例2-3では、例えば、図13のようなマッピング情報が仕様で定められ、ユーザ装置UEと基地局10に予め設定される。あるいは、ステップS102の設定情報に含まれる情報として、当該マッピング情報が基地局10からユーザ装置UEに送信されることとしてもよい。 FIG. 13 shows an example of mapping between the destination ID and the frequency. In Example 2-3, for example, mapping information as shown in FIG. 13 is defined in the specification, and is set in advance in the user apparatus UE and the base station 10. Alternatively, the mapping information may be transmitted from the base station 10 to the user apparatus UE as information included in the setting information in step S102.
 例えば、宛先ID1のメッセージ(データ)のバッファサイズがバッファサイズ1であり、宛先ID2のメッセージ(データ)のバッファサイズがバッファサイズ2であるとして、ユーザ装置UEが、これら2つのデータのスケジューリングを基地局10に要求することを考える。 For example, assuming that the buffer size of the message (data) with the destination ID 1 is buffer size 1, and the buffer size of the message (data) with the destination ID 2 is buffer size 2, the user apparatus UE bases the scheduling of these two data on Consider requesting the station 10.
 この場合、図10のステップS103において、ユーザ装置UEは、「(宛先ID1,バッファサイズ1)、(宛先ID2,バッファサイズ2)」を含むBSRを基地局10に送信する。 In this case, in step S103 of FIG. 10, the user apparatus UE transmits a BSR including “(destination ID1, buffer size 1), (destination ID2, buffer size 2)” to the base station 10.
 基地局10は、図13のマッピング情報を参照することで、宛先IDに対応するキャリアを識別する。すなわち、例えば、基地局10は、宛先ID1に対応するデータに対して、F1に対応するキャリアAのリソースを割り当て、宛先ID2に対応するデータに対して、F2に対応するキャリアBのリソースを割り当てる。そして、ステップS104において、基地局10はユーザ装置UEに対して、キャリアAのインデックスとそのリソース情報を含むDCIと、キャリアBのインデックスとそのリソース情報を含むDCIとをユーザ装置UEに送信する。ユーザ装置UEは、キャリアAとキャリアBを使用してD2D信号の送信を行う(ステップS105)。 The base station 10 identifies the carrier corresponding to the destination ID by referring to the mapping information in FIG. That is, for example, the base station 10 allocates the resource of the carrier A corresponding to F1 to the data corresponding to the destination ID1, and allocates the resource of the carrier B corresponding to F2 to the data corresponding to the destination ID2. . In step S104, the base station 10 transmits to the user apparatus UE the DCI including the carrier A index and its resource information, and the carrier B index and its resource information to the user apparatus UE. The user apparatus UE transmits a D2D signal using the carrier A and the carrier B (step S105).
 実施例2に係る技術により、D2D通信をサポートする無線通信システムにおいて、ユーザ装置UEが、適切なキャリアを使用してD2D信号を送信することが可能となる。特に、実施例2-1では、ユーザ装置UEは特定の周波数を指定できる。また、実施例2-2では、基地局10は、複数の使用可能周波数から選択を行うことができ、より適切な周波数(キャリア)を選択できる。また、実施例2-3では、宛先IDを使用するので、既存のBSRと同様のBSRを使用でき、実装が比較的簡易となる。 The technique according to the second embodiment enables the user apparatus UE to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication. In particular, in Example 2-1, the user apparatus UE can specify a specific frequency. In the embodiment 2-2, the base station 10 can select from a plurality of usable frequencies, and can select a more appropriate frequency (carrier). Further, in Example 2-3, since the destination ID is used, a BSR similar to the existing BSR can be used, and the mounting becomes relatively simple.
 (実施例3)
 ユーザ装置UEが、ある基地局10Aの配下のセルから、別の基地局10Bの配下のセルにハンドオーバする際に、基地局10Aから基地局10Bには、ユーザ装置UEに関する種々のコンテクスト情報(例:RRC context including the C-RNTI of the UE in the source eNB, AS-configuration, E-RAB context等)が送信される。
(Example 3)
When the user apparatus UE performs handover from a cell under the control of a certain base station 10A to a cell under the control of another base station 10B, the base station 10A to the base station 10B may receive various context information about the user apparatus UE (examples) : RRC context inclusion the C-RNTI of the UE in the source eNB, AS-configuration, E-RAB context, etc.).
 また、基地局10Aから基地局10Bに対し、ユーザ装置UEが基地局10A配下のセルで実行していたD2DのSPSのトラフィックパターンの情報も送信することが可能である。図14は、トラフィックパターンの例を示す図であり、UEAssistanceInformation messageを示す(非特許文献3からの抜粋、下線は本願用に付した。)。UEAssistanceInformation messageは、ユーザ装置UEから基地局10に送信されるメッセージである。 Also, it is possible to transmit information of the D2D SPS traffic pattern that the user apparatus UE is executing in the cell under the base station 10A from the base station 10A to the base station 10B. FIG. 14 is a diagram showing an example of a traffic pattern, showing a UE Assistance Information message (excerpt from Non-Patent Document 3, underlined for the present application). The UE Assistance Information message is a message transmitted from the user apparatus UE to the base station 10.
 図14において、SPS-AssistanceInformationは、基地局10が、ユーザ装置UEに対するSPS設定を行うことをアシストする情報であり、ユーザ装置UEが実行するD2D信号送信の周期等を示すtrafficPatternInfoが含まれる。基地局10Aは、UEAssistanceInformation messageにより取得したユーザ装置UEのSPSのトラフィックパターンの情報を基地局10Bに送信することができる。これにより、基地局10Bは、ハンドオーバ後のユーザ装置UEに対してSPSの設定を迅速に行うことができる。 In FIG. 14, SPS-AssistanceInformation is information that assists the base station 10 to perform SPS settings for the user apparatus UE, and includes traffic PatternInfo indicating the period of D2D signal transmission executed by the user apparatus UE. The base station 10A can transmit the information on the SPS traffic pattern of the user apparatus UE acquired by the UE Assistance Information message to the base station 10B. Thereby, the base station 10B can quickly set the SPS for the user apparatus UE after the handover.
 また、実施例3では、基地局10Aは、周波数の情報を基地局10Bに送信することとしている。例えば、SPSに関連して、ユーザ装置UEは、トラフィックパターン毎(例:SPSの周期毎)の使用周波数を基地局10Aに通知する。そして、ユーザ装置UEがハンドオーバを行う際に、基地局10Aは、トラフィックパターンの情報とともに、トラフィックパターン毎の使用周波数を基地局10Bに送信する。このような処理を行うことで、基地局10Bは、ユーザ装置UEから周波数に関する情報を受信することなく、ユーザ装置10に対して、使用キャリアを含むSPSの設定を行うことができる。 In the third embodiment, the base station 10A transmits frequency information to the base station 10B. For example, in relation to SPS, the user apparatus UE notifies the base station 10A of the used frequency for each traffic pattern (eg, for each SPS cycle). And when user apparatus UE performs a hand-over, 10 A of base stations transmit the use frequency for every traffic pattern to the base station 10B with the information of a traffic pattern. By performing such processing, the base station 10B can set the SPS including the used carrier for the user apparatus 10 without receiving information on the frequency from the user apparatus UE.
 また、SPSに限らずに、基地局10Aは、実施例1、2において基地局10A(前述した基地局10とする)がユーザ装置UEから受信した周波数の情報を基地局10Bに送信することとしてもよい。この場合、基地局10Aから基地局10Bに送信する周波数の情報の例は以下のとおりである。 In addition to the SPS, the base station 10A transmits the frequency information received from the user apparatus UE by the base station 10A (referred to as the base station 10 described above) in the first and second embodiments to the base station 10B. Also good. In this case, examples of frequency information transmitted from the base station 10A to the base station 10B are as follows.
 ・実施例1のステップS101で基地局10がユーザ装置UEから受信した周波数情報(メッセージタイプIDと周波数とを対応付けたリスト)。 Frequency information (base list associated with message type ID and frequency) received by the base station 10 from the user apparatus UE in step S101 of the first embodiment.
 ・実施例2のステップS101で基地局10がユーザ装置UEから受信した周波数情報(v2x-CommTxFreqList)。 The frequency information (v2x-CommTxFreqList) received by the base station 10 from the user apparatus UE in step S101 of the second embodiment.
 上記の情報を基地局10Bが取得することで、基地局10Bは、ステップS101の情報受信を行うことなく、迅速にD2D通信のスケジューリングを行うことができる。 When the base station 10B acquires the above information, the base station 10B can quickly schedule D2D communication without receiving the information in step S101.
 図15を参照して、ハンドオーバ時の動作例を説明する。図15は、ユーザ装置UEが、基地局10Aのセル(接続セル)から、基地局10Bのセル(隣接セル)へのハンドオーバを行う場合の例を示している。 Referring to FIG. 15, an example of operation during handover will be described. FIG. 15 illustrates an example in which the user apparatus UE performs a handover from the cell (connected cell) of the base station 10A to the cell (adjacent cell) of the base station 10B.
 ユーザ装置UEは、接続セル及び隣接セルの信号強度等の測定を行って、測定結果を基地局10Aに送信する。基地局10Aは、測定結果に基づき、ユーザ装置UEにハンドオーバを行わせることを決定すると(ステップS202)、ハンドオーバ要求を基地局10Bに送信する(ステップS203)。例えば、このハンドオーバ要求の中に、前述した周波数の情報等が含まれる。ただし、これは一例であり、ハンドオーバ要求以外のメッセージで周波数の情報を通知してもよい。また、図15は、基地局10Aから基地局10BにX2インタフェースで直接に情報を送信する例を示すが、これは一例である。コアネットワークにおける装置(例:MME)を経由して情報を基地局10Aから基地局10Bに送信することとしてもよい。 The user apparatus UE measures the signal strength and the like of the connected cell and the adjacent cell, and transmits the measurement result to the base station 10A. When the base station 10A determines that the user apparatus UE is to perform handover based on the measurement result (step S202), the base station 10A transmits a handover request to the base station 10B (step S203). For example, the above-described frequency information and the like are included in this handover request. However, this is an example, and the frequency information may be notified by a message other than the handover request. FIG. 15 shows an example in which information is directly transmitted from the base station 10A to the base station 10B through the X2 interface, but this is an example. Information may be transmitted from the base station 10A to the base station 10B via a device (eg, MME) in the core network.
 基地局10Aは、ユーザ装置UEにハンドオーバ指示を送信する(ステップS204)とともに、基地局10Bに対してパケット情報(ユーザ装置UEへの未送信パケット、シーケンス番号等)を送信する(ステップS205)。その後、ユーザ装置UEと基地局10Bが接続される。 The base station 10A transmits a handover instruction to the user apparatus UE (step S204) and transmits packet information (untransmitted packets to the user apparatus UE, sequence numbers, etc.) to the base station 10B (step S205). Thereafter, the user apparatus UE and the base station 10B are connected.
 (装置構成)
 次に、これまでに説明した処理動作を実行するユーザ装置UE及び基地局10の機能構成例を説明する。ユーザ装置UE及び基地局10は、実施例1、実施例2、実施例3の全ての機能を備えてもよいし、3つのうちのいずれかの1つの実施例のみの機能を備えてもよいし、3つのうちのいずれかの2つの実施例のみの機能を備えてもよい。
(Device configuration)
Next, functional configuration examples of the user apparatus UE and the base station 10 that execute the processing operations described so far will be described. The user apparatus UE and the base station 10 may have all the functions of the first embodiment, the second embodiment, and the third embodiment, or may have the function of only one of the three embodiments. The function of only two of the three embodiments may be provided.
 <ユーザ装置>
 図16は、ユーザ装置UEの機能構成の一例を示す図である。図16に示すように、ユーザ装置10は、信号送信部101と、信号受信部102と、設定情報管理部103とを有する。図16に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<User device>
FIG. 16 is a diagram illustrating an example of a functional configuration of the user apparatus UE. As illustrated in FIG. 16, the user apparatus 10 includes a signal transmission unit 101, a signal reception unit 102, and a setting information management unit 103. The functional configuration shown in FIG. 16 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部101は、送信データから送信を作成し、当該送信信号を無線で送信する。信号受信部102は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。信号送信部101は、BSRでのサイズ報告対象となるバッファを含む。信号送信部101と信号受信部102は、いずれもD2D機能とセルラー通信機能を含む。信号送信部101は、実施例1~3で説明した信号送信の動作を実行する機能を含み、信号受信部102は、実施例1~3で説明した信号受信の動作を実行する機能を含む。 The signal transmission unit 101 creates a transmission from the transmission data and transmits the transmission signal wirelessly. The signal receiving unit 102 wirelessly receives various signals, and acquires higher layer signals from the received physical layer signals. The signal transmission unit 101 includes a buffer that is a size report target in the BSR. Each of the signal transmission unit 101 and the signal reception unit 102 includes a D2D function and a cellular communication function. The signal transmission unit 101 includes a function of executing the signal transmission operation described in the first to third embodiments, and the signal reception unit 102 includes a function of executing the signal reception operation described in the first to third embodiments.
 設定情報管理部103は、信号受信部102により基地局10から受信した各種の設定情報、及び、予め設定される設定情報を格納する。 The setting information management unit 103 stores various setting information received from the base station 10 by the signal receiving unit 102, and preset setting information.
 また、信号送信部101は、データの種別と周波数の識別情報とを対応付けたリストを基地局に送信し、更に、バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信する。信号受信部102は、前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信する。また、信号送信部101は、信号受信部102により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信する。 Further, the signal transmission unit 101 transmits a list in which the data type and the frequency identification information are associated with each other to the base station, and further displays the information corresponding to the data type stored in the buffer and the size of the buffer. Including a buffer status report to the base station. The signal receiving unit 102 receives control information including identification information of a carrier used for transmission of a D2D signal related to data stored in the buffer from the base station. In addition, the signal transmission unit 101 transmits the D2D signal using the carrier specified by the identification information included in the control information received by the signal reception unit 102.
 また、信号送信部101は、バッファに格納されたデータに関するD2D信号の送信に使用できる周波数の識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局10に送信することもできる。また、信号送信部101は、バッファに格納されたデータに関するD2D信号の送信に使用できる周波数に対応付けられた宛先識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局に送信することもできる。 In addition, the signal transmission unit 101 can also transmit to the base station 10 a buffer status report including identification information of a frequency that can be used for transmission of the D2D signal regarding the data stored in the buffer and the size of the buffer. Further, the signal transmission unit 101 transmits, to the base station, a buffer status report including destination identification information associated with a frequency that can be used for transmission of the D2D signal related to data stored in the buffer and the size of the buffer. You can also.
 <基地局10>
 図17は、基地局10の機能構成の一例を示す図である。図17に示すように、基地局10は、信号送信部201と、信号受信部202と、設定情報管理部203と、NW通信204とを有する。図17に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 10>
FIG. 17 is a diagram illustrating an example of a functional configuration of the base station 10. As illustrated in FIG. 17, the base station 10 includes a signal transmission unit 201, a signal reception unit 202, a setting information management unit 203, and an NW communication 204. The functional configuration shown in FIG. 17 is merely an example. As long as the operation according to the present embodiment can be executed, the function classification and the name of the function unit may be anything.
 信号送信部201は、ユーザ装置UE側に送信する信号を生成し、当該信号を無線で送信する機能を含む。信号受信部202は、ユーザ装置UEから送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。 The signal transmission unit 201 includes a function of generating a signal to be transmitted to the user apparatus UE side and transmitting the signal wirelessly. The signal reception unit 202 includes a function of receiving various signals transmitted from the user apparatus UE and acquiring, for example, higher layer information from the received signals.
 信号送信部201は、実施例1~3で説明した、ユーザ装置UEへの信号送信の動作を実行する機能を含み、信号受信部202は、実施例1~3で説明した、ユーザ装置UEからの信号受信の動作を実行する機能を含む。信号送信の動作はスケジューリングを含む。 The signal transmission unit 201 includes a function of executing the operation of signal transmission to the user apparatus UE described in the first to third embodiments, and the signal reception unit 202 is transmitted from the user apparatus UE described in the first to third embodiments. Including a function of executing the signal receiving operation of The signal transmission operation includes scheduling.
 設定情報管理部203は、ユーザ装置UEに送信する各種の設定情報、ユーザ装置UEから受信する各種の設定情報、及び、予め設定される設定情報を格納する。NW通信部204は、実施例3で説明した基地局間の情報通信を実行する。 The setting information management unit 203 stores various setting information transmitted to the user apparatus UE, various setting information received from the user apparatus UE, and setting information set in advance. The NW communication unit 204 performs information communication between base stations described in the third embodiment.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図16~図17)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 16 to 17) used in the description of the above-described embodiment show functional unit blocks. These functional blocks (components) are realized by any combination of hardware and / or software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one device in which a plurality of elements are physically and / or logically combined, or two or more devices physically and / or logically separated may be directly and directly. It may be realized by a plurality of these devices connected indirectly (for example, wired and / or wirelessly).
 また、例えば、本発明の一実施の形態におけるユーザ装置UEと基地局10はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図18は、本実施の形態に係るユーザ装置UEと基地局10のハードウェア構成の一例を示す図である。上述のユーザ装置UEと基地局10はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus UE and the base station 10 according to an embodiment of the present invention may function as a computer that performs processing according to the present embodiment. FIG. 18 is a diagram illustrating an example of a hardware configuration of the user apparatus UE and the base station 10 according to the present embodiment. Each of the above-described user apparatus UE and base station 10 may be physically configured as a computer apparatus including a processor 1001, a memory 1002, a storage 1003, a communication apparatus 1004, an input apparatus 1005, an output apparatus 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置10と基地局20のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term “apparatus” can be read as a circuit, a device, a unit, or the like. The hardware configurations of the user apparatus 10 and the base station 20 may be configured to include one or a plurality of apparatuses indicated by 1001 to 1006 shown in the figure, or may be configured not to include some apparatuses. May be.
 ユーザ装置UEと基地局10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus UE and the base station 10 is performed by causing the processor 1001 to perform calculation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004 and the memory 1002. This is realized by controlling reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図16に示したユーザ装置UEの信号送信部101、信号受信部102、設定情報管理部103は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図17に示した基地局10の信号送信部201と、信号受信部202と、設定情報管理部203と、NW通信部204は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Further, the processor 1001 reads a program (program code), software module, or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 101, the signal reception unit 102, and the setting information management unit 103 of the user apparatus UE illustrated in FIG. 16 may be realized by a control program stored in the memory 1002 and operating on the processor 1001. Further, for example, the signal transmission unit 201, the signal reception unit 202, the setting information management unit 203, and the NW communication unit 204 of the base station 10 illustrated in FIG. 17 are stored in the memory 1002, and are controlled by the processor 1001. It may be realized by a program. Although the above-described various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. May be. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to perform the processing according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray). (Registered trademark) disk, smart card, flash memory (for example, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. The storage 1003 may be referred to as an auxiliary storage device. The storage medium described above may be, for example, a database, server, or other suitable medium including the memory 1002 and / or the storage 1003.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置10の信号送信部101及び信号受信部102は、通信装置1004で実現されてもよい。また、基地局20の信号送信部201及び信号受信部202、NW通信部204は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 101 and the signal reception unit 102 of the user device 10 may be realized by the communication device 1004. Further, the signal transmission unit 201, the signal reception unit 202, and the NW communication unit 204 of the base station 20 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
 また、ユーザ装置UEと基地局10はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Further, the user equipment UE and the base station 10 are respectively a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), an ASIC (Application Logic Integrated Circuit), a PLD (Programmable Logic Device), an AFP It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態によれば、D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、データの種別と周波数の識別情報とを対応付けたリストを基地局に送信し、更に、バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信する送信部と、前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信する受信部と、を備え、前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信することを特徴とするユーザ装置が提供される。
(Summary of embodiment)
As described above, according to the present embodiment, a user apparatus used in a wireless communication system that supports D2D communication, in which a list in which a data type and frequency identification information are associated with each other is And transmitting a buffer status report including information corresponding to the type of data stored in the buffer and the size of the buffer to the base station, and a D2D signal related to the data stored in the buffer A receiving unit that receives from the base station control information including identification information of a carrier used for transmission of the base station, and the transmitting unit includes the identification information included in the control information received by the receiving unit. A user apparatus is provided that transmits the D2D signal using the carrier specified by (1).
 上記の構成によれば、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術が提供される。 According to the above configuration, a technique is provided that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
 前記データの種別に対応する情報は、例えば、ロジカルチャネルグループIDである。この構成により、従来のBSRと同様の構成を有するBSRを使用できる。 The information corresponding to the data type is, for example, a logical channel group ID. With this configuration, a BSR having the same configuration as a conventional BSR can be used.
 また、本実施の形態により、D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、バッファに格納されたデータに関するD2D信号の送信に使用できる周波数の識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局に送信する送信部と、前記D2D信号の送信のために使用するキャリアの識別情報を含む制御情報を前記基地局から受信する受信部と、を備え、前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信することを特徴とするユーザ装置が提供される。 Further, according to the present embodiment, a user apparatus used in a wireless communication system that supports D2D communication, the frequency identification information that can be used for transmitting D2D signals related to data stored in the buffer, and the size of the buffer, A transmission unit that transmits a buffer status report including: a transmission unit to the base station; and a reception unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station. A user apparatus is provided, wherein the unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the receiving unit.
 上記の構成によれば、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術が提供される。 According to the above configuration, a technique is provided that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
 前記D2D信号の送信に使用できる周波数の識別情報は、例えば、当該D2D信号の送信に許容された複数の周波数の識別情報を含むリストである。この構成により、基地局は、複数の使用可能周波数から選択を行うことができ、より適切な周波数(キャリア)を選択できる。 The frequency identification information that can be used for transmission of the D2D signal is, for example, a list that includes identification information of a plurality of frequencies permitted for transmission of the D2D signal. With this configuration, the base station can select from a plurality of usable frequencies, and can select a more appropriate frequency (carrier).
 また、本実施の形態により、D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、バッファに格納されたデータに関するD2D信号の送信に使用できる周波数に対応付けられた宛先識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局に送信する送信部と、前記D2D信号の送信のために使用するキャリアの識別情報を含む制御情報を前記基地局から受信する受信部と、を備え、前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信することを特徴とするユーザ装置が提供される。 Further, according to the present embodiment, destination identification information associated with a frequency that can be used for transmission of a D2D signal related to data stored in a buffer, which is a user apparatus used in a wireless communication system that supports D2D communication, A transmission unit that transmits a buffer status report including the size of the buffer to the base station, and a reception unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station; And the transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit. .
 上記の構成によれば、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術が提供される。 According to the above configuration, a technique is provided that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
 また、本実施の形態により、D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置が実行する通信方法であって、データの種別と周波数の識別情報とを対応付けたリストを基地局に送信するステップと、バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信するステップと、前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信するステップと、前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信するステップとを備えることを特徴とする通信方法が提供される。 Further, according to the present embodiment, a communication method executed by a user apparatus used in a wireless communication system that supports D2D communication, wherein a list in which a data type and frequency identification information are associated is transmitted to a base station. Transmitting a buffer status report including information corresponding to the type of data stored in the buffer and the size of the buffer to the base station, and transmitting a D2D signal related to the data stored in the buffer. Receiving control information including identification information of a carrier used for transmission from the base station, and transmitting the D2D signal using the carrier specified by the identification information included in the control information; A communication method characterized by comprising:
 上記の構成によれば、D2D通信をサポートする無線通信システムにおいて、ユーザ装置が、適切なキャリアを使用してD2D信号を送信することを可能とする技術が提供される。 According to the above configuration, a technique is provided that enables a user apparatus to transmit a D2D signal using an appropriate carrier in a wireless communication system that supports D2D communication.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置UEと基地局10は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement of embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various variations, modifications, alternatives, substitutions, and the like. I will. Although specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent). The boundaries between functional units or processing units in the functional block diagram do not necessarily correspond to physical component boundaries. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components. About the processing procedure described in the embodiment, the processing order may be changed as long as there is no contradiction. For convenience of description of processing, the user apparatus UE and the base station 10 have been described using functional block diagrams. However, such an apparatus may be realized by hardware, software, or a combination thereof. The software operated by the processor of the user apparatus 10 according to the embodiment of the present invention and the software operated by the processor of the base station 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the aspect / embodiment described in the present specification, and may be performed by other methods. For example, the notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Accu), signaling (MediaColl). It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be referred to as an RRC message, for example, RRC Connection setup (RRC Con ection Setup) message, RRC connection reconfiguration (it may be a RRC Connection Reconfiguration) message.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Fureure Radio Access), and W-CDMA. (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), The present invention may be applied to a Bluetooth (registered trademark), a system using other appropriate systems, and / or a next generation system extended based on these systems.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts and the like of each aspect / embodiment described in this specification may be switched in order as long as there is no contradiction. For example, the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置UEとの通信のために行われる様々な動作は、基地局20および/または基地局10以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation performed by the base station 10 in this specification may be performed by the upper node in some cases. In a network composed of one or a plurality of network nodes having the base station 10, various operations performed for communication with the user apparatus UE are performed in addition to the base station 20 and / or other than the base station 10. Obviously, it can be done by a network node (for example, but not limited to MME or S-GW). Although the case where there is one network node other than the base station 10 in the above is illustrated, a combination of a plurality of other network nodes (for example, MME and S-GW) may be used.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
 ユーザ装置UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 The user equipment UE is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, It may also be referred to as a wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
 基地局10は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、gNB、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 10 may also be referred to by those skilled in the art as NB (NodeB), eNB (enhanced NodeB), base station (Base Station), gNB, or some other appropriate terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 As used herein, the terms “determining” and “determining” may encompass a wide variety of actions. “Judgment” and “determination” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (investigation), investigation (investigating), search (loking up) (for example, table , Searching in a database or another data structure), considering ascertaining “determining”, “determining”, and the like. Further, “determination” and “determination” are reception (for example, receiving information), transmission (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in a memory) may be considered as “determining” or “determining”. In addition, “determination” and “determination” means that “resolving”, selection (selecting), selection (choosing), establishment (establishing), comparison (comparing), etc. are regarded as “determination” and “determination”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as the terms “including”, “including”, and variations thereof are used herein or in the claims, these terms are similar to the term “comprising”. It is intended to be comprehensive. Furthermore, the term “or” as used herein or in the claims is not intended to be an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。 Throughout this disclosure, if articles are added by translation, for example, a, an, and the in English, these articles are not clearly indicated otherwise from the context, Multiple can be included.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
UE ユーザ装置
101 信号送信部
102 信号受信部
103 設定情報管理部
10 基地局
201 信号送信部
202 信号受信部
203 設定情報管理部
204 NW通信部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
UE user apparatus 101 signal transmission section 102 signal reception section 103 setting information management section 10 base station 201 signal transmission section 202 signal reception section 203 setting information management section 204 NW communication section 1001 processor 1002 memory 1003 storage 1004 communication apparatus 1005 input apparatus 1006 output apparatus

Claims (6)

  1.  D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
     データの種別と周波数の識別情報とを対応付けたリストを基地局に送信し、更に、バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信する送信部と、
     前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信する受信部と、を備え、
     前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信する
     ことを特徴とするユーザ装置。
    A user apparatus used in a wireless communication system supporting D2D communication,
    A list in which the data type and the frequency identification information are associated is transmitted to the base station, and a buffer status report including information corresponding to the data type stored in the buffer and the size of the buffer is transmitted to the base station. A transmission unit for transmitting to
    A receiving unit that receives control information including identification information of a carrier used for transmission of a D2D signal related to data stored in the buffer from the base station;
    The transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit.
  2.  前記データの種別に対応する情報は、ロジカルチャネルグループIDである
     ことを特徴とする請求項1に記載のユーザ装置。
    The user apparatus according to claim 1, wherein the information corresponding to the type of data is a logical channel group ID.
  3.  D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
     バッファに格納されたデータに関するD2D信号の送信に使用できる周波数の識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局に送信する送信部と、
     前記D2D信号の送信のために使用するキャリアの識別情報を含む制御情報を前記基地局から受信する受信部と、を備え、
     前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信する
     ことを特徴とするユーザ装置。
    A user apparatus used in a wireless communication system supporting D2D communication,
    A transmission unit that transmits a buffer status report including identification information of a frequency that can be used for transmission of a D2D signal related to data stored in the buffer and a size of the buffer to the base station;
    A receiving unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station, and
    The transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit.
  4.  前記D2D信号の送信に使用できる周波数の識別情報は、当該D2D信号の送信に許容された複数の周波数の識別情報を含むリストである
     ことを特徴とする請求項3に記載のユーザ装置。
    4. The user apparatus according to claim 3, wherein the frequency identification information that can be used for transmission of the D2D signal is a list including identification information of a plurality of frequencies permitted for transmission of the D2D signal.
  5.  D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置であって、
     バッファに格納されたデータに関するD2D信号の送信に使用できる周波数に対応付けられた宛先識別情報と当該バッファのサイズとを含むバッファ状態報告を、基地局に送信する送信部と、
     前記D2D信号の送信のために使用するキャリアの識別情報を含む制御情報を前記基地局から受信する受信部と、を備え、
     前記送信部は、前記受信部により受信した前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信する
     ことを特徴とするユーザ装置。
    A user apparatus used in a wireless communication system supporting D2D communication,
    A transmission unit that transmits a buffer status report including destination identification information associated with a frequency that can be used for transmission of a D2D signal related to data stored in the buffer and a size of the buffer to the base station;
    A receiving unit that receives control information including identification information of a carrier used for transmission of the D2D signal from the base station, and
    The transmission unit transmits the D2D signal using the carrier specified by the identification information included in the control information received by the reception unit.
  6.  D2D通信をサポートする無線通信システムにおいて使用されるユーザ装置が実行する通信方法であって、
     データの種別と周波数の識別情報とを対応付けたリストを基地局に送信するステップと、
     バッファに格納されたデータの種別に対応する情報と当該バッファのサイズとを含むバッファ状態報告を前記基地局に送信するステップと、
     前記バッファに格納されたデータに関するD2D信号の送信のために使用するキャリアの識別情報を含む制御情報を、前記基地局から受信するステップと、
     前記制御情報に含まれる前記識別情報により特定される前記キャリアを使用して前記D2D信号を送信するステップと
     を備えることを特徴とする通信方法。
    A communication method executed by a user apparatus used in a wireless communication system supporting D2D communication,
    Transmitting a list in which the type of data and frequency identification information are associated with each other to the base station;
    Transmitting a buffer status report including information corresponding to the type of data stored in the buffer and the size of the buffer to the base station;
    Receiving control information including identification information of a carrier used for transmission of a D2D signal related to data stored in the buffer from the base station;
    Transmitting the D2D signal using the carrier specified by the identification information included in the control information.
PCT/JP2017/017311 2017-05-02 2017-05-02 User device, and communication method WO2018203412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017311 WO2018203412A1 (en) 2017-05-02 2017-05-02 User device, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017311 WO2018203412A1 (en) 2017-05-02 2017-05-02 User device, and communication method

Publications (1)

Publication Number Publication Date
WO2018203412A1 true WO2018203412A1 (en) 2018-11-08

Family

ID=64016041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017311 WO2018203412A1 (en) 2017-05-02 2017-05-02 User device, and communication method

Country Status (1)

Country Link
WO (1) WO2018203412A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228729A (en) * 2018-12-27 2021-08-06 株式会社Ntt都科摩 Communication device and channel state information measurement method
CN113366905A (en) * 2019-02-06 2021-09-07 株式会社Ntt都科摩 User device and communication method
CN113574966A (en) * 2019-03-19 2021-10-29 株式会社Ntt都科摩 User device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137208A1 (en) * 2014-03-14 2015-09-17 シャープ株式会社 Terminal device, base station device, communication system, resource management method, and accumulation circuit
JP2016536853A (en) * 2013-10-03 2016-11-24 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting an indicator for D2D operation in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536853A (en) * 2013-10-03 2016-11-24 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting an indicator for D2D operation in a wireless communication system
WO2015137208A1 (en) * 2014-03-14 2015-09-17 シャープ株式会社 Terminal device, base station device, communication system, resource management method, and accumulation circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections to Destination Indexing", 3GPP TSG-RAN WG2#95 R2-164698, 26 August 2016 (2016-08-26), pages 1 - 2, XP051126286, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_95/Docs/R2-164698.zip> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228729A (en) * 2018-12-27 2021-08-06 株式会社Ntt都科摩 Communication device and channel state information measurement method
CN113366905A (en) * 2019-02-06 2021-09-07 株式会社Ntt都科摩 User device and communication method
CN113574966A (en) * 2019-03-19 2021-10-29 株式会社Ntt都科摩 User device

Similar Documents

Publication Publication Date Title
JP7410994B2 (en) Terminal, communication system, and transmission method
WO2017026543A1 (en) User device and d2d signal transmission method
WO2017026511A1 (en) User device and signal transmission method
WO2017170775A1 (en) User device and sensing control method
US10728881B2 (en) User equipment and signal transmission method
WO2017026495A1 (en) Control device, user device, wireless resource allocation method, and communication method
WO2017026542A1 (en) Relay device and relay method
WO2017026477A1 (en) User device, signal transmission method, and signal reception method
WO2017026545A1 (en) User device and data transmission method
JPWO2017179286A1 (en) User device and signal transmission method
JP7169400B2 (en) Terminal and communication method
WO2017135428A1 (en) User equipment and receiving method
WO2017195538A1 (en) User device and signal transmission method
JPWO2017169835A1 (en) User device and transmission method
WO2019215823A1 (en) Communication device
WO2019064465A1 (en) User device and resource selection method
WO2019207660A1 (en) Communication device
WO2019224893A1 (en) Communication device
WO2018203412A1 (en) User device, and communication method
WO2019064466A1 (en) User equipment
WO2020230213A1 (en) User device
WO2018203415A1 (en) User device
WO2019030935A1 (en) User device and synchronous signal transmission method
WO2019229907A1 (en) Communication device
WO2018030397A1 (en) User apparatus and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP