WO2018202129A1 - 通信方法、基站及终端设备 - Google Patents

通信方法、基站及终端设备 Download PDF

Info

Publication number
WO2018202129A1
WO2018202129A1 PCT/CN2018/085605 CN2018085605W WO2018202129A1 WO 2018202129 A1 WO2018202129 A1 WO 2018202129A1 CN 2018085605 W CN2018085605 W CN 2018085605W WO 2018202129 A1 WO2018202129 A1 WO 2018202129A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
bearer
data flow
parameter
qos parameter
Prior art date
Application number
PCT/CN2018/085605
Other languages
English (en)
French (fr)
Inventor
戴明增
奥鲁佛松亨里克
张宏卓
杨旭东
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3062490A priority Critical patent/CA3062490C/en
Priority to CN202410245221.9A priority patent/CN118042530A/zh
Priority to EP18794122.4A priority patent/EP3582544B1/en
Priority to KR1020197035303A priority patent/KR102271766B1/ko
Priority to RU2019139405A priority patent/RU2754681C2/ru
Priority to CN201880029691.4A priority patent/CN110603845B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019560653A priority patent/JP6860697B2/ja
Priority to EP21185063.1A priority patent/EP3968690A1/en
Priority to BR112019023022-0A priority patent/BR112019023022A2/pt
Publication of WO2018202129A1 publication Critical patent/WO2018202129A1/zh
Priority to US16/441,557 priority patent/US10869324B2/en
Priority to US17/121,450 priority patent/US20210153220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communications, and more particularly to a communication method, a base station, and a terminal device.
  • the concept of phase separation between a centralized unit (CU) and a distributed unit (DU) is introduced, that is, the base station is divided into two parts: CU and DU. How to map the Quality of Service (QoS) data flow to the bearer and how to determine the QoS parameters of the bearer in the case of separate CU and DU is a problem to be solved.
  • QoS Quality of Service
  • the present application provides a communication method, a base station, and a terminal device, so that a DU can schedule a bearer according to a QoS parameter of a bearer.
  • a communication method comprising: a centralized unit CU acquiring a QoS parameter of a quality of service QoS data stream; the CU determining the QoS data flow and a bearer according to a QoS parameter of the QoS data flow Between the CUs, the CU determines the QoS parameters of the bearer according to the QoS parameters of the QoS data flow; and the CU sends the QoS parameters of the bearer to the distributed unit DU.
  • the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are determined by the CU, which conforms to the CU and DU functional division trend, that is, the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are all performed by the CU.
  • the Service Data Adaptation Protocol (SDAP) layer is implemented to ensure that the QoS parameters of the bearer are consistent with the bearer. This facilitates the scheduling of the bearer according to the QoS parameters of the bearer.
  • SDAP Service Data Adaptation Protocol
  • the CU determines, according to a QoS parameter of the QoS data flow, mapping information between the QoS data flow and a bearer, where: the CU compares The QoS parameter in the QoS data stream determines mapping information between the QoS data stream and the bearer.
  • QoS data streams of more similar QoS parameters can be mapped to the same bearer.
  • a mapping relationship exists between the multiple data flows in the QoS data flow and the first bearer, where the CU is based on a QoS parameter of the QoS data flow, Determining the QoS parameter of the bearer, including: the CU selecting a QoS parameter of the first bearer from a QoS parameter of the multiple data streams, or calculating, by the CU, a QoS parameter according to the multiple data flows Describe the QoS parameters of the first bearer.
  • the sending, by the CU, the QoS parameter of the bearer to the DU the CU sends a first message to the DU, where the first message includes The QoS parameter of the bearer, where the first message is a bearer setup request message or a context setup request message.
  • the CU sends a bearer modification message to the DU, where the bearer modification message includes at least one of the first information and the second information, where the The first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • the CU determines, according to a QoS parameter of the QoS data flow, mapping information between the QoS data flow and a bearer, including: the CU is in a grouping
  • the Data Link Protocol SDAP layer determines mapping information between the QoS data stream and the bearer.
  • the method further comprises: the CU acquiring a QoS parameter of a non-QoS data flow level, the QoS parameter of the non-QoS data flow level including a slice level QoS Any one or a combination of a parameter, a User Equipment (UE) level QoS parameter, and a Packet Data Unit (PDU) session level QoS parameter; the CU sends the non to the DU a QoS parameter of a QoS data flow level; or the CU acquires a QoS parameter of a non-QoS data flow level, the QoS parameters of the non-QoS data flow level including a slice level QoS parameter, a UE level QoS parameter, and a packet data unit PDU Any one of session-level QoS parameters; the CU controls the corresponding data transmission according to the QoS parameters of the non-QoS data flow level.
  • UE User Equipment
  • PDU Packet Data Unit
  • a communication method comprising: a centralized unit CU acquiring a QoS parameter of a quality of service QoS data stream; the CU determining the QoS data flow and a bearer according to a QoS parameter of the QoS data flow Mapping information between the CUs and the QoS parameters of the QoS data stream and the mapping information between the QoS data stream and the bearer.
  • the DU can flexibly implement the scheduling of the bearer according to the QoS parameters of the QoS data flow and the mapping information between the QoS data flow and the bearer, for example, the Medium Access Control (MAC) layer on the DU.
  • the scheduling of bearers and the like can be flexibly implemented according to information such as load and QoS parameters of the QoS data stream, and mapping information between the QoS data stream and the bearer.
  • the CU determines, according to a QoS parameter of the QoS data flow, mapping information between the QoS data flow and a bearer, where: the CU compares The QoS parameter in the QoS data stream determines mapping information between the QoS data stream and the bearer.
  • the CU sends a QoS parameter of the QoS data flow to the DU, and mapping information between the QoS data flow and the bearer, including: The CU sends a first message to the DU, where the first message includes a QoS parameter of the QoS data flow and mapping information between the QoS data flow and the bearer, where the first message is a bearer Establish a request message or a context establishment request message.
  • the method further includes: the CU sending a bearer modification message to the DU, where the bearer modification message includes at least one of the first information and the second information.
  • the first information is a modified QoS parameter of the bearer
  • the second information is used to increase or decrease a QoS data flow included in the bearer.
  • the CU determines, according to a QoS parameter of the QoS data flow, mapping information between the QoS data flow and a bearer, including: the CU is in a grouping
  • the Data Link Protocol SDAP layer determines mapping information between the QoS data stream and the bearer.
  • the method further includes: the CU acquiring a QoS parameter of a non-QoS data flow level, the QoS parameter of the non-QoS data flow level including a slice level QoS Any one or a combination of a parameter, a QoS parameter of a UE level, and a QoS parameter of a packet data unit PDU session level; the CU transmitting the QoS parameter of the non-QoS data flow level to the DU; or the CU Acquiring QoS parameters of a non-QoS data flow level, the QoS parameters of the non-QoS data flow level including any one of a slice level QoS parameter, a UE level QoS parameter, and a packet data unit PDU session level QoS parameter; The CU controls the corresponding data transmission according to the QoS parameters of the non-QoS data flow level.
  • a communication method comprising: a distributed unit DU receiving a QoS parameter of a bearer sent by a centralized unit CU, wherein the bearer is determined by the CU according to a QoS parameter of the QoS data stream a bearer having a mapping relationship with the QoS data flow, the QoS parameter of the bearer being determined by the CU according to a QoS parameter of the QoS data flow; and the DU according to the QoS parameter of the bearer, The bearer is scheduled.
  • the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are determined by the CU, which conforms to the CU and DU functional division trend, that is, the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are all performed by the CU.
  • the QoS parameters of the bearer and the bearer are consistently maximized, which facilitates the scheduling of the bearer according to the QoS parameters of the bearer.
  • the mapping information is determined by the CU by comparing QoS parameters in the QoS data stream.
  • the receiving, by the CU, the QoS parameter of the bearer sent by the CU includes: the DU receiving the first message sent by the CU, where the first message includes The QoS parameter of the bearer, where the first message is a bearer setup request message or a context setup request message.
  • the method further includes: the DU receiving a bearer modification message sent by the CU, where the bearer modification message includes the first information and the second information At least one, wherein the first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • the mapping information between the QoS data stream and the bearer is determined at the CU in a packet data link protocol SDAP layer.
  • the method further includes: the DU receiving a QoS parameter of a non-QoS data flow level sent by the CU, where the non-QoS data flow level
  • the QoS parameters include any one or a combination of a QoS parameter of a slice level, a QoS parameter of a UE level, and a QoS parameter of a packet data unit PDU session level; the DU according to the QoS parameter of the non-QoS data flow level, corresponding to The data transmission is controlled.
  • a fourth aspect provides a communication method, the method comprising: a distributed unit DU receiving a QoS parameter of a QoS data stream sent by a centralized unit CU, and mapping information between the QoS data stream and the bearer; The DU schedules the bearer according to a QoS parameter of the QoS data flow and mapping information between the QoS data flow and the bearer.
  • the DU can flexibly implement scheduling on the bearer according to the QoS parameters of the QoS data flow and the mapping information between the QoS data flow and the bearer.
  • the MAC layer on the DU can be based on information such as load and QoS data flow.
  • the QoS parameters, and the mapping information between the QoS data stream and the bearer flexibly implement scheduling of bearers and the like.
  • the mapping information is determined by the CU by comparing QoS parameters in the QoS data stream.
  • a mapping relationship exists between the multiple data flows in the QoS data flow and the bearer, where the QoS parameter of the bearer is that the CU is from the The QoS parameters of the multiple data streams are selected, or the QoS parameters of the bearer are calculated by the CU according to the QoS parameters of the multiple data streams.
  • the DU receives a QoS parameter of a QoS data stream sent by the CU, and mapping information between the QoS data stream and the bearer, including: The DU receives the first message sent by the CU, where the first message includes the QoS parameter of the bearer and mapping information between the QoS data flow and the bearer, where the first message is a bearer setup request.
  • a message or context establishment request message is a message or context establishment request message.
  • the method further includes: the DU receiving a bearer modification message sent by the CU, where the bearer modification message includes the first information and the second information At least one, wherein the first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • the mapping information between the QoS data stream and the bearer is determined at the CU in a packet data link protocol SDAP layer.
  • the method further includes: the DU receiving a QoS parameter of a non-QoS data flow level sent by the CU, where the non-QoS data flow level
  • the QoS parameters include any one or a combination of a QoS parameter of a slice level, a QoS parameter of a UE level, and a QoS parameter of a packet data unit PDU session level; the DU according to the QoS parameter of the non-QoS data flow level, corresponding to The data transmission is controlled.
  • a communication method includes: acquiring, by a UE, mapping information between a QoS data stream and a bearer, where the mapping information is determined by a CU according to a QoS parameter of the QoS data flow; The UE sends uplink data to the DU according to the mapping relationship between the QoS data stream and the bearer.
  • the mapping information between the QoS data stream and the bearer on which the UE transmits the uplink data is determined by the CU according to the QoS parameter of the QoS data flow, and conforms to the CU and DU function division trend, and can ensure the uplink data of the UE.
  • the effect of the transmission is determined by the CU according to the QoS parameter of the QoS data flow, and conforms to the CU and DU function division trend, and can ensure the uplink data of the UE. The effect of the transmission.
  • the acquiring, by the terminal device, mapping information between the QoS data stream and the bearer includes: receiving, by the terminal device, the radio resource control connection reconfiguration of the DU The terminal device obtains a mapping relationship between the QoS data flow and the bearer from the radio resource control connection reconfiguration message.
  • the terminal device receives a bearer modification message that is sent by the DU, where the bearer modification message includes at least one of the first information and the second information,
  • the first information is a modified QoS parameter of the bearer
  • the second information is used to increase or decrease a QoS data flow included in the bearer
  • the terminal device determines, according to the bearer modification message, the The QoS parameter of the bearer; and/or the terminal device increases or decreases the QoS data stream included in the bearer according to the bearer modification message.
  • a base station comprising a CU, the CU comprising means for performing the method of the first aspect or various implementations thereof.
  • a base station comprising a CU, the CU comprising means for performing the method of the second aspect or various implementations thereof.
  • a base station comprising a DU, the DU comprising means for performing the method of the third aspect or various implementations thereof.
  • a base station comprising a DU, the CU comprising means for performing the method of the fourth aspect or various implementations thereof.
  • a terminal device comprising means for performing the method of the fifth aspect or various implementations thereof.
  • a communication device comprising: a storage medium, and a processor, wherein the storage medium stores a computer executable program, and the central processor is connected to the nonvolatile storage medium
  • the computer executable program is executed to implement a portion of the method or method in any one of the above first to eighth aspects or a method or method in which it can be implemented by a processor.
  • the above storage medium may be a non-volatile storage medium.
  • a twelfth aspect a computer readable medium storing program code for computer execution, the program code comprising for performing any one of the above first to fifth aspects
  • the instructions of the method or method in its various implementations comprising for performing any one of the above first to fifth aspects
  • FIG. 1 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scenario in which a UE switches from a current base station to a target base station.
  • FIG. 4 is a schematic diagram of a scenario in which a UE switches from a current CU of a base station to a target DU.
  • FIG. 5 is a schematic diagram of a scenario in which a UE switches from a DU of a primary base station to a DU of a secondary base station.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 12 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 13 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a base station according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a base station according to an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a base station according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a base station according to an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the technical solution of the present application can be applied to a communication system with a separate design of CU and DU or a communication system with similar design principles, for example, Long Term Evolution (LTE) system, fifth generation (5th-Generation, 5G) Communication systems and other communication systems that can be adapted to the separation of DU and CU architectures.
  • LTE Long Term Evolution
  • 5G fifth generation Communication systems and other communication systems that can be adapted to the separation of DU and CU architectures.
  • the present application relates to a terminal device, which may be a device that includes a wireless transceiver function and can cooperate with a network device to provide a communication service for a user.
  • the terminal device may be called a User Equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and the like.
  • the specific representation of the terminal device may be a smart terminal, a personal digital assistant (PDA), a handheld device with wireless communication function, an Internet of Things device, an in-vehicle device, a wearable device, and the like.
  • PDA personal digital assistant
  • the terminal device may have a corresponding configuration in different service scenarios, which is not limited in this application.
  • 5G includes three typical business scenarios:
  • the first is enhanced mobile broadband.
  • the peak rate of intelligent terminal users reaches 10Gbps or even 20Gbps. It provides virtual bandwidth, ubiquitous video broadcast and sharing, and anytime, anywhere cloud access and other large bandwidth applications. stand by.
  • the second is to connect the Internet of Things.
  • the 5G network needs to support the connection of people and things of 1 million square kilometers.
  • the third is low latency and ultra-reliable communication.
  • This scenario requires a 5G network with a latency of 1 millisecond, providing strong support for low-latency services such as smart manufacturing, remote mechanical control, assisted driving, and autonomous driving.
  • FIG. 1 shows a flow chart of a communication method of an embodiment of the present application.
  • the specific steps of the communication method 100 are as follows:
  • the CU obtains a QoS parameter of the QoS data flow.
  • This step has different implementation methods.
  • the specific examples are as follows:
  • the CU first receives the QoS data stream sent by the core network, and then acquires the QoS parameters of the QoS data stream.
  • the user breadhead of the QoS data stream includes a QoS data stream ID
  • the QoS data stream ID has a certain correspondence with the QoS parameter of the QoS data stream.
  • the CU can determine the QoS parameters of the QoS data flow according to the correspondence between the QoS data flow ID, the QoS data flow ID, and the QoS parameters of the QoS data flow.
  • the correspondence between the QoS data stream ID and the QoS parameter of the QoS data stream may be preset in the CU or may be provided by the core network. If the manner provided by the core network is adopted, the CU may obtain a correspondence between the QoS data flow ID and the QoS parameter of the QoS data flow from a protocol data unit (PDU) session establishment request sent by the core network.
  • PDU protocol data unit
  • the CU may also acquire the QoS parameters of the QoS data stream without receiving the QoS data stream sent by the core network.
  • the CU obtains the QoS data flow ID and the correspondence between the QoS data flow ID and the QoS parameter from the PDU session establishment request sent by the core network, thereby determining the QoS according to the QoS data flow ID and the correspondence between the QoS data flow ID and the QoS parameter.
  • the QoS parameters of the data stream are the QoS parameters of the data stream.
  • the QoS parameters of the above QoS data flow may include the following parameters:
  • the foregoing 5QI may specifically include: Guaranteed Bit Rate (GBR) or non-GBR type information, Priority Level, Packet Delay Budget, and packet error rate. (Packet Error Rate).
  • GRR Guaranteed Bit Rate
  • Priority Level Priority Level
  • Packet Delay Budget Packet Error Rate
  • the CU determines mapping information between the QoS data flow and the bearer according to the QoS parameter of the QoS data flow.
  • the bearer may be a data radio bearer (DRB) or a radio bearer (RB). Specifically, when the bearer is between the CU and the DU, it may be an RB. When being carried between the DU and the UE, The bearer can be a DRB.
  • DRB data radio bearer
  • RB radio bearer
  • the foregoing QoS data stream may include multiple data streams, and the foregoing bearer may also include multiple bearers.
  • the CU determines the mapping relationship between the QoS data flow and the bearer, and may be that multiple data flows are mapped into multiple bearers, and different data flows may map one bearer, and the same bearer may include one or more data flows.
  • mapping relationship between the QoS data flow and the bearer according to the QoS parameters of the QoS data flow will be described below with reference to specific examples.
  • the QoS data streams with similar QoS parameters can be mapped to the same bearer, and the QoS data streams with different QoS parameters can be mapped to different bearers.
  • the CU may specifically map the QoS data flow to the bearer in a Packet Data Linking Protocol (SDAP) layer of the CU.
  • SDAP Packet Data Linking Protocol
  • the foregoing QoS data stream includes a first data stream, a second data stream, and a third data stream, where the bearer includes a first bearer and a second bearer, and QoS of the first data stream, the second data stream, and the third data stream
  • the parameters are shown in Table 1.
  • the parameters of the first data stream are close to those of the second data stream (the packet error rates of the two data streams are the same, the packet delay budget and the priority level are also relatively close), and the parameters of the third data stream are relatively close.
  • the parameters of the first data stream and the second data stream are different from each other.
  • the mapping relationship shown in Table 2 can be obtained, where the first data stream and the second data are obtained.
  • the flow is mapped to the first bearer and the third data stream is mapped to the second bearer.
  • mapping relationship between the QoS data flow and the bearer is only described by using Table 1 and Table 2 as an example.
  • the flexible selection may be performed according to different application scenarios.
  • the primary QoS parameters in the QoS data stream to determine the mapping relationship between the QoS data stream and the bearer. For example, in a scenario of low latency and ultra-reliable communication, if the packet delay budgets of two QoS data streams are the same or relatively close, the two QoS data streams can be mapped to the same bearer.
  • the CU may map the GBR type data stream and the non-GBR type QoS data stream to different bearers.
  • first data stream and the second data stream may be located in the same PDU session, and the third data stream is located in another PDU session, as shown in Table 3.
  • the first PDU session includes the first data stream.
  • the second data stream, the second PDU session includes the third data stream. It can be seen from Table 3 that the data flows of different PDU sessions respectively correspond to different bearers, the data flow of the first PDU session is mapped to the first bearer, and the data flow of the second PDU session is mapped to the second bearer.
  • the CU may map the QoS data flow to the bearer according to the QoS parameters of the QoS data flow.
  • the CU maps the QoS data stream to the bearer.
  • the Packet Data Linking Protocol (SDAP) layer at the CU may map the QoS data stream to the bearer.
  • SDAP Packet Data Linking Protocol
  • the CU determines a QoS parameter of the bearer according to the QoS parameter of the QoS data flow.
  • the CU may determine the QoS parameters of the bearer according to the QoS parameters of the QoS data stream while determining the mapping relationship between the QoS data stream and the bearer.
  • the CU may also determine the QoS parameters of the bearer according to the QoS parameters of the QoS data stream after determining the mapping relationship between the QoS data stream and the bearer.
  • Bearer The bearer ID > QoS parameters of the bearer
  • the CU may determine the QoS parameter of the first bearer according to the QoS parameter of the first data stream and the QoS parameter of the second data stream.
  • the CU may determine the more demanding QoS parameters in the first data stream and the second data stream as the QoS parameters of the first bearer.
  • the packet delay budget of the first data stream is 200 ms
  • the packet delay budget of the second data stream is 250 ms
  • the packet delay budget of the first bearer is 200 ms.
  • Other parameters are similar.
  • the CU may perform averaging operation on the QoS parameters of the first data stream and the second data stream to obtain the QoS parameter as the QoS parameter of the first bearer.
  • the details are shown in Table 6.
  • the CU maps the third data stream to the second bearer, since the second bearer is obtained by mapping a third data stream, the CU can directly determine the QoS parameter of the third data stream as the QoS parameter of the second bearer.
  • Table 7 The details are shown in Table 7:
  • the CU sends the bearer QoS parameter to the distributed unit DU.
  • the standard is to discuss functional division of a base station (such as an eNB in an LTE system or a gNB in an NR system), and divide the base station into CUs and DUs.
  • a possible implementation is divided according to the protocol stack function.
  • the CU has the functions of PDCP layer (including PDCP, RRC and SDAP), and the DU has the function of PDCP layer (including RLC/MAC/PHY).
  • the DU may schedule the bearer according to the QoS parameters of the bearer. It should be understood that scheduling a bearer by a DU may mean that the DU controls the data transmission of the bearer.
  • the DU preferentially schedules the bearers with higher priority.
  • the DU controls the data transmission of the bearer, so that the data transmission of the bearer satisfies the requirements of the packet delay delay and the packet error rate.
  • the scheduling of the DU to the bearer can be divided into scheduling of uplink data and scheduling of downlink data.
  • the scheduling process for uplink data and downlink data is as follows:
  • the DU schedules the downlink data of the bearer according to the QoS parameters of the bearer.
  • the DU preferentially schedules bearers with higher priority levels and considers the packet delay budget and packet error rate.
  • the UE detects the downlink scheduling information by detecting the physical downlink control channel, and receives the downlink data sent by the DU on the corresponding physical downlink shared channel according to the downlink scheduling information.
  • the UE requests the DU to send the resource of the uplink data according to the configuration information of the bearer. For example, the UE sends the logical channel priority of the bearer and the buffered data amount to the DU, and the DU generates an uplink grant according to the logical channel priority of the bearer reported by the UE and the buffered data amount, and the QoS parameter corresponding to the bearer. And transmitting the uplink grant to the UE through the physical downlink control channel, and the UE sends the uplink data according to the received uplink grant.
  • the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are determined by the CU, which conforms to the CU and DU functional division trend, that is, the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer are all performed by the CU.
  • the QoS parameters of the bearer and the bearer are consistently maximized, which facilitates the scheduling of the bearer according to the QoS parameters of the bearer.
  • the CU sends the QoS parameter of the bearer to the DU.
  • the CU may send the first message to the DU, where the first message includes: the QoS parameter of the bearer.
  • the following describes the CU sending a first message to the DU by using a bearer setup process and a bearer modification procedure.
  • the CU may send a bearer setup request message to the DU to establish the bearer.
  • the embodiment of the present invention uses the bearer setup request message to carry the QoS parameters of the bearer determined by the CU according to the QoS parameters of the QoS data flow, so as to implement the delivery or indication of the foregoing content from the CU to the DU.
  • the bearer setup request message may include configuration parameters that are carried on the DU.
  • the DU After receiving the first message, the DU configures the L1/L2 layer on the DU side according to the configuration parameters carried on the DU.
  • the bearer setup request message may also include configuration information about the bearer of the UE, where the configuration information about the bearer of the UE may be carried by the RRC generated radio resource control connection reconfiguration message.
  • the DU may send the configuration information about the bearer of the UE in the bearer setup request message to the UE, so that the UE can implement the bearer configuration according to the configuration information about the bearer of the UE.
  • the configuration information about the bearer of the UE may be a radio resource control connection reconfiguration message generated by the CU.
  • the DU may send a bearer setup response message to the CU to notify that the bearer between the DU and the UE has been established.
  • the foregoing method may further include: receiving, by the CU, a bearer setup response message sent by the DU.
  • the first message may be a bearer setup request message
  • the response message of the first message may be a bearer setup complete message
  • the first message may be a UE context setup request message
  • the response message of the first message may be a UE context setup complete message
  • the bearer may be modified in the following manner 2, and the modified bearer QoS parameter is carried in the bearer modification process to implement the foregoing content from the CU to the DU. Pass or indicate.
  • the CU may send a bearer modification message to the DU to modify the bearer.
  • the foregoing second message may specifically be a bearer modification message.
  • the foregoing method 100 further includes: the CU sending a second message to the DU, where the second message includes at least one of the first information and the second information, where the first information indicates that the QoS of the bearer is modified. The second information is used to increase or decrease the QoS data flow included in the bearer.
  • the DU may modify the QoS parameter of the bearer according to the first information. For example, the DU may modify the carried ARP from a higher priority to a lower priority, or modify the carried ARP from a lower priority to a higher priority.
  • the DU may modify the data stream that is included in the bearer according to the first information. Specifically, the data stream included in the bearer may be increased, and the data stream included in the bearer may be reduced.
  • the first bearer includes the first data stream and the second data stream, and the CU sends a bearer modification message to the DU.
  • the DU adds a third data stream to the data stream included in the first bearer, or After receiving the bearer modification message, the second data stream included in the first bearer is removed, so that the first bearer only includes the first data stream.
  • the CU can flexibly implement the modification of the bearer by sending the second message to the DU.
  • the foregoing embodiment describes the mapping relationship between the QoS data flow and the QoS data flow and the QoS parameters of the bearer and the DU according to the QoS parameter scheduling data of the bearer.
  • the QoS parameters include: QoS parameters at the slice level, and QoS parameters at the UE level.
  • the parameters of these non-data streams can be placed in the first message.
  • the foregoing method 100 further includes: the CU acquiring a QoS parameter of a non-data stream level; the CU sending the first parameter to the DU; and the DU according to the first parameter to the slice, the UE, and the PDU session. Data transmission is controlled.
  • the CU controls the corresponding data transmission according to the first parameter, and after the CU obtains the first parameter, the CU may also directly slice, UE, and PDU according to the first parameter. The data transfer of any one of the sessions is controlled.
  • the first parameter includes any one or a combination of a QoS parameter of a slice level, a QoS parameter of a UE level, and a QoS parameter of a PDU session level.
  • the DU can implement control of the data transmission of the level according to the parameters of the level.
  • the following describes the data transmission control performed by the CU or the DU according to the first parameter in the following example, where the first parameter includes the Aggregate Maximum Bit Rate (AMBR) and the downlink PDU session AMBR.
  • AMBR Aggregate Maximum Bit Rate
  • the CU controls the uplink data transmission rate of the PDU session according to the uplink PDU session AMBR, so that the uplink data transmission rate of the PDU session satisfies the requirements of the PDU session AMBR, that is, all the PDU sessions.
  • the sum of the transmission rates of the DRB's UL transmission data does not exceed the uplink PDU session AMBR.
  • the CU When the first parameter includes the uplink PDU session AMBR, the CU sends the first parameter to the DU, that is, sends the uplink PDU session AMBR to the DU.
  • the DU After receiving the uplink PDU session AMBR, the DU can control the uplink data transmission rate of the PDU session according to the uplink PDU session, so that the uplink data transmission rate of the PDU session meets the requirements of the uplink PDU session AMBR, that is, the PDU session.
  • the sum of the UL transmission data transmission rates of all DRBs does not exceed the uplink PDU session AMBR.
  • the CU When the first parameter includes the downlink PDU session AMBR, the CU sends the first parameter to the DU, that is, sends the downlink PDU session AMBR to the DU.
  • the DU After receiving the downlink PDU session AMBR, the DU can control the downlink data transmission rate of the PDU session according to the downlink PDU session, so that the data downlink transmission rate of the PDU session meets the requirements of the downlink PDU session AMBR, that is, the PDU session.
  • the sum of the DL transmission data transmission rates of all DRBs does not exceed the downlink PDU session AMBR.
  • the CU sends both the uplink and downlink PDU session AMBR to the DU.
  • the DU can control the uplink/downlink data transmission rate of the PDU session according to the uplink/downlink PDU session, so that the uplink data transmission rate of the PDU session meets the requirements of the AMBR of the uplink PDU session, and the downlink data transmission rate of the PDU session satisfies the downlink.
  • AMBR requirements for PDU sessions are examples of the uplink data transmission rate of the PDU session according to the uplink/downlink PDU session, so that the uplink data transmission rate of the PDU session meets the requirements of the AMBR of the uplink PDU session, and the downlink data transmission rate of the PDU session satisfies the downlink.
  • the sum of the UL transmission data transmission rates of all DRBs in the PDU session does not exceed the uplink PDU session AMBR, and the sum of the DL transmission data transmission rates of all DRBs in the PDU session does not exceed the downlink PDU session AMBR.
  • the process of controlling the corresponding data transmission by the CU or the DU according to the QoS parameters of the slice level and the QoS parameters of the UE level is similar to the foregoing control process, and details are not described herein again.
  • FIG. 2 shows a flow chart of a communication method of an embodiment of the present application.
  • the specific steps of the communication method 200 are as follows:
  • the CU obtains a QoS parameter of the QoS data flow.
  • the CU determines a mapping relationship between the QoS data flow and the bearer according to the QoS parameter of the QoS data flow.
  • steps 210 and 220 are the same as the above steps 110 and 120, and the above descriptions for the steps 110 and 120 are also applicable to the steps 210 and 220. For the sake of brevity, the duplicates are omitted as appropriate. description.
  • the CU sends a QoS parameter of the QoS data flow to the DU, and mapping information between the QoS data flow and the bearer.
  • the mapping information may be used to indicate a mapping relationship between the QoS data flow and the bearer, for example, a certain data flow is mapped to a certain bearer.
  • the specific form of the mapping information can be as shown in Table 8. Shown in Table 8 is mapping information of a bearer, the mapping information of the bearer includes an identifier of the bearer and a QoS data stream included in the bearer.
  • mapping information of the bearer in Table 8 may further include QoS parameters of the QoS data flow included in the bearer, as shown in Table 9.
  • the DU can flexibly implement the scheduling of the bearer according to the QoS parameters of the QoS data flow and the mapping information between the QoS data flow and the bearer, for example, the Medium Access Control (MAC) layer on the DU.
  • the scheduling of bearers and the like can be flexibly implemented according to information such as load and QoS parameters of the QoS data stream, and mapping information between the QoS data stream and the bearer.
  • the CU may directly schedule the bearers according to the QoS parameters of the QoS data flows that constitute the bearer, and when the bearer includes the QoS data flows.
  • the CU may schedule the bearers according to the QoS parameters of the bearers after generating the QoS parameters of the bearers according to the QoS parameters of the QoS data flows.
  • the foregoing method 100 and method 200 are also applicable to a scenario in which a CU and a DU are switched.
  • the current base station may send the mapping relationship between the QoS data stream and the bearer and the QoS parameters of the bearer determined by the CU to the target base station.
  • the target DU is enabled to complete the scheduling of the bearer based on the information.
  • the current base station includes the current CU and the current DU
  • the target eNB includes the target CU and the target DU
  • the current CU may send the mapping relationship between the QoS data stream and the bearer and the QoS parameter of the bearer determined by the CU to the target CU through the Xn interface
  • the target CU sends the mapping relationship and the QoS parameters of the bearer to the target DU through the F1 interface, so that the target DU can complete the scheduling of the bearer according to the information.
  • the current CU sends a handover request message to the target CU, where the handover request message includes a mapping relationship between the QoS data flow and the bearer and a QoS parameter of the bearer determined by the CU.
  • the current base station may send the mapping relationship between the QoS data stream and the bearer and the QoS parameters of the QoS data stream to the target base station, so that the target The DU can complete the scheduling of the bearer based on this information.
  • the current base station includes a current CU and a current DU
  • the target base station includes a target CU and a target DU
  • the current CU may send the mapping relationship between the QoS data flow and the bearer and the QoS parameter of the QoS data flow to the target CU through the Xn interface, and then Then, the target CU sends the mapping relationship and the QoS parameters of the QoS data flow to the target DU through the F1 interface, so that the target DU can complete the scheduling of the bearer according to the information.
  • the current CU sends a handover request message to the target CU, where the handover request message includes a mapping relationship between the QoS data flow and the bearer and a QoS parameter of the QoS data flow.
  • Scenario 2 Switching between DUs in the base station
  • the CU may send the mapping relationship between the QoS data stream and the bearer and the QoS parameter of the bearer determined by the CU to the target DU through the F1 interface. So that the target DU can complete the scheduling of the bearer based on the information. For example, the CU sends a UE context setup request message to the target DU, where the UE context setup request message includes a mapping relationship between the QoS data flow and the bearer and a QoS parameter of the bearer determined by the CU.
  • the CU may send the mapping relationship between the QoS data stream and the bearer and the QoS parameters of the QoS data stream to the target DU through the F1 interface.
  • the target DU is enabled to complete the scheduling of the bearer based on the information.
  • the CU sends a UE context setup request message to the target CU, where the UE context setup request message includes a mapping relationship between the QoS data stream and the bearer and a QoS parameter of the QoS data flow.
  • the above method 100 and method 200 can also be applied to a dual connectivity (Dual Connectivity, DC) scenario.
  • DC Dual Connectivity
  • the primary base station when the UE is connected to the primary base station and the secondary base station, the primary base station sends the mapping relationship between the QoS data flow and the bearer and the QoS parameters of the bearer determined by the CU to the secondary base station, so that the secondary base station can This information completes the scheduling of the bearers.
  • the primary base station sends a secondary base station to add a message to the secondary base station, where the secondary base station addition message includes a mapping relationship between the QoS data flow and the bearer and a QoS parameter of the bearer determined by the primary base station.
  • the CU of the primary base station may send the QoS data flow and the bearer mapping relationship and the QoS parameters of the bearer determined by the CU of the primary base station to the CU of the secondary base station through the Xn interface, and then the CU of the secondary base station passes the information through the F1 interface.
  • the DU sent to the secondary base station so that the DU of the secondary base station can complete the scheduling of the bearer according to the information.
  • the primary base station may send the mapping relationship between the QoS data flow and the bearer and the QoS parameters of the QoS data flow to the secondary base station, so that the secondary base station can The information completes the scheduling of the bearer.
  • the primary base station sends a secondary base station add message to the secondary base station, where the secondary base station add message includes a mapping relationship between the QoS data flow and the bearer and a QoS parameter of the QoS data flow.
  • the CU of the primary base station may send the mapping relationship between the QoS data stream and the bearer and the QoS parameter of the QoS data stream to the CU of the secondary base station through the Xn interface, and then the CU of the secondary base station sends the information to the auxiliary device through the F1 interface.
  • the DU of the base station so that the DU of the secondary base station can complete the scheduling of the bearer according to the information.
  • the communication method of the embodiment of the present application is described above with reference to FIG. 1 and FIG. 2 from the perspective of the CU.
  • the communication method of the embodiment of the present application will be described from the perspective of the DU in conjunction with FIG. 6 and FIG. It should be understood that the communication methods in FIGS. 6 and 7 correspond to the communication methods in FIGS. 1 and 2, respectively, and the duplicated description is appropriately omitted for the sake of brevity.
  • FIG. 6 shows a flow chart of a communication method of an embodiment of the present application.
  • the specific steps of the communication method 600 are as follows:
  • the distributed unit (DU) receives the QoS parameter of the bearer sent by the centralized unit CU, where the bearer is determined by the CU according to the QoS parameter of the QoS data flow, and the mapping relationship exists between the QoS data flow and the QoS data flow.
  • the bearer, the QoS parameter of the bearer is determined by the CU according to a QoS parameter of the QoS data flow.
  • the DU schedules the bearer according to the QoS parameter of the bearer.
  • the QoS parameter of the bearer according to the scheduling of the bearer by the DU is determined by the CU in determining the mapping relationship between the QoS data flow and the QoS data flow, and can maintain the consistency of the QoS parameters of the bearer and the bearer, and can improve the DU.
  • the effect of scheduling the bearer is determined by the CU in determining the mapping relationship between the QoS data flow and the QoS data flow, and can maintain the consistency of the QoS parameters of the bearer and the bearer, and can improve the DU.
  • FIG. 7 shows a flow chart of a communication method of an embodiment of the present application.
  • the specific steps of the communication method 700 are as follows:
  • the distributed unit DU receives a QoS parameter of the QoS data stream sent by the centralized unit CU, and mapping information between the QoS data stream and the bearer.
  • the DU schedules the bearer according to a QoS parameter of the QoS data flow and mapping information between the QoS data flow and the bearer.
  • the DU can schedule the bearer according to the QoS parameters of the QoS data flow and the mapping information between the QoS data flow and the bearer.
  • the DU can directly implement the scheduling of the bearer according to the QoS parameters of the QoS data flow level, or convert the QoS parameters of the QoS data flow into the QoS parameters of the bearer level, and then schedule the bearer, and implement the pair only according to the QoS parameters of the bearer.
  • the scheduling of bearers is more flexible.
  • the mapping information is determined by the CU according to a comparison result of QoS parameters of the QoS data flow.
  • a mapping relationship exists between multiple data flows in the QoS data flow and the bearer, and the QoS parameter of the bearer is the CU slave
  • the QoS parameters of the multiple data streams are selected, or the QoS parameters of the bearer are calculated by the CU according to QoS parameters of the multiple data streams.
  • the foregoing method 600 and method 700 further include: the DU receiving a first message sent by the CU, where the first message includes the QoS parameter of the bearer and/or the QoS data. Mapping information between the stream and the bearer; the DU establishes the bearer between the DU and the user equipment UE according to the first message.
  • the foregoing method 600 and method 700 further include: the DU receiving a first message sent by the CU, where the first message includes a QoS parameter of the QoS data flow and/or the Mapping information between the QoS data stream and the bearer; the DU establishing the bearer between the DU and the user equipment UE according to the first message.
  • the method 600 and the method 700 further include: the DU receiving a bearer modification message sent by the CU, where the bearer modification message includes at least one of the first information and the second information, where The first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • mapping information between the QoS data stream and the bearer is determined by the CU in a packet data link protocol SDAP layer.
  • the method 600 and the method 700 further include: the DU receiving a QoS parameter of a non-QoS data flow level sent by the CU, where the QoS parameter of the non-QoS data flow level includes a slice a QoS parameter of a level, a QoS parameter of a UE level, and a QoS parameter of a packet data unit PDU session level; the DU according to the QoS parameter of the non-QoS data flow level, the slice, the UE, and the The data transmission of any one of the PDU sessions is controlled.
  • the communication method of the embodiment of the present application is described above from the perspective of the DU in conjunction with FIG. 6 and FIG. 7.
  • the communication method of the embodiment of the present application is described below from the perspective of the UE. It should be understood that the communication method in FIG. 8 corresponds to the communication methods in FIGS. 6 and 7, respectively, and the duplicated description is appropriately omitted for the sake of brevity.
  • FIG. 8 is a flow chart showing a communication method of an embodiment of the present application. The specific steps of the communication method 800 are as follows:
  • the UE acquires mapping information between the QoS data flow and the bearer, where the mapping information is determined by the CU according to the QoS parameter of the QoS data flow.
  • the UE sends uplink data to the DU according to the mapping relationship between the QoS data flow and the bearer.
  • the mapping information between the QoS data stream and the bearer on which the UE transmits the uplink data is determined by the CU according to the QoS parameter of the QoS data flow, and conforms to the CU and DU function division trend, and can ensure the uplink data of the UE.
  • the effect of the transmission is determined by the CU according to the QoS parameter of the QoS data flow, and conforms to the CU and DU function division trend, and can ensure the uplink data of the UE. The effect of the transmission.
  • the acquiring, by the UE, mapping information between a QoS data stream and a bearer includes: receiving, by the UE, a radio resource control connection reconfiguration message sent by the DU;
  • the resource control connection reconfiguration message obtains a mapping relationship between the QoS data flow and the bearer.
  • the foregoing method 800 further includes: the UE receiving a bearer modification message sent by the DU, where the bearer modification message includes at least one of the first information and the second information, where The first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer; and the UE determines the QoS of the bearer according to the bearer modification message. And/or, the UE increases or decreases the QoS data flow included in the bearer according to the bearer modification message.
  • the communication method of the embodiment of the present application will be described in detail below with reference to FIG. 9 to FIG.
  • the communication method in FIGS. 9 to 12 can be implemented by a device such as a CU, a DU, or a UE in the above.
  • FIG. 9 is a flow chart showing a communication method of an embodiment of the present application.
  • the method of Figure 9 includes:
  • the CU sends a bearer setup request to the DU.
  • the bearer request may include the following information: a list of DRBs to be established, the list including the DRB ID of the DRB to be established, the QoS parameter, and the mapping relationship between the QoS data flow and the DRB to be established, and the CU tunnel endpoint identifier (Tunnel Endpoint) Identifier, TEID).
  • the CU may determine the mapping from the QoS data flow to the corresponding DRB according to the DRB that needs to be established first, and then according to the mapping relationship between the QoS data flow and the DRB and the CU tunnel endpoint identifier.
  • the specific request of the foregoing bearer request may include information as shown in Table 10.
  • Bearer creation list > The PDU session ID to which the bearer belongs >> PDU session QoS parameters (PDU session AMBR) >>>DRB logo >>>DRB contains a list of QoS flows >>>>QoS parameters of QoS flow
  • the DU sends a bearer setup response to the CU.
  • the bearer setup response may include a list of established DRBs, including the DRB ID of the DRB that has been successfully established, and the DRB TEID.
  • the bearer setup response may further include a list of DRBs with failed bearer establishment, the list includes the bearer. The DRB ID of the failed DRB is established and the reason for the DRB establishment failure.
  • the CU can establish a DRB between the UE and the DU by sending a bearer setup request to the DU, and after the DRB is established, the DU feeds back to the CU that the DRB has been established.
  • FIG. 10 is a flow chart showing a communication method of an embodiment of the present application.
  • the method of Figure 10 includes:
  • the CU receives a QoS data stream sent by an Access and Mobility Management Function (AMF).
  • AMF Access and Mobility Management Function
  • the CU obtains a QoS data flow through the PDU session.
  • the QoS data stream includes three data streams, Flow1, Flow2, and Flow3, respectively, which include QoS data stream IDs (QFI1, QFI2, and QFI3, respectively) and corresponding data.
  • the CU maps Flow1 and Flow2 to bearer 1, and maps Flow3 to bearer 2.
  • the CU may map QoS data flows with similar QoS parameters to the same bearer. Therefore, when the QoS parameters of Flow1 and Flow2 are close to each other, and the QoS parameters of Flow3 and Flow1 are significantly different, Flow1 and Flow2 can be mapped to the same bearer, and Flow3 can be mapped to another bearer. That is to say, the same bearer can contain either one QoS data stream or multiple QoS data streams.
  • the CU may be implemented by the SDAP layer of the CU when mapping the QoS data stream to the bearer.
  • the CU generates a QoS parameter of the bearer 1 according to the QoS parameters of the Flow1 and the Flow2, and generates a QoS parameter of the bearer 2 according to the QoS parameter of the Flow3.
  • the QoS parameters of the QoS data flow may be determined first. Specifically, the CU may determine the QoS parameters of the QoS data flow by the QoS data flow ID and the correspondence between the QoS data flow ID and the QoS parameters.
  • the correspondence between the QoS data stream ID and the QoS parameter may be preset in the CU, or may be carried in the PDU session establishment request initiated by the core network to the DU, or may be specified in the communication standard.
  • the CU may select the most strict QoS parameters as the QoS parameters of the bearers according to the size of the parameter values of the QoS parameters. Specifically, it is assumed that Flow1 and Flow2 are mapped to bearer 1, and Flow3 is mapped to bearer 2.
  • the CU When the CU generates the QoS parameters of bearer 1 according to the QoS parameters of Flow1 and Flow2, the QoS parameters of Flow1 and Flow2 can be selected to be the most strict.
  • the QoS parameter is used as the QoS parameter of the bearer 1, and the QoS parameter obtained by averaging the QoS parameters of Flow1 and Flow2 may be used as the QoS parameter of the bearer 1, and the CU may directly generate the QoS parameter of the bearer 2 according to the QoS parameter of the Flow3.
  • the QoS parameter of Flow3 is taken as the QoS parameter of bearer 2.
  • the CU sends the bearer QoS parameter to the DU.
  • the bearer QoS parameter may be carried in a bearer setup request message or a UE context setup request message sent by the CU.
  • the CU may send a bearer setup request message to the DU, so that the DU establishes a bearer between the DU and the UE.
  • the CU sends a UE Context Setup Request message to the DU.
  • the bearer setup request message or the UE context setup request message may include a bearer QoS parameter generated according to a QoS parameter of the QoS data flow, and configuration information about the bearer carried in the DU configuration parameter, and the uplink transmission link address of the bearer. Wait.
  • the uplink transmission link address of the bearer includes a GPRS Tunneling Protocol (GTP) tunnel endpoint identifier.
  • GTP GPRS Tunneling Protocol
  • the specific format of the foregoing bearer setup request message or UE context setup request message may be as shown in Table 11.
  • Bearer creation list > The PDU session ID to which the bearer belongs >> PDU session QoS parameters (PDU session AMBR) >>>Host ID >>>>Carried QoS parameters >>>>> Bearer's uplink transmission link address Configuration information about the bearer of the UE Beared in the DU configuration parameters
  • the above-mentioned bearer setup request message or UE context setup request message may include, in addition to the parameters shown in Table 11, UE-level parameters (such as the UE's AMBR) and slice-level parameters (such as sliced AMBR).
  • UE-level parameters such as the UE's AMBR
  • slice-level parameters such as sliced AMBR
  • the DU After receiving the bearer setup request message sent by the CU, the DU configures the L1 and/or L2 layer on the DU side according to the configuration parameters carried in the DU included in the bearer setup request message.
  • the DU sends configuration information about a bearer of the UE to the UE.
  • the foregoing configuration information about the bearer of the UE may be a radio resource control connection reconfiguration message.
  • the radio resource control connection reconfiguration message includes UE-related bearer configuration information.
  • the UE configures the bearer 1 and the bearer 2 according to the configuration information about the bearer of the UE.
  • the UE completes the configuration of the bearer according to the UE-related bearer configuration information in the radio resource control connection reconfiguration message.
  • the UE sends a radio resource control connection reconfiguration complete message (RRC Connection Reconfiguration Complete) to the DU.
  • RRC Connection Reconfiguration Complete radio resource control connection reconfiguration Complete
  • the UE After completing the configuration of the bearer, the UE feeds back the radio resource control connection reconfiguration complete message to the DU.
  • the DU sends a bearer setup complete message to the CU.
  • the DU may also send a UE context setup complete message to the CU.
  • the DU After receiving the radio resource connection reconfiguration complete message fed back by the CU, the DU feeds back a bearer setup complete message to the CU, where the bearer setup complete message includes the bearer downlink transport link address (including the GTP tunnel endpoint identifier).
  • steps 1004 to 1008 are optional.
  • the bearer can be established by performing steps 1004 to 1008. If the bearer has been established, the scheduling of the bearer can be directly implemented after the step 1003 is performed.
  • the CU may modify the bearer by sending a bearer modification message to the DU.
  • a bearer modification message For example, some QoS parameters of the bearer may be modified, and the bearer may be added or decreased. Contains QoS data streams.
  • the scheduling of the modified bearer can be performed.
  • the DU may further perform scheduling on the bearer according to the UE level parameter, the PDU session level parameter, and the carried QoS parameter.
  • the scheduling of the bear by the DU may be divided into scheduling of the uplink data of the bearer and scheduling of the downlink data.
  • the DU receives the downlink data sent by the core network through the session tunnel.
  • the SDAP layer of the DU completes the QoS data flow to the bearer mapping by identifying the QFI, and delivers the data to the PDCP layer, and the PDCP layer performs encryption, integrity protection, etc., and then The data is then sent to the corresponding bearer between the DU and the UE.
  • the DU After receiving the uplink data of the bearer, the DU sends a data packet to the CU according to the uplink transmission link address of the bearer (including the GTP tunnel endpoint identifier), and after receiving the data packet in the bearer, the CU passes the data packet and The tunnel carrying the corresponding PDU session is sent to the core network.
  • the uplink transmission link address of the bearer including the GTP tunnel endpoint identifier
  • the CU may also generate bearer uplink scheduling information while generating the QoS parameters of the bearer in the foregoing step 1003.
  • the uplink scheduling information may include a logical channel, a logical channel scheduling priority, and the like.
  • the CU includes the uplink scheduling information in configuration parameters about the bearer on the DU and configuration parameters about the bearer to the UE. After the DU and the UE obtain the uplink scheduling information, the DU and the UE may complete the uplink data transmission according to the uplink scheduling information, and send the QoS data stream to the uplink mapping relationship of the bearer to the UE. Generally, the uplink of the same QoS data stream is performed. Data and downstream data are mapped to the same bearer.
  • the UE maps the QoS data flow to the corresponding bearer according to the uplink mapping relationship of the QoS data flow to the bearer, and increases the DFI.
  • the DU allocates an uplink grant (UL grant) to the UE according to the uplink scheduling information.
  • the UE preferentially schedules the bearer with a higher priority of the logical channel to use the uplink grant to preferentially send the data of the bearer with higher priority.
  • the DU sends the uplink data to the CU through the uplink GTP tunnel.
  • the CU identifies the bearer by the TEID of the uplink GTP tunnel.
  • the data is forwarded to the SDAP layer, and the SDAP layer identifies the data stream through the DFI of the packet header, and identifies the session information according to the DFI, and passes the data through the The session is sent to the core network by the tunnel.
  • the DU can also schedule bearers based on parameters such as 5QI, ARP, GBR, and Maximum Bit Rate (MBR). For example, when the priority level of different bearers is included in the 5QI, the DU can preferentially schedule the bearers with higher priority.
  • the 5QI includes a packet delay budget and a packet error rate
  • the DU can control the data transmission of the bearer, so that the bearer data transmission satisfies the packet delay delay and the packet error. Rate requirements.
  • FIG. 11 is a flow chart showing a communication method of an embodiment of the present application.
  • the method of Figure 11 includes:
  • the CU receives the QoS data stream sent by the core network.
  • the CU maps Flow1 and Flow2 to bearer 1, and maps Flow3 to bearer 2.
  • the CU sends a QoS parameter of the QoS data flow to the DU.
  • the bearer QoS parameter may carry a bearer setup request message or a UE context setup request message sent by the CU.
  • the format of the bearer setup request message/UE context setup request message may be specifically in the form shown in Table 12.
  • Bearer creation list >The PDU Session ID to which the bearer belongs >>PDU Session QoS Parameter (PDU Session AMBR) >>>Host ID >>> Bearer contains a list of QoS Flows >>>>QoS flow QoS parameters >>>> Bearer's uplink transmission link address Configuration information about the bearer of the UE Beared in the DU configuration parameters
  • the DU generates a QoS parameter of the bearer 1 according to the QoS parameters of the Flow1 and the Flow2, and generates a QoS parameter of the bearer 2 according to the QoS parameter of the Flow3.
  • the CU In the method of FIG. 10, the CU generates a bearer QoS parameter according to the QoS data stream, and in the method of FIG. 11, the DU generates a bearer QoS parameter according to the QoS data stream.
  • the mapping information between the QoS data stream and the bearer may be obtained from the CU before the DU generates the QoS parameter of the bearer according to the QoS data flow.
  • the DU obtains the mapping information from the CU (which may also be the CU directly notifying the DU), that is, the DU obtains Flow1 and Flow2 from the CU and maps to the bearer 1, and the Flow3 maps to the bearer 2.
  • the DU sends a radio resource control connection reconfiguration message to the UE.
  • the UE configures the bearer 1 and the bearer 2 according to the radio resource control connection reconfiguration message.
  • the UE sends a radio resource control connection reconfiguration complete message to the DU.
  • the DU sends a bearer setup complete message to the CU.
  • the above steps 1104 to 1108 are optional.
  • the bearer can be established by performing steps 1104 to 1108. If the bearer has been established, the scheduling of the bearer can be directly implemented after step 1103 is performed.
  • the DU may further perform scheduling on the bearer according to the UE level parameter, the PDU session level parameter, and the carried QoS parameter.
  • the DU can schedule the bearer in the method shown in FIG. 10, and details are not described herein again.
  • the DU can schedule the bearer according to the QoS parameters of the bearer level, and can also perform corresponding scheduling according to other levels of parameters, such as a slice level parameter, a UE level parameter, and a PDU session level parameter.
  • the scheduling process of the PDU session is described in detail by taking the AMBR of the PDU session as an example.
  • FIG. 12 is a flow chart showing a communication method of an embodiment of the present application.
  • the method of Figure 12 includes:
  • the CU manages the radio resources of the bearer 1 and the bearer 2 according to the downlink PDU session AMBR.
  • the CU controls the downlink data transmission rate of the PDU session according to the PDU session AMBR, so that the sum of the downlink data transmission rates of the bearer 1 and the bearer 2 in the PDU session does not exceed the PDU session AMBR.
  • the CU sends an uplink PDU session AMBR to the DU.
  • the DU manages the radio resources of the bearer 1 and the bearer 2 according to the uplink PDU session AMBR.
  • the DU controls the uplink data transmission rate of the PDU session according to the uplink PDU session AMBR, so that the sum of the uplink data transmission rates of the bearer 1 and the bearer 2 in the PDU session does not exceed the PDU session AMBR.
  • the CU controls the uplink data transmission rate of the PDU session, and the DU controls the downlink data transmission rate of the PDU session.
  • the CU may also perform the uplink PDU session AMBR and the downlink.
  • the PDU session AMBR is sent to the DU so that the DU controls the uplink and downlink data transmission of the PDU session.
  • FIG. 13 is a flow chart showing a communication method of an embodiment of the present application.
  • the method of Figure 13 includes:
  • the CU sends an uplink PDU session AMBR and a downlink PDU session AMBR to the DU.
  • the DU manages the radio resources of the bearer 1 and the bearer 2 according to the uplink PDU session AMBR and the downlink PDU session AMBR.
  • the DU controls the uplink data transmission rate of the PDU session according to the uplink PDU session AMBR, and controls the downlink data transmission rate of the PDU session according to the downlink PDU session AMBR, so that the uplink data transmission of the bearer 1 and the bearer 2 in the PDU session is performed.
  • the sum of the rates does not exceed the PDU session AMBR, and the sum of the downlink data transmission rates of bearer 1 and bearer 2 does not exceed the PDU session AMBR.
  • the communication method of the embodiment of the present application is described in detail with reference to FIG. 1 to FIG. 13 .
  • the base station, the terminal device, and the communication device in the embodiments of the present application are described below with reference to FIG. 14 to FIG. It should be understood that the base station, the terminal device, and the communication device in FIGS. 14 to 19 can implement the respective steps of the communication method in FIGS. 1 to 13, and the duplicated description is appropriately omitted below for the sake of brevity.
  • FIG. 14 is a schematic block diagram of a base station according to an embodiment of the present application.
  • the base station 1400 includes:
  • the obtaining module 1410 is configured to obtain a QoS parameter of the quality of service QoS data stream
  • the processing module 1420 is configured to determine mapping information between the QoS data flow and the bearer according to the QoS parameter of the QoS data flow;
  • the processing module 1420 is further configured to determine a QoS parameter of the bearer according to a QoS parameter of the QoS data flow;
  • the sending module 1430 is configured to send the QoS parameter of the bearer to the distributed unit DU.
  • the processing module 1420 is specifically configured to: determine mapping information between the QoS data flow and the bearer according to a comparison result of the QoS parameters of the QoS data flow.
  • a mapping relationship exists between the multiple data flows in the QoS data flow and the bearer, where the processing module 1420 is specifically configured to: select QoS parameters from the multiple data flows.
  • the bearer's QoS parameters, or the QoS parameters of the bearer are calculated according to the QoS parameters of the multiple data streams.
  • the sending module 1430 is further configured to send a first message to the DU, where the first message includes the QoS parameter of the bearer and/or the QoS data flow and the bearer.
  • the mapping information is used to request the DU to establish the bearer between the DU and the user equipment UE.
  • the sending module 1430 is further configured to send a bearer modification message to the DU, where the bearer modification message includes at least one of the first information and the second information, where the first The information is the modified QoS parameter of the bearer, and the second information is used to increase or decrease the QoS data flow included in the bearer.
  • the processing module 1420 is specifically configured to: determine mapping information between the QoS data flow and the bearer in a packet data link protocol SDAP layer.
  • the acquiring module 1410 is further configured to: obtain a QoS parameter of a non-QoS data flow level, where the QoS parameter of the non-QoS data flow level includes a QoS parameter of a slice level, and a QoS parameter of a UE level. And any one of the QoS parameters of the packet data unit PDU session level; the sending module 1430 is further configured to send the first parameter to the DU.
  • the acquiring module 1410 is further configured to: obtain a QoS parameter of a non-QoS data flow level, where the QoS parameter of the non-QoS data flow level includes a QoS parameter of a slice level, and a QoS parameter of a UE level. And any one of the QoS parameters of the packet data unit PDU session level; the processing module 1420 is specifically configured to: perform any of the slice, the UE, and the PDU session according to the QoS parameter of the non-QoS data flow level A data transmission is controlled.
  • FIG. 15 is a schematic block diagram of a base station according to an embodiment of the present application.
  • the base station 1500 includes:
  • the obtaining module 1510 is configured to obtain a QoS parameter of the quality of service QoS data stream
  • the processing module 1520 is configured to determine mapping information between the QoS data flow and the bearer according to the QoS parameter of the QoS data flow;
  • the sending module 1530 is configured to send, to the distributed unit DU, a QoS parameter of the QoS data flow, and mapping information between the QoS data flow and the bearer.
  • the processing module 1520 is specifically configured to: determine mapping information between the QoS data flow and the bearer according to a comparison result of the QoS parameters of the QoS data flow.
  • the sending module 1530 is further configured to send a first message to the DU, where the first message includes a QoS parameter of the QoS data flow and/or the QoS data flow and a The mapping information between the bearers is used to request the DU to establish the bearer between the DU and the user equipment UE.
  • the sending module 1530 is further configured to send a bearer modification message to the DU, where the bearer modification message includes at least one of the first information and the second information, where the first The information is the modified QoS parameter of the bearer, and the second information is used to increase or decrease the QoS data flow included in the bearer.
  • the processing module 1520 is specifically configured to: determine mapping information between the QoS data flow and the bearer in a packet data link protocol SDAP layer.
  • the acquiring module 1510 is further configured to: obtain a QoS parameter of a non-QoS data flow level, where the QoS parameter of the non-QoS data flow level includes a QoS parameter of a slice level, and a QoS parameter of a UE level. And any one of QoS parameters of the packet data unit PDU session level;
  • the acquiring module 1510 is further configured to: obtain a QoS parameter of a non-QoS data flow level, where the QoS parameter of the non-QoS data flow level includes a QoS parameter of a slice level, and a QoS parameter of a UE level. And any one of QoS parameters of the packet data unit PDU session level;
  • the processing module 1520 is specifically configured to control data transmission of any one of a slice, the UE, and the PDU session according to the QoS parameter of the non-QoS data flow level.
  • FIG. 16 is a schematic block diagram of a base station according to an embodiment of the present application.
  • the base station 1600 includes:
  • the receiving module 1610 is configured to receive a QoS parameter of a bearer sent by the centralized unit CU, where the bearer is determined by the CU according to a QoS parameter of the QoS data flow, and a mapping relationship exists between the QoS data flow and the QoS data flow.
  • Bearer the QoS parameter of the bearer is determined by the CU according to a QoS parameter of the QoS data flow;
  • the processing module 1620 is configured to schedule the bearer according to the QoS parameter of the bearer.
  • the mapping information is determined by the CU according to a comparison result of QoS parameters of the QoS data flow.
  • a mapping relationship exists between multiple data flows in the QoS data flow and the bearer, where the QoS parameter of the bearer is a QoS parameter of the CU from the multiple data flows.
  • the selected QoS parameter is calculated by the CU according to the QoS parameters of the multiple data streams.
  • the receiving module 1610 is further configured to receive a first message sent by the CU, where the first message includes the QoS parameter of the bearer and/or the QoS data flow and the Mapping information between bearers;
  • the processing module is specifically configured to establish the bearer between the DU and the user equipment UE according to the first message.
  • the receiving module 1610 is further configured to: receive a bearer modification message sent by the CU, where the bearer modification message includes at least one of the first information and the second information, where the The first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • the mapping information between the QoS data stream and the bearer is determined by the CU in a packet data link protocol SDAP layer.
  • the receiving module 1610 is further configured to: receive a QoS parameter of a non-QoS data flow level sent by the CU, where the QoS parameter of the non-QoS data flow level includes a slice level QoS. a parameter, a UE-level QoS parameter, and a QoS parameter of a packet data unit PDU session level; the processing module 1620 is specifically configured to slice, the UE, and the QoS parameter according to the non-QoS data flow level The data transmission of any one of the PDU sessions is controlled.
  • FIG. 17 is a schematic block diagram of a base station according to an embodiment of the present application.
  • the base station 1700 includes:
  • the receiving module 1710 is configured to receive a QoS parameter of the QoS data stream sent by the centralized unit CU, and mapping information between the QoS data stream and the bearer.
  • the processing module 1720 is configured to schedule the bearer according to the QoS parameter of the QoS data flow and the mapping information between the QoS data flow and the bearer.
  • the mapping information is determined by the CU according to a comparison result of QoS parameters of the QoS data flow.
  • the receiving module 1710 is further configured to: receive a first message sent by the CU, where the first message includes a QoS parameter of the QoS data flow and/or the QoS data flow.
  • the mapping information is related to the bearer; the processing module 1720 is specifically configured to establish the bearer between the DU and the user equipment UE according to the first message.
  • the receiving module 1710 is further configured to: receive a bearer modification message sent by the CU, where the bearer modification message includes at least one of the first information and the second information, where the The first information is a modified QoS parameter of the bearer, and the second information is used to increase or decrease a QoS data flow included in the bearer.
  • mapping information between the QoS data stream and the bearer is determined in the CU in the packet data link protocol SDAP layer.
  • the receiving module 1710 is further configured to: receive a QoS parameter of a non-QoS data flow level sent by the CU, where the QoS parameter of the non-QoS data flow level includes a slice level QoS a parameter, a QoS parameter of a UE level, and a QoS parameter of a packet data unit PDU session level; the processing module 1720 is specifically configured to perform, according to the QoS parameter of the non-QoS data flow level, a slice, the UE, and The data transmission of any one of the PDU sessions is controlled.
  • FIG. 18 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1800 includes:
  • the obtaining module 1810 is configured to obtain mapping information between the QoS data stream and the bearer, where the mapping information is determined by the CU according to the QoS parameter of the QoS data stream;
  • the sending module 1820 is configured to send uplink data to the DU according to the mapping relationship between the QoS data stream and the bearer.
  • the acquiring module 1810 is specifically configured to: receive a radio resource control connection reconfiguration message sent by the DU; and obtain a QoS data flow and a bearer from the radio resource control connection reconfiguration message.
  • the terminal device 1800 further includes: a receiving module 1830, configured to receive a bearer modification message sent by the DU, where the bearer modification message includes the first information and the second information. At least one, wherein the first information is a modified QoS parameter of the bearer, the second information is used to increase or decrease a QoS data flow included in the bearer, and the processing module 1840 is configured to: according to the bearer Modifying a message to determine a QoS parameter of the bearer; and/or increasing or decreasing a QoS data flow included in the bearer according to the bearer modification message.
  • a receiving module 1830 configured to receive a bearer modification message sent by the DU, where the bearer modification message includes the first information and the second information. At least one, wherein the first information is a modified QoS parameter of the bearer, the second information is used to increase or decrease a QoS data flow included in the bearer, and the processing module 1840 is configured to: according to the bearer Modifying a message to determine a Q
  • the embodiment of the present application further includes a base station, where the base station is composed of the CU and the DU in the above.
  • the base station herein may be a base station or a similar function in these systems, and may be an eNB in an LTE system or a gNB in a New Radio (NR) system, in addition to the name of the base station, or Controller, etc.
  • NR New Radio
  • FIG. 19 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device 1900 includes:
  • a memory 1910 configured to store a program
  • the transceiver 1930 when the program stored in the memory is executed by the processor 1920, the processor 1920 and the transceiver 1930 can implement the various flows of the communication method described above.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、基站及终端设备。该通信方法包括:集中式单元CU获取服务质量QoS数据流的QoS参数;CU根据QoS数据流的QoS参数,将QoS数据流映射到承载;CU根据QoS数据流的QoS参数,确定承载的QoS参数。CU向分布式单元DU发送承载的QoS参数。本申请能够使得DU根据承载的QoS参数对承载进行调度。

Description

通信方法、基站及终端设备
本申请要求于2017年05月05日提交中国专利局、申请号为201710314208.4、申请名称为“通信方法、集中式单元、分布式单元、基站及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、基站及终端设备。
背景技术
第五代通信(fifth generation,5G)中引入了集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)相分离的概念,也就是将基站分为CU和DU两部分。在CU和DU分离的情况下如何将服务质量(Quality of Service,QoS)数据流(flow)映射到承载以及如何确定承载的QoS参数是一个需要解决的问题。
发明内容
本申请提供一种通信方法、基站及终端设备,使得DU能够根据承载的QoS参数对承载进行调度。
第一方面,提供了一种通信方法,该方法包括:集中式单元CU获取服务质量QoS数据流的QoS参数;所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;所述CU根据所述QoS数据流的QoS参数,确定所述承载的QoS参数;所述CU向分布式单元DU发送所述承载的QoS参数。
本申请中,通过CU确定QoS数据流与QoS数据流的映射关系以及承载的QoS参数,符合CU和DU功能划分趋势,即QoS数据流与QoS数据流的映射关系以及承载的QoS参数均由CU上的分组数据链接协议(Service Data Adaptation Protocol,SDAP)层完成,可最大限度保持承载的QoS参数与承载的一致性,有利于DU根据该承载的QoS参数对承载进行调度。
结合第一方面,在第一方面的某些实现方式中,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:所述CU通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与承载之间的映射信息。
例如,可以通过将较为相近的QoS参数的QoS数据流映射到同一个承载。
结合第一方面,在第一方面的某些实现方式中,所述QoS数据流中的多个数据流与第一承载之间存在映射关系,所述CU根据所述QoS数据流的QoS参数,确定所述承载的QoS参数,包括:所述CU从所述多个数据流的QoS参数选择所述第一承载的QoS参数,或者,所述CU根据所述多个数据流的QoS参数计算所述第一承载的QoS参数。
结合第一方面,在第一方面的某些实现方式中,所述CU向DU发送所述承载的QoS 参数,包括:所述CU向所述DU发送第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
结合第一方面,在第一方面的某些实现方式中,所述CU向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
结合第一方面,在第一方面的某些实现方式中,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:所述CU在分组数据链接协议SDAP层确定所述QoS数据流与承载之间的映射信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、用户设备(User Equipment,UE)级别的QoS参数以及分组数据单元(Packet Data Unit,PDU)会话级别的QoS参数中的任意一种或其组合;所述CU向所述DU发送所述非QoS数据流级别的QoS参数;或者,所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述CU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
第二方面,提供了一种通信方法,该方法包括:集中式单元CU获取服务质量QoS数据流的QoS参数;所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;所述CU向分布式单元DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息。
本申请中,DU能够根据QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度,例如DU上的媒体接入控制(Medium Access Control,MAC)层可以根据负载等信息以及QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度等。
结合第二方面,在第二方面的某些实现方式中,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:所述CU通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与承载之间的映射信息。
结合第二方面,在第二方面的某些实现方式中,所述CU向DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,包括:所述CU向所述DU发送第一消息,所述第一消息包含所述QoS数据流的QoS参数以及所述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述CU向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
结合第二方面,在第二方面的某些实现方式中,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:所述CU在分组数据链接协议 SDAP层确定所述QoS数据流与承载之间的映射信息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种或其组合;所述CU向所述DU发送所述非QoS数据流级别的QoS参数;或者,所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述CU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
第三方面,提供了一种通信方法,该方法包括:分布式单元DU接收集中式单元CU发送的承载的QoS参数,其中,所述承载是所述CU根据所述QoS数据流的QoS参数确定的,与所述QoS数据流之间存在映射关系的承载,所述承载的QoS参数是所述CU根据所述QoS数据流的QoS参数确定的;所述DU根据所述承载的QoS参数,对所述承载进行调度。
本申请中,通过CU确定QoS数据流与QoS数据流的映射关系以及承载的QoS参数,符合CU和DU功能划分趋势,即QoS数据流与QoS数据流的映射关系以及承载的QoS参数均由CU上的SDAP层完成,可最大限度保持承载的QoS参数与承载的一致性,有利于DU根据该承载的QoS参数对承载进行调度。
结合第三方面,在第三方面的某些实现方式中,所述映射信息是所述CU通过比较所述QoS数据流中的QoS参数确定的。
结合第三方面,在第三方面的某些实现方式中,所述DU接收CU发送的承载的QoS参数,包括:所述DU接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述DU接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
结合第三方面,在第三方面的某些实现方式中,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述DU接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种或其组合;所述DU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
第四方面,提供了一种通信方法,该方法包括:分布式单元DU接收集中式单元CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息;所述DU根据所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,对所述承载进行调度。
本申请中,DU能够根据QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度,例如DU上的MAC层可以根据负载等信息以及QoS 数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度等。
结合第四方面,在第四方面的某些实现方式中,所述映射信息是所述CU通过比较所述QoS数据流中的QoS参数确定的。
结合第四方面,在第四方面的某些实现方式中,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述承载的QoS参数是所述CU从所述多个数据流的QoS参数选择出来的,或者,所述承载的QoS参数是所述CU根据所述多个数据流的QoS参数计算得到的。
结合第四方面,在第四方面的某些实现方式中,所述DU接收CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,包括:所述DU接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数和所述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述DU接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
结合第四方面,在第四方面的某些实现方式中,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述DU接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种或其组合;所述DU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
第五方面,提供了一种通信方法,该方法包括:UE获取QoS数据流与承载之间的映射信息,其中,所述映射信息是CU根据所述QoS数据流的QoS参数确定的;所述UE根据所述QoS数据流与承载之间的映射关系向DU发送上行数据。
本申请中,UE在传输上行数据所依据的QoS数据流与承载之间的映射信息是CU根据所述QoS数据流的QoS参数确定的,符合CU和DU功能划分趋势,能够保证UE进行上行数据传输的效果。
结合第五方面,在第五方面的某些实现方式中,所述终端设备获取QoS数据流与承载之间的映射信息,包括:所述终端设备接收所述DU发送的无线资源控制连接重配消息;所述终端设备从所述无线资源控制连接重配消息中,获取QoS数据流与承载之间的映射关系。
结合第五方面,在第五方面的某些实现方式中,所述终端设备接收所述DU发送的承载修改消息,其中,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流;所述终端设备根据所述承载修改消息确定所述承载的QoS参数;和/或,所述终端设备根据所述承载修改消息增加或者减少所述承载包含的QoS数据流。
第六方面,提供一种基站,该基站包括CU,该CU包括用于执行所述第一方面或其各种实现方式中的方法的模块。
第七方面,提供一种基站,该基站包括CU,该CU包括用于执行所述第二方面或其各种实现方式中的方法的模块。
第八方面,提供一种基站,该基站包括DU,该DU包括用于执行所述第三方面或其各种实现方式中的方法的模块。
第九方面,提供一种基站,该基站包括DU,该CU包括用于执行所述第四方面或其各种实现方式中的方法的模块。
第十方面,提供一种终端设备,该终端设备包括用于执行所述第五方面或其各种实现方式中的方法的模块。
第十一方面,提供一种通信装置,该装置包括:存储介质,以及处理器,所述存储介质中存储有计算机可执行程序,所述中央处理器与所述非易失性存储介质连接,并执行所述计算机可执行程序以实现上述第一方面至第八方面中的任意一种实现方式或者其各种实现方式中的方法或者方法中可以由处理器实现的部分。
上述存储介质可以是非易失性存储介质。
第十二方面,提供一种计算机可读介质,所述计算机可读介质存储用于计算机执行的程序代码,所述程序代码包括用于执行上述第一方面至第五方面中的任意一种实现方式或者其各种实现方式中的方法的指令。
附图说明
图1是本申请实施例的通信方法的示意性流程图。
图2是本申请实施例的通信方法的示意性流程图。
图3是UE从当前基站切换到目标基站的场景的示意图。
图4是UE从基站的当前CU切换到目标DU的场景的示意图。
图5是UE从主基站的DU切换到辅基站的DU的场景的示意图。
图6是本申请实施例的通信方法的示意性流程图。
图7是本申请实施例的通信方法的示意性流程图。
图8是本申请实施例的通信方法的示意性流程图。
图9是本申请实施例的通信方法的示意性流程图。
图10是本申请实施例的通信方法的流程图。
图11是本申请实施例的通信方法的流程图。
图12是本申请实施例的通信方法的流程图。
图13是本申请实施例的通信方法的流程图。
图14是本申请实施例的基站的示意性框图。
图15是本申请实施例的基站的示意性框图。
图16是本申请实施例的基站的示意性框图。
图17是本申请实施例的基站的示意性框图。
图18是本申请实施例的终端设备的示意性框图。
图19是本申请实施例的通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于采用CU和DU分离设计的通信***或具有类似设计原理的通信***中,例如,长期演进(Long Term Evolution,LTE)***、第五代(5th-Generation,5G)通信***以及其它能够适用于DU和CU相分离的架构的通信***。
本申请中的涉及终端设备,该终端设备可以是包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。终端设备可以叫做用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端等。终端设备的具体表现形式可以是智能终端、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、物联网设备、车载设备、可穿戴设备等。
可以理解的是,在通信网络中会有不同的业务场景,在不同的业务场景下,终端设备可能具有相应的形态,本申请对此不作限定。
比如,5G中包括三种典型业务场景:
一是增强型的移动宽带,这种应用场景下,智能终端用户上网峰值速率要达到10Gbps甚至20Gbps,为虚拟现实、无处不在的视频直播和分享、随时随地的云接入等大带宽应用提供支持。二是大连接物联网,这种场景下,5G网络需要支撑100万/平方公里规模的人和物的连接。
三是低时延、超可靠通信。这种场景要求5G网络的时延达到1毫秒,为智能制造、远程机械控制、辅助驾驶和自动驾驶等低时延业务提供强有力的支持。
图1示出了本申请实施例的通信方法的流程图。该通信方法100的具体步骤如下:
110、CU获取QoS数据流的QoS参数。
该步骤有不同的实现方式,具体举例如下:
方式1:
上述CU先接收核心网发送的QoS数据流,然后再获取该QoS数据流的QoS参数。
具体而言,QoS数据流的用户面包头中包含QoS数据流ID,并且该QoS数据流ID与QoS数据流的QoS参数存在一定的对应关系。
基于此,CU可以根据QoS数据流ID、QoS数据流ID与QoS数据流的QoS参数的对应关系,确定QoS数据流的QoS参数。
其中,上述QoS数据流ID与QoS数据流的QoS参数的对应关系可以预先设置在CU中,也可以由核心网提供。如果是采用由核心网提供的方式,CU可以从核心网发送的协议数据单元(Packet Data Unit,PDU)会话建立请求中获取QoS数据流ID与QoS数据流的QoS参数的对应关系。
方式2:
CU在没有接收到核心网发送的QoS数据流的情况下,也可以获取该QoS数据流的QoS参数。
例如,CU从核心网发送的PDU会话建立请求中获取QoS数据流ID、以及QoS数据 流ID与QoS参数的对应关系,从而根据QoS数据流ID以及QoS数据流ID与QoS参数的对应关系确定QoS数据流的QoS参数。
上述QoS数据流的QoS参数可以包含下列参数:
(1)、5G QoS等级标识(5G QoS Class Identifier,5QI);
(2)、分配保留优先级(Allocation and Retention Priority,ARP);
(3)、保证流比特率(Guaranteed Flow Bit Rate,GFBR);
(4)、最大流比特率(Maximum Flow Bit Rate,MFBR)。
其中,上述5QI具体可以包括:保证速率(Guaranteed Bit Rate,GBR)或者非保证速率(non-GBR)类型信息、优先级级别(Priority Level),包时延预算(Packet Delay Budget),包错误率(Packet Error Rate)。
120、CU根据QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息。
上述承载可以是数据无线承载(Data radio bearer,DRB)或无线承载(Radio Bearer,RB),具体地,当承载在CU和DU之间时可以是RB,当承载在DU和UE之间时,承载可以是DRB。
应理解,上述QoS数据流可以包括多个数据流,上述承载也可以包括多个承载。CU确定QoS数据流与承载的映射关系,可以是多个数据流映射多个承载中,并且,不同的数据流可以映射一个承载,同一个承载可以包括一个或者多个数据流。
下面结合具体实例对根据QoS数据流的QoS参数,确定QoS数据流与承载的映射关系进行说明。
在确定QoS数据流与承载的映射关系时,QoS参数比较相近的QoS数据流可以映射到同一个承载,而QoS参数相差较大的QoS数据流可以映射到不同的承载。
应理解,CU在确定QoS数据流与承载的映射关系时,具体可以是在CU的分组数据链接协议(Service Data Adaptation Protocol,SDAP)层将QoS数据流映射到承载。
例如,上述QoS数据流包含第一数据流、第二数据流和第三数据流,上述承载包含第一承载和第二承载,并且第一数据流、第二数据流和第三数据流的QoS参数如表1所示。在表1中,第一数据流与第二数据流的参数比较接近(这两个数据流的包错误率相同,包时延预算以及优先级级别也比较接近),而第三数据流的参数与第一数据流和第二数据流的参数均相差较大,因此,在确定QoS数据流与承载的映射关系时可以得到表2所示的映射关系,其中,第一数据流和第二数据流是映射到第一承载,第三数据流是映射到第二承载。
表1
Figure PCTCN2018085605-appb-000001
表2
Figure PCTCN2018085605-appb-000002
应理解,这里只是以表1和表2为例对确定QoS数据流与承载的映射关系进行说明,实质上,在确定QoS数据流与承载的映射关系时,可以根据不同的应用场景来灵活选择QoS数据流中的主要QoS参数,以确定QoS数据流与承载的映射关系。例如,在低时延、超可靠通信的场景下,如果两个QoS数据流的包时延预算相同或比较接近的话,这两个QoS数据流就可以映射到同一承载。另外,在通常情况下,CU在确定QoS数据流与承载的映射关系时,可以将GBR类型的数据流和non-GBR类型的QoS数据流映射到不同承载。
应理解,除了根据QoS数据流的QoS参数的相同与否或相近程度来确定QoS数据流与承载的映射关系外,还可以根据QoS数据流的其它关系(例如,QoS数据流是否属于同一会话)来确定QoS数据流与承载的映射关系。
进一步的,上述第一数据流和第二数据流可以位于同一个PDU会话中,而第三数据流位于另一个PDU会话中,具体可以如表3所示:第一PDU会话包含第一数据流和第二数据流,第二PDU会话包含第三数据流。由表3可知,不同的PDU会话的数据流分别对应不同的承载,第一PDU会话的数据流是映射到第一承载,第二PDU会话的数据流是映射到第二承载。
表3
Figure PCTCN2018085605-appb-000003
CU在确定了QoS数据流与承载的映射关系之后,可以根据QoS数据流的QoS参数将QoS数据流映射到承载。CU在将QoS数据流映射到承载具体可以是在CU的分组数据链接协议(Service Data Adaptation Protocol,SDAP)层将QoS数据流映射到承载。
130、CU根据QoS数据流的QoS参数,确定承载的QoS参数。
应理解,CU可以在确定QoS数据流与承载的映射关系的同时,根据QoS数据流的QoS参数确定承载的QoS参数。CU也可以在确定QoS数据流与承载的映射关系之后,再根据QoS数据流的QoS参数确定承载的QoS参数。
上述承载QoS参数的具体形式可以如表4所示。
表4
承载
>该承载标识
>该承载的QoS参数
由于CU确定了第一数据流和第二数据流与第一承载的映射关系,那么,CU可以根据第一数据流的QoS参数和第二数据流的QoS参数,确定第一承载的QoS参数。
具体地,CU可以将第一数据流和第二数据流中要求更严格的QoS参数确定为第一承载的QoS参数。
以5G QCI为例,如表5所示,第一数据流的包时延预算是200ms,而第二数据流的包时延预算是250ms,则第一承载的包时延预算则是200ms,其他参数与此类似。
表5
Figure PCTCN2018085605-appb-000004
或者,CU还可以将对第一数据流和第二数据流的QoS参数进行平均运算处理后得到QoS参数作为第一承载的QoS参数。具体如表6所示。
表6
Figure PCTCN2018085605-appb-000005
当CU将第三数据流映射到了第二承载,由于第二承载是由一个第三数据流映射得到的,因此,CU可以将第三数据流的QoS参数直接确定为第二承载的QoS参数。具体如表7所示:
表7
Figure PCTCN2018085605-appb-000006
Figure PCTCN2018085605-appb-000007
140、CU向分布式单元DU发送承载的QoS参数。
目前标准上在讨论对基站(如LTE***中的eNB或者NR***中的gNB)进行功能划分,将基站划分为CU和DU。一种较为可能的实现方式按照协议栈功能划分,CU具有PDCP层以上(含PDCP,RRC和SDAP)功能,DU具有PDCP层以下(含RLC/MAC/PHY)功能。DU在接收到承载的QoS参数之后,可以根据该承载的QoS参数对承载进行调度。应理解,DU对承载进行调度可以是指DU对承载的数据传输进行控制。
DU在根据该承载的QoS参数对承载进行调度时,具体如下:
(1)、根据承载的优先级等级,DU对优先级较高的承载进行优先调度。
(2)、根据承载的分组延迟时延和数据包错误率,DU对承载的数据传输进行控制,使得承载的数据传输满足分组延迟时延和数据包错误率的要求。
DU根据该承载的其他QoS参数对承载进行调度的原理类似,不再一一赘述。
另外,可以理解的是,从数据流向的角度,DU对承载的调度可以分为对上行数据的调度和对下行数据的调度。
对于上行数据和下行数据的调度过程具体如下:
对于下行数据调度:
DU根据承载的QoS参数,对承载的下行数据进行调度。DU优先调度优先级等级较高的承载,并考虑满足包时延预算和包错误率。相应的,UE通过检测物理下行控制信道,检测下行调度信息,并根据下行调度信息,在对应的物理下行共享信道接收DU所发送的下行数据。
对于上行数据调度:
UE根据承载的配置信息,向DU请求发送上行数据的资源。例如,UE发送该承载的逻辑信道优先级以及缓存的数据量给DU,DU根据UE上报的该承载的逻辑信道优先级以及缓存的数据量,以及该承载对应的QoS参数生成上行授权(UL grant),并将上行授权通过物理下行控制信道发送给UE,UE根据接收到的上行授权发送上行数据。
本申请中,通过CU确定QoS数据流与QoS数据流的映射关系以及承载的QoS参数,符合CU和DU功能划分趋势,即QoS数据流与QoS数据流的映射关系以及承载的QoS参数均由CU上的SDAP层完成,可最大限度保持承载的QoS参数与承载的一致性,有利于DU根据该承载的QoS参数对承载进行调度。
可选地,对于上述步骤140来说,CU向DU发送承载的QoS参数具体的实现方式可以包括:CU向DU发送第一消息,其中,上述第一消息包含:承载的QoS参数。
以下通过承载建立过程和承载修改过程来分别对CU向DU发送第一消息进行描述。
方式1:承载建立过程:
当没有建立承载时,CU可以向DU发送承载建立请求消息,以建立上述承载。
而本发明实施例利用该承载建立请求消息,携带CU根据QoS数据流的QoS参数所确定的承载的QoS参数,以实现上述内容从CU向DU的传递或者指示。
承载建立请求消息可以包含承载在DU上的配置参数,当DU接收到第一消息后,根 据承载在DU上的配置参数对DU侧的L1/L2层进行配置。
承载建立请求消息还可以包含关于UE的承载的配置信息,其中,关于UE的承载的配置信息可以通过CU生成的无线资源控制连接重配消息携带。
当DU接收到CU发送的承载建立请求消息后,DU可以再将承载建立请求消息中关于UE的承载的配置信息发送给UE,使得UE能够根据该关于UE的承载的配置信息实现对承载的配置,建立DU和UE之间的承载。所述关于UE的承载的配置信息可以为CU生成的无线资源控制连接重配消息。
当完成了承载的建立后,DU可以向CU发送承载建立响应消息,以通知在DU和UE之间的承载已经建立。换言之,上述方法还可以包括:CU接收DU发送的承载建立响应消息。
通过上述描述可知,上述第一消息具体可以是承载建立请求消息,第一消息的响应消息可以是承载建立完成消息。
或者上述第一消息具体可以是UE上下文建立请求消息,第一消息的响应消息可以是UE上下文建立完成消息,其实现原理和过程类似,不再赘述。
应理解,如果通过上述方式1已经建立了承载,那么可以采用下面的方式2对承载进行修改,并在承载修改的过程中携带修改后的承载的QoS参数,以实现上述内容从CU向DU的传递或者指示。
方式2:承载修改过程:
如果UE和DU之间已经建立了上述承载,CU可以向DU发送承载修改消息来对承载进行修改。此种情况下,上述第二消息具体可以是承载修改消息。可选地,作为一个实施例,上述方法100还包括:CU向DU发送第二消息,该第二消息包含第一信息和第二信息中的至少一个,其中,第一信息表示修改承载的QoS参数,第二信息用于增加或者减少承载包含的QoS数据流。
当上述承载修改消息包含第一信息时,DU可以根据该第一信息对承载的QoS参数进行修改。例如,DU可以将承载的ARP从较高的优先级修改为较低的优先级,或者将承载的ARP从较低的优先级修改为较高的优先级。
当上述承载修改消息包含第二信息时,DU可以根据该第一信息对承载的包含的数据流进行修改,具体地,可以增加该承载包含的数据流也可以减少该承载包含的数据流。例如,第一承载包含第一数据流和第二数据流,CU向DU发送承载修改消息,DU接收到承载修改消息后在第一承载包含的数据流中新增加第三数据流,或者,DU接收到承载修改消息后在第一承载包含的第二数据流去掉,使得第一承载只包含第一数据流。
本申请中,CU通过向DU发送第二消息,能够灵活地实现对承载的修改。
上述实施例对CU确定QoS数据流与QoS数据流的映射关系以及承载的QoS参数、DU根据承载的QoS参数调度数据进行了描述。
可以理解的是,除了数据流级别的QoS参数外,QoS参数还包括:切片级别的QoS参数、UE级别的QoS参数。这些非数据流的参数可以放在第一消息中。
可选地,作为一个实施例,上述方法100还包括:CU获取非数据流级别的QoS参数;CU向DU发送第一参数;DU根据第一参数对切片、UE以及PDU会话中的任意一个的数据传输进行控制。
除了根据承载的QoS参数对承载进行调度外,还以根据非数据流级别的QoS参数实现对传输更精细的控制。
应理解,CU除了将第一参数发送给DU,使得DU根据第一参数对相应的数据传输进行控制外,CU在获取了第一参数后,也可以直接根据第一参数对切片、UE以及PDU会话中的任意一个的数据传输进行控制。
其中,上述第一参数包括切片级别的QoS参数、UE级别的QoS参数以及PDU会话级别的QoS参数中的任意一种或其组合。当第一参数包含某个级别的参数时DU就可以根据该级别的参数实现对该级别的数据传输的控制。
下面以第一参数包含上行PDU会话聚合最大比特速率(Aggregate Maximum Bit Rate,AMBR)、下行PDU会话AMBR为例对CU或者DU根据第一参数进行相应的数据传输控制进行详细的描述。
当上述第一参数包括上行PDU会话AMBR时,CU根据上行PDU会话AMBR对PDU会话的上行数据传输速率进行控制,使得PDU会话的上行数据传输速率满足PDU会话AMBR的要求,即该PDU会话中所有DRB的UL传输数据的传输速率之和不超过该上行PDU会话AMBR。
当上述第一参数包括上行PDU会话AMBR时,CU向DU发送该第一参数,也就是向DU发送上行PDU会话AMBR。DU在接收到该上行PDU会话AMBR后,可以根据该上行PDU会话AMBR对PDU会话的上行数据传输速率进行控制,使得PDU会话的上行数据传输速率满足上行PDU会话AMBR的要求,即该PDU会话中所有DRB的UL传输数据传输速率之和不超过该上行PDU会话AMBR。
当上述第一参数包括下行PDU会话AMBR时,CU向DU发送该第一参数,也就是向DU发送下行PDU会话AMBR。DU在接收到该下行PDU会话AMBR后,可以根据该下行PDU会话AMBR对PDU会话的下行数据传输速率进行控制,使得PDU会话的数据下行传输速率满足下行PDU会话AMBR的要求,即该PDU会话中所有DRB的DL传输数据传输速率之和不超过该下行PDU会话AMBR。
当上述第一参数既包括上行PDU会话AMBR又包括下行PDU会话AMBR时,CU将上行和下行PDU会话AMBR都发送给DU。使得DU能够根据上行/下行PDU会话AMBR的对PDU会话的上行/下行数据传输速率进行控制,使得PDU会话的上行数据传输速率满足上行PDU会话的AMBR的要求,PDU会话的下行数据传输速率满足下行PDU会话的AMBR的要求。即该PDU会话中所有DRB的UL传输数据传输速率之和不超过该上行PDU会话AMBR,该PDU会话中所有DRB的DL传输数据传输速率之和不超过该下行PDU会话AMBR。
CU或者DU根据切片级别的QoS参数、UE级别的QoS参数对相应的数据传输进行控制的过程与上述控制过程类似,这里不再赘述。
图2示出了本申请实施例的通信方法的流程图。该通信方法200的具体步骤如下:
210、CU获取QoS数据流的QoS参数。
220、CU根据QoS数据流的QoS参数确定QoS数据流与承载的映射关系。
应理解,上述步骤210和步骤220与上文中的步骤110和步骤120是相同的,上文中针对步骤110和步骤120的描述同样也适用于步骤210和步骤220,为了简洁,这里适当 省略重复的描述。
230、CU向DU发送QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息。
上述映射信息可以用于指示QoS数据流与承载之间的映射关系,例如,某个数据流映射到某个承载中。该映射信息的具体形式可以如表8所示。在表8中示出的是某承载的映射信息,该承载的映射信息包括该承载的标识以及该承载所包含的QoS数据流。
表8
承载
>承载标识
>承载包含的QoS数据流标识列表
进一步地,表8中的承载的映射信息还可以进一步包含该承载包含的QoS数据流的QoS参数,如表9所示。
表9
承载
>承载标识
>承载包含的QoS数据流标识列表
>>承载包含的QoS数据流的QoS参数
本申请中,DU能够根据QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度,例如DU上的媒体接入控制(Medium Access Control,MAC)层可以根据负载等信息以及QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息来灵活地实现对承载的调度等。
具体地,当承载包含的QoS数据流较少或者QoS数据流的QoS参数比较接近时,CU可以直接根据组成承载的QoS数据流的QoS参数对承载进行调度,而当承载包含的QoS数据流较多或者QoS数据流的QoS参数相差较大时,CU可以在根据QoS数据流的QoS参数生成承载的QoS参数后再根据承载的QoS参数对承载进行调度。
可选地,上述方法100和方法200也可以适用于CU和DU发生切换的场景。
下面结合图3和图4分别对基站间切换与基站内切换的这两种场景进行详细的介绍。
场景一:基站间切换
如图3所示,当UE要从当前基站切换到目标基站时,对于上述方法100来说,当前基站可以将QoS数据流与承载的映射关系以及CU确定的承载的QoS参数发送给目标基站,使得目标DU能够根据这些信息完成对承载的调度。
具体地,当前基站包含当前CU和当前DU,目标基站包含目标CU和目标DU,当前CU可以将QoS数据流与承载的映射关系以及CU确定的承载的QoS参数通过Xn接口发送给目标CU,接下来再由目标CU将映射关系以及承载的QoS参数发送给通过F1接口目标DU,使得目标DU能够根据这些信息完成对承载的调度。例如,当前CU发送切换请求消息给目标CU,其中切换请求消息中包含QoS数据流与承载的映射关系以及CU确定的承载的QoS参数。
如图3所示,当UE要从当前基站切换到目标基站时,对于方法200来说,当前基站 可以将QoS数据流与承载的映射关系以及QoS数据流的QoS参数发送给目标基站,使得目标DU能够根据这些信息完成对承载的调度。
具体的,当前基站包含当前CU和当前DU,目标基站包含目标CU和目标DU,当前CU可以将QoS数据流与承载的映射关系以及QoS数据流的QoS参数通过Xn接口发送给目标CU,接下来再由目标CU将映射关系以及QoS数据流的QoS参数通过F1接口发送给目标DU,使得目标DU能够根据这些信息完成对承载的调度。例如,当前CU发送切换请求消息给目标CU,其中切换请求消息中包含QoS数据流与承载的映射关系以及QoS数据流的QoS参数。
场景二:基站内DU间切换
如图4所示,当UE要从当前DU切换到目标DU时,对于方法100来说,CU可以将QoS数据流与承载的映射关系以及CU确定的承载的QoS参数通过F1接口发送给目标DU,使得目标DU能够根据这些信息完成对承载的调度。例如,CU向目标DU发送UE上下文建立请求消息,其中UE上下文建立请求消息中包含QoS数据流与承载的映射关系以及CU确定的承载的QoS参数。
如图4所示,当UE要从当前DU切换到目标DU时,对于方法200来说,CU可以将QoS数据流与承载的映射关系以及QoS数据流的QoS参数通过F1接口发送给目标DU,使得目标DU能够根据这些信息完成对承载的调度。例如,CU发送UE上下文建立请求消息给目标CU,其中UE上下文建立请求消息中包含QoS数据流与承载的映射关系以及QoS数据流的QoS参数。
另外,上述方法100和方法200也可以适用于双链接(Dual Connectivity,DC)的场景。
如图5所示,在UE与主基站和辅基站均保持连接的情况下,主基站将QoS数据流与承载的映射关系以及CU确定的承载的QoS参数发送给辅基站,以便辅基站能够根据这些信息完成对承载的调度。例如,主基站发送辅基站增加消息给辅基站,其中辅基站增加消息中包含QoS数据流与承载的映射关系以及主基站确定的承载的QoS参数。
具体地,主基站的CU可以将QoS数据流与承载的映射关系以及主基站的CU确定的承载的QoS参数通过Xn接口发送给辅基站的CU,再由辅基站的CU将这些信息通过F1接口发送给辅基站的DU,以便辅基站的DU能够根据这些信息完成对承载的调度。
如图5所示,在UE与主基站和辅基站均保持连接的情况下,主基站可以将QoS数据流与承载的映射关系以及QoS数据流的QoS参数发送给辅基站,以便辅基站能够根据这些信息完成对承载的调度,例如,主基站发送辅基站增加消息给辅基站,其中辅基站增加消息中包含QoS数据流与承载的映射关系以及QoS数据流的QoS参数。
具体地,主基站的CU可以将QoS数据流与承载的映射关系以及QoS数据流的QoS参数通过Xn接口发送给辅基站的CU,再由辅基站的CU将这些信息发送通过F1接口发送给辅基站的DU,以便辅基站的DU能够根据这些信息完成对承载的调度。
上文结合图1和图2从CU的角度对本申请实施例的通信方法进行了描述,下面结合图6和图7从DU的角度对本申请实施例的通信方法进行描述。应理解,图6和图7中的通信方法与图1和图2中的通信方法分别是对应的,为了简洁,适当省略重复的描述。
图6示出了本申请实施例的通信方法的流程图。该通信方法600的具体步骤如下:
610、分布式单元DU接收集中式单元CU发送的承载的QoS参数,其中,所述承载是所述CU根据所述QoS数据流的QoS参数确定的,与所述QoS数据流之间存在映射关系的承载,所述承载的QoS参数是所述CU根据所述QoS数据流的QoS参数确定的。
620、所述DU根据所述承载的QoS参数,对所述承载进行调度。
本申请中,DU在对承载进行调度时依据的承载的QoS参数是CU在确定QoS数据流与QoS数据流的映射关系同时确定的,能够保持承载与承载的QoS参数的一致性,能够提高DU对承载进行调度的效果。
图7示出了本申请实施例的通信方法的流程图。该通信方法700的具体步骤如下:
710、分布式单元DU接收集中式单元CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息;
720、所述DU根据所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,对所述承载进行调度。
本申请中,DU能够根据QoS数据流的QoS参数,以及QoS数据流与承载之间的映射信息对承载进行调度。DU既可以直接根据QoS数据流级别的QoS参数实现对承载的调度,也可以将QoS数据流的QoS参数转化为承载级别的QoS参数后再对承载进行调度,与仅根据承载的QoS参数实现对承载的调度的方式相比,对承载的调度更加灵活。
可选地,作为一个实施例,在上述方法600和方法700中,所述映射信息是所述CU根据所述QoS数据流的QoS参数的比较结果确定的。
可选地,作为一个实施例,在上述方法600和方法700中,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述承载的QoS参数是所述CU从所述多个数据流的QoS参数选择出来的,或者,所述承载的QoS参数是所述CU根据所述多个数据流的QoS参数计算得到的。
可选地,作为一个实施例,上述方法600和方法700还包括:所述DU接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数和/或所述QoS数据流与所述承载之间的映射信息;所述DU根据所述第一消息,在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,上述方法600和方法700还包括:所述DU接收所述CU发送的第一消息,所述第一消息包含所述QoS数据流的QoS参数和/或所述QoS数据流与所述承载之间的映射信息;所述DU根据所述第一消息,在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,上述方法600和方法700还包括:所述DU接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
可选地,作为一个实施例,在上述方法600和方法700中,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
可选地,作为一个实施例,上述方法600和方法700还包括:所述DU接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中 的任意一种;所述DU根据所述非QoS数据流级别的QoS参数,对切片、所述UE以及所述PDU会话中的任意一个的数据传输进行控制。
上文结合图6和图7从DU的角度对本申请实施例的通信方法进行了描述,下面结合图8从UE的角度对本申请实施例的通信方法进行描述。应理解,图8中的通信方法与图6和图7中的通信方法是分别对应的,为了简洁,适当省略重复的描述。
图8示出了本申请实施例的通信方法的流程图。该通信方法800的具体步骤如下:
810、UE获取QoS数据流与承载之间的映射信息,其中,所述映射信息是CU根据所述QoS数据流的QoS参数确定的。
820、所述UE根据所述QoS数据流与承载之间的映射关系向DU发送上行数据。
本申请中,UE在传输上行数据所依据的QoS数据流与承载之间的映射信息是CU根据所述QoS数据流的QoS参数确定的,符合CU和DU功能划分趋势,能够保证UE进行上行数据传输的效果。
可选地,作为一个实施例,所述UE获取QoS数据流与承载之间的映射信息,包括:所述UE接收所述DU发送的无线资源控制连接重配消息;所述UE从所述无线资源控制连接重配消息中获取QoS数据流与承载之间的映射关系。
可选地,作为一个实施例,上述方法800还包括:所述UE接收所述DU发送的承载修改消息,其中,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流;所述UE根据所述承载修改消息确定所述承载的QoS参数;和/或,所述UE根据所述承载修改消息增加或者减少所述承载包含的QoS数据流。
下面结合图9至图12对本申请实施例的通信方法进行详细的描述。图9至图12中的通信方法可以由上文中的CU、DU或者UE等设备来实现。
图9示出了本申请实施例的通信方法的流程图。图9的方法包括:
901、CU向DU发送承载建立请求。
该承载请求可以包括下列信息:待建立的DRB的列表,该列表包括待建立的DRB的DRB ID、QoS参数和QoS数据流与待建立的DRB之间的映射关系以及CU隧道端点标识(Tunnel Endpoint Identifier,TEID)。
CU在获取该承载建立请求后可以根据先确定需要建立的的DRB,然后再根据QoS数据流与DRB之间的映射关系以及CU隧道端点标识来完成从QoS数据流到相应DRB的映射。
具体地,上述承载请求的具体可以包含如表10中所示的信息。
表10
承载建立列表
>承载所属的PDU会话标识
>>PDU会话QoS参数(PDU会话AMBR)
>>>DRB标识
>>>DRB包含的QoS流列表
>>>>QoS流的QoS参数
>>>>DRB的QoS参数
>>>>DRB的上行传输链路地址
关于UE的DRB的配置信息
DRB在DU配置参数
902、DU向CU发送承载建立响应。
上述承载建立响应可以包含已经建立的DRB的列表,该列表包括已经被成功建立的DRB的DRB ID以及DRB TEID;另外,该承载建立响应还可以包含承载建立失败的DRB的列表,该列表包含承载建立失败的DRB的DRB ID以及该DRB建立失败的原因。
CU通过向DU发送承载建立请求,能够使得DU在UE和DU之间建立DRB,并且在DRB建立完成后DU向CU反馈DRB已经建立完成。
图10示出了本申请实施例的通信方法的流程图。图10的方法包括:
1001、CU接收接入和移动管理功能单元(Access and Mobility Management Function,AMF)发送的QoS数据流。
具体地,CU通过PDU会话获取QoS数据流。该QoS数据流包括三个数据流,这三个数据流分别为Flow1、Flow2和Flow3,这三个数据流包括QoS数据流ID(分别为QFI1、QFI2和QFI3)以及相应的数据。
1002、CU将Flow1和Flow2映射到承载1,将Flow3映射到承载2。
可选地,CU可以将QoS参数相近的QoS数据流映射到同一个承载。因此,当Flow1与Flow2的QoS参数比较接近,Flow3与Flow1/Flow2的QoS参数相差较大时,就可以将Flow1与Flow2映射到同一个承载,将Flow3映射到另一个承载。也就是说,同一个承载既可以包含一个QoS数据流也可以包含多个QoS数据流。另外,CU在将QoS数据流映射到承载时具体可以是由CU的SDAP层实现的。
1003、CU根据Flow1和Flow2的QoS参数生成承载1的QoS参数,根据Flow3的QoS参数生成承载2的QoS参数。
在CU根据QoS数据流生成承载的QoS参数之前,可以先确定QoS数据流的QoS参数。具体地,CU可以QoS数据流ID以及QoS数据流ID与QoS参数的对应关系来确定QoS数据流的QoS参数。其中,QoS数据流ID与QoS参数的对应关系可以是预先设置在CU中,也可以是携带在核心网向DU发起的PDU会话建立请求中,也可以是通信标准中规定的。
另外,CU在根据多个QoS数据流的QoS参数确定多个承载的QoS参数时,可以按照QoS参数的参数值的大小从中挑选最严格的QoS参数作为承载的QoS参数。具体地,假设Flow1和Flow2映射到承载1,而Flow3映射到承载2,当CU在根据Flow1和Flow2的QoS参数生成承载1的QoS参数时既可以可以从Flow1和Flow2的QoS参数中挑选最严格的QoS参数作为承载1的QoS参数,也可以将Flow1和Flow2的QoS参数进行平均后得到的QoS参数作为承载1的QoS参数,而CU在根据Flow3的QoS参数生成承载2的QoS参数时可以直接将Flow3的QoS参数作为承载2的QoS参数。
1004、CU向DU发送承载的QoS参数。
具体地,承载的QoS参数可以携带在CU发送的承载建立请求消息或者UE上下文建 立请求消息中。
如果DU和UE之间没有建立承载的话,那么,CU可以通过向DU发送承载建立请求消息,使得DU在DU和UE之间建立承载。
如果为初始建立承载的话,那么CU向DU发送UE上下文建立请求消息。
上述承载建立请求消息或者UE上下文建立请求消息可以包含根据QoS数据流的QoS参数生成的承载的QoS参数,以及承载在DU配置参数,关于UE的承载的配置信息,以及承载的上行传输链路地址等。其中,承载的上行传输链路地址包含GPRS隧道协议(GPRS Tunnelling Protocol,GTP)隧道端点标识。
上述承载建立请求消息或者UE上下文建立请求消息的具体格式可以如表11所示。
表11
承载建立列表
>承载所属的PDU会话标识
>>PDU会话QoS参数(PDU会话AMBR)
>>>承载标识
>>>>承载的QoS参数
>>>>承载的上行传输链路地址
关于UE的承载的配置信息
承载在DU配置参数
应理解,上述承载建立请求消息或者UE上下文建立请求消息除了可以包含表11所示的参数之外还可以包含UE级别的参数(如UE的AMBR)以及切片级别的参数(如切片的AMBR)。
DU在接收到CU发送的承载建立请求消息后,根据该承载建立请求消息中包含的承载在DU上的配置参数对DU侧的L1和/或L2层进行配置。
1005、DU向UE发送关于UE的承载的配置信息。
具体的,上述关于UE的承载的配置信息可以为无线资源控制连接重配消息。
无线资源控制连接重配消息中包含UE相关的承载配置信息。
1006、UE根据关于UE的承载的配置信息对承载1和承载2进行配置。
UE根据无线资源控制连接重配消息中的UE相关的承载配置信息完成对该承载的配置。
1007、UE向DU发送无线资源控制连接重配完成消息(RRC Connection Reconfiguration Complete)。
UE在完成承载的配置后,向DU反馈无线资源控制连接重配完成消息。
1008、DU向CU发送承载建立完成消息。
DU除了向CU发送承载建立完成消息外,还可以向CU发送UE上下文建立完成消息。
DU在接收到CU反馈的无线资源连接重配完成消息后,向CU反馈承载建立完成消息给CU,该承载建立完成消息中包含承载的下行传输链路地址(包含GTP隧道端点标识)等。
应理解,上述步骤1004至步骤1008是可选的,当承载还没有建立时,可以通过执行步 骤1004至步骤1008来建立承载。而如果承载已经建立的话,那么在执行完步骤1003之后就可以直接实现对承载的调度了。
可选地,如果上述承载已经建立,那么在执行完步骤1003之后,CU可以通过向DU发送承载修改消息来对承载进行修改,例如,可以对承载的某些QoS参数进行修改,增加或者减少承载包含的QoS数据流。在完成对承载的修改后,可以再对修改后的承载的调度。
应理解,在上述基础上,DU还可以根据UE级别参数、PDU会话级别参数,承载的QoS参数对承载的调度。
具体的,DU对承载的调度可以分为对承载的上行数据的调度和下行数据的调度。
对承载的下行数据的调度:
DU接收核心网通过会话隧道发送的下行数据,接下来,DU的SDAP层通过识别QFI完成QoS数据流到承载的映射,将数据递交到PDCP层,由PDCP层完成加密,完整性保护等,然后再将数据发送给DU和UE之间的相应的承载中。
对于承载的上行数据的调度:
DU在接收到承载的上行数据的后,根据该承载的上行传输链路地址(包含GTP隧道端点标识)发送数据包到CU,CU接收到该承载中的数据包后,将该数据包通过与承载对应的PDU会话的隧道发给核心网。
另外,CU在上述步骤1003中生成承载的QoS参数的同时也可以生成承载上行调度信息。该上行调度信息可以包含逻辑信道、逻辑信道调度优先级等。CU将该上行调度信息分别包含在关于该承载在DU上的配置参数和关于该承载对UE的配置参数中。当DU和UE获得该上行调度信息后,DU和UE可以按照该上行调度信息完成上行数据传输,并且将QoS数据流到承载的上行映射关系发送给UE,通常情况下,同一QoS数据流的上行数据和下行数据是映射到同一个承载的。
例如,UE根据QoS数据流到承载的上行映射关系,将QoS数据流映射到相应的承载中,并增加DFI。DU根据该上行调度信息给UE分配上行授权(UL grant)。UE接收到该上行授权后,优先安排逻辑信道优先级较高的承载使用该上行授权,优先发送优先级较高的承载的数据。另外,当DU接收到该上行数据后,通过上行GTP隧道发送至CU。CU通过上行GTP隧道的TEID来识别该承载。CU的PDCP层完成对该承载的数据解密或者完整性校验后将将该数据递交给SDAP层,SDAP层通过数据包头的DFI识别数据流,并根据DFI识别出会话信息,将该数据通过该会话是隧道发送给核心网。
DU还可以根据5QI、ARP、GBR和最大比特速率(Maximum Bit Rate,MBR)等参数对承载进行调度。例如,当5QI中包含不同承载的优先级(Priority level)时,DU可以优先对优先级较高的承载进行调度。当5QI中包含数据包时延预算(packet delay budget)和数据包错误率(packet error rate)时,DU可以对承载的数据传输进行控制,使得承载的数据传输满足分组延迟时延和数据包错误率的要求。
图11示出了本申请实施例的通信方法的流程图。图11的方法包括:
1101、CU接收核心网发送的QoS数据流。
1102、CU将Flow1和Flow2映射到承载1,将Flow3映射到承载2。
1103、CU向DU发送QoS数据流的QoS参数。
具体地,承载的QoS参数可以携带在CU发送的承载建立请求消息或者UE上下文建立请求消息。
其中,承载建立请求消息/UE上下文建立请求消息的格式具体可以如表12中所示的形式。
表12
承载建立列表
>承载所属的PDU Session标识
>>PDU Session QoS参数(PDU Session AMBR)
>>>承载标识
>>>承载包含的QoS Flow列表
>>>>QoS flow的QoS参数
>>>>承载的上行传输链路地址
关于UE的承载的配置信息
承载在DU配置参数
1104、DU根据Flow1和Flow2的QoS参数生成承载1的QoS参数,根据Flow3的QoS参数生成承载2的QoS参数。
图10中的方法中是由CU根据QoS数据流来生成承载的QoS参数,而图11的方法中是由DU根据QoS数据流来生成承载的QoS参数。并且当DU在根据QoS数据流来生成承载的QoS参数之前可以先从CU获取QoS数据流与承载之间的映射信息。具体地,在步骤1103之前,DU会从CU获取(也可以是CU直接通知DU)映射信息,也就是DU会从CU获取Flow1和Flow2映射到了承载1,Flow3映射到承载2。
1105、DU向UE发送无线资源控制连接重配消息。
1106、UE根据无线资源控制连接重配消息对承载1和承载2进行配置。
1107、UE向DU发送无线资源控制连接重配完成消息。
1108、DU向CU发送承载建立完成消息。
与图10中的方法类似,上述步骤1104至步骤1108是可选的,当承载还没有建立时,可以通过执行步骤1104至步骤1108来建立承载。而如果承载已经建立的话,那么在执行完步骤1103之后就可以直接实现对承载的调度了。
应理解,在上述基础上,DU还可以根据UE级别参数、PDU会话级别参数,承载的QoS参数对承载的调度。
DU在对承载的调度的具体过程可以参考图10所示的方法中的DU对承载的调度,这里不再赘述。
本申请中,DU除了可以根据承载级别的QoS参数对承载进行调度外还可以根据其它级别的参数(如切片级别的参数、UE级别的参数以及PDU会话级别的参数)进行相应的调度。下面结合图12和图13在数据承载包含承载1和承载2的情况下,以PDU会话的AMBR为例,对PDU会话的调度过程进行详细的介绍。
图12示出了本申请实施例的通信方法的流程图。图12的方法包括:
1201、CU根据下行PDU会话AMBR对承载1和承载2的无线资源进行管理。
具体地,CU根据PDU会话AMBR对PDU会话的下行数据传输速率进行控制,使得PDU会话中的承载1和承载2的下行数据传输速率之和不超过PDU会话AMBR。
1202、CU向DU发送上行PDU会话AMBR。
1203、DU根据上行PDU会话AMBR对承载1和承载2的无线资源进行管理。
具体地,DU根据上行PDU会话AMBR对PDU会话的上行数据传输速率进行控制,使得PDU会话中的承载1和承载2的上行数据传输速率之和不超过PDU会话AMBR。
在图12所示的通信方法中,由CU对PDU会话的上行数据传输速率进行控制,由DU对PDU会话的下行数据传输速率进行控制,可选地,CU也可以将上行PDU会话AMBR和下行PDU会话AMBR都发送给DU使得DU对PDU会话的上行和下行数据传输进行控制。
图13示出了本申请实施例的通信方法的流程图。图13的方法包括:
1301、CU向DU发送上行PDU会话AMBR和下行PDU会话AMBR。
1302、DU根据上行PDU会话AMBR和下行PDU会话AMBR对承载1和承载2的无线资源进行管理。
具体地,DU根据上行PDU会话AMBR对PDU会话的上行数据传输速率进行控制,根据下行PDU会话AMBR对PDU会话的下行数据传输速率进行控制,使得PDU会话中的承载1和承载2的上行数据传输速率之和不超过PDU会话AMBR,承载1和承载2的下行数据传输速率之和不超过PDU会话AMBR。
上文结合图1至图13对本申请实施例的通信方法进行了详细的介绍,下面结合图14至图19对本申请实施例的基站、终端设备和通信装置进行介绍。应理解,图14至图19中的基站、终端设备和通信装置能够实现图1至图13中的通信方法的相应步骤,为了简洁,下面适当省略重复的描述。
图14是本申请实施例的基站的示意性框图。该基站1400包括:
获取模块1410,用于获取服务质量QoS数据流的QoS参数;
处理模块1420,用于根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
所述处理模块1420还用于根据所述QoS数据流的QoS参数,确定所述承载的QoS参数;
发送模块1430,用于向分布式单元DU发送所述承载的QoS参数。
可选地,作为一个实施例,所述处理模块1420具体用于:根据所述QoS数据流的QoS参数的比较结果确定所述QoS数据流与所述承载之间的映射信息。
可选地,作为一个实施例,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述处理模块1420具体用于:从所述多个数据流的QoS参数选择所述承载的QoS参数,或者,根据所述多个数据流的QoS参数计算所述承载的QoS参数。
可选地,作为一个实施例,所述发送模块1430还用于向所述DU发送第一消息,所述第一消息包含所述承载的QoS参数和/或所述QoS数据流与所述承载之间的映射信息,所述第一消息用于请求所述DU在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,所述发送模块1430还用于向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后 的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
可选地,作为一个实施例,所述处理模块1420具体用于:在分组数据链接协议SDAP层确定所述QoS数据流与承载之间的映射信息。
可选地,作为一个实施例,所述获取模块1410还用于:获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述发送模块1430还用于向所述DU发送所述第一参数。
可选地,作为一个实施例,所述获取模块1410还用于:获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述处理模块1420具体用于根据所述非QoS数据流级别的QoS参数,对切片、所述UE以及所述PDU会话中的任意一个的数据传输进行控制。
图15是本申请实施例的基站的示意性框图。该基站1500包括:
获取模块1510,用于获取服务质量QoS数据流的QoS参数;
处理模块1520,用于根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
发送模块1530,用于向分布式单元DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息。
可选地,作为一个实施例,所述处理模块1520具体用于:根据所述QoS数据流的QoS参数的比较结果确定所述QoS数据流与所述承载之间的映射信息。
可选地,作为一个实施例,所述发送模块1530还用于向所述DU发送第一消息,所述第一消息包含所述QoS数据流的QoS参数和/或所述QoS数据流与所述承载之间的映射信息,所述第一消息用于请求所述DU在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,所述发送模块1530还用于向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
可选地,作为一个实施例,所述处理模块1520具体用于:在分组数据链接协议SDAP层确定所述QoS数据流与承载之间的映射信息。
可选地,作为一个实施例,所述获取模块1510还用于:获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;
可选地,作为一个实施例,所述获取模块1510还用于:获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;
可选地,作为一个实施例,所述处理模块1520具体用于根据所述非QoS数据流级别的QoS参数,对切片、所述UE以及所述PDU会话中的任意一个的数据传输进行控制。
图16是本申请实施例的基站的示意性框图。该基站1600包括:
接收模块1610,用于接收集中式单元CU发送的承载的QoS参数,其中,所述承载是所述CU根据所述QoS数据流的QoS参数确定的,与所述QoS数据流之间存在映射关 系的承载,所述承载的QoS参数是所述CU根据所述QoS数据流的QoS参数确定的;
处理模块1620,用于根据所述承载的QoS参数,对所述承载进行调度。
可选地,作为一个实施例,所述映射信息是所述CU根据所述QoS数据流的QoS参数的比较结果确定的。
可选地,作为一个实施例,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述承载的QoS参数是所述CU从所述多个数据流的QoS参数选择出来的,或者,所述承载的QoS参数是所述CU根据所述多个数据流的QoS参数计算得到的。
可选地,作为一个实施例,所述接收模块1610还用于接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数和/或所述QoS数据流与所述承载之间的映射信息;
所述处理模块具体用于根据所述第一消息,在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,所述接收模块1610还用于:接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
可选地,作为一个实施例,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
可选地,作为一个实施例,所述接收模块1610还用于:接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述处理模块1620具体用于根据所述非QoS数据流级别的QoS参数,对切片、所述UE以及所述PDU会话中的任意一个的数据传输进行控制。
图17是本申请实施例的基站的示意性框图。该基站1700包括:
接收模块1710,用于接收集中式单元CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息;
处理模块1720,用于根据所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,对所述承载进行调度。
可选地,作为一个实施例,所述映射信息是所述CU根据所述QoS数据流的QoS参数的比较结果确定的。
可选地,作为一个实施例,所述接收模块1710还用于:接收所述CU发送的第一消息,所述第一消息包含所述QoS数据流的QoS参数和/或所述QoS数据流与所述承载之间的映射信息;所述处理模块1720具体用于根据所述第一消息,在所述DU和用户设备UE之间建立所述承载。
可选地,作为一个实施例,所述接收模块1710还用于:接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
可选地,作为一个实施例,所述QoS数据流与承载之间的映射信息是在所述CU在分 组数据链接协议SDAP层中确定的。
可选地,作为一个实施例,所述接收模块1710还用于:接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述处理模块1720具体用于根据所述非QoS数据流级别的QoS参数,对切片、所述UE以及所述PDU会话中的任意一个的数据传输进行控制。
图18是本申请实施例的终端设备的示意性框图。该终端设备1800包括:
获取模块1810,用于获取QoS数据流与承载之间的映射信息,其中,所述映射信息是CU根据所述QoS数据流的QoS参数确定的;
发送模块1820,用于根据所述QoS数据流与承载之间的映射关系向DU发送上行数据。
可选地,作为一个实施例,所述获取模块1810具体用于:接收所述DU发送的无线资源控制连接重配消息;从所述无线资源控制连接重配消息中获取QoS数据流与承载之间的映射关系。
可选地,作为一个实施例,所述终端设备1800还包括:接收模块1830,用于接收所述DU发送的承载修改消息,其中,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流;处理模块1840,用于根据所述承载修改消息确定所述承载的QoS参数;和/或,根据所述承载修改消息增加或者减少所述承载包含的QoS数据流。
本申请实施例还包括一种基站,该基站由上文中的CU和DU组成。
应理解,这里的基站可以是这些***里的基站或具有类似功能的设备,除了采用基站的名字外,也可能是LTE***中的eNB或者新空口(New Radio,NR)***中的gNB,或者控制器等。
图19是本申请实施例的通信装置的示意性框图。该通信装置1900包括:
存储器1910,用于存储程序;
处理器1920;
收发器1930,当所述存储器存储的程序被处理器1920执行时,处理器1920和收发器1930能够实现上文中的通信方法的各个流程。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种通信方法,其特征在于,包括:
    集中式单元CU获取服务质量QoS数据流的QoS参数;
    所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
    所述CU根据所述QoS数据流的QoS参数,确定所述承载的QoS参数;
    所述CU向分布式单元DU发送所述承载的QoS参数。
  2. 如权利要求1所述的方法,其特征在于,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:
    所述CU通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与承载之间的映射信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述QoS数据流中的多个数据流与第一承载之间存在映射关系,所述CU根据所述QoS数据流的QoS参数,确定所述承载的QoS参数,包括:
    所述CU从所述多个数据流的QoS参数选择所述第一承载的QoS参数,或者,
    所述CU根据所述多个数据流的QoS参数计算所述第一承载的QoS参数。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述CU向DU发送所述承载的QoS参数,包括:
    所述CU向所述DU发送第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  5. 一种通信方法,其特征在于,包括:
    集中式单元CU获取服务质量QoS数据流的QoS参数;
    所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
    所述CU向分布式单元DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息。
  6. 如权利要求5所述的方法,其特征在于,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:
    所述CU通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与承载之间的映射信息。
  7. 如权利要求5或6所述的方法,其特征在于,所述CU向DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,包括:
    所述CU向所述DU发送第一消息,所述第一消息包含所述QoS数据流的QoS参数以及所述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述CU向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息 中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述CU根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息,包括:
    所述CU在分组数据链接协议SDAP层确定所述QoS数据流与承载之间的映射信息。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种或其组合;所述CU向所述DU发送所述非QoS数据流级别的QoS参数;
    或者,
    所述CU获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;所述CU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
  11. 一种通信方法,其特征在于,包括:
    分布式单元DU接收集中式单元CU发送的承载的QoS参数,其中,所述承载是所述CU根据所述QoS数据流的QoS参数确定的,与所述QoS数据流之间存在映射关系的承载,所述承载的QoS参数是所述CU根据所述QoS数据流的QoS参数确定的;
    所述DU根据所述承载的QoS参数,对所述承载进行调度。
  12. 如权利要求11所述的方法,其特征在于,所述映射信息是所述CU通过比较所述QoS数据流中的QoS参数确定的。
  13. 如权利要求11或12所述的方法,其特征在于,所述DU接收CU发送的承载的QoS参数,包括:
    所述DU接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  14. 一种通信方法,其特征在于,包括:
    分布式单元DU接收集中式单元CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息;
    所述DU根据所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,对所述承载进行调度。
  15. 如权利要求14所述的方法,其特征在于,所述映射信息是所述CU通过比较所述QoS数据流中的QoS参数确定的。
  16. 如权利要求14或15所述的方法,其特征在于,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述承载的QoS参数是所述CU从所述多个数据流的QoS参数选择出来的,或者,所述承载的QoS参数是所述CU根据所述多个数据流的QoS参数计算得到的。
  17. 如权利要求14至16中任一项所述的方法,其特征在于,所述DU接收CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,包括:
    所述DU接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数和所 述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  18. 如权利要求11至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述DU接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
  19. 如权利要求11至18中任一项所述的方法,其特征在于,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
  20. 如权利要求11至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述DU接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种或其组合;
    所述DU根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
  21. 一种通信方法,其特征在于,包括:
    用户设备UE获取QoS数据流与承载之间的映射信息,其中,所述映射信息是集中式单元CU根据所述QoS数据流的QoS参数确定的;
    所述UE根据所述QoS数据流与承载之间的映射关系向分布式单元DU发送上行数据。
  22. 如权利要求21所述的方法,其特征在于,所述UE获取QoS数据流与承载之间的映射信息,包括:
    所述UE接收所述DU发送的无线资源控制连接重配消息;
    所述UE从所述无线资源控制连接重配消息中,获取QoS数据流与承载之间的映射关系。
  23. 如权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述UE接收所述DU发送的承载修改消息,其中,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流;
    所述UE根据所述承载修改消息确定所述承载的QoS参数;和/或,
    所述UE根据所述承载修改消息增加或者减少所述承载包含的QoS数据流。
  24. 一种基站,其特征在于,所述基站包括集中式单元CU,所述CU包括:
    获取模块,用于获取服务质量QoS数据流的QoS参数;
    处理模块,用于根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
    所述处理模块还用于根据所述QoS数据流的QoS参数,确定所述承载的QoS参数;
    发送模块,用于向分布式单元DU发送所述承载的QoS参数。
  25. 如权利要求24所述的基站,其特征在于,所述处理模块具体用于:
    通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与所述承载之间的映射信息。
  26. 如权利要求24或25所述的基站,其特征在于,所述QoS数据流中的多个数据 流与所述承载之间存在映射关系,所述处理模块具体用于:
    从所述多个数据流的QoS参数选择所述承载的QoS参数,或者,
    根据所述多个数据流的QoS参数计算所述承载的QoS参数。
  27. 如权利要求24至26中任一项所述的基站,其特征在于,所述发送模块用于向所述DU发送第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  28. 一种基站,其特征在于,所述基站包括集中式单元CU,所述CU包括
    获取模块,用于获取服务质量QoS数据流的QoS参数;
    处理模块,用于根据所述QoS数据流的QoS参数,确定所述QoS数据流与承载之间的映射信息;
    发送模块,用于向分布式单元DU发送所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息。
  29. 如权利要求28所述的基站,其特征在于,所述处理模块具体用于:
    通过比较所述QoS数据流中的QoS参数,确定所述QoS数据流与所述承载之间的映射信息。
  30. 如权利要求28或29所述的基站,其特征在于,所述发送模块用于向所述DU发送第一消息,所述第一消息包含所述QoS数据流的QoS参数以及所述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  31. 如权利要求24至30中任一项所述的基站,其特征在于,所述发送模块还用于向所述DU发送承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
  32. 如权利要求24至31中任一项所述的基站,其特征在于,所述处理模块具体用于:
    在分组数据链接协议SDAP层确定所述QoS数据流与承载之间的映射信息。
  33. 如权利要求24至32中任一项所述的基站,其特征在于,所述获取模块还用于:
    获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;
    所述发送模块还用于向所述DU发送所述非QoS数据流级别的QoS参数。
  34. 如权利要求24至33中任一项所述的基站,其特征在于,所述获取模块还用于:
    获取非QoS数据流级别的QoS参数,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;
    所述处理模块具体用于根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
  35. 一种基站,其特征在于,所述基站包括分布式单元DU,所述DU包括:
    接收模块,用于接收集中式单元CU发送的承载的QoS参数,其中,所述承载是所述CU根据所述QoS数据流的QoS参数确定的,与所述QoS数据流之间存在映射关系的承载,所述承载的QoS参数是所述CU根据所述QoS数据流的QoS参数确定的;
    处理模块,用于根据所述承载的QoS参数,对所述承载进行调度。
  36. 如权利要求35所述的基站,其特征在于,所述映射信息是所述CU根据所述QoS数据流的QoS参数的比较结果确定的。
  37. 如权利要求35或36所述的基站,其特征在于,所述接收模块用于接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  38. 一种基站,其特征在于,所述基站包括分布式单元DU,所述DU包括:
    接收模块,用于接收集中式单元CU发送的QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息;
    处理模块,用于根据所述QoS数据流的QoS参数,以及所述QoS数据流与所述承载之间的映射信息,对所述承载进行调度。
  39. 如权利要求38所述的基站,其特征在于,所述映射信息是所述CU根据所述QoS数据流的QoS参数的比较结果确定的。
  40. 如权利要求38或39所述的基站,其特征在于,所述QoS数据流中的多个数据流与所述承载之间存在映射关系,所述承载的QoS参数是所述CU从所述多个数据流的QoS参数选择出来的,或者,所述承载的QoS参数是所述CU根据所述多个数据流的QoS参数计算得到的。
  41. 如权利要求38至40中任一项所述的基站,其特征在于,所述接收模块还用于接收所述CU发送的第一消息,所述第一消息包含所述承载的QoS参数和所述QoS数据流与所述承载之间的映射信息,其中,所述第一消息为承载建立请求消息或者上下文建立请求消息。
  42. 如权利要求35至41中任一项所述的基站,其特征在于,所述接收模块还用于:
    接收所述CU发送的承载修改消息,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流。
  43. 如权利要求35至42中任一项所述的基站,其特征在于,所述QoS数据流与承载之间的映射信息是在所述CU在分组数据链接协议SDAP层中确定的。
  44. 如权利要求35至43中任一项所述的基站,其特征在于,所述接收模块还用于:
    接收所述CU发送的非QoS数据流级别的QoS参数,其中,所述非QoS数据流级别的QoS参数包括切片级别的QoS参数、UE级别的QoS参数以及分组数据单元PDU会话级别的QoS参数中的任意一种;
    所述处理模块具体用于根据所述非QoS数据流级别的QoS参数,对相应的数据传输进行控制。
  45. 一种终端设备,其特征在于,包括:
    获取模块,获取QoS数据流与承载之间的映射信息,其中,所述映射信息是CU根据所述QoS数据流的QoS参数确定的;
    传输模块,用于根据所述QoS数据流与承载之间的映射关系向DU发送上行数据。
  46. 如权利要求45所述的终端设备,其特征在于,所述获取模块具体用于:
    接收所述DU发送的无线资源控制连接重配消息;
    从所述无线资源控制连接重配消息中,获取QoS数据流与承载之间的映射关系。
  47. 如权利要求45或46所述的终端设备,其特征在于,所述传输模块还用于:
    接收所述DU发送的承载修改消息,其中,所述承载修改消息包含第一信息和第二信息中的至少一个,其中,所述第一信息为修改后的所述承载的QoS参数,所述第二信息用于增加或者减少所述承载包含的QoS数据流;
    所述终端设备还包括:
    处理模块,用于根据所述承载修改消息确定所述承载的QoS参数;和/或,所述UE根据所述承载修改消息增加或者减少所述承载包含的QoS数据流。
  48. 一种通信方法,其特征在于,包括:
    集中式单元CU向分布式单元DU发送承载建立请求,所述承载建立请求中包括待建立的数据无线承载DRB的列表,所述列表包括所述待建立的DRB的DRB标识ID、服务质量QoS参数和QoS数据流与所述待建立的DRB之间的映射关系以及所述CU隧道端点标识TEID;
    所述CU接收来自所述DU的承载建立响应。
  49. 一种通信方法,其特征在于,包括:
    分布式单元DU接收来自集中式单元CU的承载建立请求,所述承载建立请求中包括待建立的数据无线承载DRB的列表,所述列表包括所述待建立的DRB的DRB标识ID、服务质量QoS参数和QoS数据流与所述待建立的DRB之间的映射关系以及所述CU隧道端点标识TEID;
    所述DU向所述CU发送承载建立响应。
  50. 如权利要求48或49所述的方法,其特征在于,所述承载建立响应包括已经建立的DRB的列表,所述已经建立的DRB的列表包括已经被成功建立的DRB的DRB ID以及DRB TEID。
  51. 如权利要求48至50中任一项所述的方法,其特征在于,所述承载建立响应包括承载建立失败的DRB的列表,所述承载建立失败的DRB的列表包括所述承载建立失败的DRB的DRB ID以及DRB建立失败的原因。
  52. 一种基站,其特征在于,所述基站包括集中式单元CU,所述CU包括:
    用于向分布式单元DU发送承载建立请求的模块,所述承载建立请求中包括待建立的数据无线承载DRB的列表,所述列表包括所述待建立的DRB的DRB标识ID、服务质量QoS参数和QoS数据流与所述待建立的DRB之间的映射关系以及所述CU隧道端点标识TEID;
    用于接收来自所述DU的承载建立响应的模块。
  53. 一种基站,其特征在于,所述基站包括分布式单元DU,所述DU包括:
    用于接收来自集中式单元CU的承载建立请求的模块,所述承载建立请求中包括待建立的数据无线承载DRB的列表,所述列表包括所述待建立的DRB的DRB标识ID、服务质量QoS参数和QoS数据流与所述待建立的DRB之间的映射关系以及所述CU隧道端点标识TEID;
    用于向所述CU发送承载建立响应的模块。
  54. 如权利要求52或53所述的基站,其特征在于,所述承载建立响应包括已经建立 的DRB的列表,所述已经建立的DRB的列表包括已经被成功建立的DRB的DRB ID以及DRB TEID。
  55. 如权利要求52至54中任一项所述的基站,其特征在于,所述承载建立响应包括承载建立失败的DRB的列表,所述承载建立失败的DRB的列表包括所述承载建立失败的DRB的DRB ID以及DRB建立失败的原因。
  56. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求48至51中任一项所述的方法。
PCT/CN2018/085605 2017-05-05 2018-05-04 通信方法、基站及终端设备 WO2018202129A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN202410245221.9A CN118042530A (zh) 2017-05-05 2018-05-04 通信方法、基站及终端设备
EP18794122.4A EP3582544B1 (en) 2017-05-05 2018-05-04 Communication methods and appartus for a base station
KR1020197035303A KR102271766B1 (ko) 2017-05-05 2018-05-04 통신 방법, 기지국 및 단말 장치
RU2019139405A RU2754681C2 (ru) 2017-05-05 2018-05-04 Способ связи, базовая станция и терминальное устройство
CN201880029691.4A CN110603845B (zh) 2017-05-05 2018-05-04 通信方法、基站及终端设备
CA3062490A CA3062490C (en) 2017-05-05 2018-05-04 Communication method, base station, and terminal device
JP2019560653A JP6860697B2 (ja) 2017-05-05 2018-05-04 通信方法、基地局、および端末デバイス
EP21185063.1A EP3968690A1 (en) 2017-05-05 2018-05-04 Communication method, base station, and terminal device
BR112019023022-0A BR112019023022A2 (pt) 2017-05-05 2018-05-04 Método de comunicação, aparelho, estação de base, e produto de programa
US16/441,557 US10869324B2 (en) 2017-05-05 2019-06-14 Communication method based on a CU-DU architecture
US17/121,450 US20210153220A1 (en) 2017-05-05 2020-12-14 Communication Method, Base Station, and Terminal Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314208.4 2017-05-05
CN201710314208.4A CN108811153A (zh) 2017-05-05 2017-05-05 通信方法、集中式单元、分布式单元、基站及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/441,557 Continuation US10869324B2 (en) 2017-05-05 2019-06-14 Communication method based on a CU-DU architecture

Publications (1)

Publication Number Publication Date
WO2018202129A1 true WO2018202129A1 (zh) 2018-11-08

Family

ID=64015863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085605 WO2018202129A1 (zh) 2017-05-05 2018-05-04 通信方法、基站及终端设备

Country Status (9)

Country Link
US (2) US10869324B2 (zh)
EP (2) EP3582544B1 (zh)
JP (1) JP6860697B2 (zh)
KR (1) KR102271766B1 (zh)
CN (4) CN110856223B (zh)
BR (1) BR112019023022A2 (zh)
CA (1) CA3062490C (zh)
RU (1) RU2754681C2 (zh)
WO (1) WO2018202129A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034639A1 (en) 2019-03-26 2020-02-20 Zte Corporation Method and apparatus for monitoring performance
WO2021098104A1 (en) * 2020-03-20 2021-05-27 Zte Corporation Method of authorization for network slicing

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496451B1 (en) * 2016-10-17 2023-10-11 Sk Telecom Co., Ltd. Base station device and qos control method in wireless section
US20180234839A1 (en) * 2017-02-13 2018-08-16 Futurewei Technologies, Inc. System and Method for User Equipment Identification and Communications
EP3530068A2 (en) 2017-06-16 2019-08-28 Ofinno, LLC Distributed unit configuration update
US11265946B2 (en) * 2017-09-28 2022-03-01 Samsung Electronics Co., Ltd. Method and device for network access
US11212695B2 (en) * 2018-02-15 2021-12-28 Qualcomm Incorporated Configuration, activation and deactivation of packet duplication
CN110351043A (zh) 2018-04-04 2019-10-18 华为技术有限公司 通信方法和装置
CN110972194A (zh) 2018-09-28 2020-04-07 华为技术有限公司 数据传输的方法和装置
EP4255104A3 (en) * 2018-11-26 2023-12-06 Mitsubishi Electric Corporation Communication system and communication terminal device
CN111343667B (zh) * 2018-12-19 2022-12-13 华为技术有限公司 一种通信方法及通信装置
CN111465052B (zh) * 2019-01-18 2023-05-09 ***通信有限公司研究院 核心网映射及映射表生成方法、装置、设备及介质
CN111526559B (zh) * 2019-02-02 2022-05-10 华为技术有限公司 一种通信方法及装置
US20220104286A1 (en) * 2019-02-13 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Handling of wireless device subscribed aggregate maximum bitrate (ambr) in wireless communication networksaggregate maximum bitrate (ambr) in wireless communication networks
CN111726302A (zh) * 2019-03-19 2020-09-29 ***通信有限公司研究院 流映射方法、RB的QoS参数的设置方法及传输节点
US10849025B1 (en) * 2019-05-02 2020-11-24 Verizon Patent And Licensing Inc. Systems and methods for allocating network resources utilizing bearer information
US11197200B2 (en) * 2019-07-12 2021-12-07 Verizon Patent And Licensing Inc. Radio slice controller to support network slicing and quality of service
CN112243270A (zh) * 2019-07-19 2021-01-19 ***通信有限公司研究院 一种数据包的传输方法、装置和计算机可读存储介质
CN112423330B (zh) * 2019-08-23 2023-01-13 华为技术有限公司 一种通信方法及装置
CN112469024B (zh) * 2019-09-09 2022-03-29 华为技术有限公司 一种会话管理的方法及装置
CN110784877B (zh) * 2019-10-18 2022-08-23 京信网络***股份有限公司 参数配置方法、装置、通信设备和存储介质
US11184843B2 (en) 2019-11-26 2021-11-23 Netsia, Inc. Apparatus and method for QoS aware GTP-U transport in mobile networks
WO2021142801A1 (zh) * 2020-01-17 2021-07-22 华为技术有限公司 一种通信方法及装置
KR20220122719A (ko) * 2020-02-03 2022-09-02 엘지전자 주식회사 무선 통신 시스템에서 cp와 up가 분리된 멀티캐스트 전송을 위한 방법 및 장치
WO2021243500A1 (en) 2020-06-01 2021-12-09 Zte Corporation Network slice-specific aggregate maximum bit rate (ambr) configuration
WO2022032467A1 (en) * 2020-08-11 2022-02-17 Qualcomm Incorporated Quality of service event indication
CN114258151A (zh) * 2020-09-21 2022-03-29 华为技术有限公司 一种计算数据传输方法及装置
EP4243482A1 (en) * 2020-11-05 2023-09-13 LG Electronics Inc. Qos flow-related measurement
WO2022147727A1 (zh) * 2021-01-07 2022-07-14 华为技术有限公司 一种通信方法及装置
US20220417942A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Method and apparatus for prioritizing uplink or downlink flows in multi-processor device
WO2023132257A1 (ja) * 2022-01-05 2023-07-13 京セラ株式会社 基地局、QoSフロー制御方法、及び接続方法
WO2023141816A1 (en) * 2022-01-26 2023-08-03 Lenovo (Beijing) Limited Ecentral unit, distributed unit, user equipment and method for application data unit based data transmission
WO2023189913A1 (ja) * 2022-03-29 2023-10-05 京セラ株式会社 基地局、及び通信制御方法
CN115361106A (zh) * 2022-08-19 2022-11-18 成都中科微信息技术研究院有限公司 一种nr***ue上下文建立过程中指示用户级下行ambr的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795442A (zh) * 2009-02-02 2010-08-04 三星电子株式会社 移动通信***中承载建立的方法
WO2012159321A1 (zh) * 2011-07-07 2012-11-29 华为技术有限公司 服务质量控制方法和设备

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2326750C (en) * 1998-04-03 2010-03-16 Telefonaktiebolaget Lm Ericsson Flexible radio access and resource allocation in a universal mobile telephone system (umts)
GB2379115A (en) * 2001-08-21 2003-02-26 Sony Uk Ltd Introducing test signals into a data signal
US20070204050A1 (en) * 2003-09-18 2007-08-30 Sheng Liu Method Of Radio Access Bearer For Ip Multimedia Session In Umts Network
GB0816846D0 (en) * 2008-09-15 2008-10-22 Nec Corp Packet data network connection establishment method and related system
TWI487394B (zh) * 2009-01-09 2015-06-01 Interdigital Patent Holdings 資料流移動性
US7929514B2 (en) * 2009-06-30 2011-04-19 Alcatel-Lucent Usa Inc. Method and apparatus for mobile flow record generation and analysis
US8908636B2 (en) * 2010-06-21 2014-12-09 Qualcomm Incorporated Method and apparatus for QoS context transfer during inter radio access technology handover in a wireless communication system
CN102378301B (zh) * 2010-08-12 2015-03-11 电信科学技术研究院 获取控制节点信息的方法、设备及***
KR20140035364A (ko) * 2011-04-07 2014-03-21 인터디지탈 패튼 홀딩스, 인크 로컬 데이터 캐싱 방법 및 장치
CN102186214B (zh) * 2011-05-27 2014-02-05 中国电信股份有限公司 QoS业务申请方法、***及控制设备
US9215549B2 (en) * 2013-02-13 2015-12-15 Aeris Communications, Inc. Method for delivering machine to machine (M2M) application control data over control plane in LTE/EPS utilizing standard bearer management procedures
JP2014204193A (ja) * 2013-04-02 2014-10-27 株式会社Nttドコモ 移動通信システム
KR20160004320A (ko) * 2013-04-22 2016-01-12 테라노스, 인코포레이티드 자료의 안전한 운반을 위한 방법, 장치 및 시스템
CN104244426B (zh) * 2013-06-09 2019-02-05 华为技术有限公司 一种数据无线承载drb的资源分配方法及装置
US20160338130A1 (en) * 2014-01-17 2016-11-17 Lg Electronics Inc. Bearer setup method and apparatus in wireless communication system supporting dual connectivity
CN104796948B (zh) * 2014-01-21 2018-06-19 普天信息技术有限公司 双连接网络中的无线承载修改方法及***
EP3108638B1 (en) * 2014-02-21 2018-05-16 Telefonaktiebolaget LM Ericsson (publ) Baseband unit (bbu) implementation for facilitating 6lowpan data access
KR102106134B1 (ko) * 2015-05-15 2020-05-04 주식회사 케이티 단말의 무선연결 구성방법 및 그 장치
US20160353367A1 (en) 2015-06-01 2016-12-01 Huawei Technologies Co., Ltd. System and Method for Virtualized Functions in Control and Data Planes
US10306691B2 (en) * 2015-06-21 2019-05-28 Lg Electronics Inc. Method of providing services to user equipment having multiple antenna units
US10440695B2 (en) * 2015-06-30 2019-10-08 Lg Electronics Inc. Method for transmitting uplink data in wireless communication system and device for same
EP3371638A4 (en) * 2015-09-14 2019-09-04 President and Fellows of Harvard College METHOD AND DEVICE FOR LIGHT MODULATION WITH A DEVELOPABLE SOFT DIELECTRIC
CN108352994B (zh) * 2016-03-14 2020-08-25 华为技术有限公司 一种计费测量的方法、装置及***
CN107295575B (zh) * 2016-04-01 2020-02-28 中兴通讯股份有限公司 一种服务质量的控制方法和装置
EP3451733B1 (en) * 2016-04-29 2021-07-14 LG Electronics Inc. Data transmission method performed by base station in wireless communication system, and apparatus using same
CN106102106B (zh) * 2016-06-20 2020-03-24 电信科学技术研究院 一种终端接入的方法、装置及网络架构
EP3482602B1 (en) * 2016-07-05 2023-10-18 Apple Inc. Systems, methods and devices for control-user plane separation for 5g radio access networks
KR102423098B1 (ko) * 2016-08-01 2022-07-21 삼성전자 주식회사 무선 통신 네트워크에서 데이터 통신을 관리하는 방법 및 장치
KR102385719B1 (ko) * 2016-08-09 2022-04-12 삼성전자주식회사 무선통신 시스템에서 사용자 평면 동작을 관리하기 위한 방법 및 장치
CN107734563B (zh) * 2016-08-12 2020-02-07 电信科学技术研究院 切换场景下的QoS参数处理的方法及设备
EP3493563B1 (en) * 2016-08-23 2020-10-07 Huawei Technologies Co., Ltd. Method and network equipment for processing signals and information
CN106538037B (zh) * 2016-09-26 2019-10-15 北京小米移动软件有限公司 无线承载的配置方法、装置及***
EP3346760B1 (en) * 2017-01-04 2021-07-07 HTC Corporation Devices and methods for handling a new radio connection in inter-system mobility
WO2018128017A1 (ja) * 2017-01-05 2018-07-12 日本電気株式会社 無線アクセスネットワークノード、無線端末、コアネットワークノード並びにこれらの方法及び非一時的なコンピュータ可読媒体
US10681597B2 (en) * 2017-01-05 2020-06-09 Htc Corporation Device and method for handling a packet flow in inter-system mobility
CN108605254B (zh) * 2017-01-05 2021-06-11 Lg电子株式会社 发送用于qos流到drb映射的规则的方法和装置
US11146996B2 (en) * 2017-02-10 2021-10-12 Convida Wireless, Llc Communications system, infrastructure equipment, communications device and methods
WO2018164469A1 (ko) * 2017-03-07 2018-09-13 엘지전자 주식회사 Cu-du 분할 시나리오에서 데이터를 전송하는 방법 및 장치
CN111642030B (zh) * 2017-03-16 2022-05-03 中兴通讯股份有限公司 一种用户信息管理的方法和***
US10849022B2 (en) * 2017-03-17 2020-11-24 Ofinno, Llc Cell selection of inactive state wireless device
CN110419262B (zh) * 2017-03-17 2022-10-21 苹果公司 由ran架构的集中式节点重传pdcp pdu
US10264622B2 (en) * 2017-03-17 2019-04-16 Ofinno Technologies, Llc Inactive state data forwarding
SG11201900188UA (en) * 2017-04-13 2019-02-27 Lg Electronics Inc Method and apparatus for providing system information
US10582432B2 (en) * 2017-05-04 2020-03-03 Comcast Cable Communications, Llc Communications for network slicing using resource status information
US20180324631A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Using sdap headers for handling of as/nas reflective qos and to ensure in-sequence packet delivery during remapping in 5g communication systems
US10499376B2 (en) * 2017-06-16 2019-12-03 Kt Corporation Methods for managing resource based on open interface and apparatuses thereof
US10820192B2 (en) * 2017-06-16 2020-10-27 Huawei Technologies Co., Ltd. Downlink transmission in a RAN inactive mode
US11197332B2 (en) * 2017-06-19 2021-12-07 Apple Inc. Separation of control plane and user plane in new radio (NR) systems
CN110892749A (zh) * 2018-02-14 2020-03-17 Lg电子株式会社 用于修改映射规则的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101795442A (zh) * 2009-02-02 2010-08-04 三星电子株式会社 移动通信***中承载建立的方法
WO2012159321A1 (zh) * 2011-07-07 2012-11-29 华为技术有限公司 服务质量控制方法和设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "QoS Flow to DRB Mapping", 3GPP TSG-RAN2 MEETING #97 R2-1701205, 17 February 2017 (2017-02-17), XP051223422, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97/Docs/> *
HUAWEI: "Lossless HO of QoS Flow", 3GPP TSG-RAN2 MEETING #97BIS R2-1702615, 7 April 2017 (2017-04-07), XP051254184, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97bis/Docs/> *
IAESI ET AL.: "Option 2 Split with Performant and Reliable CU -DU Connection", 3GPP TSG-RAN WG3 MEETING #95BIS R3-170973, 7 April 2017 (2017-04-07), XP051254980, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_95bis/docs/> *
NOKIA ET AL.: "QoS Parameters", 3GPP TSG-RAN WG2 MEETING #97BIS R2-1702637, 7 April 2017 (2017-04-07), XP051253620, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97bis/Docs/> *
See also references of EP3582544A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034639A1 (en) 2019-03-26 2020-02-20 Zte Corporation Method and apparatus for monitoring performance
EP3949502A4 (en) * 2019-03-26 2022-10-26 ZTE Corporation METHOD AND DEVICE FOR MONITORING PERFORMANCE
WO2021098104A1 (en) * 2020-03-20 2021-05-27 Zte Corporation Method of authorization for network slicing

Also Published As

Publication number Publication date
CN118042530A (zh) 2024-05-14
JP6860697B2 (ja) 2021-04-21
CA3062490C (en) 2023-12-19
RU2754681C2 (ru) 2021-09-06
EP3582544B1 (en) 2021-07-14
CN110856223B (zh) 2020-10-27
EP3968690A1 (en) 2022-03-16
JP2020520154A (ja) 2020-07-02
KR102271766B1 (ko) 2021-06-30
CN110856223A (zh) 2020-02-28
CN110603845B (zh) 2024-03-15
BR112019023022A2 (pt) 2020-06-02
US20190297634A1 (en) 2019-09-26
EP3582544A1 (en) 2019-12-18
RU2019139405A (ru) 2021-06-07
RU2019139405A3 (zh) 2021-07-27
CN110603845A (zh) 2019-12-20
CN108811153A (zh) 2018-11-13
CA3062490A1 (en) 2019-11-26
US20210153220A1 (en) 2021-05-20
EP3582544A4 (en) 2020-03-18
KR20200003096A (ko) 2020-01-08
US10869324B2 (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2018202129A1 (zh) 通信方法、基站及终端设备
CN110249597B (zh) 一种通信处理方法及装置
US10972945B2 (en) Method for handover between secondary base stations, network device, and user equipment
US10136354B2 (en) Apparatus and methods for improved packet flow mobility
US10721754B2 (en) Data transmission method and apparatus
EP3032871B1 (en) Data transmission method, device and system
WO2020063465A1 (zh) 数据传输方法、终端及存储介质
CN109787791B (zh) 通信方法及通信设备
US20190230693A1 (en) Wireless Communication Method, User Equipment, And Access Network Device
WO2015180157A1 (zh) 承载建立装置和方法
WO2016191963A1 (zh) 一种建立承载的方法、用户设备及基站
WO2018228311A1 (zh) 数据分流方法和装置
CN114173368A (zh) 一种服务质量QoS的监测方法
WO2016155089A1 (zh) 一种数据传输方法、装置及***
US20220210690A1 (en) Data transmission method and apparatus, system, and storage medium
EP4300983A1 (en) Media data transmission method and communication apparatus
US11659606B2 (en) Data transmission channel address allocation method, association method, apparatus, and storage medium
CN113573367B (zh) 无线资源的分配方法及装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
US20240056873A1 (en) Transmission method, terminal device, and storage medium
WO2016154828A1 (zh) 一种数据传输方法、装置及***
WO2015168894A1 (zh) 承载配置装置、方法以及通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794122

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018794122

Country of ref document: EP

Effective date: 20190816

ENP Entry into the national phase

Ref document number: 2019560653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019023022

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197035303

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019023022

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191101