WO2018202095A1 - 一种带宽指示方法及装置 - Google Patents

一种带宽指示方法及装置 Download PDF

Info

Publication number
WO2018202095A1
WO2018202095A1 PCT/CN2018/085501 CN2018085501W WO2018202095A1 WO 2018202095 A1 WO2018202095 A1 WO 2018202095A1 CN 2018085501 W CN2018085501 W CN 2018085501W WO 2018202095 A1 WO2018202095 A1 WO 2018202095A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
frequency domain
virtual
location
terminal
Prior art date
Application number
PCT/CN2018/085501
Other languages
English (en)
French (fr)
Inventor
李新县
唐浩
唐臻飞
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18794126.5A priority Critical patent/EP3567916B1/en
Publication of WO2018202095A1 publication Critical patent/WO2018202095A1/zh
Priority to US16/673,339 priority patent/US11304097B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a bandwidth indication method and apparatus.
  • the bandwidth capability of the terminal refers to the maximum supported bandwidth of the terminal. For a given terminal, the bandwidth capability of the terminal is fixed. When the carrier bandwidth is greater than the maximum supported bandwidth of the terminal, the base station needs to allocate a bandwidth that is less than or equal to the bandwidth of the terminal to the terminal.
  • the bandwidth allocated by the base station may be referred to as a part bandwidth (Bandwidth Part, BP).
  • BP Bandwidth Part
  • the transmission of physical channel information and physical signal information is performed within a portion of the bandwidth allocated by the base station.
  • the terminal may know the size of the carrier bandwidth or may not know the size of the carrier bandwidth.
  • a base station broadcasts a carrier bandwidth in a Master Information Block (MIB), and all terminals in the cell can learn the carrier bandwidth, and the base station uses the subcarrier spacing to perform the carrier bandwidth. No.
  • the subcarrier spacing is known to both the base station and the terminal.
  • the base station selects a continuous or non-contiguous physical resource block as the BP of the terminal, and indicates the BP of the terminal by indicating the continuous or non-contiguous physical resource. .
  • MIB Master Information Block
  • the terminal does not need to know the carrier bandwidth. Therefore, when the terminal does not know the carrier bandwidth, how the base station indicates the allocated BP for the terminal is an urgent problem to be solved.
  • the embodiment of the present application provides a bandwidth indication method and apparatus, and is used to provide a scheme for a base station to indicate a part of allocated bandwidth for a terminal when the terminal does not know the carrier bandwidth.
  • a first aspect provides a bandwidth indication method, where a base station determines a virtual bandwidth allocated to a terminal, and sends location information of the virtual bandwidth to the terminal, where the virtual bandwidth is part of a carrier bandwidth, and is allocated to the terminal.
  • the bandwidth is located within the virtual bandwidth, and the location information is used to indicate the location of the virtual bandwidth.
  • the bandwidth indication can be achieved in the scenario where the terminal has an unknown carrier bandwidth.
  • the location information includes a relative location of the virtual bandwidth relative to a reference frequency domain location.
  • the terminal can obtain the actual frequency domain location of the virtual bandwidth according to the baseline frequency domain location and the relative location.
  • the base station transmits the size of the virtual bandwidth.
  • the base station sends the size of the virtual bandwidth by: the base station sending a first message, where the first message includes a bandwidth set, the bandwidth set includes at least one bandwidth, or The bandwidth set is predefined; the base station sends a second message, where the second message is used to indicate that one of the bandwidth sets is the size of the virtual bandwidth.
  • the base station may also send a third message, where the third message is used to indicate a size of the virtual bandwidth.
  • the size of the virtual bandwidth is predefined; wherein the carrier frequency has a corresponding relationship with the bandwidth, and the base station determines, according to the correspondence, that the bandwidth corresponding to the used carrier frequency is the virtual The size of the bandwidth.
  • the relative position may be a first offset value between the reference frequency domain location and a lowest frequency domain location of the virtual bandwidth; or the reference frequency domain location and the virtual bandwidth maximum a second offset value between the high frequency domain locations; or a third offset value between the reference frequency domain location and the designated frequency domain location of the virtual bandwidth.
  • the base station further sends resource indication information, where the resource indication information is used to indicate a frequency domain location of the sub-bandwidth occupied by the terminal in the virtual bandwidth, or the resource indication The information is used to indicate a frequency domain location of the sub-bandwidth group occupied by the terminal in the virtual bandwidth, where the sub-bandwidth group includes n sub-bandwidths, n ⁇ 2, and n is a positive integer.
  • the BP allocated to the terminal can be notified by the location of the virtual bandwidth and the indication of the resource indication information.
  • the n is predefined, or the n is notified to the terminal by the base station, or the n is determined according to a maximum bandwidth supported by the terminal.
  • the virtual bandwidth may be cell-level, that is, the bandwidth allocated to all the terminals in the cell by the base station; or the virtual bandwidth may also be terminal-level, that is, allocated to the base station. Give the bandwidth of the specified terminal.
  • the base station indicates information of a frequency domain bandwidth size included in a sub-bandwidth located at a boundary location of the virtual bandwidth.
  • the reference frequency domain location is a sync signal block frequency domain location or a common bandwidth frequency domain location or a DC carrier frequency domain location.
  • a bandwidth indication method where a terminal receives location information of a virtual bandwidth, and determines a location of the virtual bandwidth according to the location information.
  • the virtual bandwidth is a part of the carrier bandwidth, and the bandwidth allocated by the base station to the terminal is located in the virtual bandwidth, and the location information is used to indicate the location of the virtual bandwidth.
  • the bandwidth indication can be achieved in the scenario where the terminal has an unknown carrier bandwidth.
  • the location information includes a relative location of the virtual bandwidth relative to a reference frequency domain location.
  • the terminal can obtain the actual frequency domain location of the virtual bandwidth according to the baseline frequency domain location and the relative location.
  • the terminal receives the size of the virtual bandwidth.
  • the terminal receives the size of the virtual bandwidth, where the terminal receives the first message, where the first message includes a bandwidth set, and the bandwidth set includes at least one bandwidth.
  • the bandwidth set is predefined; the terminal receives a second message, where the second message is used to indicate that one of the bandwidth sets is a size of the virtual bandwidth.
  • the terminal may further receive a third message, where the third message is used to indicate a size of the virtual bandwidth.
  • the size of the virtual bandwidth is predefined; wherein the carrier frequency has a corresponding relationship with the bandwidth, and the terminal determines, according to the correspondence, that the bandwidth corresponding to the used carrier frequency is the virtual The size of the bandwidth.
  • the relative position may be a first offset value between the reference frequency domain location and a lowest frequency domain location of the virtual bandwidth; or the reference frequency domain location and the highest virtual bandwidth a second offset value between the frequency domain locations; or a third offset value between the reference frequency domain location and the designated frequency domain location of the virtual bandwidth.
  • the terminal receives the resource indication information, and the terminal determines, according to the resource indication information, a frequency domain location of the sub-bandwidth occupied by the terminal in the virtual bandwidth, or the terminal according to the The resource indication information determines a frequency domain location of the sub-bandwidth group occupied by the terminal in the virtual bandwidth, where the sub-bandwidth group includes n sub-bandwidths, n ⁇ 2, and n is a positive integer.
  • the terminal can learn the BP allocated by the base station to the terminal in the virtual bandwidth according to the location of the virtual bandwidth and the indication of the resource indication information.
  • the n is predefined, or the n is notified to the terminal by the base station, or the n is determined according to a maximum bandwidth supported by the terminal.
  • the terminal receives information of a frequency domain bandwidth size included in a sub-bandwidth of the boundary position of the virtual bandwidth that is sent by the base station.
  • the reference frequency domain location is a sync signal block frequency domain location or a common bandwidth frequency domain location or a DC carrier frequency domain location.
  • a bandwidth indicating device having a function of implementing base station behavior in any of the possible aspects of the first aspect and the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a bandwidth indicating device having a function of implementing base station behavior in any of the possible aspects of the second aspect and the second aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a bandwidth indicating apparatus comprising a transceiver, a memory, a processor, and a bus, wherein the memory is configured to store a set of programs, and the processor is configured to invoke the memory storage
  • the program is executed to perform the method as described in any of the possible aspects of the first aspect and the first aspect described above.
  • a bandwidth indicating apparatus comprising a transceiver, a memory, a processor, and a bus, wherein the memory is configured to store a set of programs, and the processor is configured to invoke the memory storage
  • the program is executed to perform the method as described in any of the possible aspects of the second aspect and the second aspect described above.
  • a communication system comprising the apparatus of the third aspect or the fifth aspect, and the apparatus of the fourth aspect or the sixth aspect.
  • An eighth aspect a computer storage medium for storing a computer program, the computer program comprising any of the first aspect, the second aspect, any of the possible implementations of the first aspect, or the second aspect The instructions of the method in a possible implementation.
  • an embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource allocation manner in an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of a resource allocation manner in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of partitioning a virtual bandwidth boundary sub-BP according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a bandwidth indication apparatus according to an embodiment of the present application.
  • FIG. 7 is a second schematic structural diagram of a bandwidth indication apparatus according to an embodiment of the present application.
  • FIG. 8 is a third schematic structural diagram of a bandwidth indication apparatus according to an embodiment of the present application.
  • FIG. 9 is a fourth schematic structural diagram of a bandwidth indication apparatus according to an embodiment of the present application.
  • the embodiment of the present application provides a bandwidth indication method and device in a scenario where the terminal has an unknown carrier bandwidth, and the virtual bandwidth is pre-divided, and the frequency domain location easily acquired by the terminal is used as a baseline point, and the baseline point may also be referred to as a baseline.
  • the frequency domain location or the frequency domain location is set, and the base station notifies the terminal of the relative position between the baseline point and the virtual bandwidth, so that the terminal can obtain the actual frequency domain position of the virtual bandwidth according to the location of the baseline point and the relative position, thereby realizing The purpose of the bandwidth indication.
  • the communication system applied in the embodiment of the present application includes a base station 101 and a terminal 102.
  • Base station 101 is a device that is deployed in a wireless access network to provide wireless communication functionality to terminal 102.
  • Base station 101 can include various forms of macro base stations, micro base stations, relay stations, access points, and the like. It can be applied in systems with different radio access technologies, such as in Long Term Evolution (LTE) systems, or in more possible communication systems such as 5th Generation (5G) communication systems.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • the base station 101 may also be another network device having a base station function, and in particular, may also be a terminal serving as a base station function in D2D communication.
  • the terminal 102 may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), etc.
  • UE User Equipment
  • MS Mobile Station
  • the concept of the carrier bandwidth is equivalent to the system bandwidth, and the bandwidth allocated by the base station to the terminal may be referred to as BP.
  • the terminal uses the BP allocated by the base station to perform physical channel information or physical signal information transmission, and the physical channel information includes physical uplink and downlink control. Channel information and physical uplink and downlink shared channel information.
  • the definition of the virtual bandwidth mentioned in the embodiment of the present application is first explained.
  • the embodiment of the present application proposes a virtual bandwidth for helping a base station allocate a BP to a terminal.
  • the virtual bandwidth is a continuous bandwidth divided by the carrier bandwidth.
  • the virtual bandwidth is less than or equal to the carrier bandwidth.
  • the location of the virtual bandwidth in the frequency domain may be variable.
  • the location of the virtual bandwidth in the frequency domain may be different for different terminals. It is different.
  • the size of the virtual bandwidth is the bandwidth occupied by the virtual bandwidth on the carrier bandwidth.
  • the virtual bandwidth may be a common level or a user group, that is, the virtual bandwidth size is the same for all terminals in a cell or a group of users.
  • the virtual bandwidth may also be terminal-level, that is, the virtual bandwidth sizes of different terminals in one cell may be different.
  • the reference frequency domain location in the embodiment of the present application may also be referred to as a set frequency domain location, which refers to a frequency domain location in which the frequency domain location is fixed in the carrier bandwidth and the terminal can be known.
  • a set frequency domain location which refers to a frequency domain location in which the frequency domain location is fixed in the carrier bandwidth and the terminal can be known.
  • it may be a sync signal block frequency domain location, or a common bandwidth frequency domain location, or a DC carrier frequency domain location.
  • the base station allocates bandwidth to the baseline point, and the size of the virtual bandwidth is also determined. The base station only needs to notify the terminal of the relative position between the two.
  • Step 201 The base station determines a virtual bandwidth allocated for the terminal.
  • the virtual bandwidth is a part of the carrier bandwidth, and the bandwidth allocated to the terminal is located in the virtual bandwidth.
  • Step 202 The base station sends location information of the virtual bandwidth to the terminal, and the terminal receives location information of the virtual bandwidth.
  • Location information is used to indicate the location of the virtual bandwidth.
  • the location information includes a relative location of the virtual bandwidth relative to the reference frequency domain location, for example, the relative location may be an offset value.
  • the relative position is used by the terminal to determine a frequency domain location of the virtual bandwidth according to the reference frequency domain location and the relative location.
  • Step 203 The terminal determines a location of the virtual bandwidth according to the location information.
  • the terminal determines the BP assigned by the base station within the virtual bandwidth.
  • the manner in which the base station determines the size of the virtual bandwidth and notifies the terminal of the size of the virtual bandwidth may include, but is not limited to, the following manners.
  • Method 1 pre-defined, that is, no base station notification.
  • the base station and the terminal Presetting the correspondence between the carrier frequency (or the carrier frequency range) and the size of the virtual bandwidth, and the base station and the terminal find the bandwidth corresponding to the used carrier frequency as the current bandwidth indication according to the used carrier frequency and the corresponding relationship.
  • the size of the virtual bandwidth For example, the correspondence is shown in Table 1.
  • the size of the virtual bandwidth is 100 MHz.
  • the size of the virtual bandwidth is 200 MHz.
  • the virtual bandwidth is 400 MHz.
  • a carrier frequency or a carrier frequency range corresponds to a bandwidth set
  • the base station side first determines a bandwidth set by using a carrier frequency, and then passes a Master Information Block (MIB) signaling or a System Information Block (SIB).
  • MIB Master Information Block
  • SIB System Information Block
  • the signaling or Remaining Minimum System Information (RMSI) signaling informs the terminal base station of the virtual bandwidth determined.
  • the base station sends a first message, where the first message carries a bandwidth set, and the bandwidth set includes at least one bandwidth; or the bandwidth set is predefined.
  • the base station sends a second message, where the second message carries indication information, which is used to indicate that one of the bandwidths in the bandwidth set is the size of the virtual bandwidth.
  • the first message is Radio Resource Control (RRC) signaling
  • RRC Radio Resource Control
  • the base station carries a bandwidth set in the RRC signaling.
  • An exemplary bandwidth set is ⁇ 50, 100, 150, 200, 400 ⁇ MHz. Or predefine a bandwidth set ⁇ 50, 100, 150, 200, 400 ⁇ MHz.
  • the second message is a Master Information Block (MIB) signaling or System Information Block (SIB) signaling or Remaining Minimum System Information (RMSI) signaling, and the base station uses MIB signaling.
  • SIB signaling or RMSI signaling to indicate a certain bandwidth in the bandwidth selection set as the size of the virtual bandwidth.
  • the base station uses 3 bits in the above three signalings to indicate the size of the virtual bandwidth.
  • the base station may directly indicate a specific virtual bandwidth value, such as 100 MHz, by signaling.
  • the following types of signaling may be used, but are not limited to: RRC signaling, MIB signaling, SIB signaling, and RMSI signaling.
  • the size of the virtual bandwidth determined by the base station needs to be determined according to the maximum bandwidth supported by the terminal.
  • the size of the virtual bandwidth determined by the base station may be equal to the maximum bandwidth supported by the terminal.
  • the signaling overhead of the base station resource allocation is a certain value.
  • the signaling overhead of the resource allocation is also related to the resource allocation granularity in the virtual bandwidth.
  • the resource allocation granularity refers to the smallest unit used for resource allocation, and may be a continuous or non-contiguous fixed bandwidth resource unit, which may be an integer number.
  • the terminal can know the size of the virtual bandwidth in which the base station allocates resources, but does not know the specific location of the allocated bandwidth of the base station in the frequency domain, and the relative relationship between the base station and the virtual bandwidth through the baseline frequency domain.
  • the location informs the specific frequency domain location of the allocated bandwidth.
  • the relative position may be a frequency domain offset value.
  • the relative position may be a first offset value between the reference frequency domain location and the lowest frequency domain location of the virtual bandwidth; or a second offset between the reference frequency domain location and the highest frequency domain location of the virtual bandwidth a value; or a third offset value between the reference frequency domain location and the designated frequency domain location of the virtual bandwidth.
  • the specified frequency domain location of the virtual bandwidth may be a reference frequency domain location specified in the virtual bandwidth, such as a minimum resource allocation unit of the number m in the virtual bandwidth, where m ⁇ 0, and m is an integer.
  • the resource allocation granularity in the virtual bandwidth refers to the smallest unit used to allocate bandwidth.
  • a physical resource block (PRB) is a granularity
  • a resource block group (Resouce Blcok Group, RBG) is also a granularity, in order to save
  • the resource allocation granularity is the sub-bandwidth.
  • the concept of the sub-bandwidth described in the embodiment of the present application is equivalent to the concept of the sub-BP. In the following description, the sub-BP is adopted. Concept to illustrate.
  • the virtual bandwidth is divided into N consecutive sub-BPs, N is a positive integer, the sub-BP is composed of a continuous PRB, or the sub-BP is a resource block unit with a fixed bandwidth in the frequency domain, or the sub-BP is fixed by a continuous period.
  • the resource unit of bandwidth refers to the bandwidth occupied by the size of the sub-BP in the frequency domain.
  • the base station also needs to send the size of the sub-BP, or the number of sub-BPs, to the terminal, or both.
  • the sub-BP is for the base station to better indicate to the terminal which specific locations in the virtual bandwidth are occupied.
  • the base station also needs to send the resource indication information to the terminal, where the resource indication information is used to indicate the specific frequency domain location of the sub-BP occupied by the BP allocated to the terminal in the virtual bandwidth.
  • the base station may also use the resource indication information to indicate the specific frequency domain position of the sub-BP group occupied by the BP allocated to the terminal in the virtual bandwidth, and the sub-BP group includes n sub-BPs, n ⁇ 2, n is A positive integer.
  • n may be predefined, that is, the number of sub-BPs included in the sub-BP group of all terminals in one cell is the same; or the value of n is notified by the base station to the terminal, for example, by MIB signaling or SIB signaling. Or RMSI or RRC signaling notification; or the value of n is related to the bandwidth capability of the terminal.
  • the value of n is bound to the maximum bandwidth supported by the terminal or the bandwidth reported by the terminal. For example, the maximum bandwidth supported by the terminal is 100 MHz, the value of n is 2, and the sub-BP group contains 2 sub-BPs.
  • the maximum bandwidth supported by the terminal is 200 MHz
  • the value of n is 4, and the sub-BP group contains 4 sub-BPs.
  • the terminal reports that the desired bandwidth value is 100 MHz, the value of n is 2, and the sub-BP group contains 2 sub-BPs.
  • the base station notifies the terminal of the size of the virtual bandwidth and the size of the sub-BP in the virtual bandwidth, and the base station also needs to notify the specific location of the sub-BP occupied by the terminal in the virtual bandwidth.
  • the base station notifies the specific location of the sub-BP occupied by the terminal in the virtual bandwidth in the manner of the resource allocation mode 0 (ie, the bitmap) in the existing LTE.
  • the base station divides the virtual bandwidth into a fixed number of sub-BPs according to the size of the sub-BP, such as 10 sub-BPs divided into sub-BP0, sub-BP1, ..., sub-BP9.
  • the value of the bitmap indicates whether the corresponding sub-BP is occupied by the resource allocated by the terminal.
  • the value of the bitmap includes 1 and 0, and the sub-BP corresponding to the value of the bitmap is occupied by the resource allocated by the terminal.
  • the base station notifies the offset value between the frequency domain position of the terminal synchronization signal block and the sub-BP corresponding to the lowest or highest bit in the bitmap in the RRC signaling, that is, synchronization.
  • the offset value may be a certain number of physical resource blocks, or may be a certain number of sub-BPs, or may be a certain number of sub-BP groups.
  • the base station further needs to notify a positional relationship between the reference frequency domain location and the virtual bandwidth, where the reference frequency domain location is within the virtual bandwidth, and the reference frequency domain location is in a low frequency domain location or a high frequency domain location of the virtual bandwidth.
  • the reference frequency domain position that is, the frequency domain position of the synchronization signal block is within the virtual bandwidth
  • the offset value between the frequency domain position of the synchronization signal block and the sub-BP corresponding to the lowest bit in the bitmap is 5.
  • the offset value between the frequency domain position of the synchronization signal block and the sub-BP corresponding to the highest bit in the bitmap is 4, and the value of the bitmap is 1111011011, and the sub-BP occupied by the resource allocated by the terminal includes the sub-BP0, the sub-BP1, and the sub-sub-BP0.
  • the reference frequency domain position that is, the frequency domain position of the synchronization signal block is in the low frequency domain position of the virtual bandwidth
  • the value of the bitmap is 1111011011
  • the sub BP occupied by the terminal includes the sub BP0, the sub BP1, the sub BP2, and the sub BP3.
  • the reference frequency domain location is also likely to be in the high frequency domain of the virtual bandwidth.
  • the terminal determines its own working bandwidth according to the offset between the reference frequency domain location and the lowest frequency domain location or the highest frequency domain location or the specified frequency domain location in the virtual bandwidth, and the sub-BP allocation within the virtual bandwidth.
  • the base station may also notify the specific location of the sub-BP occupied by the terminal in the virtual bandwidth by using the resource allocation mode 1 or the resource allocation mode 2 in the existing LTE.
  • resource allocation mode 2 is used to allocate a continuous bandwidth for a terminal, occupying log 2 (N(N+1)/2) bits, where N is the number of sub-BPs in the virtual bandwidth.
  • the base station may implement the terminal to indicate the allocated partial bandwidth, and may further indicate the sub-BP within the partial bandwidth occupied by the terminal.
  • the base station also needs to indicate the number of unit resources included in the sub-BP located at the boundary position of the virtual bandwidth or the size of the boundary sub-BP bandwidth.
  • the number of unit resources included in the sub-BP located at the boundary position of the virtual bandwidth may be less than P, and the base station indicates that the terminal is located at the boundary of the virtual bandwidth by signaling.
  • the number of unit resources included in the sub-BP of the location helps to avoid the terminal using resources beyond the boundary of the virtual bandwidth, and effectively improves the accuracy of the resource indication.
  • the base station can use (log 2 P) bits to perform the above indication.
  • FIG. 5 shows sub-BPm, sub-BPm+1, ..., sub-BPm+5.
  • the sub-BP(m+5) is located at the boundary of the virtual bandwidth, and the sub-BP(m+5) contains only one physical resource block, and is smaller than the number of physical resource blocks included in one sub-BP.
  • a sub-BP has a bandwidth of 3 MHz and a virtual bandwidth of 100 MHz
  • one virtual bandwidth includes 34 sub-BPs
  • the last boundary sub-BP has a size of 1 MHz.
  • the indication is required, and the base station can use log2Q bits. To indicate, where Q is the bandwidth of the sub-BP. Then 2 bits can be used to indicate the bandwidth size of the boundary sub-BP, 00 means 3 MHz, 01 means 1 MHz, and 10 means 2 MHz.
  • the embodiment of the present application further provides a bandwidth indication apparatus 600, where the bandwidth indication apparatus 600 is configured to perform the bandwidth indication method shown in FIG.
  • the bandwidth indicating device 600 includes:
  • the processing unit 601 is configured to determine a virtual bandwidth allocated to the terminal, where the virtual bandwidth is part of a carrier bandwidth, and the bandwidth allocated to the terminal is located in the virtual bandwidth;
  • the sending unit 602 is configured to send location information of the virtual bandwidth to the terminal, where the location information is used to indicate the location of the virtual bandwidth.
  • the location information includes a relative location of the virtual bandwidth relative to the reference frequency domain location.
  • the sending unit 602 is further configured to:
  • the second message is used to indicate that one of the bandwidths in the bandwidth set is the size of the virtual bandwidth.
  • the size of the virtual bandwidth is predefined
  • the processing unit is configured to determine, according to the correspondence, that the bandwidth corresponding to the used carrier frequency is the size of the virtual bandwidth.
  • relative position including:
  • a third offset value between the reference frequency domain location and the designated frequency domain location of the virtual bandwidth is
  • the sending unit 602 is further configured to:
  • the resource indication information is used to indicate the frequency domain location of the sub-bandwidth occupied by the terminal in the virtual bandwidth, or the resource indication information is used to indicate the frequency domain location of the sub-bandwidth group occupied by the terminal in the virtual bandwidth, and the sub-bandwidth group includes n.
  • Sub-bandwidth, n ⁇ 2, n is a positive integer.
  • the reference frequency domain location is a synchronization signal block frequency domain location or a common bandwidth frequency domain location or a DC carrier frequency domain location.
  • the embodiment of the present application further provides a bandwidth indication apparatus 700, where the bandwidth indication apparatus 700 is configured to perform the bandwidth indication method shown in FIG.
  • the bandwidth indicating device 700 includes:
  • the receiving unit 701 is configured to receive location information of the virtual bandwidth, where the virtual bandwidth is part of the carrier bandwidth, and the bandwidth allocated by the base station to the device is located in the virtual bandwidth, and the location information is used to indicate the location of the virtual bandwidth.
  • the processing unit 702 is configured to determine a location of the virtual bandwidth according to the location information received by the receiving unit 701.
  • the location information includes a relative location of the virtual bandwidth relative to the reference frequency domain location.
  • the receiving unit 701 is further configured to:
  • the bandwidth set includes at least one bandwidth, or the bandwidth set is predefined
  • the second message is used to indicate that one of the bandwidths in the bandwidth set is a size of the virtual bandwidth.
  • the size of the virtual bandwidth is predefined
  • the carrier frequency has a corresponding relationship with the bandwidth, and the terminal determines, according to the correspondence, that the bandwidth corresponding to the used carrier frequency is the size of the virtual bandwidth.
  • relative position including:
  • a third offset value between the reference frequency domain location and the designated frequency domain location of the virtual bandwidth is
  • the receiving unit 701 is further configured to:
  • the processing unit 702 is further configured to: determine, according to the resource indication information, a frequency domain location of the sub-bandwidth occupied by the terminal in the virtual bandwidth, or determine, according to the resource indication information, a frequency domain location of the sub-bandwidth group occupied by the terminal in the virtual bandwidth, the sub-bandwidth
  • the group includes n sub-bandwidths, n ⁇ 2, and n is a positive integer.
  • the reference frequency domain location is a synchronization signal block frequency domain location or a common bandwidth frequency domain location or a DC carrier frequency domain location.
  • the embodiment of the present application further provides a bandwidth indication apparatus 800, which can be used to perform the method shown in FIG.
  • the bandwidth indication device 800 includes a transceiver 801, a processor 802, a memory 803 and a bus 804.
  • the processor 802 and the memory 803 are connected by a bus 804.
  • the processor 802 is configured to execute code in the memory 803 when the code is executed. This execution causes the processor 802 to perform the bandwidth indication method shown in FIG. 2.
  • the processor 802 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • Processor 802 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 803 may include a volatile memory such as a random-access memory (RAM); the memory 803 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 803 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid-state drive (SSD)
  • the memory 803 may also include a combination of the above types of memories.
  • the embodiment of the present application further provides a bandwidth indication apparatus 900, which can be used to perform the method shown in FIG.
  • the bandwidth indication device 900 includes a transceiver 901, a processor 902, a memory 903 and a bus 904.
  • the processor 902 and the memory 903 are connected by a bus 904.
  • the processor 902 is configured to execute code in the memory 903 when the code is executed. This execution causes the processor 902 to perform the bandwidth indication method shown in FIG. 2.
  • the processor 902 can be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • Processor 902 can also further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 903 may include a volatile memory such as a random-access memory (RAM); the memory 903 may also include a non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 903 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory (flash) Memory), hard disk drive (HDD) or solid state drive (SSD); the memory 903 may also include a combination of the above types of memories.
  • the embodiment of the present application provides a computer storage medium for storing a computer program, where the computer program includes a bandwidth indication method for performing the method shown in FIG. 2.
  • the embodiment of the present application provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the bandwidth indication method shown in FIG. 2.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种带宽指示方法及装置,用以提供一种在终端不知道载波带宽时基站为终端指示所分配的部分带宽的方案。该方法为:基站确定为终端分配的虚拟带宽,所述虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于所述虚拟带宽内;所述基站向所述终端发送所述虚拟带宽的位置信息,所述位置信息用于指示所述虚拟带宽的位置。

Description

一种带宽指示方法及装置
本申请要求在2017年5月5日提交中国专利局、申请号为201710314156.0、发明名称为“一种带宽指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种带宽指示方法及装置。
背景技术
终端的带宽能力是指终端最大可支持的带宽大小,对于一个给定的终端,终端的带宽能力是固定的。当载波带宽大于终端最大可支持的带宽大小时,基站需要给终端分配一段小于或等于终端带宽能力的带宽给终端使用,基站分配的这段带宽可以称为部分带宽(Bandwidth Part,BP),终端会在基站分配的部分带宽内进行物理信道信息和物理信号信息的传输。
在实际应用中,终端可能知道载波带宽的大小,也可能不知道载波带宽的大小。如,在长期演进(Long Term Evolution,LTE)中,基站在主信息块(Master Information Block,MIB)中广播载波带宽,小区内所有终端均可获知载波带宽,基站使用子载波间隔对载波带宽进行编号,该子载波间隔为基站和终端都已知的,基站选定一段连续或非连续的物理资源块作为一个终端的BP,并通过指示这段连续或非连续的物理资源来指示终端的BP。
但是,在一些应用场景下,终端不需要知道载波带宽,那么,在终端不知道载波带宽时,基站如何为终端指示所分配的BP是一个亟需解决的问题。
发明内容
本申请实施例提供一种带宽指示方法及装置,用以提供一种在终端不知道载波带宽时基站为终端指示所分配的部分带宽的方案。
本申请实施例提供的具体技术方案如下:
第一方面,提供一种带宽指示方法,基站确定为终端分配的虚拟带宽,并向所述终端发送所述虚拟带宽的位置信息,其中,所述虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于所述虚拟带宽内,所述位置信息用于指示所述虚拟带宽的位置。这样针对终端未知载波带宽大小的场景下,可以实现带宽指示的目的。
在一个可能的设计中,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。这样终端可以根据基线频域位置以及该相对位置获得虚拟带宽的实际频域位置。
在一个可能的设计中,所述基站发送所述虚拟带宽的大小。
在一个可能的设计中,所述基站通过以下方式发送所述虚拟带宽的大小:所述基站发送第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;所述基站发送第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚拟带宽的大小。可选的,基站也可以发送第三消息,所述第三消息用于指示虚拟带宽的大小。
在一个可能的设计中,所述虚拟带宽的大小是预定义的;其中,载波频率与带宽具有对应关系,所述基站根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
在一个可能的设计中,所述相对位置,可以是所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
在一个可能的设计中,所述基站还发送资源指示信息;其中,所述资源指示信息用于指示所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,所述资源指示信息用于指示所述终端占用的子带宽组在所述虚拟带宽中的频域位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。这样,可以通过虚拟带宽的位置和资源指示信息的指示,通知为终端分配的BP。
在一个可能的设计中,所述n为预定义的,或者,所述n为所述基站通知给所述终端的,或者所述n是根据所述终端所支持的最大带宽确定的。
在一个可能的设计中,所述虚拟带宽可以是小区级的,即为所述基站分配给小区内所有终端的带宽;或者,所述虚拟带宽也可以是终端级的,即为所述基站分配给指定终端的带宽。
在一个可能的设计中,所述基站指示位于所述虚拟带宽的边界位置的子带宽包括的频域带宽大小的信息。
在一个可能的设计中,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
第二方面,提供一种带宽指示方法,终端接收虚拟带宽的位置信息,并根据所述位置信息,确定虚拟带宽的位置。其中,所述虚拟带宽为载波带宽的一部分,且基站分配给终端的带宽位于所述虚拟带宽内,所述位置信息用于指示所述虚拟带宽的位置。这样针对终端未知载波带宽大小的场景下,可以实现带宽指示的目的。
在一个可能的设计中,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。这样终端可以根据基线频域位置以及该相对位置获得虚拟带宽的实际频域位置。
在一个可能的设计中,所述终端接收所述虚拟带宽的大小。
在一个可能的设计中,所述终端接收所述虚拟带宽的大小,通过以下方式实现:所述终端接收第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;所述终端接收第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚拟带宽的大小。可选的,所述终端还可以接收第三消息,所述第三消息用于指示虚拟带宽的大小。
在一个可能的设计中,所述虚拟带宽的大小是预定义的;其中,载波频率与带宽具有对应关系,所述终端根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
在一个可能的设计中,所述相对位置可以是所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
在一个可能的设计中,所述终端接收资源指示信息;所述终端根据所述资源指示信息确定所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,所述终端根据所述资源 指示信息确定所述终端占用的子带宽组在所述虚拟带宽中的频域位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。这样,终端可以根据虚拟带宽的位置和资源指示信息的指示,获知在虚拟带宽内基站为终端分配的BP。
在一个可能的设计中,所述n为预定义的,或者,所述n为所述基站通知给所述终端的,或者所述n是根据所述终端所支持的最大带宽确定的。
在一个可能的设计中,所述终端接收所述基站发送的位于所述虚拟带宽的边界位置的子带宽包括的频域带宽大小的信息。
在一个可能的设计中,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
第三方面,提供一种带宽指示装置,该装置具有实现上述第一方面和第一方面的任一种可能的设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供一种带宽指示装置,该装置具有实现上述第二方面和第二方面的任一种可能的设计中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,提供一种带宽指示装置,该带宽指示装置的结构包括收发器、存储器、处理器和总线,其中,所述存储器用于存储一组程序,所述处理器用于调用所述存储器存储的程序以执行如上述第一方面和第一方面的任一种可能的设计中所述的方法。
第六方面,提供一种带宽指示装置,该带宽指示装置的结构包括收发器、存储器、处理器和总线,其中,所述存储器用于存储一组程序,所述处理器用于调用所述存储器存储的程序以执行如上述第二方面和第二方面的任一种可能的设计中所述的方法。
第七方面,提供了一种通信***,该***包括第三方面或第五方面所述的装置,和第四方面或第六方面所述的装置。
第八方面,提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第二方面、第一方面的任一可能的实施方式或第二方面的任一可能的实施方式中的方法的指令。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1为本申请实施例中通信***架构示意图;
图2为本申请实施例中带宽指示方法流程示意图;
图3为本申请实施例中资源分配方式示意图之一;
图4为本申请实施例中资源分配方式示意图之二;
图5为本申请实施例中虚拟带宽边界子BP划分示意图;
图6为本申请实施例中带宽指示装置结构示意图之一;
图7为本申请实施例中带宽指示装置结构示意图之二;
图8为本申请实施例中带宽指示装置结构示意图之三;
图9为本申请实施例中带宽指示装置结构示意图之四。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例针对终端未知载波带宽大小的场景下,提供一种带宽指示方法及装置,通过预先划分虚拟带宽,并以终端易获取的频域位置为基线点,该基线点也可以称为基线频域位置或者设定频域位置,基站将基线点与虚拟带宽之间的相对位置通知给终端,这样终端可以根据基线点的位置以及该相对位置获得虚拟带宽的实际频域位置,从而实现了带宽指示的目的。
如图1所示,本申请实施例应用的通信***中包括基站101和终端102。基站101是一种部署在无线接入网中用以为终端102提供无线通信功能的装置。基站101可以包括各种形式的宏基站,微基站,中继站,接入点等等。可以应用在不同的无线接入技术的***中,例如长期演进(Long Term Evolution,LTE)***中,或者,第五代(5th Generation,5G)通信***等更多可能的通信***中。基站101还可以是其他具有基站功能的网络设备,特别地,还可以是D2D通信中担任基站功能的终端。终端102可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS)等。
本申请实施例中,载波带宽的概念等同于***带宽,基站分配给终端的带宽可以称为BP,终端使用基站分配的BP进行物理信道信息或物理信号信息传输,物理信道信息包括物理上下行控制信道信息和物理上下行共享信道信息。为方便说明,首先解释一下本申请实施例中提及的虚拟带宽的定义。本申请实施例提出一种虚拟带宽用于帮助基站给终端分配BP。虚拟带宽是在载波带宽上划分的一段连续的带宽,虚拟带宽小于等于载波带宽,虚拟带宽在频域上的位置可以是可变的,即对于不同的终端,虚拟带宽在频域上的位置可以是不同的。虚拟带宽的大小即虚拟带宽在载波带宽上占用的带宽,虚拟带宽可以是公共级或用户组的,即对于一个小区内或一个用户组内所有终端来说虚拟带宽大小是相同的。虚拟带宽也可以是终端级的,即一个小区内不同的终端的虚拟带宽大小可以是不同的。
本申请实施例中所述的基准频域位置也可以称为设定频域位置,是指在载波带宽中频域位置固定,且终端可以获知的一个频域位置。例如,可以是同步信号块频域位置,或公共带宽频域位置,或直流载波频域位置。这样,基站分配带宽的基线点确定,虚拟带宽的大小也确定,基站只需要通知终端这两者之间的相对位置即可。
基于图1所示的通信***,如图2所示,本申请实施例中,带宽指示方法的具体流程如下所述。
步骤201、基站确定为终端分配的虚拟带宽。
其中,虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于虚拟带宽内。
步骤202、基站向终端发送虚拟带宽的位置信息,终端接收虚拟带宽的位置信息。
位置信息用于指示虚拟带宽的位置。
其中,位置信息包括虚拟带宽相对于基准频域位置的相对位置,例如,该相对位置可以是偏移值。
该相对位置用于终端根据基准频域位置和该相对位置确定虚拟带宽的频域位置。
步骤203、终端根据所述位置信息,确定虚拟带宽的位置。
终端在虚拟带宽内确定基站为其分配的BP。
下面对上述带宽指示方法进行具体的说明。
具体的,基站确定虚拟带宽的大小和向终端通知虚拟带宽的大小的方式可以包括但不限于以下几种方式。
方式一、预定义,也就是不用基站通知。
预先设定载波频率(或载波频率范围)与虚拟带宽的大小之间的对应关系,基站和终端根据使用的载波频率和该对应关系,找到与使用的载波频率对应的带宽作为当前带宽指示所用的虚拟带宽的大小。举例说明,对应关系如表1所示。
表1
载频(GHz) f<6 6<f<28 f>28
带宽(MHz) 100 200 400
其中,基站和终端在使用的载频小于6GHz时,虚拟带宽的大小为100MHz。基站和终端在使用的载频大于6GHz且小于28GHz时,虚拟带宽的大小为200MHz。基站和终端在使用的载频大于28GHz时,虚拟带宽的大小为400MHz。
可选的,一个载波频率或载波频率范围对应一个带宽集合,基站侧先通过载波频率确定带宽集合,再通过主信息块(Master Information Block,MIB)信令或***信息块(System Information Block,SIB)信令或剩余最小***信息(Remaining Minimum System Information,RMSI)信令通知终端基站所确定的虚拟带宽。
方式二、信令通知。
具体的,基站发送第一消息,在第一消息中携带带宽集合,带宽集合中包括至少一个带宽;也或者,该带宽集合为预定义的。
基站发送第二消息,在第二消息中携带指示信息,用于指示带宽集合中的某一个带宽为虚拟带宽的大小。
例如,第一消息为无线资源控制(Radio Resource Control,RRC)信令,基站在RRC信令中携带带宽集合,一种示例的带宽集合为{50,100,150,200,400}MHz。或者预定义一个带宽集合{50,100,150,200,400}MHz。第二消息为主信息块(Master Information Block,MIB)信令或***信息块(System Information Block,SIB)信令或剩余最小***信息(Remaining Minimum System Information,RMSI)信令,基站使用MIB信令或SIB信令或RMSI信令来指示带宽选集合中的某一个带宽作为虚拟带宽的大小,可选的,基站在上述三种信令中使用3比特来指示虚拟带宽的大小。
可选的,基站也可以直接通过信令指示一个具体的虚拟带宽值,比如100MHz。可以但不限于使用以下几种信令:RRC信令、MIB信令、SIB信令和RMSI信令。
可选的,针对虚拟带宽是终端级的情况,基站确定的虚拟带宽的大小需要根据终端所支持的最大带宽来决定,例如,基站确定的虚拟带宽的大小可以等于终端所支持的最大带宽。
通过确定虚拟带宽的大小,使得基站资源分配的信令开销是一个确定的值。另外,资源分配的信令开销还与虚拟带宽内资源分配粒度有关,资源分配粒度是指用于资源分配的最小单元,可以为一段连续或非连续的固定带宽大小的资源单元,可以为整数个物理资源块组成的资源单元,或者整数个固定带宽大小的资源单元等。
通过虚拟带宽的大小的指示,可以使得终端获知基站分配资源所在的虚拟带宽的大小,但还不知道基站分配带宽在频域上的具***置,基站通过基线频域位置与虚拟带宽之间的相对位置来通知分配的带宽的具体频域位置。
一种可能的实现方式中,相对位置可以是频域偏移值。具体的,相对位置可以是基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。其中,虚拟带宽的指定频域位置可以是虚拟带宽中指定的一个参考频域位置,比如虚拟带宽中编号m的最小资源分配单元,m≥0,m为整数。
虚拟带宽中的资源分配粒度是指用于分配带宽的最小单元,比如物理资源块(Physical Resource Block,PRB)是一种粒度,资源块组(Resouce Blcok Group,RBG)也是一种粒度,为了节省资源分配时的信令开销,本申请实施例中提出一种资源分配粒度为子带宽,本申请实施例中所述的子带宽的概念等同于子BP的概念,以下描述中,采用子BP的概念来说明。虚拟带宽划分为N个连续的子BP,N为正整数,子BP是由一段连续的PRB组成,或者子BP是在频域上固定带宽的一个资源块单元,或者子BP由一段连续的固定带宽的资源单元组成。在本申请实施例中子BP的大小指的是子BP在频域上的大小所占用的带宽。
基站还需要向终端发送子BP的大小,或者子BP的数量,或者两者都发送。
子BP是为了基站能够更好的指示给终端占用虚拟带宽中的哪些具***置。基站还需要向终端发送资源指示信息,资源指示信息用于指示分配给终端的BP中占用的子BP在虚拟带宽中的具体频域位置。为了节省信令开销,基站还可以利用资源指示信息指示分配给终端的BP占用的子BP组在虚拟带宽中的具体的频域位置,子BP组中包括n个子BP,n≥2,n为正整数。n的值可以为预定义的,即一个小区内所有终端的子BP组中包含的子BP个数是相同的;或n的值是基站通知给终端的,例如通过MIB信令或者SIB信令或者RMSI或者RRC信令通知;或n的值与终端的带宽能力相关,对于不同终端,n的值与终端支持的最大带宽或终端上报的带宽绑定。比如终端支持的最大带宽为100MHz,n的值为2,子BP组中包含2个子BP;再比如,终端支持的最大带宽为200MHz,n的值为4,子BP组中包含4个子BP。再比如,终端上报自己期望的带宽值为100MHz,n的值为2,子BP组中包含2个子BP。
通过上述描述可知,基站向终端通知了虚拟带宽的大小和虚拟带宽中子BP的大小,基站还需要通知终端占用的子BP在虚拟带宽中的具***置。
一种可能的实现方式中,如图3或图4所示,基站以现有LTE中资源分配方式0(即bitmap)的方式通知终端占用的子BP在虚拟带宽中的具***置。例如,基站根据子BP的大小将虚拟带宽划分为固定数量的子BP,如划分为子BP0、子BP1、……、子BP9这10个子BP。bitmap的值表征对应的子BP是否为终端分配的资源所占用,例如,bitmap的值包括1和0,bitmap的值为1对应的子BP是为终端分配的资源所占用。以基准频域位置为同步信号块频域位置为例,基站在RRC信令中通知终端同步信号块频域位置与bitmap中最低位或最高位对应的子BP之间的偏移值,即同步信号块频域位置与虚拟带宽的最低频域位置或最高频域位置的偏移值。可选的,偏移值可以是一定数量的物理资源块,也可以是一定数量的子BP,也可以是一定数量的子BP组。可选的,基站还需要通知基准频域位置与虚拟带宽的位置关系,该位置关系包括基准频域位置在虚拟带宽内,基准频域位置 在虚拟带宽的低频域位置或者高频域位置。例如,图3中,基准频域位置即同步信号块频域位置在虚拟带宽内,在子BP5的位置,同步信号块频域位置与bitmap中最低位对应的子BP之间的偏移值为5,同步信号块频域位置与bitmap中最高位对应的子BP之间的偏移值为4,bitmap的值为1111011011,则为终端分配的资源占用的子BP包括子BP0、子BP1、子BP2、子BP3、子BP4、子BP5、子BP8和子BP9。又例如,图4中,基准频域位置即同步信号块频域位置在虚拟带宽的低频域位置,bitmap的值为1111011011,则终端占用的子BP包括子BP0、子BP1、子BP2、子BP3、子BP4、子BP5、子BP8和子BP9。当然,基准频域位置还有可能在虚拟带宽的高频域位置。终端根据基准频域位置和最低频域位置或最高频域位置或虚拟带宽中指定频域位置之间的偏移值,和虚拟带宽内子BP分配情况来确定自己的工作带宽。
可选的,基站还可以用现有LTE中资源分配方式1或资源分配方式2的方式通知终端占用的子BP在虚拟带宽中的具***置。比如使用资源分配方式2为一个终端分配一段连续的带宽,占用log 2(N(N+1)/2)个比特,其中N为虚拟带宽中子BP的个数。
通过上述方法,在终端不能获知载波带宽大小的场景下,基站可以实现为终端指示所分配的部分带宽,并可以进一步的指示终端所占用的部分带宽内的子BP。
另外,针对虚拟带宽是公共级的情况,基站还需要指示位于虚拟带宽的边界位置的子BP包括的单位资源量的个数或边界子BP带宽的大小。
具体地,若一个子BP中包括p个单位资源量,那么位于虚拟带宽的边界位置的子BP包括的单位资源量的个数就有可能小于P,基站通过信令指示终端位于虚拟带宽的边界位置的子BP包括的单位资源量的个数,有助于避免终端使用资源超过虚拟带宽的边界,有效提高资源指示的准确性。可选的,基站可以使用(log 2P)个比特来进行上述指示。
举例来说,假设P=3,单位资源量为物理资源块,一个子BP中包括3个物理资源块,图5中示出了子BPm、子BPm+1、……、子BPm+5共5个子BP,每个子BP中包括0、1、2共3个物理资源块。其中子BP(m+5)位于虚拟带宽的边界位置,且子BP(m+5)中仅包含1个物理资源块,小于一个子BP中包括的物理资源块个数3。基站可以使用(log2P)=2个比特来进行指示。其中,可以用00表示子BP(m+5)中包括3个物理资源块,用01表示子BP(m+5)中包括1个物理资源块,用10表示子BP(m+5)中包括2个物理资源块。
举例来说,若一个子BP的带宽大小为3MHz,虚拟带宽大小为100MHz,那么一个虚拟带宽中包括34个子BP,最后一个边界子BP的大小为1MHz,需要进行指示,基站可以使用log2Q个比特来进行指示,其中Q为子BP的带宽大小。那么可以用2比特来指示边界子BP的带宽大小,00表示包括3MHz,01表示包括1MHz,10表示包括2MHz。
基于图2所示的带宽指示方法的同一发明构思,如图6所示,本申请实施例还提供了一种带宽指示装置600,带宽指示装置600用于执行图2所示的带宽指示方法,带宽指示装置600包括:
处理单元601,用于确定为终端分配的虚拟带宽,所述虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于虚拟带宽内;
发送单元602,用于向终端发送虚拟带宽的位置信息,位置信息用于指示虚拟带宽的位置。
可选的,位置信息包括虚拟带宽相对于基准频域位置的相对位置。
可选的,发送单元602还用于:
发送第一消息,第一消息中包括带宽集合,带宽集合中包括至少一个带宽,或者,带宽集合是预定义的;
发送第二消息,第二消息用于指示带宽集合中的一个带宽为虚拟带宽的大小。
可选的,虚拟带宽的大小是预定义的;
其中,载波频率与带宽具有对应关系,处理单元用于:根据对应关系,确定所使用的载波频率对应的带宽为虚拟带宽的大小。
可选的,相对位置,包括:
基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
可选的,发送单元602还用于:
发送资源指示信息;
其中,资源指示信息用于指示终端占用的子带宽在虚拟带宽中的频域位置,或者,资源指示信息用于指示终端占用的子带宽组在虚拟带宽中的频域位置,子带宽组包括n个子带宽,n≥2,n为正整数。
可选的,基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
基于图2所示的带宽指示方法的同一发明构思,如图7所示,本申请实施例还提供了一种带宽指示装置700,带宽指示装置700用于执行图2所示的带宽指示方法,带宽指示装置700包括:
接收单元701,用于接收虚拟带宽的位置信息,虚拟带宽为载波带宽的一部分,且基站分配给装置的带宽位于虚拟带宽内,位置信息用于指示虚拟带宽的位置;
处理单元702,用于根据接收单元701接收的位置信息,确定虚拟带宽的位置。
可选的,位置信息包括虚拟带宽相对于基准频域位置的相对位置。
可选的,接收单元701还用于:
接收第一消息,第一消息中包括带宽集合,带宽集合中包括至少一个带宽,或者,带宽集合是预定义的;
接收第二消息,第二消息用于指示带宽集合中的一个带宽为虚拟带宽的大小。
可选的,虚拟带宽的大小是预定义的;
其中,载波频率与带宽具有对应关系,终端根据对应关系,确定所使用的载波频率对应的带宽为虚拟带宽的大小。
可选的,相对位置,包括:
基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
可选的,接收单元701还用于:
接收资源指示信息;
处理单元702还用于:根据资源指示信息确定终端占用的子带宽在虚拟带宽中的频域位置,或者,根据资源指示信息确定终端占用的子带宽组在虚拟带宽中的频域位置,子带 宽组包括n个子带宽,n≥2,n为正整数。
可选的,基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
基于图2所示的带宽指示方法的同一发明构思,如图8所示,本申请实施例还提供一种带宽指示装置800,该带宽指示装置800可用于执行图2所示的方法。其中,带宽指示装置800包括收发器801、处理器802,存储器803和总线804,处理器802以及存储器803之间通过总线804相连,处理器802用于执行存储器803中的代码,当代码被执行时,该执行使得处理器802执行图2所示的带宽指示方法。
处理器802可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器802还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器803也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。
基于图2所示的带宽指示方法的同一发明构思,如图9所示,本申请实施例还提供一种带宽指示装置900,该带宽指示装置900可用于执行图2所示的方法。其中,带宽指示装置900包括收发器901、处理器902,存储器903和总线904,处理器902以及存储器903之间通过总线904相连,处理器902用于执行存储器903中的代码,当代码被执行时,该执行使得处理器902执行图2所示的带宽指示方法。
处理器902可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器902还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器903可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器903也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器903还可以包括上述种类的存储器的组合。
本申请实施例提供了一种计算机存储介质,用于存储计算机程序,该计算机程序包括用于执行图2所示的带宽指示方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行图2所示的带宽指示方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产 品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (29)

  1. 一种带宽指示方法,其特征在于,包括:
    基站确定为终端分配的虚拟带宽,所述虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于所述虚拟带宽内;
    所述基站向所述终端发送所述虚拟带宽的位置信息,所述位置信息用于指示所述虚拟带宽的位置。
  2. 如权利要求1所述的方法,其特征在于,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述基站发送第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;
    所述基站发送第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚拟带宽的大小。
  4. 如权利要求1或2所述的方法,其特征在于,所述虚拟带宽的大小是预定义的;
    其中,载波频率与带宽具有对应关系,所述基站根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述相对位置,包括:
    所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
    所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
    所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    所述基站发送资源指示信息;
    其中,所述资源指示信息用于指示所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,所述资源指示信息用于指示所述终端占用的子带宽组在所述虚拟带宽中的频域位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述虚拟带宽为所述基站分配给小区内所有终端的带宽;或者,所述虚拟带宽为所述基站分配给指定终端的带宽。
  8. 如权利要求1~7任一项所述的方法,其特征在于,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
  9. 一种带宽指示方法,其特征在于,包括:
    终端接收虚拟带宽的位置信息,所述虚拟带宽为载波带宽的一部分,且基站分配给终端的带宽位于所述虚拟带宽内,所述位置信息用于指示所述虚拟带宽的位置;
    所述终端根据所述位置信息,确定虚拟带宽的位置。
  10. 如权利要求9所述的方法,其特征在于,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。
  11. 如权利要求9或10所述的方法,其特征在于,还包括:
    所述终端接收第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;
    所述终端接收第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚 拟带宽的大小。
  12. 如权利要求9或10所述的方法,其特征在于,所述虚拟带宽的大小是预定义的;
    其中,载波频率与带宽具有对应关系,所述终端根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
  13. 如权利要求9~12任一项所述的方法,其特征在于,所述相对位置,包括:
    所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
    所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
    所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
  14. 如权利要求13所述的方法,其特征在于,还包括:
    所述终端接收资源指示信息;
    所述终端根据所述资源指示信息确定所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,
    所述终端根据所述资源指示信息确定所述终端占用的子带宽组在所述虚拟带宽中的频域位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。
  15. 如权利要求9~14任一项所述的方法,其特征在于,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
  16. 一种带宽指示装置,其特征在于,包括:
    处理单元,用于确定为终端分配的虚拟带宽,所述虚拟带宽为载波带宽的一部分,且分配给终端的带宽位于所述虚拟带宽内;
    发送单元,用于向所述终端发送所述虚拟带宽的位置信息,所述位置信息用于指示所述虚拟带宽的位置。
  17. 如权利要求16所述的装置,其特征在于,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。
  18. 如权利要求16或17所述的装置,其特征在于,所述发送单元还用于:
    发送第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;
    发送第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚拟带宽的大小。
  19. 如权利要求16或17所述的装置,其特征在于,所述虚拟带宽的大小是预定义的;
    其中,载波频率与带宽具有对应关系,所述处理单元用于:根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
  20. 如权利要求16~19任一项所述的装置,其特征在于,所述相对位置,包括:
    所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
    所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
    所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
  21. 如权利要求20所述的装置,其特征在于,所述发送单元还用于:
    发送资源指示信息;
    其中,所述资源指示信息用于指示所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,所述资源指示信息用于指示所述终端占用的子带宽组在所述虚拟带宽中的频域 位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。
  22. 如权利要求16~21任一项所述的装置,其特征在于,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
  23. 一种带宽指示装置,其特征在于,包括:
    接收单元,用于接收虚拟带宽的位置信息,所述虚拟带宽为载波带宽的一部分,且基站分配给所述装置的带宽位于所述虚拟带宽内,所述位置信息用于指示所述虚拟带宽的位置;
    处理单元,用于根据所述接收单元接收的位置信息,确定虚拟带宽的位置。
  24. 如权利要求23所述的装置,其特征在于,所述位置信息包括所述虚拟带宽相对于基准频域位置的相对位置。
  25. 如权利要求23或24所述的装置,其特征在于,所述接收单元还用于:
    接收第一消息,所述第一消息中包括带宽集合,所述带宽集合中包括至少一个带宽,或者,所述带宽集合是预定义的;
    接收第二消息,所述第二消息用于指示所述带宽集合中的一个带宽为所述虚拟带宽的大小。
  26. 如权利要求23或24所述的装置,其特征在于,所述虚拟带宽的大小是预定义的;
    其中,载波频率与带宽具有对应关系,所述终端根据所述对应关系,确定所使用的载波频率对应的带宽为所述虚拟带宽的大小。
  27. 如权利要求23~26任一项所述的装置,其特征在于,所述相对位置,包括:
    所述基准频域位置与虚拟带宽的最低频域位置之间的第一偏移值;或者,
    所述基准频域位置与虚拟带宽的最高频域位置之间的第二偏移值;或者,
    所述基准频域位置与虚拟带宽的指定频域位置之间的第三偏移值。
  28. 如权利要求24所述的装置,其特征在于,所述接收单元还用于:
    接收资源指示信息;
    所述处理单元还用于:根据所述资源指示信息确定所述终端占用的子带宽在所述虚拟带宽中的频域位置,或者,根据所述资源指示信息确定所述终端占用的子带宽组在所述虚拟带宽中的频域位置,所述子带宽组包括n个子带宽,n≥2,n为正整数。
  29. 如权利要求23~28任一项所述的装置,其特征在于,所述基准频域位置为同步信号块频域位置或公共带宽频域位置或直流载波频域位置。
PCT/CN2018/085501 2017-05-05 2018-05-03 一种带宽指示方法及装置 WO2018202095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18794126.5A EP3567916B1 (en) 2017-05-05 2018-05-03 Bandwidth indication method and apparatus
US16/673,339 US11304097B2 (en) 2017-05-05 2019-11-04 Bandwidth indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314156.0 2017-05-05
CN201710314156.0A CN108811130B (zh) 2017-05-05 2017-05-05 一种带宽指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/673,339 Continuation US11304097B2 (en) 2017-05-05 2019-11-04 Bandwidth indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2018202095A1 true WO2018202095A1 (zh) 2018-11-08

Family

ID=64015799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085501 WO2018202095A1 (zh) 2017-05-05 2018-05-03 一种带宽指示方法及装置

Country Status (4)

Country Link
US (1) US11304097B2 (zh)
EP (1) EP3567916B1 (zh)
CN (1) CN108811130B (zh)
WO (1) WO2018202095A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811132B (zh) * 2017-05-05 2020-12-01 华为技术有限公司 一种资源指示的方法、设备及***
CN110601808B (zh) * 2019-09-23 2022-05-17 海能达通信股份有限公司 一种下行同步信号的下发方法及装置、基站、可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516625A (zh) * 2012-06-28 2014-01-15 美国博通公司 带宽虚拟化
CN104144449A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种资源配置方法、***及相关装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118218B (zh) * 2010-01-06 2013-11-06 华为技术有限公司 信道状态信息的反馈方法和用户设备
CN102239737B (zh) * 2010-01-08 2015-09-30 华为技术有限公司 资源分配方法及装置
WO2014069952A1 (ko) * 2012-11-04 2014-05-08 엘지전자 주식회사 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
GB2509910B (en) * 2013-01-16 2019-02-20 Sony Corp Telecommunications apparatus and methods
PT2963970T (pt) 2013-03-28 2022-02-03 Huawei Tech Co Ltd Método e dispositivo para alocação de largura de banda, equipamento de utilizador e estação de base

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516625A (zh) * 2012-06-28 2014-01-15 美国博通公司 带宽虚拟化
CN104144449A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种资源配置方法、***及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567916A4

Also Published As

Publication number Publication date
CN108811130B (zh) 2021-02-12
US20200068444A1 (en) 2020-02-27
EP3567916A1 (en) 2019-11-13
EP3567916B1 (en) 2021-02-24
CN108811130A (zh) 2018-11-13
EP3567916A4 (en) 2020-01-22
US11304097B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US10750487B2 (en) Wireless communications method and apparatus
US11026250B2 (en) Scheduling method, device, and system
KR102288695B1 (ko) 리소스 할당 방법, 단말, 및 네트워크 디바이스
WO2017185915A1 (zh) 分配时频资源的方法和装置
KR102372581B1 (ko) 리소스 블록 그룹 크기를 결정하기 위한 방법 및 장치
US20180014174A1 (en) Transmission Method and Apparatus of Discovery Signal and Communication System
JP2020504546A (ja) リソース指示方法、ユーザ機器、およびネットワークデバイス
EP3627733B1 (en) Communication method, network device and terminal device
WO2013139041A1 (en) Device-to-device resource allocation method and apparatus
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
CN111867089B (zh) 一种资源分配方法及设备
US10772077B2 (en) Cell radio network temporary identifier C-RNTI allocation method and device
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2020029300A1 (zh) 一种tdd***中的资源分配方法和设备
CN103580836B (zh) Ue类型上报、资源分配方法及装置、ue、基站
US11196529B2 (en) Indication method, processing method, and apparatus
CN108024265B (zh) 一种指示直流子载波的方法及装置、电子设备
US11304097B2 (en) Bandwidth indication method and apparatus
JP6147934B2 (ja) デバイス間近接サービスにおいて信号を伝送する方法、基地局およびユーザーイクイップメント
US20220256523A1 (en) Data multiplexing transmission method, base station, terminal, and storage medium
CN106162896B (zh) 一种上行资源分配方法
US11844053B2 (en) Channel quality information determining method, apparatus, and system
KR20210044847A (ko) 다운링크 제어 정보 전송 방법 및 장치
US10075267B2 (en) Interference coordination method and base station
WO2023123387A1 (zh) 一种资源分配指示域的大小的确定方法及终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018794126

Country of ref document: EP

Effective date: 20190806

NENP Non-entry into the national phase

Ref country code: DE