WO2018201913A1 - 信息的上报、接收方法、装置及计算机可读存储介质 - Google Patents

信息的上报、接收方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2018201913A1
WO2018201913A1 PCT/CN2018/083745 CN2018083745W WO2018201913A1 WO 2018201913 A1 WO2018201913 A1 WO 2018201913A1 CN 2018083745 W CN2018083745 W CN 2018083745W WO 2018201913 A1 WO2018201913 A1 WO 2018201913A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
information
uplink
reporting information
resource
Prior art date
Application number
PCT/CN2018/083745
Other languages
English (en)
French (fr)
Inventor
高波
陈艺戬
李儒岳
鲁照华
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/610,697 priority Critical patent/US11419098B2/en
Publication of WO2018201913A1 publication Critical patent/WO2018201913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method for reporting, receiving, and storing a message, and a computer readable storage medium.
  • Ultra-wideband high-band communication (also known as millimeter-wave communication) has become an important direction for the development of mobile communications in the future, attracting the attention of academic and industrial circles around the world.
  • the advantages of millimeter waves have become increasingly attractive when the increasingly congested spectrum resources and physical networks are heavily accessed, in many standards organizations such as the Institute of Electrical and Electronics Engineers (IEEE). Engineers) and the 3rd Generation Partnership Project (3GPP) have begun to carry out corresponding standardization work.
  • 3GPP 3rd Generation Partnership Project
  • high-band communication will become an important innovation point of 5G new radio access technology (New RAT, New Radio Access Technology) by virtue of its significant advantages of large bandwidth.
  • New RAT New Radio Access Technology
  • high-band communication also faces the challenge of link attenuation. Faced with these challenges, high-band communication systems can take advantage of the high frequency band and short antenna integration, and achieve high antenna gain and anti-signal transmission through multi-antenna array and beamforming schemes (also known as directional beam communication). Loss, which in turn ensures link margin and improves communication robustness.
  • directional beam communication reduces the diversity of the signal in space propagation while obtaining the link gain, which may be affected by terminal movement and channel occlusion, resulting in relatively poor Lubo of directional communication. .
  • the beam link fails, which makes the reliability and timeliness of wireless communication in re-communication unguaranteed. There is no effective solution to this problem in related technologies.
  • Embodiments of the present disclosure provide a method for reporting, receiving, and receiving information, and a computer readable storage medium.
  • An embodiment of the present disclosure provides a method for reporting information, including:
  • the method further includes:
  • the second uplink resource is a subset of the first uplink resource.
  • the method further includes:
  • the first type of reporting information is sent when at least one of the uplink reference signal and the uplink control signaling needs to be sent on the second uplink resource to collide with the first type of reported information.
  • the uplink reference signal includes one of the following:
  • DMRS Demodulation reference signal
  • SRS Channel sounding reference signal
  • the method when the operation is performed by using the second uplink resource, the method further includes:
  • the beam link is indicated to have not failed.
  • the indicating that the beam link is not invalid in an implicit manner includes:
  • the first uplink resource has a periodic feature and meets a time constraint.
  • the first type of reporting information also carries at least one of the following information:
  • the downlink reference signal associated with the time-frequency resource carrying the first type of reporting information is indication information of the beam
  • the downlink reference includes at least one of the following:
  • Synchronization signal (SS); DMRS; channel state information reference signal (CSI-RS).
  • the DMRS associated with the time-frequency resource carrying the first type of reporting information meets at least one of the following conditions:
  • a DMRS associated with a Physical Broadcast Channel PBCH
  • the DMRS associated with the common control channel is the DMRS associated with the common control channel.
  • each type of downlink reference signal satisfies at least one of the following conditions:
  • Each type of downstream reference signal uses its own dedicated measurement threshold
  • Each type of downstream reference signal uses its own proprietary reporting threshold.
  • the first uplink resource and the beam index have a binding relationship between the uplink and downlink reference signals
  • each N uplink beam resources are grouped into one group to form an M group; the same uplink precoding or the same is used in each packet. Transmit beam; N, M are integers greater than or equal to 1.
  • each N uplink beam resources are grouped according to at least one of the following grouping criteria:
  • Timing advance (TA) parameter Timing advance
  • the dedicated resource carrying the first type of report information is allocated, and the uplink is synchronized, the first type of report information is carried by using a PUCCH;
  • the first type of reporting information uses a physical random access channel (PRACH) or a PRACH-like channel (PRACH-like).
  • radio link failure (RLF) process is performed.
  • the method when the first type of uplink information is sent to the second communication node by using the allocated first uplink resource, the method further includes:
  • the first type of reporting information and the scheduling request are allocated in the same uplink control signaling.
  • the embodiment of the present disclosure further provides a method for receiving information, including:
  • the first type of reporting information Receiving, by the first communication node, the first type of reporting information; the first type of reporting information is sent by using the allocated first uplink resource; and the first type of reporting information is used to notify at least the second communication node of the beam link Invalid
  • the acknowledgment signaling is sent to the first communications node by using the configured time-frequency domain resource;
  • the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the transmitting beam that sends the acknowledgment signaling is the The transmit beam corresponding to the beam information.
  • the sending beam that sends the acknowledgment signaling is one of the following:
  • each beam is transmitted separately.
  • the embodiment of the present disclosure further provides an information reporting apparatus, including:
  • a generating unit configured to determine that a beam link failure condition is established; and generate a first type of reporting information; the first type of reporting information is used to notify at least the second communication node that the beam link is invalid;
  • the first sending unit is configured to send the first type of reporting information to the second communications node by using the allocated first uplink resource.
  • the first sending unit is further configured to perform at least one of the following operations by using the second uplink resource:
  • the second uplink resource is a subset of the first uplink resource.
  • Embodiments of the present disclosure also provide an information reporting apparatus, including: a processor and a memory configured to store a computer program executable on the processor,
  • the processor is configured to perform the step of reporting the information when the computer program is executed.
  • the embodiment of the present disclosure further provides an information receiving apparatus, including:
  • the second receiving unit is configured to receive the first type of reporting information sent by the first communications node; the first type of reporting information is sent by using the allocated first uplink resource; and the first type of reporting information is used for at least The second communication node beam link is invalid;
  • the second sending unit is configured to send the acknowledgment signaling to the first communications node by using the configured time-frequency domain resource;
  • the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the sending beam that sends the acknowledgment signaling is one of the following:
  • each beam is transmitted separately.
  • An embodiment of the present disclosure further provides an information receiving apparatus, including: a processor and a memory configured to store a computer program executable on the processor,
  • the processor is configured to perform the step of receiving the above information when the computer program is run.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the step of implementing the reporting method of the information when the computer program is executed by the processor, or the method for receiving the information is implemented. step.
  • the first communication node determines that the beam link is invalid (in the English, the Beam Link Failure, the corresponding abbreviation is BLF) is established. Generating a first type of report information; the first type of report information is used to notify at least the second communication node of the beam link failure; and the first type of report is sent to the second communication node by using the allocated first uplink resource
  • the second communication node sends the acknowledgement signaling to the first communication node by using the configured time-frequency domain resource; the configured time-frequency domain resource is a downlink control channel search space.
  • the time-frequency domain resource when the beam link fails, because the first communication node notifies the second communication node in time, the first communication node and the second communication node can be accelerated to find an effective beam combination.
  • FIG. 1 is a schematic flowchart of a method for reporting information on a first communication node side according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for receiving information on a second communication node side according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for transmitting information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an apparatus for reporting information according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of hardware of an information reporting apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another apparatus for receiving information according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of hardware of another information receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a transmission system of information according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of beam recovery signaling for a CSI-RS and a synchronization signal according to a specific embodiment of the present disclosure.
  • 10a-c are schematic diagrams of signal recovery by PUCCH bearer beam recovery according to a second embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of performing uplink channel estimation and transmitting uplink signaling by using a beam recovery signaling field according to Embodiment 3 of the present disclosure
  • 12a-b are schematic diagrams of a four beam recovery method according to a specific embodiment of the present disclosure.
  • FIG. 13a-b are schematic diagrams showing the flow of beam recovery confirmation signaling under the multi-beam of the beam recovery signaling in the fifth embodiment of the present disclosure.
  • the ultra-wideband high-band communication has become the focus of attention due to its bandwidth advantage.
  • high-band communication faces the challenge of including link loss, large loss of airborne absorption (especially oxygen), and heavy rain attenuation.
  • high-band communication systems utilize high-bandwidth wavelengths and easy antenna integration to achieve high antenna gain and signal transmission loss through multi-antenna array and beamforming schemes, ensuring link margin and boost Communication robustness.
  • the transmitting end transmits a training pilot, and the receiving end receives the channel and performs channel estimation. Then, the receiving end needs to feed back the channel state information to the transmitting end, so that the transmitting end can find the weight pair of multiple sets of transceiver antennas that can be used for multiple data transmission in the optional transceiver weight pair, to improve the overall Spectral efficiency.
  • the directional beam communication method is used in the high-band communication system to obtain the link gain, and the diversity of the signal in the space propagation is also reduced, which may be affected by terminal movement and channel occlusion.
  • the beam link may fail, resulting in unreliable wireless communication reliability and timeliness when communicating again.
  • the radio access procedure can be performed, that is, the RLF process is performed, but the process causes a relatively large delay for the wireless communication, so how can the delay be reduced after the beam link fails, and there is no Related technical solutions.
  • the first communication node when the beam link fails, sends, to the second communication node, the first type of reporting information that informs the second communication node of the beam link failure, using the allocated uplink resource. So that the second communication node can know the beam link failure in time, so that the first communication node and the second communication node can be accelerated to find an effective beam combination.
  • the first communication node may send the uplink reference signal and the uplink control signaling by using the allocated uplink resource.
  • the uplink refers to a direction in which the terminal sends information to the base station; correspondingly, the downlink refers to a direction in which the base station sends information to the terminal.
  • the first communication node refers to the terminal
  • the second communication node refers to the base station.
  • the solution of the embodiment of the present disclosure may also be understood as: the base station allocates an uplink resource to the terminal for carrying the beam recovery (in English, it can be expressed as beam recovery) signaling.
  • the terminal may use the uplink resource to send an uplink reference signal or other uplink control signaling (such as a scheduling request, etc.), but use the uplink resource to carry the beam recovery signaling when the BLF occurs. That is to say, the priority of transmitting beam recovery signaling is the highest.
  • the method for reporting information provided by the embodiment of the present disclosure, as shown in FIG. 1 is applied to a first communication node, and the method includes:
  • Step 101 When determining that the beam link failure condition is met, generating the first type of reporting information
  • the first type of reporting information is used to notify at least the second communication node that the beam link fails.
  • the beam link failure condition refers to a beam-related parameter or a combination of parameters that meets a threshold condition.
  • the beam link failure condition can be as follows:
  • the quality of the O unlabeled beam links is greater than or equal to a common threshold or respective thresholds
  • the difference or ratio of the azimuth of the O unlabeled beam links to the azimuth of the K labeled beam links is greater than a common threshold or two separate thresholds
  • the K marked beam link qualities are less than a common threshold or respective thresholds
  • the quality of all marked beam links is less than a common threshold or respective thresholds
  • the cumulative number of unsuccessful receptions is greater than a common threshold or respective thresholds
  • the marked and unlabeled may be implemented by different configuration indications for the reference signal.
  • O and K are positive integers, and their specific values can be determined as needed.
  • the embodiment of the present disclosure does not limit the beam link failure condition.
  • other beam link failure conditions may be set as needed.
  • Step 102 Send the first type of reporting information to the second communications node by using the allocated first uplink resource.
  • the first type of reporting information may be referred to as beam recovery signaling.
  • the beam recovery signaling may be composed of two or four types of reference signal sequences to indicate whether the link is invalid, and whether the downlink reference signal associated with the uplink resource carrying the first type of reporting information is a new available beam, that is, [Link failed, the associated downlink reference signal is a new available beam], specifically:
  • the uplink resource can be used to carry the PUCCH and/or SRS for uplink beam training.
  • the uplink resource can be used to carry the PUCCH for uplink beam training.
  • the third case the beam link fails and the potential available beam is found.
  • the second communication node can know which of the above cases.
  • the second communication node has the following three possible ways to learn the associated downlink reference signal:
  • the first communication node may re-upload the associated downlink reference signal at the subsequent location PUCCH.
  • all allocated uplink resources may not be used for transmitting beam recovery signaling, and may be negotiated by the second communication node (ie, the base station) and the first communication node (terminal). Which resources are used to transmit beam recovery signaling, which is advantageous for reducing the implementation complexity of the base station and giving the base station certain flexibility.
  • the allocated uplink resources whether the terminal can be used for uplink beam training, this is configured by the base station, and/or the terminal has a criterion.
  • the uplink beam resource can be used for beam training, and can also be used for beam recovery signaling bearer.
  • the uplink beam resource can be used for beam training, and can also be used for beam recovery signaling bearer.
  • not all such resources need to have this function, such as resources that are periodically allocated for beam training. Some resources can only perform normal beam training. Some resource terminals can choose one according to the current situation (ie, for uplink). Beam training or bearer beam recovery signaling).
  • the first uplink resource may have periodic characteristics and meet time constraints.
  • the time constraint means that the allocated first uplink resource is valid only in a limited time range, that is, the configured first uplink resource (such as PUCCH) is effective, so that unnecessary resources can be saved. spend.
  • the method may further include:
  • the second uplink resource is a subset of the first uplink resource.
  • the first type of report information is sent. In other words, the first type of reporting information is sent preferentially.
  • the uplink reference signal may include one of the following:
  • a random access sequence signal that is, a random access channel signal (RACH);
  • the assigned exclusive sequence may be a corresponding PRACH-like.
  • the uplink reference signal may also be a phase tracking reference signal (PT-RS).
  • PT-RS phase tracking reference signal
  • the method may further include:
  • the beam link is indicated to have not failed.
  • the first type of reporting information may also carry at least one of the following information:
  • the downlink reference signal associated with the time-frequency resource carrying the first type of reporting information is indication information of an available beam
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.); the beam symbol may be replaced by a resource index, because the beam may be time-frequency The binding of the code resource for transmission.
  • the beam may also be a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and the like.
  • the beam indication means that the first communication node can scan the reference signal (or reference reference signal) and the antenna port that the second communication node scans or the first communication node feeds back through the current reference signal and the antenna port to satisfy the quasi co-location ( QCL) is assumed to be an indication.
  • the parameters involved in the QCL include at least: Doppler spread, Doppler shift, delay spread, average delay and average gain. It may also include: spatial parameter information such as angle of arrival, spatial correlation of the received beam, average delay, and correlation of the time-frequency channel response (including phase information).
  • the identity information may be: a medium access control (MAC) address, a cell radio network temporary identifier (C-RNTI), a temporary C-RNTI (TC-RNTI), or a second communication node (ie, a base station) assigned to the first communication.
  • the unique ID of the node that is, the terminal.
  • the identity information may be other information that can identify the identity of the first communication node, as long as the identity of the first communication node can be identified, which is not limited by the embodiment of the disclosure.
  • SS for example, primary synchronization signal (SSS), secondary synchronization signal (PSS)
  • PSS secondary synchronization signal
  • CSI-RS CSI-RS
  • DMRS DMRS
  • multiple types of reference signals can be jointly coded using a uniform sequence number such that these reference signals use a uniform beam index.
  • the second communication node may configure the CSI-RS and SS resources for beam recovery to be jointly coded, and use a unified index sequence number to be carried on the beam recovery signaling; for example, ID: 0-4 SS; ⁇ 15 CSI-RS.
  • the downlink reference includes at least one of the following:
  • the downlink reference signal may further include at least one of the following:
  • CRS Cell reference signal
  • CSI-IM Channel state information interference measurement signal
  • MRS Mobile related reference signal
  • BRS Beam reference signal
  • BRRS Beam refinement reference signal
  • Synchronization signal block (SS block);
  • the DMRS associated with the time-frequency resource carrying the first type of reporting information may satisfy at least one of the following conditions:
  • the DMRS associated with the common control channel is the DMRS associated with the common control channel.
  • the feedback thresholds corresponding to different types of reference signals may be different, may be variable, or the thresholds may be configured, such that each type of downlink reference signal satisfies At least one of the following conditions:
  • Each type of downstream reference signal uses its own dedicated measurement threshold
  • Each type of downstream reference signal uses its own proprietary reporting threshold.
  • the beam correlation in the case of the beam correspondence
  • the beam correspondence or the channel when the beam correspondence or the channel is different, the first uplink resource and the index have a binding between the uplink and downlink reference signals. Relationship.
  • the beam recovery signaling may only display the bearer terminal ID information; or the joint encoding between the terminal ID signal and the downlink reference signal, implicitly embodying the terminal ID information.
  • the binding relationship between the uplink and downlink reference signals means that the spatial parameter characteristic of the uplink reference signal can be determined by the spatial parameter characteristic of the channel experienced by the downlink reference signal.
  • the spatial parameter characteristic of the downlink reference signal can be determined by the spatial parameter characteristic of the channel experienced by the uplink reference signal. This property is also known as satisfying the QCL hypothesis or satisfying the spatial heterogeneity QCL hypothesis.
  • the uplink reference signal transmitting beam may be determined by using a receiving beam corresponding to the downlink reference signal; the downlink reference signal transmitting beam may be determined by using a receiving beam corresponding to the uplink reference signal; and the uplink reference signal receiving beam may pass the downlink reference signal.
  • the corresponding transmit beam is determined; the downlink reference signal receive beam may be determined by a transmit beam corresponding to the uplink reference signal.
  • the receiving beam refers to: a beam of the receiving end that does not need to be indicated, or the first communication node can scan with the second communication node through the current reference signal and the antenna port, or the reference signal (or reference reference) reported by the first communication node. Signal) and the beam resource of the receiving end under the QCL indication of the antenna port.
  • the N uplink beam resources are grouped into one group in the first uplink resource, where the first communication node uses the same uplink preamble in the uplink resource group. Encode or transmit a beam.
  • every N uplink beam resources are grouped into one group to form an M group; the first communication node is in each group.
  • N, M are integers greater than or equal to 1.
  • the grouping refers to: dividing a beam and associated channel state information having the same channel characteristics and/or transmission scheme into one set. So a group can also be called a collection.
  • the channel characteristics include physical propagation channel characteristics such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., and also features of radio frequency and baseband circuits, such as antenna array features ( Element pattern), antenna group, sky plane board, antenna subarray, transceiver unit (TXRU), receive beam set, antenna placement, and baseband time offset, frequency offset and phase noise.
  • antenna array features Element pattern
  • antenna group Element pattern
  • sky plane board antenna subarray
  • TXRU transceiver unit
  • receive beam set antenna placement
  • baseband time offset frequency offset and phase noise
  • each N uplink beam resources may be grouped according to at least one of the following grouping criteria (ie, each group of criteria includes any one of the following and any combination mode):
  • the beam link failure condition when the beam link failure condition is met, whether to perform the beam recovery process or the wireless access process, that is, to perform the RLF process, whether uplink synchronization can be used as an important judgment indicator. For example, when only PUCCH resources are allocated for beam recovery, when uplink synchronization is performed, a beam recovery procedure is performed; when uplink synchronization is lost, a radio access procedure is performed.
  • the usage condition of the PUCCH is: there is a fixed UE ID and uplink synchronization; accordingly, the PRACH or PRACH-like use condition is: no fixed The UE ID or uplink is out of sync.
  • the first type of reporting information is carried by the PUCCH; when the uplink is out of synchronization, the first communication node performs the wireless link failure. RLF process.
  • the first type of reporting information uses a PRACH or PRACH-like bearer.
  • the PRACH-like refers to: carrying information by using a long preamble and a sequence method, and different sequences indicate different information types.
  • the uplink when the uplink is not synchronized, the transmission of the uplink signal can be effectively guaranteed, and the interference of the uplink signals of other users can be avoided.
  • the method may further include:
  • the first type of reporting information and the scheduling request are allocated in the same uplink control signaling.
  • the embodiment of the present disclosure further provides a method for receiving information, which is applied to a second communication node.
  • the method includes:
  • Step 201 Receive a first type of reporting information sent by the first communications node, where the first type of reporting information is sent by using the allocated first uplink resource.
  • Step 202 Send acknowledgment signaling to the first communications node by using the configured time-frequency domain resource;
  • the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the sending the acknowledgment signaling beam is the available The transmit beam corresponding to the beam information.
  • the transmitting beam that sends the acknowledgment signaling is one of the following:
  • the first available beam is the first available beam
  • each available beam is used for transmission (eg, periodically using each available beam to transmit separately).
  • the second communication node may configure a beam recovery configuration signaling to the first communication node (ie, the terminal), indicating that the beam recovery signaling that each first communication node transmits may be carried by the beam
  • the number needs to be less than or equal to L.
  • L is an integer greater than or equal to 1.
  • the first communication node When the first communication node transmits only one available transmit beam to the second communication node through the beam recovery signaling (the first type of report information), the first communication node will receive the downlink receive beam corresponding to the transmit beam by default.
  • the at least two available transmit beam information are fed back to the second communication node (it is to be noted that the multiple beams may be carried in one signaling, or may be separately carried by beam recovery signaling in multiple time-frequency domains),
  • the base station transmits the acknowledgment signaling according to the specific criteria by time division and/or frequency division.
  • At least two transmit beams When at least two available transmit beams are available, at least two transmit beams transmit acknowledgment signaling in a time division manner.
  • the first beam (beam 1) is used in time 0 ⁇ x1; in time x1 ⁇ x2, the first beam (beam2) is used; and so on.
  • multiple transmit beams can also be used to poll for transmissions.
  • the method for transmitting information provided by the embodiment of the present disclosure, as shown in FIG. 3, includes the following steps:
  • Step 301 The first communication node determines that the beam link failure condition is met, and generates the first type of report information.
  • the first type of reporting information is used to notify at least the second communication node beam link failure
  • Step 302 The first communication node sends the first type of report information to the second communication node by using the allocated first uplink resource.
  • Step 303 After receiving the first type of reporting information, the second communications node sends the acknowledgment signaling to the first communications node by using the configured time-frequency domain resource.
  • the configured time-frequency domain resource is a time-frequency domain resource of a downlink control channel search space.
  • the method for reporting and receiving information determines that the first communication node generates the first type of report information when the beam link failure condition is established; the first type of report information is used to notify at least the second communication node beam chain.
  • the first type of reporting information is sent to the second communication node by using the allocated first uplink resource; after receiving the first type of reporting information, the second communication node uses the configured time-frequency domain resource to The first communication node sends the acknowledgment signaling; the configured time-frequency domain resource is the time-frequency domain resource of the downlink control channel search space.
  • the first communication node notifies the second communication node in time, so It is possible to accelerate the discovery of a valid beam combination by the first communication node and the second communication node, ie to establish a beam link.
  • the second uplink resource is used to perform at least one of: sending an uplink reference signal; sending uplink control signaling (such as a scheduling request, etc.); wherein the second uplink resource is a subset of the first uplink resource .
  • the configured uplink resources of the bearer beam link can be shared and multiplexed with other services, which greatly saves resources.
  • the present embodiment provides an information reporting apparatus, which is disposed on a first communication node. As shown in FIG. 4, the apparatus includes:
  • the generating unit 41 is configured to determine that the beam link failure condition is established, and generate the first type of reporting information; the first type of reporting information is used to notify at least the second communication node that the beam link is invalid;
  • the first sending unit 42 is configured to send the first type of reporting information to the second communications node by using the allocated first uplink resource.
  • the first sending unit 42 is further configured to perform at least one of the following operations by using the second uplink resource:
  • the second uplink resource is a subset of the first uplink resource.
  • the first sending unit 42 only sends the The first type of reporting information. In other words, the first type of reporting information is sent preferentially.
  • the first sending unit 42 indicates that the beam link is not invalid in an implicit or display manner when the operation is performed by using the second uplink resource.
  • the first transmitting unit 42 uses a specific sequence or uses a reserved field in the first type of reporting information to indicate that the beam link has not failed.
  • the first sending unit 42 is further configured to send the first type of reporting information to the second communications node by using the allocated first uplink resource.
  • the first type of reporting information and the scheduling request are allocated in the same uplink control signaling.
  • the reporting device of the information provided in the above embodiment is only illustrated by the division of each of the above-mentioned program modules when performing the reporting of the information.
  • the processing allocation may be completed by different program modules as needed, that is, the device is The internal structure is divided into different program modules to perform all or part of the processing described above.
  • the reporting device of the information provided by the foregoing embodiment and the method for reporting the information are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the embodiment of the present disclosure further provides an information reporting apparatus.
  • the information reporting apparatus includes a processor 51 and a memory 52 configured to store a computer program executable on the processor 51.
  • the processor 51 is configured to execute when the computer program is executed:
  • the first type of reporting information is used to notify at least the second communication node that the beam link is invalid;
  • the processor 51 is further configured to execute when the computer program is executed:
  • the second uplink resource is a subset of the first uplink resource.
  • the processor 51 is further configured to: when the computer program is executed, execute:
  • the processor 51 is configured to execute when the computer program is executed:
  • the processor 51 is further configured to: when the computer program is executed, execute:
  • the first type of reporting information and the scheduling request are allocated in the same uplink control signaling.
  • the reporting device of the information may further include: at least one network interface 54 and a user interface 53.
  • the various components in the reporting device of the information are coupled together by a bus system 55.
  • bus system 55 is configured to enable connection communication between these components.
  • the bus system 55 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 55 in FIG.
  • the number of the processors 51 may be at least one.
  • the user interface 53 may include a display, a keyboard, a mouse, a trackball, a click wheel, a button, a button, a touch panel, or a touch screen.
  • memory 52 can be either volatile memory or non-volatile memory, as well as both volatile and non-volatile memory.
  • the non-volatile memory may be a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), or an Erasable Programmable Read (EPROM). Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM), Ferromagnetic Random Access Memory (FRAM), Flash Memory, Magnetic Surface Memory , CD-ROM, or Compact Disc Read-Only Memory (CD-ROM); the magnetic surface memory can be a disk storage or a tape storage.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • SSRAM Dynamic Random Access
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM enhancement Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Dynamic Random Access Memory
  • DRRAM Direct Memory Bus Random Access Memory
  • the memory 52 in the embodiment of the present disclosure is configured to store various types of data to support the operation of the information reporting device.
  • Examples of such data include any computer program for operating on a reporting device of information, such as operating system 521 and application 522, and the like.
  • the operating system 521 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 522 can include various applications, such as a Media Player, a Browser, etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 522.
  • Processor 51 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 51 or an instruction in a form of software.
  • the processor 51 described above may be a general purpose processor, a digital signal processor (DSP), or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • DSP digital signal processor
  • the processor 51 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can reside in a storage medium located in memory 52, which reads the information in memory 52 and, in conjunction with its hardware, performs the steps of the foregoing method.
  • an embodiment of the present disclosure further provides a computer readable storage medium, such as a memory 52 including a computer program executable by the processor 51 of the information reporting device to perform the foregoing method. step.
  • the computer readable storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.
  • embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program that, when executed by the processor 51, performs:
  • the first type of reporting information is used to notify at least the second communication node that the beam link is invalid;
  • the second uplink resource is a subset of the first uplink resource.
  • the beam link is indicated as not being invalidated by an implicit or display manner.
  • the embodiment provides a device for receiving information, which is disposed on a second communication node.
  • the device includes:
  • the second receiving unit 61 is configured to receive the first type of reporting information sent by the first communications node, where the first type of reporting information is sent by using the allocated first uplink resource, and the first type of reporting information is used for at least Notifying the second communication node that the beam link is invalid;
  • the second sending unit 62 is configured to send the acknowledgment signaling to the first communications node by using the configured time-frequency domain resource; the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the sending the acknowledgment signaling beam is the available The transmit beam corresponding to the beam information.
  • the transmitting beam that sends the acknowledgment signaling is one of the following:
  • the first available beam is the first available beam
  • each available beam is used for transmission (e.g., periodically using each available beam to transmit separately).
  • the receiving device for information provided by the above embodiment is only exemplified by the division of each of the above-mentioned program modules when the information is received.
  • the processing may be assigned by different program modules as needed, that is, the device is
  • the internal structure is divided into different program modules to perform all or part of the processing described above.
  • the receiving device of the information provided by the foregoing embodiment and the method for receiving the information are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the embodiment of the present disclosure further provides an information receiving apparatus.
  • the information receiving apparatus includes: a processor 71 and a memory 72 configured to store a computer program executable on the processor 71,
  • the processor 71 is configured to execute when the computer program is executed:
  • the first type of reporting information Receiving, by the first communication node, the first type of reporting information; the first type of reporting information is sent by using the allocated first uplink resource; and the first type of reporting information is used to notify at least the second communication node of the beam link Invalid
  • the acknowledgment signaling is sent to the first communications node by using the configured time-frequency domain resource;
  • the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the sending the acknowledgment signaling beam is the available The transmit beam corresponding to the beam information.
  • the transmitting beam that sends the acknowledgment signaling is one of the following:
  • the first available beam is the first available beam
  • each available beam is used for transmission (eg, periodically using each available beam to transmit separately).
  • the receiving device of the information may further include: at least one network interface 73.
  • the various components in the receiving device of the information are coupled together by a bus system 74.
  • bus system 74 is configured to enable connection communication between these components.
  • the bus system 74 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 74 in FIG.
  • the number of the processors 71 may be at least one.
  • memory 72 can be either volatile memory or non-volatile memory, and can include both volatile and nonvolatile memory.
  • the memory 72 is configured to store various types of data to support the operation of the receiving device of the information. Examples of such data include any computer program for operating on a receiving device of information, such as an operating system 721 and an application 722, and the like.
  • the operating system 721 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • Application 722 can include a variety of applications for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 722.
  • Processor 71 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 71 or an instruction in the form of software.
  • the processor 71 described above may be a general purpose processor, a DSP, or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or the like.
  • the processor 71 can implement or perform the various methods, steps, and logic blocks disclosed in the embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can reside in a storage medium located in memory 72, which reads the information in memory 72 and, in conjunction with its hardware, performs the steps of the foregoing method.
  • an embodiment of the present disclosure further provides a computer readable storage medium, such as a memory 72 including a computer program executable by the processor 71 of the information receiving device to perform the foregoing method. step.
  • the computer readable storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.
  • embodiments of the present disclosure provide a computer readable storage medium having stored thereon a computer program that, when executed by the processor 71, performs:
  • the first type of reporting information Receiving, by the first communication node, the first type of reporting information; the first type of reporting information is sent by using the allocated first uplink resource; and the first type of reporting information is used to notify at least the second communication node of the beam link Invalid
  • the acknowledgment signaling is sent to the first communications node by using the configured time-frequency domain resource;
  • the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.
  • the sending the acknowledgment signaling beam is the available The transmit beam corresponding to the beam information.
  • the transmitting beam that sends the acknowledgment signaling is one of the following:
  • the first available beam is the first available beam
  • each available beam is used for transmission (eg, periodically using each available beam to transmit separately).
  • the embodiment of the present disclosure further provides a transmission system for information.
  • the system includes: a first communication node 81 and a second communication node 82;
  • the first communication node 81 is configured to determine that the beam link failure condition is met, and generate the first type of report information; the first type of report information is used to notify at least the second communication node that the beam link is invalid; Sending, by the uplink resource, the first type of reporting information to the second communications node 82;
  • the second communication node 82 is configured to send the acknowledgement signaling to the first communication node 81 by using the configured time-frequency domain resource after receiving the first type of report information.
  • the configured time-frequency domain resource is a time-frequency domain resource of a downlink control channel search space.
  • the base station configures a plurality of reference signals for the terminal to discover a new beam, and the configured multiple reference signals include an SS block and a CSI-RS.
  • the SS block includes PSS, SSS, and PBCH signals.
  • FIG. 9 is a schematic diagram of beam recovery signaling for CSI-RS and SS according to a specific embodiment of the present disclosure.
  • multiple types of reference signals can be used to discover potential available beams, and available beam information will be carried in beam recovery signaling.
  • multiple types of reference signals, SS and CSI-RS (or DMRS of PBCH) are jointly encoded, using a common set of terminal ID information, ie using a uniform index sequence number.
  • beam recovery signaling is carried by the PUCCH.
  • the time-frequency domain resource carrying the beam recovery signaling that is, the location of the time-frequency resource where the beam recovery signaling is located is associated with the terminal ID information, that is, by analyzing the corresponding time-frequency domain resource, it can be known that the beam recovery of the UE is transmitted. Signaling.
  • the resources carrying the beam recovery signaling will have periodic characteristics, but need to have certain time constraints. That is, when the base station configures the time-frequency resource, the time-frequency resource is valid only for a limited time range.
  • FIG. 10a is a schematic diagram of signaling through UECCH bearer beam recovery in non-beam correspondence according to an embodiment of the present disclosure.
  • the terminal when the terminal considers that the downlink reference signal x can find a valid downlink beam, the terminal attempts to send beam recovery signaling from the corresponding multiple uplink beam recovery resource windows. The terminal attempts to switch the corresponding uplink beam on the PUCCH resources in different time domains to implement uplink beam training. After confirming that the PUCCH is effectively received, the base station transmits the beam recovery acknowledgement signaling using the downlink transmit beam with its implicit indication. That is, in this case, the downlink reference signal of the potential beam discovery can be associated with a plurality of time domain resources of beam recovery signaling in different time domains.
  • FIG. 10b is a schematic diagram of signal recovery by PUCCH bearer beam recovery in beam correspondence according to an embodiment of the present disclosure.
  • the time-frequency resources specific to beam recovery signaling are associated with downlink reference signals that can be used for potential beam discovery.
  • the base station will receive the beam recovery signaling using the receive beam corresponding to the transmit beam associated with the downlink reference signal.
  • the terminal will use the uplink transmit beam/reference signal resource associated with receiving the downlink reference signal to transmit beam recovery signaling, but when the beam link fails, the terminal may try to use the The different transmit beams of the uplink transmit beams associated with the downlink reference signals are used to transmit signaling, which can be used for uplink beam training and channel estimation.
  • FIG. 10c is a schematic diagram of the uplink resource corresponding to the beam recovery signaling in the hopping mode (ie, the frequency modulation mode).
  • the uplink transmission resources corresponding to the same terminal that are associated with the same downlink reference signal resource do not have to be consistent on different time domain units, and the jump can be performed under a specific function. This can prevent the beam recovery signaling from being consistently located in the frequency domain selective channel fading area to a certain extent. It should be noted that, even in the beam correspondence scenario, related bit information of the bearer beam recovery signaling may be allocated to different time-frequency resource locations.
  • uplink channel estimation and uplink signaling are performed through a beam recovery signaling field.
  • FIG. 11 is a schematic diagram of performing uplink channel estimation and transmitting uplink signaling by using a beam recovery signaling field according to an embodiment of the present disclosure.
  • the DMRS associated with the beam recovery signaling may be used for uplink beam training or reference signal received power (RSRP) estimation of the base station uplink.
  • RSRP reference signal received power
  • this field can be used for uplink channel estimation, which can improve the uplink signal to noise ratio or correlate the RSRP feedback and scheduling request of the uplink channel.
  • the beam link fails the mode means uplink and downlink joint beam training. When the effective downlink is not found, the terminal uses these resources to initiate scanning for the uplink beam and accelerate the entire beam recovery process. It should be noted that, in this case, the search space transmission beam of the downlink beam recovery acknowledgement signaling needs to be associated with the signaling.
  • the PUCCH there are two bearer resources for beam recovery signaling, one of which is an uplink PUCCH, and the other is a PRACH/PRACH-like time-frequency resource. If the PUCCH and the PRACH/PRACH-like resource are used by the base station to carry the beam recovery signaling, the PUCCH is used in the condition that there is a fixed UE ID and uplink synchronization; the PRACH or PRACH-like usage condition is: no fixed UE ID or uplink out of step.
  • the PUCCH may indicate multiple types of reference signal indexes by explicit or implicit methods, and the PRACH/PRACH-like field may only carry the reference signal index associated with the SS block by an implicit association method.
  • FIG. 12 is a schematic flowchart of a beam recovery method in a non-beam correspondence according to an embodiment of the present disclosure.
  • the PUCCH can explicitly carry the downlink beam sequence number, and the uplink repeat transmission method detects the uplink effective beam.
  • the downlink beam index There are two possible methods for the downlink beam index, one of which first indicates the reference signal type, and then indicates the reference signal index; or, by means of joint coding, directly indicates the specific reference signal type.
  • FIG. 12b is a schematic flowchart of a beam recovery method in a beam correspondence according to an embodiment of the present disclosure.
  • the base station first associates the time-frequency resource and the downlink reference signal resource that carry the uplink beam recovery signaling by default. Therefore, the terminal only needs to carry beam recovery signaling on the signaling associated with the reference signal.
  • FIG. 13 is a flowchart of beam recovery confirmation signaling under beam recovery signaling bearer multi-beam according to an embodiment of the present disclosure. The processes associated with Non beam correspondence and beam correspondence are shown in Figures 13a and 13b, respectively.
  • the two available beam information indicated by the terminal correspond to different search space windows, respectively. If the terminal has received the base station signaling in the search space 1 window, the search for the search space 2 will be abandoned, and the uplink signaling will be sent for confirmation at the time-frequency resource location specified by the base station (even a further downlink beam can be carried) report). If the user does not receive the base station acknowledgment signal in the search space 1, an attempt is made to search further in the search space 2.
  • the downlink CSI-RS or SS block reference signal transmitted before is implemented, that is, the DMRS signal of the PDCCH and the CSI-RS or SS block indicated by the beam recovery signaling satisfy the QCL hypothesis.
  • the base station configures a beam recovery time-frequency resource for the terminal, and is used to carry the beam recovery request signaling.
  • the terminal can use the resource to carry the uplink beam scan (that is, send the uplink reference signal) and send the uplink control signaling; when the beam link fails in the terminal, but the effective downlink beam link is not found.
  • the terminal uses the resource to carry the beam recovery signaling, and performs uplink beam training, which can accelerate the terminal and the base station to find an effective beam combination; when the terminal has a beam link failure and finds a valid downlink beam link, the terminal can be at that time.
  • the downlink information is carried on the frequency resource.
  • the terminal can quickly inform the base station after the beam link fails, and accelerate the process of beam recovery by using the dedicated uplink resource; on the other hand, when the beam recovery signaling is not carried, the terminal can be used.
  • the uplink beam is scanned (ie, the uplink reference signal is transmitted) and the uplink control signaling is sent.
  • the first communication node determines that the beam link failure condition is established; generates the first type of report information; the first type of report information is used to notify at least the second communication node that the beam link is invalid;
  • the first uplink resource sends the first type of report information to the second communication node; after receiving the first type of report information, the second communication node uses the configured time-frequency domain resource to the first communication node. Sending the acknowledgment signaling; the configured time-frequency domain resource is a time-frequency domain resource of the downlink control channel search space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信息的上报方法,包括:判定波束链路失效条件成立;生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;使用已分配的第一上行资源向所述第二通信节点发送所述第一类上报信息。本公开同时还公开了一种信息的接收方法、信息的上报装置、信息的接收装置及计算机可读存储介质。

Description

信息的上报、接收方法、装置及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201710313781.3、申请日为2017年05月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及通信领域,尤其涉及一种信息的上报、接收方法、装置及计算机可读存储介质。
背景技术
超宽带宽的高频段通信(也可以称为毫米波通信),成为未来移动通信发展的重要方向,吸引了全球的学术界和产业界的目光。特别是,在当下日益拥塞的频谱资源和物理网大量接入时,毫米波的优势变得越来越有吸引力,在很多标准组织,比如电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)、第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)都开始展开相应的标准化工作。比如,在3GPP标准组,高频段通信凭借着其大带宽的显著优势将会成为5G新无线接入技术(New RAT,New Radio Access Technology)的重要创新点。
然而,高频段通信也面临着链路衰减的挑战。面对这些挑战,高频段通信***可以利用高频段波长较短和易于天线集成等特点,通过多天线阵列和波束赋形方案(也可以称为定向波束通信)来获取高天线增益和对抗信号传输损耗,进而确保链路余量和提升通信鲁棒性。
然而高频段通信***中,定向波束通信在获得链路增益的同时,也降低了信号在空间传播的分集,从而可能会受终端移动和信道遮挡的影响,导致定向通信的鲁博性相对较差。在一些场景下,还会导致波束链路失败, 从而使得再次通信时的无线通信可靠性及及时性无法保证。对于此问题,相关技术尚无有效解决方案。
发明内容
本公开实施例提供一种信息的上报、接收方法、装置及计算机可读存储介质。
本公开实施例的技术方案是这样实现的:
本公开实施例提供了一种信息的上报方法,包括:
判定波束链路失效条件成立;
生成第一类上报信息,所述第一类上报信息至少用于通知第二通信节点波束链路失效;
使用已分配的第一上行资源向所述第二通信节点发送所述第一类上报信息。
上述方案中,所述方法还包括:
使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
第二上行资源为所述第一上行资源的一个子集。
上述方案中,所述方法还包括:
当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,发送所述第一类上报信息。
上述方案中,所述上行参考信号包括以下之一:
解调参考信号(DMRS);
信道探测参考信号(SRS);
随机接入序列信号;
已分配的专属序列。
上述方案中,使用第二上行资源执行所述操作时,所述方法还包括:
通过隐式或显示的方式,指示所述波束链路未失效。
上述方案中,所述通过隐式的方式,指示所述波束链路未失效,包括:
使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
上述方案中,所述第一上行资源具有周期特征,且满足时间约束。
上述方案中,所述第一类上报信息还承载以下信息至少之一:
与承载所述第一类上报信息的时频资源所关联的下行参考信号是否是波束的指示信息;
第一通信节点的身份信息;
波束索引。
上述方案中,至少两种类型的下行参考信号,重新编号,使用统一索引。
上述方案中,所述下行参考包括以下至少之一:
同步信号(SS);DMRS;信道状态信息参考信号(CSI-RS)。
上述方案中,与承载所述第一类上报信息的时频资源所关联的DMRS满足以下条件至少之一:
为物理广播信道(PBCH)所关联的DMRS;
公共控制信道所关联的DMRS。
上述方案中,每种类型的下行参考信号满足以下条件至少之一:
每种类型的下行参考信号使用各自的专属测量门限;
每种类型的下行参考信号使用各自的专属上报门限。
上述方案中,在波束关联或存在信道互异性时,所述第一上行资源与所述波束索引存在上下行参考信号之间的绑定关系;
或者,在无波束关联或不存在信道互异性时,所述第一上行资源中,每N个上行波束资源被分成一组,形成M组;在每个分组中使用相同的上 行预编码或者相同的发送波束;N、M均为大于或等于1的整数。
上述方案中,根据以下至少一种分组准则,将每N个上行波束资源分成一组:
接收方式;
接收波束组合;
天线组;
接收信号功率;
水平发送方位角;
垂直发送方位角;
水平接收方位角;
垂直接收方位角;
平均到达时间;
簇到达时间;
所述第一上行资源对应的接收资源;
预定复用方式;
定时提前(TA)参数;
循环前缀(CP)长度;
空分复用方式;
准共位置关系。
上述方案中,当已分配承载所述第一类上报信息的专属资源,且上行同步时,所述第一类上报信息使用PUCCH承载;
或者当未被分配承载所述第一类上报信息的专属资源,或者上行失去同步时,所述第一类上报信息使用物理随机接入信道(PRACH)或者类似于PRACH的信道(PRACH-like)承载;
或者当已分配承载所述第一类上报信息的专属资源,且上行失去同步时,执行无线链路失效(RLF,Radio Link Failure)流程。
上述方案中,使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息时,所述方法还包括:
将所述第一类上报信息和调度请求信令联合编码;
或者,将所述第一类上报信息和调度请求分配在相同的上行控制信令中。
本公开实施例还提供了一种信息的接收方法,包括:
接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
上述方案中,所述第一类上报信息还承载一个波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述波束信息对应的发送波束。
上述方案中,所述第一类上报信息还承载至少两个波束信息时,发送所述确认信令的发送波束为以下之一:
第一个波束;
特定位置的波束;
在预先设定准则下,分别使用各波束发送。
本公开实施例又提供了一种信息的上报装置,包括:
生成单元,配置为判定波束链路失效条件成立;并生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
第一发送单元,配置为使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
上述方案中,所述第一发送单元,还配置为使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
其中,所述第二上行资源为所述第一上行资源的一个子集。
本公开实施例还提供了一种信息的上报装置,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行上述信息的上报方法的步骤。
本公开实施例又提供了一种信息的接收装置,包括:
第二接收单元,配置为接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
第二发送单元,配置为利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
上述方案中,所述第一类上报信息还承载至少两个波束信息时,发送所述确认信令的发送波束为以下之一:
第一个波束;
特定位置的波束;
在预先设定准则下,分别使用各波束发送。
本公开实施例还提供了一种信息的接收装置,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行上述信息的接收方法的步骤。
本公开实施例又提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述信息的上报方法的步骤,或者实现上述信息的接收方法的步骤。
本公开实施例提供的信息的上报、接收方法、装置及计算机可读存储介质,第一通信节点判定波束链路失效(用英文来表达,则为Beam Link  Failure,对应的缩写为BLF)条件成立;生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;使用已分配的第一上行资源向所述第二通信节点发送所述第一类上报信息;第二通信节点收到所述第一类上报信息后,利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源,当波束链路失效时,由于第一通信节点及时通知了第二通信节点,所以就能够加速第一通信节点和第二通信节点发现一个有效的波束组合。
附图说明
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视图中描述相似的部件。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1为本公开实施例第一通信节点侧的信息的上报方法流程示意图;
图2为本公开实施例第二通信节点侧的信息的接收方法流程示意图;
图3为本公开实施例信息的传输方法流程示意图;
图4为本公开实施例一种信息的上报装置结构示意图;
图5为本公开实施例一种信息的上报装置硬件结构示意图;
图6为本公开实施例另一种信息的接收装置结构示意图;
图7为本公开实施例另一种信息的接收装置硬件结构示意图;
图8为本公开实施例信息的传输***结构示意图;
图9为本公开具体实施例一针对CSI-RS和同步信号的波束恢复信令示意图;
图10a-c为本公开具体实施例二通过PUCCH承载波束恢复信令示意图;
图11为本公开具体实施例三通过波束恢复信令字段进行上行信道估计和发送上行信令示意图;
图12a-b为本公开具体实施例四波束恢复方法示意图;
图13a-b为本公开具体实施例五波束恢复信令承载多波束下的波束恢复确认信令流程示意图。
具体实施方式
下面结合附图及实施例对本公开再作进一步详细的描述。
超宽带宽的高频段通信由于其带宽的优势成为当下关注的重点。然而,高频段通信面临着包括传播路径损失大、空气吸收(尤其是氧气)吸收更大、雨衰影响较重等链路衰减的挑战。面对这些挑战,高频段通信***利用高频段波长较短和易于天线集成等特点,通过多天线阵列和波束赋形方案来获取高天线增益和对抗信号传输损耗,进而确保链路余量和提升通信鲁棒性。
其中,高频段通信***中,在天线权重(也称为预编码、波束)训练过程中,首先,发送端发送训练导频,接收端接收信道并执行信道估计。然后,接收端需要向发送端反馈信道状态信息,便于实现收发端在可选的收发端天线权重对中,找到可以用于多路数据传输所需要的多组收发端天线权重对,以提升整体的频谱效率。
目前,在高频段通信***中采用定向波束通信方式获得链路增益的同时,也降低了信号在空间传播的分集,从而可能会会受终端移动和信道遮挡的影响。在一些特定场景,比如在终端快速移动的场景,或者对于不连续接收(DRX)时,可能会导致波束链路失败,从而导致再次通信时无线通信可靠性及及时性无法保证。
需要说明的是:波束链路失败后可以进行无线接入流程,即执行RLF流程,但是该过程会给无线通信造成比较大的时延,所以波束链路失败后如何能够降低时延,并没有相关技术方案。
另外,对于承载波束链路的时频资源是否可以和其他业务共享复用,也没有给出有效的解决方案。
基于此,在本公开的各种实施例中:当波束链路失效时,第一通信节点使用分配的上行资源向第二通信节点发送通知第二通信节点波束链路失效的第一类上报信息,以便第二通信节点能够及时获知波束链路失效,从 而能够加速第一通信节点和第二通信节点发现一个有效的波束组合。
另外,为了节省资源,第一通信节点可以使用分配的上行资源发送上行参考信号和上行控制信令。
其中,实际应用时,所述上行是指:终端向基站发送信息的方向;相应地,下行是指基站向终端发送信息的方向。
所以,第一通信节点是指终端,第二通信节点是指基站。本公开实施例的方案,还可以理解为:基站向终端分配上行资源,用于承载波束恢复(用英文可以表达为beam recovery)信令。其中,为了减少资源的浪费,终端可以使用该上行资源发送上行参考信号或者其他上行控制信令(例如调度请求等),但当发生BLF时使用该上行资源承载beam recovery信令。也就是说,发送beam recovery信令的优先级是最高的。
实施例一
本公开实施例提供的信息的上报方法,如图1所示,应用于第一通信节点,该方法包括:
步骤101:判定波束链路失效条件成立时,生成第一类上报信息;
这里,所述第一类上报信息至少用于通知第二通信节点波束链路失效。
实际应用时,所述波束链路失效条件,是指波束相关参数或者参数组合满足门限条件。举个例子来说,所述波束链路失效条件可以为如下:
1)O个未标示波束链路的质量大于或等于一个公共门限或者各自门限;
2)O个未标示波束链路的质量与K个已标示的波束链路质量和的差值或者比值大于或等于一个公共门限或者各自门限;
3)O个未标示波束链路与K个已标示的波束链路的时频信道响应的相关性、频域信道响应的相关性,或者空域相关性低于一个公共门限或者两两分别门限;
4)O个未标示波束链路的方位角与K个已标示的波束链路的方位角的差值或者比值大于一个公共门限或者两两分别门限;
5)K个已标示的波束链路质量小于一个公共门限或者各自门限;
6)全部已标示的波束链路质量小于一个公共门限或者各自门限;
7)距离上次控制信道/数据信道成功接收的时间累计大于一个公共门限或者各自门限;
8)未成功接收的累计次数大于一个公共门限或者各自门限;
9)波束分组的调整信息;
10)以上部分参数的加权值,或者加权相关值。
其中,实际应用时,所述已标示和未标示可以是通过对于参考信号的不同配置指示来实现的。O和K为正整数,可以根据需要确定其具体取值。
需要说明的是:本公开实施例并不对波束链路失效条件作限定,实际应用时,可以根据需要设置其它波束链路失效条件。
步骤102:使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
所述第一类上报信息可以称为波束恢复信令。
实际应用时,波束恢复信令可以由两个比特或者四类参考信号序列构成,以表达链路是否失效,承载第一类上报信息的上行资源所关联的下行参考信号是否是新可用波束,即[链路失败,该关联下行参考信号是新可以用波束],具体而言:
第一种情况:波束链路未失效(即non-BLF)时:上行资源可以用于承载PUCCH和/或SRS,进行上行波束训练。
此时,波束恢复信令的具体内容可以是:[链路失败,该关联下行参考信号是新可以用波束]=[0,0]。
第二种情况:波束链路失效并且未发现潜在可用波束时:上行资源可以用于承载PUCCH,进行上行波束训练。
此时,波束恢复信令的具体内容可以是:[链路失败,该关联下行参考信号是新可以用波束]=[1,0]。
第三种情况:波束链路失效,并且发现潜在可用波束。
此时,波束恢复信令的具体内容可以是:[链路失败,该关联下行参考信号是新可以用波束]=[1,1]。
第四种情况:波束链路未失效(即non-BLF)时:发现一个有效下行波束。
此时,波束恢复信令的具体内容可以是:[链路未失败,该关联下行参考信号是新可以用波束]=[0,1]。
实际应用时,根据波束恢复信令的具体内容,第二通信节点可以获知是上述哪种情况。
其中,第二通信节点获知关联下行参考信号有以下三种可能的方式:
1)发送波束恢复信令的时频资源位置,就关联下行参考信号
2)在承载波束恢复信令的PUCCH上已经显式承载关联;
3)第二通信节点确认承载波束恢复信令对应的请求后,第一通信节点可以在之后的位置PUCCH再上传关联下行参考信号。
其中,对于上述第二种方式,实际应用时,可以不需要所有分配的上行资源都用于发送波束恢复信令,可以由第二通信节点(即基站)和第一通信节点(终端)协商,用哪些资源来发送波束恢复信令,这样有利于降低基站的实现复杂度,给予基站一定的灵活性。换句话说,对于分配的上行资源,终端是不是可以用于做上行波束训练,这个是基站配置的,和/或终端有一个准则。
也就是说,一种实现方式是:上行波束资源可用于做波束训练,也可以用于进行波束恢复信令承载。但是不是所有这样的资源都需要具备这个功能,例如周期分配做波束训练的资源,某些资源上只能做正常的波束训练,某些资源终端可以根据当时的情况二选一(即用于上行波束训练或者承载波束恢复信令)。
基于此,实际应用时,所述第一上行资源是可以具有周期特征的,且满足时间约束。
其中,时间约束是指,所分配的第一上行资源仅在有限时间范围内是有效的,即所配置的第一上行资源(比如PUCCH)是具有实效性的,如此, 能节省不必要的资源花费。
其中,在一具体实施例中,该方法还可以包括:
使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
其中,所述第二上行资源为所述第一上行资源的一个子集。
这里,当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,只发送所述第一类上报信息。换句话说,优先发送所述第一类上报信息。
实际应用时,所述上行参考信号可以包括以下之一:
DMRS;
SRS;
随机接入序列信号,即随机接入信道信号(RACH);
已分配的专属序列。
其中,所述已分配的专属序列可以是对应PRACH-like。
实际应用时,上行参考信号还可以为相位追踪参考信号(PT-RS)。
在一具体实施例中,使用第二上行资源执行所述操作时,该方法还可以包括:
通过隐式或显示的方式,指示所述波束链路未失效。
其中,所述通过隐式的方式,指示所述波束链路未失效,包括:
使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
在一具体实施例中,所述第一类上报信息还可以承载以下信息至少之一:
与承载所述第一类上报信息的时频资源所关联的下行参考信号是否是可用波束的指示信息;
所述第一通信节点的身份信息;
可用波束索引。
其中,波束可以为一种资源(例如发端预编码,收端预编码,天线端口,天线权重矢量,天线权重矩阵等);波束符号可以被替换为资源索引,这是因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述传输方式可以包括空分复用、频域/时域分集等。
所述波束指示是指,第一通信节点可以通过当前参考信号和天线端口,与第二通信节点扫描或者第一通信节点反馈报告的参考信号(或基准参考信号)和天线端口满足准共址(QCL)假设来进行指示。
这里,所述QCL涉及的参数至少包括:多普勒扩展,多普勒平移,时延拓展,平均时延和平均增益。可能还包括:空间参数信息,例如到达角,接收波束的空间相关性,平均时延,时频信道响应的相关性(包括相位信息)。
所述身份信息可以是:介质访问控制(MAC)地址,小区无线网络临时标识(C-RNTI),临时C-RNTI(TC-RNTI),或第二通信节点(即基站)分配给第一通信节点(即终端)的专属ID等。当然,实际应用时,所述身份信息还可以是其它能够标识第一通信节点身份的其它信息,只要能够标识第一通信节点的身份即可,本公开实施例对此不作限定。
由于发现新潜在波束时,有多种类型的参考信号可以被使用,例如SS(例如主同步信号(SSS)、副同步信号(PSS))、CSI-RS、DMRS等。而为了便于管理和节省开销,可以将多种类型的参考信号进行联合编码,使用统一的序号,从而使得这些参考信号使用统一波束索引。举个例子来说,第二通信节点可以配置用于波束恢复的CSI-RS和SS资源进行联合编码,使用一个统一索引序号,承载在波束恢复信令上;例如ID:0-4 SS;5~15CSI-RS。
这样,采用联合编码时,至少两种类型的下行参考信号重新编号,使用统一索引。
其中,所述下行参考包括以下至少之一:
SS;DMRS;CSI-RS。
实际应用时,所述下行参考信号还可以包括以下至少之一:
小区参考信号(CRS);
波束管理的信道状态信息参考信号;
信道状态信息干扰测量信号(CSI-IM);
PT-RS;
移动相关参考信号(MRS);
波束参考信号(BRS);
波束细化参考信号(BRRS);
RACH;
同步信号块(SS block);
PSS;
SSS。
实际应用时,与承载所述第一类上报信息的时频资源所关联的DMRS可以满足以下条件至少之一:
为PBCH所关联的DMRS;
公共控制信道所关联的DMRS。
由于不同类型的参考信号的发送功率的不同,所以不同类型的参考信号所对应的反馈门限是可以不同的,也可以是可变的,或者门限可配置,这样,每种类型的下行参考信号满足以下条件至少之一:
每种类型的下行参考信号使用各自的专属测量门限;
每种类型的下行参考信号使用各自的专属上报门限。
实际应用时,当考虑波束关联(采用英文可以表达为beam correspondence)的情况时,在beam correspondence或存在信道互异性时,所述第一上行资源与所述索引存在上下行参考信号之间的绑定关系。
其中,波束恢复信令可以仅显示承载终端ID信息;或者,终端ID信号和下行参考信号之间联合编码,隐式体现终端ID信息。
这里,所述上下行参考信号之间的绑定关系(即关联关系)是指:上行参考信号的空间参数(spatial parameter)特性可以通过下行参考信号所经历信道的spatial parameter特性进行判定。反过来说,下行参考信号的spatial parameter特性可以通过上行参考信号所经历信道的spatial parameter特性进行判定。这种特性也称为满足QCL假设,或者满足空间互异性QCL假设。具体来说,上行参考信号发送波束可以通过下行参考信号所对应的接收波束来确定;下行参考信号发送波束可以通过上行参考信号所对应的接收波束来确定;上行参考信号接收波束可以通过下行参考信号所对应的发送波束来确定;下行参考信号接收波束可以通过上行参考信号所对应的发送波束来确定。
其中,所述接收波束是指:无需指示的接收端的波束,或者第一通信节点可以通过当前参考信号和天线端口,与第二通信节点扫描或者第一通信节点反馈报告的参考信号(或基准参考信号)和天线端口的QCL指示下的接收端的波束资源。
在无波束关联(non beam correspondence)或不存在信道互异性时,在第一上行资源中N个上行波束资源被分成一组,其中第一通信节点在所述上行资源分组中使用相同的上行预编码或者发送波束。
也就是说,在无波束关联或不存在信道互异性时,所述第一上行资源中,每N个上行波束资源被分成一组,形成M组;所述第一通信节点在每个分组中使用相同的上行预编码或者相同的发送波束;N、M均为大于或等于1的整数。
其中,所述分组是指:具有相同信道特性和/或传输方案的波束和相关的信道状态信息划分成一个集合。所以组也可以称为集合。
这里,所述信道特征,既包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线组,天平面板,天线子阵列(antenna subarray),收发单元(TXRU),接收波束集合, 天线摆放,以及基带时偏,频偏和相位噪声等。
实际应用时,可以根据以下至少一种分组准则,将每N个上行波束资源分成一组(即每组准则包括以下任意一种以及任意几种的组合模式):
接收方式;
接收波束组合;
天线组;
接收信号功率;
水平发送方位角;
垂直发送方位角;
水平接收方位角;
垂直接收方位角;
平均到达时间;
簇到达时间;
所述第一上行资源对应的接收资源;
预定复用方式;
TA参数;
CP长度;
空分复用方式;
准共位置关系。
实际应用时,波束链路失效条件成立时,是执行波束恢复流程还是执行无线接入流程,即执行RLF流程,可以将是否上行同步作为一个重要的判断指标。举个例子来说,在仅仅分配PUCCH资源用于波束恢复时,当上行同步时,执行波束恢复流程;当上行失去同步时,执行无线接入流程。
这里,当PUCCH和PRACH或PRACH-like资源同时被配置用于波束恢复时:PUCCH的使用条件是:有固定的UE ID并且上行同步;相应地,PRACH或PRACH-like使用条件是:没有固定的UE ID或者上行失去同步。
换句话说,当已分配承载所述第一类上报信息的专属资源,且上行同步时,所述第一类上报信息使用PUCCH承载;当上行失去同步时,第一通信节点执行无线链路失效RLF流程。
当未被分配承载所述第一类上报信息的专属资源,或者上行失去同步时,所述第一类上报信息使用PRACH或者PRACH-like承载。
其中,所述PRACH-like是指:通过长前导和序列的方法来承载信息,不同的序列标示不同的信息类型。这种模式,在上行不同步的情况下,可以有效保障上行信号的传输,并且避免对于其他用户上行信号的干扰。
在一具体实施例中,使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息时,该方法还可以包括:
将所述第一类上报信息和调度请求信令联合编码,比如使用调度请求+1bit/2bit;
或者,将所述第一类上报信息和调度请求分配在相同的上行控制信令中。
对应地,本公开实施例还提供了一种信息的接收方法,应用于第二通信节点,如图2所示,该方法包括:
步骤201:接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;
步骤202:利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
其中,所述第一类上报信息还承载一个可用波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述可用波束信息对应的发送波束。
所述第一类上报信息还承载至少两个可用波束信息时,发送所述确认信令的发送波束为以下之一:
第一个可用波束;
特定位置的可用波束;
在预先设定准则下,分别使用各可用波束发送(比如周期性地分别使用各可用波束发送)。
这里,实际应用时,第二通信节点(即基站)可以向第一通信节点(即终端)配置一个波束恢复配置信令,表示每个第一通信节点发送的波束恢复信令可以承载的波束的个数需要小于或等于L个。L为大于或等于1的整数。
当第一通信节点通过波束恢复信令(第一类上报信息)向第二通信节点反馈的可用发送波束仅一个时,第一通信节点默认将使用该发送波束所对应的下行接收波束进行接收。当向第二通信节点反馈至少两个可用发送波束信息时(需要说明,这些多个波束可以在一个信令中承载的,也可以通过多个时频域上的波束恢复信令分别承载),按照特定准则基站将时分和/或频分来发送确认信令。
当可用的发送波束为至少两个时,至少两个发送波束分时发送确认信令。
举个例子来说,时间0~x1内,使用第一个波束(beam 1);时间x1~x2内,使用第一个波束(beam2);以此类推等等。
再比如,还可以是多个发送波束来轮询发。
本公开实施例提供的信息的传输方法,如图3所示,包括以下步骤:
步骤301:第一通信节点判定波束链路失效条件成立时,生成第一类上报信息;
这里,所述第一类上报信息至少用于通知第二通信节点波束链路失效;
步骤302:第一通信节点使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息;
步骤303:第二通信节点接收到所述第一类上报信息后,利用配置的时频域资源向所述第一通信节点发送确认信令。
这里,所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
需要说明的是:第一通信节点和第二通信节点的具体处理过程已在上 文详述,这里不再赘述。
本公开实施例提供的信息的上报、接收方法,判定波束链路失效条件成立时,第一通信节点生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息;第二通信节点收到所述第一类上报信息后,利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源,当波束链路失效时,由于第一通信节点及时通知了第二通信节点,所以就能够加速第一通信节点和第二通信节点发现一个有效的波束组合,即建立波束链路。
另外,使用第二上行资源执行以下操作至少之一:发送上行参考信号;发送上行控制信令(比如调度请求等);其中,所述第二上行资源为所述第一上行资源的一个子集。如此,配置的承载波束链路的上行资源能够和其它业务能共享复用,大大节省了资源。
实施例二
为实现本公开实施例的方法,本实施例提供一种信息的上报装置,设置在第一通信节点上,如图4所示,所述装置包括:
生成单元41,配置为判定波束链路失效条件成立;并生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
第一发送单元42,配置为使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
其中,所述第一发送单元42,还配置为使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
其中,所述第二上行资源为所述第一上行资源的一个子集。
这里,实际应用时,当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,所述第一发送 单元42只发送所述第一类上报信息。换句话说,优先发送所述第一类上报信息。
在一具体实施例中,所述第一发送单元42,使用第二上行资源执行所述操作时,通过隐式或显示的方式,指示所述波束链路未失效。
其中,所述通过隐式的方式,指示所述波束链路未失效,包括:
所述第一发送单元42使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
在一具体实施例中,所述第一发送单元42,还配置为使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息时,
将所述第一类上报信息和调度请求信令联合编码,比如使用调度请求+1bit/2bit;
或者,将所述第一类上报信息和调度请求分配在相同的上行控制信令中。
上述实施例提供的信息的上报装置在进行信息的上报时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的信息的上报装置与信息的上报方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开实施例还提供了一种信息的上报装置,如图5所示,该信息的上报装置包括:处理器51和配置为存储能够在处理器51上运行的计算机程序的存储器52,
其中,所述处理器51配置为运行所述计算机程序时,执行:
判定波束链路失效条件成立,生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
所述处理器51还配置为运行所述计算机程序时,执行:
使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
其中,所述第二上行资源为所述第一上行资源的一个子集。
其中,所述处理器51还配置为运行所述计算机程序时,执行:
当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,只发送所述第一类上报信息。换句话说,优先发送所述第一类上报信息。
所述处理器51配置为运行所述计算机程序时,执行:
使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
在一具体实施例中,所述处理器51还配置为运行所述计算机程序时,执行:
使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息时,
将所述第一类上报信息和调度请求信令联合编码,比如使用调度请求+1bit/2bit;
或者,将所述第一类上报信息和调度请求分配在相同的上行控制信令中。
这里,实际应用时,如图5所示,该信息的上报装置还可以包括:至少一个网络接口54和用户接口53。信息的上报装置中的各个组件通过总线***55耦合在一起。可理解,总线***55配置为实现这些组件之间的连接通信。总线***55除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线***55。
其中,处理器51的个数可以为至少一个。
其中,用户接口53可以包括显示器、键盘、鼠标、轨迹球、点击轮、 按键、按钮、触感板或者触摸屏等。
可以理解,存储器52可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本公开实施例描述的存储器52旨在包括但不限于这些和任意其它适合类型的存储器。
本公开实施例中的存储器52配置为存储各种类型的数据以支持信息的上报装置的操作。这些数据的示例包括:用于在信息的上报装置上操作的任何计算机程序,如操作***521和应用程序522等。其中,操作***521包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序522可以包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序522中。
上述本公开实施例揭示的方法可以应用于处理器51中,或者由处理器51实现。处理器51可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器51中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器51可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器51可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器52,处理器51读取存储器52中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,本公开实施例还提供了一种计算机可读存储介质,例如包括计算机程序的存储器52,上述计算机程序可由信息的上报装置的处理器51执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
具体地,本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器51运行时,执行:
判定波束链路失效条件成立,生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
其中,所述计算机程序被处理器51运行时,还执行:
使用第二上行资源执行以下操作至少之一:
发送上行参考信号;
发送上行控制信令;
其中,所述第二上行资源为所述第一上行资源的一个子集。
其中,所述计算机程序被处理器51运行时,还执行:
当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,只发送所述第一类上报信息。换句话说,优先发送所述第一类上报信息。
在一具体实施例中,所述计算机程序被处理器51运行时,还执行:
使用第二上行资源执行所述操作时,通过隐式或显示的方式,指示所述波束链路未失效。
其中,所述计算机程序被处理器51运行时,执行:
使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
为实现本公开实施例的方法,本实施例提供一种信息的接收装置,设置在第二通信节点上,如图6所示,所述装置包括:
第二接收单元61,配置为接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
第二发送单元62,配置为利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
其中,所述第一类上报信息还承载一个可用波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述可用波束信息对应的发送波束。
所述第一类上报信息还承载至少两个可用波束信息时,发送所述确认信令的发送波束为以下之一:
第一个可用波束;
特定位置的可用波束;
在预先设定准则下,分别使用各可用波束发送(比如周期性地分别使 用各可用波束发送)。
上述实施例提供的信息的接收装置在进行信息的接收时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的信息的接收装置与信息的接收方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本公开实施例还提供了一种信息的接收装置,如图7所示,该信息的接收装置包括:处理器71和配置为存储能够在处理器71上运行的计算机程序的存储器72,
其中,所述处理器71配置为运行所述计算机程序时,执行:
接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
其中,所述第一类上报信息还承载一个可用波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述可用波束信息对应的发送波束。
所述第一类上报信息还承载至少两个可用波束信息时,发送所述确认信令的发送波束为以下之一:
第一个可用波束;
特定位置的可用波束;
在预先设定准则下,分别使用各可用波束发送(比如周期性地分别使用各可用波束发送)。
这里,实际应用时,如图7所示,该信息的接收装置还可以包括:至少一个网络接口73。信息的接收装置中的各个组件通过总线***74耦合在一起。可理解,总线***74配置为实现这些组件之间的连接通信。总线系 统74除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线***74。
其中,处理器71的个数可以为至少一个。
可以理解,存储器72可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。
存储器72配置为存储各种类型的数据以支持信息的接收装置的操作。这些数据的示例包括:用于在信息的接收装置上操作的任何计算机程序,如操作***721和应用程序722等。其中,操作***721包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序722可以包含各种应用程序,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序722中。
上述本公开实施例揭示的方法可以应用于处理器71中,或者由处理器71实现。处理器71可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器71中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器71可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器71可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器72,处理器71读取存储器72中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,本公开实施例还提供了一种计算机可读存储介质,例如包括计算机程序的存储器72,上述计算机程序可由信息的接收装置的处理器71执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
具体地,本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器71运行时,执行:
接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
其中,所述第一类上报信息还承载一个可用波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述可用波束信息对应的发送波束。
所述第一类上报信息还承载至少两个可用波束信息时,发送所述确认信令的发送波束为以下之一:
第一个可用波束;
特定位置的可用波束;
在预先设定准则下,分别使用各可用波束发送(比如周期性地分别使用各可用波束发送)。
本公开实施例还提供了一种信息的传输***,如图8所示,该***包括:第一通信节点81及第二通信节点82;其中,
所述第一通信节点81,配置为判定波束链路失效条件成立,生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;使用已分配的第一上行资源向所述第二通信节点82发送所述第一类上报信息;
所述第二通信节点82,配置为接收到所述第一类上报信息后,利用配置的时频域资源向所述第一通信节点81发送确认信令。
这里,所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
需要说明的是:第一通信节点81和第二通信节点82的具体功能过程已在上文详述,这里不再赘述。
下面结合具体实施例来进一步详细说明本公开。
具体实施例一
基站向终端配置了多个参考信号用于发现新波束,配置的多个参考信号包括SS block和CSI-RS。其中,SS block包括PSS、SSS和PBCH信号。
其中PBCH信号中存在与之关联的DMRS信号。
图9为本公开具体实施例一针对CSI-RS和SS的波束恢复信令示意图。如图9所示,在波束恢复信令窗口,可以使用多种类型的参考信号来发现潜在的可用波束,而可用波束信息将会被承载在波束恢复信令中。为了支持多种类型的参考信号,多种类型的参考信号即SS和CSI-RS(或者PBCH的DMRS)会被联合编码,使用一组共同的终端ID信息,即使用一个统一的索引序号。
具体实施例二
本实施例中,通过PUCCH承载波束恢复信令。
承载波束恢复信令的时频域资源,即波束恢复信令所在的时频资源的位置与终端ID信息关联,也就是通过解析相应的时频域资源,就可以知道是那个UE发送的波束恢复信令。
但是,在存在beam correspondence和不存在beam correspondence的两种情况下,用户的行为特征将会有调整。为了保证波束恢复的有效性,承载波束恢复信令的资源将具有周期特性,但是需要有一定的时间约束。即在基站配置该时频资源时,该时频资源仅在一个有限时间范围内有效。
图10a为本公开实施例在non beam correspondence时通过PUCCH承载波束恢复信令示意图。如图10a所示,当终端认为下行参考信号x可以发现一个有效的下行波束时,终端会尝试从其所对应的多个上行波束恢复资源窗口上发送波束恢复信令。终端会尝试在其不同时域下的PUCCH资源上切换对应的上行波束,来实现上行波束训练。基站在确认PUCCH有效接收后,会使用其所隐含指示的下行发送波束来发送波束恢复确认信令。即这种情况下,可将潜在波束发现的下行参考信号和多个不同时域的波束恢复 信令的时域资源关联。
图10b为本公开实施例在beam correspondence时通过PUCCH承载波束恢复信令示意图。如图10b所示,波束恢复信令专属的时频资源和可用于潜在波束发现的下行参考信号关联。同时,基站将会使用与该下行参考信号关联的发送波束所对应的接收波束来接收波束恢复信令。在波束链路失效发生时,终端将会使用与接收该下行参考信号所关联的上行发送波束/参考信号资源来发送波束恢复信令,但当波束链路未失效时,终端可以尝试使用与该下行参考信号所关联的上行发送波束所不同的发送波束来发送信令,可以用于上行波束训练和信道估计。
图10c为波束恢复信令可以使用hopping模式(即调频模式)对应上行资源示意图。在对应于关联相同的下行参考信号资源的同一终端的上行发送资源,在不同的时域单元上不必一致,可以满足特定的函数下进行跳转。这样可以在一定程度上避免波束恢复信令一致位于频域选择性信道衰落区。需要说明的,即使在beam correspondence场景下,也可以将承载的波束恢复信令的相关比特信息分配到不同的时频资源位置上来。
具体实施例三
在本实施例中,通过波束恢复信令字段进行上行信道估计和发送上行信令。
图11为本公开实施例通过波束恢复信令字段进行上行信道估计和发送上行信令示意图。如图11所示,波束恢复信令所关联的DMRS,可以用于上行波束训练或者基站端上行的参考信号接收功率(RSRP)估计。例如,信令为[链路失败,该关联下行参考信号是新可用波束]=[1/0,0],或者[该关联下行参考信号是新可用波束]=[0](即,仅在波束链路失效时才发送该信令)。若指示波束链路失败未发生时,该字段可用于上行信道估计,可以提升上行信噪比,或者关联上行信道的RSRP反馈和调度请求。若在波束链路失效时,该模式意味着上行和下行的联合波束训练,在尚未发现有效下行链路时,终端就利用这些资源发起对于上行波束的扫描,加速整个波束恢复的进程。需要说明的是,在这种情况下,之后下行波束恢复确认信令 的搜索空间发送波束,需要和该信令所关联。
具体实施例四
在本实施例中,存在两个波束恢复信令的承载资源,其一是上行PUCCH,其二是PRACH/PRACH-like时频资源。如果若PUCCH和PRACH/PRACH-like资源同时被基站配置,用于承载波束恢复信令时,PUCCH使用条件的是:有固定的UE ID并且上行同步;PRACH或者PRACH-like使用条件是:没有固定的UE ID或者上行失步。此外,PUCCH可以通过显式或者隐式的方法来指示多种类型的参考信号索引,而PRACH/PRACH-like字段仅可以通过隐式关联的方法承载与SS block相关联的参考信号索引。
图12a为本公开实施例在non beam correspondence时波束恢复方法流程示意图。如图12a所示,在non beam correspondence这种情况下,PUCCH可以显式承载下行波束序号,上行重复发送的方法来探测上行有效波束。其中,下行波束索引有两个可行方法,其一首先指示参考信号类型,然后指示该参考信号索引;或者,通过联合编码的办法,直接指示所特定的参考信号类型。
图12b为本公开实施例在beam correspondence时波束恢复方法流程示意图。如图12b所示,在beam correspondence这种情况下,基站首先会默认承载上行波束恢复信令的时频资源和下行参考信号资源之间存在关联。因此,终端仅需在与该参考信号相关联的信令上承载波束恢复信令。
具体实施例五
本实施例描述波束恢复信令承载多个可用波束时,波束恢复确认信令的发送方法。图13为本公开实施例的波束恢复信令承载多波束下的波束恢复确认信令流程。Non beam correspondence和beam correspondence两种情况所关联的流程分别如图13a和图13b所示。
如图13a所示,在non beam correspondence时,终端指示的两个可用波 束信息会分别对应不同的搜索空间窗口。如果终端在搜索空间1窗口中已经收到基站信令,将放弃对于搜索空间2的搜索,并且会在基站所指定的时频资源位置下发送上行信令进行确认(甚至可以承载进一步的下行波束报告)。如果用户在搜索空间1中未收到基站确认信令后,会尝试在搜索空间2进行进一步搜索。
如图13b所示,在beam correspondence时,将存在两级的关联,即下行参考信号(CSI-RS和SS block)和PUCCH波束恢复信令之间的下行上行参考信号关联(这里,上行参考信号对应于PUCCH波束恢复信令的DMRS信号),和PUCCH波束恢复信令和下行控制信道搜索空间之间的上行下行参考信号的关联。特别是对于后者而言,实现了与之前发送的下行CSI-RS或者SS block参考信号相关联,即PDCCH的DMRS信号与波束恢复信令所指示的CSI-RS或者SS block满足QCL假设。
综上所述,本公开实施例提供的技术方案,基站对终端配置波束恢复时频资源,用于承载波束恢复请求信令。在终端未发送波束链路失效时,终端可以使用该资源承载上行波束扫描(即发送上行参考信号)和发送上行控制信令;在终端发生波束链路失效,但是未发现有效下行波束链路时,终端会使用该资源承载波束恢复信令,并且进行上行波束训练,可以加速终端和基站发现一个有效波束组合;在终端发生波束链路失效并且发现有效下行波束链路时,终端可以在该时频资源上承载下行波束信息。通过本公开实施例的方案,一方面,终端可以在波束链路失效后快速的告知基站,通过利用专属上行资源加速波束恢复的进程;另一方面,在未承载波束恢复信令时,可以用于上行波束扫描(即发送上行参考信号)和上行控制信令的发送。
以上所述,仅为本公开的较佳实施例而已,并非用于限定本公开的保护范围。
工业实用性
本公开实施例提供的方案,第一通信节点判定波束链路失效条件成立;生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波 束链路失效;使用已分配的第一上行资源向所述第二通信节点发送所述第一类上报信息;第二通信节点收到所述第一类上报信息后,利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源,当波束链路失效时,由于第一通信节点及时通知了第二通信节点,所以就能够加速第一通信节点和第二通信节点发现一个有效的波束组合。

Claims (26)

  1. 一种信息的上报方法,包括:
    判定波束链路失效条件成立;
    生成第一类上报信息,所述第一类上报信息至少用于通知第二通信节点波束链路失效;
    使用已分配的第一上行资源向所述第二通信节点发送所述第一类上报信息。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    使用第二上行资源执行以下操作至少之一:
    发送上行参考信号;
    发送上行控制信令;
    第二上行资源为所述第一上行资源的一个子集。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    当第二上行资源上需要发送上行参考信号和上行控制信令中至少之一与发送所述的第一类上报信息碰撞时,发送所述第一类上报信息。
  4. 根据权利要求2所述的方法,其中,所述上行参考信号包括以下之一:
    解调参考信号DMRS;
    信道探测参考信号SRS;
    随机接入序列信号;
    已分配的专属序列。
  5. 根据权利要求2所述的方法,其中,使用第二上行资源执行所述操作时,所述方法还包括:
    通过隐式或显示的方式,指示所述波束链路未失效。
  6. 根据权利要求5所述的方法,其中,所述通过隐式的方式,指示所述波束链路未失效,包括:
    使用特定序列,或者使用第一类上报信息中的保留字段,指示所述波束链路未失效。
  7. 根据权利要求1所述的方法,其中,所述第一上行资源具有周期特征,且满足时间约束。
  8. 根据权利要求1所述的方法,其中,所述第一类上报信息还承载以下信息至少之一:
    与承载所述第一类上报信息的时频资源所关联的下行参考信号是否是波束的指示信息;
    第一通信节点的身份信息;
    波束索引。
  9. 根据权利要求8所述的方法,其中,
    至少两种类型的下行参考信号,重新编号,使用统一索引。
  10. 根据权利要求9所述的方法,其中,所述下行参考包括以下至少之一:
    同步信号;DMRS;信道状态信息参考信号CSI-RS。
  11. 根据权利要求10所述的方法,其中,与承载所述第一类上报信息的时频资源所关联的DMRS满足以下条件至少之一:
    为物理广播信道PBCH所关联的DMRS;
    公共控制信道所关联的DMRS。
  12. 根据权利要求9所述的方法,其中,每种类型的下行参考信号满足以下条件至少之一:
    每种类型的下行参考信号使用各自的专属测量门限;
    每种类型的下行参考信号使用各自的专属上报门限。
  13. 根据权利要求8所述的方法,其中,在波束关联或存在信道互异性时,所述第一上行资源与所述波束索引存在上下行参考信号之间的绑定关系;
    或者,在无波束关联或不存在信道互异性时,所述第一上行资源中, 每N个上行波束资源被分成一组,形成M组;在每个分组中使用相同的上行预编码或者相同的发送波束;N、M均为大于或等于1的整数。
  14. 根据权利要求13所述的方法,其中,根据以下至少一种分组准则,将每N个上行波束资源分成一组:
    接收方式;
    接收波束组合;
    天线组;
    接收信号功率;
    水平发送方位角;
    垂直发送方位角;
    水平接收方位角;
    垂直接收方位角;
    平均到达时间;
    簇到达时间;
    所述第一上行资源对应的接收资源;
    预定复用方式;
    定时提前TA参数;
    循环前缀CP长度;
    空分复用方式;
    准共位置关系。
  15. 根据权利要求1所述的方法,其中,
    当已分配承载所述第一类上报信息的专属资源,且上行同步时,所述第一类上报信息使用PUCCH承载;
    或者当未被分配承载所述第一类上报信息的专属资源,或者上行失去同步时,所述第一类上报信息使用物理随机接入信道PRACH或者类似于PRACH的信道承载;
    或者当已分配承载所述第一类上报信息的专属资源,且上行失去同步时,执行无线链路失效RLF流程。
  16. 根据权利要求1所述的方法,其中,使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息时,所述方法还包括:
    将所述第一类上报信息和调度请求信令联合编码;
    或者,将所述第一类上报信息和调度请求分配在相同的上行控制信令中。
  17. 一种信息的接收方法,包括:
    接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
    利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
  18. 根据权利要求17所述的方法,其中,所述第一类上报信息还承载一个波束信息时,利用配置的时频域资源向所述第一通信节点发送确认信令时,发送所述确认信令的发送波束为所述波束信息对应的发送波束。
  19. 根据权利要求17所述的方法,其中,所述第一类上报信息还承载至少两个波束信息时,发送所述确认信令的发送波束为以下之一:
    第一个波束;
    特定位置的波束;
    在预先设定准则下,分别使用各波束发送。
  20. 一种信息的上报装置,包括:
    生成单元,配置为判定波束链路失效条件成立;并生成第一类上报信息;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
    第一发送单元,配置为使用已分配的第一上行资源向第二通信节点发送所述第一类上报信息。
  21. 根据权利要求20所述的装置,其中,所述第一发送单元,还配置 为使用第二上行资源执行以下操作至少之一:
    发送上行参考信号;
    发送上行控制信令;
    其中,所述第二上行资源为所述第一上行资源的一个子集。
  22. 一种信息的上报装置,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,执行权利要求1至16任一项所述方法的步骤。
  23. 一种信息的接收装置,包括:
    第二接收单元,配置为接收第一通信节点发送的第一类上报信息;所述第一类上报信息是使用已分配的第一上行资源发送的;所述第一类上报信息至少用于通知第二通信节点波束链路失效;
    第二发送单元,配置为利用配置的时频域资源向所述第一通信节点发送确认信令;所述配置的时频域资源为下行控制信道搜索空间的时频域资源。
  24. 根据权利要求23所述的装置,其中,所述第一类上报信息还承载至少两个波束信息时,发送所述确认信令的发送波束为以下之一:
    第一个波束;
    特定位置的波束;
    在预先设定准则下,分别使用各波束发送。
  25. 一种信息的接收装置,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,执行权利要求17至19任一项所述方法的步骤。
  26. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至16任一项所述方法的步骤,或者实现权利要求17至19任一项所述方法的步骤。
PCT/CN2018/083745 2017-05-05 2018-04-19 信息的上报、接收方法、装置及计算机可读存储介质 WO2018201913A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/610,697 US11419098B2 (en) 2017-05-05 2018-04-19 Method and device for reporting and receiving information, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313781.3A CN108112074B (zh) 2017-05-05 2017-05-05 信息的上报、接收方法、装置及计算机可读存储介质
CN201710313781.3 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018201913A1 true WO2018201913A1 (zh) 2018-11-08

Family

ID=62207029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083745 WO2018201913A1 (zh) 2017-05-05 2018-04-19 信息的上报、接收方法、装置及计算机可读存储介质

Country Status (3)

Country Link
US (1) US11419098B2 (zh)
CN (2) CN117279107A (zh)
WO (1) WO2018201913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476577B1 (en) 2018-11-05 2019-11-12 Google Llc User equipment-initiated beam search for fifth generation new radio
CN113381839A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信号传输方法、信息发送方法和通信节点

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066482A1 (ko) * 2017-09-27 2019-04-04 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
CN110708714B (zh) * 2018-07-10 2022-01-25 维沃移动通信有限公司 波束失败检测方法、终端和网络设备
US20210344404A1 (en) * 2018-07-20 2021-11-04 Ntt Docomo, Inc. User terminal and base station
WO2020020453A1 (en) * 2018-07-25 2020-01-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beam correspondence indication and bitmap for beam reporting for wireless communications
CA3195111A1 (en) 2018-08-07 2020-02-13 Zte Corporation Link recovery in wireless communications
CN109314875B (zh) * 2018-09-10 2021-10-22 北京小米移动软件有限公司 辅服务小区波束失败的上报方法,装置和存储介质
CN110943817A (zh) * 2018-09-21 2020-03-31 中兴通讯股份有限公司 波束失败恢复方法及装置
WO2020073160A1 (en) * 2018-10-08 2020-04-16 Qualcomm Incorporated Radio link and beam failure management
CN111385816B (zh) * 2018-12-27 2022-07-15 展讯通信(上海)有限公司 随机接入统计信息的上报方法及装置
CN111431687B (zh) * 2019-01-10 2022-02-25 华为技术有限公司 一种资源指示方法及装置
CN111278032B (zh) * 2019-01-25 2022-02-01 维沃移动通信有限公司 Pucch的发送方法、接收方法、终端和网络侧设备
US20220174704A1 (en) * 2019-03-28 2022-06-02 Sony Group Corporation Communication device, base station device, communication method, and base station device control method
CN111866919B (zh) * 2019-04-30 2022-02-25 中国信息通信研究院 一种基于数据调度的波束失败上报信息指示方法
CN111865542B (zh) * 2019-04-30 2022-02-25 华为技术有限公司 通信方法和通信装置
US11363641B2 (en) * 2019-08-09 2022-06-14 Qualcomm Incorporated Validation rules for random access message transmission occasions
US11871215B2 (en) * 2019-09-18 2024-01-09 Qualcomm Incorporated Uplink-centric handover in a wireless multi-hop network
CN112637937B (zh) * 2019-09-24 2021-08-24 维沃移动通信有限公司 一种节能信号接收方法、节能信号发送方法及相关设备
CN112689329A (zh) * 2019-10-17 2021-04-20 北京三星通信技术研究有限公司 波束配置方法及装置、电子设备及计算机存储介质
CN116390249A (zh) * 2019-11-21 2023-07-04 大唐移动通信设备有限公司 信号传输方法及装置
CN111988246B (zh) * 2020-08-31 2022-08-16 锐捷网络股份有限公司 一种广播信道解调参考信号检测方法、装置、设备和介质
WO2023201613A1 (en) * 2022-04-21 2023-10-26 Qualcomm Incorporated Measurement report resource management in wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722871A (zh) * 2004-07-13 2006-01-18 中兴通讯股份有限公司 智能天线阵元失效后***重新最优配置的方法
CN104734805A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 波束质量信息反馈方法和***
CN105052199A (zh) * 2012-08-28 2015-11-11 交互数字专利控股公司 用于使用主波束通信链路切换的方法
US20160150435A1 (en) * 2014-11-26 2016-05-26 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006335B2 (ja) * 2012-02-11 2016-10-12 エルジー エレクトロニクス インコーポレイティド チャネル状態情報を報告するための方法、これをサポートする方法、及びこれらの方法のための装置
US10932205B2 (en) * 2013-08-02 2021-02-23 Blackberry Limited Uplink power sharing control
KR102309726B1 (ko) * 2014-07-10 2021-10-07 삼성전자 주식회사 빔 포밍 방식을 사용하는 무선 통신 시스템에서 통신 방법 및 시스템
KR102388484B1 (ko) * 2014-09-12 2022-04-21 삼성전자주식회사 무선 통신 시스템에서 자원 운용 방법 및 장치
US9853707B2 (en) * 2014-09-16 2017-12-26 Mediatek Inc Channel state information collection for wireless communication system with beamforming
US10085181B2 (en) * 2015-07-29 2018-09-25 Qualcomm Incorporated Mechanism to avoid ping pong during inter radio access technology redirection failure
KR102471056B1 (ko) * 2016-05-11 2022-11-25 아이디에이씨 홀딩스, 인크. 빔포밍된 업링크 전송을 위한 시스템 및 방법
US10148337B2 (en) * 2017-02-01 2018-12-04 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5G next radio systems
CN110622432B (zh) * 2017-03-23 2022-08-02 株式会社Ntt都科摩 用户终端以及无线通信方法
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment
CN110731055A (zh) * 2017-03-23 2020-01-24 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2018172604A1 (en) * 2017-03-24 2018-09-27 Nokia Technologies Oy Beam-based radio link monitoring
US20200068416A1 (en) * 2017-05-04 2020-02-27 Lg Electronics Inc. Method for performing beam recovery in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722871A (zh) * 2004-07-13 2006-01-18 中兴通讯股份有限公司 智能天线阵元失效后***重新最优配置的方法
CN105052199A (zh) * 2012-08-28 2015-11-11 交互数字专利控股公司 用于使用主波束通信链路切换的方法
CN104734805A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 波束质量信息反馈方法和***
US20160150435A1 (en) * 2014-11-26 2016-05-26 Samsung Electronics Co., Ltd. Communication method and apparatus using beamforming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10476577B1 (en) 2018-11-05 2019-11-12 Google Llc User equipment-initiated beam search for fifth generation new radio
CN113381839A (zh) * 2020-03-09 2021-09-10 维沃移动通信有限公司 信号传输方法、信息发送方法和通信节点
CN113381839B (zh) * 2020-03-09 2023-03-14 维沃移动通信有限公司 信号传输方法、信息发送方法和通信节点

Also Published As

Publication number Publication date
CN108112074B (zh) 2023-07-18
CN108112074A (zh) 2018-06-01
US11419098B2 (en) 2022-08-16
US20210160853A1 (en) 2021-05-27
CN117279107A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2018201913A1 (zh) 信息的上报、接收方法、装置及计算机可读存储介质
US11291007B2 (en) Processing method and apparatus for recovering beam
WO2019095723A1 (zh) 信息发送、接收方法及装置、存储介质、处理器
CN108024325B (zh) 无线通信方法和装置
CA3061633A1 (en) Beam configuration method and apparatus
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2020228589A1 (zh) 通信方法和通信装置
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
US20130029680A1 (en) Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
US11553430B2 (en) System and method for control channel reception in power save mode
JP7001307B2 (ja) 通信方法、端末デバイス、ネットワークデバイス、プログラム、および通信システム
US11122631B2 (en) Link recovery in wireless communications
US20230145663A1 (en) System and Method for Control Channel Reception in Power Save Mode
US10383038B2 (en) Apparatus and methods for providing and receiving system information in a wireless communications network
EP3437383B1 (en) Method for performing random access, and associated terminal device
WO2022027509A1 (zh) 上行数据的发送方法、装置和***
CN111757469B (zh) 一种波束失败的处理方法及装置
WO2023030060A1 (zh) 一种通信方法和设备
WO2024026779A1 (zh) 数据传输方法及装置、终端设备、网络设备
US12015998B2 (en) Device cooperation for mitigation of deafness in sidelink communications
WO2023134362A1 (zh) 用于确定波束的方法和电子设备
CN116326058A (zh) 一种数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18795186

Country of ref document: EP

Kind code of ref document: A1