WO2018201904A1 - 上行传输参数的确定方法及配置信息的发送方法、装置 - Google Patents

上行传输参数的确定方法及配置信息的发送方法、装置 Download PDF

Info

Publication number
WO2018201904A1
WO2018201904A1 PCT/CN2018/083605 CN2018083605W WO2018201904A1 WO 2018201904 A1 WO2018201904 A1 WO 2018201904A1 CN 2018083605 W CN2018083605 W CN 2018083605W WO 2018201904 A1 WO2018201904 A1 WO 2018201904A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
different
groups
transmission
indication
Prior art date
Application number
PCT/CN2018/083605
Other languages
English (en)
French (fr)
Inventor
陈艺戬
鲁照华
李儒岳
王瑜新
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/610,984 priority Critical patent/US11616543B2/en
Priority to EP18793988.9A priority patent/EP3637902A4/en
Publication of WO2018201904A1 publication Critical patent/WO2018201904A1/zh
Priority to US18/190,929 priority patent/US20230239015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular to a method for determining an uplink transmission parameter and a method and apparatus for transmitting configuration information.
  • MIMO Multiple Input Multiple Output
  • NR may support more antenna panel panels, and these panels may have different directional characteristics. Each panel supports more element elements. A maximum of 32 elements can be supported.
  • a schematic diagram of a new user equipment (UE) antenna is shown in FIG. 1a, FIG. 1b, and FIG.
  • the precoding of the UE is completely controlled by the base station, which makes the uplink transmission inflexible. If this method is adopted, if the antenna design of the UE is different, and some users have more complicated antenna designs, it is difficult to use a relatively simple codebook for uplink transmission. Therefore, the traditional scheme can only be used. Part of the terminal. For some antenna-specific terminals, it is necessary to transmit in a more flexible manner to avoid complicated codebook design.
  • the terminal side function is more powerful, and the uplink transmission can be performed based on reciprocity. The principle is to measure the downlink pilot, obtain the best downlink pilot and the corresponding downlink optimal receiving beam, and reciprocity. In the case of establishment, it is possible to reciprocate to the uplink transmission beam.
  • the transmission of the uplink measurement pilot signal and the transmission of the uplink control channel also need to be considered how to design.
  • uplink MIMO transmission is much more complicated than in LTE.
  • the embodiment of the invention provides a method for determining an uplink transmission parameter and a method and a device for transmitting configuration information, so as to at least solve the problem that the terminal cannot determine the uplink transmission parameter in a complicated and diverse antenna configuration in the related art.
  • a method for determining an uplink transmission parameter includes: receiving indication information sent by a network side; and determining an uplink transmission parameter according to the indication information.
  • a method for determining an uplink transmission parameter includes: transmitting indication information to a terminal, wherein the indication information indicates that the terminal determines an uplink transmission parameter.
  • a method for transmitting configuration information including: transmitting configuration information of a terminal to a network side, where the configuration information includes at least one of the following: a code corresponding to the terminal and the SRS The configuration information; the codebook type supported by the terminal; the maximum supported layer layer corresponding to the SRS or the antenna; the maximum supported transmission power corresponding to the SRS or the Panel; the spatial angle range corresponding to the SRS or the Panel; The number of the maximum reference sounding pilot resource indicator (SRS), which is supported by the uplink data transmission, and the maximum downlink reference sounding pilot resource indicator (Downlink Reference Signal Indicator, supported by the uplink data transmission).
  • SRS maximum reference sounding pilot resource indicator
  • the number of SRIs is abbreviated as DRI; whether the terminal supports the capability of uplink transmission based on the downlink reference signal; whether the terminal supports the capability of selecting an uplink codeword; and the capability of the terminal to support single or multiple beam (Beam) transmission Information; Demodulation Reference Signal (referred to as D) MRS)
  • DRI Downlink Reference Signal
  • SRS Signal State Information Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • port groups number of port groups
  • maximum supported phase noise estimation pilot of the terminal number maximum supported phase noise estimation pilot of the terminal number.
  • an apparatus for determining an uplink transmission parameter comprising: a receiving module configured to receive indication information sent by a network side; and a determining module configured to determine an uplink transmission parameter according to the indication information.
  • an apparatus for determining an uplink transmission parameter comprising: a first sending module, configured to send indication information to a terminal, wherein the indication information indicates that the terminal determines an uplink transmission parameter.
  • a device for transmitting configuration information including: a third sending module, configured to send configuration information of the terminal to the network side, where the configuration information includes at least one of the following: The codebook configuration information corresponding to the terminal and the SRS; the codebook type supported by the terminal; the maximum supported layer number corresponding to the SRS or the Panel; the maximum supported transmission power corresponding to the SRS or the Panel; the spatial angle range corresponding to the SRS or the Panel
  • the number of SRIs supported for supporting uplink data transmission; the maximum downlink reference sounding pilot resources supported for supporting uplink data transmission indicates the number of DRI SRIs; whether the terminal supports uplink transmission based on downlink reference signals Whether the terminal supports the capability of selecting an uplink codeword; the capability information of the single or Beam transmission supported by the terminal; and one of the following information associated with the DMRS port of the terminal: SRS, CSI-RS port, number of port groups The number of phase noise estimation pilots supported by the terminal.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the terminal receives the indication information sent by the network side, and determines the uplink transmission parameter according to the indication information. Therefore, the problem that the terminal cannot determine the uplink transmission parameter in the complex and diverse antenna configuration can be solved, and the uplink transmission parameter is determined in the complex and diverse antenna configuration, and the effect of reducing the overhead is effectively achieved.
  • Figure 1a is a schematic diagram of a bidirectional antenna in the related art (1)
  • Figure 1b is a schematic diagram of a bidirectional antenna in the related art (2)
  • FIG. 2 is a schematic diagram of a stereo antenna in the related art
  • FIG. 3 is a block diagram showing the hardware structure of a mobile terminal for determining a method for determining an uplink transmission parameter according to an embodiment of the present invention
  • FIG. 4 is a flowchart (1) of a method for determining an uplink transmission parameter according to an embodiment of the present invention
  • FIG. 5 is a flowchart (2) of a method for determining an uplink transmission parameter according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for transmitting configuration information according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram (1) of an apparatus for determining an uplink transmission parameter according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (2) of an apparatus for determining an uplink transmission parameter according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a transmitting apparatus of configuration information according to an embodiment of the present invention.
  • FIG. 3 is a hardware structural block diagram of a mobile terminal for determining a method for determining an uplink transmission parameter according to an embodiment of the present invention.
  • mobile terminal 30 may include one or more (only one of which is shown in FIG. 3) processor 302 (processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) a memory 304 for storing data, and a transmission device 306 for communication functions.
  • processor 302 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA.
  • memory 304 for storing data
  • a transmission device 306 for communication functions.
  • the structure shown in FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 304 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the method for determining the uplink transmission parameters in the embodiment of the present invention, and the processor 302 runs the software programs and modules stored in the memory 304, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 304 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 304 can further include memory remotely located relative to processor 302, which can be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 306 is for receiving or transmitting data via a network.
  • the above-described network specific example may include a wireless network provided by a communication provider of the mobile terminal 30.
  • the transmission device 306 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 306 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 4 is a flowchart (1) of a method for determining an uplink transmission parameter according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 receiving indication information sent by the network side
  • Step S404 determining an uplink transmission parameter according to the indication information.
  • the terminal receives the indication information sent by the network side, and determines the uplink transmission parameter according to the indication information. Therefore, the problem that the terminal cannot determine the uplink transmission parameter in the complex and diverse antenna configuration can be solved, and the uplink transmission parameter is determined in the complex and diverse antenna configuration, and the effect of reducing the overhead is effectively achieved.
  • the execution body of the above steps may be a terminal, but is not limited thereto.
  • the method includes at least one of the following: receiving the indication information that is sent by the network side, and the method includes: receiving the indication information of the N downlink reference signal resource groups indicated by the network side, where the downlink reference is The signal resource group includes one or more downlink reference signal resources; determining the uplink transmission parameter according to the foregoing indication information includes: determining, according to the received information corresponding to one or more downlink reference signal resources selected in the downlink reference signal resource group, The above-mentioned uplink transmission parameter, wherein the N is an integer greater than or equal to 1; receiving the indication information sent by the network side includes: receiving indication information of N codeword groups configured on the network side, where the codeword group is Include one or more codewords; determining the uplink transmission parameter according to the foregoing indication information includes: determining the uplink transmission parameter according to one or more of the foregoing codewords selected in the codeword group, where the N is greater than or equal to 1 Integer; receiving the above indication information sent by the network side The method includes:
  • the direction range information determines the uplink transmission parameter, and determines the uplink transmission parameter according to one or more direction extension information selected in the N direction extension information, and is selected according to the N transmission direction range information and the direction extension information.
  • the one or more direction range information and the direction extension information are used to determine the uplink transmission parameter, where the N is an integer greater than or equal to 1; and receiving the indication information sent by the network side includes: receiving the N transmissions configured by the network side
  • determining the uplink transmission parameter according to the indication information includes: determining the foregoing according to one or more selected transmission beams selected in the foregoing transmission beam set Uplink transmission parameter,
  • receiving the indication information sent by the network side includes: receiving indication information of the N channel state information processes CSI Process configured on the network side; determining, according to the indication information, the uplink transmission parameter includes And determining the uplink transmission parameter according to one or more of the foregoing
  • the indication information of the N downlink reference signal resource groups may include N CRI groups, where N is greater than or equal to 2, and may include at least one of the following: the foregoing N CRI groups correspond to different ones.
  • the above-mentioned N CRI groups correspond to different SRS resources; the N CRI groups correspond to different Physical Uplink Control Channels (PUCCH) resources; The N CRI groups are used for different physical uplink shared channel (PUSCH) resources; the above N CRI groups are used for different transmission channels; the above N CRI groups are used for different antenna board panels;
  • the CRI groups are used for different codeword streams; the above N CRI groups are used for channel information indication or for interference information indication; the above N CRI groups correspond to different transmission resources.
  • the method may further include: determining, by using the first signaling sent by the network side, that the N CRI groups can be used to determine the uplink transmission parameter, where the first signaling is the foregoing network
  • the side is configured for at least one of the following: a subband, a layer, a PUCCH, a PUSCH, a transmission channel, and a panel.
  • the codeword included in the same codeword group is from one or more codebooks; the N codeword groups correspond to different subbands; The codeword group corresponds to different transport layers; the N codeword groups correspond to different SRS resources; the N codeword groups correspond to different PUCCH resources; the N codeword groups correspond to different PUSCH resources; N codeword groups are used for different transmission channels; the above N codeword groups are used for different panels; the above N codeword groups are used for channel information indication or for interference information indication; the above N codeword groups correspond to Different transmission resources.
  • the sending directions indicated by the N sending direction range information corresponding to the same or different N direction extending information; the N sending direction range information and/or The direction extension information corresponds to different subbands; the N pieces of transmission direction range information and/or direction extension information correspond to different transport layers; the N pieces of transmission direction range information and/or direction extension information correspond to different SRS resources; The transmission direction range information and/or the direction extension information correspond to different PUCCH resources; the N pieces of transmission direction range information and/or direction extension information correspond to different PUSCH resources; and the N pieces of transmission direction range information and/or direction extension information are used.
  • the N pieces of transmission direction range information and/or direction extension information are used for different panels; the N pieces of transmission direction range information and/or direction extension information are used for channel information indication or for interference information indication.
  • the N sets of transmission beams correspond to different sub-bands; the N sets of transmission beams correspond to different transmission layers; and the N sets of transmission beams correspond to different SRSs.
  • the N sets of transmission beams correspond to different PUCCH resources; the N sets of transmission beams correspond to different PUSCH resources; the N sets of transmission beams are used for different transmission channels; and the N sets of transmission beams are used for different panels.
  • the above N sets of transmission beams are used for channel information indication or for interference information indication.
  • the N CSI processes correspond to different transport layers; the N CSI processes correspond to different SRS resources; the N CSI processes correspond to different PUCCH resources; The N CSI processes correspond to different PUSCH resources; the foregoing N CSI processes are used for different transmission channels; the N CSI processes are used for different panels; the N CSI processes are used for channel information indication or for interference information indication.
  • the foregoing method may further include: by using the second signaling and/or the Downlink Control Information (DCI) format (Format) implicitly configured by the network side, Determining, by the following, determining, by the at least one of the foregoing uplink transmission parameters, that the uplink transmission parameter is determined according to the reception information corresponding to the one or more downlink reference signal resources selected in the downlink reference signal resource group; Determining, by the one or more of the foregoing codewords, the uplink transmission parameter; determining the uplink transmission parameter according to one or more direction range information selected in the N transmission direction range information, or according to the foregoing One or more direction extension information selected in the N direction extension information determines the uplink transmission parameter, or one or more direction range information and direction extension information selected according to the N transmission direction range information and direction extension information.
  • DCI Downlink Control Information
  • Form Downlink Control Information
  • the foregoing method may further include: performing at least one of: determining, according to the foregoing codeword group and the foregoing SRS transmission parameter, the uplink transmission parameter of the uplink data or the control information; determining the uplink data according to the foregoing SRS transmission parameter or And the uplink transmission parameter of the reference demodulation pilot corresponding to the control information; determining the uplink transmission parameter of the uplink data or the control information according to the downlink reference pilot group indicated by the codeword group; and determining the uplink data or the control according to the downlink reference pilot group
  • the information corresponds to the uplink transmission parameter of the reference demodulation pilot; determining the uplink transmission parameter of the uplink data or the control information according to the codeword group and the transmission beam set; and determining the reference demodulation corresponding to the uplink data or the control information according to the transmission beam set.
  • the method may further include: switching the determining manner of the precoding, where the manner of the foregoing switching may include at least one of the following: the third signaling of the network side configuration, the DCI Format Implicitly indicating that the foregoing precoding mode specified by the network side includes: precoding parameters of the network side designated terminal; wherein the determining manner of the precoding includes at least one of: determining, by the terminal, the precoding; according to the network side The configuration or agreed rules select precoding parameters, and the precoding is determined according to the precoding parameters described above.
  • FIG. 5 is a flowchart (2) of a method for determining an uplink transmission parameter according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S502 Send indication information to the terminal, where the indication information indicates that the terminal determines an uplink transmission parameter.
  • the base station sends the indication information to the terminal, so that the terminal can determine the uplink transmission parameter according to the received indication information. Therefore, the problem that the terminal cannot determine the uplink transmission parameter in the complex and diverse antenna configuration can be solved, and the uplink transmission parameter is determined in the complicated and diverse antenna configuration, and the effect of reducing the overhead is effectively achieved.
  • the execution body of the foregoing steps may be a base station, but is not limited thereto.
  • the sending the indication information to the terminal may include at least one of: transmitting, to the terminal, indication information of N downlink reference signal resource groups, where the downlink reference signal resource group includes one or more The downlink reference signal resource, the receiving information corresponding to one or more of the downlink reference signal resources in the downlink reference signal resource group is used to instruct the terminal to determine the uplink transmission parameter, where the N is an integer greater than or equal to 1;
  • the terminal sends the indication information of the N codeword groups, where the codeword group includes one or more codewords, and one or more of the codewords in the codeword group are used to instruct the terminal to determine the uplink transmission parameter.
  • the N is an integer greater than or equal to 1; the N pieces of the transmission direction range information and/or the direction extension information are sent to the terminal, where the one or more direction range information of the N pieces of the transmission direction range information is used to indicate the terminal determining The uplink transmission parameter, or one or more of the foregoing N direction extension information extensions
  • the extension information is used to indicate that the terminal determines the uplink transmission parameter, or one or more direction range information and direction extension information in the N pieces of the transmission direction range information and the direction extension information are used to instruct the terminal to determine the uplink transmission parameter, N is an integer greater than or equal to 1; the indication information of the N transmission beam sets is sent to the terminal, where the transmission beam set includes one or more transmission beams, and one or more of the foregoing transmission beam sets And the terminal is configured to determine the uplink transmission parameter, where the N is an integer greater than or equal to 1; and the indication information of the N CSI processes is sent to the terminal, and one or more of the N CSI processes are used by the CSI Process.
  • the indication information of the N downlink reference signal resource groups includes N CRI groups, where N is greater than or equal to 2, including at least one of the following: the N CRI groups are different.
  • the N CRI groups correspond to different transport layers; the N CRI groups correspond to different SRS resources; the N CRI groups correspond to different PUCCH resources; the N CRI groups correspond to different PUSCH resources; CRI groups are used for different transmission channels; the above N CRI groups are used for different antenna board panels; the above N CRI groups are used for different codeword streams; the above N CRI groups are used for channel information indication or for interference Information indication; the above N CRI groups correspond to different transmission resources.
  • the method may further include: sending the first signaling to the terminal, where the first signaling is used to indicate that the N CRI groups can be used to determine the uplink transmission parameter, where the foregoing A signaling is sent for at least one of the following: subband, layer, PUCCH, PUSCH, transmission channel, panel.
  • the codeword included in the same codeword group is from one or more codebooks; the N codeword groups correspond to different subbands; The codeword group corresponds to different transport layers; the N codeword groups correspond to different sounding pilot SRS resources; the N codeword groups correspond to different PUCCH resources; the N codeword groups correspond to different PUSCHs. Resource; the above N codeword groups are used for different transmission channels; the N codeword groups are used for different panels; the N codeword groups are used for channel information indication or for interference information indication; the above N codewords Groups correspond to different transmission resources.
  • the sending directions indicated by the N sending direction range information corresponding to the same or different N direction extending information; the N sending direction range information and/or The direction extension information corresponds to different subbands; the N pieces of transmission direction range information and/or direction extension information correspond to different transport layers; the N pieces of transmission direction range information and/or direction extension information correspond to different SRS resources; The transmission direction range information and/or the direction extension information correspond to different PUCCH resources; the N pieces of transmission direction range information and/or direction extension information correspond to different PUSCH resources; and the N pieces of transmission direction range information and/or direction extension information are used.
  • the N pieces of transmission direction range information and/or direction extension information are used for different panels; the N pieces of transmission direction range information and/or direction extension information are used for channel information indication or for interference information indication.
  • the N sets of transmission beams correspond to different sub-bands; the N sets of transmission beams correspond to different transmission layers; and the N sets of transmission beams correspond to different SRSs.
  • the N sets of transmission beams correspond to different PUCCH resources; the N sets of transmission beams correspond to different PUSCH resources; the N sets of transmission beams are used for different transmission channels; and the N sets of transmission beams are used for different panels.
  • the above N sets of transmission beams are used for channel information indication or for interference information indication.
  • the N CSI processes correspond to different transport layers; the N CSI processes correspond to different SRS resources; the N CSI processes correspond to different PUCCH resources; The N CSI processes correspond to different PUSCH resources; the foregoing N CSI processes are used for different transmission channels; the N CSI processes are used for different antenna board panels; the N CSI processes are used for channel information indication or for interference information indication. .
  • the method may further include: configuring, to the terminal, an implicit indication of the second signaling and/or DCI Format, wherein the second signaling and/or the DCI Format is implicitly indicated. Instructing the terminal to switch or combine the manner of determining the uplink transmission parameter.
  • the foregoing method may further include: configuring an implicit indication of the third signaling and/or DCI Format to the terminal, where the implicit indication of the third signaling and/or DCI Format is used to indicate
  • the foregoing terminal switches the determining manner of the precoding, where the determining manner of the precoding includes at least one of: determining, by the terminal, the precoding; selecting a precoding parameter according to a configuration or an agreed rule, and determining, according to the precoding parameter, the precoding parameter.
  • the above precoding selecting a precoding parameter in a network side configuration selection range, and determining the precoding according to the precoding parameter.
  • FIG. 6 is a flowchart of a method for sending configuration information according to an embodiment of the present invention. As shown in FIG. 6, the process includes the following steps:
  • Step S602 the configuration information of the terminal is sent to the network side.
  • the configuration information includes at least one of the following: codebook configuration information corresponding to the terminal and the SRS, a codebook type supported by the terminal, a maximum supported layer number corresponding to the SRS or the Panel, and a maximum supported transmission corresponding to the SRS or the Panel.
  • the spatial angle range corresponding to the SRS or the Panel the number of SRIs supported for supporting the uplink data transmission; the number of DRI SRIs supported for supporting the uplink data transmission; whether the above terminal supports the uplink transmission based on the downlink reference signal Capability; whether the terminal supports the ability to select an uplink codeword; the capability information of the single or Beam transmission supported by the terminal; one of the following information that is associated with the DMRS port of the terminal: SRS, CSI-RS port, number of port groups; The number of phase noise estimation pilots supported by the terminal.
  • the terminal sends the configuration information of the terminal to the network side. Therefore, the problem that the base station cannot know the configuration information of the terminal in the complicated and diverse antenna configuration can be solved, and the base station can obtain the configuration information of the terminal in the complicated and diverse antenna configuration, thereby effectively reducing the overhead.
  • the execution body of the above steps may be a terminal, but is not limited thereto.
  • the codebook type supported by the terminal includes at least one of the following: 8 phase shift keying PSK codeword element codebook; 4 phase shift keying QPSK (Quadrature Phase Shift Keyin, 4 phase shifting key) Control) codeword element codebook; 2 phase shift keying BPSK (Binary Phase Shift Keying) codeword element codebook; codeword does not contain codebook type of 0 element; codeword contains 0 element The type of codebook. Port merge codebook; port select codebook.
  • the 8 phase shift keying PSK described above refers to 8 Phase Shift Keying 8 phase shift keying.
  • the following main solutions solve the problem of providing a new uplink transmission method and an indication method of uplink transmission parameters, adapting to complex and diverse antenna configurations, fully utilizing channel reciprocity, and effectively reducing pilot overhead and physical layer signaling overhead. Better fight against interference.
  • the transmission mentioned here includes pilot transmission, data transmission, and control transmission.
  • This embodiment provides a method for reporting terminal configuration information, which mainly includes the following steps:
  • Step 101 The terminal sends one or more of the following information to the base station:
  • codeword element type e.g.8PSK element codebook/4PSK element codebook
  • codebook without 0 codebook/with 0 codebook (port Combination codebook and port selection)
  • This embodiment provides an uplink transmission method, which mainly includes the following steps:
  • the CRI or CRI group information is used to indicate a CSI-RS resource/resource group, which is used when the terminal determines an uplink transmission parameter.
  • the CSI-RS resources indicated by the N CRI or CRI group may be from one or more sets of CSI-RSs
  • N CRI or CRI groups may correspond to different sub-bands
  • N CRI or CRI groups may correspond to different transport layers
  • N CRI or CRI groups may correspond to different SRS resources
  • N CRI or CRI groups may correspond to different PUCCH resources
  • N CRI or CRI groups may correspond to different PUSCH resources
  • N CRI or CRI groups can be used for different transmission channels
  • N CRI or CRI groups can be used for different antenna panels
  • N CRI or CRI groups may be used for channel information indication or for interference information indication
  • N CRI or CRI groups correspond to different transmission resources (e.g. time domain symbols, frequency domain carriers, receive beams);
  • Step 202 The terminal determines an uplink transmission parameter according to the CRI information and performs uplink transmission.
  • the codeword or codeword group information is used for reference when the terminal determines an uplink transmission parameter.
  • the codewords indicated by the N codewords or codeword groups may be from one or more codebooks;
  • N code words or codeword groups may correspond to different sub-bands
  • N code words or codeword groups may correspond to different transport layers
  • N codewords or codeword groups may correspond to different SRS resources
  • N codewords or codeword groups may correspond to different PUCCH resources
  • N codewords or codeword groups may correspond to different PUSCH resources
  • N code words or codeword groups can be used for different transmission channels
  • N code words or codeword groups can be used for different panels
  • N codewords or codeword groups may be used for channel information indication or for interference information indication
  • N codewords or codeword groups correspond to different transmission resources (e.g. time domain symbols, frequency domain carriers, receive beams);
  • Step 204 The terminal determines an uplink transmission parameter according to the codeword or codeword group information and performs uplink transmission.
  • the sending direction range information is used when the terminal determines the uplink transmission parameter.
  • the sending directions indicated by the N sending direction ranges may be extended corresponding to the same or different directions;
  • the indication information and/or direction extension of the N transmission direction ranges may correspond to different sub-bands
  • the indication information and/or direction extension of the N transmission direction ranges may correspond to different transmission layers
  • the indication information and/or direction extension of the N transmission direction ranges may correspond to different SRS resources
  • the indication information and/or direction extension of the N transmission direction ranges may correspond to different PUCCH resources
  • the indication information and/or direction extension of the N transmission direction ranges may correspond to different PUSCH resources
  • the indication information and/or direction extension of the N transmission direction ranges can be used for different transmission channels
  • the indication information and/or direction extension of the N transmission direction ranges may be used for different antenna panels
  • the indication information and/or direction extension of the N transmission direction ranges may be used for the channel information indication or the interference information indication;
  • Step 206 The terminal determines an uplink transmission parameter and performs uplink transmission according to the indication information of the transmission direction range and/or the direction extension.
  • the handover method includes: base station signaling configuration; and implicit indication by DCI Format;
  • the UE may also be supported to determine the handover between the precoding and the base station specified precoding ink, the handover method includes: base station signaling configuration; and implicit indication by DCI Format;
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a device for determining an uplink transmission parameter is further provided, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 7 is a structural block diagram (1) of an apparatus for determining an uplink transmission parameter according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes: a receiving module 702 and a determining module 704, which are described in detail below:
  • the receiving module 702 is configured to receive the indication information sent by the network side, and the determining module 704 is connected to the receiving module 702 in the foregoing, and is configured to determine an uplink transmission parameter according to the indication information.
  • the foregoing apparatus may include at least one of the following: the receiving module 702 is configured to receive indication information of the N downlink reference signal resource groups indicated by the network side, where the downlink reference signal resource group includes One or more downlink reference signal resources; the determining module 704 is configured to determine the uplink transmission parameter according to the received information corresponding to one or more downlink reference signal resources selected in the downlink reference signal resource group, where the N is The receiving module 702 is configured to receive the indication information of the N codeword groups configured by the network side, where the codeword group includes one or more codewords; the determining module 704 is configured to Determining, according to one or more of the foregoing codewords selected in the foregoing codeword group, the uplink transmission parameter, where the N is an integer greater than or equal to 1; the receiving module 702 is configured to receive the N sending directions configured by the network side.
  • the above determining module 704 is configured to be based on Determining the uplink transmission parameter: one or more direction range information selected in the N pieces of transmission direction range information, one or more direction extension information selected in the N direction extension information, in the N transmission direction ranges One or more direction range information and direction extension information selected in the information and direction extension information, wherein the N is an integer greater than or equal to 1; the receiving module 702 is configured to receive the N transmission beam sets configured on the network side Instructing information, wherein the foregoing transmission beam set includes one or more transmission beams; the determining module 704 is configured to determine the uplink transmission parameter according to one or more selected transmission beams selected in the foregoing transmission beam set, where the N is The receiving module 702 is configured to receive the indication information of the N channel state information processes CSI Process configured by the network side; the determining module 704 is configured to be selected according to one of the N CSI processes or A plurality of the above CSI processes determine the above uplink transmission parameters, , The N is an integer
  • the indication information of the N downlink reference signal resource groups may include N CRI groups, where N is greater than or equal to 2, including at least one of the following: the foregoing N CRI groups correspond to different children.
  • the N CRI groups correspond to different PRS resources; the N CRI groups correspond to different PUCCH resources; the N CRI groups correspond to different PUSCH resources; N CRI groups are used for different transmission channels; the above N CRI groups are used for different antenna board panels; the above N CRI groups are used for different codeword streams; the above N CRI groups are used for channel information indication or for The interference information indicates that the above N CRI groups correspond to different transmission resources.
  • the foregoing apparatus may further include: a first processing module, configured to determine, by using the first signaling sent by the network side, that the N CRI groups can be used to determine the uplink transmission parameter, where The first signaling is configured by the network side for at least one of the following: a subband, a layer, a PUCCH, a PUSCH, a transmission channel, and a panel.
  • a first processing module configured to determine, by using the first signaling sent by the network side, that the N CRI groups can be used to determine the uplink transmission parameter, where The first signaling is configured by the network side for at least one of the following: a subband, a layer, a PUCCH, a PUSCH, a transmission channel, and a panel.
  • the foregoing apparatus may include at least one of the following: the codeword included in the same codeword group is from one or more codebooks; the N codeword groups correspond to different subbands; The N codeword groups correspond to different transport layers; the N codeword groups correspond to different SRS resources; the N codeword groups correspond to different PUCCH resources; the N codeword groups correspond to different PUSCH resources.
  • the above N codeword groups are used for different transmission channels; the N codeword groups are used for different panels; the N codeword groups are used for channel information indication or for interference information indication; the above N codeword groups Corresponds to different transmission resources.
  • the foregoing apparatus may include at least one of the following: the sending directions indicated by the N sending direction range information correspond to the same or different N direction extending information; the N sending direction range information and And the direction extension information corresponds to different subbands; the foregoing N transmission direction range information and/or direction extension information correspond to different transport layers; the N transmit direction range information and/or direction extension information correspond to different SRS resources; The N pieces of transmission direction range information and/or direction extension information correspond to different physical uplink control channel PUCCH resources; the N pieces of transmission direction range information and/or direction extension information correspond to different PUSCH resources; and the N pieces of transmission direction range information and / or direction extension information is used for different transmission channels; the above N transmission direction range information and/or direction extension information is used for different panels; the above N transmission direction range information and/or direction extension information is used for channel information indication or Used for interference information indication.
  • the foregoing apparatus may include at least one of the following: the N sets of transmission beams correspond to different sub-bands; the N sets of transmission beams correspond to different transmission layers; and the N sets of transmission beams correspond to different ones.
  • SRS resources the foregoing N transmission beam sets correspond to different PUCCH resources; the N transmission beam sets correspond to different PUSCH resources; the N transmission beam sets are used for different transmission channels; the N transmission beam sets are used for different Panel; the above N sets of transmission beams are used for channel information indication or for interference information indication.
  • the foregoing apparatus may include at least one of the following: the N CSI processes correspond to different transport layers; the N CSI processes correspond to different sounding pilot SRS resources; and the N CSI processes are different.
  • the above-mentioned N CSI processes are used for different transmission channels; the above-mentioned N CSI processes are used for different panels; the above-mentioned N CSI processes are used for channel information indication or use. Indicated by the interference information.
  • the foregoing apparatus may further include: a second processing module, configured to determine, by using the second signaling and/or the implicit indication of the DCI Format configured by the network side, the following determining the uplink transmission parameter And at least one of the manners of performing switching or combining: determining, according to the receiving information corresponding to the one or more downlink reference signal resources selected in the downlink reference signal resource group, the uplink transmission parameter; and selecting according to the selected codeword group Determining, by the one or more of the foregoing codewords, the uplink transmission parameter; determining the uplink transmission parameter according to one or more direction range information selected in the N pieces of transmission direction range information, or selecting according to the N direction extension information.
  • a second processing module configured to determine, by using the second signaling and/or the implicit indication of the DCI Format configured by the network side, the following determining the uplink transmission parameter And at least one of the manners of performing switching or combining: determining, according to the receiving information corresponding to the one or more downlink reference signal resources selected in the downlink
  • One or more of the above transmissions selected in the above set of transmission beams Determining beam parameters of the uplink transmission; determining the uplink transmission parameter selected in accordance with one of the N CSI Process or more of the above CSI Process; determining the SRS transmission parameters according to the uplink transmission parameters.
  • the foregoing apparatus further includes at least one of: determining the uplink transmission parameter of the uplink data or the control information according to the foregoing codeword group and the SRS transmission parameter; determining uplink data or control according to the SRS transmission parameter.
  • Determining the uplink transmission parameter of the reference demodulation pilot corresponding to the information determining the uplink transmission parameter of the uplink data or the control information according to the downlink reference pilot group indicated by the codeword group; determining the uplink data or the control information according to the downlink reference pilot group Corresponding to the uplink transmission parameter of the reference demodulation pilot; determining the uplink transmission parameter of the uplink data or the control information according to the codeword group and the transmission beam set; determining the reference demodulation pilot corresponding to the uplink data or the control information according to the transmission beam set The above uplink transmission parameters.
  • the foregoing apparatus further includes a third processing module, configured to switch the determining manner of the precoding, where the manner of the switching includes at least one of the following: the third signaling configured by the network side
  • the implicit indication of the DCI Format, the foregoing precoding mode specified by the network side includes: the precoding parameter of the specified terminal on the network side; wherein the determining manner of the precoding includes at least one of the following: determining, by the terminal, the precoding;
  • the precoding parameters are selected according to the network side configuration or the agreed rules, and the precoding is determined according to the precoding parameters.
  • FIG. 8 is a structural block diagram (2) of an apparatus for determining an uplink transmission parameter according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes: a first sending module 802, which is described in detail below:
  • the first sending module 802 is configured to send indication information to the terminal, where the indication information indicates that the terminal determines an uplink transmission parameter.
  • the first sending module 802 includes at least one of the following: a first sending unit, configured to send, to the terminal, indication information of N downlink reference signal resource groups, where the downlink reference signal resource The group includes one or more downlink reference signal resources, and the receiving information corresponding to one or more of the downlink reference signal resources in the downlink reference signal resource group is used to instruct the terminal to determine the uplink transmission parameter, where the N is greater than or equal to 1
  • the second sending unit is configured to send indication information of N codeword groups to the terminal, where the codeword group includes one or more codewords, and one or more of the codeword groups The word is used to indicate that the terminal determines the uplink transmission parameter, where the N is an integer greater than or equal to 1;
  • the third sending unit is configured to send N sending direction range information and/or direction extension information to the terminal, where the N One or more direction range information in the sending direction range information is used to instruct the terminal to determine the uplink transmission parameter And the one or more direction extension information in the N direction extension information is used to instruct the terminal to
  • the extension information is used to indicate that the terminal determines the uplink transmission parameter, where the N is an integer greater than or equal to 1.
  • the fourth sending unit is configured to send indication information of the N transmission beam sets to the terminal, where the transmission beam set is Include one or more transmission beams, one or more of the foregoing transmission beam sets are used to instruct the terminal to determine the uplink transmission parameter, where the N is an integer greater than or equal to 1;
  • the fifth sending unit is used by And transmitting, to the foregoing terminal, indication information of the N CSI processes, where one or more of the foregoing CSI processes are used to instruct the terminal to determine the uplink transmission parameter, where the N is an integer greater than or equal to 1.
  • the indication information of the N downlink reference signal resource groups may include N CRI groups, where N is greater than or equal to 2, including at least one of the following: the foregoing N CRI groups correspond to different children.
  • the N CRI groups correspond to different transport layers; the N CRI groups correspond to different SRS resources; the N CRI groups correspond to different PUCCH resources; the N CRI groups correspond to different PUSCH resources; the foregoing N CRIs Group is used for different transmission channels; the above N CRI groups are used for different antenna board panels; the above N CRI groups are used for different codeword streams; the above N CRI groups are used for channel information indication or for interference information indication
  • the above N CRI groups correspond to different transmission resources.
  • the foregoing apparatus may further include: a second sending module, configured to send the first signaling to the terminal, where the first signaling is used to indicate that the N CRI groups can be used to determine the uplink And a transmission parameter, where the foregoing first signaling is sent for at least one of: a subband, a layer, a PUCCH, a PUSCH, a transmission channel, and a panel.
  • a second sending module configured to send the first signaling to the terminal, where the first signaling is used to indicate that the N CRI groups can be used to determine the uplink
  • a transmission parameter where the foregoing first signaling is sent for at least one of: a subband, a layer, a PUCCH, a PUSCH, a transmission channel, and a panel.
  • the foregoing apparatus may include at least one of the following: the codeword included in the same codeword group is from one or more codebooks; the N codeword groups correspond to different subbands; The N codeword groups correspond to different transport layers; the N codeword groups correspond to different SRS resources; the N codeword groups correspond to different PUCCH resources; the N codeword groups correspond to different PUSCH resources.
  • the above N codeword groups are used for different transmission channels; the N codeword groups are used for different panels; the N codeword groups are used for channel information indication or for interference information indication; the above N codeword groups Corresponds to different transmission resources.
  • the foregoing apparatus may include at least one of the following: the sending directions indicated by the N sending direction range information correspond to the same or different N direction extending information; the N sending direction range information and And the direction extension information corresponds to different subbands; the foregoing N transmission direction range information and/or direction extension information correspond to different transport layers; the N transmit direction range information and/or direction extension information correspond to different SRS resources; The N pieces of transmission direction range information and/or direction extension information correspond to different PUCCH resources; the N pieces of transmission direction range information and/or direction extension information correspond to different PUSCH resources; the N pieces of transmission direction range information and/or direction extension The information is used for different transmission channels; the above N transmission direction range information and/or direction extension information is used for different panels; the above N transmission direction range information and/or direction extension information is used for channel information indication or for interference information. Instructions.
  • the foregoing apparatus may include at least one of the following: the N sets of transmission beams correspond to different sub-bands; the N sets of transmission beams correspond to different transmission layers; and the N sets of transmission beams correspond to different ones.
  • SRS resources the foregoing N transmission beam sets correspond to different PUCCH resources; the N transmission beam sets correspond to different PUSCH resources; the N transmission beam sets are used for different transmission channels; the N transmission beam sets are used for different Panel; the above N sets of transmission beams are used for channel information indication or for interference information indication.
  • the foregoing apparatus may include at least one of the following: the N CSI processes correspond to different transport layers; the N CSI processes correspond to different sounding pilot SRS resources; and the N CSI processes are different.
  • the above-mentioned N CSI processes are used for different transmission channels; the above-mentioned N CSI processes are used for different antenna board panels; the above-mentioned N CSI processes are used for channel information indication or Used for interference information indication.
  • the apparatus further includes a fourth processing module configured to configure an implicit indication of the second signaling and/or DCI Format to the terminal, where the second signaling and/or DCI Format The implicit indication is used to indicate that the terminal switches or combines the manner of determining the uplink transmission parameter.
  • the apparatus further includes a fifth processing module configured to configure an implicit indication of the third signaling and/or DCI Format to the terminal, the implicit of the third signaling and/or DCIFormat
  • the indication is used to indicate that the terminal determines the manner of determining the precoding, where the determining manner of the precoding includes at least one of: determining, by the terminal, the precoding; selecting the precoding parameter according to the configured or agreed rules, according to the foregoing
  • the precoding parameter determines the precoding described above; the precoding parameter is selected within the network side configuration selection range, and the precoding is determined according to the precoding parameter.
  • FIG. 9 is a structural block diagram of a device for transmitting configuration information according to an embodiment of the present invention. As shown in FIG. 9, the device includes: a third sending module 902, which is described in detail below:
  • the third sending module 902 is configured to send configuration information of the terminal to the network side, where the configuration information includes at least one of the following: codebook configuration information corresponding to the SRS by the terminal; a codebook type supported by the terminal; SRS or Panel Corresponding maximum supported layer number; SRS or Panel corresponding maximum supported transmission power; SRS or Panel corresponding spatial angle range; used to support the number of SRIs supported during uplink data transmission; used to support uplink data transmission support The number of DRISRIs; whether the above terminal supports the capability of uplink transmission based on the downlink reference signal; whether the terminal supports the capability of selecting the uplink codeword; the capability information of the single or multiple Beam transmission supported by the terminal; the DMRS port of the terminal is most associated One of the following information: SRS, CSI-RS port, number of port groups; the number of phase noise estimation pilots supported by the above terminal.
  • the codebook type supported by the terminal includes at least one of the following: 8 phase shift keying PSK codeword element codebook; 4 phase shift keying QPSK codeword element codebook; 2 phase shift key Control the BPSK codeword element codebook; the codeword does not contain the codebook type of the 0 element; the codeword contains the codebook type of the 0 element.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium including a stored program, wherein the program described above executes the method of any of the above.
  • the above storage medium may be configured to store program code for performing the above steps.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Embodiments of the present invention also provide a processor for running a program, wherein the program is executed to perform the steps of any of the above methods.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the network side sends the indication information to the terminal, and the terminal receives the indication information sent by the network side, and determines the uplink transmission parameter according to the indication information.
  • the problem that the terminal cannot determine the uplink transmission parameter in the complicated and diverse antenna configuration can be solved, and the uplink transmission parameter is determined in the complicated and diverse antenna configuration, and the effect of reducing the overhead is effectively achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种上行传输参数的确定方法及配置信息的发送方法,该方法包括:接收网络侧发送的指示信息;并根据指示信息确定上行传输参数。本发明还提供一种上行传输参数的确定装置、配置信息的发送装置及存储介质。通过本发明,解决了在复杂多样的天线配置中终端无法确定上行传输参数的问题,进而达到了有效的减少开销的效果。

Description

上行传输参数的确定方法及配置信息的发送方法、装置
相关申请的交叉引用
本申请基于申请号为201710313871.2、申请日为2017年05月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种上行传输参数的确定方法及配置信息的发送方法、装置。
背景技术
在长期演进***(Long Term Evolution,简称为LTE)中,仅仅考虑支持一个天线板(Antenna panel)以及比较少的天线元素(Antenna Element)数目,比如2,4 element。上行测量导频(Sounding Referece Signal,简称为SRS)是非预编码的,由element直接映射到端口port。因此上行传输比较简单。
在5G新空口(New Radio,简称为NR)中,上行多输入多输出(Multiple Input Multiple Output,简称为MIMO)传输比LTE中要复杂很多,主要有以下几个原因:
天线配置更加复杂:NR可能支持更多的天线板panel,这些panel可能有不同的方向特性。每个panel支持更多的元素element。最大可以支持到总共32个element。新型用户设备(User Equipment,简称为UE)天线的示意图如图1a、图1b、图2所示。
支持UE端的灵活的预编码选择:在4G中,UE的预编码完全是受到 基站控制的,这种方式使得上行传输没有灵活性。如果继续采用这种方式,如果UE端的天线设计差异化比较大,存在一些用户的天线设计比较复杂,那就很难采用比较简单的码本供用户进行上行传输,因此传统的方案只能用于部分的终端。而对于一些天线特殊的终端,需要采用比较灵活的方式进行传输,避免复杂的码本设计。另外,与4G中不同,终端侧功能更强大以后可以基于互易性进行上行传输,其原理是测量下行导频,获得最佳下行导频及与之对应的下行最佳接收波束,互易性成立的情况下可以互易到上行的发送波束。
除此之外,上行测量导频信号的传输、上行控制信道的传输在也均需要考虑如何设计,但目前,并没有好的方上行的传输设计案能够适应复杂多样的天线配置,充分利用信道互易性,有效的减小导频开销及物理层信令开销,更好的对抗干扰。
在LTE中,上行多天线传输支持的功能比较简单。而在5G NR中,上行MIMO传输比LTE中要复杂很多。
针对上述存在的在复杂多样的天线配置中终端无法确定上行传输参数的问题,相关技术并未提出有效的解决方案。
发明内容
本发明实施例提供了一种上行传输参数的确定方法及配置信息的发送方法、装置,以至少解决相关技术中的在复杂多样的天线配置中终端无法确定上行传输参数的问题。
根据本发明的一个实施例,提供了一种上行传输参数的确定方法,包括:接收网络侧发送的指示信息;根据所述指示信息确定上行传输参数。
根据本发明的另一个实施例,还提供一种上行传输参数的确定方法,包括:向终端发送指示信息,其中,所述指示信息指示所述终端确定上行传输参数。
根据本发明的另一个实施例,还提供一种配置信息的发送方法,包括:向网络侧发送终端的配置信息,其中,所述配置信息包括以下至少之一:所述终端与SRS对应的码本配置信息;所述终端支持的码本类型;SRS或者天线板(Panel)对应的最大支持的层layer数目;SRS或者Panel对应的最大支持的发送功率;SRS或者Panel对应的空间角度范围;用于支持上行数据传输时支持的最大参考探测导频资源指示(SRS resource indicator,简称为SRI)的数目;用于支持上行数据传输时支持的最大下行参考探测导频资源指示(Downlink Reference signal indicator,简称为DRI)SRI的数目;所述终端是否支持基于下行参考信号进行上行传输的能力;所述终端是否支持选择上行码字的能力;所述终端支持的单或多波束(Beam)传输的能力信息;所述终端的解调用参考信号(Demodulation Reference Signal,简称为DMRS)端口port最多关联的以下信息之一:SRS,信道状态信息测量导频(Channel State Information Reference Signal,简称为CSI-RS)端口,端口组数目;所述终端最大支持的相位噪声估计导频数目。
根据本发明的另一个实施例,还提供一种上行传输参数的确定装置,包括:接收模块,配置为接收网络侧发送的指示信息;确定模块,配置为根据所述指示信息确定上行传输参数。
根据本发明的另一个实施例,还提供一种上行传输参数的确定装置,包括:第一发送模块,配置为向终端发送指示信息,其中,所述指示信息指示所述终端确定上行传输参数。
根据本发明的另一个实施例,还提供一种配置信息的发送装置,包括:第三发送模块,配置为向网络侧发送终端的配置信息,其中,所述配置信息包括以下至少之一:所述终端与SRS对应的码本配置信息;所述终端支持的码本类型;SRS或者Panel对应的最大支持的layer数目;SRS或者Panel对应的最大支持的发送功率;SRS或者Panel对应的空间角度范围; 用于支持上行数据传输时支持的SRI的数目;用于支持上行数据传输时支持的最大下行参考探测导频资源指示DRI SRI的数目;所述终端是否支持基于下行参考信号进行上行传输的能力;所述终端是否支持选择上行码字的能力;所述终端支持的单或Beam传输的能力信息;所述终端的DMRS port最多关联的以下信息之一:SRS,CSI-RS端口,端口组数目;所述终端最大支持的相位噪声估计导频数目。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明,由于终端了接收网络侧发送的指示信息;并根据指示信息确定上行传输参数。因此,可以解决在复杂多样的天线配置中终端无法确定上行传输参数的问题,达到在复杂多样的天线配置中确定上行传输参数,有效的减少开销的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1a是相关技术中的双向天线示意图(一);
图1b是相关技术中的双向天线示意图(二);
图2是相关技术中的立体天线示意图;
图3是本发明实施例的一种上行传输参数的确定方法的移动终端的硬件结构框图;
图4是根据本发明实施例上行传输参数的确定方法的流程图(一);
图5是根据本发明实施例上行传输参数的确定方法的流程图(二);
图6是根据本发明实施例配置信息的发送方法的流程图;
图7是根据本发明实施例的上行传输参数的确定装置的结构框图(一);
图8是根据本发明实施例的上行传输参数的确定装置的结构框图(二);
图9是根据本发明实施例的配置信息的发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本发明实施例的一种上行传输参数的确定方法的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图3中仅示出一个)处理器302(处理器302可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器304、以及用于通信功能的传输装置306。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可用于存储应用软件的软件程序以及模块,如本发明实施例中的上行传输参数的确定方法对应的程序指令/模块,处理器302通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理 器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种上行传输参数的确定方法,图4是根据本发明实施例上行传输参数的确定方法的流程图(一),如图4所示,该流程包括如下步骤:
步骤S402,接收网络侧发送的指示信息;
步骤S404,根据上述指示信息确定上行传输参数。
通过上述步骤,由于终端了接收网络侧发送的指示信息;并根据指示信息确定上行传输参数。因此,可以解决在复杂多样的天线配置中终端无法确定上行传输参数的问题,达到在复杂多样的天线配置中确定上行传输参数,有效的减少开销的效果。
在一实施方式中,上述步骤的执行主体可以为终端,但不限于此。
在一个可选的实施例中,上述方法包括以下至少之一:接收上述网络侧发送的上述指示信息包括:接收上述网络侧指示的N个下行参考信号资源组的指示信息,其中,上述下行参考信号资源组包括一个或多个下行参考信号资源;根据上述指示信息确定上述上行传输参数包括:根据在上述下行参考信号资源组中选择的一个或多个上述下行参考信号资源对应的接收信息,确定上述上行传输参数,其中,上述N为大于或者等于1的整数; 接收上述网络侧发送的上述指示信息包括:接收上述网络侧配置的N个码字组的指示信息,其中,上述码字组中包含一个或多个码字;根据上述指示信息确定上述上行传输参数包括:根据在上述码字组中选择的一个或多个上述码字确定上述上行传输参数,其中,上述N为大于或者等于1的整数;接收上述网络侧发送的上述指示信息包括:接收上述网络侧配置的N个发送方向范围信息和/或方向拓展信息;根据上述指示信息确定上述上行传输参数包括以下之一:根据在上述N个发送方向范围信息中选择的一个或多个方向范围信息确定上述上行传输参数,根据在上述N个方向拓展信息中选择的一个或多个方向拓展信息确定上述上行传输参数,根据在上述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息,确定上述上行传输参数,其中,上述N为大于或者等于1的整数;接收上述网络侧发送的上述指示信息包括:接收上述网络侧配置的N个传输波束集合的指示信息,其中,上述传输波束集合中包括一个或多个传输波束;根据上述指示信息确定上述上行传输参数包括:根据在上述传输波束集合中选择的一个或多个上述传输波束确定上述上行传输参数,其中,上述N为大于或者等于1的整数;接收上述网络侧发送的上述指示信息包括:接收上述网络侧配置的N个信道状态信息进程CSI Process的指示信息;根据上述指示信息确定上述上行传输参数包括:根据在上述N个CSI Process中选择的一个或多个上述CSI Process确定上述上行传输参数,其中,上述N为大于或者等于1的整数。在本实施例中,当N=1时,无需进行选择步骤。只有在N大于或者等于2时,可以进行选择。
在一个可选的实施例中,上述N个下行参考信号资源组的指示信息可以包括N个CRI group,其中,N大于或者等于2,可以包括以下至少之一:上述N个CRI group对应不同的子带;上述N个CRI group对应不同的传输层;上述N个CRI group对应不同的SRS资源;上述N个CRI group对 应不同的物理上行控制信道(Physical Uplink Control Channel,简称为PUCCH)资源;上述N个CRI group对应不同的物理上行共享信道(Physical Uplink Shared Channel,简称为PUSCH)资源;上述N个CRI group用于不同的传输通道;上述N个CRI group用于不同的天线板panel;上述N个CRI group用于不同的码字流;上述N个CRI group用于信道信息指示或者用于干扰信息指示;上述N个CRI group对应于不同的传输资源。
在一个可选的实施例中,上述方法还可以包括:通过上述网络侧发送的第一信令确定上述N个CRI group能够用于确定上述上行传输参数,其中,上述第一信令是上述网络侧针对以下至少之一进行配置的:子带,层,PUCCH,PUSCH,传输通道,panel。
在一个可选的实施例中,可以包括以下至少之一:同一上述码字组中包括的码字来自一个或多个码本;上述N个码字组对应于不同的子带;上述N个码字组对应于不同的传输层;上述N个码字组对应于不同的SRS资源;上述N个码字组对应于不同的PUCCH资源;上述N个码字组对应于不同的PUSCH资源;上述N个码字组用于不同的传输通道;上述N个码字组用于不同的panel;上述N个码字组用于信道信息指示或用于干扰信息指示;上述N个码字组对应于不同的传输资源。
在一个可选的实施例中,可以包括以下至少之一:上述N个发送方向范围信息指示的发送方向对应于相同或不同的上述N个方向扩展信息;上述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;上述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;上述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUCCH资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;上述N个发送方向范围信息和/或方向扩展信息用于不同的传输通道;上述N个发送方向范围信 息和/或方向扩展信息用于不同的panel;上述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,可以包括以下至少之一:上述N个传输波束集合对应不同的子带;上述N个传输波束集合对应不同的传输层;上述N个传输波束集合对应不同的SRS资源;上述N个传输波束集合对应不同的PUCCH资源;上述N个传输波束集合对应不同的PUSCH资源;上述N个传输波束集合用于不同的传输通道;上述N个传输波束集合用于不同的panel;上述N个传输波束集合用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,可以包括以下至少之一:上述N个CSI Process对应不同的传输层;上述N个CSI Process对应不同的SRS资源;上述N个CSI Process对应不同的PUCCH资源;上述N个CSI Process对应不同的PUSCH资源;上述N个CSI Process用于不同的传输通道;上述N个CSIProcess用于不同的panel;上述N个CSI Process用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述方法还可以包括:通过上述网络侧配置的第二信令和/或下行控制信息(Downlink Control Information,简称为DCI)格式(Format)的隐含指示,对以下确定上述上行传输参数的方式的至少之一进行切换或结合:根据在上述下行参考信号资源组中选择的一个或多个上述下行参考信号资源对应的接收信息,确定上述上行传输参数;根据在上述码字组中选择的一个或多个上述码字确定上述上行传输参数;根据在上述N个发送方向范围信息中选择的一个或多个方向范围信息确定上述上行传输参数,或者,根据在上述N个方向拓展信息中选择的一个或多个方向拓展信息确定上述上行传输参数,或者,根据在上述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息确定上述上行传输参数;根据在上述传输波束集合中选择的一个或多个上述 传输波束确定上述上行传输参数;根据在上述N个CSI Process中选择的一个或多个上述CSI Process确定上述上行传输参数;根据探测导频SRS的传输参数确定上述上行传输参数。
在一个可选的实施例中,上述方法还可以包括以下至少之一:根据上述码字组与上述SRS传输参数确定上行数据或控制信息的上述上行传输参数;根据上述SRS传输参数确定上行数据或控制信息对应的参考解调导频的上述上行传输参数;根据上述码字组指示的下行参考导频组确定上行数据或控制信息的上述上行传输参数;根据下行参考导频组确定上行数据或控制信息对应参考解调导频的上述上行传输参数;根据上述码字组与传输波束集合确定上行数据或控制信息的上述上行传输参数;根据传输波束集合确定上行数据或控制信息对应的参考解调导频的上述上行传输参数。
在一个可选的实施例中,上述方法还可以包括:对预编码的确定方式进行切换,其中,上述切换的方式可以包括以下至少之一:上述网络侧配置的第三信令,DCI Format的隐含指示,上述网络侧指定的上述预编码模式包括:上述网络侧指定终端的预编码参数;其中,上述预编码的确定方式包括以下至少之一:由终端确定上述预编码;按照上述网络侧配置或约定的规则选择预编码参数,根据上述预编码参数确定上述预编码。
在本实施例中提供了一种上行传输参数的确定方法,图5是根据本发明实施例上行传输参数的确定方法的流程图(二),如图5所示,该流程包括如下步骤:
步骤S502,向终端发送指示信息,其中,上述指示信息指示上述终端确定上行传输参数。
通过上述步骤,由于基站向终端发送指示信息,使得终端可以根据接收的指示信息确定上行传输参数。因此,可以解决在复杂多样的天线配置中终端无法确定上行传输参数的问题,达到在复杂多样的天线配置中确定 上行传输参数,有效的减少开销的效果。
在一实施方式中,上述步骤的执行主体可以为基站,但不限于此。
在一个可选的实施例中,向上述终端发送上述指示信息可以包括以下至少之一:向上述终端发送N个下行参考信号资源组的指示信息,其中,上述下行参考信号资源组包括一个或多个下行参考信号资源,上述下行参考信号资源组中的一个或多个上述下行参考信号资源对应的接收信息用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;向上述终端发送N个码字组的指示信息,其中,上述码字组中包含一个或多个码字,上述码字组中的一个或多个上述码字用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;向终端发送N个发送方向范围信息和/或方向拓展信息,其中,上述N个发送方向范围信息中的一个或多个方向范围信息用于指示上述终端确定上述上行传输参数,或者,上述N个方向拓展信息中的一个或多个方向拓展信息用于指示上述终端确定上述上行传输参数,或者上述N个发送方向范围信息和方向拓展信息中的一个或多个方向范围信息和方向拓展信息用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;向上述终端发送N个传输波束集合的指示信息,其中,上述传输波束集合中包括一个或多个传输波束,上述传输波束集合中的一个或多个上述传输波束用于指示上述终端确定上述上行传输参数,其中,上述N为大于或者等于1的整数;向上述终端发送N个CSI Process的指示信息,上述N个CSI Process中的一个或多个上述CSI Process用于指示上述终端确定上述上行传输参数,其中,上述N为大于或者等于1的整数。
在一个可选的实施例中,上述N个下行参考信号资源组的指示信息包括N个CRI组(group),其中,N大于或者等于2,包括以下至少之一:上述N个CRI group对应不同的子带;上述N个CRI group对应不同的传 输层;上述N个CRI group对应不同的SRS资源;上述N个CRI group对应不同的PUCCH资源;上述N个CRI group对应不同的PUSCH资源;上述N个CRI group用于不同的传输通道;上述N个CRI group用于不同的天线板panel;上述N个CRI group用于不同的码字流;上述N个CRI group用于信道信息指示或者用于干扰信息指示;上述N个CRI group对应于不同的传输资源。
在一个可选的实施例中,上述方法还可以包括:向上述终端发送第一信令,上述第一信令用于指示上述N个CRI group能够用于确定上述上行传输参数,其中,上述第一信令是针对以下至少之一进行发送的:子带,层,PUCCH,PUSCH,传输通道,panel。
在一个可选的实施例中,可以包括以下至少之一:同一上述码字组中包括的码字来自一个或多个码本;上述N个码字组对应于不同的子带;上述N个码字组对应于不同的传输层;上述N个码字组对应于不同的探测导频SRS资源;上述N个码字组对应于不同的PUCCH资源;上述N个码字组对应于不同的PUSCH资源;上述N个码字组用于不同的传输通道;上述N个码字组用于不同的panel;上述N个码字组用于信道信息指示或用于干扰信息指示;上述N个码字组对应于不同的传输资源。
在一个可选的实施例中,可以包括以下至少之一:上述N个发送方向范围信息指示的发送方向对应于相同或不同的上述N个方向扩展信息;上述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;上述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;上述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUCCH资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;上述N个发送方向范围信息和/或方向扩展信息用于不同的传输通道;上述N个发送方向范围信 息和/或方向扩展信息用于不同的panel;上述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,可以包括以下至少之一:上述N个传输波束集合对应不同的子带;上述N个传输波束集合对应不同的传输层;上述N个传输波束集合对应不同的SRS资源;上述N个传输波束集合对应不同的PUCCH资源;上述N个传输波束集合对应不同的PUSCH资源;上述N个传输波束集合用于不同的传输通道;上述N个传输波束集合用于不同的panel;上述N个传输波束集合用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,可以包括以下至少之一:上述N个CSI Process对应不同的传输层;上述N个CSI Process对应不同的SRS资源;上述N个CSI Process对应不同的PUCCH资源;上述N个CSI Process对应不同的PUSCH资源;上述N个CSI Process用于不同的传输通道;上述N个CSIProcess用于不同的天线板panel;上述N个CSI Process用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述方法还可以包括:向上述终端配置第二信令和/或DCI Format的隐含指示,其中,上述第二信令和/或DCI Format的隐含指示用于指示上述终端对确定上述上行传输参数的方式进行切换或结合。
在一个可选的实施例中,上述方法还可以包括:向上述终端配置第三信令和/或DCI Format的隐含指示,上述第三信令和/或DCI Format的隐含指示用于指示上述终端对预编码的确定方式进行切换;其中,上述预编码的确定方式包括以下至少之一:由上述终端确定上述预编码;按照配置或约定的规则选择预编码参数,根据上述预编码参数确定上述预编码;在网络侧配置选择范围内选择预编码参数,根据上述预编码参数确定上述预编码。
在本实施例中提供了一种配置信息的发送方法,图6是根据本发明实施例配置信息的发送方法的流程图,如图6所示,该流程包括如下步骤:
步骤S602,向网络侧发送终端的配置信息。
其中,上述配置信息包括以下至少之一:上述终端与SRS对应的码本配置信息;上述终端支持的码本类型;SRS或者Panel对应的最大支持的layer数目;SRS或者Panel对应的最大支持的发送功率;SRS或者Panel对应的空间角度范围;用于支持上行数据传输时支持的SRI的数目;用于支持上行数据传输时支持的DRI SRI的数目;上述终端是否支持基于下行参考信号进行上行传输的能力;上述终端是否支持选择上行码字的能力;上述终端支持的单或Beam传输的能力信息;上述终端的DMRS port最多关联的以下信息之一:SRS,CSI-RS端口,端口组数目;上述终端最大支持的相位噪声估计导频数目。
通过上述步骤,由于终端向网络侧发送终端的配置信息。因此,可以解决在复杂多样的天线配置中基站无法获知终端的配置信息的问题,达到在复杂多样的天线配置中基站可以获得终端的配置信息,有效的减少开销的效果。
在一实施方式中,上述步骤的执行主体可以为终端,但不限于此。
在一个可选的实施例中,上述终端支持的码本类型包括以下至少之一:8移相键控PSK码字元素码本;4移相键控QPSK(Quadrature Phase Shift Keyin,4移相键控)码字元素码本;2移相键控BPSK(Binary Phase Shift Keying,2移相键控)码字元素码本;码字中不包含0元素的码本类型;码字中包含0元素的码本类型。端口合并码本;端口选择码本。在本实施例中,上述中的8移相键控PSK是指8 Phase Shift Keying 8移相键控。
下面结合具体实施例对本发明进行详细说明:
下面的实施例主要解决的问题是提供新的上行传输方法、上行传输参 数的指示方法,适应复杂多样的天线配置,充分利用信道互易性,有效的减小导频开销及物理层信令开销,更好的对抗干扰。这里所说的传输包括导频传输,数据传输,控制传输。
具体实施例1:
本实施例提供一种终端配置信息的上报方法,主要包括以下步骤:
步骤101:终端向基站发送以下信息中的一种或多种:
与SRS对应的码本配置信息;
终端支持的码本类型,包括:码字元素类型(e.g.8PSK元素码本/4PSK元素码本)不带0码本/带0码本(port Combination码本和port selection)
SRS/Panel对应的最大支持的的layer数目;
SRS/Panel对应的最大支持的发送功率;
SRS/Panel对应的空间角度范围;
用于上行传输时支持的SRI数目;
终端是否支持基于互易性的传输的能力;
终端是否支持UE选择上行码字的能力;
终端是否支持多Beam传输;
DMRS port最多关联的SRS/CSI-RS端口或端口组数目;
终端最大支持的相位噪声估计导频数目。
具体实施例2:
本实施例提供一种上行传输方法,主要包括以下步骤:
步骤201:基站指示N个CRI或CRI group信息,N>=1,为自然数。CRI或CRI group信息用于指示CSI-RS resource/resource group,用于终端确定上行传输参数时参考。
N个CRI或CRI group指示的CSI-RS资源可以来自一套或多套CSI-RS;
N个CRI或CRI group可以对应于不同的子带;
N个CRI或CRI group可以对应于不同的传输层;
N个CRI或CRI group可以对应于不同的SRS资源;
N个CRI或CRI group可以对应于不同的PUCCH资源;
N个CRI或CRI group可以对应于不同的PUSCH资源;
N个CRI或CRI group可以用于不同的传输通道;
N个CRI或CRI group可以用于不同的天线panel;
N个CRI或CRI group可以用于信道信息指示也可以用于干扰信息指示;
N个CRI或CRI group对应于不同的传输资源(e.g.时域符号、频域载波、接收波束);
步骤202:终端根据所述CRI信息确定上行传输参数及进行上行传输。
步骤203:基站配置N个码字或码字组的指示信息,N>=1,为自然数。所述码字或码字组信息用于终端确定上行传输参数时参考。
N个码字或码字组指示的码字可以来自一个或多个码本;
N个码字或码字组可以对应于不同的子带;
N个码字或码字组可以对应于不同的传输层;
N个码字或码字组可以对应于不同的SRS资源;
N个码字或码字组可以对应于不同的PUCCH资源;
N个码字或码字组可以对应于不同的PUSCH资源;
N个码字或码字组可以用于不同的传输通道;
N个码字或码字组可以用于不同的panel;
N个码字或码字组可以用于信道信息指示也可以用于干扰信息指示;
N个码字或码字组对应于不同的传输资源(e.g.时域符号、频域载波、接收波束);
步骤204:终端根据所述码字或码字组信息确定上行传输参数及进行上行传输。
步骤205:基站配置N个发送方向范围的指示信息和/或方向扩展信息,N>=1,为自然数。所述发送方向范围信息用于终端确定上行传输参数时参考。
N个发送方向范围指示的发送方向可以对应相同或不同的方向扩展;
N个发送方向范围的指示信息和/或方向扩展可以对应于不同的子带;
N个发送方向范围的指示信息和/或方向扩展可以对应于不同的传输层;
N个发送方向范围的指示信息和/或方向扩展可以对应于不同的SRS资源;
N个发送方向范围的指示信息和/或方向扩展可以对应于不同的PUCCH资源;
N个发送方向范围的指示信息和/或方向扩展可以对应于不同的PUSCH资源;
N个发送方向范围的指示信息和/或方向扩展可以用于不同的传输通道;
N个发送方向范围的指示信息和/或方向扩展可以用于不同的天线panel;
N个发送方向范围的指示信息和/或方向扩展可以用于信道信息指示也可以用于干扰信息指示;
步骤206:终端根据所述发送方向范围的指示信息和/或方向扩展确定上行传输参数及进行上行传输。
还可以支持在以上三种方式中的至少两种之间进行切换,切换方法包括:基站信令配置;通过DCI Format来进行隐含指示;
还可以支持UE确定预编码和基站指定预编码墨汁之间的切换,切换方法包括:基站信令配置;通过DCI Format来进行隐含指示;
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种上行传输参数的确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的上行传输参数的确定装置的结构框图(一),如图7所示,该装置包括:接收模块702与确定模块704,下面对该装置进行详细说明:
接收模块702,配置为接收网络侧发送的指示信息;确定模块704,连接至上述中的接收模块702,配置为根据上述指示信息确定上行传输参数。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述接收模块702配置为接收上述网络侧指示的N个下行参考信号资源组的指示信息,其中,上述下行参考信号资源组包括一个或多个下行参考信号资源;上述确定模块704配置为根据在上述下行参考信号资源组中选择的一个或多个上述下行参考信号资源对应的接收信息,确定上述上行传输参数,其 中,上述N为大于或者等于1的整数;上述接收模块702配置为接收上述网络侧配置的N个码字组的指示信息,其中,上述码字组中包含一个或多个码字;上述确定模块704配置为根据在上述码字组中选择的一个或多个上述码字确定上述上行传输参数,其中,上述N为大于或者等于1的整数;上述接收模块702配置为接收上述网络侧配置的N个发送方向范围信息和/或方向拓展信息;上述确定模块704配置为根据以下之一确定上述上行传输参数:在上述N个发送方向范围信息中选择的一个或多个方向范围信息,在上述N个方向拓展信息中选择的一个或多个方向拓展信息,在上述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息,其中,上述N为大于或者等于1的整数;上述接收模块702配置为接收上述网络侧配置的N个传输波束集合的指示信息,其中,上述传输波束集合中包括一个或多个传输波束;上述确定模块704配置为根据在上述传输波束集合中选择的一个或多个上述传输波束确定上述上行传输参数,其中,上述N为大于或者等于1的整数;上述接收模块702配置为接收上述网络侧配置的N个信道状态信息进程CSI Process的指示信息;上述确定模块704配置为根据在上述N个CSI Process中选择的一个或多个上述CSI Process确定上述上行传输参数,其中,上述N为大于或者等于1的整数。
在一个可选的实施例中,上述N个下行参考信号资源组的指示信息可以包括N个CRI group,其中,N大于或者等于2,包括以下至少之一:上述N个CRI group对应不同的子带;上述N个CRI group对应不同的传输层;上述N个CRI group对应不同的探测导频SRS资源;上述N个CRI group对应不同的PUCCH资源;上述N个CRI group对应不同的PUSCH资源;上述N个CRI group用于不同的传输通道;上述N个CRI group用于不同的天线板panel;上述N个CRI group用于不同的码字流;上述N个CRI group 用于信道信息指示或者用于干扰信息指示;上述N个CRI group对应于不同的传输资源。
在一个可选的实施例中,上述装置还可以包括:第一处理模块,用于通过上述网络侧发送的第一信令确定上述N个CRI group能够用于确定上述上行传输参数,其中,上述第一信令是上述网络侧针对以下至少之一进行配置的:子带,层,PUCCH,PUSCH,传输通道,panel。
在一个可选的实施例中,上述装置可以包括以下至少之一:同一上述码字组中包括的码字来自一个或多个码本;上述N个码字组对应于不同的子带;上述N个码字组对应于不同的传输层;上述N个码字组对应于不同的SRS资源;上述N个码字组对应于不同的PUCCH资源;上述N个码字组对应于不同的PUSCH资源;上述N个码字组用于不同的传输通道;上述N个码字组用于不同的panel;上述N个码字组用于信道信息指示或用于干扰信息指示;上述N个码字组对应于不同的传输资源。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个发送方向范围信息指示的发送方向对应于相同或不同的上述N个方向扩展信息;上述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;上述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;上述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的物理上行控制信道PUCCH资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;上述N个发送方向范围信息和/或方向扩展信息用于不同的传输通道;上述N个发送方向范围信息和/或方向扩展信息用于不同的panel;上述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个 传输波束集合对应不同的子带;上述N个传输波束集合对应不同的传输层;上述N个传输波束集合对应不同的SRS资源;上述N个传输波束集合对应不同的PUCCH资源;上述N个传输波束集合对应不同的PUSCH资源;上述N个传输波束集合用于不同的传输通道;上述N个传输波束集合用于不同的panel;上述N个传输波束集合用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个CSI Process对应不同的传输层;上述N个CSI Process对应不同的探测导频SRS资源;上述N个CSI Process对应不同的PUCCH资源;上述N个CSI Process对应不同的PUSCH资源;上述N个CSI Process用于不同的传输通道;上述N个CSI Process用于不同的panel;上述N个CSI Process用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置还可以包括:第二处理模块,配置为通过上述网络侧配置的第二信令和/或DCI Format的隐含指示,对以下确定上述上行传输参数的方式的至少之一进行切换或结合:根据在上述下行参考信号资源组中选择的一个或多个上述下行参考信号资源对应的接收信息,确定上述上行传输参数;根据在上述码字组中选择的一个或多个上述码字确定上述上行传输参数;根据在上述N个发送方向范围信息中选择的一个或多个方向范围信息确定上述上行传输参数,或者,根据在上述N个方向拓展信息中选择的一个或多个方向拓展信息确定上述上行传输参数,或者,根据在上述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息确定上述上行传输参数;根据在上述传输波束集合中选择的一个或多个上述传输波束确定上述上行传输参数;根据在上述N个CSI Process中选择的一个或多个上述CSI Process确定上述上行传输参数;根据SRS的传输参数确定上述上行传输参数。
在一个可选的实施例中,上述装置还包括以下至少之一:根据上述码 字组与上述SRS传输参数确定上行数据或控制信息的上述上行传输参数;根据上述SRS传输参数确定上行数据或控制信息对应的参考解调导频的上述上行传输参数;根据上述码字组指示的下行参考导频组确定上行数据或控制信息的上述上行传输参数;根据下行参考导频组确定上行数据或控制信息对应参考解调导频的上述上行传输参数;根据上述码字组与传输波束集合确定上行数据或控制信息的上述上行传输参数;根据传输波束集合确定上行数据或控制信息对应的参考解调导频的上述上行传输参数。
在一个可选的实施例中,上述装置还包括第三处理模块,配置为对预编码的确定方式进行切换,其中,上述切换的方式包括以下至少之一:上述网络侧配置的第三信令,DCI Format的隐含指示,上述网络侧指定的上述预编码模式包括:上述网络侧指定终端的预编码参数;其中,上述预编码的确定方式包括以下至少之一:由终端确定上述预编码;按照上述网络侧配置或约定的规则选择预编码参数,根据上述预编码参数确定上述预编码。
图8是根据本发明实施例的上行传输参数的确定装置的结构框图(二),如图8所示,该装置包括:第一发送模块802,下面对该装置进行详细说明:
第一发送模块802,配置为向终端发送指示信息,其中,上述指示信息指示上述终端确定上行传输参数。
在一个可选的实施例中,上述第一发送模块802包括以下至少之一:第一发送单元,配置为向上述终端发送N个下行参考信号资源组的指示信息,其中,上述下行参考信号资源组包括一个或多个下行参考信号资源,上述下行参考信号资源组中的一个或多个上述下行参考信号资源对应的接收信息用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;第二发送单元,配置为向上述终端发送N个码字组的指示信息,其中,上述码字组中包含一个或多个码字,上述码字组中的一个或多个上 述码字用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;第三发送单元,配置为向终端发送N个发送方向范围信息和/或方向拓展信息,其中,上述N个发送方向范围信息中的一个或多个方向范围信息用于指示上述终端确定上述上行传输参数,上述N个方向拓展信息中的一个或多个方向拓展信息用于指示上述终端确定上述上行传输参数,上述N个发送方向范围信息和方向拓展信息中的一个或多个方向范围信息和方向拓展信息用于指示上述终端确定上述上行传输参数,上述N为大于或者等于1的整数;第四发送单元,配置为向上述终端发送N个传输波束集合的指示信息,其中,上述传输波束集合中包括一个或多个传输波束,上述传输波束集合中的一个或多个上述传输波束用于指示上述终端确定上述上行传输参数,其中,上述N为大于或者等于1的整数;第五发送单元,用于向上述终端发送N个CSI Process的指示信息,上述N个CSI Process中的一个或多个上述CSI Process用于指示上述终端确定上述上行传输参数,其中,上述N为大于或者等于1的整数。
在一个可选的实施例中,上述N个下行参考信号资源组的指示信息可以包括N个CRI group,其中,N大于或者等于2,包括以下至少之一:上述N个CRI group对应不同的子带;上述N个CRI group对应不同的传输层;上述N个CRI group对应不同的SRS资源;上述N个CRI group对应不同的PUCCH资源;上述N个CRI group对应不同的PUSCH资源;上述N个CRI group用于不同的传输通道;上述N个CRI group用于不同的天线板panel;上述N个CRI group用于不同的码字流;上述N个CRI group用于信道信息指示或者用于干扰信息指示;上述N个CRI group对应于不同的传输资源。
在一个可选的实施例中,上述装置还可以包括:第二发送模块,配置为向上述终端发送第一信令,上述第一信令用于指示上述N个CRI group 能够用于确定上述上行传输参数,其中,上述第一信令是针对以下至少之一进行发送的:子带,层,PUCCH,PUSCH,传输通道,panel。
在一个可选的实施例中,上述装置可以包括以下至少之一:同一上述码字组中包括的码字来自一个或多个码本;上述N个码字组对应于不同的子带;上述N个码字组对应于不同的传输层;上述N个码字组对应于不同的SRS资源;上述N个码字组对应于不同的PUCCH资源;上述N个码字组对应于不同的PUSCH资源;上述N个码字组用于不同的传输通道;上述N个码字组用于不同的panel;上述N个码字组用于信道信息指示或用于干扰信息指示;上述N个码字组对应于不同的传输资源。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个发送方向范围信息指示的发送方向对应于相同或不同的上述N个方向扩展信息;上述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;上述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;上述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUCCH资源;上述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;上述N个发送方向范围信息和/或方向扩展信息用于不同的传输通道;上述N个发送方向范围信息和/或方向扩展信息用于不同的panel;上述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个传输波束集合对应不同的子带;上述N个传输波束集合对应不同的传输层;上述N个传输波束集合对应不同的SRS资源;上述N个传输波束集合对应不同的PUCCH资源;上述N个传输波束集合对应不同的PUSCH资源;上述N个传输波束集合用于不同的传输通道;上述N个传输波束集合用于不同的panel;上述N个传输波束集合用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置可以包括以下至少之一:上述N个CSI Process对应不同的传输层;上述N个CSI Process对应不同的探测导频SRS资源;上述N个CSI Process对应不同的PUCCH资源;上述N个CSIProcess对应不同的PUSCH资源;上述N个CSI Process用于不同的传输通道;上述N个CSI Process用于不同的天线板panel;上述N个CSI Process用于信道信息指示或用于干扰信息指示。
在一个可选的实施例中,上述装置还包括第四处理模块,配置为向上述终端配置第二信令和/或DCI Format的隐含指示,其中,上述第二信令和/或DCI Format的隐含指示用于指示上述终端对确定上述上行传输参数的方式进行切换或结合。
在一个可选的实施例中,上述装置还包括第五处理模块,配置为向上述终端配置第三信令和/或DCI Format的隐含指示,上述第三信令和/或DCIFormat的隐含指示用于指示上述终端对预编码的确定方式进行切换;其中,上述预编码的确定方式包括以下至少之一:由上述终端确定上述预编码;按照配置或约定的规则选择预编码参数,根据上述预编码参数确定上述预编码;在网络侧配置选择范围内选择预编码参数,根据上述预编码参数确定上述预编码。
图9是根据本发明实施例的配置信息的发送装置的结构框图,如图9所示,该装置包括:第三发送模块902,下面对该装置进行详细说明:
第三发送模块902,配置为向网络侧发送终端的配置信息,其中,上述配置信息包括以下至少之一:上述终端与SRS对应的码本配置信息;上述终端支持的码本类型;SRS或者Panel对应的最大支持的layer数目;SRS或者Panel对应的最大支持的发送功率;SRS或者Panel对应的空间角度范围;用于支持上行数据传输时支持的SRI的数目;用于支持上行数据传输时支持的DRISRI的数目;上述终端是否支持基于下行参考信号进行上行传 输的能力;上述终端是否支持选择上行码字的能力;上述终端支持的单或多Beam传输的能力信息;上述终端的DMRS port最多关联的以下信息之一:SRS,CSI-RS端口,端口组数目;上述终端最大支持的相位噪声估计导频数目。
在一个可选的实施例中,上述终端支持的码本类型包括以下至少之一:8移相键控PSK码字元素码本;4移相键控QPSK码字元素码本;2移相键控BPSK码字元素码本;码字中不包含0元素的码本类型;码字中包含0元素的码本类型。端口合并码本;端口选择码本。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以上各步骤的程序代码。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中,网络侧向终端发送指示信息,终端接收网络侧发送的指示信息,根据所述指示信息确定上行传输参数。如此,可以解决在复杂多样的天线配置中终端无法确定上行传输参数的问题,达到在复杂多样的天线配置中确定上行传输参数,有效的减少开销的效果。

Claims (35)

  1. 一种上行传输参数的确定方法,包括:
    接收网络侧发送的指示信息;
    根据所述指示信息确定上行传输参数。
  2. 根据权利要求1所述的方法,其中,所述方法包括以下至少之一:
    接收所述网络侧发送的所述指示信息包括:接收所述网络侧指示的N个下行参考信号资源组的指示信息,其中,所述下行参考信号资源组包括一个或多个下行参考信号资源;根据所述指示信息确定所述上行传输参数包括:根据在所述下行参考信号资源组中选择的一个或多个所述下行参考信号资源对应的接收信息,确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    接收所述网络侧发送的所述指示信息包括:接收所述网络侧配置的N个码字组的指示信息,其中,所述码字组中包含一个或多个码字;根据所述指示信息确定所述上行传输参数包括:根据在所述码字组中选择的一个或多个所述码字确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    接收所述网络侧发送的所述指示信息包括:接收所述网络侧配置的N个发送方向范围信息和/或方向拓展信息;根据所述指示信息确定所述上行传输参数包括以下之一:根据在所述N个发送方向范围信息中选择的一个或多个方向范围信息确定所述上行传输参数,根据在所述N个方向拓展信息中选择的一个或多个方向拓展信息确定所述上行传输参数,根据在所述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息,确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    接收所述网络侧发送的所述指示信息包括:接收所述网络侧配置的N 个传输波束集合的指示信息,其中,所述传输波束集合中包括一个或多个传输波束;根据所述指示信息确定所述上行传输参数包括:根据在所述传输波束集合中选择的一个或多个所述传输波束确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    接收所述网络侧发送的所述指示信息包括:接收所述网络侧配置的N个信道状态信息进程CSI Process的指示信息;根据所述指示信息确定所述上行传输参数包括:根据在所述N个CSI Process中选择的一个或多个所述CSI Process确定所述上行传输参数,其中,所述N为大于或者等于1的整数。
  3. 根据权利要求2所述的方法,其中,所述N个下行参考信号资源组的指示信息包括N个信道状态信息测量导频资源指示组CRI group,其中,N大于或者等于2,包括以下至少之一:
    所述N个CRI group对应不同的子带;
    所述N个CRI group对应不同的传输层;
    所述N个CRI group对应不同的探测导频SRS资源;
    所述N个CRI group对应不同的物理上行控制信道PUCCH资源;
    所述N个CRI group对应不同的物理上行共享信道PUSCH资源;
    所述N个CRI group用于不同的传输通道;
    所述N个CRI group用于不同的天线板panel;
    所述N个CRI group用于不同的码字流;
    所述N个CRI group用于信道信息指示或者用于干扰信息指示;
    所述N个CRI group对应于不同的传输资源。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    通过所述网络侧发送的第一信令确定所述N个CRI group能够用于确定所述上行传输参数;
    其中,所述第一信令是所述网络侧针对以下至少之一进行配置的:子带,层,PUCCH,PUSCH,传输通道,panel。
  5. 根据权利要求2所述的方法,其中,包括以下至少之一:
    同一所述码字组中包括的码字来自一个或多个码本;
    所述N个码字组对应于不同的子带;
    所述N个码字组对应于不同的传输层;
    所述N个码字组对应于不同的SRS资源;
    所述N个码字组对应于不同的PUCCH资源;
    所述N个码字组对应于不同的PUSCH资源;
    所述N个码字组用于不同的传输通道;
    所述N个码字组用于不同的panel;
    所述N个码字组用于信道信息指示或用于干扰信息指示;
    所述N个码字组对应于不同的传输资源。
  6. 根据权利要求2所述的方法,其中,包括以下至少之一:
    所述N个发送方向范围信息指示的发送方向对应于相同或不同的所述N个方向扩展信息;
    所述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的PUCCH资源;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;
    所述N个发送方向范围信息和/或方向扩展信息用于不同的传输通 道;
    所述N个发送方向范围信息和/或方向扩展信息用于不同的panel;
    所述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
  7. 根据权利要求2所述的方法,其中,包括以下至少之一:
    所述N个传输波束集合对应不同的子带;
    所述N个传输波束集合对应不同的传输层;
    所述N个传输波束集合对应不同的SRS资源;
    所述N个传输波束集合对应不同的PUCCH资源;
    所述N个传输波束集合对应不同的PUSCH资源;
    所述N个传输波束集合用于不同的传输通道;
    所述N个传输波束集合用于不同的panel;
    所述N个传输波束集合用于信道信息指示或用于干扰信息指示。
  8. 根据权利要求2所述的方法,其中,包括以下至少之一:
    所述N个CSI Process对应不同的传输层;
    所述N个CSI Process对应不同的SRS资源;
    所述N个CSI Process对应不同的PUCCH资源;
    所述N个CSI Process对应不同的PUSCH资源;
    所述N个CSI Process用于不同的传输通道;
    所述N个CSI Process用于不同的panel;
    所述N个CSI Process用于信道信息指示或用于干扰信息指示。
  9. 根据权利要求2所述的方法,其中,所述方法还包括:
    通过所述网络侧配置的第二信令和/或下行控制信息格式DCI Format的隐含指示,对以下确定所述上行传输参数的多种方式进行切换或结合:
    根据在所述下行参考信号资源组中选择的一个或多个所述下行参考 信号资源对应的接收信息,确定所述上行传输参数;
    根据在所述码字组中选择的一个或多个所述码字确定所述上行传输参数;
    根据在所述N个发送方向范围信息中选择的一个或多个方向范围信息确定所述上行传输参数,或者,根据在所述N个方向拓展信息中选择的一个或多个方向拓展信息确定所述上行传输参数,或者,根据在所述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息确定所述上行传输参数;
    根据在所述传输波束集合中选择的一个或多个所述传输波束确定所述上行传输参数;
    根据在所述N个CSI Process中选择的一个或多个所述CSI Process确定所述上行传输参数;
    根据探测导频SRS的传输参数确定所述上行传输参数。
  10. 根据权利要求9所述的方法,其中,所述方法还包括以下至少之一:
    根据所述码字组与所述SRS传输参数确定上行数据或控制信息的所述上行传输参数;还根据所述SRS传输参数确定上行数据或控制信息对应的参考解调导频的所述上行传输参数;
    根据所述码字组指示的下行参考导频组确定上行数据或控制信息的所述上行传输参数;还根据下行参考导频组确定上行数据或控制信息对应参考解调导频的所述上行传输参数;
    根据所述码字组与传输波束集合确定上行数据或控制信息的所述上行传输参数;还根据传输波束集合确定上行数据或控制信息对应的参考解调导频的所述上行传输参数。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    对预编码的确定方式进行切换,其中,所述切换的方式包括以下至少之一:所述网络侧配置的第三信令,DCI Format的隐含指示。
  12. 一种上行传输参数的确定方法,包括:
    向终端发送指示信息,其中,所述指示信息指示所述终端确定上行传输参数。
  13. 根据权利要求12所述的方法,其中,向所述终端发送所述指示信息包括以下至少之一:
    向所述终端发送N个下行参考信号资源组的指示信息,其中,所述下行参考信号资源组包括一个或多个下行参考信号资源,所述下行参考信号资源组中的一个或多个所述下行参考信号资源对应的接收信息用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    向所述终端发送N个码字组的指示信息,其中,所述码字组中包含一个或多个码字,所述码字组中的一个或多个所述码字用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    向终端发送N个发送方向范围信息和/或方向拓展信息,其中,所述N个发送方向范围信息中的一个或多个方向范围信息用于指示所述终端确定所述上行传输参数,或者,所述N个方向拓展信息中的一个或多个方向拓展信息用于指示所述终端确定所述上行传输参数,或者所述N个发送方向范围信息和方向拓展信息中的一个或多个方向范围信息和方向拓展信息用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    向所述终端发送N个传输波束集合的指示信息,其中,所述传输波束集合中包括一个或多个传输波束,所述传输波束集合中的一个或多个所述传输波束用于指示所述终端确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    向所述终端发送N个信道状态信息进程CSI Process的指示信息,所述N个CSI Process中的一个或多个所述CSI Process用于指示所述终端确定所述上行传输参数,其中,所述N为大于或者等于1的整数。
  14. 根据权利要求13所述的方法,其特征在于,所述N个下行参考信号资源组的指示信息包括N个信道状态信息测量导频资源指示组CRI group,其中,N大于或者等于2,包括以下至少之一:
    所述N个CRI group对应不同的子带;
    所述N个CRI group对应不同的传输层;
    所述N个CRI group对应不同的探测导频SRS资源;
    所述N个CRI group对应不同的物理上行控制信道PUCCH资源;
    所述N个CRI group对应不同的物理上行共享信道PUSCH资源;
    所述N个CRI group用于不同的传输通道;
    所述N个CRI group用于不同的天线板panel;
    所述N个CRI group用于不同的码字流;
    所述N个CRI group用于信道信息指示或者用于干扰信息指示;
    所述N个CRI group对应于不同的传输资源。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    向所述终端发送第一信令,所述第一信令用于指示所述N个CRI group能够用于确定所述上行传输参数,其中,所述第一信令是针对以下至少之一进行发送的:子带,层,PUCCH,PUSCH,传输通道,panel。
  16. 根据权利要求13所述的方法,其中,包括以下至少之一:
    同一所述码字组中包括的码字来自一个或多个码本;
    所述N个码字组对应于不同的子带;
    所述N个码字组对应于不同的传输层;
    所述N个码字组对应于不同的SRS资源;
    所述N个码字组对应于不同的PUCCH资源;
    所述N个码字组对应于不同的PUSCH资源;
    所述N个码字组用于不同的传输通道;
    所述N个码字组用于不同的panel;
    所述N个码字组用于信道信息指示或用于干扰信息指示;
    所述N个码字组对应于不同的传输资源。
  17. 根据权利要求13所述的方法,其中,包括以下至少之一:
    所述N个发送方向范围信息指示的发送方向对应于相同或不同的所述N个方向扩展信息;
    所述N个发送方向范围信息和/或方向扩展信息对应于不同的子带;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的传输层;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的SRS资源;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的PUCCH资源;
    所述N个发送方向范围信息和/或方向扩展信息对应不同的PUSCH资源;
    所述N个发送方向范围信息和/或方向扩展信息用于不同的传输通道;
    所述N个发送方向范围信息和/或方向扩展信息用于不同的panel;
    所述N个发送方向范围信息和/或方向扩展信息用于信道信息指示或用于干扰信息指示。
  18. 根据权利要求13所述的方法,其中,包括以下至少之一:
    所述N个传输波束集合对应不同的子带;
    所述N个传输波束集合对应不同的传输层;
    所述N个传输波束集合对应不同的SRS资源;
    所述N个传输波束集合对应不同的PUCCH资源;
    所述N个传输波束集合对应不同的PUSCH资源;
    所述N个传输波束集合用于不同的传输通道;
    所述N个传输波束集合用于不同的panel;
    所述N个传输波束集合用于信道信息指示或用于干扰信息指示。
  19. 根据权利要求13所述的方法,其中,包括以下至少之一:
    所述N个CSI Process对应不同的传输层;
    所述N个CSI Process对应不同的SRS资源;
    所述N个CSI Process对应不同的PUCCH资源;
    所述N个CSI Process对应不同的PUSCH资源;
    所述N个CSI Process用于不同的传输通道;
    所述N个CSI Process用于不同的panel;
    所述N个CSI Process用于信道信息指示或用于干扰信息指示。
  20. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向所述终端配置第二信令和/或下行控制信息格式DCI Format的隐含指示,其中,所述第二信令和/或下行控制信息格式DCI Format的隐含指示用于指示所述终端对确定所述上行传输参数的方式进行切换或结合。
  21. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述终端配置第三信令和/或DCI Format的隐含指示,所述第三信令和/或DCI Format的隐含指示用于指示所述终端对预编码的确定方式进行切换。
  22. 一种配置信息的发送方法,包括:
    向网络侧发送终端的配置信息,其中,所述配置信息包括以下至少之一:
    所述终端与探测导频SRS对应的码本配置信息;
    所述终端支持的码本类型;
    探测导频SRS或者天线板Panel对应的最大支持的层layer数目;
    探测导频SRS或者天线板Panel对应的最大支持的发送功率;
    探测导频SRS或者天线板Panel对应的空间角度范围;
    用于支持上行数据传输时支持的最大参考探测导频资源指示SRI的数目;
    用于支持上行数据传输时支持的最大下行参考探测导频资源指示DRI SRI的数目;
    所述终端是否支持基于下行参考信号进行上行传输的能力;
    所述终端是否支持选择上行码字的能力;
    所述终端支持的单或多波束Beam传输的能力信息;
    所述终端的解调用参考信号端口DMRS port最多关联的以下信息之一:探测导频SRS,信道状态信息测量导频CSI-RS端口,端口组数目;
    所述终端最大支持的相位噪声估计导频数目。
  23. 根据权利要求22所述的方法,其中,所述终端支持的码本类型包括以下至少之一:
    8移相键控PSK码字元素码本;
    4移相键控QPSK码字元素码本;
    2移相键控BPSK码字元素码本;
    码字中不包含0元素的码本类型;
    码字中包含0元素的码本类型;
    端口合并码本;
    端口选择码本。
  24. 一种上行传输参数的确定装置,包括:
    接收模块,配置为接收网络侧发送的指示信息;
    确定模块,用于根据所述指示信息确定上行传输参数。
  25. 根据权利要求24所述的装置,配置为,所述装置包括以下至少之一:
    所述接收模块,配置为接收所述网络侧指示的N个下行参考信号资源组的指示信息,其中,所述下行参考信号资源组包括一个或多个下行参考信号资源;所述确定模块用于根据在所述下行参考信号资源组中选择的一个或多个所述下行参考信号资源对应的接收信息,确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    所述接收模块,配置为接收所述网络侧配置的N个码字组的指示信息,其中,所述码字组中包含一个或多个码字;所述确定模块用于根据在所述码字组中选择的一个或多个所述码字确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    所述接收模块,配置为接收所述网络侧配置的N个发送方向范围信息和/或方向拓展信息;所述确定模块用于根据以下之一确定所述上行传输参数:在所述N个发送方向范围信息中选择的一个或多个方向范围信息,在所述N个方向拓展信息中选择的一个或多个方向拓展信息,在所述N个发送方向范围信息和方向拓展信息中选择的一个或多个方向范围信息和方向拓展信息,其中,所述N为大于或者等于1的整数;
    所述接收模块,配置为接收所述网络侧配置的N个传输波束集合的指示信息,其中,所述传输波束集合中包括一个或多个传输波束;所述确定模块用于根据在所述传输波束集合中选择的一个或多个所述传输波束确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    所述接收模块,配置为接收所述网络侧配置的N个信道状态信息进程CSI Process的指示信息;所述确定模块用于根据在所述N个CSI  Process中选择的一个或多个所述CSI Process确定所述上行传输参数,其中,所述N为大于或者等于1的整数。
  26. 根据权利要求25所述的装置,其中,所述N个下行参考信号资源组的指示信息包括N个信道状态信息测量导频资源指示组CRI group,其中,N大于或者等于2,包括以下至少之一:
    所述N个CRI group对应不同的子带;
    所述N个CRI group对应不同的传输层;
    所述N个CRI group对应不同的探测导频SRS资源;
    所述N个CRI group对应不同的物理上行控制信道PUCCH资源;
    所述N个CRI group对应不同的物理上行共享信道PUSCH资源;
    所述N个CRI group用于不同的传输通道;
    所述N个CRI group用于不同的天线板panel;
    所述N个CRI group用于不同的码字流;
    所述N个CRI group用于信道信息指示或者用于干扰信息指示;
    所述N个CRI group对应于不同的传输资源。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    第一处理模块,配置为通过所述网络侧发送的第一信令确定所述N个CRI group能够用于确定所述上行传输参数,其中,所述第一信令是所述网络侧针对以下至少之一进行配置的:子带,层,PUCCH,PUSCH,传输通道,panel。
  28. 一种上行传输参数的确定装置,包括:
    第一发送模块,配置为向终端发送指示信息,其中,所述指示信息指示所述终端确定上行传输参数。
  29. 根据权利要求28所述的装置,其中,所述第一发送模块包括以下至少之一:
    第一发送单元,配置为向所述终端发送N个下行参考信号资源组的指示信息,其中,所述下行参考信号资源组包括一个或多个下行参考信号资源,所述下行参考信号资源组中的一个或多个所述下行参考信号资源对应的接收信息用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    第二发送单元,配置为向所述终端发送N个码字组的指示信息,其中,所述码字组中包含一个或多个码字,所述码字组中的一个或多个所述码字用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    第三发送单元,配置为向终端发送N个发送方向范围信息和/或方向拓展信息,其中,所述N个发送方向范围信息中的一个或多个方向范围信息用于指示所述终端确定所述上行传输参数,所述N个方向拓展信息中的一个或多个方向拓展信息用于指示所述终端确定所述上行传输参数,所述N个发送方向范围信息和方向拓展信息中的一个或多个方向范围信息和方向拓展信息用于指示所述终端确定所述上行传输参数,所述N为大于或者等于1的整数;
    第四发送单元,配置为向所述终端发送N个传输波束集合的指示信息,其中,所述传输波束集合中包括一个或多个传输波束,所述传输波束集合中的一个或多个所述传输波束用于指示所述终端确定所述上行传输参数,其中,所述N为大于或者等于1的整数;
    第五发送单元,配置为向所述终端发送N个信道状态信息进程CSI Process的指示信息,所述N个CSI Process中的一个或多个所述CSI Process用于指示所述终端确定所述上行传输参数,其中,所述N为大于或者等于1的整数。
  30. 根据权利要求29所述的装置,其中,所述N个下行参考信号资 源组的指示信息包括N个信道状态信息测量导频资源指示组CRI group,其中,N大于或者等于2,包括以下至少之一:
    所述N个CRI group对应不同的子带;
    所述N个CRI group对应不同的传输层;
    所述N个CRI group对应不同的SRS资源;
    所述N个CRI group对应不同的PUCCH资源;
    所述N个CRI group对应不同的PUSCH资源;
    所述N个CRI group用于不同的传输通道;
    所述N个CRI group用于不同的panel;
    所述N个CRI group用于不同的码字流;
    所述N个CRI group用于信道信息指示或者用于干扰信息指示;
    所述N个CRI group对应于不同的传输资源。
  31. 根据权利要求30所述的装置,其中,所述装置还包括:
    第二发送模块,配置为向所述终端发送第一信令,所述第一信令用于指示所述N个CRI group能够用于确定所述上行传输参数,其中,所述第一信令是针对以下至少之一进行发送的:子带,层,PUCCH,PUSCH,传输通道,panel。
  32. 一种配置信息的发送装置,包括:
    第三发送模块,配置为向网络侧发送终端的配置信息,其中,所述配置信息包括以下至少之一:
    所述终端与探测导频SRS对应的码本配置信息;
    所述终端支持的码本类型;
    探测导频SRS或者天线板Panel对应的最大支持的层layer数目;
    探测导频SRS或者天线板Panel对应的最大支持的发送功率;
    探测导频SRS或者天线板Panel对应的空间角度范围;
    用于支持上行数据传输时支持的最大参考探测导频资源指示SRI的数目;
    用于支持上行数据传输时支持的最大下行参考探测导频资源指示DRISRI的数目;
    所述终端是否支持基于下行参考信号进行上行传输的能力;
    所述终端是否支持选择上行码字的能力;
    所述终端支持的单或多波束Beam传输的能力信息;
    所述终端的解调用参考信号端口DMRS port最多关联的以下信息之一:探测导频SRS,信道状态信息测量导频CSI-RS端口,端口组数目;
    所述终端最大支持的相位噪声估计导频数目。
  33. 根据权利要求32所述的装置,其中,所述终端支持的码本类型包括以下至少之一:
    8移相键控PSK码字元素码本;
    4移相键控QPSK码字元素码本;
    2移相键控BPSK码字元素码本;
    码字中不包含0元素的码本类型;
    码字中包含0元素的码本类型;
    端口合并码本;
    端口选择码本。
  34. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至23任一项所述的方法。
  35. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至23任一项所述的方法。
PCT/CN2018/083605 2017-05-05 2018-04-18 上行传输参数的确定方法及配置信息的发送方法、装置 WO2018201904A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/610,984 US11616543B2 (en) 2017-05-05 2018-04-18 Method for determining uplink transmission parameters and method and device for transmitting configuration information
EP18793988.9A EP3637902A4 (en) 2017-05-05 2018-04-18 PROCESS FOR DETERMINING A TRANSMISSION PARAMETER IN UPLOAD LINK, PROCESS AND DEVICE FOR TRANSMISSION OF CONFIGURATION INFORMATION
US18/190,929 US20230239015A1 (en) 2017-05-05 2023-03-27 Method for determining uplink transmission parameters and method and device for transmitting configuration information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313871.2A CN108112075B (zh) 2017-05-05 2017-05-05 上行传输参数的确定方法及配置信息的发送方法
CN201710313871.2 2017-05-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/610,984 A-371-Of-International US11616543B2 (en) 2017-05-05 2018-04-18 Method for determining uplink transmission parameters and method and device for transmitting configuration information
US18/190,929 Continuation US20230239015A1 (en) 2017-05-05 2023-03-27 Method for determining uplink transmission parameters and method and device for transmitting configuration information

Publications (1)

Publication Number Publication Date
WO2018201904A1 true WO2018201904A1 (zh) 2018-11-08

Family

ID=62206147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083605 WO2018201904A1 (zh) 2017-05-05 2018-04-18 上行传输参数的确定方法及配置信息的发送方法、装置

Country Status (4)

Country Link
US (2) US11616543B2 (zh)
EP (1) EP3637902A4 (zh)
CN (1) CN108112075B (zh)
WO (1) WO2018201904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164638A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种天线参数调整的方法以及相关装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288984B (zh) * 2017-01-09 2022-05-10 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
CN109150450B (zh) * 2017-06-16 2021-04-20 华为技术有限公司 一种信号传输的方法、设备和***
CN110557178A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种天线配置的指示方法、基站、终端及计算机存储介质
CN110572193B (zh) * 2018-06-05 2021-01-08 维沃移动通信有限公司 用于上行预编码传输的方法、网络侧设备和终端设备
US10986617B2 (en) * 2018-08-07 2021-04-20 FG Innovation Company Limited Method and apparatus for activating PUCCH spatial relation
CN110838857B (zh) * 2018-08-17 2022-01-07 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN110880958B (zh) * 2018-09-06 2021-10-15 华为技术有限公司 一种射频参数的上报方法及装置
CN110958042A (zh) * 2018-09-26 2020-04-03 索尼公司 网络侧设备、用户设备、无线通信方法和存储介质
CN110535589B (zh) * 2018-09-27 2023-01-10 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN110971366B (zh) * 2018-09-28 2022-04-12 北京紫光展锐通信技术有限公司 多波束发送方法及装置、存储介质、终端
EP3864913A4 (en) * 2018-10-11 2022-06-08 Lenovo (Beijing) Limited METHOD AND APPARATUS FOR CODEBOOK BASED MULTIDISK AND/OR MULTICARRIER PSA TRANSMISSIONS
CN112703779B (zh) * 2018-12-12 2023-11-14 Oppo广东移动通信有限公司 一种上行传输的功率控制方法及终端设备
CN111405663A (zh) * 2019-01-03 2020-07-10 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN115190631A (zh) * 2019-01-11 2022-10-14 维沃移动通信有限公司 上行信道的配置方法、传输方法、网络侧设备及终端
EP4014592A4 (en) * 2019-08-15 2022-07-27 ZTE Corporation SIGNAL TRANSMISSION SYSTEMS AND METHODS
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
CN113056003B (zh) * 2019-12-26 2024-03-22 大唐移动通信设备有限公司 一种通信方法和装置
CN111726221B (zh) * 2020-01-06 2021-07-20 电子科技大学 可对抗任意窃听天线数量的物理层安全传输方法
CN111262679A (zh) * 2020-01-17 2020-06-09 展讯通信(上海)有限公司 Srs资源的配置方法、***、设备、介质及基站
WO2021232365A1 (en) * 2020-05-21 2021-11-25 Qualcomm Incorporated Uplink configuration for communication of signals based on multiple antenna panels
EP4192160A4 (en) * 2020-08-14 2023-09-20 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND COMMUNICATION APPARATUS
WO2022077265A1 (zh) * 2020-10-14 2022-04-21 北京小米移动软件有限公司 一种传输配置方法、传输配置装置及存储介质
CA3144012A1 (en) * 2020-12-23 2022-06-23 Comcast Cable Communications, Llc Transmission repetition indication in wireless communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098670A1 (en) * 2010-02-12 2011-08-18 Nokia Corporation Signaling support for mimo channel state information feedback
CN102932114A (zh) * 2011-08-12 2013-02-13 中兴通讯股份有限公司 一种上行预编码发射方法及装置
CN102958146A (zh) * 2011-08-17 2013-03-06 华为技术有限公司 终端发射上行信号的方法和终端
CN103081388A (zh) * 2010-09-03 2013-05-01 夏普株式会社 终端装置、基站装置、通信***及通信方法
CN103096449A (zh) * 2011-11-04 2013-05-08 中兴通讯股份有限公司 一种探测参考信号的功率控制方法、***及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414253A1 (en) * 2002-04-08 2004-04-28 Matsushita Electric Industrial Co., Ltd. Base station apparatus and upstream packet transmitting method
CN101426275B (zh) * 2007-10-29 2011-04-06 大唐移动通信设备有限公司 一种随机接入过程中确定传输参数的方法和***
CN101426271B (zh) * 2007-10-29 2011-08-10 电信科学技术研究院 一种信道配置的方法和***
EP2793420B1 (en) 2010-01-07 2019-05-29 Samsung Electronics Co., Ltd User equipment, base station, and method for enhancing features of uplink reference signals
CN102238531B (zh) * 2010-04-29 2015-01-14 电信科学技术研究院 基于竞争的上行传输指示方法、数据传输方法及装置
CN102740447B (zh) * 2011-04-13 2016-05-25 华为技术有限公司 确定定时提前量的方法、终端设备和网络侧设备
CN103384386B (zh) * 2012-05-04 2017-01-25 华为技术有限公司 上行通信方法及终端
CN103716827B (zh) * 2012-09-28 2017-08-04 电信科学技术研究院 信道状态信息参考资源的指示和测量方法及设备
CN103716116B (zh) * 2012-09-28 2019-04-16 中兴通讯股份有限公司 信道状态信息反馈信令的配置方法、基站和终端
CN106797649B (zh) * 2014-10-10 2021-06-04 瑞典爱立信有限公司 与灵活的csi配置和关联反馈有关的***和方法
US10236951B2 (en) * 2015-04-10 2019-03-19 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
US10840991B2 (en) * 2016-02-03 2020-11-17 Ntt Docomo, Inc. User equipment and method for selection of CSI reference signal and CSI reporting in a beam forming system with multiple beams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098670A1 (en) * 2010-02-12 2011-08-18 Nokia Corporation Signaling support for mimo channel state information feedback
CN103081388A (zh) * 2010-09-03 2013-05-01 夏普株式会社 终端装置、基站装置、通信***及通信方法
CN102932114A (zh) * 2011-08-12 2013-02-13 中兴通讯股份有限公司 一种上行预编码发射方法及装置
CN102958146A (zh) * 2011-08-17 2013-03-06 华为技术有限公司 终端发射上行信号的方法和终端
CN103096449A (zh) * 2011-11-04 2013-05-08 中兴通讯股份有限公司 一种探测参考信号的功率控制方法、***及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637902A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164638A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种天线参数调整的方法以及相关装置

Also Published As

Publication number Publication date
US11616543B2 (en) 2023-03-28
US20230239015A1 (en) 2023-07-27
EP3637902A1 (en) 2020-04-15
CN108112075A (zh) 2018-06-01
US20200169304A1 (en) 2020-05-28
CN108112075B (zh) 2023-05-02
EP3637902A4 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2018201904A1 (zh) 上行传输参数的确定方法及配置信息的发送方法、装置
CN109757127B (zh) 用于在无线通信***中报告信道状态信息的方法及其装置
JP7206186B2 (ja) ダウンリンク及びアップリンクチャネル状態情報を獲得するための方法及び装置
US11336354B2 (en) Channel state information reporting method in wireless communication system and device therefor
RU2718401C1 (ru) Предоставление отчетов с csi при многолучевой передаче
CN108631831B (zh) 信息的传输方法和设备
CN115133968B (zh) 可变相干自适应天线阵列
JP6388348B2 (ja) パイロット信号伝送方法、基地局、およびユーザ装置
KR20210052562A (ko) 업링크 제어 정보 송신 및 수신을 위한 방법 및 장치
CN111226481A (zh) 用于多个发送接收点操作的准共位架构增强
KR20200119260A (ko) 적어도 4 개의 안테나들을 갖는 스케줄링되는 엔티티에서의 사운딩 레퍼런스 신호 안테나 스위칭
KR102351268B1 (ko) 빔포밍 방법 및 그 장치
CN112956145A (zh) 信道和干扰测量和报告的方法和装置
US20160173244A1 (en) Method and base station for csi process configuration and method and user equipment for csi feedback
US20150312919A1 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in mimo system
JP2013225894A (ja) 専用基準信号モードに基づいてリソースブロック構造を送信し、復号するmimo無線通信の方法および装置
WO2017188693A1 (ko) 다중 안테나 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018166345A1 (zh) 上行发送波束确定方法和装置
KR20150013282A (ko) 밀리미터파 광대역을 위한 파일럿 설계
CN109196790A (zh) 无线网络中的信道状态信息确定
EP2425545A1 (en) Method for multi-antenna uplink transmission
CN107888307B (zh) 干扰测量方法、装置及***,干扰测量指示方法及装置
WO2017167156A1 (zh) Dmrs的发送方法及装置
US20190223169A1 (en) Indication method and apparatus for transmitting physical control channel
US11902198B2 (en) Controlling DL MIMO transmissions in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18793988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018793988

Country of ref document: EP

Effective date: 20191205