WO2018201732A1 - 用于像素电路的驱动方法 - Google Patents

用于像素电路的驱动方法 Download PDF

Info

Publication number
WO2018201732A1
WO2018201732A1 PCT/CN2017/116383 CN2017116383W WO2018201732A1 WO 2018201732 A1 WO2018201732 A1 WO 2018201732A1 CN 2017116383 W CN2017116383 W CN 2017116383W WO 2018201732 A1 WO2018201732 A1 WO 2018201732A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
driving transistor
driving
compensation
Prior art date
Application number
PCT/CN2017/116383
Other languages
English (en)
French (fr)
Inventor
林奕呈
闫光
李全虎
朱明毅
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/779,789 priority Critical patent/US11087688B2/en
Priority to EP17899228.5A priority patent/EP3621060A4/en
Priority to JP2018548885A priority patent/JP7084314B2/ja
Publication of WO2018201732A1 publication Critical patent/WO2018201732A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a driving method for a pixel circuit.
  • AMOLED Active-Matrix Organic Light Emitting Diode
  • the AMOLED display device includes an organic light emitting diode array substrate.
  • the organic light emitting diode array substrate includes an organic light emitting diode and a driving transistor for driving the organic light emitting diode.
  • the threshold voltage (Vth) of the driving transistor is prone to drift, and in particular, the threshold voltage of the driving transistor made of an oxide material drifts more, which causes a change in current flowing through the organic light emitting diode, thereby causing uneven display luminance. Therefore, an external electrical compensation mechanism is needed to compensate the threshold voltage drift of the driving transistor to improve the display effect of the AMOLED display device.
  • the embodiments described herein provide a driving method for a pixel circuit.
  • the driving method is capable of compensating for threshold voltage drift of a driving transistor in a pixel circuit.
  • a driving method of a pixel circuit includes a light emitting device and a driving transistor.
  • the driving transistor is compensated for during the operation of the light emitting device in a first compensation manner including internal voltage compensation.
  • the driving transistor is compensated for in a second compensation manner including internal voltage compensation and external voltage compensation while the light emitting device is not operating.
  • the drive transistor is compensated in a second compensation manner at time intervals.
  • the driving transistor is reset in the step of compensating the driving transistor in the first compensation manner. Then, the drive transistor is voltage compensated. Next, a data signal is input to the pixel circuit. Thereafter, the light emitting device is driven to emit light.
  • the input of the data signal to the pixel circuit is stopped before the voltage difference between the gate and the second electrode of the drive transistor is equal to the threshold voltage of the drive transistor.
  • the driving transistor is reset in the step of compensating the driving transistor in the second compensation mode. Then, the drive transistor is voltage compensated. Next, a data signal is input to the pixel circuit. Thereafter, the current flowing through the driving transistor is detected, the external compensation voltage is calculated based on the current, and the voltage of the data signal is compensated by the external compensation voltage.
  • the pixel circuit includes a first transistor, a driving transistor, a second transistor, a capacitor, and a light emitting device.
  • the control electrode of the first transistor is coupled to the first scan signal terminal, the first electrode of the first transistor is coupled to the data signal terminal, and the second electrode of the first transistor is coupled to the control electrode of the drive transistor.
  • the first pole of the driving transistor is coupled to the first power source, and the second pole of the driving transistor is coupled to the anode of the light emitting device.
  • the control electrode of the second transistor is coupled to the second scan signal terminal, the first electrode of the second transistor is coupled to the sensing signal terminal, and the second electrode of the second transistor is coupled to the second electrode of the driving transistor.
  • the first end of the capacitor is coupled to the control electrode of the driving transistor, and the second end of the capacitor is coupled to the second electrode of the driving transistor.
  • the cathode of the light emitting device is coupled to the second power source.
  • the pixel circuit further includes a sensing unit.
  • the sensing unit is coupled to the data signal end and the sensing signal end.
  • the first transistor in the step of compensating the driving transistor in the first compensation manner, is turned on such that the voltage of the control electrode of the driving transistor is equal to the first voltage from the data signal terminal, and the second transistor is turned on.
  • the voltage of the second pole of the drive transistor is made equal to the second voltage from the sense signal terminal.
  • the first transistor is continuously turned on, and the second transistor is turned off, so that the voltage of the second electrode of the driving transistor is raised from the second voltage to a difference voltage between the first voltage and the threshold voltage of the driving transistor.
  • the first transistor is continued to be turned on, the data signal is supplied to the data signal terminal to turn on the driving transistor, and the second transistor is continuously turned off so that the voltage of the second electrode of the driving transistor continues to rise and the capacitor is charged. Thereafter, the first transistor is turned off and the second transistor is turned off, and the driving transistor continues to be turned on by the holding of the capacitor, thereby continuing to raise the voltage of the second electrode of the driving transistor by the first power source to drive the light emitting device to emit light.
  • the second voltage is lower than the first voltage.
  • the first transistor in the step of compensating the driving transistor in the second compensation manner, is turned on such that the voltage of the control electrode of the driving transistor is equal to the first voltage from the data signal terminal, and the second transistor is turned on.
  • the voltage of the second pole of the drive transistor is made equal to the second voltage from the sense signal terminal.
  • the first transistor is continuously turned on, and the second transistor is turned off, so that the voltage of the second electrode of the driving transistor is raised from the second voltage to a difference voltage between the first voltage and the threshold voltage of the driving transistor.
  • the first transistor is continued to be turned on, the data signal is supplied to the data signal terminal to turn on the driving transistor, and the second transistor is continuously turned off so that the voltage of the second electrode of the driving transistor continues to rise and the capacitor is charged.
  • the first transistor is turned off, the second transistor is turned on, and the driving transistor continues to be turned on under the holding of the capacitor, so that the voltage of the second electrode of the driving transistor is continuously raised by the first power source, so that the sensing signal terminal is in a floating state.
  • the sensing unit calculates the external compensation voltage based on the current, and compensates the voltage of the data signal with the external compensation voltage.
  • the second voltage is lower than the first voltage.
  • the drive transistor is an N-type transistor.
  • the threshold voltage drift of the driving transistor can be compensated by the first and second compensation modes, the yield of the pixel circuit is improved, the hysteresis effect of the external voltage compensation is avoided, and the external voltage compensation is accelerated. Sensing charging rate. Further, the driving method for the pixel circuit according to an embodiment of the present disclosure can also compensate for the mobility of the driving transistor.
  • FIG. 1 is a schematic diagram of an example of an OLED pixel circuit
  • FIG. 2 is a schematic diagram of signals for compensating the OLED pixel circuit shown in FIG. 1 in an external voltage compensation manner
  • FIG. 3 is a schematic flowchart of a driving method for a pixel circuit according to an embodiment of the present disclosure
  • FIG. 4 is a timing diagram of signals for compensating OLED pixel circuits in a first compensation manner, in accordance with an embodiment of the present disclosure
  • FIG. 5 is an exemplary schematic diagram of an OLED pixel circuit employing the timing diagram shown in FIG. 4;
  • FIG. 6 is a schematic view for explaining a voltage change at a point S of the data signal input phase shown in FIG. 4;
  • FIG. 7 is a timing diagram of signals for compensating OLED pixel circuits in a second compensation manner, in accordance with an embodiment of the present disclosure
  • FIG. 8 is an exemplary schematic diagram of an OLED pixel circuit employing the timing chart shown in FIG.
  • the source and drain (emitter and collector) of the transistor are symmetrical, and the source and drain (emitter and collector) of the N-type transistor and the P-type transistor
  • the conduction currents are opposite in direction, so in the embodiments of the present disclosure, the controlled intermediate end of the transistor is referred to as the control pole, the signal input terminal is referred to as the first pole, and the signal output terminal is referred to as the second pole.
  • the transistors employed in the embodiments of the present disclosure are primarily switching transistors.
  • terms such as "first" and "second” are used to distinguish one component (or a portion of the component) from another component (or another portion of the component).
  • Embodiments of the present disclosure are hereinafter described by taking an OLED pixel circuit as an example. Those skilled in the art should appreciate that the embodiments of the present disclosure can also be applied to other current-driven pixel circuits, such as Quantum Dot Light Emitting Diodes (QLED) pixel circuits.
  • QLED Quantum Dot Light Emitting Diodes
  • an N-type transistor is taken as an example in the embodiment of the present disclosure.
  • embodiments of the present disclosure are also applicable to OLED pixel circuits including P-type transistors.
  • FIG. 1 shows a schematic diagram of one example of an OLED pixel circuit.
  • the OLED pixel circuit includes a first transistor T1, a driving transistor Td, a second transistor T2, a capacitor Cst, a light emitting device OLED, and a sensing unit 100.
  • the control electrode of the first transistor T1 is coupled to the first signal terminal SCAN1, the first electrode of the first transistor T1 is coupled to the data signal terminal DATA, and the second electrode of the first transistor T1 is coupled to the control electrode of the driving transistor Td.
  • the first electrode of the driving transistor Td is coupled to the first power source OVDD, and the second electrode of the driving transistor Td is coupled to the anode of the light emitting device OLED.
  • the control electrode of the second transistor T2 is coupled to the second signal terminal SCAN2, the first electrode of the second transistor T2 is coupled to the sensing signal terminal SENSE, and the second electrode of the second transistor T2 is coupled to the second electrode of the driving transistor Td.
  • the first end of the capacitor Cst is coupled to the control electrode of the driving transistor Td, and the second end of the capacitor Cst is coupled to the second electrode of the driving transistor Td.
  • the cathode of the light emitting device OLED is coupled to the second power source OVSS.
  • the sensing unit 100 is coupled to the data signal terminal DATA and the sensing signal terminal SENSE.
  • the sensing unit 100 may include a port control circuit 110, a sensing circuit 120, a calculation circuit 130, and a voltage control circuit 140.
  • the port control circuit 110 can control the state of the sensing signal terminal SENSE to an output state or a floating state. In the output state, the sensing unit 100 outputs the voltage V REFL through the sensing signal terminal SENSE. In the floating state, the sensing unit 100 can receive the current output from the second transistor T2 through the sensing signal terminal SENSE.
  • the sensing circuit 120 can detect the current received from the sensing signal terminal SENSE.
  • the calculation circuit 130 can calculate an external compensation voltage based on the sensed current.
  • the voltage control circuit 140 is configured to superimpose the external compensation voltage on the voltage of the data signal as the voltage of the data signal.
  • FIG. 1 only schematically shows the sensing unit 100.
  • the port control circuit 110, the sensing circuit 120, the calculation circuit 130, and the voltage control circuit 140 in the sensing unit 100 may be implemented by different devices, or may be integrated into
  • FIG. 2 is a schematic diagram of signals for compensating the OLED pixel circuit shown in FIG. 1 in an external voltage compensation manner.
  • the first time period T R by opening the first transistor T1 and second transistor T2, the driving transistor Td is reset so that the voltage at point S to V REFL (V REFL for example, 0V).
  • V REFL V REFL for example, 0V
  • the first transistor T1 is turned off during the T C period and the second transistor T2 is kept turned on, so that the current flowing through the driving transistor Td is output to the sensing unit 100 through the sensing signal terminal SENSE.
  • the voltage of the sensing signal terminal SENSE gradually rises during the T C period.
  • the sensing charge is completed.
  • the first transistor T1 and the second transistor T2 are turned on, and the voltage of the sensing signal terminal SENSE is maintained at V SENSE .
  • the sensing unit calculates a voltage value that needs to be compensated so that the compensated voltage value is then added to the voltage of the data signal.
  • VGm the maximum value of the voltage of the data signal terminal DATA
  • VG0 the minimum value of the voltage of the data signal terminal DATA
  • embodiments of the present disclosure provide a driving method for a pixel circuit.
  • FIG. 3 illustrates a schematic flow chart of a driving method for a pixel circuit in accordance with an embodiment of the present disclosure.
  • the driving transistor for driving the light emitting device in the OLED pixel circuit is compensated in a first compensation manner including internal voltage compensation.
  • the period during which the light emitting device operates refers to a period during which the light emitting device is controlled to emit light, which may include a stage in which the light emitting device is ready to emit light and a stage in which the light emitting device emits light.
  • the driving transistor is compensated for in a second compensation manner including internal voltage compensation and external voltage compensation while the light emitting device is not operating.
  • the period during which the light emitting device does not operate refers to a period during which the light emitting device is controlled not to emit light.
  • the light emitting device is in a stage of full screen reset or the light emitting device is in a stage where the display between frames is idle.
  • step S304 may be performed first and then step S302 may be performed.
  • a driving method for a pixel circuit according to an embodiment of the present disclosure can compensate for a smaller threshold voltage drift of a driving transistor by internal voltage compensation during operation of the light emitting device.
  • the range of internal voltage compensation can be limited. After the drive transistor has been operating for a long period of time, its threshold voltage drift gradually increases, possibly exceeding the range that the internal voltage compensation can compensate.
  • the driving transistor is compensated in a second compensation manner including internal voltage compensation and external voltage compensation while the light emitting device is not operating.
  • the second compensation mode can compensate for a large threshold voltage drift by external voltage compensation, and achieve better compensation accuracy by internal voltage compensation.
  • the driving method for the pixel circuit according to the embodiment of the present disclosure does not adversely affect the display effect.
  • the drive transistor can be compensated in a second compensation manner at time intervals, such as performing compensation for the drive transistor in a second compensation manner after each full screen scan.
  • compensating the drive transistor in the OLED pixel circuit in a first compensation manner including internal voltage compensation may include, for example, the following stages.
  • the drive transistor In the reset phase, the drive transistor is reset.
  • the compensation phase the drive transistor is voltage compensated.
  • a data signal is input to the OLED pixel circuit.
  • the illumination phase the illumination device is driven to emit light.
  • compensating the driving transistor in a second compensation manner including internal voltage compensation and external voltage compensation may include, for example, the following stages.
  • the drive transistor is reset.
  • the compensation phase the drive transistor is voltage compensated.
  • a data signal is input to the OLED pixel circuit.
  • the sensing phase the current flowing through the driving transistor is detected, and the external compensation voltage is calculated based on the current.
  • the calculated external compensation voltage is used to compensate for the voltage of the data signal.
  • an external compensation voltage may be superimposed on the voltage of the data signal as the voltage of the data signal.
  • the external compensation voltage refers to a threshold voltage value that needs to be compensated by an external device on the basis that the internal voltage compensation has compensated for a part of the drifted threshold voltage.
  • the driving method for the pixel circuit according to an embodiment of the present disclosure is not limited to use with respect to the OLED pixel circuit shown in FIG. 1.
  • pixel circuits for use in accordance with embodiments of the present disclosure may be used in any variation of the OLED pixel circuit shown in FIG. 1 (both embodiments including both an internal voltage compensation unit and an external voltage compensation unit) Drive method.
  • the range and accuracy of the threshold voltage drift of the driving transistor that can be compensated thereof can be improved by the second compensation method including internal voltage compensation and external voltage compensation, and thus for the OLED pixel circuit
  • the requirement of the drift range of the threshold voltage of the driving transistor can be relaxed. That is to say, even if the range of the threshold voltage drift of the prepared driving transistor may exceed the range of the conventionally approved qualified amount, it is considered that the driving transistor is qualified, so that the yield of the OLED pixel circuit can be improved.
  • the internal voltage compensation performed in the second compensation mode can also avoid the hysteresis effect of the external voltage compensation and accelerate the sensing charging rate at the time of external voltage compensation.
  • Fig. 4 illustrates a timing diagram for compensating signals of an OLED pixel circuit in a first compensation manner, in accordance with an embodiment of the present disclosure.
  • Fig. 5 shows an exemplary schematic diagram of an OLED pixel circuit employing the timing chart shown in Fig. 4.
  • the process of driving the OLED pixel circuit by internal voltage compensation during operation of the light emitting device OLED in the OLED pixel circuit will be described below in conjunction with the OLED pixel circuit shown in FIG.
  • the process consists of four phases: a reset phase, a compensation phase, a data input phase, and a lighting phase.
  • the period during which the light emitting device OLED operates refers to a period including the above four stages.
  • a high voltage V H is input to the gate of the first transistor T1 (ie, the first scan signal terminal SCAN1 is at a high voltage V H ) to turn on the first transistor T1, thereby controlling the driving transistor Td.
  • the voltage at the pole (ie, point G) is equal to the first voltage V ref from the data signal terminal DATA.
  • set V L ⁇ V ref .
  • the first transistor T1 is continuously turned on and the voltage of the data signal terminal DATA is maintained, so that the voltage at the G point is still V ref .
  • the second voltage V L is raised from the second voltage V L to a difference voltage between the first voltage V ref and the threshold voltage V th — t1 of the driving transistor Td (ie, the voltage at the point S is equal to V ref ⁇ V th — t1 ), that is, the G point is made
  • the voltage difference between the point S and S is the threshold voltage Vth_t1 of the driving transistor Td.
  • the voltage of the data signal terminal DATA is converted to the third voltage V DATA .
  • the first transistor T1 is continuously turned on.
  • the second transistor T2 is continuously turned off, so that the voltage of the second pole (i.e., point S) of the driving transistor Td continues to rise.
  • the capacitor Cst is charged at this stage.
  • Fig. 6 shows a schematic diagram of voltage changes at point S at this stage.
  • the voltage at the point S gradually rises, for example, at time t1, the voltage at the point S rises by ⁇ V.
  • the voltage at point S will reach the upper limit value V DATA -V th_t1 and keep the voltage value unchanged.
  • the voltage at point S is V ref - V th_t1 + ⁇ V.
  • the first transistor T1 is turned off and the second transistor T2 is turned off.
  • the drive transistor Td continues to be turned on by the holding of the capacitor Cst.
  • the voltage of the S point is raised by the high voltage from the first power source OVDD, thereby causing the light emitting device OLED to emit light.
  • the current flow in the OLED pixel circuit at this stage is shown by arrows in FIG.
  • the voltage at point S is finally raised to the sum of the second supply voltage OVSS and the illumination voltage V OLED of the illumination device OLED, ie to OVSS+V OLED .
  • V GS V DATA -(V ref -V th_t1 + ⁇ V) at the data input stage, so the voltage at the G point is finally raised.
  • ⁇ n represents the carrier mobility of the driving transistor Td
  • C ox represents the gate oxide capacitance, and Indicates the aspect ratio of the driving transistor Td. It can be seen from the equation (1) that the I OLED is independent of V th — t1 , so that current fluctuation in the OLED pixel circuit due to the deviation of the threshold voltage V th — t1 of the driving transistor Td can be eliminated, thereby stabilizing the picture quality of the OLED. Further, since ⁇ V is positively correlated with ⁇ n , ⁇ V can be controlled by controlling the time at which the data signal is input to the OLED pixel circuit to compensate the carrier mobility ⁇ n of the driving transistor Td, thereby stabilizing the current I OLED .
  • FIG. 7 illustrates a timing diagram for compensating signals of an OLED pixel circuit in a second compensation manner, in accordance with an embodiment of the present disclosure.
  • FIG. 8 shows an exemplary schematic diagram of an OLED pixel circuit employing the timing diagram shown in FIG.
  • the process of driving the OLED pixel circuit by means of internal voltage compensation and external voltage compensation during the period in which the light emitting device OLED in the OLED pixel circuit is inoperative is described below in conjunction with the OLED pixel circuit shown in FIG.
  • the process consists of four phases: a reset phase, a compensation phase, a data input phase, and a sensing phase.
  • a high voltage V H is input to the gate of the first transistor T1 (ie, the first scan signal terminal SCAN1 is at a high voltage V H ) to turn on the first transistor T1, thereby controlling the driving transistor Td.
  • the voltage at the pole (ie, point G) is equal to the first voltage V ref from the data signal terminal DATA.
  • set V L ⁇ V ref .
  • the first transistor T1 is continuously turned on and the voltage of the data signal terminal DATA is maintained, so that the voltage at the G point is still V ref .
  • the second scan signal terminal SCAN2 is at the second voltage V L
  • the second pole of the driving transistor Td ie, point S
  • the voltage is raised from the second voltage V L to a difference voltage between the first voltage V ref and the threshold voltage V th — t1 of the driving transistor Td (ie, the voltage at the point S is equal to V ref ⁇ V th — t1 ), that is, the G point is made
  • the voltage difference between the point S and S is the threshold voltage Vth_t1 of the driving transistor Td.
  • the voltage of the data signal terminal DATA is converted to the third voltage V DATA .
  • the first transistor T1 is continuously turned on.
  • the second transistor T2 is continuously turned off, so that the voltage of the second pole (i.e., point S) of the driving transistor Td continues to rise.
  • the capacitor Cst is charged at this stage.
  • the first transistor T1 is turned off and the second transistor T2 is turned on.
  • the drive transistor Td continues to be turned on by the holding of the capacitor Cst.
  • the voltage at the S point is raised by the high voltage from the first power source OVDD, and the sensing signal terminal SENSE is brought into a floating state by controlling the sensing unit to which the sensing signal terminal SENSE is connected. Therefore, the current flowing through the driving transistor Td will not flow to the light emitting device OLED but will flow to the sensing unit through the sensing signal terminal SENSE.
  • the current flow in the OLED pixel circuit at this stage is shown by arrows in FIG.
  • the sensing unit calculates an external compensation voltage based on the current, and superimposes the external compensation voltage on the voltage of the data signal as the voltage of the data signal. Since the voltage at the point S is at the start value of the sensing phase (V ref - V th — t1 + ⁇ V) is higher than the first voltage V ref , the sensing charge is started from V ref as shown in FIG. 2 . The sensing charging rate of the sensing phase of the embodiment is faster. In addition, since the internal voltage compensation is performed first in the second compensation mode, the hysteresis effect of the external voltage compensation can be avoided.
  • the threshold voltage drift of the driving transistor can be compensated by the first and second compensation modes, the yield of the OLED pixel circuit is improved, the hysteresis effect of the external voltage compensation is avoided, and the external voltage is accelerated. Sensing charging rate at the time of compensation. Further, the driving method for the pixel circuit according to an embodiment of the present disclosure can also compensate for the mobility of the driving transistor.
  • the display device provided by the embodiment of the present disclosure can be applied to any product having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, or a navigator.
  • a display function such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, or a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开的实施例提供一种用于像素电路的驱动方法。该像素电路包括发光器件和驱动晶体管。该方法包括:在发光器件工作的期间,以包括内部电压补偿的第一补偿方式对驱动晶体管进行补偿;在发光器件不工作的期间,以包括内部电压补偿和外部电压补偿的第二补偿方式对驱动晶体管进行补偿。

Description

用于像素电路的驱动方法
相关申请的交叉引用
本申请要求于2017年05月05日递交的中国专利申请第201710310558.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及显示技术领域,具体地,涉及用于像素电路的驱动方法。
背景技术
近几年来,有源矩阵有机发光二极管(Active-Matrix Organic Light Emitting Diode,简称AMOLED)显示装置渐渐成为当今显示技术领域的热点之一。与传统的液晶显示器相比,AMOLED显示装置具有超高对比度,超薄厚度,超广色域,良好的大视角观赏体验及超快反应速度等特性,因此AMOLED显示装置在未来将占据更多的市场份额。
AMOLED显示装置包括有机发光二极管阵列基板。有机发光二极管阵列基板包括有机发光二极管以及用于驱动有机发光二极管的驱动晶体管。驱动晶体管的阈值电压(Vth)容易发生漂移,尤其是由氧化物材料制成的驱动晶体管的阈值电压漂移更大,这样就导致流过有机发光二极管的电流发生变化,从而使得显示亮度不均匀。因此,需要外部电学补偿机制来补偿驱动晶体管的阈值电压漂移,以提高AMOLED显示装置的显示效果
发明内容
本文中描述的实施例提供了一种用于像素电路的驱动方法。该驱动方法能够补偿像素电路中的驱动晶体管的阈值电压漂移。
根据本公开的第一方面,提供了一种像素电路的驱动方法。该像素电路包括发光器件和驱动晶体管。在该方法中,在发光器件工作的期间,以 包括内部电压补偿的第一补偿方式对驱动晶体管进行补偿。在发光器件不工作的期间,以包括内部电压补偿和外部电压补偿的第二补偿方式对驱动晶体管进行补偿。
在本公开的实施例中,按照时间间隔以第二补偿方式对驱动晶体管进行补偿。
在本公开的实施例中,在以第一补偿方式对驱动晶体管进行补偿的步骤中,对驱动晶体管进行复位。然后,对驱动晶体管进行电压补偿。接着,向像素电路输入数据信号。之后,驱动发光器件发光。
在本公开的进一步的实施例中,在驱动晶体管的控制极与第二极之间的电压差等于驱动晶体管的阈值电压之前,停止向像素电路输入数据信号。
在本公开的实施例中,在以第二补偿方式对驱动晶体管进行补偿的步骤中,对驱动晶体管进行复位。然后,对驱动晶体管进行电压补偿。接着,向像素电路输入数据信号。之后,检测流过驱动晶体管的电流,基于电流来计算外部补偿电压,并用外部补偿电压补偿数据信号的电压。
在本公开的实施例中,像素电路包括第一晶体管、驱动晶体管、第二晶体管、电容器和发光器件。第一晶体管的控制极耦接第一扫描信号端,第一晶体管的第一极耦接数据信号端,第一晶体管的第二极耦接驱动晶体管的控制极。驱动晶体管的第一极耦接第一电源,驱动晶体管的第二极耦接发光器件的阳极。第二晶体管的控制极耦接第二扫描信号端,第二晶体管的第一极耦接感测信号端,第二晶体管的第二极耦接驱动晶体管的第二极。电容器的第一端耦接驱动晶体管的控制极,电容器的第二端耦接驱动晶体管的第二极。发光器件的阴极耦接第二电源。
在本公开的进一步的实施例中,像素电路还包括感测单元。感测单元耦接数据信号端和感测信号端。
在本公开的进一步的实施例中,在以第一补偿方式对驱动晶体管进行补偿的步骤中,打开第一晶体管使得驱动晶体管的控制极的电压等于来自数据信号端的第一电压,打开第二晶体管使得驱动晶体管的第二极的电压等于来自感测信号端的第二电压。然后,继续打开第一晶体管,关闭第二 晶体管,以使得驱动晶体管的第二极的电压从第二电压升高至第一电压与驱动晶体管的阈值电压的差值电压。接着,继续打开第一晶体管,向数据信号端提供数据信号以打开驱动晶体管,继续关闭第二晶体管,以使得驱动晶体管的第二极的电压继续升高,并对电容器充电。之后,关闭第一晶体管并继续关闭第二晶体管,在电容器的保持作用下驱动晶体管继续打开,从而通过第一电源继续升高驱动晶体管的第二极的电压,以驱动发光器件发光。第二电压低于第一电压。
在本公开的进一步的实施例中,在以第二补偿方式对驱动晶体管进行补偿的步骤中,打开第一晶体管使得驱动晶体管的控制极的电压等于来自数据信号端的第一电压,打开第二晶体管使得驱动晶体管的第二极的电压等于来自感测信号端的第二电压。然后,继续打开第一晶体管,关闭第二晶体管,以使得驱动晶体管的第二极的电压从第二电压升高至第一电压与驱动晶体管的阈值电压的差值电压。接着,继续打开第一晶体管,向数据信号端提供数据信号以打开驱动晶体管,继续关闭第二晶体管,以使得驱动晶体管的第二极的电压继续升高,并对电容器充电。之后,关闭第一晶体管,打开第二晶体管,在电容器的保持作用下驱动晶体管继续打开,从而通过第一电源继续升高驱动晶体管的第二极的电压,使感测信号端处于浮接的状态,以使得流过驱动晶体管的电流输出到感测单元,感测单元基于电流来计算外部补偿电压,并用外部补偿电压补偿数据信号的电压。第二电压低于第一电压。
在本公开的实施例中,驱动晶体管为N型晶体管。
根据本公开实施例的用于像素电路的驱动方法,通过第一和第二补偿方式能够补偿驱动晶体管的阈值电压漂移,提升像素电路的良率,避免外部电压补偿的迟滞效应以及加快外部电压补偿时的感测充电速率。此外,根据本公开实施例的用于像素电路的驱动方法还能够补偿驱动晶体管的迁移率。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:
图1是OLED像素电路的一个示例的示意图;
图2是用于以外部电压补偿的方式补偿如图1所示的OLED像素电路的信号的示意图;
图3是根据本公开的实施例的用于像素电路的驱动方法的示意性流程图;
图4是根据本公开的实施例的用于以第一补偿方式补偿OLED像素电路的信号的时序图;
图5是采用图4所示的时序图的OLED像素电路的示例性示意图;
图6是用于说明在图4所示的数据信号输入阶段的S点的电压变化的示意图;
图7是根据本公开的实施例的用于以第二补偿方式补偿OLED像素电路的信号的时序图;
图8是采用图7所示的时序图的OLED像素电路的示例性示意图。
具体实施方式
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属领域的技术人员所通常理解的相同含义。进一步将理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于 正式的形式来解释,除非在此另外明确定义。如在此所使用的,将两个或更多部分“连接”或“耦接”到一起的陈述应指这些部分直接结合到一起或通过一个或多个中间部件结合。
在本公开的所有实施例中,由于晶体管的源极和漏极(发射极和集电极)是对称的,并且N型晶体管和P型晶体管的源极和漏极(发射极和集电极)之间的导通电流方向相反,因此在本公开的实施例中,统一将晶体管的受控中间端称为控制极,信号输入端称为第一极,信号输出端称为第二极。本公开的实施例中所采用的晶体管主要是开关晶体管。另外,诸如“第一”和“第二”的术语仅用于将一个部件(或部件的一部分)与另一个部件(或部件的另一部分)区分开。
在下文中以OLED像素电路为例来说明本公开的实施例。本领域的技术人员应了解,本公开的实施例也可以应用于其它由电流驱动的像素电路,例如量子点发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)像素电路。
由于N型晶体管的阈值电压漂移较大,因此在本公开的实施例中以N型晶体管为例进行描述。然而,本领域的技术人员应理解,本公开的实施例也可应用于包括P型晶体管的OLED像素电路。
图1示出OLED像素电路的一个示例的示意图。该OLED像素电路包括第一晶体管T1、驱动晶体管Td、第二晶体管T2、电容器Cst、发光器件OLED和感测单元100。第一晶体管T1的控制极耦接第一扫描信号端SCAN1,第一晶体管T1的第一极耦接数据信号端DATA,第一晶体管T1的第二极耦接驱动晶体管Td的控制极。驱动晶体管Td的第一极耦接第一电源OVDD,驱动晶体管Td的第二极耦接发光器件OLED的阳极。第二晶体管T2的控制极耦接第二扫描信号端SCAN2,第二晶体管T2的第一极耦接感测信号端SENSE,第二晶体管T2的第二极耦接驱动晶体管Td的第二极。电容器Cst的第一端耦接驱动晶体管Td的控制极,电容器Cst的第二端耦接驱动晶体管Td的第二极。发光器件OLED的阴极耦接第二电源OVSS。感测单元100耦接数据信号端DATA和感测信号端SENSE。
感测单元100可包括端口控制电路110、感测电路120、计算电路130以及电压控制电路140。端口控制电路110可控制感测信号端SENSE的状态为输出状态或者浮接(floating)状态。在输出状态下,感测单元100通过感测信号端SENSE输出电压V REFL。在浮接状态下,感测单元100能够通过感测信号端SENSE接收从第二晶体管T2输出的电流。感测电路120可检测从感测信号端SENSE接收的电流。计算电路130可基于所感测的电流计算外部补偿电压。电压控制电路140被配置为将外部补偿电压叠加到数据信号的电压上,作为数据信号的电压。图1仅仅示意性示出感测单元100。感测单元100中的端口控制电路110、感测电路120、计算电路130以及电压控制电路140可以用不同的装置来实现,也可以集成在一个装置中。
图2是用于以外部电压补偿的方式补偿如图1所示的OLED像素电路的信号的示意图。在不发光阶段,首先在T R时间段,通过打开第一晶体管T1和第二晶体管T2对驱动晶体管Td复位使得S点的电压为V REFL(V REFL例如为0V)。然后,在T C时间段关闭第一晶体管T1并保持第二晶体管T2继续打开,以使得通过感测信号端SENSE向感测单元100输出流过驱动晶体管Td的电流。从图2中可见,在T C时间段感测信号端SENSE的电压逐渐上升。最后,在T H时间段,感测充电完成。打开第一晶体管T1和第二晶体管T2,感测信号端SENSE的电压维持在V SENSE。感测单元计算出需要补偿的电压值,以便之后将补偿的电压值加到数据信号的电压上。图2中在数据信号端DATA上,用VGm示意性地表示数据信号端DATA的电压的最大值,用VG0示意性地表示数据信号端DATA的电压的最小值。在发光阶段,采用补偿之后的数据信号(Dn、Dn+1……)来驱动发光器件OLED正常发光,在此不详细描述该阶段。
由于外部电压补偿机制的补偿精度不够高,并且外部电压补偿受到薄膜晶体管磁滞效应的影响,导致补偿失真。而且外部电压补偿机制需要有足够的时间以及充电速率才有最佳的补偿效果。然而随着显示装置尺寸的增加,分辨率的提升,感测单元的负载也大幅上升,造成感测充电速率缓 慢或充电不足,达不到想要的补偿效果。因此针对上述问题,本公开的实施例提供了一种用于像素电路的驱动方法。
图3示出根据本公开的实施例的用于像素电路的驱动方法的示意性流程图。如图3所示,在S302,在OLED像素电路中的发光器件工作的期间,以包括内部电压补偿的第一补偿方式对OLED像素电路中用于驱动发光器件的驱动晶体管进行补偿。在本公开的实施例中,发光器件工作的期间指的是控制发光器件发光的期间,其可包括发光器件准备发光的阶段以及发光器件发光的阶段。
在S304,在发光器件不工作的期间,以包括内部电压补偿和外部电压补偿的第二补偿方式对驱动晶体管进行补偿。在本公开的实施例中,发光器件不工作的期间指的是控制发光器件不发光的期间。例如,发光器件处于全屏复位的阶段或者发光器件处于帧间、行间的显示空闲的阶段。
在该方法中,不区分执行步骤S302和步骤S304的先后顺序。即,也可以先执行步骤S304再执行步骤S302。
根据本公开实施例的用于像素电路的驱动方法,在发光器件工作的期间能够通过内部电压补偿来补偿驱动晶体管的较小的阈值电压漂移。然而内部电压补偿所能够补偿的范围有限。在驱动晶体管长期工作之后,其阈值电压漂移逐步增大,可能超过内部电压补偿所能够补偿的范围。根据本公开实施例的用于像素电路的驱动方法,在发光器件不工作的期间,以包括内部电压补偿和外部电压补偿的第二补偿方式对驱动晶体管进行补偿。第二补偿方式能够通过外部电压补偿来补偿较大的阈值电压漂移,通过内部电压补偿来实现更好的补偿精度。并且由于在发光器件不工作的期间使用第二补偿方式,所以根据本公开实施例的用于像素电路的驱动方法不会对显示效果造成负面影响。
在一个示例中,可以按照时间间隔以第二补偿方式对驱动晶体管进行补偿,例如每次扫描完整个屏幕之后执行一次以第二补偿方式对驱动晶体管进行的补偿。
在本实施例中,以包括内部电压补偿的第一补偿方式对OLED像素电 路中的驱动晶体管进行补偿例如可以包括下列阶段。在复位阶段,对驱动晶体管进行复位。在补偿阶段,对驱动晶体管进行电压补偿。在数据输入阶段,向OLED像素电路输入数据信号。在发光阶段,驱动发光器件发光。
在本实施例中,以包括内部电压补偿和外部电压补偿的第二补偿方式对驱动晶体管进行补偿例如可以包括下列阶段。在复位阶段,对驱动晶体管进行复位。在补偿阶段,对驱动晶体管进行电压补偿。在数据输入阶段,向OLED像素电路输入数据信号。在感测阶段,检测流过驱动晶体管的电流,并基于电流来计算外部补偿电压。所计算的外部补偿电压用于对数据信号的电压进行补偿。在本公开的实施例中,可将外部补偿电压叠加到数据信号的电压上,作为数据信号的电压。在这里,外部补偿电压指的是在内部电压补偿已经补偿了一部分漂移的阈值电压的基础上需要通过外部装置来补偿的阈值电压值。
此外,根据本公开实施例的用于像素电路的驱动方法并不仅限于针对图1所示的OLED像素电路来使用。本领域的技术人员应了解,在图1所示的OLED像素电路的任何变型(同时包括内部电压补偿单元和外部电压补偿单元的实施例)中都可以使用根据本公开实施例的用于像素电路的驱动方法。
根据本公开实施例的用于像素电路的驱动方法,通过包括内部电压补偿和外部电压补偿的第二补偿方式可以提高其能够补偿的驱动晶体管阈值电压漂移的范围和精度,并且因此对于OLED像素电路中的驱动晶体管的阈值电压的漂移范围的要求可以放宽。也就是说即使制备的驱动晶体管的阈值电压漂移的范围可能适量地超过常规认可的合格范围,也仍然认为该驱动晶体管合格,从而可以提升制备OLED像素电路的良率。此外,在第二补偿方式中执行的内部电压补偿,还能够避免外部电压补偿的迟滞效应,并加快外部电压补偿时的感测充电速率。
图4示出根据本公开的实施例的用于以第一补偿方式补偿OLED像素电路的信号的时序图。图5示出采用图4所示的时序图的OLED像素电路 的示例性示意图。下面结合图4所示的OLED像素电路来描述在OLED像素电路中的发光器件OLED工作的期间采用内部电压补偿方式驱动OLED像素电路的过程。该过程包括四个阶段:复位阶段、补偿阶段、数据输入阶段和发光阶段。在此,发光器件OLED工作的期间是指包括上述四个阶段的时期。
在复位阶段(即阶段Ⅰ),向第一晶体管T1的控制极输入高电压V H(即第一扫描信号端SCAN1处于高电压V H)以打开第一晶体管T1,从而使得驱动晶体管Td的控制极(即G点)的电压等于来自数据信号端DATA的第一电压V ref。向第二晶体管T2的控制极输入高电压V H(即第二扫描信号端SCAN2处于高电压V H)以打开第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压等于来自感测信号端SENSE的第二电压V L。在这里,设置V L<V ref
在补偿阶段(即阶段Ⅱ),继续打开第一晶体管T1并保持数据信号端DATA的电压,从而使得G点的电压仍然为V ref。向第二晶体管T2的控制极输入第二电压V L(即第二扫描信号端SCAN2处于第二电压V L)以关闭第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压从第二电压V L升高至第一电压V ref与驱动晶体管Td的阈值电压V th_t1的差值电压(即S点的电压等于V ref-V th_t1),也就是说,使得G点与S点之间的电压差为驱动晶体管Td的阈值电压V th_t1
在数据输入阶段(即阶段Ⅲ),数据信号端DATA的电压转变为第三电压V DATA。继续打开第一晶体管T1。通过来自数据信号端DATA的数据信号的电压V DATA使G点的电压升至V DATA以打开驱动晶体管Td。继续关闭第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压继续升高。并且在此阶段对电容器Cst充电。
图6示出在此阶段S点的电压变化示意图。随着向OLED像素电路输入数据信号的时间t的增加,S点的电压逐渐升高,例如在时刻t1处,S点的电压升高ΔV。最终,S点的电压将达到上限值V DATA-V th_t1并保持该电压值不变。在本实施例中,例如设定数据输入阶段到时刻t1处结束,则 S点的电压为V ref-V th_t1+ΔV。这样,G点与S点之间的电压差V GS=V DATA-(V ref-V th_t1+ΔV)。
在发光阶段(即阶段Ⅳ),关闭第一晶体管T1并继续关闭第二晶体管T2。在电容器Cst的保持作用下驱动晶体管Td继续打开。通过来自第一电源OVDD的高电压升高S点的电压,从而使得发光器件OLED发光。在图5中以箭头示出在此阶段OLED像素电路中的电流流向。S点的电压最终被升高至第二电源电压OVSS与发光器件OLED的发光电压V OLED之和,即升高至OVSS+V OLED。同时由于电容器Cst的保持作用,G点与S点的电压差保持数据输入阶段时的电压差V GS=V DATA-(V ref-V th_t1+ΔV)不变,因此G点的电压最终被升高为V DATA+OVSS+V OLED-(V ref-V th_t1+ΔV)。
根据电流计算公式
Figure PCTCN2017116383-appb-000001
可得到
Figure PCTCN2017116383-appb-000002
在式(1)中,μ n表示驱动晶体管Td的载流子迁移率,C ox表示栅氧化层电容,而
Figure PCTCN2017116383-appb-000003
表示驱动晶体管Td的宽长比。从式(1)可见,I OLED与V th_t1无关,因此可以消除OLED像素电路中因为驱动晶体管Td的阈值电压V th_t1的偏差导致的电流波动,从而稳定OLED的画面品质。此外,由于ΔV与μ n正相关,因此可以通过控制向OLED像素电路输入数据信号的时间来控制ΔV,以补偿驱动晶体管Td的载流子迁移率μ n,从而稳定电流I OLED
图7示出根据本公开的实施例的用于以第二补偿方式补偿OLED像素 电路的信号的时序图。图8示出采用图7所示的时序图的OLED像素电路的示例性示意图。下面结合图8所示的OLED像素电路来描述在OLED像素电路中的发光器件OLED不工作的期间采用内部电压补偿和外部电压补偿的方式驱动OLED像素电路的过程。该过程包括四个阶段:复位阶段、补偿阶段、数据输入阶段和感测阶段。
在复位阶段(即阶段⑴),向第一晶体管T1的控制极输入高电压V H(即第一扫描信号端SCAN1处于高电压V H)以打开第一晶体管T1,从而使得驱动晶体管Td的控制极(即G点)的电压等于来自数据信号端DATA的第一电压V ref。向第二晶体管T2的控制极输入高电压V H(即第二扫描信号端SCAN2处于高电压V H)以打开第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压等于来自感测信号端SENSE的第二电压V L。在这里,设置V L<V ref
在补偿阶段(即阶段⑵),继续打开第一晶体管T1并保持数据信号端DATA的电压,从而使得G点的电压仍然为V ref。向第二晶体管T2的控制极输入第二电压V L(即第二扫描信号端SCAN2处于第二电压V L)以关闭第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压从第二电压V L升高至第一电压V ref与驱动晶体管Td的阈值电压V th_t1的差值电压(即S点的电压等于V ref-V th_t1),也就是说,使得G点与S点之间的电压差为驱动晶体管Td的阈值电压V th_t1
在数据输入阶段(即阶段⑶),数据信号端DATA的电压转变为第三电压V DATA。继续打开第一晶体管T1。通过来自数据信号端DATA的数据信号的电压V DATA使G点的电压升至V DATA以打开驱动晶体管Td。继续关闭第二晶体管T2,从而使得驱动晶体管Td的第二极(即S点)的电压继续升高。并且在此阶段对电容器Cst充电。
与以第一补偿方式驱动OLED像素电路的过程中的数据输入阶段(即阶段Ⅲ)相似的,S点的电压升高至V ref-V th_t1+ΔV。这样,G点与S点之间的电压差V GS=V DATA-(V ref-V th_t1+ΔV)。
在感测阶段(即阶段⑷),关闭第一晶体管T1,打开第二晶体管T2。 在电容器Cst的保持作用下驱动晶体管Td继续打开。通过来自第一电源OVDD的高电压升高S点的电压,并通过控制感测信号端SENSE所连接的感测单元使感测信号端SENSE处于浮接状态。因此流过驱动晶体管Td的电流将不流向发光器件OLED而是通过感测信号端SENSE流向感测单元。在图8中以箭头示出在此阶段OLED像素电路中的电流流向。感测单元基于该电流计算外部补偿电压,并将外部补偿电压叠加到数据信号的电压上作为数据信号的电压。由于S点的电压在感测阶段的起始值(V ref-V th_t1+ΔV)高于第一电压V ref,因此相比于图2中所示的从V ref开始感测充电,在本实施例的感测阶段的感测充电速率更快。此外,由于在第二补偿方式中先进行内部电压补偿,因此能够避免外部电压补偿的迟滞效应。
根据本公开实施例的用于像素电路的驱动方法,通过第一和第二补偿方式能够补偿驱动晶体管的阈值电压漂移,提升OLED像素电路的良率,避免外部电压补偿的迟滞效应以及加快外部电压补偿时的感测充电速率。此外,根据本公开实施例的用于像素电路的驱动方法还能够补偿驱动晶体管的迁移率。
本公开实施例提供的显示装置可以应用于任何具有显示功能的产品,例如,电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框或导航仪等。
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本 申请的范围。
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。

Claims (10)

  1. 一种像素电路的驱动方法,其中
    所述像素电路包括发光器件和驱动晶体管,
    所述驱动方法包括:
    在所述发光器件工作的期间,以包括内部电压补偿的第一补偿方式对所述驱动晶体管进行补偿;以及
    在所述发光器件不工作的期间,以包括内部电压补偿和外部电压补偿的第二补偿方式对所述驱动晶体管进行补偿。
  2. 根据权利要求1所述的驱动方法,其中,按照时间间隔以所述第二补偿方式对所述驱动晶体管进行补偿。
  3. 根据权利要求1或2所述的驱动方法,其中,以所述第一补偿方式对所述驱动晶体管进行补偿包括:
    对所述驱动晶体管进行复位;
    对所述驱动晶体管进行电压补偿;
    向所述像素电路输入数据信号;以及
    驱动所述发光器件发光。
  4. 根据权利要求3所述的驱动方法,其中,在所述驱动晶体管的控制极与第二极之间的电压差等于所述驱动晶体管的阈值电压之前,停止向所述像素电路输入数据信号。
  5. 根据权利要求1至4中任一项所述的驱动方法,其中,以所述第二补偿方式对所述驱动晶体管进行补偿包括:
    对所述驱动晶体管进行复位;
    对所述驱动晶体管进行电压补偿;
    向所述像素电路输入数据信号;以及
    检测流过所述驱动晶体管的电流,基于所述电流来计算外部补偿电压,并用所述外部补偿电压补偿所述数据信号的电压。
  6. 根据权利要求1所述的驱动方法,其中,所述像素电路包括第一晶体管、驱动晶体管、第二晶体管、电容器和发光器件,
    其中,所述第一晶体管的控制极耦接第一扫描信号端,所述第一晶体管的第一极耦接数据信号端,所述第一晶体管的第二极耦接所述驱动晶体管的控制极;
    所述驱动晶体管的第一极耦接第一电源,所述驱动晶体管的第二极耦接所述发光器件的阳极;
    所述第二晶体管的控制极耦接第二扫描信号端,所述第二晶体管的第一极耦接感测信号端,所述第二晶体管的第二极耦接所述驱动晶体管的第二极;
    所述电容器的第一端耦接所述驱动晶体管的控制极,所述电容器的第二端耦接所述驱动晶体管的第二极;
    所述发光器件的阴极耦接第二电源。
  7. 根据权利要求6所述的驱动方法,其中,所述像素电路还包括感测单元,所述感测单元耦接所述数据信号端和所述感测信号端。
  8. 根据权利要求6或7所述的驱动方法,其中,以所述第一补偿方式对所述驱动晶体管进行补偿包括:
    打开所述第一晶体管使得所述驱动晶体管的控制极的电压等于来自所述数据信号端的第一电压,打开所述第二晶体管使得所述驱动晶体管的第二极的电压等于来自所述感测信号端的第二电压;
    继续打开所述第一晶体管,关闭所述第二晶体管,以使得所述驱动晶体管的第二极的电压从所述第二电压升高至所述第一电压与所述驱动晶体管的阈值电压的差值电压;
    继续打开所述第一晶体管,向所述数据信号端提供数据信号以打开所述驱动晶体管,继续关闭所述第二晶体管,以使得所述驱动晶体管的第二极的电压继续升高,并对所述电容器充电;以及
    关闭所述第一晶体管并继续关闭所述第二晶体管,在所述电容器的保持作用下所述驱动晶体管继续打开,从而通过所述第一电源继续升高所述驱动晶体管的第二极的电压,以驱动所述发光器件发光;
    其中,所述第二电压低于所述第一电压。
  9. 根据权利要求7所述的驱动方法,其中,以所述第二补偿方式对所述驱动晶体管进行补偿包括:
    打开所述第一晶体管使得所述驱动晶体管的控制极的电压等于来自所述数据信号端的第一电压,打开所述第二晶体管使得所述驱动晶体管的第二极的电压等于来自所述感测信号端的第二电压;
    继续打开所述第一晶体管,关闭所述第二晶体管,以使得所述驱动晶体管的第二极的电压从所述第二电压升高至所述第一电压与所述驱动晶体管的阈值电压的差值电压;
    继续打开所述第一晶体管,向所述数据信号端提供数据信号以打开所述驱动晶体管,继续关闭所述第二晶体管,以使得所述驱动晶体管的第二极的电压继续升高,并对所述电容器充电;以及
    关闭所述第一晶体管,打开所述第二晶体管,在所述电容器的保持作用下所述驱动晶体管继续打开,从而通过所述第一电源继续升高所述驱动晶体管的第二极的电压,使所述感测信号端处于浮接的状态,以使得流过所述驱动晶体管的电流输出到所述感测单元,所述感测单元基于所述电流来计算外部补偿电压,并用所述外部补偿电压补偿所述数据信号的电压;
    其中,所述第二电压低于所述第一电压。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述驱动晶体管为N型晶体管。
PCT/CN2017/116383 2017-05-05 2017-12-15 用于像素电路的驱动方法 WO2018201732A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/779,789 US11087688B2 (en) 2017-05-05 2017-12-15 Compensating method for pixel circuit
EP17899228.5A EP3621060A4 (en) 2017-05-05 2017-12-15 DRIVE METHOD FOR PIXEL CIRCUIT
JP2018548885A JP7084314B2 (ja) 2017-05-05 2017-12-15 画素回路に用いる駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710310558.3A CN108806599B (zh) 2017-05-05 2017-05-05 用于补偿oled像素电路的方法
CN201710310558.3 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018201732A1 true WO2018201732A1 (zh) 2018-11-08

Family

ID=64016444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116383 WO2018201732A1 (zh) 2017-05-05 2017-12-15 用于像素电路的驱动方法

Country Status (5)

Country Link
US (1) US11087688B2 (zh)
EP (1) EP3621060A4 (zh)
JP (1) JP7084314B2 (zh)
CN (1) CN108806599B (zh)
WO (1) WO2018201732A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863065A (zh) * 2017-11-24 2018-03-30 京东方科技集团股份有限公司 像素单元电路、驱动方法和像素电路
CN109166530B (zh) * 2018-10-31 2020-04-14 合肥鑫晟光电科技有限公司 一种像素驱动电路的驱动方法及显示驱动电路、显示装置
KR102626706B1 (ko) * 2018-12-17 2024-01-17 엘지디스플레이 주식회사 기준전압의 왜곡이 방지된 유기전계발광 표시장치
CN110047435B (zh) * 2019-04-23 2020-12-04 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板和显示装置
CN110610682A (zh) * 2019-08-20 2019-12-24 昆山国显光电有限公司 一种显示面板、像素电路的检测方法及显示装置
CN110517641B (zh) * 2019-08-30 2021-05-14 京东方科技集团股份有限公司 像素电路、参数检测方法、显示面板和显示装置
CN110544456B (zh) * 2019-09-05 2021-01-01 合肥京东方卓印科技有限公司 显示面板及其驱动方法、显示装置
CN111415631B (zh) * 2020-04-28 2022-07-12 Tcl华星光电技术有限公司 背光模组和显示设备
KR20220055554A (ko) 2020-10-26 2022-05-04 삼성디스플레이 주식회사 화소 회로, 이를 포함하는 표시 장치 및 화소 회로의 구동 방법
US11170719B1 (en) * 2020-12-10 2021-11-09 Sharp Kabushiki Kaisha TFT pixel threshold voltage compensation circuit with a source follower
CN114743516B (zh) * 2022-04-11 2023-10-20 惠科股份有限公司 补偿电路及液晶显示设备
CN114822406B (zh) * 2022-05-20 2023-12-05 昆山国显光电有限公司 显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061146A (ko) * 2010-10-26 2012-06-13 엘지디스플레이 주식회사 유기 발광장치 및 구동방법
CN103236237A (zh) * 2013-04-26 2013-08-07 京东方科技集团股份有限公司 一种像素单元电路及其补偿方法、以及显示装置
CN203179479U (zh) * 2013-04-26 2013-09-04 京东方科技集团股份有限公司 一种像素单元电路以及显示装置
CN105280136A (zh) * 2014-07-10 2016-01-27 信利半导体有限公司 一种amoled 像素电路及其驱动方法
CN105976761A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 一种像素驱动方法及显示面板
CN106409225A (zh) * 2016-12-09 2017-02-15 上海天马有机发光显示技术有限公司 有机发光像素补偿电路、有机发光显示面板及驱动方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640449B2 (ja) * 2008-06-02 2011-03-02 ソニー株式会社 表示装置及びその駆動方法と電子機器
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
CN105096817B (zh) * 2014-05-27 2017-07-28 北京大学深圳研究生院 像素电路及其驱动方法和一种显示装置
CN104464621B (zh) * 2014-11-14 2017-01-25 深圳市华星光电技术有限公司 补偿amoled电源压降的方法
CN104658485B (zh) * 2015-03-24 2017-03-29 京东方科技集团股份有限公司 Oled驱动补偿电路及其驱动方法
CN104700776B (zh) * 2015-03-25 2016-12-07 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN104933993B (zh) * 2015-07-17 2017-12-08 合肥鑫晟光电科技有限公司 像素驱动电路及其驱动方法、显示装置
CN105161051A (zh) * 2015-08-21 2015-12-16 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板、显示面板及显示装置
CN106328061B (zh) * 2016-10-14 2019-03-12 深圳市华星光电技术有限公司 Oled像素混合补偿电路及混合补偿方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061146A (ko) * 2010-10-26 2012-06-13 엘지디스플레이 주식회사 유기 발광장치 및 구동방법
CN103236237A (zh) * 2013-04-26 2013-08-07 京东方科技集团股份有限公司 一种像素单元电路及其补偿方法、以及显示装置
CN203179479U (zh) * 2013-04-26 2013-09-04 京东方科技集团股份有限公司 一种像素单元电路以及显示装置
CN105280136A (zh) * 2014-07-10 2016-01-27 信利半导体有限公司 一种amoled 像素电路及其驱动方法
CN105976761A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 一种像素驱动方法及显示面板
CN106409225A (zh) * 2016-12-09 2017-02-15 上海天马有机发光显示技术有限公司 有机发光像素补偿电路、有机发光显示面板及驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3621060A4 *

Also Published As

Publication number Publication date
EP3621060A1 (en) 2020-03-11
CN108806599B (zh) 2020-01-14
US11087688B2 (en) 2021-08-10
JP2020518840A (ja) 2020-06-25
JP7084314B2 (ja) 2022-06-14
US20200035159A1 (en) 2020-01-30
CN108806599A (zh) 2018-11-13
EP3621060A4 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2018201732A1 (zh) 用于像素电路的驱动方法
CN110036435B (zh) 像素电路、主动矩阵有机发光二极管显示面板、显示设备和补偿驱动晶体管阈值电压的方法
US10204560B2 (en) Emission-control circuit, display apparatus having the same, and driving method thereof
CN106782319B (zh) 一种像素电路、像素驱动方法、显示装置
US10354592B2 (en) AMOLED pixel driver circuit
US20190386033A1 (en) Oled array substrate, method for fabricating the same, oled pixel circuit, and display device
WO2016161866A1 (zh) 像素电路及其驱动方法、显示装置
US20210327347A1 (en) Pixel circuit and driving method thereof, and display panel
US20210082348A1 (en) Amoled pixel driving circuit, driving method and terminal
WO2016187990A1 (zh) 像素电路以及像素电路的驱动方法
JP4605261B2 (ja) 表示装置、表示装置の駆動方法および電子機器
WO2020001026A1 (zh) 像素驱动电路及方法、显示面板
WO2019037300A1 (zh) Amoled像素驱动电路
WO2018219209A1 (zh) 像素补偿电路及补偿方法、显示装置
WO2020192278A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
US11270638B2 (en) Display compensation circuit and method for controlling the same, and display apparatus
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2015085699A1 (zh) Oled像素电路及驱动方法、显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
TWI389081B (zh) 顯示裝置,顯示裝置之驅動方法及具有顯示裝置之電子設備
WO2016155161A1 (zh) Oeld像素电路、显示装置及控制方法
JP2010002795A (ja) 表示装置、表示装置の駆動方法および電子機器
US10885848B2 (en) Pixel driving circuit, driving method thereof, and electronic device
JP2008191611A (ja) 有機el表示装置、有機el表示装置の制御方法および電子機器
WO2019114573A1 (zh) 电路驱动补偿方法、电路驱动方法及装置、显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548885

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017899228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017899228

Country of ref document: EP

Effective date: 20191205