WO2018201585A1 - 用于3d成像的激光阵列 - Google Patents

用于3d成像的激光阵列 Download PDF

Info

Publication number
WO2018201585A1
WO2018201585A1 PCT/CN2017/089038 CN2017089038W WO2018201585A1 WO 2018201585 A1 WO2018201585 A1 WO 2018201585A1 CN 2017089038 W CN2017089038 W CN 2017089038W WO 2018201585 A1 WO2018201585 A1 WO 2018201585A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
sub
laser
pattern
vcsel
Prior art date
Application number
PCT/CN2017/089038
Other languages
English (en)
French (fr)
Inventor
王兆民
阎敏
许星
Original Assignee
深圳奥比中光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳奥比中光科技有限公司 filed Critical 深圳奥比中光科技有限公司
Publication of WO2018201585A1 publication Critical patent/WO2018201585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography

Definitions

  • the present invention relates to the field of optical and electronic technologies, and more particularly to a laser array for 3D imaging.
  • 3D imaging especially in the consumer field, will continue to impact or even replace the traditional 2D imaging technology.
  • the 3D imaging technology can also acquire the depth information of the target object, according to the depth information. Functions such as 3D scanning, scene modeling, and gesture interaction can be further implemented.
  • Depth cameras especially structured light depth cameras or TOF (time flight) depth cameras, are currently commonly used as hardware devices for 3D imaging.
  • the core component in the depth camera is a laser projection module.
  • the structure and function of the laser projection module are different according to the type of the depth camera.
  • the projection module disclosed in the prior art is used to project a speckle pattern into a space.
  • this speckle-structured light depth camera is also a relatively mature and widely adopted solution.
  • optical projection modules will evolve to smaller and smaller volumes and higher performance.
  • a depth camera using a VCSEL (Vertical Cavity Surface Emitting Laser) array source will replace the edge-emitting laser emitter source because of its small size, high power, and beam concentration.
  • the VCSEL array is characterized by an arrangement on an extremely small base.
  • Laser projection is performed by means of a plurality of VCSEL light sources, such as 100 VCSEL light sources arranged on a 5 mm x 5 mm semiconductor substrate.
  • the speckle pattern projected by the laser projection module requires extremely high irrelevance, which increases the design difficulty of the light source arrangement on the VCSEL array.
  • the present invention proposes a VCSEL array light source for 3D imaging.
  • the solution of the present invention includes a laser array for 3D imaging, a pattern design method for a laser array for 3D imaging, and a laser projection device Place the 3D imaging device.
  • the laser array for 3D imaging includes a plurality of VCSEL light sources arranged in a two-dimensional array on a semiconductor substrate; the arrangement of the two-dimensional array is generated by at least one sub-array rotational copy.
  • the regions of the sub-array distribution generally include sectoral regions and/or annular regions.
  • rotating replication includes rotating a sub-array from the same center point to another region to produce a replicated sub-array in the region.
  • the two-dimensional array includes a plurality of sub-arrays, wherein the adjacent two sub-arrays generally include one or more cases in which portions overlap each other, there is a spacer region without the VCSEL light source, and edges overlap.
  • the number of the sub-arrays is not less than 2, at least one of the size, the shape of the distribution area, and the rotation angle of the sub-arrays are different.
  • the arrangement of VCSEL light sources in the sub-arrays is preferably an irregular pattern.
  • the central angle includes 15°, 30°, 45°, 60°, 90° or 120°.
  • the pattern design method of the laser array for 3D imaging proposed by the present invention includes: generating at least one sub-array pattern arranged irregularly; and rotating the sub-array pattern to acquire a pattern of the laser array.
  • the laser projection device proposed by the present invention includes:
  • a lens for receiving and concentrating a light beam emitted by the laser array
  • a speckle pattern generator for splitting the beam to emit a speckle pattern beam into the space.
  • the lens is one or a combination of a single lens, a microlens array;
  • the speckle pattern generator is preferably one or a combination of a microlens array, a diffractive optical element, a grating.
  • the 3D imaging device proposed by the present invention includes:
  • a laser projection device for transmitting a structured light pattern beam into a space
  • An image capturing device configured to collect a structured light image formed by the structured light pattern beam on the target object
  • the processor receives the structured light image and calculates a depth image of the target object according to a trigonometric principle. among them:
  • the trigonometric principle refers to calculating a deviation value between the structured light image and a reference image by using a matching algorithm, and calculating the depth image according to the deviation value.
  • Advantageous effects of the present invention in comparison with the prior art include: a plurality of VCSEL light sources are arranged on the semiconductor substrate in a two-dimensional array, wherein the two-dimensional array is arranged by at least one sub-array rotation reproduction
  • the form of the two-dimensional array obtained by simply rotating the replica sub-array is arranged in any direction (such as the x-axis direction in the lateral direction or the y-axis direction in the longitudinal direction) and includes any other quadrant.
  • the regions are all irrelevant, and the two-dimensional array corresponds to the distribution of the VCSEL light source, so that the VCSEL light source distributed on the surface of the semiconductor substrate has an extremely high irrelevance.
  • FIG. 1 is a side elevational view of a structured light depth camera system in accordance with an embodiment of the present invention.
  • FIG 2 is a side view of a laser projection apparatus in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • Figure 8 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a VCSEL array in accordance with an embodiment of the present invention.
  • Figure 10 is a schematic illustration of a VCSEL array in accordance with one embodiment of the present invention.
  • the invention provides a laser array for 3D imaging, and based on the laser array, a corresponding laser projection device and a 3D imaging device are proposed.
  • the 3D imaging device here is also called a depth camera, and an image of an object captured by the depth camera.
  • the value on each pixel in the representation represents the depth value between the corresponding point in space and the depth camera.
  • a laser array, a laser projection device, and a depth camera will be described as an example, but it does not mean that the laser array can be applied only to a depth camera, any other device. Any direct or indirect use of this solution should be included in the scope of the present invention.
  • the main components of the depth camera (3D imaging device) 101 include a laser projection module (corresponding to a laser projection device) 104, an acquisition module (corresponding to an image acquisition device) 105, a main board 103, and a processor 102, which are also in some depth cameras. It is equipped with an RGB camera 107.
  • the laser projection module 104, the acquisition module 105, and the RGB camera 107 are generally mounted on the same depth camera plane and at the same baseline, and each module or camera corresponds to an incoming window 108.
  • the processor 102 is integrated on the main board 103, and the laser projection module 104 and the acquisition model 105 are connected to the main board through the interface 106.
  • the interface is an FPC interface.
  • the laser projection module is configured to project the encoded structured light pattern beam into the target space
  • the acquisition module is configured to collect the structured light image formed by the structured light pattern beam on the target object;
  • the processor Receiving a structured light image acquired by the acquisition module and calculating a depth image of the target object according to a trigonometric principle.
  • the structured light image is an infrared laser speckle pattern, the pattern having a relatively uniform particle distribution but having a high local irrelevance, where local uncorrelation refers to a dimension along a direction in the pattern ( Generally speaking, each sub-area has a high degree of uniqueness along the direction in which the laser projection module and the acquisition module are connected.
  • the corresponding acquisition module 105 is an infrared camera corresponding to the optical projection module 104.
  • Obtaining the depth image by the processor specifically refers to obtaining the depth image by calculating the deviation value between the speckle pattern and the reference speckle pattern after receiving the speckle pattern collected by the acquisition module.
  • the laser projection module 104 includes a substrate 201, a light source 202, a lens 203, and a speckle pattern generator 204.
  • the substrate 201 is typically a semiconductor substrate, such as a wafer, on which are disposed a plurality of light sources 202, which together with the light source 202 form a laser array, such as a VCSEL array chip.
  • the light source 202 includes a plurality of sub-light sources for emitting a plurality of sub-beams.
  • the light source may be a visible light source, a non-visible light such as an infrared light source, or an ultraviolet light source.
  • the light source may be a side-emitting laser or a vertical cavity surface laser, in order to make the overall projection device volume.
  • the smaller, optimal solution is to select a vertical cavity surface laser emitter array (VCSEL array) as the light source, and the VCSEL array also has the advantages of a small light source divergence angle.
  • VCSEL array is a two-dimensional light source arranged in a fixed two-dimensional pattern.
  • the VCSEL array chip can be either a die or a packaged chip. The difference between the two is that the die has a smaller size and thickness, while the packaged chip has better stability and a more convenient connection.
  • the arrangement pattern of the VCSEL array chip is required to be an irregular pattern, that is, the light sources are not arranged in a regular array, but are arranged in a certain irregular pattern.
  • the overall size of the VCSEL array chip is only on the order of micrometers, such as 5 mm x 5 mm, with tens or even hundreds of light sources arranged thereon, the distance between each light source being on the order of microns, such as 30 [mu]m.
  • Lens 203 is for receiving a beam of light emitted by VCSEL array source 202, and specifically for the laser array proposed by the present invention, in one embodiment, collimating the diverging VCSEL beam Parallel beams are used to ensure that the emitted spot energy is more concentrated.
  • a microlens array MLA may be employed in one embodiment, each microlens unit corresponding to each VCSEL array source 202, or one microlens unit and multiple VCSELs.
  • the array light source 202 corresponds.
  • the speckle pattern generator 204 is configured to receive the lens beam and emit a beam capable of forming a speckle pattern into the space.
  • the speckle pattern generator 204 is a diffractive optical element (DOE), and the DOE functions as a beam splitting,
  • DOE diffractive optical element
  • the DOE can split the lens beam by a certain number (for example, 200), and finally emit 20,000 beams into the space, ideally.
  • there will be 20,000 spots in some cases there will be some spots overlapping, resulting in a decrease in the number of spots.
  • any other optical element that can form a spot such as an MLA, a grating, or one or a combination of optical elements, can be used.
  • Lens 203 and DOE 204 may be fabricated on the same optical component in some embodiments to achieve a reduced volumetric effect.
  • FIGS. 3 through 10 are schematic diagrams of light source arrangements of a VCSEL array in accordance with an embodiment of the present invention.
  • the position of the light source represented by the circle in each figure, the square represents the semiconductor substrate.
  • some of the dividing lines and the circular outlines are added to the drawings. These lines are for illustrative purposes only and do not necessarily exist in the VCSEL array.
  • the key step in triangulation to measure depth is to calculate the pixel deviation value between the speckle image and the reference speckle pattern.
  • This calculation step is performed by the depth processor (or Dedicated processing chip), the most important step in the execution of the calculation is to find the same sub-region in the speckle image and the reference speckle image according to the matching algorithm, where the sub-region refers to Is a fixed-size pixel area in the image, such as 7x7, 11x11 pixels.
  • the matching algorithm requires that the patterns in the sub-areas in the baseline direction in the speckle image are different, that is, the speckle image is required to have a high degree of local irrelevance, where the baseline refers to the laser projection module 104 and the acquisition module 105. Connected.
  • the arrangement of the light sources 202 in the VCSEL array requires irregular arrangement.
  • a common solution is to randomly generate the position information of the light source 202 on the substrate 201 at the time of design.
  • the advantage lies in the clear design idea and the simple implementation of the design; the disadvantage is that the arrangement pattern of the light source 202 is not controllable, and it is often necessary to undergo a lot of experiments and verification to generate a relatively good irrelevant pattern, and on the other hand, in chip manufacturing. In the process, the positioning accuracy of each spot is difficult to grasp, and VCSEL chips with regular arrangement or symmetrical characteristics are better in terms of precision and efficiency in production.
  • the present invention proposes a laser array for 3D imaging with extremely high irrelevance.
  • the laser array comprises a VCSEL light source distributed in a two-dimensional array on the surface of the semiconductor substrate, wherein the arrangement of the two-dimensional array is produced by at least one sub-array rotational replication.
  • the two-dimensional array includes a plurality of sub-arrays that share the same center of the circle.
  • the two-dimensional array includes a plurality of identical fan-shaped sub-arrays, the fan-shaped sub-arrays sharing the same center.
  • the VCSEL array in the embodiment shown in FIGS. 3 to 10 can be understood as a description similar to the laser array, but the modified embodiment is not limited thereto.
  • FIG. 3 is a schematic illustration of a VCSEL array of an embodiment of the present invention having a plurality of light sources 202 arranged on a substrate 201, the light source 202 being distributed within a circular boundary 208 and which can be divided into angles of 90 degrees. 4 sectoral areas.
  • the relationship between the four sectoral regions is such that one of the adjacent two regions can be regarded as an area formed by the adjacent regions rotating 90 degrees in a fan-shaped center.
  • the region 210 can be regarded as the region 209 around the center of the circle.
  • the area formed by rotating clockwise by 90 degrees can also be regarded as the area formed by the area 205 rotated 90 degrees counterclockwise from the center.
  • the central angle of the fan-shaped sub-array may also be 15°, 30°, 45°, 60°, or 120°, etc., and related embodiments are listed later.
  • the edges between adjacent regions coincide, and there is no overlap between the patterns.
  • the pattern design as long as the pattern of any one of the sector regions is generated at any time, the pattern of the other sector regions can be reproduced by rotating until the entire region is filled. The specific way is:
  • the quadrant where the sector region 203 is located is the first quadrant.
  • the superscript 1 represents the first quadrant, and if it is expressed in polar coordinates,
  • the coordinates of each spot in the second quadrant are:
  • the coordinates of each spot in the third quadrant are:
  • the coordinates of each spot in the fourth quadrant are:
  • the biggest advantage is that it is in any direction (such as x-axis direction or longitudinal direction in the lateral direction).
  • the sub-areas of the direction y-axis direction have a high degree of irrelevance. Since the spots in each sector are randomly generated, the spots in the sector are irrelevant, and because of the rotation replication, the sub-regions in any direction including any other quadrant are irrelevant. Taking FIG.
  • one sub-region 206 is arbitrarily selected (referring to a sub-region centered on any point in the lateral direction), and in the lateral direction in the first quadrant
  • the shape of the sub-region 207 centered on any one of the points is unlikely to be the same as the sub-region 206, thereby ensuring the irrelevance of the height of the sub-region.
  • spots may also be placed on the edges of the sector.
  • Figure 4 shows an embodiment of another VCSEL array chip arrangement in which the fan-shaped area has an angle of 45 degrees and the adjacent sector-shaped area is replicated by a 45-degree clockwise/counter-clockwise rotation until the entire area is filled. Sectoral area.
  • Figure 3 when the number of spots in the sector is the same, the rotation complex The increase in the number of passes increases the number and density of spots, which is twice the number of VCSEL arrays shown in FIG.
  • FIG. 5 shows a case where two adjacent sector regions overlap.
  • the angle of the sector region in FIG. 3 is 90 degrees, and a total of four sector regions are generated by rotating 90 degrees.
  • the angle of the sector area in Fig. 5 is also 90 degrees, the rotation angle is 72 degrees, and finally five sector-shaped areas are formed, and the adjacent two sector-shaped areas partially overlap, as shown in Fig. 5.
  • the rotation angle is also possible to set the rotation angle to be variable, for example, to alternately rotate 72 degrees and 90 degrees until the entire area is filled, and the two adjacent fan-shaped sub-arrays of the thus obtained two-dimensional array have partial overlap and edge coincidence. happening.
  • Figure 6 shows the interval between two adjacent sector-shaped areas.
  • the angle of the sector-shaped area in Figure 4 is 45 degrees, and a total of eight sector-shaped areas are generated by the rotation 45.
  • the angle of the sector in the 6 is still 45 degrees, but the angle of rotation is every 90 degrees, eventually resulting in a gap between the two adjacent sectors without a VCSEL source.
  • the VCSEL array generated in this way is sparse, and the sparse array is advantageous for obtaining close-range depth images. It can also be rotated alternately by 90 degrees, 45 degrees, and 30 degrees.
  • the fan-shaped sub-array of the two-dimensional array thus obtained includes three overlapping portions, overlapping regions with no VCSEL light source, and overlapping edges, which can be obtained by varying the rotation angle. There are also two-dimensional arrays of multiple or one of the above three cases.
  • the inventors have found that the size of the sector area, that is, the central angle should be set to an angle of 15°, 30°, 45°, 60°, 90° or 120°, and the angle of the rotation reproduction is preferably set according to the angle of the sector area. Finally, it is guaranteed to fill the entire area, the edges of adjacent sectoral areas coincide and the contents of each other do not coincide. For example, when the size of the sector area is 15°, the angle of the rotation reproduction is 15°, and a total of 24 sector areas are generated.
  • the rotationally replicated sub-array is located in a sector area 701 and a plurality of annular areas 702 and 703.
  • the number and arrangement of the light sources in the three sub-arrays may be the same or different. Controlling the arrangement of the light sources in each annular region can achieve the effect control of the overall light source arrangement. For example, the density of the light source from the inside to the outside is getting smaller and smaller, which causes the overall light source to be arranged closer to the center of the circle.
  • the arrangement of VCSEL light sources in the sub-array is an irregular pattern.
  • the angle of each annular region and the angle of rotation may also be different, which is not limited herein. As shown in FIG.
  • the angle of the sector of the inner ring is 45 degrees, and the angle of the rotation replication is also 45 degrees, and the outer ring.
  • the angles of the two annular regions are 60 degrees and 90 degrees, respectively, and the rotation angles are 60 degrees and 90 degrees, respectively, and the density of the inner to outer spots (ie, the light source) is getting smaller and smaller.
  • the inner ring has a sector angle of 90 degrees and a rotational replication angle of 72 degrees, the outer ring.
  • the angles of the two annular regions are 120 degrees and 45 degrees, respectively, and the rotation angles are 120 degrees and 90 degrees, respectively.
  • the adjacent two sub-arrays in the corresponding two-dimensional array include: partially overlapping each other, and there is no VCSEL light source interval. The region and the edge coincide with each other, and by changing the rotation angle, a two-dimensional array of multiple or one of the above three cases can be obtained.
  • the area of the sub-array distribution includes a sector area and/or an annular area.
  • the number of sector areas is one, and the number of ring areas is two.
  • the number can also be other quantities.
  • the sector area As shown in FIG. 9, compared with the case where the sector area is single in FIG. 3 to FIG. 6, the sector area here is different, which are 901 and 902, respectively, and the angles are 15 degrees and 30 degrees, respectively. At 45 degrees, the number of light sources in the area is also different. It can be understood that the angular size of the sector and the distribution of the spots can have any other situation.
  • each sector area may also be different. As shown in FIG. 10, the rotation angle of the sector area 901 is 75 degrees, and the rotation angle of the sector area 902 is constantly changing, that is, 30 degrees, 60 degrees, 30 degrees, 60 degrees, 30 degrees, 60 degrees, 30 degrees.
  • the shape of the distribution area (sector and/or ring), the size, the number, the arrangement of the spots (including the density), and the angle of the rotation reproduction are set according to different requirements. , can generate a variety of pattern shapes.
  • the number of the sub-arrays is not less than 2, at least one of the size, the shape of the distribution region, and the rotation angle between the sub-arrays is different. Therefore, the above description is not intended to limit the invention, but rather to exemplify the idea of the invention.
  • the size of the sector or annular region that is, the angle should be set to an angle of 15°, 30°, 45°, 60°, 90°, 120°, etc.
  • the angle of rotation replication is preferably according to the sector or annular region.
  • the angle is set to ensure that the entire area is filled, the edges of adjacent areas coincide and the contents of each other do not coincide. For example, when the size of the sector area is 15°, the angle of the rotation reproduction is 15°, and a total of 24 sector areas are generated. When the size of the annular region is 30°, the angle of rotation replication is 30°, resulting in a total of 12 annular regions.
  • the number of light sources in the sub-array area cannot be too much, and the inventors found that the number of light sources is not excessive.
  • the number of light sources of the entire VCSEL array is not more than 576, thereby achieving better results.
  • the spacing between the light sources is generally in accordance with the needs of the production process, and the average interval should be 8 ⁇ m to 30 ⁇ m.
  • the arrangement pattern of the light sources in the VCSEL chip in the embodiment shown in FIGS. 3 to 10 should be understood as a description of a similar pattern, and a design method for generating the pattern is correspondingly given, that is, First generate one or more sub-arrays, then rotate the copies of these sub-arrays to finally generate the entire pattern. It is not excluded that there are other design methods to achieve the same effect as the sub-array rotation copy, that is, to produce a pattern having the same characteristics as the rotation copy. It is understood that any other design method that achieves the same effect as the rotary copy VCSEL pattern belongs to Within the scope of protection of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种用于3D成像的激光阵列、用于3D成像的激光阵列的图案设计方法、激光投影装置及3D成像设备(101),其中用于3D成像的激光阵列包括:在半导体衬底(201)上以二维阵列形式排列的多个VCSEL光源(202);二维阵列的排布方式是通过至少一个子阵列旋转复制的形式产生,以简单地旋转复制子阵列的形式获取到的二维阵列的排布方式沿任一方向上的包含了其他任何象限的子区域均具有不相关性,二维阵列对应的是VCSEL光源(202)的分布情况,从而分布在半导体衬底(201)表面的VCSEL光源(202)具有极高的不相关性,解决了现有技术中用于3D成像的VCSEL光源(202)的不相关性低的问题,激光阵列主要应用在深度相机中。

Description

用于3D成像的激光阵列 技术领域
本发明涉及光学及电子技术领域,特别是涉及一种用于3D成像的激光阵列。
背景技术
3D成像特别是应用于消费领域中的3D成像技术将不断冲击甚至取代传统的2D成像技术,3D成像技术除了拥有对目标物体进行2D成像能力之外还可以获取目标物体的深度信息,根据深度信息可以进一步实现3D扫描、场景建模、手势交互等功能。深度相机特别是结构光深度相机或TOF(时间飞行)深度相机是目前普遍被用来3D成像的硬件设备。
深度相机中的核心部件是激光投影模组,按照深度相机种类的不同,激光投影模组的结构与功能也有区别,比如现有技术中所公开的投影模组用于向空间中投射斑点图案以实现结构光深度测量,这种斑点结构光深度相机也是目前较为成熟且广泛采用的方案。随着深度相机应用领域的不断扩展,光学投影模组将向越来越小的体积以及越来越高的性能上不断进化。
采用VCSEL(垂直腔面发射激光器)阵列光源的深度相机因为具有体积小、功率大、光束集中等优点将会取代边发射激光发射器光源,VCSEL阵列的特点是在一个极其小的基地上通过布置多个VCSEL光源的方式来进行激光投影,比如在5mmx5mm的半导体衬底上布置100个VCSEL光源。对于结构光深度相机而言,其激光投影模组向外投射的斑点图案要求具有极高的不相关性,这一要求增加了VCSEL阵列上光源排列的设计难度。
发明内容
为了解决用于3D成像的VCSEL光源的不相关性低的问题,本发明提出一种用于3D成像的VCSEL阵列光源。
本发明的技术问题通过以下的技术方案予以解决:本发明的解决方案包括用于3D成像的激光阵列、用于3D成像的激光阵列的图案设计方法、激光投影装 置及3D成像设备。所述用于3D成像的激光阵列,包括:在半导体衬底上以二维阵列形式排列的多个VCSEL光源;所述二维阵列的排布方式是通过至少一个子阵列旋转复制的形式产生。在某些实施例中,所述子阵列分布的区域一般包括扇形区域和/或环形区域。在另一些实施例中,旋转复制包括由所述子阵列通过同一个中心点旋转到其他区域后在该区域产生一个复制的子阵列。二维阵列包括了多个子阵列,其中,相邻的两个子阵列之间一般包括:部分相互重叠、存在无所述VCSEL光源的间隔区域、边缘重合的一种或多种情况。
在又一些实施例中,所述子阵列数量不小于2时,所述子阵列之间大小、分布区域形状、旋转角度三方面中的至少一个方面不同。
另外,所述子阵列中VCSEL光源的排列优选为不规则图案。
考虑到光源数量及子阵列的圆心角的影响,经过研究得出,所述子阵列中VCSEL光源的数量不超过24,所述二维阵列中VCSEL光源的数量不超过576;所述子阵列的圆心角包括15°、30°、45°、60°、90°或120°。
本发明所提出的用于3D成像的激光阵列的图案设计方法包括:生成至少一个排列不规则的子阵列图案;旋转复制所述子阵列图案获取所述激光阵列的图案。
另外,本发明所提出的激光投影装置,包括:
上述任一所述的激光阵列;
透镜,用于接收且汇聚由所述激光阵列发射的光束;
斑点图案生成器,用于将所述光束进行分束后向空间中发射斑点图案光束。
所述透镜最好为单个透镜、微透镜阵列中的一种或组合;所述斑点图案生成器最好为微透镜阵列、衍射光学元件、光栅中的一种或组合。
此外,本发明所提出的3D成像设备,包括:
上述任一所述的激光投影装置,用于向空间中发射结构光图案光束;
图像采集装置,用于采集由所述结构光图案光束照射在目标物体上所形成的结构光图像;
处理器,接收所述结构光图像并根据三角法原理计算出所述目标物体的深度图像。其中:
所述三角法原理指的是利用匹配算法计算所述结构光图像与参考图像之间的偏离值,根据所述偏离值计算出所述深度图像。
本发明与现有技术对比的有益效果包括:多个VCSEL光源以二维阵列的形式排列在所述半导体衬底上,其中,所述二维阵列的排布方式是通过至少一个子阵列旋转复制的形式产生,以简单地旋转复制子阵列的形式获取到的二维阵列的排布方式沿任一方向上(比如沿横向方向x轴方向或纵向方向y轴方向)的包含了其他任何象限的子区域均具有不相关性,二维阵列对应的是VCSEL光源的分布情况,从而分布在半导体衬底表面的VCSEL光源具有极高的不相关性。
附图说明
图1是本发明具体实施方式中的结构光深度相机***的侧视图。
图2是本发明具体实施方式中的激光投影装置的侧视图。
图3是本发明的一种实施例的VCSEL阵列的示意图。
图4是本发明的一种实施例的VCSEL阵列的示意图。
图5是本发明的一种实施例的VCSEL阵列的示意图。
图6是本发明的一种实施例的VCSEL阵列的示意图。
图7是本发明的一种实施例的VCSEL阵列的示意图。
图8是本发明的一种实施例的VCSEL阵列的示意图。
图9是本发明的一种实施例的VCSEL阵列的示意图。
图10是本发明的一种实施例的VCSEL阵列的示意图。
具体实施方式
下面对照附图并结合优选的实施方式对本发明作进一步说明。
本发明提出一种用于3D成像的激光阵列,并基于这一激光阵列提出了对应的激光投影装置以及3D成像设备,这里的3D成像设备又叫深度相机,深度相机所拍摄到的物体的图像中每个像素上的值代表的是空间中对应的点距离深度相机的之间的深度值。在后面的说明中将对激光阵列、激光投影装置以及深度相机为例进行说明,但并不意味着这种激光阵列仅能应用在深度相机中,任何其他装置 中凡是直接或间接利用该方案都应被包含在本发明的保护范围中。
图1所示的基于结构光的深度相机侧面示意图。深度相机(3D成像设备)101主要组成部件有激光投影模组(相当于激光投影装置)104、采集模组(相当于图像采集装置)105、主板103以及处理器102,在一些深度相机中还配备了RGB相机107。激光投影模组104、采集模组105以及RGB相机107一般被安装在同一个深度相机平面上,且处于同一条基线,每个模组或相机都对应一个进光窗口108。一般地,处理器102被集成在主板103上,而激光投影模组104与采集模型105通过接口106与主板连接,在一种实施例中所述的接口为FPC接口。其中,激光投影模组用于向目标空间中投射经编码的结构光图案光束,采集模组,用于采集由所述结构光图案光束照射在目标物体上所形成的结构光图像;处理器,接收采集模组采集的结构光图像并根据三角法原理计算出所述目标物体的深度图像。
在一个实施例中,结构光图像为红外激光散斑图案,图案具有颗粒分布相对均匀但具有很高的局部不相关性,这里的局部不相关性指的是图案中沿某一个方向维度上(一般指沿着激光投影模组与采集模组连线所在的方向)各个子区域都具有较高的唯一性。对应的采集模组105为与光学投影模组104对应的红外相机。利用处理器获取深度图像具体地指接收到由采集模组采集到的散斑图案后,通过计算散斑图案与参考散斑图案之间的偏离值来进一步得到深度图像。
图2是图1中激光投影模组104的一种实施例。激光投影模组104包括衬底201、光源202、透镜203以及斑点图案生成器204。衬底201一般为半导体衬底,比如晶圆,在其上布置多个光源202,衬底201与光源202共同构成了激光阵列,例如VCSEL阵列芯片。光源202包含多个子光源用于发射多个子光束,光源可以是可见光、不可见光如红外、紫外等激光光源,光源的种类可以是边发射激光也可以垂直腔面激光,为了使得整体的投影装置体积较小,最优的方案是选择垂直腔面激光发射器阵列(VCSEL阵列)作为光源,VCSEL阵列还具有光源发散角小等优点。图中为了方便示意,仅在一维上列出3个子光源,事实上VCSEL阵列是以固定二维图案排列的二维光源。VCSEL阵列芯片可以是裸片也可以经过封装后的芯片,两者的区别在于,裸片拥有更小的体积和厚度,而封装芯片则具有更好的稳定性以及更方便的连接。
为了使得激光投影装置发射出的图案具有均匀、不相关等特性,要求VCSEL阵列芯片的排列图案为不规则图案,即光源并非以规则阵列排列,而是以一定的不规则图案排列。在一些实施例中,VCSEL阵列芯片整体大小仅在微米量级,比如5mm×5mm大小,上面排列了几十个甚至上百个光源,各个光源之间的距离处于微米量级,比如30μm。
透镜203用于接收由VCSEL阵列光源202发射的光束,并对光束进行汇聚,所述VCSEL阵列光源具体是指本发明所提出的激光阵列,在一种实施例中,将发散的VCSEL光束准直成平行光束,以确保发射出的斑点能量更加集中。除了用单个透镜之外,在一个实施例中也可以采用微透镜阵列(MLA),微透镜阵列中每一个微透镜单元与每个VCSEL阵列光源202对应,也可以一个微透镜单元与多个VCSEL阵列光源202对应。
斑点图案生成器204用于接收透镜光束并向空间中发射能形成斑点图案的光束,在一种实施例中,斑点图案生成器204是衍射光学元件(DOE),DOE起到分束的作用,比如当光源202数量为100时,即经由透镜传输到DOE上的光束为100,DOE可以将透镜光束以某一数量(比如200)的倍率进行分束,最终向空间中发射20000个光束,理想情况下将会看到有20000个斑点(在一些情况下会有一些斑点重叠的情形,导致斑点数量减少)。除了DOE之外,也可以采用其他任何可以形成斑点的光学元件,比如MLA、光栅或者多种光学元件的一种或组合。
透镜203与DOE204在一些实施例中可以被制作在同一个光学元件上,以达到缩小体积的效果。
图3至图10是根据本发明的实施例的VCSEL阵列的光源排列示意图。在每个图中圆圈代表的光源所在的位置,方形代表的是半导体衬底。为了便于对本发明概念的阐述,在图中还增加了一些分隔线以及圆形的轮廓线,这些线仅用于说明,并不一定真实存在于VCSEL阵列中。
基于结构光深度相机特别是基于斑点图案的结构光而言,三角法测量深度的关键步骤是要计算斑点图像与参考斑点图案之间的像素偏离值,这一计算的步骤由深度处理器(或专用处理芯片)来执行的,计算的执行过程中最重要的一步是要根据匹配算法寻找斑点图像与参考斑点图像中相同的子区域,这里的子区域指 的是图像中一个固定大小的像素区域,比如7x7、11x11像素。匹配算法要求斑点图像中沿基线方向上的各个子区域内的图案均不相同,即要求斑点图像具有高度的局部不相关性,这里的基线指的是激光投影模组104与采集模组105的连线。
为了满足局部不相关性这一要求,一般地,VCSEL阵列中光源202的排列要求不规则排列,一种常用的方案是在设计时在衬底201上随机生成光源202位置信息,这一方案的优点在于设计思路清晰,设计执行起来较为简单;缺点在于光源202排列图案的不可控性较强,要想生成一个比较好的不相关图案往往需要经过大量的实验和验证,另一方面在芯片制造过程中对每个斑点的定位精度难以把握,往往具有一些规则排列或者对称特性的VCSEL芯片在制作时的精度、效率等方面会更好。本发明提出了一种用于3D成像的激光阵列,具有极高的不相关性。激光阵列包括VCSEL光源,VCSEL光源以二维阵列的形式分布在所述半导体衬底的表面,其中,二维阵列的排布方式是通过至少一个子阵列旋转复制的形式产生。二维阵列包括多个子阵列,所述子阵列共用同一个圆心。当二维阵列的排布方式是通过扇形子阵列旋转复制的形式产生时,二维阵列包括多个相同的扇形子阵列,所述扇形子阵列共用同一个圆心。图3~图10所示实施例中的VCSEL阵列可以理解为类似所述激光阵列的描述,但变形的实施方式不仅限于此。
在图3所示的是本发明的一种实施例的VCSEL阵列的示意图,多个光源202排列在衬底201上,光源202分布在圆形边界208以内,并且可以被分成角度为90度的4个扇形区域。四个扇形区域之间的关系为,相邻两个区域中,其中一个区域可以看成是相邻的区域以扇形圆心旋转90度后所形成的区域,比如区域210可以看成区域209围绕圆心顺时针旋转90度所形成的区域,也可以看成是区域205以圆心逆时针旋转90度所形成的区域。在其他实施例中,所述扇形子阵列的圆心角也可以是15°、30°、45°、60°、或120°等,在后面列举了相关的实施例。在本实施例中,相邻的区域之间边缘重合,图案之间则没有重合。在图案设计时,只要随时生成其中任何一个扇形区域的图案,就可以通过旋转的方法复制出其他扇形区域的图案,直到整个区域都被填满。具体地方式为:
以图3为例,假如以圆心为原点建立直角坐标系,扇形区域203所在的象限为第一象限。首先在第一象限随机生成多个(以24个为例)斑点的坐标:
Figure PCTCN2017089038-appb-000001
其中上标1代表第一象限,若用极坐标表示,则为
Figure PCTCN2017089038-appb-000002
其次计算第二、三、四象限中斑点的坐标,其中:
第二象限中各个斑点的坐标为:
Figure PCTCN2017089038-appb-000003
第三象限中各个斑点的坐标为:
Figure PCTCN2017089038-appb-000004
第四象限中各个斑点的坐标为:
Figure PCTCN2017089038-appb-000005
这样只要有了第一象限代表的扇形区域中的各个斑点的坐标就可以根据以上的公式直接得到其他扇形区域中各个点的坐标了。
通过旋转复制的方式除了仅需要随机生成部分区域内的斑点就可以生成整个区域的斑点以提高可控性之外,最大的优点在于,沿任何一个方向上(比如沿横向方向x轴方向或纵向方向y轴方向)的子区域均具有高度的不相关性。由于每个扇形区域内的斑点是随机生成的,因而在扇形区域内斑点具有不相关性,另外由于是旋转复制,导致沿任一方向上的包含了其他任何象限的子区域均具有不相关性,以图3中为例,比如沿横向方向(x轴方向),任意选取一个子区域206(指的是以该横向方向上任一点为中心的子区域),而在第一象限中在该横向方向上任何一个点为中心的子区域207的形状均不可能与子区域206相同,由此即保证了子区域高度的不相关性。在本实施例中,扇形区域的边缘上也可以放置斑点。
图4所示的是另一种VCSEL阵列芯片排列的实施例,其中扇形区域的角度为45度,通过顺/逆时针旋转45度进行相邻扇形区域的复制直到填满整个区域,总共有8个扇形区域。相对于图3而言,当扇形区域内斑点数量相同时,旋转复 制次数的增加则增加了斑点的数量与密度,斑点数量是图3所示VCSEL阵列的两倍。
图5中所示的是相邻两个扇形区域有重叠的情形,对比于图3,图3中扇形区域的角度为90度,通过旋转90度复制的方式总共生成了4个扇形区域,而图5中扇形区域的角度虽然也是90度,但旋转角度则为72度,最终生成了5个扇形区域,相邻的两个扇形区域之间有部分重叠,如图5中所示。也可以将旋转角度设置为可变化的,例如交替旋转72度跟90度直到填满整个区域,如此获取的二维阵列的相邻的两个扇形子阵列之间同时存在部分重叠与边缘重合的情况。
图6中所示是相邻两个扇形区域之间有间隔的情形,对比于图4,图4中扇形区域角度为45度,通过旋转45复制的方式总共生成了8个扇形区域,而图6中扇形区域的角度依然是45度,但旋转角度则为每90度旋转,最终导致相邻两个扇形区域之间存在无VCSEL光源的间隔区域。这种方式所生成的VCSEL阵列较为稀疏,稀疏阵列有利于近距离的深度图像的获取。也可以交替旋转90度、45度、30度,如此获取的二维阵列的扇形子阵列之间包括部分相互重叠、存在无VCSEL光源的间隔区域、边缘重合三种情况,通过变化旋转角度可获取同时存在上述三种情况的多种或一种的二维阵列。
经过论证,发明人发现扇形区域的大小即圆心角宜设置为15°、30°、45°、60°、90°或120°等角度,而旋转复制的角度最好根据扇形区域的角度来设置,最终保证填满整个区域、相邻的扇形区域边缘重合且相互之间的内容没有重合。比如当扇形区域的大小为15°时,旋转复制的角度为15°,总共产生24个扇形区域。
图7所示的实施例中,旋转复制的子阵列位于一个扇形区域701以及多个环形区域702和703中,三个子阵列中的光源数量及排列方式可以相同也可以不同。控制各个环形区域内光源的排列可以达到对整体光源排列的效果控制,比如由内至外光源的密度越来越小,会导致整体光源排列越靠近圆心越密集。所述子阵列中VCSEL光源的排列为不规则图案。另外,各个环形区域的角度以及旋转的角度也可以不一样,在此不做限定,如图8所示,内圈的扇形区域角度为45度,旋转复制的角度也为45度,而外圈两个环形区域的角度分别为60度和90度,旋转角度分别为60度及90度,另外由内至外斑点(即光源)的密度越来越小。在又一些实施例中,内圈的扇形区域角度为90度,旋转复制角度为72度,外圈 两个环形区域的角度分别为120度和45度,旋转角度分别为120度及90度,相应的二维阵列中相邻的两个子阵列之间包括:部分相互重叠、存在无VCSEL光源的间隔区域、边缘重合三种情况,通过变化旋转角度可获取同时存在上述三种情况的多种或一种的二维阵列。
所述子阵列分布的区域包括扇形区域和/或环形区域,在本实施例中扇形区域数量为1个、环形区域数量2个,在其他实施例中也可以没有扇形区域的子阵列,环形区域的数量也可以是其他数量。
如图9所示,相比于图3~图6中扇形区域单一的情形,这里的扇形区域有不相同的两个,分别是901及902,角度分别为15度与30度,旋转角度均为45度,区域中光源的数量也不相同。可以理解的是,扇形区域的角度大小以及斑点分布可以有其他任意情形。
而对于旋转角度,各个扇形区域也可以不同,如图10所示,扇形区域901的旋转角度为75度,而扇形区域902的旋转角度在不断发生变化,即30度、60度、30度、60度、30度、60度、30度。
由图3至图10所描述的方法中可知,根据不同的需求,通过设置子阵列的分布区域形状(扇形和/或环形)、大小、数量、斑点排列方式(包括密度)以及旋转复制的角度,可以生成多种多样的图案形状。所述子阵列数量不小于2时,所述子阵列之间大小、分布区域形状、旋转角度三方面中的至少一个方面不同。因此,以上的说明并非是对本发明的局限,而是对本发明的思想进行举例说明。
但也并非任意设置子阵列所在区域的大小以及旋转复制的角度都是可行的,当扇形区域太小或旋转复制的角度太小时,会导致不相关性降低。另外子阵列所在区域中斑点的数量也会影响不相关性。
经过论证,发明人发现扇形或环形区域的大小即角度宜设置为15°、30°、45°、60°、90°、120°等角度,而旋转复制的角度最好根据扇形或环形区域的角度来设置,最终保证填满整个区域、相邻的区域边缘重合且相互之间的内容没有重合。比如当扇形区域的大小为15°时,旋转复制的角度为15°,总共产生24个扇形区域。当环形区域的大小为30°时,旋转复制的角度为30°,总共产生12个环形区域。
另外,子阵列区域中光源的数量也不能太多,发明人发现光源的数量以不超 过24个为宜,整个VCSEL阵列的光源数量以不超过576个为宜,由此可以达到较佳的效果。光源之间的间隔一般根据生产工艺的需求,平均间隔应在8μm~30μm为宜。
在本发明中,图3~图10所示的实施例中VCSEL芯片中光源的排列图案应理解为是对类似图案的一种描述,同时相应给出了一种生成该图案的设计方法,即首先生成一个或多个子阵列,然后对这些子阵列进行旋转复制最终生成整幅图案。不排除有其他设计方法来达到与利用子阵列旋转复制同等的效果,即产生与旋转复制具有相同特征的图案,可以理解的是,其他任何设计方法所达到与旋转复制同等效果的VCSEL图案也属于本发明的保护范围内。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。

Claims (12)

  1. 一种用于3D成像的激光阵列,其特征在于,包括:在半导体衬底上以二维阵列形式排列的多个VCSEL光源;所述二维阵列的排布方式是通过至少一个子阵列旋转复制的形式产生。
  2. 如权利要求1所述的激光阵列,其特征在于,所述子阵列分布的区域包括扇形区域和/或环形区域。
  3. 如权利要求1所述的激光阵列,其特征在于,所述旋转复制包括由所述子阵列通过同一个中心点旋转到其他区域后在该区域产生一个复制的子阵列。
  4. 如权利要求1所述的激光阵列,其特征在于,所述二维阵列中相邻的两个子阵列之间包括:部分相互重叠、存在无所述VCSEL光源的间隔区域、边缘重合的一种或多种情况。
  5. 如权利要求1所述的激光阵列,其特征在于,所述子阵列数量不小于2时,所述子阵列之间大小、分布区域形状、旋转角度三方面中的至少一个方面不同。
  6. 如权利要求1所述的激光阵列,其特征在于,所述子阵列中VCSEL光源的排列为不规则图案。
  7. 如权利要求1所述的激光阵列,其特征在于,所述子阵列中VCSEL光源的数量不超过24,所述二维阵列中VCSEL光源的数量不超过576。
  8. 如权利要求1所述的激光阵列,其特征在于,所述子阵列的圆心角包括15°、30°、45°、60°、90°或120°。
  9. 一种如权利要求1-8任一所述用于3D成像的激光阵列的图案设计方法,其特征在于,包括:生成至少一个排列不规则的子阵列图案;旋转复制所述子阵列图案获取所述激光阵列的图案。
  10. 一种激光投影装置,其特征在于,包括:
    权利要求1~8任一所述的激光阵列;
    透镜,用于接收且汇聚由所述激光阵列发射的光束;
    斑点图案生成器,用于将所述光束进行分束后向空间中发射斑点图案光束。
  11. 如权利要求10所述的激光投影装置,其特征在于:
    所述透镜为单个透镜、微透镜阵列中的一种或组合;
    所述斑点图案生成器为微透镜阵列、衍射光学元件、光栅中的一种或组合。
  12. 一种3D成像设备,其特征在于,包括:
    权利要求10~11任一所述的激光投影装置,用于向空间中发射结构光图案光束;
    图像采集装置,用于采集由所述结构光图案光束照射在目标物体上所形成的结构光图像;
    处理器,接收所述结构光图像并根据三角法原理计算出所述目标物体的深度图像。
PCT/CN2017/089038 2017-05-04 2017-06-19 用于3d成像的激光阵列 WO2018201585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710309222.5A CN106972347B (zh) 2017-05-04 2017-05-04 用于3d成像的激光阵列
CN201710309222.5 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201585A1 true WO2018201585A1 (zh) 2018-11-08

Family

ID=59330278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089038 WO2018201585A1 (zh) 2017-05-04 2017-06-19 用于3d成像的激光阵列

Country Status (2)

Country Link
CN (1) CN106972347B (zh)
WO (1) WO2018201585A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045685A1 (en) * 2019-09-04 2021-03-11 Ams Sensors Singapore Pte. Ltd. Designing and constructing dot projectors for three-dimensional sensor modules
CN113868905A (zh) * 2021-09-10 2021-12-31 北京工业大学 一种运用粒子群算法优化vcsel阵列排布的方法
CN114727089A (zh) * 2022-02-28 2022-07-08 深圳博升光电科技有限公司 一种结构光***及具有其的电子设备、控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026392B (zh) * 2017-05-15 2022-12-09 奥比中光科技集团股份有限公司 Vcsel阵列光源
CN109521578B (zh) * 2017-09-19 2021-02-26 奥比中光科技集团股份有限公司 深度相机
CN107678225A (zh) * 2017-09-19 2018-02-09 深圳奥比中光科技有限公司 基于高密度vcsel阵列光源的结构光投影模组
CN108363267A (zh) * 2018-02-14 2018-08-03 深圳奥比中光科技有限公司 规则阵列光源的结构光投影模组
EP3567427B1 (en) * 2018-03-12 2023-12-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Control method and control device for a depth camera
CN108509867B (zh) * 2018-03-12 2020-06-05 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置
CN108227361B (zh) * 2018-03-12 2020-05-26 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置
CN108333860B (zh) * 2018-03-12 2020-01-10 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置
CN108490637B (zh) * 2018-04-03 2019-08-23 Oppo广东移动通信有限公司 激光发射器、光电设备、深度相机和电子装置
CN108490725B (zh) * 2018-04-16 2020-06-12 深圳奥比中光科技有限公司 Vcsel阵列光源、图案投影仪及深度相机
CN109471322A (zh) * 2018-11-24 2019-03-15 深圳阜时科技有限公司 投影装置及其光源和设备
CN109541875B (zh) * 2018-11-24 2024-02-13 深圳阜时科技有限公司 一种光源结构、光学投影模组、感测装置及设备
CN109755861A (zh) * 2018-12-27 2019-05-14 江西瑞坤科技发展有限公司 一种应用于3d成像的vcsel阵列、激光投影装置及3d成像设备
CN110471081A (zh) * 2019-04-30 2019-11-19 深圳市光鉴科技有限公司 基于同步ToF离散点云的3D成像装置及电子设备
CN111947565A (zh) * 2019-04-30 2020-11-17 深圳市光鉴科技有限公司 基于同步ToF离散点云的3D成像方法
WO2021196976A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种光发射装置及电子设备
CN111224320A (zh) * 2020-04-21 2020-06-02 常州纵慧芯光半导体科技有限公司 一种激光器芯片及其制造方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735789A (zh) * 2002-11-11 2006-02-15 秦内蒂克有限公司 测距设备
US20080240502A1 (en) * 2007-04-02 2008-10-02 Barak Freedman Depth mapping using projected patterns
CN103309137A (zh) * 2012-03-15 2013-09-18 普莱姆森斯有限公司 结构光的投影机
CN104798271A (zh) * 2012-11-29 2015-07-22 皇家飞利浦有限公司 用于向场景上投射结构化光图案的激光设备
CN107026392A (zh) * 2017-05-15 2017-08-08 深圳奥比中光科技有限公司 Vcsel阵列光源
CN107039885A (zh) * 2017-05-04 2017-08-11 深圳奥比中光科技有限公司 应用于3d成像的激光阵列

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104918035A (zh) * 2015-05-29 2015-09-16 深圳奥比中光科技有限公司 一种获取目标三维图像的方法及***
CN106569382B (zh) * 2016-10-26 2018-07-06 深圳奥比中光科技有限公司 激光投影仪及其深度相机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735789A (zh) * 2002-11-11 2006-02-15 秦内蒂克有限公司 测距设备
US20080240502A1 (en) * 2007-04-02 2008-10-02 Barak Freedman Depth mapping using projected patterns
CN103309137A (zh) * 2012-03-15 2013-09-18 普莱姆森斯有限公司 结构光的投影机
CN104798271A (zh) * 2012-11-29 2015-07-22 皇家飞利浦有限公司 用于向场景上投射结构化光图案的激光设备
CN107039885A (zh) * 2017-05-04 2017-08-11 深圳奥比中光科技有限公司 应用于3d成像的激光阵列
CN107026392A (zh) * 2017-05-15 2017-08-08 深圳奥比中光科技有限公司 Vcsel阵列光源

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045685A1 (en) * 2019-09-04 2021-03-11 Ams Sensors Singapore Pte. Ltd. Designing and constructing dot projectors for three-dimensional sensor modules
CN113868905A (zh) * 2021-09-10 2021-12-31 北京工业大学 一种运用粒子群算法优化vcsel阵列排布的方法
CN113868905B (zh) * 2021-09-10 2024-03-29 北京工业大学 一种运用粒子群算法优化vcsel阵列排布的方法
CN114727089A (zh) * 2022-02-28 2022-07-08 深圳博升光电科技有限公司 一种结构光***及具有其的电子设备、控制方法

Also Published As

Publication number Publication date
CN106972347A (zh) 2017-07-21
CN106972347B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2018201585A1 (zh) 用于3d成像的激光阵列
CN107039885B (zh) 应用于3d成像的激光阵列
US10958893B2 (en) VCSEL array light source
WO2019086004A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
US10551178B2 (en) Overlapping pattern projector
US11445164B2 (en) Structured light projection module based on VCSEL array light source
CN107561837B (zh) 重叠图案投影仪
WO2019086003A1 (zh) 结构光投影模组、深度相机及制造结构光投影模组的方法
WO2019178970A1 (zh) 一种结构光投影模组和深度相机
KR20190085150A (ko) 평행 패턴들을 투사하는 거리 센서
WO2018076705A1 (zh) 一种光学图案的设计方法、面阵投影装置及一种深度相机
WO2019047460A1 (zh) 一种衍射光学元件及配制方法
US20200387004A1 (en) Structured light projection module and depth camera
CN107703641A (zh) 一种结构光投影模组和深度相机
TWI747289B (zh) 成像裝置及成像方法
WO2023071650A1 (zh) 深度相机、制造光发射模组的方法和终端
CN207134607U (zh) 应用于3d成像的激光阵列及其激光投影装置和3d成像设备
CN109521578A (zh) 投射不相关图案的结构光投影模组
CN210090898U (zh) 结构光投影模组和深度相机
CN207134608U (zh) 用于3d成像的激光阵列、设备及激光投影装置
CN109521631A (zh) 投射不相关图案的深度相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908343

Country of ref document: EP

Kind code of ref document: A1