WO2018199441A1 - Apparatus and method for decreasing perfluorinated compound and generating tin fluoride - Google Patents

Apparatus and method for decreasing perfluorinated compound and generating tin fluoride Download PDF

Info

Publication number
WO2018199441A1
WO2018199441A1 PCT/KR2018/001354 KR2018001354W WO2018199441A1 WO 2018199441 A1 WO2018199441 A1 WO 2018199441A1 KR 2018001354 W KR2018001354 W KR 2018001354W WO 2018199441 A1 WO2018199441 A1 WO 2018199441A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
unit
perfluorinated compound
reaction
tin fluoride
Prior art date
Application number
PCT/KR2018/001354
Other languages
French (fr)
Korean (ko)
Inventor
황지원
양원
정수화
방병열
이은도
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201880027568.9A priority Critical patent/CN110573233B/en
Publication of WO2018199441A1 publication Critical patent/WO2018199441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/04Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/155Perfluorocarbons [PFC]; Hydrofluorocarbons [HFC]; Hydrochlorofluorocarbons [HCFC]; Chlorofluorocarbons [CFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to an apparatus and method for reducing perfluorinated compounds and generating tin fluoride, and more particularly, to reducing perfluorinated compounds, which are global warming gases, and at the same time, to reducing perfluorinated compounds for producing tin fluoride, which is a high value added material.
  • An apparatus and a method for generating tin fluoride is provided.
  • Perfluorinated compounds are gases that cause global warming, typically sulfur hexafluoride (SF 6 ).
  • Sulfur hexafluoride is a chemically inert, stable gas, and has been widely used in high-capacity power equipment, liquid crystal panels, and semiconductors because it has excellent dielectric strength, fast insulation recovery, and stable arc.
  • sulfur hexafluoride is known to have a global warming index of about 23,900 times higher than carbon dioxide, a representative substance of global warming, due to its infrared absorption ability and chemical stability. This is more than twice as high as that of general perfluorinated compounds, which is 6,500 to 9,200 times higher than CO2. Domestic sulfur fluoride emissions are 19.1 million tons CO 2 eq. 2.7%.
  • sulfur hexafluoride is used as an insulated gas with a high purity of 99.9% or more, but when the sulfur hexafluoride concentration is 97% or less, the total amount of sulfur hexafluoride is used.
  • the demand for perfluorinated compound treatment technology is continuously increasing.
  • sulfur hexafluoride is 64 MtCO2eq. 133.2 MtCO2eq.
  • SOF 6 sulfur hexafluoride
  • various fluorine gases such as hexafluoroethane (C 2 F 6 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride (NF 3 ), or F -Gas is used, especially in Korea, semiconductors and displays that use a large amount of F-Gas are the main industries, and the perfluorinated compound reduction technology is necessary to simultaneously achieve the goal of coping with climate change and fostering the national civil specialty industry.
  • the most widely used technique is combustion technology, but in order to remove perfluorinated compounds through combustion technology, thermal decomposition temperature of each target material (800 degrees NF 3 , 1200 degrees SF 6 , 1600 degrees CF 4 or more) It is known that it is necessary to maintain the high temperature atmosphere as described above, and even if the temperature condition is insufficient, 100% removal is impossible when the reactants necessary for proper mixing and pyrolysis subsequent reactions are insufficient. In other words, the combustion technology is not economical due to the large amount of energy used, difficult to completely remove the perfluorinated compound, there is a problem that it is difficult to reduce the NOx, CO generated during combustion.
  • the catalyst technology has a very short replacement cycle of the catalyst
  • plasma technology also has a problem that it is difficult and economical to maintain the continuity of operation due to frequent replacement of the torch material.
  • An object of the present invention for solving the above problems is to provide a perfluorinated compound reduction and tin fluoride generating device and method for efficiently reducing the perfluorinated compound which is a global warming gas and at the same time to produce tin fluoride, which is a high value added material. will be.
  • the configuration of the present invention for achieving the above object is a reaction unit accommodated in the liquid tin (Sn); And a raw material input unit for inputting a perfluorinated compound (PFC) to the reaction unit, wherein the perfluorinated compound and the liquid tin react in the reaction unit to generate tin fluoride (SnF 2 ).
  • An apparatus for reducing fluorinated compounds and generating tin fluoride is provided.
  • the perfluorinated compound may be characterized in that sulfur hexafluoride (SF 6 ).
  • the perfluorinated compound may include all perfluorinated compounds including fluorine and fluorinated gas.
  • the representative chemical reaction occurring in the reaction unit may be characterized in that SF 6 + 4Sn-> 3SnF 2 + SnS.
  • the heating unit may include a heating unit connected to the reaction unit, and the heating unit may heat the liquid tin contained in the reaction unit to a predetermined temperature.
  • the heating unit may be characterized in that for heating the temperature of the liquid tin contained in the reaction unit 850 to 950 degrees.
  • the measuring unit may be characterized in that for measuring the temperature of the liquid tin contained in the reaction unit, the modification rate of the tin fluoride.
  • the heating unit when the temperature of the liquid tin contained in the reaction unit is heated to 600 to 650 degrees, when the modification rate of the tin fluoride reaches a predetermined target modification rate, the liquid tin
  • the temperature of may be characterized in that for heating to 850 degrees to 950 degrees.
  • a plurality of distribution parts provided spaced apart from each other in the longitudinal direction of the reaction unit is provided below the reaction unit, the distribution unit, the perfluorinated compound introduced from the raw material input unit is the reaction unit When injected into the inside, it may be characterized in that it is provided to be dispersed and injected.
  • condensation portion provided on the upper portion of the reaction portion, the condensation portion, characterized in that the condensation of the tin fluoride in the gas phase generated as a result of the chemical reaction of the reaction portion in the liquid phase or solid phase have.
  • the liquid tin storage unit is further provided on the reaction unit, the liquid tin storage unit may be characterized in that for supplying the liquid tin to the reaction unit.
  • the composition of the present invention for achieving the above object is a) supplying the liquid tin to the reaction unit; b) heating the liquid tin contained in the reaction unit to a predetermined temperature; c) adding the perfluorinated compound to the heated liquid tin and reacting it; And d) condensing tin fluoride produced by the reaction of the liquid tin with the perfluorinated compound.
  • the step b) may be characterized in that for heating the temperature of the liquid tin to 850 to 950 degrees.
  • the step b) may be characterized in that for heating the temperature of the liquid tin 600 to 650 degrees.
  • step c) the modification rate of the tin fluoride may be characterized.
  • the temperature of the liquid tin may be characterized in that for heating to 850 degrees to 950 degrees.
  • the perfluorinated compound in step c), may be characterized in that sulfur hexafluoride (SF 6 ).
  • step c) the chemical reaction occurring in the reaction unit, may be characterized in that SF 6 + 4Sn-> 3SnF 2 + SnS.
  • the configuration of the present invention for achieving the above object provides a semiconductor or display facility to which the perfluorinated compound reduction and tin fluoride generating device is applied.
  • the configuration of the present invention for achieving the above object provides a semiconductor or display device to which the method of reducing the perfluorinated compound and generating tin fluoride.
  • the constitution of the present invention for achieving the above object provides a heavy electric fluoride gas recovery facility applying the method of reducing perfluorinated compounds and tin fluoride.
  • the constitution of the present invention for achieving the above object provides a heavy electric fluoride gas recovery facility applying the method of reducing perfluorinated compounds and tin fluoride.
  • the perfluorinated compound can be removed at a lower temperature than before, and the energy efficiency is high.
  • the combustion technology requires a lot of energy using high-temperature combustion of more than 1200 degrees to effectively remove sulfur hexafluoride, and more than 1600 degrees to effectively remove carbon tetrafluoride, the present invention is overburden even at a temperature of 600 to 650 degrees All the compounds can be removed. That is, the present invention is economical because it can remove all the perfluorinated compounds with less energy than the conventional one.
  • the present invention may remove the perfluorinated compound by reacting the liquid tin and the perfluorinated compound, and at the same time may generate a high value added material such as tin fluoride (SnF 2 ) and tin sulfide (SnS).
  • Tin fluoride is a high value added substance that is about 17 times more expensive than liquid tin and is used in oral cleaning products such as toothpaste.
  • the present invention is economical because it allows the removal of perfluorinated compounds and at the same time allows the production of high value added materials to yield additional revenue.
  • FIG. 1 is an exemplary view of a perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
  • Figure 3 is a graph showing the perfluorinated compound concentration of the perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
  • Figure 4 is a graph showing the modification rate of tin fluoride of the perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
  • Figure 5 is a flow chart of the perfluorinated compound reduction and tin fluoride production method according to an embodiment of the present invention.
  • a reaction part in which liquid tin (Sn) is accommodated; And a raw material input unit for inputting a perfluorinated compound (PFC) to the reaction unit, wherein the perfluorinated compound and the liquid tin react in the reaction unit to generate tin fluoride (SnF 2 ).
  • PFC perfluorinated compound
  • the device is a reduced compound and tin fluoride generating device.
  • FIG. 1 is an illustration of a perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention
  • Figure 2 is a block diagram of a perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention.
  • the perfluorinated compound reduction and tin fluoride generating device 100 is a reaction unit 110, the liquid tin storage unit 120, the heating unit 130, the measuring unit 140, raw materials Including the input unit 150, the distribution unit 160 and the condensation unit 170, in the reaction unit 110, the perfluorinated compound (PFC) and the liquid tin (Sn) is reacted with tin fluoride (SnF2 ) May be generated.
  • the reaction unit 110 may be provided in the form of a container in which the liquid tin can be accommodated, and may be formed of a material having heat resistance so that damage does not occur even in a high temperature environment of 1000 degrees or more.
  • the liquid tin storage unit 120 may be provided at an upper portion of the reaction unit 110, and supply the liquid tin to the reaction unit 110.
  • the liquid tin storage unit 120 may be provided by heating the liquid tin to be supplied to the reaction unit 110 to be the same as the temperature of the liquid tin contained in the reaction unit (110).
  • liquid tin storage unit 120 may be provided to selectively supply the liquid tin in consideration of the amount of the liquid tin in the reaction unit 110 measured by the measuring unit 140.
  • the heating unit 130 may be connected to the reaction unit 110, and the heating unit 130 may heat the liquid tin contained in the reaction unit 110 to a predetermined temperature. Specific heating temperature of the heating unit 130 will be described later.
  • the measurement unit 140 may be further provided to be connected to the reaction unit 110 and the heating unit 130, the measurement unit 140, the temperature of the liquid tin contained in the reaction unit 110, The modification rate of the tin fluoride can be measured.
  • the measurement unit 140 may generate temperature data by measuring the temperature of the liquid tin contained in the reaction unit 110.
  • the heating unit 130 includes a temperature of the liquid tin contained in the reaction unit 110 within a preset temperature range. Can be controlled.
  • the measurement unit 140 generates a modification rate data by measuring the modification rate of the tin fluoride included in the reaction unit 110, and provides the modification rate data generated to the heating unit 130. Can be.
  • the raw material input part 150 may inject a perfluorinated compound into the reaction part 110, and may be provided at one side of the lower end of the reaction part 110. That is, the perfluorinated compound may be introduced from the lower side of the reaction unit 110 and move toward the upper side.
  • the perfluorinated compound includes refrigerants (CHF 3 , C2HF 3 , C 3 HF 7, etc.) containing SF 6 , CF 4 , C2F 6 , C3F 8 , CHF 3 , NF 3 and fluorine, which are non-carbon greenhouse gases. do.
  • the distribution unit 160 may be provided in the lower side of the inside of the reaction unit 110, a plurality of spaced apart from each other in the longitudinal direction of the reaction unit 110.
  • the distribution unit 160 when the perfluorinated compound introduced from the raw material input unit 150 is injected into the reaction unit 110, by being dispersed and injected, the raw material input unit ( The perfluorinated compound introduced from 150 may be rapidly reacted with the liquid tin.
  • the condensation unit 170 may be provided at an upper portion of the reaction unit 110, and the condensation unit 170 may be provided to condense the tin fluoride in a liquid phase or a solid phase.
  • the condensation unit 170 when condensation of the tin fluoride has moisture in the gas to be condensed, the tin fluoride may dissolve in water and consequently hydrolyze when condensed to 100 degrees or less. Therefore, the condensation temperature of the condensation unit 170 may be characterized in that more than 100 degrees less than 850 degrees.
  • the condensation unit 170 may vaporize and remove the moisture, and condensate the tin fluoride into a liquid or solid phase to recover the tin fluoride.
  • the upper portion of the reaction unit 110 connected to the condensation unit 170 may move up to a predetermined area as the upper portion of the reaction channel 110 moves smoothly to the condensation unit 170. It may be arranged to decrease gradually.
  • the reaction unit 110 provided as described above may speed up the flow rate of the tin fluoride, thereby allowing the tin fluoride to move quickly toward the condensation unit 170.
  • Formula 1 is a chemical reaction formula when sulfur hexafluoride is added, and the reaction formula may vary depending on the perfluorinated compound.
  • Figure 3 is a graph showing the perfluorinated compound concentration of the perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention
  • Figure 4 is a perfluorinated compound reduction and tin fluoride generation according to an embodiment of the present invention It is a graph which shows the modification rate of tin fluoride of a device.
  • the concentration of the sulfur hexafluoride which is a perfluorinated compound contained in the liquid tin, converges to 0 at about 600 degrees or more, and can be completely removed.
  • the modification rate of tin fluoride is about Converge to 100% above 600 degrees.
  • the heating unit 130 will be described with respect to the temperature for heating the liquid tin contained in the reaction unit (110).
  • the liquid tin has a boiling point of about 2600 degrees, the boiling point of tin sulfide is about 1230 degrees, the boiling point of tin fluoride is about 850 degrees. That is, when the temperature of the liquid tin is heated to 850 degrees to 1230 degrees, the tin fluoride is vaporized, and the liquid tin and the tin sulfide are present in a liquid state.
  • the heating unit 130 may heat the temperature of the liquid tin accommodated in the reaction unit 110 850 to 950 degrees. Specifically, when the heating unit 130 heats the liquid tin accommodated in the reaction unit 110 at 850 degrees to 950 degrees, the perfluorinated compound contained in the reaction unit 110 is separated from the liquid tin and the formula (1). Can be removed by reaction. At the same time, the tin fluoride generated through the reaction of Chemical Formula 1 may be generated and vaporized and moved to the condenser 170 to condense.
  • the heating unit 130 may be heated to 850 degrees to heat above the boiling point of the tin fluoride, it may be set to 950 degrees or less to minimize the energy required for heating.
  • the heating unit 130 the temperature of the liquid tin accommodated in the reaction unit 110 to 600 to 650 degrees, the modification rate of the tin fluoride reaches a predetermined target modification rate.
  • it may be provided to heat the temperature of the liquid tin to 850 degrees to 950 degrees.
  • the perfluorinated compound may not be all the reaction as shown in the formula (1) at less than 600 degrees, more than 650 degrees may consume more energy than necessary. Therefore, the heating unit 130 may be heated first to 600 degrees to 650 degrees to remove all of the perfluorinated compound and at the same time consume minimal energy.
  • the heating temperature of the heating unit 130 is any one of CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 , and NF 3 other than sulfur hexafluoride.
  • the heating temperature of the heating unit 130 is The perfluorinated compound and sulfur hexafluoride can be appropriately adjusted to a temperature at which both can react.
  • the heating unit 130 adjusts the temperature of the liquid tin accommodated in the reaction unit 110 to 850. Heating to degrees 950 degrees. As such, when the temperature of the liquid tin is heated to 850 degrees to 950 degrees, all of the tin fluoride may be vaporized to move to the condensation unit 170 to condense. That is, the heating unit 130 according to another embodiment may modify the perfluorinated compound into tin fluoride and condensate tin fluoride with less energy than the heating unit 130 according to the embodiment.
  • the perfluorinated compound reduction and tin fluoride generating device 100 may further include a filter unit (not shown) and the recovery unit (not shown).
  • the heating unit 130 since the tin sulfide produced by the reaction of the perfluorinated compound and the liquid tin has a melting point of about 880 degrees, after all of the tin fluoride is vaporized and condensed, the heating unit 130 according to another embodiment reacts the reaction. In the process of cooling the temperature of the liquid tin in the unit 110 to 600 degrees to 650 degrees, it may change into a solid state.
  • the filter unit may be connected to the reaction unit 110 to collect solid tin sulfide before the raw material input unit 150 injects the perfluorinated compound into the reaction unit 110 again.
  • the recovery unit is provided in connection with the filter unit, and the liquid tin moved together to collect the solid tin sulfide may be transferred back to the liquid tin storage unit 120 to recycle the liquid tin. have.
  • the perfluorinated compound reduction and tin fluoride generation apparatus provided as described above may be applied to semiconductor equipment, heavy electric equipment, liquid crystal panel manufacturing apparatus, and the like. That is, the perfluorinated compound reduction and tin fluoride generating device 100 may be applied to both the perfluorinated compound generating device.
  • Figure 5 is a flow chart of the perfluorinated compound reduction and tin fluoride production method according to an embodiment of the present invention.
  • the method of reducing perfluorinated compound and generating tin fluoride may first perform a step of supplying liquid tin to the reaction unit (S210).
  • the liquid tin storage unit 120 may supply liquid tin to the reaction unit 110, the liquid tin supplied from the liquid tin storage unit 120 may be preheated to a predetermined temperature in advance. have.
  • the step of heating the liquid tin contained in the reaction unit to a predetermined temperature (S220).
  • the heating unit 130 may heat the liquid tin to a predetermined temperature.
  • the heating unit 130 may heat the liquid tin temperature of 850 to 950 degrees.
  • the heating unit 130 may heat the temperature of the liquid tin to 600 to 650 degrees.
  • a step (S230) may be performed by adding a perfluorinated compound to the heated liquid tin.
  • the raw material input unit 150 may inject the perfluorinated compound into the reaction unit 110, in which the perfluorinated compound is the reaction unit 110 by the distribution unit 160 It can be dispersed and injected into the liquid tin contained in the.
  • step S230 of adding the perfluorinated compound to the liquid tin may be reacted as in Chemical Formula 1.
  • the heating unit 130 is set to the heating temperature according to an embodiment vaporizes the tin fluoride formed by the reaction of the perfluorinated compound and the liquid tin at the same time to react the tin fluoride in the gas phase the condensation unit ( 170).
  • the heating unit 130 according to one embodiment provided as described above may be applied when the perfluorinated compound and the liquid tin are continuously added to the reaction unit 110 to continuously perform the reaction.
  • supplying the liquid tin to the reaction unit (S210), heating the liquid tin contained in the reaction unit to a predetermined temperature (S220) and heated Injecting the perfluorinated compound into the liquid tin (S230) may be carried out continuously at the same time.
  • the heating unit 130 is set to the heating temperature according to another embodiment, first, the perfluorinated compound and the liquid tin reacts at 600 to 650 degrees, the modification rate of the tin fluoride and the temperature of the liquid tin It may be provided from the measuring unit 140. When the modification rate of the tin fluoride reaches a predetermined target modification rate, the heating unit 130 may vaporize the tin fluoride by heating the temperature of the liquid tin to 850 degrees to 950 degrees.
  • the heating unit 130 uses the minimum energy that allows the reaction of Chemical Formula 1 to be produced when the tin fluoride is made by reacting the perfluorinated compound with the liquid tin, and generated tin fluoride.
  • the energy efficiency can be improved by heating to the temperature above the boiling point of tin fluoride only when vaporizing.
  • heating unit 130 may be applied when a predetermined amount of perfluorinated compound is added to each section to make the reaction.
  • the application of the heating unit 130 in which the heating temperature is set according to one embodiment and the other embodiment may be easily changed and applied according to an embodiment.
  • the perfluorinated compound has been described as sulfur hexafluoride, but includes all of SF 6 , CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 , and NF 3 .
  • the condenser 170 may condense the vaporized tin fluoride in a liquid or solid state in a previous step.
  • the tin sulfide produced by the reaction of the perfluorinated compound with the liquid tin has a melting point of about 880 degrees. Accordingly, after the tin sulfide is all condensed by vaporizing the tin fluoride, when the heating unit 130 according to another embodiment cools the temperature of the liquid tin to 600 degrees to 650 degrees, it may change into a solid state. .
  • the tin sulfide and the liquid tin may be transferred to the filter unit to collect tin sulfide.
  • the raw material input unit 150 may collect the solid tin sulfide using the filter unit before the perfluorinated compound is introduced into the reaction unit 110 again.
  • the liquid tin that has passed through the filter unit may be further transferred to the liquid tin storage unit.
  • the liquid tin moved together while collecting the solid tin sulfide may be transferred to the liquid tin storage unit 120 through a recovery unit and recycled.
  • the present invention provided as described above can remove the perfluorinated compound at a lower temperature than conventional combustion technology, and thus has high energy efficiency.
  • the combustion technique requires a lot of energy using high-temperature combustion up to 1600 degrees or more to remove all the perfluorinated compounds, but the present invention can remove all the perfluorinated compounds even at a temperature of 600 to 650 degrees. That is, the present invention is economical because it can remove all the perfluorinated compounds with less energy than the conventional one.
  • the present invention may remove the perfluorinated compound by reacting the liquid tin and the perfluorinated compound and at the same time to produce a high value added material such as tin fluoride and tin sulfide.
  • tin fluoride is a high value-added substance that has a price difference of about 17 times that of liquid tin, and is used in oral cleaning products such as toothpaste.
  • the present invention is economical because it allows the removal of perfluorinated compounds and at the same time allows the production of high value added materials to yield additional revenue.
  • the method of reducing perfluorinated compound and generating tin fluoride prepared as described above may be applied to a semiconductor facility, a heavy electric machine, a liquid crystal panel manufacturing apparatus, or the like. That is, the method of reducing the perfluorinated compound and generating tin fluoride may be applied to both the apparatus and the method for producing the perfluorinated compound.

Abstract

The present invention relates to an apparatus and a method for decreasing perfluorinated compounds (PFCs) and generating tin fluoride and, more specifically, to an apparatus and a method for decreasing PFCs and generating tin fluoride, the apparatus and the method having the purpose of efficiently decreasing PFCs, which are global warming gases, and simultaneously generating tin fluoride which is a high-value material. The present invention provides the apparatus for decreasing PFC and generating tin fluoride, comprising: a reaction part having liquid tin (Sn) accommodated therein; and a material injection part for injecting PFCs into the reaction part, wherein the PFCs and the liquid tin react so as to generate tin fluoride (SnF2) in the reaction part.

Description

과불화 화합물 저감 및 불화주석 생성 장치 및 방법Perfluorinated Compound Reduction and Tin Fluoride Production Apparatus and Method
본 발명은 과불화 화합물 저감 및 불화주석 생성 장치 및 방법에 관한 것으로, 보다 상세하게는 지구 온난화 가스인 과불화 화합물을 효율적으로 저감하고 이와 동시에 고부가 물질인 불화주석을 생성하기 위한 과불화 화합물 저감 및 불화주석 생성 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for reducing perfluorinated compounds and generating tin fluoride, and more particularly, to reducing perfluorinated compounds, which are global warming gases, and at the same time, to reducing perfluorinated compounds for producing tin fluoride, which is a high value added material. An apparatus and a method for generating tin fluoride.
과불화 화합물은 지구 온난화를 유발하는 가스로, 대표적으로 육불화황(SF6)이 있다.Perfluorinated compounds are gases that cause global warming, typically sulfur hexafluoride (SF 6 ).
육불화황은 화학적으로 비활성된 안정적인 기체이며, 뛰어난 절연내력, 빠른 절연회복, 안정적인 아크(Arc) 등의 특성을 갖고 있기 때문에, 대용량 전력설비나 액정패널 및 반도체에 많이 사용되고 있다.Sulfur hexafluoride is a chemically inert, stable gas, and has been widely used in high-capacity power equipment, liquid crystal panels, and semiconductors because it has excellent dielectric strength, fast insulation recovery, and stable arc.
그러나, 육불화황은 적외선 흡수력이 크고 화학적 안정성 등으로 인해 지구 대기권 영역에서 신속하게 제거되지 못하여 지구 온난화 원인의 대표적 물질인 이산화탄소보다 지구 온난화 지수가 약 23,900배 정도 높은 것으로 알려져 있다. 이는 일반적인 과불화 화합물이 이산화탄소에 비해 지구 온난화 지수가 6,500배 내지 9,200배 정도인 것보다 2배 이상 높은 수치로 국내 육불화황 배출량은 2011년 기준 19.1 백만톤 CO2eq.로 전체 온실가스 배출량의 2.7%를 차지하고 있다. 그리고, 육불화황은 대용량 전력설비의 경우, 절연가스로 99.9% 이상의 고순도 형태로 사용되나, 육불화황의 농도가 97% 이하가 되면 전량 교체되기 떄문에, 사용량이 매우 많은 상황이다. 더욱이, 반도체 및 디스플레이 공정에서도 1000 내지 2000ppm의 과불화화합물 가스가 지속적으로 배출되고 있어 과불화 화합물 처리 기술에 대한 수요가 지속적으로 증가하고 있다.However, sulfur hexafluoride is known to have a global warming index of about 23,900 times higher than carbon dioxide, a representative substance of global warming, due to its infrared absorption ability and chemical stability. This is more than twice as high as that of general perfluorinated compounds, which is 6,500 to 9,200 times higher than CO2. Domestic sulfur fluoride emissions are 19.1 million tons CO 2 eq. 2.7%. In the case of a large-capacity power plant, sulfur hexafluoride is used as an insulated gas with a high purity of 99.9% or more, but when the sulfur hexafluoride concentration is 97% or less, the total amount of sulfur hexafluoride is used. In addition, since 1000-2000 ppm of perfluorinated gas is continuously discharged in semiconductor and display processes, the demand for perfluorinated compound treatment technology is continuously increasing.
또한, 육불화황은 전세계 전력기기에서 2030년까지 64 MtCO2eq. 한국, 중국,일본 중심 평판디스플레이 분야에서 2030년 133.2 MtCO2eq. 배출이 예측되어 관련 배출규제가 크게 강화될 것으로 예상된다. 그리고, 육불화황(SF6)외에 헥사플루오로에탄(C2F6), 사불화탄소(CF4), 삼불화질소(NF3)등 다양한 불화가스(F-GHGs, Fluorinated greenhouse gases) 또는 F-Gas가 사용되고 있으며 특히 우리나라는 F-Gas를 다량 사용하는 반도체 및 디스플레이가 주력산업으로 기후변화대응과 국가주력산업 육성 목표를 동시에 달성하기 위해서는 과불화 화합물 저감 기술이 반드시 필요하다.In addition, sulfur hexafluoride is 64 MtCO2eq. 133.2 MtCO2eq. In 2030 in flat panel display centered on Korea, China and Japan. Emissions are predicted and the related emission regulations are expected to be greatly strengthened. In addition to sulfur hexafluoride (SF 6 ), various fluorine gases (F-GHGs, fluorinated greenhouse gases) such as hexafluoroethane (C 2 F 6 ), carbon tetrafluoride (CF 4 ), nitrogen trifluoride (NF 3 ), or F -Gas is used, especially in Korea, semiconductors and displays that use a large amount of F-Gas are the main industries, and the perfluorinated compound reduction technology is necessary to simultaneously achieve the goal of coping with climate change and fostering the national flagship industry.
따라서, 최근에는 육불화황을 사용하는 공정에 사용된 육불화황을 제거하기 위하여 연소, 마이크로웨이브, 촉매, 플라즈마를 이용하거나 PSA 등을 이용하여 농축 분리하는 기술이 개발되고 있다.Therefore, in recent years, in order to remove sulfur hexafluoride used in the process using sulfur hexafluoride, a technique for concentrating separation using combustion, a microwave, a catalyst, a plasma, or using PSA has been developed.
이 중 가장 많이 사용되고 있는 기술은 연소 기술이나, 연소 기술을 통해 과불화 화합물을 제거하기 위해서는 각 대상물질의 열적 분해 온도 (NF3는 800도, SF6는 1,200도, CF4는 1,600도 이상) 이상의 고온 분위기 유지가 필요하며, 해당 온도 조건이라고 해도 적절한 혼합 및 열분해 후속 반응에 필요한 반응물이 부족할 경우 100% 제거가 불가능한 것으로 알려져 있다. 즉, 연소 기술은 에너지 사용량이 많아 경제적이지 못하고, 과불화 화합물을 완벽히 제거하는 조건이 까다로우며, 연소시 생성되는 NOx, CO의 저감이 어렵다는 문제가 있다.The most widely used technique is combustion technology, but in order to remove perfluorinated compounds through combustion technology, thermal decomposition temperature of each target material (800 degrees NF 3 , 1200 degrees SF 6 , 1600 degrees CF 4 or more) It is known that it is necessary to maintain the high temperature atmosphere as described above, and even if the temperature condition is insufficient, 100% removal is impossible when the reactants necessary for proper mixing and pyrolysis subsequent reactions are insufficient. In other words, the combustion technology is not economical due to the large amount of energy used, difficult to completely remove the perfluorinated compound, there is a problem that it is difficult to reduce the NOx, CO generated during combustion.
또한, 촉매 기술은 촉매의 교체주기가 매우 짧고, 플라즈마 기술도 토치 소재의 잦은 교체로 인해 운전의 연속성을 유지하기 어렵고 경제적이지 못한 문제가 있다.In addition, the catalyst technology has a very short replacement cycle of the catalyst, plasma technology also has a problem that it is difficult and economical to maintain the continuity of operation due to frequent replacement of the torch material.
그리고 특히, 종래의 기술들은 단순히 과불화 화합물을 제거하는 기술에만 초점을 맞추어 개발되어 왔기 때문에 과불화 화합물을 제거하기 위해 많은 비용이 소요되어 경제적이지 못했다.In particular, since the conventional techniques have been developed focusing only on a technique of simply removing a perfluorinated compound, it is not economical because it is expensive to remove the perfluorinated compound.
(선행특허문헌) 한국등록특허 10-1514449호 (2015.04.16)(Previous Patent Document) Korean Patent Registration No. 10-1514449 (2015.04.16)
상기와 같은 문제를 해결하기 위한 본 발명의 목적은 지구 온난화 가스인 과불화 화합물을 효율적으로 저감하고 이와 동시에 고부가 물질인 불화주석을 생성하기 위한 과불화 화합물 저감 및 불화주석 생성 장치 및 방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a perfluorinated compound reduction and tin fluoride generating device and method for efficiently reducing the perfluorinated compound which is a global warming gas and at the same time to produce tin fluoride, which is a high value added material. will be.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 액체주석(Sn)이 수용된 반응부; 및 상기 반응부에 과불화 화합물(PFC)을 투입하는 원료투입부를 포함하며, 상기 반응부에서, 상기 과불화 화합물과 상기 액체주석이 반응하여 불화주석(SnF2)이 생성되는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치를 제공한다.The configuration of the present invention for achieving the above object is a reaction unit accommodated in the liquid tin (Sn); And a raw material input unit for inputting a perfluorinated compound (PFC) to the reaction unit, wherein the perfluorinated compound and the liquid tin react in the reaction unit to generate tin fluoride (SnF 2 ). An apparatus for reducing fluorinated compounds and generating tin fluoride is provided.
본 발명의 실시예에 있어서, 상기 과불화 화합물은 육불화황(SF6)인 것을 특징으로 할 수 있다.In an embodiment of the present invention, the perfluorinated compound may be characterized in that sulfur hexafluoride (SF 6 ).
본 발명의 실시예에 있어서, 상기 과불화 화합물은 불소를 포함한 모든 과불화 화합물과 불화가스를 포함할 수 있다.In an embodiment of the present invention, the perfluorinated compound may include all perfluorinated compounds including fluorine and fluorinated gas.
본 발명의 실시예에 있어서, 육불화황을 제거대상 가스로 하였을 때, 상기 반응부에서 일어나는 대표적인 화학반응은, SF6 + 4Sn -> 3SnF2 + SnS인 것을 특징으로 할 수 있다.In an embodiment of the present invention, when sulfur hexafluoride is used as the removal target gas, the representative chemical reaction occurring in the reaction unit may be characterized in that SF 6 + 4Sn-> 3SnF 2 + SnS.
본 발명의 실시예에 있어서, 상기 반응부에 연결되어 마련되는 가열부를 포함하며, 상기 가열부는, 상기 반응부에 수용된 상기 액체주석을 기설정된 온도로 가열하는 것을 특징으로 할 수 있다.In an exemplary embodiment of the present invention, the heating unit may include a heating unit connected to the reaction unit, and the heating unit may heat the liquid tin contained in the reaction unit to a predetermined temperature.
본 발명의 실시예에 있어서, 상기 가열부는, 상기 반응부에 수용된 액체주석의 온도를 850내지 950도로 가열하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the heating unit may be characterized in that for heating the temperature of the liquid tin contained in the reaction unit 850 to 950 degrees.
본 발명의 실시예에 있어서, 상기 반응부에 연결되는 측정부를 포함하며, 상기 측정부는, 상기 반응부 내에 수용된 액체주석의 온도, 상기 불화주석의 개질율을 측정하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, comprising a measuring unit connected to the reaction unit, the measuring unit may be characterized in that for measuring the temperature of the liquid tin contained in the reaction unit, the modification rate of the tin fluoride.
본 발명의 실시예에 있어서, 상기 가열부는, 상기 반응부에 수용된 상기 액체주석의 온도를 600내지 650도로 가열하고, 상기 불화주석의 개질율이 기설정된 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the heating unit, when the temperature of the liquid tin contained in the reaction unit is heated to 600 to 650 degrees, when the modification rate of the tin fluoride reaches a predetermined target modification rate, the liquid tin The temperature of may be characterized in that for heating to 850 degrees to 950 degrees.
본 발명의 실시예에 있어서, 상기 반응부의 내부 하측에는 상기 반응부의 길이 방향으로 상호 이격되어 마련된 복수의 분배부가 마련되며, 상기 분배부는, 상기 원료투입부로부터 유입되는 상기 과불화 화합물이 상기 반응부의 내부에 주입될 때, 분산되어 주입되도록 마련되는 것을 특징으로 할 수 있다.In an embodiment of the present invention, a plurality of distribution parts provided spaced apart from each other in the longitudinal direction of the reaction unit is provided below the reaction unit, the distribution unit, the perfluorinated compound introduced from the raw material input unit is the reaction unit When injected into the inside, it may be characterized in that it is provided to be dispersed and injected.
본 발명의 실시예에 있어서, 상기 반응부의 상부에 마련되는 응축부를 더 포함하며, 상기 응축부는, 상기 반응부의 화학반응 결과 생성된 기상의 상기 불화주석을 액상 또는 고상으로 응축하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, further comprising a condensation portion provided on the upper portion of the reaction portion, the condensation portion, characterized in that the condensation of the tin fluoride in the gas phase generated as a result of the chemical reaction of the reaction portion in the liquid phase or solid phase have.
본 발명의 실시예에 있어서, 상기 반응부의 상부에 마련되는 액체주석저장부를 더 포함하며, 상기 액체주석저장부는, 상기 반응부에 상기 액체주석을 공급하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the liquid tin storage unit is further provided on the reaction unit, the liquid tin storage unit may be characterized in that for supplying the liquid tin to the reaction unit.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 a) 반응부에 상기 액체주석을 공급하는 단계; b) 상기 반응부에 수용된 상기 액체주석을 기설정된 온도로 가열하는 단계; c) 가열된 상기 액체주석에 상기 과불화 화합물을 투입하여 반응시키는 단계; 및 d) 상기 액체주석과 상기 과불화 화합물이 반응하여 생성된 불화주석을 응축하는 단계를 포함하는 과불화 화합물 저감 및 불화주석 생성 방법을 제공한다.The composition of the present invention for achieving the above object is a) supplying the liquid tin to the reaction unit; b) heating the liquid tin contained in the reaction unit to a predetermined temperature; c) adding the perfluorinated compound to the heated liquid tin and reacting it; And d) condensing tin fluoride produced by the reaction of the liquid tin with the perfluorinated compound.
본 발명의 실시예에 있어서, 상기 b) 단계는, 상기 액체주석의 온도를 850내지 950도로 가열하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the step b) may be characterized in that for heating the temperature of the liquid tin to 850 to 950 degrees.
본 발명의 실시예에 있어서, 상기 b) 단계는, 상기 액체주석의 온도를 600내지 650도로 가열하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, the step b) may be characterized in that for heating the temperature of the liquid tin 600 to 650 degrees.
본 발명의 실시예에 있어서, 상기 c) 단계에서, 상기 불화주석의 개질율을 측정하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, in step c), the modification rate of the tin fluoride may be characterized.
본 발명의 실시예에 있어서, 상기c) 단계에서, 상기 불화주석의 개질율이 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하는 것을 특징으로 할 수 있다.In an embodiment of the present invention, in the step c), when the modification rate of the tin fluoride reaches a target modification rate, the temperature of the liquid tin may be characterized in that for heating to 850 degrees to 950 degrees.
본 발명의 실시예에 있어서, 상기 c) 단계에서, 상기 과불화 화합물은 육불화황(SF6)인 것을 특징으로 할 수 있다.In an embodiment of the present invention, in step c), the perfluorinated compound may be characterized in that sulfur hexafluoride (SF 6 ).
본 발명의 실시예에 있어서, 상기 c) 단계에서, 상기 반응부에서 일어나는 화학반응은, SF6 + 4Sn -> 3SnF2 + SnS인 것을 특징으로 할 수 있다.In an embodiment of the present invention, in step c), the chemical reaction occurring in the reaction unit, may be characterized in that SF 6 + 4Sn-> 3SnF 2 + SnS.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 과불화 화합물 저감 및 불화주석 생성 장치를 적용한 반도체 또는 디스플레이 설비를 제공한다.The configuration of the present invention for achieving the above object provides a semiconductor or display facility to which the perfluorinated compound reduction and tin fluoride generating device is applied.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 과불화 화합물 저감 및 불화주석 생성 방법을 적용한 반도체 또는 디스플레이 설비를 제공한다.The configuration of the present invention for achieving the above object provides a semiconductor or display device to which the method of reducing the perfluorinated compound and generating tin fluoride.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 과불화 화합물 저감 및 불화주석 생성 방법을 적용한 중전기기 불화가스 회수설비를 제공한다.The constitution of the present invention for achieving the above object provides a heavy electric fluoride gas recovery facility applying the method of reducing perfluorinated compounds and tin fluoride.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 과불화 화합물 저감 및 불화주석 생성 방법을 적용한 중전기기 불화가스 회수설비를 제공한다.The constitution of the present invention for achieving the above object provides a heavy electric fluoride gas recovery facility applying the method of reducing perfluorinated compounds and tin fluoride.
상기와 같은 구성에 따르는 본 발명의 효과는, 종래보다 낮은 온도에서 과불화 화합물을 제거할 수 있어 에너지 효율이 높다. 일 예로, 연소 기술은 육불화황을 효과적으로 제거하기 위해 1200도 이상의, 사불화탄소를 효과적으로 제거하기 위해서는 1600도 이상의 고온 연소를 사용하여 많은 에너지가 소요되나, 본 발명은 600도 내지 650도의 온도에서도 과불화 화합물을 모두 제거할 수 있다. 즉, 본원발명은 종래보다 적은 에너지로도 과불화 화합물을 모두 제거할 수 있어 경제적이다.Advantageous Effects of the Invention According to the above constitution, the perfluorinated compound can be removed at a lower temperature than before, and the energy efficiency is high. For example, the combustion technology requires a lot of energy using high-temperature combustion of more than 1200 degrees to effectively remove sulfur hexafluoride, and more than 1600 degrees to effectively remove carbon tetrafluoride, the present invention is overburden even at a temperature of 600 to 650 degrees All the compounds can be removed. That is, the present invention is economical because it can remove all the perfluorinated compounds with less energy than the conventional one.
또한, 본 발명은 액체주석과 과불화 화합물이 반응시켜 과불화 화합물을 제거함과 동시에 불화주석(SnF2) 및 황화주석(SnS)과 같은 고부가 물질을 생성할 수 있다. 불화주석의 경우, 액체주석과 약 17배 정도의 가격차이가 나는 고부가물질로 치약 등 구강 청결 제품에 사용된다. 즉, 본 발명은 과불화 화합물을 제거함과 동시에 고부가 물질을 생성하여 부가적인 수익을 얻도록 할 수 있기 때문에 경제적이다.In addition, the present invention may remove the perfluorinated compound by reacting the liquid tin and the perfluorinated compound, and at the same time may generate a high value added material such as tin fluoride (SnF 2 ) and tin sulfide (SnS). Tin fluoride is a high value added substance that is about 17 times more expensive than liquid tin and is used in oral cleaning products such as toothpaste. In other words, the present invention is economical because it allows the removal of perfluorinated compounds and at the same time allows the production of high value added materials to yield additional revenue.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above-described effects, but should be understood to include all the effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 예시도이다.1 is an exemplary view of a perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 구성도이다.2 is a block diagram of a perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 과불화 화합물의 농도를 나타낸 그래프이다.Figure 3 is a graph showing the perfluorinated compound concentration of the perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
도 4은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 불화주석의 개질율을 나타낸 그래프이다.Figure 4 is a graph showing the modification rate of tin fluoride of the perfluorinated compound reduction and tin fluoride generating device according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 방법의 순서도이다.Figure 5 is a flow chart of the perfluorinated compound reduction and tin fluoride production method according to an embodiment of the present invention.
본 발명의 바람직한 최선의 실시예는, 액체주석(Sn)이 수용된 반응부; 및 상기 반응부에 과불화 화합물(PFC)을 투입하는 원료투입부를 포함하며, 상기 반응부에서, 상기 과불화 화합물과 상기 액체주석이 반응하여 불화주석(SnF2)이 생성되는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치인 것을 특징으로 한다.According to a preferred embodiment of the present invention, a reaction part in which liquid tin (Sn) is accommodated; And a raw material input unit for inputting a perfluorinated compound (PFC) to the reaction unit, wherein the perfluorinated compound and the liquid tin react in the reaction unit to generate tin fluoride (SnF 2 ). It is characterized in that the device is a reduced compound and tin fluoride generating device.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be "connected (connected, contacted, coupled)" with another part, it is not only "directly connected" but also "indirectly connected" with another member in between. "Includes the case. In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 예시도이고, 도 2는 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 구성도이다.1 is an illustration of a perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention, Figure 2 is a block diagram of a perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention.
도 1 및 도 2에 도시된 것처럼, 과불화 화합물 저감 및 불화주석 생성 장치(100)는 반응부(110), 액체주석저장부(120), 가열부(130), 측정부(140), 원료투입부(150), 분배부(160) 및 응축부(170)를 포함하며, 상기 반응부(110)에서, 상기 과불화 화합물(PFC)과 상기 액체주석(Sn)이 반응하여 불화주석(SnF2)이 생성되는 것을 특징으로 할 수 있다.1 and 2, the perfluorinated compound reduction and tin fluoride generating device 100 is a reaction unit 110, the liquid tin storage unit 120, the heating unit 130, the measuring unit 140, raw materials Including the input unit 150, the distribution unit 160 and the condensation unit 170, in the reaction unit 110, the perfluorinated compound (PFC) and the liquid tin (Sn) is reacted with tin fluoride (SnF2 ) May be generated.
상기 반응부(110)는 액체주석이 수용될 수 있는 용기 형태로 마련될 수 있으며, 1000도 이상의 고온 환경에서도 손상이 발생하지 않도록 내열성을 갖는 소재로 마련될 수 있다.The reaction unit 110 may be provided in the form of a container in which the liquid tin can be accommodated, and may be formed of a material having heat resistance so that damage does not occur even in a high temperature environment of 1000 degrees or more.
상기 액체주석저장부(120)는 상기 반응부(110)의 상부에 마련되며, 상기 반응부(110)에 상기 액체주석을 공급할 수 있다. 이때, 상기 액체주석저장부(120)는 상기 반응부(110)에 공급할 액체주석을 상기 반응부(110) 내에 수용된 액체주석의 온도와 동일하도록 가열하여 제공할 수도 있다.The liquid tin storage unit 120 may be provided at an upper portion of the reaction unit 110, and supply the liquid tin to the reaction unit 110. In this case, the liquid tin storage unit 120 may be provided by heating the liquid tin to be supplied to the reaction unit 110 to be the same as the temperature of the liquid tin contained in the reaction unit (110).
또한, 상기 액체주석저장부(120)는 상기 측정부(140)에 의해 측정된 상기 반응부(110) 내의 액체주석의 양을 고려하여 선택적으로 액체주석을 공급하도록 마련될 수 있다.In addition, the liquid tin storage unit 120 may be provided to selectively supply the liquid tin in consideration of the amount of the liquid tin in the reaction unit 110 measured by the measuring unit 140.
상기 가열부(130)는 상기 반응부(110)에 연결되어 마련되며, 상기 가열부(130)는, 상기 반응부(110)에 수용된 상기 액체주석을 기설정된 온도로 가열할 수 있다. 상기 가열부(130)의 구체적인 가열 온도는 후술하도록 한다.The heating unit 130 may be connected to the reaction unit 110, and the heating unit 130 may heat the liquid tin contained in the reaction unit 110 to a predetermined temperature. Specific heating temperature of the heating unit 130 will be described later.
상기 측정부(140)는 상기 반응부(110) 및 상기 가열부(130)와 연결되도록 더 마련될 수 있으며, 상기 측정부(140)는, 상기 반응부(110) 내에 수용된 액체주석의 온도, 상기 불화주석의 개질율을 측정할 수 있다. The measurement unit 140 may be further provided to be connected to the reaction unit 110 and the heating unit 130, the measurement unit 140, the temperature of the liquid tin contained in the reaction unit 110, The modification rate of the tin fluoride can be measured.
구체적으로, 상기 측정부(140)는 상기 반응부(110) 내에 수용된 상기 액체주석의 온도를 측정하여 온도데이터를 생성할 수 있다. 그리고, 상기 측정부(140)는 상기 온도데이터를 상기 가열부(130)에 전송하면, 상기 가열부(130)는 상기 반응부(110) 내에 수용된 상기 액체주석의 온도가 기설정된 온도 범위 내에 포함되도록 제어할 수 있다.Specifically, the measurement unit 140 may generate temperature data by measuring the temperature of the liquid tin contained in the reaction unit 110. When the measuring unit 140 transmits the temperature data to the heating unit 130, the heating unit 130 includes a temperature of the liquid tin contained in the reaction unit 110 within a preset temperature range. Can be controlled.
또한, 상기 측정부(140)는 상기 반응부(110)에 포함된 상기 불화주석의 개질율을 측정하여 개질율 데이터를 생성하고, 상기 가열부(130)에 생성된 상기 개질율 데이터를 제공할 수 있다.In addition, the measurement unit 140 generates a modification rate data by measuring the modification rate of the tin fluoride included in the reaction unit 110, and provides the modification rate data generated to the heating unit 130. Can be.
상기 원료투입부(150)는 상기 반응부(110)에 과불화 화합물을 투입할 수 있으며, 상기 반응부(110)의 하단 일측에 마련될 수 있다. 즉, 상기 과불화 화합물은 상기 반응부(110)의 하측에서 유입되어 상부를 향해 이동하며 반응할 수 있다. 여기서, 상기 과불화 화합물은 비 이산화탄소 온실가스인 SF6, CF4, C2F6, C3F8, CHF3, NF3 및 불소 성분을 포함한 냉매(CHF3, C2HF3, C3HF7 등)를 포함한다.The raw material input part 150 may inject a perfluorinated compound into the reaction part 110, and may be provided at one side of the lower end of the reaction part 110. That is, the perfluorinated compound may be introduced from the lower side of the reaction unit 110 and move toward the upper side. Here, the perfluorinated compound includes refrigerants (CHF 3 , C2HF 3 , C 3 HF 7, etc.) containing SF 6 , CF 4 , C2F 6 , C3F 8 , CHF 3 , NF 3 and fluorine, which are non-carbon greenhouse gases. do.
또한, 상기 분배부(160)는 상기 반응부(110)의 내부 하측에 마련되며, 상기 반응부(110)의 길이 방향으로 상호 이격되어 복수개로 마련될 수 있다. 이처럼 마련된, 상기 분배부(160)는, 상기 원료투입부로(150)부터 유입되는 상기 과불화 화합물이 상기 반응부(110)의 내부에 주입될 때, 분산되어 주입되도록 함으로써, 상기 원료투입부(150)로부터 유입된 상기 과불화 화합물이 상기 액체주석과 신속하게 반응이 이루어지도록 할 수 있다.In addition, the distribution unit 160 may be provided in the lower side of the inside of the reaction unit 110, a plurality of spaced apart from each other in the longitudinal direction of the reaction unit 110. Thus, the distribution unit 160, when the perfluorinated compound introduced from the raw material input unit 150 is injected into the reaction unit 110, by being dispersed and injected, the raw material input unit ( The perfluorinated compound introduced from 150 may be rapidly reacted with the liquid tin.
상기 응축부(170)는 상기 반응부(110)의 상부에 마련될 수 있으며, 상기 응축부(170)는, 기상의 상기 불화주석을 액상 또는 고상으로 응축하도록 마련될 수 있다. 또한, 상기 응축부(170)에서, 상기 불화주석의 응축시에 응축대상 가스에 수분이 있을 경우 100도 이하로 응축 시 불화주석이 수분에 용해되어 가수분해가 일어날 수 있다. 따라서, 상기 응축부(170)의 응축온도는 100도 이상 850도 미만인 것을 특징으로 할 수 있다. 구체적으로, 불화주석의 끓는점은 850도, 녹는점은 213도 이므로, 상기 응축부(170)는 상기 수분을 기화시켜 제거함과 동시에, 상기 불화주석을 액체 또는 고체 상으로 응축하여 회수할 수 있다.The condensation unit 170 may be provided at an upper portion of the reaction unit 110, and the condensation unit 170 may be provided to condense the tin fluoride in a liquid phase or a solid phase. In addition, in the condensation unit 170, when condensation of the tin fluoride has moisture in the gas to be condensed, the tin fluoride may dissolve in water and consequently hydrolyze when condensed to 100 degrees or less. Therefore, the condensation temperature of the condensation unit 170 may be characterized in that more than 100 degrees less than 850 degrees. Specifically, since the boiling point of the tin fluoride is 850 degrees and the melting point is 213 degrees, the condensation unit 170 may vaporize and remove the moisture, and condensate the tin fluoride into a liquid or solid phase to recover the tin fluoride.
그리고, 기상의 상기 불화주석이 상기 응축부(170)로 원활하게 이동될 수 있도록 상기 응축부(170)와 연결된 상기 반응부(110)의 상부는, 상부로 갈수록 통로의 면적이 기설정된 면적까지 점차 감소하도록 마련될 수 있다. 이처럼 마련된 상기 반응부(110)는 상기 불화주석의 유속을 빨라지도록 함으로써, 상기 응축부(170)를 향해 상기 불화주석이 신속하게 이동하도록 할 수 있다.The upper portion of the reaction unit 110 connected to the condensation unit 170 may move up to a predetermined area as the upper portion of the reaction channel 110 moves smoothly to the condensation unit 170. It may be arranged to decrease gradually. The reaction unit 110 provided as described above may speed up the flow rate of the tin fluoride, thereby allowing the tin fluoride to move quickly toward the condensation unit 170.
본 발명에서는 대표적인 비 이산화탄소 온실가스인 육불화황(SF6)을 중심으로 설명하도록 한다.In the present invention will be described with respect to sulfur hexafluoride (SF 6 ) which is a representative non-carbon dioxide greenhouse gas.
상기 원료투입부(150)가 상기 반응부(110)에 기상의 상기 육불화황을 공급할 경우, 상기 반응부에서는 하기 화학식 1과 같은 반응이 일어날 수 있다.When the raw material input part 150 supplies the sulfur hexafluoride in the gaseous phase to the reaction part 110, a reaction such as the following Chemical Formula 1 may occur in the reaction part.
[화학식 1][Formula 1]
SF6 + 4Sn -> 3SnF2 + SnSSF6 + 4Sn-> 3SnF2 + SnS
구체적으로, 상기 육불화황과 상기 액체주석이 반응하면, 불화주석 및 황화주석이 생성된다.Specifically, when the sulfur hexafluoride reacts with the liquid tin, tin fluoride and tin sulfide are produced.
상기 화학식1은 육불화황을 투입하였을 때의 화학 반응식이며, 투입되는 과불화 화합물에 따라 반응식은 달라질 수 있다.Formula 1 is a chemical reaction formula when sulfur hexafluoride is added, and the reaction formula may vary depending on the perfluorinated compound.
도 3은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 과불화 화합물의 농도를 나타낸 그래프이고, 도 4은 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 장치의 불화주석의 개질율을 나타낸 그래프이다.Figure 3 is a graph showing the perfluorinated compound concentration of the perfluorinated compound reduction and tin fluoride generating apparatus according to an embodiment of the present invention, Figure 4 is a perfluorinated compound reduction and tin fluoride generation according to an embodiment of the present invention It is a graph which shows the modification rate of tin fluoride of a device.
도 3 및 도 4를 참조하면, 상기 액체주석에 수용된 과불화 화합물인 상기 육불화황의 농도는 약 600도 이상에서 0에 수렴하게 되어 완전히 제거될 수 있으며, 이와 동시에, 불화주석의 개질율은 약 600도 이상에서 100%에 수렴한다.3 and 4, the concentration of the sulfur hexafluoride, which is a perfluorinated compound contained in the liquid tin, converges to 0 at about 600 degrees or more, and can be completely removed. At the same time, the modification rate of tin fluoride is about Converge to 100% above 600 degrees.
다시, 상기 가열부(130)가 상기 반응부(110)에 수용된 액체주석을 가열하는 온도에 대해 설명하도록 한다. 먼저, 상기 액체주석을 가열하는 온도를 설명하기 전에, 먼저, 상기 액체주석은 끓는 점이 약 2600도이고, 황화주석의 끓는 점은 약 1230도이며, 불화주석의 끓는 점은 약 850도이다. 즉, 상기 액체주석의 온도를 850도 내지 1230도로 가열하면 상기 불화주석은 기화되며, 상기 액체주석 및 상기 황화주석은 액체 상태로 존재함을 알 수 있다.Again, the heating unit 130 will be described with respect to the temperature for heating the liquid tin contained in the reaction unit (110). First, before explaining the temperature for heating the liquid tin, first, the liquid tin has a boiling point of about 2600 degrees, the boiling point of tin sulfide is about 1230 degrees, the boiling point of tin fluoride is about 850 degrees. That is, when the temperature of the liquid tin is heated to 850 degrees to 1230 degrees, the tin fluoride is vaporized, and the liquid tin and the tin sulfide are present in a liquid state.
이때, 일실시예로, 상기 가열부(130)는 상기 반응부(110)에 수용된 상기 액체주석의 온도를 850내지 950도로 가열할 수 있다. 구체적으로, 상기 가열부(130)가 상기 반응부(110)에 수용된 상기 액체주석을 850도 내지 950도로 가열하면, 상기 반응부(110)에 수용된 과불화화합물이 상기 액체주석과 상기 화학식 1과 같이 반응하여 제거될 수 있다. 그리고, 이와 동시에 상기 화학식 1 반응을 통해 생성된 상기 불화주석은 생성됨과 동시에 기화되어 상기 응축부(170)로 이동하여 응축될 수 있다.At this time, in one embodiment, the heating unit 130 may heat the temperature of the liquid tin accommodated in the reaction unit 110 850 to 950 degrees. Specifically, when the heating unit 130 heats the liquid tin accommodated in the reaction unit 110 at 850 degrees to 950 degrees, the perfluorinated compound contained in the reaction unit 110 is separated from the liquid tin and the formula (1). Can be removed by reaction. At the same time, the tin fluoride generated through the reaction of Chemical Formula 1 may be generated and vaporized and moved to the condenser 170 to condense.
또한, 상기 가열부(130)는 상기 불화주석의 끓는점 이상으로 가열하기 위해 850도로 가열할 수 있고, 가열에 필요한 에너지를 최소화하기 위해 950도 이하로 설정될 수 있다.In addition, the heating unit 130 may be heated to 850 degrees to heat above the boiling point of the tin fluoride, it may be set to 950 degrees or less to minimize the energy required for heating.
한편, 다른 실시예로, 상기 가열부(130)는, 상기 반응부(110)에 수용된 상기 액체주석의 온도를 600내지 650도로 가열하고, 상기 불화주석의 개질율이 기설정된 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하도록 마련될 수 있다. 구체적으로, 상기 과불화 화합물은 600도 이하에서 상기 화학식 1과 같은 반응이 모두 이루어지지 않을 수 있고, 650도 이상은 필요 이상의 에너지를 소모하게 할 수 있다. 따라서, 상기 가열부(130)는 상기 과불화 화합물이 모두 제거됨과 동시에 최소한의 에너지를 소모하도록 하기 위해 600도 내지 650도로 먼저 가열을 수행할 수 있다. 단, 상기 액체주석과 반응하는 과불화 화합물이 육불화황이 아닌 CF4, C2F6, C3F8, CHF3, NF3 중 어느 하나일 경우, 상기 가열부(130)의 가열온도는 상기 과불화 화합물과 육불화황의 모두 반응할 수 있는 온도로 적절히 조절될 수 있다.On the other hand, in another embodiment, the heating unit 130, the temperature of the liquid tin accommodated in the reaction unit 110 to 600 to 650 degrees, the modification rate of the tin fluoride reaches a predetermined target modification rate. When it is, it may be provided to heat the temperature of the liquid tin to 850 degrees to 950 degrees. Specifically, the perfluorinated compound may not be all the reaction as shown in the formula (1) at less than 600 degrees, more than 650 degrees may consume more energy than necessary. Therefore, the heating unit 130 may be heated first to 600 degrees to 650 degrees to remove all of the perfluorinated compound and at the same time consume minimal energy. However, when the perfluorinated compound reacting with the liquid tin is any one of CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 , and NF 3 other than sulfur hexafluoride, the heating temperature of the heating unit 130 is The perfluorinated compound and sulfur hexafluoride can be appropriately adjusted to a temperature at which both can react.
그리고, 상기 측정부(140)가 측정한 상기 불화주석의 개질율이 기설정된 목표개질율에 도달했을 때, 상기 가열부(130)는 상기 반응부(110)에 수용된 상기 액체주석의 온도를 850도 내지 950도로 가열할 수 있다. 이처럼, 상기 액체주석의 온도가 850도 내지 950도로 가열하면, 상기 불화주석이 모두 기화되어 상기 응축부(170)로 이동하여 응축될 수 있다. 즉, 다른 실시예에 따른 상기 가열부(130)는 상기 일실시예에 따른 가열부(130)에 비해 적은 에너지로 상기 과불화 화합물을 불화주석으로 개질하고, 불화주석을 응축할 수 있다.When the modification rate of the tin fluoride measured by the measurement unit 140 reaches a predetermined target modification rate, the heating unit 130 adjusts the temperature of the liquid tin accommodated in the reaction unit 110 to 850. Heating to degrees 950 degrees. As such, when the temperature of the liquid tin is heated to 850 degrees to 950 degrees, all of the tin fluoride may be vaporized to move to the condensation unit 170 to condense. That is, the heating unit 130 according to another embodiment may modify the perfluorinated compound into tin fluoride and condensate tin fluoride with less energy than the heating unit 130 according to the embodiment.
또한, 상기 과불화 화합물 저감 및 불화주석 생성 장치(100)는 필터부(미도시) 및 회수부(미도시)를 더 포함할 수 있다. 구체적으로, 과불화 화합물과 액체주석이 반응하여 생성되는 황화주석은 녹는점이 약 880도이기 때문에, 상기 불화주석을 기화시켜 모두 응축한 이후에, 다른 실시예에 따른 상기 가열부(130)가 상기 반응부(110) 내의 액체주석의 온도를 600도 내지 650도로 냉각하는 과정에서, 고체 상태로 변할 수 있다. In addition, the perfluorinated compound reduction and tin fluoride generating device 100 may further include a filter unit (not shown) and the recovery unit (not shown). Specifically, since the tin sulfide produced by the reaction of the perfluorinated compound and the liquid tin has a melting point of about 880 degrees, after all of the tin fluoride is vaporized and condensed, the heating unit 130 according to another embodiment reacts the reaction. In the process of cooling the temperature of the liquid tin in the unit 110 to 600 degrees to 650 degrees, it may change into a solid state.
상기 필터부는 상기 반응부(110)와 연결되어 마련되어, 상기 원료투입부(150)가 다시 상기 반응부(110)에 과불화 화합물을 투입하기 전에 고상의 황화주석을 수집할 수 있다. The filter unit may be connected to the reaction unit 110 to collect solid tin sulfide before the raw material input unit 150 injects the perfluorinated compound into the reaction unit 110 again.
그리고, 상기 회수부는 상기 필터부와 연결되어 마련되며, 상기 고상의 황화주석을 수집하기 위해 함께 이동된 상기 액체주석을 다시 상기 액체주석저장부(120)로 이송하여 상기 액체주석을 재활용하도록 할 수 있다.In addition, the recovery unit is provided in connection with the filter unit, and the liquid tin moved together to collect the solid tin sulfide may be transferred back to the liquid tin storage unit 120 to recycle the liquid tin. have.
전술한 바와 같이 마련된 과불화 화합물 저감 및 불화주석 생성 장치는 반도체설비, 중전기기, 액정패널 제조장치 등에 적용될 수 있다. 즉, 상기 과불화 화합물 저감 및 불화주석 생성 장치(100)는 과불화 화합물이 생성되는 장치에 모두 적용될 수 있다.The perfluorinated compound reduction and tin fluoride generation apparatus provided as described above may be applied to semiconductor equipment, heavy electric equipment, liquid crystal panel manufacturing apparatus, and the like. That is, the perfluorinated compound reduction and tin fluoride generating device 100 may be applied to both the perfluorinated compound generating device.
이하, 전술한 상기 과불화 화합물 저감 및 불화주석 생성방법을 설명하도록 한다. 이때, 설명의 편의를 위해 상기 과불화 화합물 저감 및 불화주석 생성 장치(100)를 이용하여 설명하도록 한다.Hereinafter, the method of reducing the perfluorinated compound and generating tin fluoride will be described. In this case, for convenience of description, the perfluorinated compound reduction and tin fluoride generation apparatus 100 will be described.
도 5는 본 발명의 일실시예에 따른 과불화 화합물 저감 및 불화주석 생성 방법의 순서도이다.Figure 5 is a flow chart of the perfluorinated compound reduction and tin fluoride production method according to an embodiment of the present invention.
도 1 내지 도 5에 도시된 것처럼, 과불화 화합물 저감 및 불화주석 생성 방법은 먼저, 반응부에 액체주석을 공급하는 단계(S210)를 수행할 수 있다. 이 단계에서, 상기 액체주석저장부(120)는 상기 반응부(110)에 액체주석을 공급할 수 있으며, 상기 액체주석저장부(120)로부터 공급되는 상기 액체주석은 기설정된 온도로 미리 예열된 것일 수 있다.1 to 5, the method of reducing perfluorinated compound and generating tin fluoride may first perform a step of supplying liquid tin to the reaction unit (S210). In this step, the liquid tin storage unit 120 may supply liquid tin to the reaction unit 110, the liquid tin supplied from the liquid tin storage unit 120 may be preheated to a predetermined temperature in advance. have.
다음으로, 반응부에 수용된 액체주석을 기설정된 온도로 가열하는 단계(S220)를 수행할 수 있다. 이 단계에서, 상기 가열부(130)는 액체주석을 기설정된 온도로 가열할 수 있다.Next, the step of heating the liquid tin contained in the reaction unit to a predetermined temperature (S220). In this step, the heating unit 130 may heat the liquid tin to a predetermined temperature.
이때, 일실시예에 따르면, 상기 가열부(130)는 상기 액체주석 온도를 850내지 950도로 가열할 수 있다. At this time, according to one embodiment, the heating unit 130 may heat the liquid tin temperature of 850 to 950 degrees.
그리고, 다른 실시예에 따르면, 상기 가열부(130)는 상기 액체주석의 온도를 600내지 650도로 가열할 수 있다.In addition, according to another embodiment, the heating unit 130 may heat the temperature of the liquid tin to 600 to 650 degrees.
다음으로, 가열된 액체주석에 과불화 화합물을 투입하여 반응시키는 단계(S230)를 수행할 수 있다. 이 단계에서, 상기 원료투입부(150)는 상기 반응부(110)에 상기 과불화 화합물을 투입할 수 있으며, 이때, 상기 분배부(160)에 의해 상기 과불화 화합물이 상기 반응부(110)에 수용된 액체주석내에 분산되어 투입되도록 할 수 있다.Next, a step (S230) may be performed by adding a perfluorinated compound to the heated liquid tin. In this step, the raw material input unit 150 may inject the perfluorinated compound into the reaction unit 110, in which the perfluorinated compound is the reaction unit 110 by the distribution unit 160 It can be dispersed and injected into the liquid tin contained in the.
그리고, 액체주석에 과불화 화합물을 투입하여 반응시키는 단계(S230)에서 투입된 상기 과불화 화합물은 상기 화학식 1과 같이 반응할 수 있다.In addition, the perfluorinated compound added in step S230 of adding the perfluorinated compound to the liquid tin may be reacted as in Chemical Formula 1.
이때, 일실시예에 따른 가열 온도가 설정된 상기 가열부(130)는 상기 과불화 화합물과 상기 액체주석이 반응하여 생성된 상기 불화주석을 반응과 동시에 기화시켜 기상의 상기 불화주석이 상기 응축부(170)로 이동되도록 할 수 있다. 이처럼 마련된 일시예에 따른 상기 가열부(130)는 계속해서 과불화 화합물과 액체주석이 상기 반응부(110)에 투입되어 연속적으로 반응이 이루어지도록 할 때, 적용될 수 있다. 그리고, 일실시예에 따른 가열부(130)가 적용될 경우, 상기 반응부에 액체주석을 공급하는 단계(S210), 반응부에 수용된 액체주석을 기설정된 온도로 가열하는 단계(S220) 및 가열된 액체주석에 과불화 화합물을 투입하여 반응시키는 단계(S230)가 동시에 연속적으로 이루어질 수 있다.At this time, the heating unit 130 is set to the heating temperature according to an embodiment vaporizes the tin fluoride formed by the reaction of the perfluorinated compound and the liquid tin at the same time to react the tin fluoride in the gas phase the condensation unit ( 170). The heating unit 130 according to one embodiment provided as described above may be applied when the perfluorinated compound and the liquid tin are continuously added to the reaction unit 110 to continuously perform the reaction. Then, when the heating unit 130 according to an embodiment is applied, supplying the liquid tin to the reaction unit (S210), heating the liquid tin contained in the reaction unit to a predetermined temperature (S220) and heated Injecting the perfluorinated compound into the liquid tin (S230) may be carried out continuously at the same time.
한편, 다른 실시예에 따른 가열 온도가 설정된 상기 가열부(130)는, 먼저, 600도 내지 650도에서 과불화 화합물과 액체주석이 반응시키고, 상기 불화주석의 개질율과 상기 액체주석의 온도를 상기 측정부(140)로부터 제공받을 수 있다. 그리고, 상기 가열부(130)는 상기 불화주석의 개질율이 기설정된 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하여 상기 불화주석을 기화시킬 수 있다. On the other hand, the heating unit 130 is set to the heating temperature according to another embodiment, first, the perfluorinated compound and the liquid tin reacts at 600 to 650 degrees, the modification rate of the tin fluoride and the temperature of the liquid tin It may be provided from the measuring unit 140. When the modification rate of the tin fluoride reaches a predetermined target modification rate, the heating unit 130 may vaporize the tin fluoride by heating the temperature of the liquid tin to 850 degrees to 950 degrees.
이처럼 마련된 다른 실시예에 따른 가열부(130)는 상기 과불화 화합물과 액체주석을 반응시켜 불화주석을 생성할 때에는 상기 화학식 1 반응이 이루어지도록 할 수 있는 최소한의 에너지를 사용하고, 생성된 불화주석을 기화시킬 때에만 불화주석의 끓는점 이상의 온도로 가열함으로써, 에너지 효율을 높일 수 있다.The heating unit 130 according to another embodiment provided as described above uses the minimum energy that allows the reaction of Chemical Formula 1 to be produced when the tin fluoride is made by reacting the perfluorinated compound with the liquid tin, and generated tin fluoride. The energy efficiency can be improved by heating to the temperature above the boiling point of tin fluoride only when vaporizing.
그리고, 상기와 같이 마련된 다른 실시예에 따른 가열부(130)는 일정한 양의 과불화 화합물을 구간별로 투입하여 반응이 이루어지도록 할 때, 적용될 수 있다.And, the heating unit 130 according to another embodiment provided as described above may be applied when a predetermined amount of perfluorinated compound is added to each section to make the reaction.
단, 상기 일실시예 및 다른 실시예에 따른 가열 온도가 설정된 상기 가열부(130)의 적용은 실시 상황에 따라 용이하게 변경되어 적용될 수 있다.However, the application of the heating unit 130 in which the heating temperature is set according to one embodiment and the other embodiment may be easily changed and applied according to an embodiment.
또한, 일실시예에서는 상기 과불화 화합물을 육불화황으로 하여 설명하였으나, SF6, CF4, C2F6, C3F8, CHF3, NF3을 모두 포함한다.In addition, in one embodiment, the perfluorinated compound has been described as sulfur hexafluoride, but includes all of SF 6 , CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 , and NF 3 .
다음으로, 액체주석과 과불화 화합물이 반응하여 생성된 불화주석을 응축하는 단계(S240)를 수행할 수 있다. 이 단계에서, 상기 응축부(170)는 전 단계에서, 기화된 상기 불화주석을 액체 또는 고체 상태로 응축하여 응축될 수 있다.Next, the step of condensing the tin fluoride produced by the reaction of the liquid tin and the perfluorinated compound (S240). In this step, the condenser 170 may condense the vaporized tin fluoride in a liquid or solid state in a previous step.
한편, 과불화 화합물과 액체주석이 반응하여 생성되는 황화주석은 녹는점이 약 880도이다. 따라서, 상기 황화주석은 상기 불화주석을 기화시켜 모두 응축한 이후에, 다른 실시예에 따른 상기 가열부(130)가 상기 액체주석의 온도를 600도 내지 650도로 냉각할 때, 고체 상태로 변할 수 있다. Meanwhile, the tin sulfide produced by the reaction of the perfluorinated compound with the liquid tin has a melting point of about 880 degrees. Accordingly, after the tin sulfide is all condensed by vaporizing the tin fluoride, when the heating unit 130 according to another embodiment cools the temperature of the liquid tin to 600 degrees to 650 degrees, it may change into a solid state. .
따라서, 액체주석과 과불화 화합물이 반응하여 생성된 불화주석을 응축하는 단계(S240) 이후에는 황화주석 및 액체주석을 필터부로 이송하여 황화주석을 수집하는 단계를 더 수행할 수 있다. 이 단계에서, 상기 원료투입부(150)가 다시 반응부(110)에 과불화 화합물을 투입하기 전에 필터부를 이용하여 고상의 황화주석을 수집할 수 있다.Therefore, after condensing the tin fluoride generated by the reaction of the liquid tin and the perfluorinated compound (S240), the tin sulfide and the liquid tin may be transferred to the filter unit to collect tin sulfide. In this step, the raw material input unit 150 may collect the solid tin sulfide using the filter unit before the perfluorinated compound is introduced into the reaction unit 110 again.
그리고, 황화주석 및 액체주석을 필터부로 이송하여 황화주석을 수집하는 단계 이후에는, 필터부를 통과한 액체주석을 액체주석저장부로 이송하는 단계를 더 수행할 수 있다. 이 단계에서, 상기 고상의 황화주석을 수집하면서 함께 이동된 상기 액체주석은 다시 회수부를 통해 상기 액체주석저장부(120)로 이송되어 재활용될 수 있다.In addition, after the tin sulfide and the liquid tin are transferred to the filter unit to collect tin sulfide, the liquid tin that has passed through the filter unit may be further transferred to the liquid tin storage unit. In this step, the liquid tin moved together while collecting the solid tin sulfide may be transferred to the liquid tin storage unit 120 through a recovery unit and recycled.
전술한 바와 같이 마련된 본 발명은, 종래의 연소 기술보다 낮은 온도에서 과불화 화합물을 제거할 수 있어 에너지 효율이 높다. 일 예로, 연소 기술은 과불화 화합물을 모두 제거하기 위해 최대1600도 이상의 고온 연소를 사용하여 많은 에너지가 소요되나, 본 발명은 600도 내지 650도의 온도에서도 과불화 화합물을 모두 제거할 수 있다. 즉, 본원발명은 종래보다 적은 에너지로도 과불화 화합물을 모두 제거할 수 있어 경제적이다.The present invention provided as described above can remove the perfluorinated compound at a lower temperature than conventional combustion technology, and thus has high energy efficiency. As an example, the combustion technique requires a lot of energy using high-temperature combustion up to 1600 degrees or more to remove all the perfluorinated compounds, but the present invention can remove all the perfluorinated compounds even at a temperature of 600 to 650 degrees. That is, the present invention is economical because it can remove all the perfluorinated compounds with less energy than the conventional one.
또한, 본 발명은 액체주석과 과불화 화합물이 반응시켜 과불화 화합물을 제거함과 동시에 불화주석 및 황화주석과 같은 고부가 물질을 생성할 수 있다. 특히, 불화주석의 경우, 액체주석과 약 17배 정도의 가격차이가 나는 고부가물질로 치약 등 구강 청결 제품에 사용된다. 즉, 본 발명은 과불화 화합물을 제거함과 동시에 고부가 물질을 생성하여 부가적인 수익을 얻도록 할 수 있기 때문에 경제적이다.In addition, the present invention may remove the perfluorinated compound by reacting the liquid tin and the perfluorinated compound and at the same time to produce a high value added material such as tin fluoride and tin sulfide. In particular, tin fluoride is a high value-added substance that has a price difference of about 17 times that of liquid tin, and is used in oral cleaning products such as toothpaste. In other words, the present invention is economical because it allows the removal of perfluorinated compounds and at the same time allows the production of high value added materials to yield additional revenue.
전술한 바와 같이 마련된 과불화 화합물 저감 및 불화주석 생성 방법은 반도체설비, 중전기기, 액정패널 제조장치 등에 적용될 수 있다. 즉, 상기 과불화 화합물 저감 및 불화주석 생성 방법은 과불화 화합물이 생성되는 장치 및 방법에 모두 적용될 수 있다.The method of reducing perfluorinated compound and generating tin fluoride prepared as described above may be applied to a semiconductor facility, a heavy electric machine, a liquid crystal panel manufacturing apparatus, or the like. That is, the method of reducing the perfluorinated compound and generating tin fluoride may be applied to both the apparatus and the method for producing the perfluorinated compound.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is represented by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present invention.

Claims (18)

  1. 액체주석(Sn)이 수용된 반응부; 및A reaction part in which liquid tin (Sn) is accommodated; And
    상기 반응부에 과불화 화합물(PFC)을 투입하는 원료투입부를 포함하며,It includes a raw material input unit for introducing a perfluorinated compound (PFC) to the reaction unit,
    상기 반응부에서, 상기 과불화 화합물과 상기 액체주석이 반응하여 불화주석(SnF2)이 생성되는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.In the reaction unit, the perfluorinated compound and the liquid tin reacts with the perfluorinated compound reducing and tin fluoride generating device characterized in that the tin fluoride (SnF 2 ) is produced.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 과불화 화합물은 육불화황(SF6)인 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound is sulfur hexafluoride (SF 6 ) characterized in that the perfluorinated compound reduction and tin fluoride generating device.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 반응부에서 일어나는 화학반응은,The chemical reaction occurring in the reaction unit,
    SF6 + 4Sn -> 3SnF2 + SnS인 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.SF 6 + 4Sn-> 3SnF 2 + SnS perfluorinated compound reduction and tin fluoride generating device.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 반응부에 연결되어 마련되는 가열부를 포함하며,It includes a heating unit connected to the reaction unit,
    상기 가열부는,The heating unit,
    상기 반응부에 수용된 상기 액체주석을 기설정된 온도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound reduction and tin fluoride generating apparatus, characterized in that for heating the liquid tin contained in the reaction unit to a predetermined temperature.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 가열부는,The heating unit,
    상기 반응부에 수용된 액체주석의 온도를 850내지 950도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound reduction and tin fluoride generating apparatus, characterized in that for heating the temperature of the liquid tin contained in the reaction unit 850 to 950 degrees.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 반응부에 연결되는 측정부를 포함하며,It includes a measuring unit connected to the reaction unit,
    상기 측정부는,The measuring unit,
    상기 반응부 내에 수용된 액체주석의 온도, 상기 불화주석의 개질율을 측정하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound reduction and tin fluoride generating device characterized in that for measuring the temperature of the liquid tin contained in the reaction portion, the rate of modification of the tin fluoride.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 가열부는,The heating unit,
    상기 반응부에 수용된 상기 액체주석의 온도를 600내지 650도로 가열하고, 상기 불화주석의 개질율이 기설정된 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The temperature of the liquid tin contained in the reaction unit is heated to 600 to 650 degrees, and when the modification rate of the tin fluoride reaches a predetermined target modification rate, the temperature of the liquid tin is heated to 850 degrees to 950 degrees Perfluorine compound reduction and tin fluoride generating device.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 반응부의 내부 하측에는 상기 반응부의 길이 방향으로 상호 이격되어 마련된 복수의 분배부가 마련되며,A plurality of distribution parts provided to be spaced apart from each other in the longitudinal direction of the reaction portion is provided inside the reaction portion,
    상기 분배부는,The distribution unit,
    상기 원료투입부로부터 유입되는 상기 과불화 화합물이 상기 반응부의 내부에 주입될 때, 분산되어 주입되도록 마련되는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound reduction and tin fluoride generating device, characterized in that the perfluorinated compound introduced from the raw material input unit is provided to be dispersed and injected when injected into the reaction unit.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 반응부의 상부에 마련되는 응축부를 더 포함하며,Further comprising a condensation unit provided in the upper portion of the reaction unit,
    상기 응축부는,The condensation unit,
    상기 반응부의 화학반응 결과 생성된 기상의 상기 불화주석을 액상 또는 고상으로 응축하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.The perfluorinated compound reducing and tin fluoride generating device characterized in that the condensation of the tin fluoride in the gas phase generated as a result of the chemical reaction of the reaction unit in the liquid phase or solid phase.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 반응부의 상부에 마련되는 액체주석저장부를 더 포함하며,Further comprising a liquid tin storage unit provided in the upper portion of the reaction,
    상기 액체주석저장부는,The liquid tin storage unit,
    상기 반응부에 상기 액체주석을 공급하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 장치.Perfluoro compound reduction and tin fluoride generating device characterized in that for supplying the liquid tin to the reaction unit.
  11. a) 반응부에 액체주석을 공급하는 단계;a) supplying liquid tin to the reaction unit;
    b) 상기 반응부에 수용된 상기 액체주석을 기설정된 온도로 가열하는 단계;b) heating the liquid tin contained in the reaction unit to a predetermined temperature;
    c) 가열된 상기 액체주석에 과불화 화합물을 투입하여 반응시키는 단계; 및c) adding a perfluorinated compound to the heated tin; And
    d) 상기 액체주석과 상기 과불화 화합물이 반응하여 생성된 불화주석을 응축하는 단계를 포함하는 과불화 화합물 저감 및 불화주석 생성 방법.and d) condensing the tin fluoride produced by the reaction of the liquid tin and the perfluorinated compound.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 b) 단계는,B),
    상기 액체주석의 온도를 850내지 950도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.Method for reducing perfluorinated compound and tin fluoride, characterized in that for heating the temperature of the liquid tin to 850 to 950 degrees.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 b) 단계는,B),
    상기 액체주석의 온도를 600내지 650도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.Method for reducing perfluorinated compound and tin fluoride, characterized in that for heating the temperature of the liquid tin to 600 to 650 degrees.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 c) 단계에서,In step c),
    상기 불화주석의 개질율을 측정하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.A method for reducing perfluorinated compounds and tin fluoride, characterized in that the rate of modification of the tin fluoride is measured.
  15. 제 14 항에 있어서,The method of claim 14,
    상기c) 단계에서,In step c),
    상기 불화주석의 개질율이 목표개질율에 도달했을 때, 상기 액체주석의 온도를 850도 내지 950도로 가열하는 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.When the modification rate of the tin fluoride reaches a target modification rate, the temperature of the liquid tin is heated to 850 degrees to 950 degrees, characterized in that the perfluorinated compound reduction and tin fluoride generation method.
  16. 제 11 항에 있어서,The method of claim 11,
    상기 c) 단계에서,In step c),
    상기 과불화 화합물은 육불화황(SF6)인 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.The perfluorinated compound is sulfur hexafluoride (SF 6 ) characterized in that the perfluorinated compound reduction and tin fluoride production method.
  17. 제 11 항에 있어서,The method of claim 11,
    상기 c) 단계에서, 상기 반응부에서 일어나는 화학반응은,In step c), the chemical reaction occurring in the reaction unit,
    SF6 + 4Sn -> 3SnF2 + SnS인 것을 특징으로 하는 과불화 화합물 저감 및 불화주석 생성 방법.SF 6 + 4Sn-> 3SnF 2 + SnS method for reducing perfluorinated compounds and tin fluoride.
  18. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 과불화 화합물 저감 및 불화주석 생성 장치를 적용한 반도체 또는 디스플레이 설비.A semiconductor or display facility to which the perfluorinated compound reduction and tin fluoride generating device according to any one of claims 1 to 10 is applied.
PCT/KR2018/001354 2017-04-26 2018-01-31 Apparatus and method for decreasing perfluorinated compound and generating tin fluoride WO2018199441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880027568.9A CN110573233B (en) 2017-04-26 2018-01-31 Apparatus and method for reducing perfluorinated compounds and generating tin fluoride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0053613 2017-04-26
KR1020170053613A KR101859110B1 (en) 2017-04-26 2017-04-26 Device and method for reduceing pfc and producing tin fluoride

Publications (1)

Publication Number Publication Date
WO2018199441A1 true WO2018199441A1 (en) 2018-11-01

Family

ID=62780949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001354 WO2018199441A1 (en) 2017-04-26 2018-01-31 Apparatus and method for decreasing perfluorinated compound and generating tin fluoride

Country Status (3)

Country Link
KR (1) KR101859110B1 (en)
CN (1) CN110573233B (en)
WO (1) WO2018199441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713840C1 (en) * 2018-12-24 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Method of producing tin fluoride (ii) from a metal and its dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054752A1 (en) * 2021-09-29 2023-04-06 한국생산기술연구원 Greenhouse gas reduction device using liquid metal and method for operating same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010000569A (en) * 2000-10-06 2001-01-05 김형모 Oxygen enriched PFC scrubbing system
KR20040104152A (en) * 2003-06-03 2004-12-10 학교법인 포항공과대학교 Composite catalyst of porous alumina and transition metal for perfluorocarbon destruction and process for destructing perfluorocarbon using the same
KR20050094044A (en) * 2003-01-29 2005-09-26 쇼와 덴코 가부시키가이샤 Process for decomposing fluorine compounds
JP2007130635A (en) * 1997-06-20 2007-05-31 Hitachi Ltd Method and apparatus for decomposing fluorocompound
KR101365116B1 (en) * 2011-12-21 2014-02-20 한국생산기술연구원 Gas purifying apparatus using molten metal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779863A (en) * 1997-01-16 1998-07-14 Air Liquide America Corporation Perfluorocompound separation and purification method and system
CN1243022A (en) * 1998-07-27 2000-02-02 三菱电机株式会社 Method for recovering condensed gas from mixed gas, and recovering apparatus thereof
KR20020057505A (en) * 2001-01-05 2002-07-11 구자홍 Device for reproducting last screen in the monitor
KR101514449B1 (en) 2013-11-04 2015-05-04 세이브기술 (주) Apparatus for concentrating and pyrolyzing sulfur hexafluoride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130635A (en) * 1997-06-20 2007-05-31 Hitachi Ltd Method and apparatus for decomposing fluorocompound
KR20010000569A (en) * 2000-10-06 2001-01-05 김형모 Oxygen enriched PFC scrubbing system
KR20050094044A (en) * 2003-01-29 2005-09-26 쇼와 덴코 가부시키가이샤 Process for decomposing fluorine compounds
KR20040104152A (en) * 2003-06-03 2004-12-10 학교법인 포항공과대학교 Composite catalyst of porous alumina and transition metal for perfluorocarbon destruction and process for destructing perfluorocarbon using the same
KR101365116B1 (en) * 2011-12-21 2014-02-20 한국생산기술연구원 Gas purifying apparatus using molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2713840C1 (en) * 2018-12-24 2020-02-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Method of producing tin fluoride (ii) from a metal and its dioxide

Also Published As

Publication number Publication date
CN110573233A (en) 2019-12-13
CN110573233B (en) 2022-04-19
KR101859110B1 (en) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018199441A1 (en) Apparatus and method for decreasing perfluorinated compound and generating tin fluoride
WO2020105825A1 (en) Method and apparatus for effectively producing trifluoroamine oxide
WO2018135771A1 (en) Plasma generating apparatus and gas treating apparatus
WO2014109463A1 (en) Method for producing high-purity germane and device therefor
WO2022119404A1 (en) Apparatus for recovering oil using pyrolysis and cryogenic condenser and method for recovering oil using same
CN104271713A (en) Regeneration of selective solvents for extractive processes
WO2015076624A1 (en) Method for recovering absorption solvent in process for preparing butadiene through oxidative dehydrogenation
WO2020105826A1 (en) Method for producing trifluoroamine oxide
WO2016117736A1 (en) System for treating non-biodegradable harmful gases
WO2015080324A1 (en) Energy-saving acidic gas capture system and method using separated water
WO2017111415A1 (en) Method for decomposing and recycling carbon dioxide using hot stove
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
WO2018135772A1 (en) Nitrogen oxide reduction apparatus and gas treating apparatus
WO2015093845A1 (en) Coal high-quality processing system and coal high-quality processing method
WO2012138191A2 (en) Apparatus and method for treating coke oven gas
WO2019103235A1 (en) Gas treatment apparatus and method therefor
WO2016013759A1 (en) Method for treating waste by using plasma pyrolysis
WO2023054752A1 (en) Greenhouse gas reduction device using liquid metal and method for operating same
WO2018225980A1 (en) High-frequency induction pyrolysis apparatus for nitrous oxide-containing gaseous compound
WO2016190669A1 (en) Method for recovering cobalt powder from lithium-cobalt oxide
WO2019212072A1 (en) Acetic acid production method using dry reforming process using carbon dioxide and system for same
WO2023113403A1 (en) Method for simultaneously producing hydrogen and acetylene through methane pyrolysis by using triple thermal plasma
WO2022191632A1 (en) Apparatus and method for producing syngas by reforming diesel through an electromagnetic wave plasma torch
WO2016117735A1 (en) Flue gas pretreatment apparatus for incineration of non-biodegradable harmful gases, and flue gas pretreatment method using said pretreatment apparatus
WO2024029807A1 (en) Molten iron manufacturing equipment and molten iron manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790612

Country of ref document: EP

Kind code of ref document: A1