WO2018199127A1 - Modified polyarylate resin - Google Patents

Modified polyarylate resin Download PDF

Info

Publication number
WO2018199127A1
WO2018199127A1 PCT/JP2018/016715 JP2018016715W WO2018199127A1 WO 2018199127 A1 WO2018199127 A1 WO 2018199127A1 JP 2018016715 W JP2018016715 W JP 2018016715W WO 2018199127 A1 WO2018199127 A1 WO 2018199127A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylate resin
resin
group
modified
epoxy
Prior art date
Application number
PCT/JP2018/016715
Other languages
French (fr)
Japanese (ja)
Inventor
隆俊 村上
文雄 浅井
Original Assignee
ユニチカ株式会社
日本エステル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社, 日本エステル株式会社 filed Critical ユニチカ株式会社
Priority to JP2019514557A priority Critical patent/JPWO2018199127A1/en
Publication of WO2018199127A1 publication Critical patent/WO2018199127A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to a modified polyarylate resin.
  • Insulating materials such as printed wiring boards used in various electronic devices are required to have a low dielectric constant in order to increase the signal transmission speed and to have a low dielectric loss tangent in order to reduce loss during signal transmission. It has been. Insulating materials such as printed wiring boards are required to have excellent heat resistance that can withstand heat treatment such as soldering.
  • Polyarylate resin is known as a resin excellent in characteristics such as heat resistance, dielectric constant and dielectric loss tangent.
  • Patent Document 1 discloses that a resin composition in which an epoxy resin containing an active ester compound or a curing accelerator is blended with a polyarylate resin is used for a printed wiring board.
  • polyarylate resins generally have low solubility in general-purpose solvents, are difficult to handle, and polyarylate resins excellent in solubility in general-purpose solvents are demanded. If the solubility in a general-purpose solvent is low, it is difficult to prepare a varnish having a high solid content concentration, and gelation or precipitation is likely to occur.
  • An object of the present invention is to provide a resin (particularly, a polyarylate resin) excellent in curing reactivity that can form a cured product sufficiently excellent in heat resistance.
  • Another object of the present invention is to provide a resin (particularly a polyarylate resin) that is capable of forming a cured product that is sufficiently excellent in heat resistance and that is excellent in solubility in a general-purpose solvent and curing reactivity.
  • the present inventors have found that the above object can be achieved by incorporating an unsaturated group and / or an epoxy group at the end of a specific polyarylate resin, and have reached the present invention. That is, the gist of the present invention is as follows.
  • a modified polyarylate resin containing an unsaturated group and / or an epoxy group at a part or all of the terminals of the polyarylate resin contains a dihydric phenol component and an aromatic dicarboxylic acid component, and the dihydric phenol component contains an alicyclic dihydric phenol represented by the general formula (1), A modified polyarylate resin having an unsaturated group and / or epoxy group concentration of 100 eq / ton or more.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms or a halogen atom;
  • R 5 and R 6 are Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms;
  • m represents an integer of 4 to 12;
  • X represents a saturated aliphatic hydrocarbon ring together with the carbon atom to which the hydroxyphenyl group is bonded.
  • ⁇ 3> The modified polyarylate resin according to ⁇ 2>, wherein in the polyarylate resin, the hydroxycarboxylic acid component is contained in a proportion of 2 to 50 mol% with respect to the total monomer components.
  • ⁇ 4> The modified polyarylate according to any one of ⁇ 1> to ⁇ 3>, wherein in the polyarylate resin, the alicyclic dihydric phenol is contained in a proportion of 15 mol% or more based on the total dihydric phenol component.
  • the dihydric phenol component is 2,2-bis (4-hydroxyphenyl) propane (BisA) and / or 1,1-bis (4-hydroxyphenyl) -1-phenylethane ( BisAP) and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BisTMC) and / or 1,1-bis (4-hydroxyphenyl) -cyclododecane (BisCDE)
  • BisA 2,2-bis (4-hydroxyphenyl) propane
  • BisAP 1,1-bis (4-hydroxyphenyl) -1-phenylethane
  • BisTMC 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • BisCDE 1,1-bis (4-hydroxyphenyl) -cyclododecane
  • the content ratio ((BisA + BisAP) / (BisTMC + BisCDE)) of the total content of the BisA and / or the BisAP and the total content of the BisTMC and / or the BisCDE is 25 / ⁇ 5> modified polyarylate resin having a molar ratio of 75 to 75/25.
  • the aromatic dicarboxylic acid component contains terephthalic acid (TPA) and / or 2,6-naphthalenedicarboxylic acid (NDCA) and isophthalic acid (IPA)
  • TPA terephthalic acid
  • NDCA 2,6-naphthalenedicarboxylic acid
  • IPA isophthalic acid
  • the content ratio ((TPA + NDCA) / IPA) of the total content of the TPA and / or the NDCA and the content of the IPA is 0/100 to 80/20 (molar ratio), ⁇ 7>
  • ⁇ 12> A film comprising the modified polyarylate resin according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 13> A resin solution containing the modified polyarylate resin according to any one of ⁇ 1> to ⁇ 8> and an organic solvent.
  • ⁇ 14> A prepreg in which the reinforcing fiber cloth is impregnated or coated with the resin solution according to ⁇ 13>.
  • ⁇ 15> A laminate in which the prepreg according to ⁇ 14> is laminated.
  • ⁇ 16> A method for producing the modified polyarylate resin according to any one of ⁇ 1> to ⁇ 8>, After producing a polyarylate resin by performing an acetylation reaction and a deacetic acid polymerization reaction, a hydroxyl group terminal of the obtained polyarylate resin and an unsaturated group-containing compound are subjected to a dehydration condensation reaction and / or a hydroxyl group of the polyarylate resin.
  • the modified polyarylate resin of the present invention has excellent solubility in a general-purpose solvent by having a specific monomer composition.
  • the modified polyarylate resin of the present invention contains an unsaturated group and / or an epoxy group at a part or all of the terminals of the polyarylate resin.
  • the modified polyarylate resin of the present invention contains an unsaturated group and / or an epoxy group, may contain only one group of an unsaturated group or an epoxy group, or may contain both groups. It means that.
  • the modified polyarylate resin of the present invention has an unsaturated group and / or an epoxy group introduced into part or all of the terminal of the polyarylate resin. By containing an unsaturated group and / or an epoxy group, the curing reactivity can be improved.
  • modified polyarylate resin A the modified polyarylate resin containing an unsaturated group and not containing an epoxy group
  • modified polyarylate resin B modified polyarylate resin
  • modified polyarylate resin C modified polyarylate resins
  • Modified polyarylate resins include modified polyarylate resins A to C unless otherwise specified.
  • the concentration of the unsaturated group or the epoxy group needs to be 100 geq / ton or more, further improving the solubility in a general-purpose solvent, the curing reactivity, and the heat resistance of the cured product. From the viewpoint of improvement, it is preferably 200 geq / ton or more, more preferably 300 geq / ton or more, and still more preferably 500 geq / ton or more.
  • the concentration of unsaturated group or epoxy group means the concentration of unsaturated group of modified polyarylate resin A or the concentration of epoxy group of modified polyarylate resin B. In the present invention, both the unsaturated group and the epoxy group may be contained at the terminal of the polyarylate resin.
  • the total concentration needs to be 100 geq / ton or more, and 200 geq / ton or more. Preferably, it is 300 geq / ton or more, more preferably 500 geq / ton or more.
  • concentration of the unsaturated group or the epoxy group, or the total concentration when both the unsaturated group and the epoxy group are included is less than 100 geq / ton, the curing reactivity and the heat resistance of the cured product are lowered. Moreover, since the solubility to a general purpose solvent falls, it is not preferable.
  • the total concentration in the case where both the unsaturated group and the epoxy group are contained at the terminal of the polyarylate resin is “the concentration of the unsaturated group and the epoxy group”, and in the modified polyarylate resin C, It is the sum of the concentration and the concentration of epoxy groups.
  • the upper limit value of the unsaturated group or epoxy group concentration in the modified polyarylate resins A and B and the upper limit value of the unsaturated group and epoxy group concentration in the modified polyarylate resin C are not particularly limited. It is 2500 geq / ton or less, more preferably 1500 geq / ton or less, and still more preferably 1000 geq / ton or less. “Geq / ton” is a unit that means the amount (gram equivalent) of a functional group contained per 1 ton of resin.
  • the concentration of unsaturated groups and the concentration of epoxy groups are not particularly limited as long as the total concentration is within the above range.
  • the modified polyarylate resin containing an unsaturated group contains, for example, an hydroxyl group terminal of the polyarylate resin and an unsaturated group in an organic solvent in the presence of an acid catalyst and a polymerization inhibitor.
  • the compound can be obtained by subjecting the compound to a dehydration condensation reaction and then removing the excess unsaturated group-containing compound.
  • the introduction ratio (particularly concentration) of the unsaturated group can be controlled by the molar ratio of the hydroxyl group of the polyarylate resin to the reactive group of the unsaturated group-containing compound.
  • the reactive group of the unsaturated group-containing compound means a group that can react with the terminal hydroxyl group of the polyarylate resin, and examples thereof include a carboxyl group and an ester group thereof, and an isocyanate group.
  • the organic solvent include toluene, N-methylpyrrolidone, tetrahydrofuran, and methylene chloride.
  • the acid catalyst include p-toluenesulfonic acid, sulfuric acid, and methanesulfonic acid.
  • the polymerization inhibitor include hydroquinone and 4-methoxyphenol.
  • unsaturated group-containing compounds include unsaturated group-containing carboxylic acid compounds such as (meth) acrylic acid, unsaturated group-containing isocyanate compounds such as 2-isocyanatoethyl (meth) acrylate, and (meth) acrylic acid esters. Of unsaturated group-containing ester compounds.
  • unsaturated group-containing ester compounds examples include a method of washing with water or reducing the pressure.
  • the reaction temperature is usually from 50 to 150 ° C., in particular from 70 to 130 ° C.
  • the reaction time is usually 1 to 10 hours, particularly 1 to 5 hours.
  • the modified polyarylate resin containing an epoxy group (that is, the modified polyarylate resin B) is prepared by, for example, reacting the hydroxyl group terminal of the polyarylate resin with an epoxy group-containing compound in an organic solvent, and removing an excess epoxy group-containing compound. It can be obtained by removing.
  • the introduction rate (particularly the concentration) of the epoxy group can be controlled by the molar ratio of the hydroxyl group of the polyarylate resin to the epoxy group of the epoxy group-containing compound.
  • the organic solvent include toluene, N-methylpyrrolidone, tetrahydrofuran, and methylene chloride.
  • the epoxy group-containing compound include epichlorohydrin.
  • Examples of the method for removing the excess epoxy group-containing compound include a method of heating under reduced pressure.
  • the reaction temperature is usually 60 to 140 ° C., in particular 75 to 125 ° C.
  • the reaction time is usually 1 to 10 hours, particularly 1 to 5 hours.
  • a modified polyarylate resin containing an unsaturated group and an epoxy group (that is, modified polyarylate resin C) is obtained by, for example, subjecting a hydroxyl group terminal of a polyarylate resin and an unsaturated group-containing compound to a dehydration condensation reaction, and a polyarylate resin Can be obtained by reacting the hydroxyl group terminal of the compound with an epoxy group-containing compound.
  • the modified polyarylate resin C may be produced by introducing an unsaturated group by the above-described method for producing the modified polyarylate resin A and then introducing an epoxy group by the above-described method for producing the modified polyarylate resin B. it can.
  • the unsaturated group introduction ratio (concentration) and the epoxy group are adjusted. What is necessary is just to control the introduction rate (concentration).
  • the number average molecular weight of the modified polyarylate resin is preferably 21000 or less, more preferably 11000 or less, further preferably 7000 or less, and particularly preferably 4000 or less. When the number average molecular weight is more than 21000, the concentration of unsaturated groups and / or epoxy groups is lowered, and the curing reactivity of the modified polyarylate resin may be lowered.
  • the lower limit of the number average molecular weight of the modified polyarylate resin is not particularly limited, but the number average molecular weight is usually 600 or more, particularly 1100 or more.
  • the hydroxyl group concentration of the modified polyarylate resin is usually 100 geq / ton or less, and is preferably 50 geq / ton or less, more preferably 30 geq / ton from the viewpoint of further improving the curing reactivity and the heat resistance of the cured product. It is as follows.
  • the lower limit of the hydroxyl group concentration may be 0 geq / ton, and the hydroxyl group concentration is usually 1 geq / ton or more.
  • the hydroxyl group concentration can be measured by the method described later.
  • the polyarylate resin that can be suitably used for the production of the modified polyarylate resin of the present invention is a polyester resin containing a dihydric phenol component and an aromatic dicarboxylic acid component as monomer components (copolymerization units). It has a hydroxyl group at the terminal.
  • the polyarylate resin refers to a polyarylate resin before modification.
  • the dihydric phenol component may be any organic compound containing two phenolic hydroxyl groups in one molecule.
  • a phenolic hydroxyl group is a hydroxyl group bonded directly to an aromatic ring.
  • the dihydric phenol component contains an alicyclic dihydric phenol represented by the general formula (1) from the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent and further improving the heat resistance of the cured product. Is preferred.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms or a halogen atom.
  • the hydrocarbon group having 1 to 12 carbon atoms includes a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group.
  • the saturated aliphatic hydrocarbon group includes an alkyl group having 1 to 12, preferably 1 to 6, and more preferably 1 to 3 carbon atoms.
  • a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- examples thereof include a butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group.
  • the unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • the aromatic hydrocarbon group includes an aryl group having 6 to 10 carbon atoms, preferably 6 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, for example, Preferably they are a chlorine atom and a bromine atom.
  • preferred R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (particularly 1 to 3), or 6 to 10 carbon atoms. (Especially 6) aryl group or halogen atom (especially chlorine atom, bromine atom). More preferred R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 6 (particularly 1 to 3) carbon atoms. R 1 , R 2 , R 3 and R 4 may be partially or completely different from each other, or may be the same group, and preferably represent the same group.
  • R 5 and R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • the hydrocarbon group having 1 to 4 carbon atoms includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group.
  • the saturated aliphatic hydrocarbon group contains an alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t -A butyl group etc. are mentioned.
  • the unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • a plurality of R 5 and R 6 are present depending on the value of m described later, and the plurality of R 5 and the plurality of R 6 may be independently selected from the above range.
  • R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferred R 5 and R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, particularly a hydrogen atom or a methyl group.
  • m represents an integer of 4 to 12, preferably an integer of 5 to 11.
  • X represents a carbon atom that forms a saturated aliphatic hydrocarbon ring (monocycle) together with the carbon atom to which the hydroxyphenyl group is bonded.
  • the saturated aliphatic hydrocarbon ring represents a cycloalkane ring corresponding to the number of m.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n1 is an integer of 0 to 8, preferably an integer of 0 to 4, and more preferably an integer of 0 to 2.
  • R 10 represents a hydrocarbon group having 1 to 4 carbon atoms.
  • the hydrocarbon group having 1 to 4 carbon atoms includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group.
  • the saturated aliphatic hydrocarbon group contains an alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t -A butyl group etc. are mentioned.
  • the unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • n1 is an integer of 2 or more
  • plural R 10 are each independently, may be selected from the above range.
  • the bonding position of R 10 in the cyclopentane ring is not particularly limited, but is selected from the 3- and 4-position carbon atoms when the carbon atom of the cyclopentane ring to which the hydroxyphenyl group is bonded in the formula (1a). It is preferable that each R 10 is bonded to a carbon atom.
  • Desirable R 10 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 10 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1a) include 1,1-bis (4-hydroxyphenyl) cyclopentane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n2 is an integer of 0 to 10, preferably an integer of 0 to 5, and more preferably an integer of 2 to 4.
  • R 20 is the same as R 10 in the above formula (1a).
  • n2 is an integer greater than or equal to 2
  • several R ⁇ 20 > should just be independently selected from the same range as said R ⁇ 10 >.
  • the bonding position of R 20 in the cyclohexane ring is not particularly limited, but when the carbon atom of the cyclohexane ring to which the hydroxyphenyl group is bonded in the formula (1b) is selected from the carbon atoms at the 3-position, 4-position and 5-position. It is preferable that each R 20 is bonded to the carbon atom to be formed, particularly the carbon atom at the 3rd and 5th positions.
  • Desirable R 20 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 20 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1b) include 1,1-bis (4-hydroxyphenyl) cyclohexane and 1,1-bis (3,5-dimethyl-4-hydroxyphenyl).
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n3 is an integer of 0 to 12, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
  • R 30 is the same as R 10 in the above formula (1a).
  • n3 is an integer of 2 or more, plural R 30 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 30 in the cycloheptane ring is not particularly limited. However, when the carbon atom of the cycloheptane ring to which the hydroxyphenyl group is bonded is the first position in the formula (1c), the 3-position, 4-position, 5-position and 6-position It is preferable that each R 30 is bonded to a carbon atom selected from the following carbon atoms.
  • Desirable R 30 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 30 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1c) include, for example, 1,1-bis (4-hydroxyphenyl) -cycloheptane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n4 is an integer of 0 to 14, preferably an integer of 0 to 7, and more preferably an integer of 0 to 2.
  • R 40 is the same as R 10 in the above formula (1a).
  • n4 is an integer of 2 or more, plural R 40 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 40 in the cyclooctane ring is not particularly limited. However, when the carbon atom of the cyclooctane ring to which the hydroxyphenyl group is bonded in the formula (1d) is the first position, the fourth, fifth and sixth position carbon atoms It is preferable that each R 40 is bonded to a carbon atom selected from:
  • Desirable R 40 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 40 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1d) include 1,1-bis (4-hydroxyphenyl) -cyclooctane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n5 is an integer of 0 to 16, preferably an integer of 0 to 8, and more preferably an integer of 0 to 2.
  • R 50 is the same as R 10 in formula (1a).
  • n5 is an integer of 2 or more
  • plural R 50 is each independently may be selected from a range similar to the above R 10.
  • the bonding position of R 50 in the cyclononane ring is not particularly limited, but when the carbon atom of the cyclononane ring to which the hydroxyphenyl group is bonded in the formula (1e) is the first position, the carbons at the 4-position, 5-position, 6-position and 7-position
  • Each R 50 is preferably bonded to a carbon atom selected from the atoms.
  • Desirable R 50 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 50 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1e) include 1,1-bis (4-hydroxyphenyl) -cyclononane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n6 is an integer of 0 to 18, preferably an integer of 0 to 9, and more preferably an integer of 0 to 2.
  • R 60 is the same as R 10 in the above formula (1a).
  • n6 is an integer of 2 or more, plural R 60 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 60 in the cyclodecane ring is not particularly limited, but when the carbon atom of the cyclodecane ring to which the hydroxyphenyl group is bonded in the formula (1f) is selected from the 4-position, 5-position and 6-position carbon atoms It is preferable that each R 60 is bonded to the carbon atom to be formed.
  • Desirable R 60 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 60 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1f) include 1,1-bis (4-hydroxyphenyl) -cyclodecane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n7 is an integer of 0 to 20, preferably an integer of 0 to 10, and more preferably an integer of 0 to 2.
  • R 70 is the same as R 10 in the above formula (1a).
  • n7 is an integer of 2 or more, plural R 70 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 70 in the cycloundecane ring is not particularly limited, but when the carbon atom of the cycloundecane ring to which the hydroxyphenyl group is bonded in the formula (1g) is the first position, the fourth position, the fifth position, the sixth position and the seventh position. It is preferable that each R 70 is bonded to a carbon atom selected from the following carbon atoms.
  • Desirable R 70 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 70 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1g) include 1,1-bis (4-hydroxyphenyl) -cycloundecane.
  • R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1)
  • preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n8 is an integer of 0 to 22, preferably an integer of 0 to 11, and more preferably an integer of 0 to 2.
  • R 80 is the same as R 10 in the above formula (1a).
  • n8 is an integer of 2 or more, plural R 80 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 80 in the cyclododecane ring is not particularly limited, but when the carbon atom of the cyclododecane ring to which the hydroxyphenyl group is bonded in the formula (1h) is the first position, the fifth position, the sixth position, the seventh position, the eighth position And each R 80 is preferably bonded to a carbon atom selected from carbon atoms at the 9-position.
  • Desirable R 80 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 80 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1h) include, for example, 1,1-bis (4-hydroxyphenyl) -cyclododecane (BisCDE).
  • each R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
  • n9 is an integer of 0 to 24, preferably an integer of 0 to 12, and more preferably an integer of 0 to 2.
  • R 90 is the same as R 10 in formula (1a).
  • n9 is an integer of 2 or more, plural R 90 are each independently, may be selected from a range similar to the above R 10.
  • the bonding position of R 90 in the cyclotridecane ring is not particularly limited. However, when the carbon atom of the cyclotridecane ring to which the hydroxyphenyl group is bonded in the formula (1i) is the first position, the sixth position, the seventh position, the eighth position, and Each R 90 is preferably bonded to a carbon atom selected from the carbon atoms at the 9th position.
  • Desirable R 90 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 90 each independently represents an alkyl group having 1 to 3 carbon atoms.
  • alicyclic dihydric phenol represented by the general formula (1i) include 1,1-bis (4-hydroxyphenyl) -cyclotridecane.
  • the content ratio of the alicyclic dihydric phenol represented by the general formula (1) is not particularly limited, and usually 15 mol% or more based on the total dihydric phenol component ( 15 to 100 mol%). From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, the content ratio is preferably from 15 to 90 mol%, more preferably from 25 to 75 mol%, still more preferably from the total dihydric phenol component. Is 40 to 65 mol%, most preferably 45 to 55 mol%.
  • the content ratio is preferably from 25 to 100 mol%, particularly preferably from 40 to 100 mol%, more preferably from the viewpoint of further improving the heat resistance of the cured product of the modified polyarylate resin. It is 55 to 100 mol%, more preferably 90 to 100 mol%. From the viewpoint of the balance between improving the solubility of the modified polyarylate resin in a general-purpose solvent and further improving the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product, On the other hand, it is preferably 25 to 75 mol% or 40 to 90 mol%, more preferably 40 to 65 mol% or 50 to 90 mol%, still more preferably 45 to 55 mol%.
  • the alicyclic dihydric phenol represented by the alicyclic dihydric phenol represented by the general formula (1) may be used alone or in combination, and in that case, the total amount thereof. Should just be in the said range.
  • the dihydric phenol component may contain a dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1). From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, the dihydric phenol component preferably contains a dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1). .
  • the dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1) is not particularly limited as long as it is a dihydric phenol component not included in the alicyclic dihydric phenol represented by the general formula (1).
  • Examples thereof include the following dihydric phenols: 2,2-bis (4-hydroxyphenyl) propane [BisA], 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2, 2-bis (3-methyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane [BisAP], 1,1-bis (4-hydroxyphenyl) ethane, 1, 1-bis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) ) Methane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, bis (3-methyl-4-hydroxyphenyl) methane.
  • BisA and / or BisAP are preferred because of their versatility and high solubility in general-purpose solvents.
  • Divalent phenols other than the alicyclic dihydric phenol represented by the general formula (1) may be used alone or in combination of two or more.
  • the dihydric phenol component the above dihydric phenol may be used alone or in combination of two or more kinds. However, since the solubility of the modified polyarylate resin in a general-purpose solvent increases, plural kinds of dihydric phenol components may be used. It is preferable to use it. Among these, the dihydric phenol component preferably contains a combination of BisA and / or BisAP and BisTMC and / or BisCDE.
  • the content ratio of the total content of BisA and BisAP and the total content of BisTMC and BisCDE is 10/90 ⁇ 90/10 (molar ratio) is preferred, the solubility in general-purpose solvents (particularly methyl ethyl ketone) is increased, and the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product are further improved. More preferably, it is 25/75 to 75/25 (molar ratio), more preferably 35/65 to 65/35 (molar ratio), and 35/65 to 60/40 (molar ratio).
  • BisA / BisTMC is more preferably 30/70 to 70/30 (molar ratio).
  • the aromatic dicarboxylic acid component may be any organic compound containing two carboxyl groups directly bonded to the aromatic ring in one molecule.
  • Specific examples of the aromatic dicarboxylic acid component include, for example, terephthalic acid [TPA], isophthalic acid [IPA], orthophthalic acid, 4,4′-diphenyldicarboxylic acid, diphenylether-2,2′-dicarboxylic acid, diphenylether-2, 3′-dicarboxylic acid, diphenyl ether-2,4′-dicarboxylic acid, diphenyl ether-3,3′-dicarboxylic acid, diphenyl ether-3,4′-dicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, 2,6- And naphthalenedicarboxylic acid [NDCA].
  • the aromatic dicarboxylic acid component one of the above compounds may be used alone, or a plurality of compounds may be used in combination.
  • IPA alone or to use TPA and / or NDCA and IPA in combination.
  • the content ratio of IPA is a wholly aromatic dicarboxylic acid from the viewpoint of the balance between the improvement of the solubility of the modified polyarylate resin in a general-purpose solvent and the further improvement in the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product.
  • the aromatic dicarboxylic acid component contains TPA and / or NDCA and IPA
  • the content ratio of (TPA + NDCA) / IPA is a molar ratio from the viewpoint of the solubility of the modified polyarylate resin in a general-purpose solvent (particularly methyl ethyl ketone).
  • 0/100 to 80/20 is preferable, 0/100 to 60/40 is more preferable, 0/100 to 50/50 is more preferable, 0/100 to 40/60 is still more preferable, and 10/90 to 40 / 60 is most preferred.
  • the polyarylate resin used in the present invention may further contain a hydroxycarboxylic acid component as a monomer component.
  • a hydroxycarboxylic acid component as a monomer component
  • the hydroxycarboxylic acid may be any organic compound (especially an aromatic compound) containing one hydroxyl group and one carboxyl group in one molecule.
  • Specific examples of the hydroxycarboxylic acid include, for example, p-hydroxybenzoic acid [PHBA], m-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4- Naphthoic acid is mentioned. Of these, PHBA is preferred because of its high versatility.
  • the content ratio of the hydroxycarboxylic acid component is preferably 2 to 50 mol% with respect to 100 mol% of all monomer components. From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, it is 2 to 35. From the viewpoint of further improving the solubility, the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product, it is preferably 5 to 30 mol%, more preferably It is 5 to 25 mol%, more preferably 10 to 25 mol%, and most preferably 15 to 20 mol%. In addition, all the monomer components mean all the monomer components which comprise polyarylate resin.
  • the polyarylate resin when the polyarylate resin is composed of only a dihydric phenol component, an aromatic dicarboxylic acid component, and a hydroxycarboxylic acid component, all monomer components are all dihydric phenol component, aromatic dicarboxylic acid component, and hydroxycarboxylic acid component ( Total amount). Further, for example, when the polyarylate resin contains other monomer components in addition to the dihydric phenol component, the aromatic dicarboxylic acid component, and the hydroxycarboxylic acid component, all of these components (total amount).
  • the polyarylate resin used in the present invention may contain other monomer components other than the above-described dihydric phenol component, aromatic dicarboxylic acid component and hydroxycarboxylic acid component as long as the effects of the present invention are not impaired.
  • specific examples of other monomer components include, for example, aliphatic diols such as ethylene glycol and propylene glycol; alicyclic diols such as 1,4-cyclohexanediol, 1,3-cyclohexanediol, and 1,2-cyclohexanediol; And aliphatic dicarboxylic acids such as acid and sebacic acid; and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylic acid.
  • the aliphatic dicarboxylic acid and alicyclic dicarboxylic acid may be derivatives or anhydrides thereof.
  • the content ratio of the other monomer components is usually 10 mol% or less, preferably 5 mol% or less, more preferably 0 mol%, based on 100 mol% of all monomer components.
  • the hydroxyl group concentration of the polyarylate resin used in the present invention is preferably 100 geq / ton or more. From the viewpoint of improving solubility in general-purpose solvents, curing reactivity, and further improving heat resistance of the cured product, 200 geq / ton. It is preferable to be at least tons, more preferably at least 300 geq / tons, and even more preferably at least 500 geq / tons. When the hydroxyl group concentration is less than 100 geq / ton, the curing reactivity and the heat resistance of the cured product are lowered. Moreover, since the solubility to a general purpose solvent falls, it is not preferable.
  • the upper limit of the hydroxyl group concentration is not particularly limited, but does not exceed the hydroxyl group concentration of the dihydric phenol component, and the hydroxyl group concentration is usually 2500 geq / ton or less, more preferably 1500 geq / ton or less, Preferably it is 1000 geq / ton or less.
  • Hydroxyl group concentration a method of obtaining the group concentration if it is possible to quantify the hydroxyl group is not particularly limited, and may but be determined by a known method such as neutralization titration, 1, which will be described in detail later H- In NMR analysis, it can be determined by calculating the peak area of protons located in the ortho or meta position relative to the phenolic hydroxyl group and quantifying the group.
  • the number average molecular weight of the polyarylate resin used in the present invention is preferably less than 20000, more preferably less than 10,000, still more preferably less than 6000, and particularly preferably less than 3000. When the number average molecular weight is 20000 or more, the hydroxyl group concentration is lowered, and the curing reactivity of the modified polyarylate resin may be lowered.
  • the lower limit of the number average molecular weight of the polyarylate resin is not particularly limited, but the number average molecular weight is usually 500 or more, particularly 1000 or more.
  • the polyarylate resin for producing the modified polyarylate resin of the present invention can be produced, for example, by the following method.
  • the dihydric phenol component is used in a larger molar amount than the aromatic dicarboxylic acid component.
  • the acetylation reaction and the deacetic acid polymerization reaction are performed at such a molar ratio.
  • An acetylation reaction is a reaction that acetylates a dihydric phenol component.
  • an aromatic dicarboxylic acid component, a dihydric phenol component, and acetic anhydride are charged into a reaction vessel. Thereafter, nitrogen substitution is carried out, and the mixture is stirred under an inert atmosphere at a temperature of 100 to 240 ° C., preferably 120 to 180 ° C., for 5 minutes to 8 hours, preferably 30 minutes to 5 hours, at normal pressure or under pressure.
  • the molar ratio of acetic anhydride to the hydroxyl group of the dihydric phenol component is preferably 1.00 to 1.20.
  • the deacetic acid polymerization reaction is a reaction in which acetylated dihydric phenol and aromatic dicarboxylic acid are reacted and polycondensed. In the deacetic acid polymerization reaction, it is maintained at a temperature of 240 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, 500 Pa or lower, preferably 260 Pa or lower, more preferably 130 Pa or lower, for 30 minutes or longer. Stir.
  • the hydroxycarboxylic acid component may be added in this preliminary step.
  • the preliminary stage when the pressure is reduced after raising the temperature of the reaction system, a hydroxycarboxylic acid component may be added before raising the temperature, or after raising the temperature and before reducing the pressure, A carboxylic acid component may be added.
  • the hydroxycarboxylic acid component may be added both before the temperature rise and after the temperature rise and before the pressure reduction.
  • a catalyst may be used as necessary.
  • the catalyst include organic titanate compounds such as tetrabutyl titanate; zinc acetate; alkali metal salts such as potassium acetate; alkaline earth metal salts such as magnesium acetate; antimony trioxide; hydroxybutyltin oxide, tin octylate, etc.
  • Organic tin compounds; heterocyclic compounds such as N-methylimidazole can be mentioned.
  • the addition amount of the catalyst is usually 1.0 mol% or less, more preferably 0.5 mol% or less, further preferably 0.2 mol% or less, based on all monomer components of the polyarylate resin obtained. It is.
  • Examples of the apparatus for producing the polyarylate resin include known reaction apparatuses such as a batch reaction apparatus and a continuous reaction apparatus.
  • the present invention also provides a polyarylate resin composition.
  • the polyarylate resin composition of the present invention includes the above-described modified polyarylate resin, and preferably includes the above-described modified polyarylate resin and an epoxy resin, or the above-described modified polyarylate resin and (meth) acrylate resin. And / or an epoxy (meth) acrylate resin.
  • the polyarylate resin composition of the present invention has, for example, any of the following formulations for the resin component: Formulation (1) A combination of a modified polyarylate resin A and a (meth) acrylate resin and / or an epoxy (meth) acrylate resin; Formulation (2) Modified polyarylate resin A alone; Formulation (3) Combination of modified polyarylate resin B and epoxy resin; Formulation (4) Modified polyarylate resin B alone; Formulation (5) Combination of modified polyarylate resin C, epoxy resin, and (meth) acrylate resin and / or epoxy (meth) acrylate resin; in the combination, modified polyarylate resin A and / or B is further combined And Formulation (6) Modified polyarylate resin C alone.
  • the epoxy resin used in the polyarylate resin composition of the present invention is not particularly limited as long as it is an organic compound having two or more epoxy groups in one molecule.
  • Specific examples of the epoxy resin include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin. , Cresol novolac type epoxy resin, isocyanurate type epoxy resin, alicyclic epoxy resin, acrylic acid modified epoxy resin, polyfunctional epoxy resin, brominated epoxy resin, phosphorus modified epoxy resin.
  • An epoxy resin may be used independently and may use 2 or more types together.
  • the epoxy equivalent of the epoxy resin is usually 100 to 3000 g / eq, preferably 150 to 300 g / eq.
  • the softening point of the epoxy resin is usually 200 ° C. or lower, preferably 100 ° C. or lower.
  • the polyarylate resin composition (for example, the above blends (3) to (6)) containing the modified polyarylate resin of the present invention (particularly the modified polyarylate resin B and / or C) usually contains a crosslinking agent.
  • the crosslinking agent is not particularly limited as long as it can be crosslinked by opening an epoxy ring.
  • phenol novolak resin cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition Type resin, phenol aralkyl resin, naphthol aralkyl resin, trisphenylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensation novolak resin, naphthol-cresol co-condensation novolak resin, biphenyl-modified phenol resin, biphenyl-modified Examples thereof include polyhydric phenol compounds such as naphthol resins, aminotriazine-modified phenol resins, and alkoxy group-containing aromatic ring-modified novolak resins.
  • a crosslinking agent may be used independently and may use 2 or more types together.
  • the content of the crosslinking agent is preferably such that the functional group equivalent of the crosslinking agent is 0.5 to 1.5 equivalent ratio with respect to the sum of the epoxy equivalent of the epoxy resin and the epoxy equivalent of the modified polyarylate resin B and / or C. More preferably, the amount is 0.7 to 1.3 equivalent ratio.
  • the content of the crosslinking agent is usually 10 to 90 parts by weight, particularly 10 to 40 parts by weight, based on 100 parts by weight of the modified polyarylate resin.
  • the content of the crosslinking agent is 100 parts by mass of the total amount of these resins. On the other hand, it may be within the above range.
  • the polyarylate resin composition (for example, the above blends (3) to (6)) containing the modified polyarylate resin of the present invention (particularly, modified polyarylate resin B and / or C) usually contains a curing accelerator.
  • the curing accelerator is not particularly limited.
  • imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; 4-dimethylaminopyridine, benzyldimethylamine, 2- (dimethylamino) And tertiary amines such as methyl) phenol and 2,4,6-tris (dimethylaminomethyl) phenol; and organic phosphines such as triphenylphosphine and tributylphosphine.
  • a hardening accelerator may be used independently and may use 2 or more types together.
  • the content of the curing accelerator is usually 0.01 to 1 part by weight, particularly 0.05 to 0.5 part by weight, based on 100 parts by weight of the modified polyarylate resin.
  • the content of the curing accelerator is 100 parts by mass of the total amount of these resins. Is within the above range.
  • the blended amount of the modified polyarylate resin is the total amount of the epoxy resin and the modified polyarylate resin of 100.
  • the amount is 20 to 95 parts by mass, preferably 35 to 90 parts by mass, and more preferably 40 to 85 parts by mass with respect to parts by mass.
  • the (meth) acrylate resin used in the polyarylate resin composition of the present invention is particularly limited as long as it is an organic compound having one or more (meth) acrylate groups in one molecule. Not done.
  • Specific examples of the (meth) acrylate resin include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) ) Acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, and other mono (meth) acrylate resins; ethylene glycol di (meth) acrylate , Propylene glycol di
  • the epoxy (meth) acrylate resin used in the polyarylate resin composition of the present invention (the above blends (1) and (5)) is composed of an epoxy resin containing one or more functional epoxy groups and (meth) acrylic acid. It is (meth) acrylate obtained by reacting.
  • epoxy resins used as raw materials for epoxy (meth) acrylates include phenyl diglycidyl ethers such as hydroquinone diglycidyl ether, catechol diglycidyl ether, resorcinol diglycidyl ether; bisphenol-A type epoxy resin, bisphenol-F type epoxy Bisphenol-type epoxy compounds such as resins, bisphenol-S type epoxy resins, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane epoxy compounds; A type epoxy resin, hydrogenated bisphenol-F type epoxy resin, hydrogenated bisphenol-S type epoxy resin, hydrogenated 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane Epoxy Hydrogenated bisphenol-type epoxy compounds such as compounds; Halogenated bisphenol-type epoxy compounds such as brominated bisphenol-A type epoxy resins and brominated bisphenol-F type epoxy resins; Alicyclic diglycidyl such as cyclohex
  • the blending amount of the modified polyarylate resin is ( It is 10 to 90 parts by weight, preferably 35 to 65 parts by weight, more preferably 40 to 100 parts by weight of the total amount of the (meth) acrylate resin and / or epoxy (meth) acrylate resin and the modified polyarylate resin. ⁇ 50 parts by mass.
  • a curing agent can be used in combination with the resin composition of the present invention (for example, the above blends (1) to (6)).
  • the curing agent include aliphatic polyamine compounds such as diethylenetriamine, triethylenetetonramine, tetraethylenepentamine, dicyandiamine, adipic dihydrazide, and polyamide polyamine; mensendiamine, isophoronediamine, bis (4-amino-3) -Alicyclic polyamine compounds such as methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane; aromatic polyamine compounds such as metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone and metaphenylenediamine; phthalic anhydride, tetrahydrophthalic anhydride Acid, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydro
  • the resin composition of the present invention may further contain a thermosetting resin such as cyanate resin, isocyanate resin, maleimide resin, polyimide resin, urethane resin, or phenol resin. Good.
  • a thermosetting resin such as cyanate resin, isocyanate resin, maleimide resin, polyimide resin, urethane resin, or phenol resin. Good.
  • the resin composition of the present invention (for example, the above blends (3) and (5)) contains a resin having two or more terminal groups in one molecule that reacts suitably with a phenolic hydroxyl group, instead of an epoxy resin. May be.
  • the resin that may be contained instead of the epoxy resin include a cyanate resin, an isocyanate resin, and a maleimide resin.
  • the resin composition of the present invention may be used by adding to a high molecular weight resin.
  • the resin composition of the present invention can be used for a molded product, a film, a sheet, an adhesive, a coating film, a conductive paste, a transfer foil for film-in-mold molding, and the like depending on applications.
  • the coatability can be improved while improving or maintaining the heat resistance of the high molecular weight resin.
  • the high molecular weight resin is not particularly limited as long as it has a weight average molecular weight (Mw) of 10,000 or more.
  • high molecular weight resin examples include polyester resin, polyarylate resin, polycarbonate resin, polysulfone resin, polyether sulfone resin, polyphenylene ether resin, polyetherimide resin, polyimide resin, polyamideimide resin, and polyamide resin.
  • a high molecular weight resin may be used independently and may use 2 or more types together.
  • the resin composition of the present invention may further contain an inorganic filler.
  • the inorganic filler include silica, glass, alumina, talc, mica, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, titanium oxide, silicon nitride, and boron nitride.
  • An inorganic filler may be used independently and may use 2 or more types together.
  • the inorganic filler is preferably surface-treated with a surface treatment agent such as an epoxy silane coupling agent or an amino silane coupling agent.
  • the modified polyarylate resin and polyarylate resin composition of the present invention may contain an antioxidant as long as the characteristics are not impaired.
  • an antioxidant for example, as a hindered phenol-based antioxidant, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2 -Methyl-5-tert-butylphenyl) butane, 1,1-bis (3-tert-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethylethyl) -4 -Hydroxy-benzenepropanoic acid, pentaerythrityl tetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy-5-methyl- Benzenepropanoic acid, 3,9-bis [1,1-
  • 4,4′-thiobis [2-tert-butyl-5-methylphenol] bis [3- (dodecylthio) propionate], thiobis [2- (1,1-dimethylethyl) -5-methyl as a thioether antioxidant -4,1-phenylene] bis [3- (tetradecylthio) -propionate], pentaerythritol tetrakis (3-n-dodecylthiopropionate), bis (tridecyl) thiodipropionate.
  • An antioxidant may be used independently and may use 2 or more types together.
  • the resin composition of the present invention may contain a flame retardant.
  • a flame retardant Non-halogen flame retardants are preferred from the viewpoint of environmental impact.
  • the flame retardant include phosphorus-based flame retardant, nitrogen-based flame retardant, and silicone-based flame retardant.
  • a flame retardant may be used independently and may use 2 or more types together.
  • the modified polyarylate resin and polyarylate resin composition of the present invention can be dissolved in an organic solvent to form a resin solution.
  • the method for preparing the resin solution is not particularly limited, but when preparing a resin solution of the polyarylate resin composition, for example, rather than dissolving the modified polyarylate resin and the epoxy resin in an organic solvent at the same time, the modified polyarylate resin and the epoxy are previously prepared. It is easier to obtain a uniform resin solution in a shorter time by dissolving the resins in an organic solvent and then mixing them. In the latter case, it is easier to obtain a uniform resin solution in a shorter time when the solid concentration of both resin solutions is closer. For example, from the same viewpoint, it is preferable to previously dissolve the modified polyarylate resin, the (meth) acrylate resin and / or the epoxy (meth) acrylate resin in an organic solvent, and then mix them.
  • the organic solvent used in the resin solution of the modified polyarylate resin of the present invention is not particularly limited as long as the modified polyarylate resin can be uniformly dissolved, and a non-halogenated solvent is preferable from the viewpoint of influence on the environment.
  • the organic solvent used in the resin solution of the polyarylate resin composition of the present invention is not particularly limited as long as the epoxy resin and the modified polyarylate resin can be uniformly dissolved, and a non-halogenated solvent is preferable from the viewpoint of influence on the environment.
  • non-halogenated solvents examples include amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone; 1,4-dioxane, 1,3-dioxolane, Ether compounds such as tetrahydrofuran; ketone compounds such as methyl ethyl ketone, cyclopentanone and cyclohexanone; aromatic hydrocarbons such as toluene and xylene; and acetates such as ethyl acetate and propylene glycol monoethyl ether acetate.
  • amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone
  • 1,4-dioxane 1,3-dioxolane
  • Ether compounds such as tetrahydrofuran
  • ketone compounds such as methyl ethyl ketone
  • non-halogenated solvents are useful as general-purpose solvents, and ketone compounds and aromatic hydrocarbons, particularly methyl ethyl ketone and toluene are useful as more general-purpose solvents.
  • the most useful general purpose solvent is methyl ethyl ketone.
  • the said organic solvent may be used independently and may use 2 or more types together.
  • the solid content concentration of each resin solution can be increased. It can be set to mass% or more, particularly 20 mass% or more, preferably 30 mass% or more, more preferably 40 mass% or more, and further preferably 50 mass% or more.
  • the polyarylate resin is dissolved in a non-halogenated solvent at a solid content concentration of, for example, 5 to 40% by mass, preferably 10 to 40% by mass, more preferably 20 to 40% by mass, and further preferably 30 to 40% by mass. Can be made.
  • Methyl ethyl ketone and toluene used as the solvent for the resin solution of the present invention are widely used in the electrical and electronic field, are easily available, and are inexpensive, and are particularly convenient organic solvents.
  • polyarylate resins have been thought to be difficult to dissolve in the solvent because of the high concentration of aromatic rings.
  • the polyarylate resin has a specific resin composition as described above, and further contains an unsaturated group and / or an epoxy group at the terminal, thereby being dissolved in the solvent at a high concentration. Therefore, the modified polyarylate resin and polyarylate resin composition of the present invention are very easy to handle in the formation of coatings and films and the preparation of prepregs, and their industrial significance is very high.
  • the resin solution for forming the coating film and the film may be a resin solution obtained by dissolving a modified polyarylate resin in an organic solvent, or a resin solution obtained by dissolving a polyarylate resin composition in an organic solvent, or a polyarylate resin.
  • a resin solution in which the composition and the high molecular weight resin are dissolved in an organic solvent may be used.
  • Examples of the substrate include a PET film, a polyimide film, a glass plate, and a stainless plate.
  • Application methods include, for example, wire bar coater coating method, film applicator coating method, brush coating method, spray coating method, gravure roll coating method, screen printing method, reverse roll coating method, lip coating method, air knife coating method, curtain Examples thereof include a flow coating method and a dip coating method.
  • the resin solution of the present invention can be impregnated or coated on a reinforcing fiber cloth and then dried to obtain a prepreg.
  • the resin solution for producing the prepreg is a resin solution in which at least a modified polyarylate resin is dissolved in an organic solvent, for example, a resin solution in which a polyarylate resin composition is dissolved in an organic solvent.
  • the reinforcing fiber constituting the reinforcing fiber cloth examples include glass fiber, carbon fiber, organic fiber, and ceramic fiber. These reinforcing fibers can be used in any form such as woven fabric and non-woven fabric. Moreover, you may use the synthetic paper which mixed paper-made these fibers in the state of the short fiber using fibrid. Among these, glass fiber and carbon fiber are preferable because of excellent processability.
  • the thickness of the reinforcing fiber cloth is preferably 5 to 50 ⁇ m, more preferably 10 to 45 ⁇ m, and even more preferably 15 to 40 ⁇ m.
  • the method of impregnating the reinforcing fiber cloth with the resin solution is not particularly limited, and a known method can be used.
  • the impregnation method include a method using a commercially available or self-made continuous impregnation apparatus, a method of immersing reinforcing fibers in a resin solution made of a modified polyarylate resin, a reinforcing fiber on a plate such as a release paper, a glass plate, and a stainless plate.
  • Examples thereof include a method of applying a resin solution composed of a widened and modified polyarylate resin.
  • the prepreg is obtained by evaporating and drying an organic solvent from the coated resin solution after the coating.
  • the method for applying the resin solution to the reinforcing fiber cloth is not particularly limited, and a known method can be used.
  • coating method for example, coating can be performed using a commercially available coating machine. When performing double-sided coating, after single-sided coating, once dried and then coated again on the opposite side, after single-sided coating and then coated on the opposite side without drying, both sides simultaneously The method of coating is mentioned. These coating methods can be appropriately selected in consideration of workability and performance of the obtained prepreg.
  • the prepreg is obtained by evaporating and drying an organic solvent from the coated resin solution after the coating.
  • the thickness of the prepreg varies depending on the thickness of the reinforcing fiber cloth to be used, but is preferably 10 to 150 ⁇ m, more preferably 20 to 140 ⁇ m, and further preferably 30 to 130 ⁇ m.
  • the prepreg is obtained by impregnating or applying a resin solution to the reinforcing fiber cloth, and then drying, but heat resistance is obtained by obtaining the prepreg so that the thickness of the reinforcing fiber cloth used is approximately three times the thickness.
  • a prepreg excellent in mechanical properties, adhesiveness and appearance can be obtained.
  • the prepreg of the present invention can be used as it is without being subjected to heat treatment for curing.
  • the modified polyarylate resin contained in the prepreg melts and exhibits fluidity when heated above its glass transition temperature. can do. Since the laminate is excellent in adhesion between prepregs, the mechanical strength is sufficiently improved and the heat resistance is also excellent.
  • the said laminated body can be used as a high intensity
  • Punching or the like may be performed as long as the mechanical characteristics are not significantly impaired. Since the prepreg of the present invention does not use a thermosetting resin, it is particularly excellent in workability such as adhesion, moldability, and punchability.
  • the forming and punching can be performed by cold working, but can be performed under heating as necessary.
  • a modified polyarylate resin and an epoxy resin By heating the coating film, film, prepreg and laminate thereof obtained by using the polyarylate resin composition solution of the present invention, a modified polyarylate resin and an epoxy resin, or a modified polyarylate resin and a (meth) acrylate
  • the resin and / or epoxy (meth) acrylate resin can be reacted to achieve complete cure.
  • the heating temperature (curing temperature) is usually 110 to 250 ° C., preferably 130 to 220 ° C.
  • the heating time (curing time) is usually 1 minute to 20 hours, preferably 5 minutes to 10 hours.
  • the modified polyarylate resin of the present invention has heat resistance and excellent reactivity, it can be suitably used as an insulating material for printed wiring boards and the like.
  • the physical properties of the polyarylate resin, its resin composition, and the modified polyarylate resin were measured by the following methods.
  • the solution concentration of the solution having the highest solution concentration and the highest solution concentration was defined as the soluble solid content concentration.
  • the soluble solid content concentration was also obtained when the solvent was methyl ethyl ketone.
  • the modified polyarylate resin of the present invention preferably has good solubility in both of these solvents, particularly solubility in methyl ethyl ketone. The higher the solution concentration, the better the solubility in the solvent.
  • Modified polyarylate resin composition containing unsaturated groups, and cured product properties (glass transition temperature) of modified polyarylate resin compositions containing unsaturated groups and epoxy groups 40 parts by mass of a modified polyarylate resin containing an unsaturated group (or a modified polyarylate resin composition containing an unsaturated group and an epoxy group), and a novolac-type epoxy acrylate resin (SP4010, Showa Polymer Co., Ltd.) 60 Part by mass and 100 parts by mass of toluene were mixed and stirred until transparent to obtain a resin solution. When not dissolved in toluene, methylene chloride was used. The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours.
  • phenol novolac resin (TD-2131, manufactured by DIC, functional group equivalent of 105 g / eq, softening point 80 ° C.), 15 parts by mass, curing accelerator (2-ethyl-4-methylimidazole, Tokyo) (Made by Kasei Kogyo Co., Ltd.) 0.2 parts by mass and 100 parts by mass of toluene were mixed and stirred until transparent to obtain a resin solution.
  • curing accelerator 2-ethyl-4-methylimidazole, Tokyo
  • toluene 0.2 parts by mass and 100 parts by mass of toluene were mixed and stirred until transparent to obtain a resin solution.
  • methylene chloride was used.
  • the obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C.
  • the obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured.
  • the temperature was raised from 30 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min. After the temperature was lowered, the temperature was raised again from 30 ° C. to 300 ° C., and the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve
  • the starting temperature was the glass transition temperature. In this invention, when the glass transition temperature of hardened
  • Example 1 modified polyarylate resin containing unsaturated groups and modified polyarylate resin containing epoxy groups>
  • Example 1 Synthesis of polyarylate resin
  • TPA 6.7 parts by mass of TPA
  • IPA 6.7 parts by mass of IPA
  • 31.0 parts by mass of BisTMC 31.0 parts by mass of BisTMC
  • 20.4 parts by mass of acetic anhydride TPA: IPA: BisTMC: acetic anhydride (molar ratio)
  • 50: 50: 125: 250 under a nitrogen atmosphere, the mixture was stirred and mixed at normal pressure and 140 ° C. for 2 hours (acetylation reaction).
  • the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an unsaturated group has been confirmed. From this, it was judged that the polyarylate resin A in which the unsaturated group was contained at the terminal was obtained.
  • the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an epoxy group has been confirmed. From this, it was judged that the polyarylate resin B in which the epoxy group was contained in the terminal was obtained.
  • Examples 2 to 18 and Comparative Examples 1 to 6 A polyarylate resin was obtained in the same manner as in Example 1 except that the resin composition of the raw material charge was changed as shown in Table 1. The obtained polyarylate resin was used in the same manner as in Example 1 to obtain a modified polyarylate resin containing an unsaturated group and a modified polyarylate resin containing an epoxy group.
  • Reference example 1 100 parts by weight of novolac epoxy acrylate (SP4010, Showa Polymer Co., Ltd.) and 100 parts by weight of toluene were mixed and stirred until transparent to obtain a resin solution.
  • the obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C. for 2 hours, followed by drying at 200 Pa and 200 ° C. for 3 hours to perform solvent removal and curing to obtain a cured product.
  • the obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured. The temperature was raised from 30 ° C. to 300 ° C.
  • the starting temperature was the glass transition temperature.
  • the glass transition temperature was 112 ° C.
  • Epoxy resin (jER828, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 184 to 194 g / eq, viscosity 120 to 150 (25 ° C.), softening point 20 ° C. or less) 67 parts by mass, phenol novolac resin (TD-2131) DIC Corporation, functional group equivalent 105 g / eq, softening point 80 ° C.) 33 parts by mass, curing accelerator (2-ethyl-4-methylimidazole, Tokyo Chemical Industry Co., Ltd.) 1 part by mass, toluene 100 parts by mass, Were mixed and stirred until it became transparent to obtain a resin solution. The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours.
  • Example 19 Synthesis of polyarylate resin
  • the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an unsaturated group and an epoxy group has been confirmed. From this, it was judged that a polyarylate resin C containing an unsaturated group and an epoxy group at each end was obtained.
  • the unsaturated group concentration increased and the hydroxyl group concentration decreased because the unsaturated group was introduced at the hydroxyl group terminal of the polyarylate resin. It was.
  • the epoxy group concentration was increased and the hydroxyl group concentration was decreased because the epoxy group was introduced into the hydroxyl group terminal of the polyarylate resin.
  • the glass transition temperature of the cured product of the modified polyarylate resin containing unsaturated groups obtained in Examples 1 to 18 was 140 ° C. or more, and the epoxy group obtained in Examples 1 to 18 was contained.
  • cured material of modified polyarylate resin was 160 degreeC or more, and the heat resistance of these hardened
  • the unsaturated group concentration and the epoxy group were introduced because the unsaturated group and the epoxy group were introduced at the hydroxyl group terminal of the polyarylate resin.
  • the concentration increased and the hydroxyl group concentration decreased.
  • the glass transition temperature of the cured product of the modified polyarylate resin C containing an unsaturated group and an epoxy group obtained in Example 19 was 162 ° C. or higher, and the cured product had high heat resistance.
  • the modified polyarylate resins obtained in Comparative Examples 1 to 7 each had an unsaturated group or epoxy group of less than 100 geq / ton, and thus the heat resistance of the cured product was low.
  • the modified polyarylate resin containing an unsaturated group according to the present invention can be widely used for a curable resin composition or a thermosetting resin composition with active energy rays or radicals.
  • the modified polyarylate resin containing an unsaturated group according to the present invention can be used for thermosetting resins, UV curable resins, solder resists, coating resins, printing inks, molding resins, films and the like.
  • the modified polyarylate resin containing an epoxy group according to the present invention can be used for a thermosetting resin composition for general purposes.
  • the modified polyarylate resin containing an epoxy group according to the present invention includes a thermosetting resin, a substrate insulating material, CFRP (carbon fiber reinforced plastic), a coating resin, a printing ink, a sealing material, a molding resin, and a film. Can be used for etc.
  • the modified polyarylate resin containing an unsaturated group and an epoxy group according to the present invention is any one of the above modified polyarylate resin containing an unsaturated group or a modified polyarylate resin containing an epoxy group. It can be used as a resin for general purposes.
  • the modified polyarylate resin according to the present invention is particularly useful in the field of insulating materials such as printed wiring boards in electronic equipment (for example, semiconductor devices).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention provides a polyarylate resin which has excellent curing reactivity and is capable of forming a cured product that has sufficiently excellent heat resistance. The present invention relates to a modified polyarylate resin which contains an unsaturated group and/or an epoxy group at some or all ends of a polyarylate resin, and wherein: the polyarylate resin contains a divalent phenol component and an aromatic dicarboxylic acid component; the divalent phenol component contains an alicyclic divalent phenol represented by general formula (1); and the concentration of the unsaturated group and/or the epoxy group is 100 eq/ton or more. (In formula (1), each of R1, R2, R3 and R4 represents a hydrogen atom, a hydrocarbon group having 1-12 carbon atoms, or a halogen atom; each of R5 and R6 represents a hydrogen atom or a hydrocarbon group having 1-4 carbon atoms; m represents an integer of 4-12; and X represents a carbon atoms that constitutes a saturated aliphatic hydrocarbon ring.)

Description

変性ポリアリレート樹脂Modified polyarylate resin
 本発明は変性ポリアリレート樹脂に関する。 The present invention relates to a modified polyarylate resin.
 近年、各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、多層化技術が急速に進展している。各種電子機器において用いられるプリント配線板等の絶縁材料には、信号の伝達速度を高めるために、誘電率が低く、さらに、信号伝送時の損失を低減させるために、誘電正接が低いことが求められている。また、プリント配線板等の絶縁材料には、ハンダ処理等の熱処理に耐えられるような優れた耐熱性が要求されている。 In recent years, with various types of electronic equipment, with the increase in the amount of information processing, high integration of semiconductor devices to be mounted, high density of wiring, and multilayer technology have rapidly advanced. Insulating materials such as printed wiring boards used in various electronic devices are required to have a low dielectric constant in order to increase the signal transmission speed and to have a low dielectric loss tangent in order to reduce loss during signal transmission. It has been. Insulating materials such as printed wiring boards are required to have excellent heat resistance that can withstand heat treatment such as soldering.
 耐熱性、誘電率や誘電正接等の特性が優れている樹脂としては、ポリアリレート樹脂が知られている。例えば、特許文献1には、ポリアリレート樹脂に、活性エステル化合物や硬化促進剤を含有するエポキシ樹脂を配合した樹脂組成物をプリント配線板に用いることが開示されている。 Polyarylate resin is known as a resin excellent in characteristics such as heat resistance, dielectric constant and dielectric loss tangent. For example, Patent Document 1 discloses that a resin composition in which an epoxy resin containing an active ester compound or a curing accelerator is blended with a polyarylate resin is used for a printed wiring board.
特開2004―224890号公報JP 2004-224890 A
 しかしながら、特許文献1において樹脂組成物に含まれるポリアリレート樹脂は、エポキシ樹脂に対する反応性が低いため、反応速度が遅く、仮に反応が進んだとしても、エポキシ樹脂とともに、ガラス転移温度が十分に高い硬化物を得ることはできないという問題があった。 However, since the polyarylate resin contained in the resin composition in Patent Document 1 has low reactivity to the epoxy resin, the reaction rate is slow, and even if the reaction proceeds, the glass transition temperature is sufficiently high together with the epoxy resin. There was a problem that a cured product could not be obtained.
 一方、ポリアリレート樹脂は一般的に汎用溶媒への溶解性が低く、取り扱いが困難であり、汎用溶媒への溶解性に優れたポリアリレート樹脂が求められている。汎用溶媒への溶解性が低いと、高固形分濃度のワニスを調製することは難しく、ゲル化あるいは析出しやすい。 On the other hand, polyarylate resins generally have low solubility in general-purpose solvents, are difficult to handle, and polyarylate resins excellent in solubility in general-purpose solvents are demanded. If the solubility in a general-purpose solvent is low, it is difficult to prepare a varnish having a high solid content concentration, and gelation or precipitation is likely to occur.
 本発明は、耐熱性に十分に優れた硬化物を形成できる、硬化反応性に優れた樹脂(特にポリアリレート樹脂)を提供することを目的とする。 An object of the present invention is to provide a resin (particularly, a polyarylate resin) excellent in curing reactivity that can form a cured product sufficiently excellent in heat resistance.
 本発明はまた、耐熱性に十分に優れた硬化物を形成できる、汎用溶媒への溶解性および硬化反応性に優れた樹脂(特にポリアリレート樹脂)を提供することを目的とする。 Another object of the present invention is to provide a resin (particularly a polyarylate resin) that is capable of forming a cured product that is sufficiently excellent in heat resistance and that is excellent in solubility in a general-purpose solvent and curing reactivity.
 本発明者らは、鋭意検討の結果、特定のポリアリレート樹脂の末端に不飽和基および/またはエポキシ基を含有させることにより、上記目的が達成できることを見出し、本発明に到達した。
 すなわち、本発明の要旨は以下のとおりである。
<1> ポリアリレート樹脂の末端の一部または全部に、不飽和基および/またはエポキシ基を含有する変性ポリアリレート樹脂であって、
 前記ポリアリレート樹脂が、二価フェノール成分および芳香族ジカルボン酸成分を含有し、前記二価フェノール成分が一般式(1)で示される脂環式二価フェノールを含有し、
 不飽和基および/またはエポキシ基濃度が、100eq/トン以上である変性ポリアリレート樹脂。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R、R、RおよびRは、それぞれ独立して、水素原子、炭素原子数1~12の炭化水素基またはハロゲン原子を表す;RおよびRは、それぞれ独立して、水素原子または炭素原子数1~4の炭化水素基を表す;mは4~12の整数を表す;Xはヒドロキシフェニル基が結合する炭素原子とともに飽和脂肪族炭化水素環を形成する炭素原子を表す]
<2> 前記ポリアリレート樹脂において、ヒドロキシカルボン酸成分をさらに含有する<1>に記載の変性ポリアリレート樹脂。
<3> 前記ポリアリレート樹脂において、前記ヒドロキシカルボン酸成分が全モノマー成分に対して2~50モル%の割合で含有される<2>に記載の変性ポリアリレート樹脂。
<4> 前記ポリアリレート樹脂において、前記脂環式二価フェノールが全二価フェノール成分に対して15モル%以上の割合で含有される<1>~<3>のいずれかに記載の変性ポリアリレート樹脂。
<5> 前記ポリアリレート樹脂において、二価フェノール成分が、2,2-ビス(4-ヒドロキシフェニル)プロパン(BisA)および/または1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BisAP)と、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BisTMC)および/または1,1-ビス(4-ヒドロキシフェニル)-シクロドデカン(BisCDE)とを含有する<1>~<4>のいずれかに記載の変性ポリアリレート樹脂。
<6> 前記ポリアリレート樹脂において、前記BisAおよび/または前記BisAPの合計含有量と、前記BisTMCおよび/または前記BisCDEの合計含有量との含有比率((BisA+BisAP)/(BisTMC+BisCDE))が、25/75~75/25(モル比)である<5>に変性ポリアリレート樹脂。
<7> 前記芳香族ジカルボン酸成分が、テレフタル酸(TPA)および/または2,6-ナフタレンジカルボン酸(NDCA)と、イソフタル酸(IPA)とを含有する、<1>~<6>のいずれかに記載のポリアリレート樹脂。
<8> 前記TPAおよび/または前記NDCAの合計含有量と、前記IPAの含有量との含有比率((TPA+NDCA)/IPA)が0/100~80/20(モル比)である、<7>に記載のポリアリレート樹脂。
<9> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂およびエポキシ樹脂を含み、
 前記変性ポリアリレート樹脂が、エポキシ基を含有し、かつ不飽和基を含有しない変性ポリアリレート樹脂である、ポリアリレート樹脂組成物。
<10> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂、および、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂を含有し、
 前記変性ポリアリレート樹脂が、不飽和基を含有し、かつエポキシ基を含有しない変性ポリアリレート樹脂である、ポリアリレート樹脂組成物。
<11> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂を含む被膜。
<12> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂を含むフィルム。
<13> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂および有機溶媒を含有する樹脂溶液。
<14> <13>に記載の樹脂溶液が強化繊維クロスに含浸または塗布されているプリプレグ。
<15> <14>に記載のプリプレグが積層されている積層体。
<16> <1>~<8>のいずれかに記載の変性ポリアリレート樹脂を製造する方法であって、
 アセチル化反応および脱酢酸重合反応を行いポリアリレート樹脂を製造した後、得られたポリアリレート樹脂のヒドロキシル基末端と不飽和基含有化合物を脱水縮合反応させるか、かつ/またはポリアリレート樹脂のヒドロキシル基末端とエポキシ基含有化合物を反応させる、変性ポリアリレート樹脂の製造方法。
As a result of intensive studies, the present inventors have found that the above object can be achieved by incorporating an unsaturated group and / or an epoxy group at the end of a specific polyarylate resin, and have reached the present invention.
That is, the gist of the present invention is as follows.
<1> A modified polyarylate resin containing an unsaturated group and / or an epoxy group at a part or all of the terminals of the polyarylate resin,
The polyarylate resin contains a dihydric phenol component and an aromatic dicarboxylic acid component, and the dihydric phenol component contains an alicyclic dihydric phenol represented by the general formula (1),
A modified polyarylate resin having an unsaturated group and / or epoxy group concentration of 100 eq / ton or more.
Figure JPOXMLDOC01-appb-C000002
[In the formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms or a halogen atom; R 5 and R 6 are Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; m represents an integer of 4 to 12; X represents a saturated aliphatic hydrocarbon ring together with the carbon atom to which the hydroxyphenyl group is bonded. Represents the carbon atom to be formed]
<2> The modified polyarylate resin according to <1>, wherein the polyarylate resin further contains a hydroxycarboxylic acid component.
<3> The modified polyarylate resin according to <2>, wherein in the polyarylate resin, the hydroxycarboxylic acid component is contained in a proportion of 2 to 50 mol% with respect to the total monomer components.
<4> The modified polyarylate according to any one of <1> to <3>, wherein in the polyarylate resin, the alicyclic dihydric phenol is contained in a proportion of 15 mol% or more based on the total dihydric phenol component. Arylate resin.
<5> In the polyarylate resin, the dihydric phenol component is 2,2-bis (4-hydroxyphenyl) propane (BisA) and / or 1,1-bis (4-hydroxyphenyl) -1-phenylethane ( BisAP) and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BisTMC) and / or 1,1-bis (4-hydroxyphenyl) -cyclododecane (BisCDE) The modified polyarylate resin according to any one of <1> to <4>.
<6> In the polyarylate resin, the content ratio ((BisA + BisAP) / (BisTMC + BisCDE)) of the total content of the BisA and / or the BisAP and the total content of the BisTMC and / or the BisCDE is 25 / <5> modified polyarylate resin having a molar ratio of 75 to 75/25.
<7> Any of <1> to <6>, wherein the aromatic dicarboxylic acid component contains terephthalic acid (TPA) and / or 2,6-naphthalenedicarboxylic acid (NDCA) and isophthalic acid (IPA) A polyarylate resin according to any one of the above.
<8> The content ratio ((TPA + NDCA) / IPA) of the total content of the TPA and / or the NDCA and the content of the IPA is 0/100 to 80/20 (molar ratio), <7> The polyarylate resin described in 1.
<9> The modified polyarylate resin and epoxy resin according to any one of <1> to <8>,
A polyarylate resin composition, wherein the modified polyarylate resin is a modified polyarylate resin containing an epoxy group and no unsaturated group.
<10> The modified polyarylate resin according to any one of <1> to <8>, and a (meth) acrylate resin and / or an epoxy (meth) acrylate resin,
A polyarylate resin composition, wherein the modified polyarylate resin is a modified polyarylate resin containing an unsaturated group and no epoxy group.
<11> A film comprising the modified polyarylate resin according to any one of <1> to <8>.
<12> A film comprising the modified polyarylate resin according to any one of <1> to <8>.
<13> A resin solution containing the modified polyarylate resin according to any one of <1> to <8> and an organic solvent.
<14> A prepreg in which the reinforcing fiber cloth is impregnated or coated with the resin solution according to <13>.
<15> A laminate in which the prepreg according to <14> is laminated.
<16> A method for producing the modified polyarylate resin according to any one of <1> to <8>,
After producing a polyarylate resin by performing an acetylation reaction and a deacetic acid polymerization reaction, a hydroxyl group terminal of the obtained polyarylate resin and an unsaturated group-containing compound are subjected to a dehydration condensation reaction and / or a hydroxyl group of the polyarylate resin. A method for producing a modified polyarylate resin, wherein a terminal and an epoxy group-containing compound are reacted.
 本発明によれば、耐熱性に十分に優れた硬化物を形成できる硬化反応性に優れた変性ポリアリレート樹脂を提供することができる。また、本発明の変性ポリアリレート樹脂は、特定のモノマー組成を有することにより、汎用溶媒への溶解性にも優れている。 According to the present invention, it is possible to provide a modified polyarylate resin excellent in curing reactivity capable of forming a cured product sufficiently excellent in heat resistance. Moreover, the modified polyarylate resin of the present invention has excellent solubility in a general-purpose solvent by having a specific monomer composition.
[変性ポリアリレート樹脂]
 本発明の変性ポリアリレート樹脂は、ポリアリレート樹脂の末端の一部または全部に、不飽和基および/またはエポキシ基を含有するものである。本発明の変性ポリアリレート樹脂は不飽和基および/またはエポキシ基を含有するとは、不飽和基またはエポキシ基の一方の基のみを含有してもよいし、または両方の基を含有してもよいという意味である。詳しくは本発明の変性ポリアリレート樹脂は、ポリアリレート樹脂の末端の一部または全部に、不飽和基および/またはエポキシ基が導入されたものである。不飽和基および/またはエポキシ基を含有させることにより、硬化反応性に優れたものとすることができる。以下、不飽和基を含有し、かつエポキシ基を含有しない変性ポリアリレート樹脂を「変性ポリアリレート樹脂A」ということがある。エポキシ基を含有し、かつ不飽和基を含有しない変性ポリアリレート樹脂を「変性ポリアリレート樹脂B」ということがある。不飽和基もエポキシ基も含有する変性ポリアリレート樹脂を「変性ポリアリレート樹脂C」ということがある。変性ポリアリレート樹脂は、特記しない限り、変性ポリアリレート樹脂A~Cを包含する。
[Modified polyarylate resin]
The modified polyarylate resin of the present invention contains an unsaturated group and / or an epoxy group at a part or all of the terminals of the polyarylate resin. The modified polyarylate resin of the present invention contains an unsaturated group and / or an epoxy group, may contain only one group of an unsaturated group or an epoxy group, or may contain both groups. It means that. Specifically, the modified polyarylate resin of the present invention has an unsaturated group and / or an epoxy group introduced into part or all of the terminal of the polyarylate resin. By containing an unsaturated group and / or an epoxy group, the curing reactivity can be improved. Hereinafter, the modified polyarylate resin containing an unsaturated group and not containing an epoxy group may be referred to as “modified polyarylate resin A”. The modified polyarylate resin containing an epoxy group and not containing an unsaturated group may be referred to as “modified polyarylate resin B”. The modified polyarylate resin containing both unsaturated groups and epoxy groups is sometimes referred to as “modified polyarylate resin C”. Modified polyarylate resins include modified polyarylate resins A to C unless otherwise specified.
 本発明の変性ポリアリレート樹脂において、不飽和基またはエポキシ基の濃度は、100geq/トン以上とすることが必要で、汎用溶媒への溶解性の向上、硬化反応性および硬化物の耐熱性のさらなる向上の観点から、200geq/トン以上とすることが好ましく、より好ましくは300geq/トン以上、さらに好ましくは500geq/トン以上である。不飽和基またはエポキシ基の濃度とは、変性ポリアリレート樹脂Aの不飽和基の濃度または変性ポリアリレート樹脂Bのエポキシ基の濃度という意味である。本発明においては、ポリアリレート樹脂の末端に、不飽和基とエポキシ基の両方を含有してもよく、その場合、合計の濃度は、100geq/トン以上とすることが必要で、200geq/トン以上とすることが好ましく、より好ましくは300geq/トン以上、さらに好ましくは500geq/トン以上である。不飽和基またはエポキシ基の濃度、または、不飽和基とエポキシ基を両方含む場合にはその合計の濃度が、100geq/トン未満の場合、硬化反応性および硬化物の耐熱性が低下する。また汎用溶媒への溶解性が低下するので好ましくない。ポリアリレート樹脂の末端に、不飽和基とエポキシ基の両方を含有する場合における合計の濃度は、「不飽和基およびエポキシ基の濃度」であって、変性ポリアリレート樹脂Cにおける、不飽和基の濃度とエポキシ基の濃度との和のことである。変性ポリアリレート樹脂AおよびBにおける不飽和基またはエポキシ基の濃度の上限値、および変性ポリアリレート樹脂Cにおける不飽和基およびエポキシ基の濃度の上限値は、特に限定されるものではないが、通常、2500geq/トン以下、より好ましくは1500geq/トン以下、さらに好ましくは1000geq/トン以下である。「geq/トン」は、樹脂1tあたりに含まれる官能基の量(グラム当量)を意味する単位である。 In the modified polyarylate resin of the present invention, the concentration of the unsaturated group or the epoxy group needs to be 100 geq / ton or more, further improving the solubility in a general-purpose solvent, the curing reactivity, and the heat resistance of the cured product. From the viewpoint of improvement, it is preferably 200 geq / ton or more, more preferably 300 geq / ton or more, and still more preferably 500 geq / ton or more. The concentration of unsaturated group or epoxy group means the concentration of unsaturated group of modified polyarylate resin A or the concentration of epoxy group of modified polyarylate resin B. In the present invention, both the unsaturated group and the epoxy group may be contained at the terminal of the polyarylate resin. In that case, the total concentration needs to be 100 geq / ton or more, and 200 geq / ton or more. Preferably, it is 300 geq / ton or more, more preferably 500 geq / ton or more. When the concentration of the unsaturated group or the epoxy group, or the total concentration when both the unsaturated group and the epoxy group are included is less than 100 geq / ton, the curing reactivity and the heat resistance of the cured product are lowered. Moreover, since the solubility to a general purpose solvent falls, it is not preferable. The total concentration in the case where both the unsaturated group and the epoxy group are contained at the terminal of the polyarylate resin is “the concentration of the unsaturated group and the epoxy group”, and in the modified polyarylate resin C, It is the sum of the concentration and the concentration of epoxy groups. The upper limit value of the unsaturated group or epoxy group concentration in the modified polyarylate resins A and B and the upper limit value of the unsaturated group and epoxy group concentration in the modified polyarylate resin C are not particularly limited. It is 2500 geq / ton or less, more preferably 1500 geq / ton or less, and still more preferably 1000 geq / ton or less. “Geq / ton” is a unit that means the amount (gram equivalent) of a functional group contained per 1 ton of resin.
 本発明の変性ポリアリレート樹脂Cにおいて、不飽和基の濃度およびエポキシ基の濃度それぞれは、それらの合計の濃度が上記範囲内であれば、特に限定されない。 In the modified polyarylate resin C of the present invention, the concentration of unsaturated groups and the concentration of epoxy groups are not particularly limited as long as the total concentration is within the above range.
 不飽和基が含有された変性ポリアリレート樹脂(すなわち変性ポリアリレート樹脂A)は、例えば、有機溶媒中で、酸触媒と重合禁止剤の存在下、ポリアリレート樹脂のヒドロキシル基末端と不飽和基含有化合物を脱水縮合反応させ、その後、余分な不飽和基含有化合物を除去することにより得ることができる。不飽和基の導入率(特に濃度)は、ポリアリレート樹脂のヒドロキシル基と不飽和基含有化合物の反応性基とのモル比で制御可能である。不飽和基含有化合物の反応性基は、ポリアリレート樹脂の末端ヒドロキシル基と反応可能な基という意味であり、例えば、カルボキシル基およびそのエステル基、ならびにイソシアネート基等が挙げられる。有機溶媒としては、例えばトルエン、N-メチルピロリドン、テトラヒドロフラン、塩化メチレンが挙げられる。酸触媒としては、例えばp-トルエンスルホン酸、硫酸、メタンスルホン酸が挙げられる。重合禁止剤としては、例えばハイドロキノン、4-メトキシフェノールが挙げられる。不飽和基含有化合物としては、例えば(メタ)アクリル酸等の不飽和基含有カルボン酸化合物、2-イソシアナートエチル(メタ)クリレート等の不飽和基含有イソシアネート化合物、および(メタ)アクリル酸エステル等の不飽和基含有エステル化合物が挙げられる。余分な不飽和基含有化合物を除去する方法としては、例えば水で洗浄したり、減圧したりする方法が挙げられる。反応温度は通常、50~150℃、特に70~130℃である。反応時間は通常、1~10時間、特に1~5時間である。 The modified polyarylate resin containing an unsaturated group (that is, the modified polyarylate resin A) contains, for example, an hydroxyl group terminal of the polyarylate resin and an unsaturated group in an organic solvent in the presence of an acid catalyst and a polymerization inhibitor. The compound can be obtained by subjecting the compound to a dehydration condensation reaction and then removing the excess unsaturated group-containing compound. The introduction ratio (particularly concentration) of the unsaturated group can be controlled by the molar ratio of the hydroxyl group of the polyarylate resin to the reactive group of the unsaturated group-containing compound. The reactive group of the unsaturated group-containing compound means a group that can react with the terminal hydroxyl group of the polyarylate resin, and examples thereof include a carboxyl group and an ester group thereof, and an isocyanate group. Examples of the organic solvent include toluene, N-methylpyrrolidone, tetrahydrofuran, and methylene chloride. Examples of the acid catalyst include p-toluenesulfonic acid, sulfuric acid, and methanesulfonic acid. Examples of the polymerization inhibitor include hydroquinone and 4-methoxyphenol. Examples of unsaturated group-containing compounds include unsaturated group-containing carboxylic acid compounds such as (meth) acrylic acid, unsaturated group-containing isocyanate compounds such as 2-isocyanatoethyl (meth) acrylate, and (meth) acrylic acid esters. Of unsaturated group-containing ester compounds. Examples of the method for removing the excess unsaturated group-containing compound include a method of washing with water or reducing the pressure. The reaction temperature is usually from 50 to 150 ° C., in particular from 70 to 130 ° C. The reaction time is usually 1 to 10 hours, particularly 1 to 5 hours.
 エポキシ基が含有された変性ポリアリレート樹脂(すなわち変性ポリアリレート樹脂B)は、例えば、有機溶媒中で、ポリアリレート樹脂のヒドロキシル基末端とエポキシ基含有化合物を反応させ、余分なエポキシ基含有化合物を除去することにより得ることができる。エポキシ基の導入率(特に濃度)は、ポリアリレート樹脂のヒドロキシル基とエポキシ基含有化合物のエポキシ基とのモル比で制御可能である。有機溶媒としては、例えばトルエン、N-メチルピロリドン、テトラヒドロフラン、塩化メチレンが挙げられる。エポキシ基含有化合物としては、例えばエピクロロヒドリンが挙げられる。余分なエポキシ基含有化合物を除去する方法としては、例えば減圧下加熱する方法が挙げられる。反応温度は通常、60~140℃、特に75~125℃である。反応時間は通常、1~10時間、特に1~5時間である。 The modified polyarylate resin containing an epoxy group (that is, the modified polyarylate resin B) is prepared by, for example, reacting the hydroxyl group terminal of the polyarylate resin with an epoxy group-containing compound in an organic solvent, and removing an excess epoxy group-containing compound. It can be obtained by removing. The introduction rate (particularly the concentration) of the epoxy group can be controlled by the molar ratio of the hydroxyl group of the polyarylate resin to the epoxy group of the epoxy group-containing compound. Examples of the organic solvent include toluene, N-methylpyrrolidone, tetrahydrofuran, and methylene chloride. Examples of the epoxy group-containing compound include epichlorohydrin. Examples of the method for removing the excess epoxy group-containing compound include a method of heating under reduced pressure. The reaction temperature is usually 60 to 140 ° C., in particular 75 to 125 ° C. The reaction time is usually 1 to 10 hours, particularly 1 to 5 hours.
 不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂(すなわち変性ポリアリレート樹脂C)は、例えば、ポリアリレート樹脂のヒドロキシル基末端と不飽和基含有化合物を脱水縮合反応させ、かつ、ポリアリレート樹脂のヒドロキシル基末端とエポキシ基含有化合物を反応させることにより得ることができる。詳しくは、変性ポリアリレート樹脂Cは、上記した変性ポリアリレート樹脂Aの製造方法により不飽和基を導入した後、上記した変性ポリアリレート樹脂Bの製造方法によりエポキシ基を導入して製造することができる。このとき、不飽和基含有化合物の不飽和基およびエポキシ基含有化合物のエポキシ基それぞれについて、ポリアリレート樹脂のヒドロキシル基に対するモル比を調整することにより、不飽和基の導入率(濃度)およびエポキシ基の導入率(濃度)を制御すればよい。 A modified polyarylate resin containing an unsaturated group and an epoxy group (that is, modified polyarylate resin C) is obtained by, for example, subjecting a hydroxyl group terminal of a polyarylate resin and an unsaturated group-containing compound to a dehydration condensation reaction, and a polyarylate resin Can be obtained by reacting the hydroxyl group terminal of the compound with an epoxy group-containing compound. Specifically, the modified polyarylate resin C may be produced by introducing an unsaturated group by the above-described method for producing the modified polyarylate resin A and then introducing an epoxy group by the above-described method for producing the modified polyarylate resin B. it can. At this time, by introducing the unsaturated group of the unsaturated group-containing compound and the epoxy group of the epoxy group-containing compound with respect to the hydroxyl group of the polyarylate resin, the unsaturated group introduction ratio (concentration) and the epoxy group are adjusted. What is necessary is just to control the introduction rate (concentration).
 変性ポリアリレート樹脂の数平均分子量は、21000以下とすることが好ましく、11000以下とすることがより好ましく、7000以下とすることがさらに好ましく、4000以下とすることが特に好ましい。数平均分子量が21000超の場合、不飽和基および/またはエポキシ基の濃度が低くなり、変性ポリアリレート樹脂の硬化反応性が低下する場合がある。変性ポリアリレート樹脂の数平均分子量の下限値は特に限定されないが、当該数平均分子量は通常、600以上、特に1100以上である。 The number average molecular weight of the modified polyarylate resin is preferably 21000 or less, more preferably 11000 or less, further preferably 7000 or less, and particularly preferably 4000 or less. When the number average molecular weight is more than 21000, the concentration of unsaturated groups and / or epoxy groups is lowered, and the curing reactivity of the modified polyarylate resin may be lowered. The lower limit of the number average molecular weight of the modified polyarylate resin is not particularly limited, but the number average molecular weight is usually 600 or more, particularly 1100 or more.
 変性ポリアリレート樹脂のヒドロキシル基濃度は通常、100geq/トン以下であり、硬化反応性および硬化物の耐熱性のさらなる向上の観点から、50geq/トン以下とすることが好ましく、より好ましくは30geq/トン以下である。当該ヒドロキシル基濃度の下限値は0geq/トンであってもよく、当該ヒドロキシル基濃度は通常1geq/トン以上である。ヒドロキシル基濃度は後述の方法により測定可能である。 The hydroxyl group concentration of the modified polyarylate resin is usually 100 geq / ton or less, and is preferably 50 geq / ton or less, more preferably 30 geq / ton from the viewpoint of further improving the curing reactivity and the heat resistance of the cured product. It is as follows. The lower limit of the hydroxyl group concentration may be 0 geq / ton, and the hydroxyl group concentration is usually 1 geq / ton or more. The hydroxyl group concentration can be measured by the method described later.
[ポリアリレート樹脂]
 本発明の変性ポリアリレート樹脂の製造に好適に使用することができるポリアリレート樹脂は、二価フェノール成分および芳香族ジカルボン酸成分をモノマー成分(共重合単位)として含有するポリエステル樹脂であり、通常は末端にヒドロキシル基を有する。本明細書中、単にポリアリレート樹脂というとき、当該ポリアリレート樹脂は変性前のポリアリレート樹脂をいう。
[Polyarylate resin]
The polyarylate resin that can be suitably used for the production of the modified polyarylate resin of the present invention is a polyester resin containing a dihydric phenol component and an aromatic dicarboxylic acid component as monomer components (copolymerization units). It has a hydroxyl group at the terminal. In the present specification, when simply referred to as a polyarylate resin, the polyarylate resin refers to a polyarylate resin before modification.
 二価フェノール成分は、1分子中、2個のフェノール性ヒドロキシル基を含有するあらゆる有機化合物であってもよい。フェノール性ヒドロキシル基とは、芳香族環に直接的に結合したヒドロキシル基のことである。 The dihydric phenol component may be any organic compound containing two phenolic hydroxyl groups in one molecule. A phenolic hydroxyl group is a hydroxyl group bonded directly to an aromatic ring.
 二価フェノール成分は、変性ポリアリレート樹脂の汎用溶媒への溶解性の向上および硬化物が有する耐熱性のさらなる向上の観点から、一般式(1)で示される脂環式二価フェノールを含むことが好ましい。 The dihydric phenol component contains an alicyclic dihydric phenol represented by the general formula (1) from the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent and further improving the heat resistance of the cured product. Is preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R、R、RおよびRは、それぞれ独立して、水素原子、炭素原子数1~12の炭化水素基またはハロゲン原子を表す。炭素原子数1~12の炭化水素基は飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基および芳香族炭化水素基を包含する。飽和脂肪族炭化水素基は炭素原子数1~12、好ましくは1~6、より好ましくは1~3のアルキル基を含み、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。不飽和脂肪族炭化水素基は炭素原子数1~6、好ましくは1~3のアルケニル基を含み、例えば、ビニル基、アリル基等が挙げられる。芳香族炭化水素基は炭素原子数6~10、好ましくは6のアリール基を含み、例えば、フェニル基、ナフチル基等が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子、臭素原子である。 In formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms or a halogen atom. The hydrocarbon group having 1 to 12 carbon atoms includes a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group. The saturated aliphatic hydrocarbon group includes an alkyl group having 1 to 12, preferably 1 to 6, and more preferably 1 to 3 carbon atoms. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- Examples thereof include a butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group. The unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group. The aromatic hydrocarbon group includes an aryl group having 6 to 10 carbon atoms, preferably 6 carbon atoms, and examples thereof include a phenyl group and a naphthyl group. As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, for example, Preferably they are a chlorine atom and a bromine atom.
 式(1)中、好ましいR、R、RおよびRは、それぞれ独立して、水素原子、炭素原子数1~6(特に1~3)のアルキル基、炭素原子数6~10(特に6)のアリール基、またはハロゲン原子(特に塩素原子、臭素原子)を表す。より好ましいR、R、RおよびRは、それぞれ独立して、水素原子または炭素原子数1~6(特に1~3)のアルキル基を表す。R、R、RおよびRは、一部または全部が相互に異なる基であってもよいし、または同じ基であってもよく、好ましくは同じ基を表す。 In formula (1), preferred R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms (particularly 1 to 3), or 6 to 10 carbon atoms. (Especially 6) aryl group or halogen atom (especially chlorine atom, bromine atom). More preferred R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 6 (particularly 1 to 3) carbon atoms. R 1 , R 2 , R 3 and R 4 may be partially or completely different from each other, or may be the same group, and preferably represent the same group.
 式(1)中、RおよびRは、それぞれ独立して、水素原子または炭素原子数1~4の炭化水素基を表す。炭素原子数1~4の炭化水素基は飽和脂肪族炭化水素基および不飽和脂肪族炭化水素基を包含する。飽和脂肪族炭化水素基は炭素原子数1~4、好ましくは1~3のアルキル基を含み、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。不飽和脂肪族炭化水素基は炭素原子数1~4、好ましくは1~3のアルケニル基を含み、例えば、ビニル基、アリル基等が挙げられる。RおよびRは後述のmの値に応じて複数個で存在し、当該複数のRおよび複数のRは、それぞれ独立して、上記範囲内から選択されればよい。 In formula (1), R 5 and R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. The hydrocarbon group having 1 to 4 carbon atoms includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group. The saturated aliphatic hydrocarbon group contains an alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t -A butyl group etc. are mentioned. The unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group. A plurality of R 5 and R 6 are present depending on the value of m described later, and the plurality of R 5 and the plurality of R 6 may be independently selected from the above range.
 式(1)中、好ましいRおよびRは、それぞれ独立して、水素原子または炭素原子数1~4のアルキル基を表す。より好ましいRおよびRは、それぞれ独立して、水素原子または炭素原子数1~3のアルキル基、特に水素原子またはメチル基を表す。 In the formula (1), preferable R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. More preferred R 5 and R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, particularly a hydrogen atom or a methyl group.
 式(1)中、mは4~12の整数、好ましくは5~11の整数を表す。
 式(1)中、Xはヒドロキシフェニル基が結合する炭素原子とともに飽和脂肪族炭化水素環(単環)を形成する炭素原子を表す。飽和脂肪族炭化水素環は、mの数に応じたシクロアルカン環を示す。飽和脂肪族炭化水素環の具体例として、例えば、シクロペンタン環(m=4)、シクロヘキサン環(m=5)、シクロヘプタン環(m=6)、シクロオクタン環(m=7)、シクロノナン環(m=8)、シクロデカン環(m=9)、シクロウンデカン環(m=10)、シクロドデカン環(m=11)、シクロトリデカン環(m=12)が挙げられる。
In the formula (1), m represents an integer of 4 to 12, preferably an integer of 5 to 11.
In formula (1), X represents a carbon atom that forms a saturated aliphatic hydrocarbon ring (monocycle) together with the carbon atom to which the hydroxyphenyl group is bonded. The saturated aliphatic hydrocarbon ring represents a cycloalkane ring corresponding to the number of m. Specific examples of the saturated aliphatic hydrocarbon ring include, for example, a cyclopentane ring (m = 4), a cyclohexane ring (m = 5), a cycloheptane ring (m = 6), a cyclooctane ring (m = 7), and a cyclononane ring. (M = 8), cyclodecane ring (m = 9), cycloundecane ring (m = 10), cyclododecane ring (m = 11), cyclotridecane ring (m = 12).
 一般式(1)で示される脂環式二価フェノールのうち、ポリアリレート樹脂とエポキシ樹脂との硬化物が有する耐熱性のさらなる向上の観点から、好ましい具体例として、一般式(1a)、(1b)、(1c)、(1d)、(1e)、(1f)、(1g)、(1h)および(1i)、特に一般式(1b)~(1h)で示される脂環式二価フェノールが挙げられる。 Among the alicyclic dihydric phenols represented by the general formula (1), from the viewpoint of further improving the heat resistance of the cured product of the polyarylate resin and the epoxy resin, the general formula (1a), ( 1b), (1c), (1d), (1e), (1f), (1g), (1h) and (1i), especially alicyclic divalent phenols represented by general formulas (1b) to (1h) Is mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1a)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1a), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1a)中、n1は0~8の整数であり、好ましくは0~4の整数であり、より好ましくは0~2の整数である。 In the formula (1a), n1 is an integer of 0 to 8, preferably an integer of 0 to 4, and more preferably an integer of 0 to 2.
 式(1a)中、R10は炭素原子数1~4の炭化水素基を表す。炭素原子数1~4の炭化水素基は飽和脂肪族炭化水素基および不飽和脂肪族炭化水素基を包含する。飽和脂肪族炭化水素基は炭素原子数1~4、好ましくは1~3のアルキル基を含み、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。不飽和脂肪族炭化水素基は炭素原子数1~4、好ましくは1~3のアルケニル基を含み、例えば、ビニル基、アリル基等が挙げられる。上記n1が2以上の整数のとき、複数のR10は、それぞれ独立して、上記範囲内から選択されればよい。シクロペンタン環におけるR10の結合位置は特に限定されないが、式(1a)においてヒドロキシフェニル基が結合するシクロペンタン環の炭素原子を一位としたとき、三位および四位の炭素原子から選択される炭素原子に各R10が結合していることが好ましい。 In the formula (1a), R 10 represents a hydrocarbon group having 1 to 4 carbon atoms. The hydrocarbon group having 1 to 4 carbon atoms includes a saturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon group. The saturated aliphatic hydrocarbon group contains an alkyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t -A butyl group etc. are mentioned. The unsaturated aliphatic hydrocarbon group includes an alkenyl group having 1 to 4 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a vinyl group and an allyl group. When the n1 is an integer of 2 or more, plural R 10 are each independently, may be selected from the above range. The bonding position of R 10 in the cyclopentane ring is not particularly limited, but is selected from the 3- and 4-position carbon atoms when the carbon atom of the cyclopentane ring to which the hydroxyphenyl group is bonded in the formula (1a). It is preferable that each R 10 is bonded to a carbon atom.
 好ましいR10は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR10は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 10 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 10 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1a)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロペンタンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1a) include 1,1-bis (4-hydroxyphenyl) cyclopentane.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1b)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1b), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1b)中、n2は0~10の整数であり、好ましくは0~5の整数であり、より好ましくは2~4の整数である。 In the formula (1b), n2 is an integer of 0 to 10, preferably an integer of 0 to 5, and more preferably an integer of 2 to 4.
 式(1b)中、R20は上記式(1a)におけるR10と同様である。上記n2が2以上の整数のとき、複数のR20は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロヘキサン環におけるR20の結合位置は特に限定されないが、式(1b)においてヒドロキシフェニル基が結合するシクロヘキサン環の炭素原子を一位としたとき、三位、四位および五位の炭素原子から選択される炭素原子、特に三位および五位の炭素原子に各R20が結合していることが好ましい。 In the formula (1b), R 20 is the same as R 10 in the above formula (1a). When said n2 is an integer greater than or equal to 2, several R < 20 > should just be independently selected from the same range as said R < 10 >. The bonding position of R 20 in the cyclohexane ring is not particularly limited, but when the carbon atom of the cyclohexane ring to which the hydroxyphenyl group is bonded in the formula (1b) is selected from the carbon atoms at the 3-position, 4-position and 5-position. It is preferable that each R 20 is bonded to the carbon atom to be formed, particularly the carbon atom at the 3rd and 5th positions.
 好ましいR20は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR20は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 20 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 20 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1b)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン〔BisTMC〕、1,1-ビス-(4-ヒドロキシフェニル)-3,3,5,5-テトラメチル-シクロヘキサン、1,1-ビス-(4-ヒドロキシフェニル)-3,3,4-トリメチル-シクロヘキサン、1,1-ビス-(4-ヒドロキシフェニル)-3,3-ジメチル-5-エチル-シクロヘキサン、1,1-ビス-(3,5-ジメチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジフェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3-フェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジクロロ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス-(3,5-ジブロモ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサンが挙げられる。中でも、汎用性が高いことから、BisTMCが特に好ましい。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1b) include 1,1-bis (4-hydroxyphenyl) cyclohexane and 1,1-bis (3,5-dimethyl-4-hydroxyphenyl). ) Cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane [BisTMC], 1,1-bis- (4-hydroxyphenyl) -3,3,5,5-tetramethyl Cyclohexane, 1,1-bis- (4-hydroxyphenyl) -3,3,4-trimethyl-cyclohexane, 1,1-bis- (4-hydroxyphenyl) -3,3-dimethyl-5-ethyl-cyclohexane 1,1-bis- (3,5-dimethyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (3 5-diphenyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (3-methyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1 -Bis- (3-phenyl-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane, 1,1-bis- (3,5-dichloro-4-hydroxyphenyl) -3,3,5-trimethyl -Cyclohexane, 1,1-bis- (3,5-dibromo-4-hydroxyphenyl) -3,3,5-trimethyl-cyclohexane. Among them, BisTMC is particularly preferable because of its high versatility.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1c)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1c), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1c)中、n3は0~12の整数であり、好ましくは0~6の整数であり、より好ましくは0~2の整数である。 In the formula (1c), n3 is an integer of 0 to 12, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
 式(1c)中、R30は上記式(1a)におけるR10と同様である。上記n3が2以上の整数のとき、複数のR30は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロヘプタン環におけるR30の結合位置は特に限定されないが、式(1c)においてヒドロキシフェニル基が結合するシクロヘプタン環の炭素原子を一位としたとき、三位、四位、五位および六位の炭素原子から選択される炭素原子に各R30が結合していることが好ましい。 In the formula (1c), R 30 is the same as R 10 in the above formula (1a). When the n3 is an integer of 2 or more, plural R 30 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 30 in the cycloheptane ring is not particularly limited. However, when the carbon atom of the cycloheptane ring to which the hydroxyphenyl group is bonded is the first position in the formula (1c), the 3-position, 4-position, 5-position and 6-position It is preferable that each R 30 is bonded to a carbon atom selected from the following carbon atoms.
 好ましいR30は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR30は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 30 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 30 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1c)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロヘプタンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1c) include, for example, 1,1-bis (4-hydroxyphenyl) -cycloheptane.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1d)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1d), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1d)中、n4は0~14の整数であり、好ましくは0~7の整数であり、より好ましくは0~2の整数である。 In the formula (1d), n4 is an integer of 0 to 14, preferably an integer of 0 to 7, and more preferably an integer of 0 to 2.
 式(1d)中、R40は上記式(1a)におけるR10と同様である。上記n4が2以上の整数のとき、複数のR40は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロオクタン環におけるR40の結合位置は特に限定されないが、式(1d)においてヒドロキシフェニル基が結合するシクロオクタン環の炭素原子を一位としたとき、四位、五位および六位の炭素原子から選択される炭素原子に各R40が結合していることが好ましい。 In the formula (1d), R 40 is the same as R 10 in the above formula (1a). When the n4 is an integer of 2 or more, plural R 40 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 40 in the cyclooctane ring is not particularly limited. However, when the carbon atom of the cyclooctane ring to which the hydroxyphenyl group is bonded in the formula (1d) is the first position, the fourth, fifth and sixth position carbon atoms It is preferable that each R 40 is bonded to a carbon atom selected from:
 好ましいR40は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR40は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 40 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 40 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1d)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロオクタンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1d) include 1,1-bis (4-hydroxyphenyl) -cyclooctane.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1e)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1e), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1e)中、n5は0~16の整数であり、好ましくは0~8の整数であり、より好ましくは0~2の整数である。 In the formula (1e), n5 is an integer of 0 to 16, preferably an integer of 0 to 8, and more preferably an integer of 0 to 2.
 式(1e)中、R50は上記式(1a)におけるR10と同様である。上記n5が2以上の整数のとき、複数のR50は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロノナン環におけるR50の結合位置は特に限定されないが、式(1e)においてヒドロキシフェニル基が結合するシクロノナン環の炭素原子を一位としたとき、四位、五位、六位および七位の炭素原子から選択される炭素原子に各R50が結合していることが好ましい。 In formula (1e), R 50 is the same as R 10 in formula (1a). When the n5 is an integer of 2 or more, plural R 50 is each independently may be selected from a range similar to the above R 10. The bonding position of R 50 in the cyclononane ring is not particularly limited, but when the carbon atom of the cyclononane ring to which the hydroxyphenyl group is bonded in the formula (1e) is the first position, the carbons at the 4-position, 5-position, 6-position and 7-position Each R 50 is preferably bonded to a carbon atom selected from the atoms.
 好ましいR50は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR50は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 50 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 50 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1e)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロノナンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1e) include 1,1-bis (4-hydroxyphenyl) -cyclononane.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1f)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1f), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1f)中、n6は0~18の整数であり、好ましくは0~9の整数であり、より好ましくは0~2の整数である。 In the formula (1f), n6 is an integer of 0 to 18, preferably an integer of 0 to 9, and more preferably an integer of 0 to 2.
 式(1f)中、R60は上記式(1a)におけるR10と同様である。上記n6が2以上の整数のとき、複数のR60は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロデカン環におけるR60の結合位置は特に限定されないが、式(1f)においてヒドロキシフェニル基が結合するシクロデカン環の炭素原子を一位としたとき、四位、五位および六位の炭素原子から選択される炭素原子に各R60が結合していることが好ましい。 In the formula (1f), R 60 is the same as R 10 in the above formula (1a). When the n6 is an integer of 2 or more, plural R 60 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 60 in the cyclodecane ring is not particularly limited, but when the carbon atom of the cyclodecane ring to which the hydroxyphenyl group is bonded in the formula (1f) is selected from the 4-position, 5-position and 6-position carbon atoms It is preferable that each R 60 is bonded to the carbon atom to be formed.
 好ましいR60は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR60は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 60 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 60 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1f)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロデカンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1f) include 1,1-bis (4-hydroxyphenyl) -cyclodecane.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(1g)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1 g), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1g)中、n7は0~20の整数であり、好ましくは0~10の整数であり、より好ましくは0~2の整数である。 In the formula (1g), n7 is an integer of 0 to 20, preferably an integer of 0 to 10, and more preferably an integer of 0 to 2.
 式(1g)中、R70は上記式(1a)におけるR10と同様である。上記n7が2以上の整数のとき、複数のR70は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロウンデカン環におけるR70の結合位置は特に限定されないが、式(1g)においてヒドロキシフェニル基が結合するシクロウンデカン環の炭素原子を一位としたとき、四位、五位、六位および七位の炭素原子から選択される炭素原子に各R70が結合していることが好ましい。 In the formula (1g), R 70 is the same as R 10 in the above formula (1a). When the n7 is an integer of 2 or more, plural R 70 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 70 in the cycloundecane ring is not particularly limited, but when the carbon atom of the cycloundecane ring to which the hydroxyphenyl group is bonded in the formula (1g) is the first position, the fourth position, the fifth position, the sixth position and the seventh position. It is preferable that each R 70 is bonded to a carbon atom selected from the following carbon atoms.
 好ましいR70は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR70は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 70 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 70 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1g)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロウンデカンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1g) include 1,1-bis (4-hydroxyphenyl) -cycloundecane.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(1h)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1h), respectively R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1h)中、n8は0~22の整数であり、好ましくは0~11の整数であり、より好ましくは0~2の整数である。 In the formula (1h), n8 is an integer of 0 to 22, preferably an integer of 0 to 11, and more preferably an integer of 0 to 2.
 式(1h)中、R80は上記式(1a)におけるR10と同様である。上記n8が2以上の整数のとき、複数のR80は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロドデカン環におけるR80の結合位置は特に限定されないが、式(1h)においてヒドロキシフェニル基が結合するシクロドデカン環の炭素原子を一位としたとき、五位、六位、七位、八位および九位の炭素原子から選択される炭素原子に各R80が結合していることが好ましい。 In the formula (1h), R 80 is the same as R 10 in the above formula (1a). When the n8 is an integer of 2 or more, plural R 80 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 80 in the cyclododecane ring is not particularly limited, but when the carbon atom of the cyclododecane ring to which the hydroxyphenyl group is bonded in the formula (1h) is the first position, the fifth position, the sixth position, the seventh position, the eighth position And each R 80 is preferably bonded to a carbon atom selected from carbon atoms at the 9-position.
 好ましいR80は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR80は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 80 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 80 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1h)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロドデカン(BisCDE)が挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1h) include, for example, 1,1-bis (4-hydroxyphenyl) -cyclododecane (BisCDE).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1i)中、R、R、RおよびRはそれぞれ、上記式(1)におけるR、R、RおよびRと同様であり、好ましいR、R、RおよびRおよびより好ましいR、R、RおよびRもまた、上記式(1)においてと同様である。 Wherein (1i), each R 1, R 2, R 3 and R 4 are the same as R 1, R 2, R 3 and R 4 in the formula (1), preferred R 1, R 2, R 3 and R 4 and more preferable R 1 , R 2 , R 3 and R 4 are also the same as in the above formula (1).
 式(1i)中、n9は0~24の整数であり、好ましくは0~12の整数であり、より好ましくは0~2の整数である。 In the formula (1i), n9 is an integer of 0 to 24, preferably an integer of 0 to 12, and more preferably an integer of 0 to 2.
 式(1i)中、R90は上記式(1a)におけるR10と同様である。上記n9が2以上の整数のとき、複数のR90は、それぞれ独立して、上記R10と同様の範囲内から選択されればよい。シクロトリデカン環におけるR90の結合位置は特に限定されないが、式(1i)においてヒドロキシフェニル基が結合するシクロトリデカン環の炭素原子を一位としたとき、六位、七位、八位および九位の炭素原子から選択される炭素原子に各R90が結合していることが好ましい。 In formula (1i), R 90 is the same as R 10 in formula (1a). When the n9 is an integer of 2 or more, plural R 90 are each independently, may be selected from a range similar to the above R 10. The bonding position of R 90 in the cyclotridecane ring is not particularly limited. However, when the carbon atom of the cyclotridecane ring to which the hydroxyphenyl group is bonded in the formula (1i) is the first position, the sixth position, the seventh position, the eighth position, and Each R 90 is preferably bonded to a carbon atom selected from the carbon atoms at the 9th position.
 好ましいR90は、それぞれ独立して、炭素原子数1~4のアルキル基を表す。より好ましいR90は、それぞれ独立して、炭素原子数1~3のアルキル基を表す。 Desirable R 90 each independently represents an alkyl group having 1 to 4 carbon atoms. More preferred R 90 each independently represents an alkyl group having 1 to 3 carbon atoms.
 一般式(1i)で示される脂環式二価フェノールの具体例として、例えば、1,1-ビス(4-ヒドロキシフェニル)-シクロトリデカンが挙げられる。 Specific examples of the alicyclic dihydric phenol represented by the general formula (1i) include 1,1-bis (4-hydroxyphenyl) -cyclotridecane.
 変性ポリアリレート樹脂のポリアリレート樹脂において、上記一般式(1)で示される脂環式二価フェノールの含有比率は特に限定されず、通常は、全二価フェノール成分に対して15モル%以上(15~100モル%)である。当該含有比率は、変性ポリアリレート樹脂の汎用溶媒への溶解性の向上の観点からは、全二価フェノール成分に対して15~90モル%が好ましく、より好ましくは25~75モル%、さらに好ましくは40~65モル%、最も好ましくは45~55モル%である。当該含有比率は、変性ポリアリレート樹脂の硬化物の耐熱性のさらなる向上の観点から、全二価フェノール成分に対して25~100モル%が好ましく、40~100モル%が特に好ましく、より好ましくは55~100モル%であり、さらに好ましくは90~100モル%である。当該含有比率は、変性ポリアリレート樹脂の汎用溶媒への溶解性の向上と、変性ポリアリレート樹脂の硬化反応性および硬化物の耐熱性のさらなる向上とのバランスの観点から、全二価フェノール成分に対して25~75モル%または40~90モル%が好ましく、40~65モル%または50~90モル%がより好ましく、45~55モル%がさらに好ましい。上記一般式(1)で示される脂環式二価フェノールで示される脂環式二価フェノールは、単独で用いてもよいし、複数種を併用してもよく、その場合、それらの合計量が上記範囲内であればよい。 In the polyarylate resin of the modified polyarylate resin, the content ratio of the alicyclic dihydric phenol represented by the general formula (1) is not particularly limited, and usually 15 mol% or more based on the total dihydric phenol component ( 15 to 100 mol%). From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, the content ratio is preferably from 15 to 90 mol%, more preferably from 25 to 75 mol%, still more preferably from the total dihydric phenol component. Is 40 to 65 mol%, most preferably 45 to 55 mol%. The content ratio is preferably from 25 to 100 mol%, particularly preferably from 40 to 100 mol%, more preferably from the viewpoint of further improving the heat resistance of the cured product of the modified polyarylate resin. It is 55 to 100 mol%, more preferably 90 to 100 mol%. From the viewpoint of the balance between improving the solubility of the modified polyarylate resin in a general-purpose solvent and further improving the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product, On the other hand, it is preferably 25 to 75 mol% or 40 to 90 mol%, more preferably 40 to 65 mol% or 50 to 90 mol%, still more preferably 45 to 55 mol%. The alicyclic dihydric phenol represented by the alicyclic dihydric phenol represented by the general formula (1) may be used alone or in combination, and in that case, the total amount thereof. Should just be in the said range.
 二価フェノール成分は、上記一般式(1)で示される脂環式二価フェノール以外の二価フェノールを含有してもよい。変性ポリアリレート樹脂の汎用溶媒への溶解性の向上の観点からは、二価フェノール成分は、上記一般式(1)で示される脂環式二価フェノール以外の二価フェノールを含有することが好ましい。 The dihydric phenol component may contain a dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1). From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, the dihydric phenol component preferably contains a dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1). .
 上記一般式(1)で示される脂環式二価フェノール以外の二価フェノールは、上記一般式(1)で示される脂環式二価フェノールに包含されない二価フェノール成分であれば特に限定されず、例えば、以下の二価フェノールが挙げられる:2,2-ビス(4-ヒドロキシフェニル)プロパン〔BisA〕、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン〔BisAP〕、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)メタン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、ビス(3-メチル-4-ヒドロキシフェニル)メタン。中でも、汎用性および汎用溶媒への溶解性が高いことから、BisAおよび/またはBisAPが好ましい。上記一般式(1)で示される脂環式二価フェノール以外の二価フェノールは、単独で用いてもよいし、複数種を併用してもよい。 The dihydric phenol other than the alicyclic dihydric phenol represented by the general formula (1) is not particularly limited as long as it is a dihydric phenol component not included in the alicyclic dihydric phenol represented by the general formula (1). Examples thereof include the following dihydric phenols: 2,2-bis (4-hydroxyphenyl) propane [BisA], 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2, 2-bis (3-methyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane [BisAP], 1,1-bis (4-hydroxyphenyl) ethane, 1, 1-bis (3,5-dimethyl-4-hydroxyphenyl) ethane, 1,1-bis (3-methyl-4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) ) Methane, bis (3,5-dimethyl-4-hydroxyphenyl) methane, bis (3-methyl-4-hydroxyphenyl) methane. Of these, BisA and / or BisAP are preferred because of their versatility and high solubility in general-purpose solvents. Divalent phenols other than the alicyclic dihydric phenol represented by the general formula (1) may be used alone or in combination of two or more.
 二価フェノール成分は、上記の二価フェノールを単独で用いてもよいし、複数種を併用してもよいが、変性ポリアリレート樹脂の汎用溶媒への溶解性が高くなることから、複数種を用いることが好ましい。中でも、二価フェノール成分は、BisAおよび/またはBisAPと、BisTMCおよび/またはBisCDEとを組み合わせて含有することが好ましい。BisAおよび/またはBisAPと、BisTMCおよび/またはBisCDEとを用いる場合、BisAおよびBisAPの合計含有量とBisTMCおよびBisCDEの合計含有量との含有比率((BisA+BisAP)/(BisTMC+BisCDE))は、10/90~90/10(モル比)とすることが好ましく、汎用溶媒(特にメチルエチルケトン)への溶解性が高くなり、かつ変性ポリアリレート樹脂の硬化反応性および硬化物の耐熱性がさらに向上することから、25/75~75/25(モル比)とすることがより好ましく、35/65~65/35(モル比)とすることがさらに好ましく、35/65~60/40(モル比)とすることが特に好ましく、35/65~55/45(モル比)とすることが最も好ましい。汎用溶媒への溶解性の観点から、BisA/BisTMCが30/70~70/30(モル比)とすることがより好ましい。 As the dihydric phenol component, the above dihydric phenol may be used alone or in combination of two or more kinds. However, since the solubility of the modified polyarylate resin in a general-purpose solvent increases, plural kinds of dihydric phenol components may be used. It is preferable to use it. Among these, the dihydric phenol component preferably contains a combination of BisA and / or BisAP and BisTMC and / or BisCDE. When using BisA and / or BisAP and BisTMC and / or BisCDE, the content ratio of the total content of BisA and BisAP and the total content of BisTMC and BisCDE ((BisA + BisAP) / (BisTMC + BisCDE)) is 10/90 ~ 90/10 (molar ratio) is preferred, the solubility in general-purpose solvents (particularly methyl ethyl ketone) is increased, and the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product are further improved. More preferably, it is 25/75 to 75/25 (molar ratio), more preferably 35/65 to 65/35 (molar ratio), and 35/65 to 60/40 (molar ratio). Is particularly preferable, and most preferably 35/65 to 55/45 (molar ratio). Arbitrariness. From the viewpoint of solubility in a general-purpose solvent, BisA / BisTMC is more preferably 30/70 to 70/30 (molar ratio).
 芳香族ジカルボン酸成分は、1分子中、芳香族環に直接的に結合した2個のカルボキシル基を含有するあらゆる有機化合物であってもよい。芳香族ジカルボン酸成分の具体例として、例えば、テレフタル酸〔TPA〕、イソフタル酸〔IPA〕、オルトフタル酸、4,4’-ジフェニルジカルボン酸、ジフェニルエーテル-2,2’-ジカルボン酸、ジフェニルエーテル-2,3’-ジカルボン酸、ジフェニルエーテル-2,4’-ジカルボン酸、ジフェニルエーテル-3,3’-ジカルボン酸、ジフェニルエーテル-3,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、2,6-ナフタレンジカルボン酸〔NDCA〕が挙げられる。 The aromatic dicarboxylic acid component may be any organic compound containing two carboxyl groups directly bonded to the aromatic ring in one molecule. Specific examples of the aromatic dicarboxylic acid component include, for example, terephthalic acid [TPA], isophthalic acid [IPA], orthophthalic acid, 4,4′-diphenyldicarboxylic acid, diphenylether-2,2′-dicarboxylic acid, diphenylether-2, 3′-dicarboxylic acid, diphenyl ether-2,4′-dicarboxylic acid, diphenyl ether-3,3′-dicarboxylic acid, diphenyl ether-3,4′-dicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, 2,6- And naphthalenedicarboxylic acid [NDCA].
 芳香族ジカルボン酸成分は、上記のうち1種の化合物を単独で用いてもよいし、複数種の化合物を併用してもよい。中でも、変性ポリアリレート樹脂の汎用溶媒への溶解性および硬化反応性の観点から、IPA単独で用いるか、またはTPAおよび/またはNDCAとIPAとを併用して用いることが好ましい。IPAの含有比率は、変性ポリアリレート樹脂の汎用溶媒への溶解性の向上と、変性ポリアリレート樹脂の硬化反応性および硬化物の耐熱性のさらなる向上とのバランスの観点から、全芳香族ジカルボン酸成分に対して、20モル%以上とすることが好ましく、40モル%以上とすることがより好ましく、50モル%以上とすることがさらに好ましく、60モル%以上とすることが最も好ましい。芳香族ジカルボン酸成分がTPAおよび/またはNDCAとIPAとを含有する場合、変性ポリアリレート樹脂の汎用溶媒(特にメチルエチルケトン)への溶解性の観点から、(TPA+NDCA)/IPAの含有比率はモル比で、0/100~80/20が好ましく、0/100~60/40がより好ましく、0/100~50/50がさらに好ましく、0/100~40/60がさらに好ましく、10/90~40/60が最も好ましい。 As the aromatic dicarboxylic acid component, one of the above compounds may be used alone, or a plurality of compounds may be used in combination. Among these, from the viewpoints of solubility of the modified polyarylate resin in a general-purpose solvent and curing reactivity, it is preferable to use IPA alone or to use TPA and / or NDCA and IPA in combination. The content ratio of IPA is a wholly aromatic dicarboxylic acid from the viewpoint of the balance between the improvement of the solubility of the modified polyarylate resin in a general-purpose solvent and the further improvement in the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product. It is preferable to set it as 20 mol% or more with respect to a component, It is more preferable to set it as 40 mol% or more, It is more preferable to set it as 50 mol% or more, It is most preferable to set it as 60 mol% or more. When the aromatic dicarboxylic acid component contains TPA and / or NDCA and IPA, the content ratio of (TPA + NDCA) / IPA is a molar ratio from the viewpoint of the solubility of the modified polyarylate resin in a general-purpose solvent (particularly methyl ethyl ketone). 0/100 to 80/20 is preferable, 0/100 to 60/40 is more preferable, 0/100 to 50/50 is more preferable, 0/100 to 40/60 is still more preferable, and 10/90 to 40 / 60 is most preferred.
 本発明に用いるポリアリレート樹脂はモノマー成分としてヒドロキシカルボン酸成分をさらに含有してもよい。ポリアリレート樹脂がモノマー成分としてヒドロキシカルボン酸成分をさらに含有することにより、変性ポリアリレート樹脂の汎用溶媒への溶解性が向上する。ヒドロキシカルボン酸は1分子中、1個のヒドロキシル基および1個のカルボキシル基を含有するあらゆる有機化合物(特に芳香族化合物)であってもよい。ヒドロキシカルボン酸の具体例としては、例えば、p-ヒドロキシ安息香酸〔PHBA〕、m-ヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、1-ヒドロキシ-4-ナフトエ酸が挙げられる。中でも、汎用性が高いことから、PHBAが好ましい。 The polyarylate resin used in the present invention may further contain a hydroxycarboxylic acid component as a monomer component. When the polyarylate resin further contains a hydroxycarboxylic acid component as a monomer component, the solubility of the modified polyarylate resin in a general-purpose solvent is improved. The hydroxycarboxylic acid may be any organic compound (especially an aromatic compound) containing one hydroxyl group and one carboxyl group in one molecule. Specific examples of the hydroxycarboxylic acid include, for example, p-hydroxybenzoic acid [PHBA], m-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-4- Naphthoic acid is mentioned. Of these, PHBA is preferred because of its high versatility.
 ヒドロキシカルボン酸成分の含有比率は、全モノマー成分100モル%に対して、2~50モル%とすることが好ましく、変性ポリアリレート樹脂の汎用溶媒への溶解性の向上の観点からは2~35モル%、特に2~30モル%とすることが好ましく、当該溶解性、変性ポリアリレート樹脂の硬化反応性および硬化物の耐熱性のさらなる向上の観点から好ましくは5~30モル%、より好ましくは5~25モル%、さらに好ましくは10~25モル%、最も好ましくは15~20モル%である。なお、全モノマー成分とは、ポリアリレート樹脂を構成する全てのモノマー成分という意味である。例えば、ポリアリレート樹脂が二価フェノール成分と芳香族ジカルボン酸成分とヒドロキシカルボン酸成分のみからなる場合には、全モノマー成分は二価フェノール成分と芳香族ジカルボン酸成分とヒドロキシカルボン酸成分の全て(合計量)である。また例えば、ポリアリレート樹脂が、二価フェノール成分と芳香族ジカルボン酸成分とヒドロキシカルボン酸成分に加えて、他のモノマー成分を含む場合には、これらの成分の全て(合計量)である。 The content ratio of the hydroxycarboxylic acid component is preferably 2 to 50 mol% with respect to 100 mol% of all monomer components. From the viewpoint of improving the solubility of the modified polyarylate resin in a general-purpose solvent, it is 2 to 35. From the viewpoint of further improving the solubility, the curing reactivity of the modified polyarylate resin and the heat resistance of the cured product, it is preferably 5 to 30 mol%, more preferably It is 5 to 25 mol%, more preferably 10 to 25 mol%, and most preferably 15 to 20 mol%. In addition, all the monomer components mean all the monomer components which comprise polyarylate resin. For example, when the polyarylate resin is composed of only a dihydric phenol component, an aromatic dicarboxylic acid component, and a hydroxycarboxylic acid component, all monomer components are all dihydric phenol component, aromatic dicarboxylic acid component, and hydroxycarboxylic acid component ( Total amount). Further, for example, when the polyarylate resin contains other monomer components in addition to the dihydric phenol component, the aromatic dicarboxylic acid component, and the hydroxycarboxylic acid component, all of these components (total amount).
 本発明に用いるポリアリレート樹脂は、本発明の効果を損なわない範囲で、上記した二価フェノール成分、芳香族ジカルボン酸成分およびヒドロキシカルボン酸成分以外の他のモノマー成分を含有してもよい。他のモノマー成分の具体例として、例えば、エチレングリコール、プロピレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,2-シクロヘキサンジオール等の脂環族ジオール;アジピン酸およびセバシン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。脂肪族ジカルボン酸および脂環族ジカルボン酸は、その誘導体やその無水物であってもよい。他のモノマー成分の含有比率は、全モノマー成分100モル%に対して、通常は10モル%以下であり、好ましくは5モル%以下であり、より好ましくは0モル%である。 The polyarylate resin used in the present invention may contain other monomer components other than the above-described dihydric phenol component, aromatic dicarboxylic acid component and hydroxycarboxylic acid component as long as the effects of the present invention are not impaired. Specific examples of other monomer components include, for example, aliphatic diols such as ethylene glycol and propylene glycol; alicyclic diols such as 1,4-cyclohexanediol, 1,3-cyclohexanediol, and 1,2-cyclohexanediol; And aliphatic dicarboxylic acids such as acid and sebacic acid; and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, and 1,2-cyclohexanedicarboxylic acid. The aliphatic dicarboxylic acid and alicyclic dicarboxylic acid may be derivatives or anhydrides thereof. The content ratio of the other monomer components is usually 10 mol% or less, preferably 5 mol% or less, more preferably 0 mol%, based on 100 mol% of all monomer components.
 本発明に用いるポリアリレート樹脂のヒドロキシル基濃度は、100geq/トン以上とすることが好ましく、汎用溶媒への溶解性の向上、硬化反応性および硬化物の耐熱性のさらなる向上の観点から、200geq/トン以上とすることが好ましく、より好ましくは300geq/トン以上、さらに好ましくは500geq/トン以上である。ヒドロキシル基濃度が100geq/トン未満の場合、硬化反応性および硬化物の耐熱性が低下する。また汎用溶媒への溶解性が低下するので好ましくない。ヒドロキシル基濃度の上限値は特に限定されるものではないが、二価フェノール成分のヒドロキシル基濃度を超えることはなく、ヒドロキシル基濃度は通常、2500geq/トン以下、より好ましくは1500geq/トン以下、さらに好ましくは1000geq/トン以下である。 The hydroxyl group concentration of the polyarylate resin used in the present invention is preferably 100 geq / ton or more. From the viewpoint of improving solubility in general-purpose solvents, curing reactivity, and further improving heat resistance of the cured product, 200 geq / ton. It is preferable to be at least tons, more preferably at least 300 geq / tons, and even more preferably at least 500 geq / tons. When the hydroxyl group concentration is less than 100 geq / ton, the curing reactivity and the heat resistance of the cured product are lowered. Moreover, since the solubility to a general purpose solvent falls, it is not preferable. The upper limit of the hydroxyl group concentration is not particularly limited, but does not exceed the hydroxyl group concentration of the dihydric phenol component, and the hydroxyl group concentration is usually 2500 geq / ton or less, more preferably 1500 geq / ton or less, Preferably it is 1000 geq / ton or less.
 ヒドロキシル基濃度は、ヒドロキシル基を定量化することができれば当該基濃度を求める方法は特に限定されず、中和滴定法等の公知の方法で求めてもよいが、後で詳述するH-NMR分析において、フェノール性ヒドロキシル基に対してオルト位またはメタ位に位置するプロトンのピーク面積を算出して、当該基を定量化することにより求めることができる。 Hydroxyl group concentration, a method of obtaining the group concentration if it is possible to quantify the hydroxyl group is not particularly limited, and may but be determined by a known method such as neutralization titration, 1, which will be described in detail later H- In NMR analysis, it can be determined by calculating the peak area of protons located in the ortho or meta position relative to the phenolic hydroxyl group and quantifying the group.
 本発明に用いるポリアリレート樹脂の数平均分子量は、20000未満とすることが好ましく、10000未満とすることがより好ましく、6000未満とすることがさらに好ましく、3000未満とすることが特に好ましい。数平均分子量が20000以上の場合、ヒドロキシル基濃度が低くなり、変性ポリアリレート樹脂の硬化反応性が低下する場合がある。ポリアリレート樹脂の数平均分子量の下限値は特に限定されないが、当該数平均分子量は通常、500以上、特に1000以上である。 The number average molecular weight of the polyarylate resin used in the present invention is preferably less than 20000, more preferably less than 10,000, still more preferably less than 6000, and particularly preferably less than 3000. When the number average molecular weight is 20000 or more, the hydroxyl group concentration is lowered, and the curing reactivity of the modified polyarylate resin may be lowered. The lower limit of the number average molecular weight of the polyarylate resin is not particularly limited, but the number average molecular weight is usually 500 or more, particularly 1000 or more.
[ポリアリレート樹脂の製造方法]
 本発明の変性ポリアリレート樹脂を製造するためのポリアリレート樹脂は、例えば、以下の方法により製造することができる。前記した二価フェノール成分および芳香族ジカルボン酸成分を用いて溶融重合を行う方法において、二価フェノール成分を芳香族ジカルボン酸成分よりも多いモル量で用いる。詳しくは、そのようなモル比率でアセチル化反応および脱酢酸重合反応を行う。
[Production method of polyarylate resin]
The polyarylate resin for producing the modified polyarylate resin of the present invention can be produced, for example, by the following method. In the method of performing melt polymerization using the above-described dihydric phenol component and aromatic dicarboxylic acid component, the dihydric phenol component is used in a larger molar amount than the aromatic dicarboxylic acid component. Specifically, the acetylation reaction and the deacetic acid polymerization reaction are performed at such a molar ratio.
 アセチル化反応とは、二価フェノール成分をアセチル化する反応のことである。アセチル化反応においては、反応容器に、芳香族ジカルボン酸成分と二価フェノール成分と無水酢酸を投入する。その後、窒素置換を行い、不活性雰囲気下、100~240℃、好ましくは120~180℃の温度で、5分~8時間、好ましくは30分~5時間、常圧または加圧下で攪拌する。二価フェノール成分のヒドロキシル基に対する無水酢酸のモル比は、1.00~1.20とすることが好ましい。 An acetylation reaction is a reaction that acetylates a dihydric phenol component. In the acetylation reaction, an aromatic dicarboxylic acid component, a dihydric phenol component, and acetic anhydride are charged into a reaction vessel. Thereafter, nitrogen substitution is carried out, and the mixture is stirred under an inert atmosphere at a temperature of 100 to 240 ° C., preferably 120 to 180 ° C., for 5 minutes to 8 hours, preferably 30 minutes to 5 hours, at normal pressure or under pressure. The molar ratio of acetic anhydride to the hydroxyl group of the dihydric phenol component is preferably 1.00 to 1.20.
 脱酢酸重合反応とは、アセチル化した二価フェノールと芳香族ジカルボン酸を反応させ、重縮合する反応である。脱酢酸重合反応においては、240℃以上、好ましくは260℃以上、より好ましくは280℃以上の温度、500Pa以下、好ましくは260Pa以下、より好ましくは130Pa以下の減圧度で、30分以上保持し、攪拌する。 The deacetic acid polymerization reaction is a reaction in which acetylated dihydric phenol and aromatic dicarboxylic acid are reacted and polycondensed. In the deacetic acid polymerization reaction, it is maintained at a temperature of 240 ° C. or higher, preferably 260 ° C. or higher, more preferably 280 ° C. or higher, 500 Pa or lower, preferably 260 Pa or lower, more preferably 130 Pa or lower, for 30 minutes or longer. Stir.
 アセチル化反応を行った後、脱酢酸重合反応を行うまでの間には通常、反応系の温度および圧力を脱酢酸重合反応のための温度および圧力に調整する予備段階が存在する。ポリアリレート樹脂がヒドロキシカルボン酸成分を含有する場合、本発明においては、この予備段階においてヒドロキシカルボン酸成分を添加してもよい。具体的には、予備段階において、反応系を昇温した後、減圧を行うに際し、昇温前にヒドロキシカルボン酸成分を添加してもよいし、または昇温後であって減圧前に、ヒドロキシカルボン酸成分を添加してもよい。昇温前と、昇温後であって減圧前との両方の時に、ヒドロキシカルボン酸成分を添加してもよい。 After the acetylation reaction and before the deacetic acid polymerization reaction, there is usually a preliminary stage in which the temperature and pressure of the reaction system are adjusted to the temperature and pressure for the deacetic acid polymerization reaction. When the polyarylate resin contains a hydroxycarboxylic acid component, in the present invention, the hydroxycarboxylic acid component may be added in this preliminary step. Specifically, in the preliminary stage, when the pressure is reduced after raising the temperature of the reaction system, a hydroxycarboxylic acid component may be added before raising the temperature, or after raising the temperature and before reducing the pressure, A carboxylic acid component may be added. The hydroxycarboxylic acid component may be added both before the temperature rise and after the temperature rise and before the pressure reduction.
 アセチル化反応および脱酢酸重合反応においては、必要に応じて、触媒を用いてもよい。触媒としては、例えば、テトラブチルチタネート等の有機チタン酸化合物;酢酸亜鉛;酢酸カリウム等のアルカリ金属塩;酢酸マグネシウム等のアルカリ土類金属塩;三酸化アンチモン;ヒドロキシブチルスズオキサイド、オクチル酸スズ等の有機錫化合物;N-メチルイミダゾール等のヘテロ環化合物が挙げられる。触媒の添加量は、得られるポリアリレート樹脂の全モノマー成分に対して、通常1.0モル%以下であり、より好ましくは0.5モル%以下であり、さらに好ましくは0.2モル%以下である。 In the acetylation reaction and deacetic acid polymerization reaction, a catalyst may be used as necessary. Examples of the catalyst include organic titanate compounds such as tetrabutyl titanate; zinc acetate; alkali metal salts such as potassium acetate; alkaline earth metal salts such as magnesium acetate; antimony trioxide; hydroxybutyltin oxide, tin octylate, etc. Organic tin compounds; heterocyclic compounds such as N-methylimidazole can be mentioned. The addition amount of the catalyst is usually 1.0 mol% or less, more preferably 0.5 mol% or less, further preferably 0.2 mol% or less, based on all monomer components of the polyarylate resin obtained. It is.
 ポリアリレート樹脂を製造する装置としては、公知の反応装置が挙げられ、例えば、回分式反応装置および連続式反応装置が挙げられる。 Examples of the apparatus for producing the polyarylate resin include known reaction apparatuses such as a batch reaction apparatus and a continuous reaction apparatus.
[ポリアリレート樹脂組成物]
 本発明はポリアリレート樹脂組成物も提供する。本発明のポリアリレート樹脂組成物は、前記した変性ポリアリレート樹脂を含み、好ましくは前記した変性ポリアリレート樹脂と、エポキシ樹脂を含むか、または、前記した変性ポリアリレート樹脂と、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂を含む。本発明のポリアリレート樹脂組成物は、樹脂成分について、例えば、以下のいずれかの配合を有する:
 配合(1)変性ポリアリレート樹脂Aと、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂との組み合わせ;
 配合(2)変性ポリアリレート樹脂A単独;
 配合(3)変性ポリアリレート樹脂Bと、エポキシ樹脂との組み合わせ;
 配合(4)変性ポリアリレート樹脂B単独; 
 配合(5)変性ポリアリレート樹脂Cと、エポキシ樹脂と、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂との組み合わせ;当該組み合わせにおいては、変性ポリアリレート樹脂Aおよび/またはBをさらに組み合わせてもよい;および
 配合(6)変性ポリアリレート樹脂C単独。
[Polyarylate resin composition]
The present invention also provides a polyarylate resin composition. The polyarylate resin composition of the present invention includes the above-described modified polyarylate resin, and preferably includes the above-described modified polyarylate resin and an epoxy resin, or the above-described modified polyarylate resin and (meth) acrylate resin. And / or an epoxy (meth) acrylate resin. The polyarylate resin composition of the present invention has, for example, any of the following formulations for the resin component:
Formulation (1) A combination of a modified polyarylate resin A and a (meth) acrylate resin and / or an epoxy (meth) acrylate resin;
Formulation (2) Modified polyarylate resin A alone;
Formulation (3) Combination of modified polyarylate resin B and epoxy resin;
Formulation (4) Modified polyarylate resin B alone;
Formulation (5) Combination of modified polyarylate resin C, epoxy resin, and (meth) acrylate resin and / or epoxy (meth) acrylate resin; in the combination, modified polyarylate resin A and / or B is further combined And Formulation (6) Modified polyarylate resin C alone.
 本発明のポリアリレート樹脂組成物(上記配合(3)および(5))に用いられるエポキシ樹脂は1分子中、2個以上のエポキシ基を有する有機化合物である限り特に限定はされない。エポキシ樹脂の具体例として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンダジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂環式エポキシ樹脂、アクリル酸変性エポキシ樹脂、多官能エポキシ樹脂、臭素化エポキシ樹脂、リン変性エポキシ樹脂が挙げられる。エポキシ樹脂は単独で用いてもよいし、2種類以上を併用してもよい。 The epoxy resin used in the polyarylate resin composition of the present invention (the above blends (3) and (5)) is not particularly limited as long as it is an organic compound having two or more epoxy groups in one molecule. Specific examples of the epoxy resin include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, phenol novolac type epoxy resin. , Cresol novolac type epoxy resin, isocyanurate type epoxy resin, alicyclic epoxy resin, acrylic acid modified epoxy resin, polyfunctional epoxy resin, brominated epoxy resin, phosphorus modified epoxy resin. An epoxy resin may be used independently and may use 2 or more types together.
 エポキシ樹脂のエポキシ当量は通常、100~3000g/eqであり、好ましくは150~300g/eqである。 The epoxy equivalent of the epoxy resin is usually 100 to 3000 g / eq, preferably 150 to 300 g / eq.
 エポキシ樹脂の軟化点は通常、200℃以下であり、好ましくは100℃以下である。 The softening point of the epoxy resin is usually 200 ° C. or lower, preferably 100 ° C. or lower.
 本発明の変性ポリアリレート樹脂(特に変性ポリアリレート樹脂Bおよび/またはC)を含むポリアリレート樹脂組成物(例えば、上記配合(3)~(6))は通常、架橋剤を含む。架橋剤は、エポキシ環を開環させて架橋を行うことができる限り、特に限定はされないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリスフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮合ノボラック樹脂、ナフトール-クレゾール共縮合ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂等の多価フェノール化合物が挙げられる。架橋剤は単独で用いてもよいし、2種類以上を併用してもよい。架橋剤の含有量は、架橋剤の官能基当量がエポキシ樹脂のエポキシ当量と変性ポリアリレート樹脂Bおよび/またはCのエポキシ当量の和に対して、好ましくは0.5~1.5当量比、より好ましくは0.7~1.3当量比となるような量であることが好ましい。架橋剤の含有量は通常、変性ポリアリレート樹脂100質量部に対して10~90質量部、特に10~40質量部である。ポリアリレート樹脂組成物が変性ポリアリレート樹脂だけでなく、エポキシ樹脂、(メタ)アクリレート樹脂およびエポキシ(メタ)アクリレート樹脂を含む場合、架橋剤の含有量は、これらの樹脂の合計量100質量部に対して上記範囲内であればよい。 The polyarylate resin composition (for example, the above blends (3) to (6)) containing the modified polyarylate resin of the present invention (particularly the modified polyarylate resin B and / or C) usually contains a crosslinking agent. The crosslinking agent is not particularly limited as long as it can be crosslinked by opening an epoxy ring. For example, phenol novolak resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition Type resin, phenol aralkyl resin, naphthol aralkyl resin, trisphenylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensation novolak resin, naphthol-cresol co-condensation novolak resin, biphenyl-modified phenol resin, biphenyl-modified Examples thereof include polyhydric phenol compounds such as naphthol resins, aminotriazine-modified phenol resins, and alkoxy group-containing aromatic ring-modified novolak resins. A crosslinking agent may be used independently and may use 2 or more types together. The content of the crosslinking agent is preferably such that the functional group equivalent of the crosslinking agent is 0.5 to 1.5 equivalent ratio with respect to the sum of the epoxy equivalent of the epoxy resin and the epoxy equivalent of the modified polyarylate resin B and / or C. More preferably, the amount is 0.7 to 1.3 equivalent ratio. The content of the crosslinking agent is usually 10 to 90 parts by weight, particularly 10 to 40 parts by weight, based on 100 parts by weight of the modified polyarylate resin. When the polyarylate resin composition includes not only the modified polyarylate resin but also an epoxy resin, a (meth) acrylate resin and an epoxy (meth) acrylate resin, the content of the crosslinking agent is 100 parts by mass of the total amount of these resins. On the other hand, it may be within the above range.
 本発明の変性ポリアリレート樹脂(特に変性ポリアリレート樹脂Bおよび/またはC)を含むポリアリレート樹脂組成物(例えば、上記配合(3)~(6))は通常、硬化促進剤を含む。硬化促進剤は特に限定はされないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類;4-ジメチルアミノピリジン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の3級アミン類;トリフェニルホスフィン、トリブチルホスフィン等の有機ホスフィン類が挙げられる。硬化促進剤は単独で用いてもよいし、2種類以上を併用してもよい。硬化促進剤の含有量は通常、変性ポリアリレート樹脂100質量部に対して0.01~1質量部、特に0.05~0.5質量部である。ポリアリレート樹脂組成物が変性ポリアリレート樹脂だけでなく、エポキシ樹脂、(メタ)アクリレート樹脂およびエポキシ(メタ)アクリレート樹脂を含む場合、硬化促進剤の含有量は、これらの樹脂の合計量100質量部に対して上記範囲内であればよい。 The polyarylate resin composition (for example, the above blends (3) to (6)) containing the modified polyarylate resin of the present invention (particularly, modified polyarylate resin B and / or C) usually contains a curing accelerator. The curing accelerator is not particularly limited. For example, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole; 4-dimethylaminopyridine, benzyldimethylamine, 2- (dimethylamino) And tertiary amines such as methyl) phenol and 2,4,6-tris (dimethylaminomethyl) phenol; and organic phosphines such as triphenylphosphine and tributylphosphine. A hardening accelerator may be used independently and may use 2 or more types together. The content of the curing accelerator is usually 0.01 to 1 part by weight, particularly 0.05 to 0.5 part by weight, based on 100 parts by weight of the modified polyarylate resin. When the polyarylate resin composition contains not only the modified polyarylate resin but also an epoxy resin, a (meth) acrylate resin and an epoxy (meth) acrylate resin, the content of the curing accelerator is 100 parts by mass of the total amount of these resins. Is within the above range.
 変性ポリアリレート樹脂とエポキシ樹脂を含むポリアリレート樹脂組成物(例えば、上記配合(3)および(5))において、変性ポリアリレート樹脂の配合量は、エポキシ樹脂と変性ポリアリレート樹脂との合計量100質量部に対して、20~95質量部であり、好ましくは35~90質量部、より好ましくは40~85質量部である。 In the polyarylate resin composition containing the modified polyarylate resin and the epoxy resin (for example, the above blends (3) and (5)), the blended amount of the modified polyarylate resin is the total amount of the epoxy resin and the modified polyarylate resin of 100. The amount is 20 to 95 parts by mass, preferably 35 to 90 parts by mass, and more preferably 40 to 85 parts by mass with respect to parts by mass.
 本発明のポリアリレート樹脂組成物(上記配合(1)および(5))に用いられる(メタ)アクリレート樹脂は1分子中、1個以上の (メタ)アクリレート基を有する有機化合物である限り特に限定はされない。(メタ)アクリレート樹脂の具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のモノ(メタ)アクリレート樹脂;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、水添ビスフェノールA等の水添ビスフェノール類のジ(メタ)アクリレート等のジ(メタ)アクリレート樹脂;ジオキサングリコール、トリシクロデカンジメタノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコールのモノまたはポリ(メタ)アクリレート樹脂;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリル樹脂が挙げられる。(メタ)アクリレート樹脂は単独で用いてもよいし、2種類以上を併用してもよい。 The (meth) acrylate resin used in the polyarylate resin composition of the present invention (the above blends (1) and (5)) is particularly limited as long as it is an organic compound having one or more (meth) acrylate groups in one molecule. Not done. Specific examples of the (meth) acrylate resin include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) ) Acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, and other mono (meth) acrylate resins; ethylene glycol di (meth) acrylate , Propylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, bisphenol A di Di (meth) acrylate resins such as di (meth) acrylate of hydrogenated bisphenols such as meth) acrylate, bisphenol F di (meth) acrylate, hydrogenated bisphenol A; dioxane glycol, tricyclodecane dimethanol, trimethylolpropane, Mono- or poly (meth) acrylate resins of polyhydric alcohols such as glycerin and pentaerythritol; hydroxyl groups such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate ( A (meth) acrylic resin is mentioned. (Meth) acrylate resins may be used alone or in combination of two or more.
 本発明のポリアリレート樹脂組成物(上記配合(1)および(5))に用いられるエポキシ(メタ)アクリレート樹脂は、1官能性以上のエポキシ基を含有するエポキシ樹脂と(メタ)アクリル酸とを反応させて得られる(メタ)アクリレートのことである。エポキシ(メタ)アクリレートの原料となるエポキシ樹脂の具体例としては、ハイドロキノンジグリシジルエーテル、カテコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル等のフェニルジグリシジルエーテル;ビスフェノール-A型エポキシ樹脂、ビスフェノール-F型エポキシ樹脂、ビスフェノール-S型エポキシ樹脂、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンのエポキシ化合物等のビスフェノール型エポキシ化合物;水素化ビスフェノール-A型エポキシ樹脂、水素化ビスフェノール-F型エポキシ樹脂、水素化ビスフェノール-S型エポキシ樹脂、水素化2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパンのエポキシ化合物等の水素化ビスフェノール型エポキシ化合物;臭素化ビスフェノール-A型エポキシ樹脂、臭素化ビスフェノール-F型エポキシ樹脂等のハロゲノ化ビスフェノール型エポキシ化合物;シクロヘキサンジメタノールジグリシジルエーテル化合物等の脂環式ジグリシジルエーテル化合物、1,6-ヘキサンジオールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル等の脂肪族ジグリシジルエーテル化合物;ポリサルファイドジグリシジルエーテル等のポリサルファイド型ジグリシジルエーテル化合物;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビスフェノール-Aノボラック型エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、複素環式エポキシ樹脂が挙げられる。エポキシ(メタ)アクリレート樹脂は単独で用いてもよいし、2種類以上を併用してもよい。 The epoxy (meth) acrylate resin used in the polyarylate resin composition of the present invention (the above blends (1) and (5)) is composed of an epoxy resin containing one or more functional epoxy groups and (meth) acrylic acid. It is (meth) acrylate obtained by reacting. Specific examples of epoxy resins used as raw materials for epoxy (meth) acrylates include phenyl diglycidyl ethers such as hydroquinone diglycidyl ether, catechol diglycidyl ether, resorcinol diglycidyl ether; bisphenol-A type epoxy resin, bisphenol-F type epoxy Bisphenol-type epoxy compounds such as resins, bisphenol-S type epoxy resins, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane epoxy compounds; A type epoxy resin, hydrogenated bisphenol-F type epoxy resin, hydrogenated bisphenol-S type epoxy resin, hydrogenated 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexa Fluoropropane Epoxy Hydrogenated bisphenol-type epoxy compounds such as compounds; Halogenated bisphenol-type epoxy compounds such as brominated bisphenol-A type epoxy resins and brominated bisphenol-F type epoxy resins; Alicyclic diglycidyl such as cyclohexanedimethanol diglycidyl ether compounds Ether compounds, aliphatic diglycidyl ether compounds such as 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, diethylene glycol diglycidyl ether; polysulfide type diglycidyl ether compounds such as polysulfide diglycidyl ether; phenol Novolac epoxy resin, cresol novolac epoxy resin, trishydroxyphenylmethane epoxy resin, dicyclopentadienephenol Epoxy resins, biphenol type epoxy resin, bisphenol -A novolac epoxy resins, naphthalene skeleton-containing epoxy resin, and heterocyclic epoxy resin. An epoxy (meth) acrylate resin may be used independently and may use 2 or more types together.
 変性ポリアリレート樹脂と、(メタ)アクリレート樹脂またはエポキシ(メタ)アクリレート樹脂を含むポリアリレート樹脂組成物(例えば、上記配合(1)および(5))において、変性ポリアリレート樹脂の配合量は、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂と、変性ポリアリレート樹脂との合計量100質量部に対して、10~90質量部であり、好ましくは35~65質量部、より好ましくは40~50質量部である。 In a polyarylate resin composition containing a modified polyarylate resin and a (meth) acrylate resin or an epoxy (meth) acrylate resin (for example, the above blends (1) and (5)), the blending amount of the modified polyarylate resin is ( It is 10 to 90 parts by weight, preferably 35 to 65 parts by weight, more preferably 40 to 100 parts by weight of the total amount of the (meth) acrylate resin and / or epoxy (meth) acrylate resin and the modified polyarylate resin. ~ 50 parts by mass.
 本発明の樹脂組成物(例えば、上記配合(1)~(6))には、硬化剤を併用することができる。硬化剤としては、例えば、ジエチレントリアミン、トリエチレンテトンラミンやテトラエチレンペンタミン、ジシアンジアミン、アジピン酸ジヒドラジドおよびポリアミドポリアミン等の脂肪族ポリアミン化合物;メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンおよびビス(4-アミノシクロヘキシル)メタン等の脂環族ポリアミン化合物;メタキシレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンおよびメタフェニレンジアミン等の芳香族ポリアミン化合物;無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸、ドデシル無水コハク酸、無水クロレンディック酸等の1官能性酸無水物;無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメート)、メチルシクロヘキサンテトラカルボン酸無水物等の2官能性酸無水物;無水トリメリット酸、ポリアゼライン酸無水物等の遊離酸無水カルボン酸が挙げられる。硬化剤は単独で用いてもよいし、2種類以上を併用してもよい。 A curing agent can be used in combination with the resin composition of the present invention (for example, the above blends (1) to (6)). Examples of the curing agent include aliphatic polyamine compounds such as diethylenetriamine, triethylenetetonramine, tetraethylenepentamine, dicyandiamine, adipic dihydrazide, and polyamide polyamine; mensendiamine, isophoronediamine, bis (4-amino-3) -Alicyclic polyamine compounds such as methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane; aromatic polyamine compounds such as metaxylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone and metaphenylenediamine; phthalic anhydride, tetrahydrophthalic anhydride Acid, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl nadic anhydride, dodecyl succinic anhydride, chlorinated anhydride Monofunctional acid anhydrides such as dick acid; bifunctional acid anhydrides such as pyromellitic anhydride, benzophenonetetracarboxylic acid anhydride, ethylene glycol bis (anhydrotrimate), methylcyclohexanetetracarboxylic acid anhydride; Examples include free acid carboxylic anhydrides such as trimellitic acid and polyazeline acid anhydride. A hardening | curing agent may be used independently and may use 2 or more types together.
 本発明の樹脂組成物(例えば、上記配合(1)~(6))は、シアネート樹脂、イソシアネート樹脂、マレイミド樹脂、ポリイミド樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂をさらに含有してもよい。 The resin composition of the present invention (for example, the above blends (1) to (6)) may further contain a thermosetting resin such as cyanate resin, isocyanate resin, maleimide resin, polyimide resin, urethane resin, or phenol resin. Good.
 本発明の樹脂組成物(例えば、上記配合(3)および(5))は、エポキシ樹脂の代わりに、フェノール性ヒドロキシル基と好適に反応する末端基を1分子中に2個以上有する樹脂を含有してもよい。エポキシ樹脂の代わりに含有されてもよい樹脂として、例えば、シアネート樹脂、イソシアネート樹脂、マレイミド樹脂等が挙げられる。 The resin composition of the present invention (for example, the above blends (3) and (5)) contains a resin having two or more terminal groups in one molecule that reacts suitably with a phenolic hydroxyl group, instead of an epoxy resin. May be. Examples of the resin that may be contained instead of the epoxy resin include a cyanate resin, an isocyanate resin, and a maleimide resin.
 本発明の樹脂組成物(例えば、上記配合(1)~(6))は、高分子量樹脂に添加されて使用されてもよい。本発明の樹脂組成物は、用途に応じて、成形物、フィルム、シート、接着剤、塗膜、導電性ペースト、フィルムインモールド成形の転写箔等に使用できる。本発明の樹脂組成物を高分子量樹脂に添加することで、高分子量樹脂の耐熱性を向上あるいは維持しつつ、塗工性を改良することができる。高分子量樹脂は重量平均分子量(Mw)が10000以上の高分子であれば特に限定されない。高分子量樹脂としては、ポリエステル樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂等が挙げられる。高分子量樹脂は単独で用いてもよいし、2種類以上を併用してもよい。 The resin composition of the present invention (for example, the above blends (1) to (6)) may be used by adding to a high molecular weight resin. The resin composition of the present invention can be used for a molded product, a film, a sheet, an adhesive, a coating film, a conductive paste, a transfer foil for film-in-mold molding, and the like depending on applications. By adding the resin composition of the present invention to a high molecular weight resin, the coatability can be improved while improving or maintaining the heat resistance of the high molecular weight resin. The high molecular weight resin is not particularly limited as long as it has a weight average molecular weight (Mw) of 10,000 or more. Examples of the high molecular weight resin include polyester resin, polyarylate resin, polycarbonate resin, polysulfone resin, polyether sulfone resin, polyphenylene ether resin, polyetherimide resin, polyimide resin, polyamideimide resin, and polyamide resin. A high molecular weight resin may be used independently and may use 2 or more types together.
 本発明の樹脂組成物(例えば、上記配合(1)~(6))は無機充填材をさらに含有してもよい。無機充填材としては、シリカ、ガラス、アルミナ、タルク、マイカ、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、酸化チタン、窒化珪素、窒化ホウ素等が挙げられる。無機充填材は単独で用いてもよいし、2種類以上を併用してもよい。また、無機充填材はエポキシシランカップリング剤、アミノシランカップリング剤等の表面処理剤で表面処理されたものが好ましい。 The resin composition of the present invention (for example, the above blends (1) to (6)) may further contain an inorganic filler. Examples of the inorganic filler include silica, glass, alumina, talc, mica, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, titanium oxide, silicon nitride, and boron nitride. An inorganic filler may be used independently and may use 2 or more types together. The inorganic filler is preferably surface-treated with a surface treatment agent such as an epoxy silane coupling agent or an amino silane coupling agent.
 本発明の変性ポリアリレート樹脂およびポリアリレート樹脂組成物(例えば、上記配合(1)~(6))は、その特性を損なわない範囲で、酸化防止剤を含有してもよい。例えば、ヒンダードフェノール系酸化防止剤として、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,1,3-トリ(4-ヒドロキシ-2-メチル-5-t-ブチルフェニル)ブタン、1,1-ビス(3-t-ブチル-6-メチル-4-ヒドロキシフェニル)ブタン、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパノイック酸、ペンタエリトリチルテトラキス(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3-(1,1-ジメチルエチル)-4-ヒドロキシ-5-メチル-ベンゼンプロパノイック酸、3,9-ビス[1,1-ジメチル-2-[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ]エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)ベンゼン等が挙げられる。リン系酸化防止剤として、3,9-ビス(p-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、3,9-ビス(オクタデシロキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン、トリ(モノノニルフェニル)フォスファイト、トリフェノキシフォスフィン、イソデシルフォスファイト、イソデシルフェニルフォスファイト、ジフェニル2-エチルヘキシルフォスファイト、ジノニルフェニルビス(ノニルフェニル)エステルフォスフォラス酸、1,1,3-トリス(2-メチル-4-ジトリデシルフォスファイト-5-t-ブチルフェニル)ブタン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ペンタエリスリトールビス(2,4-ジ-t-ブチルフェニルフォスファイト)、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト等が挙げられる。チオエーテル系酸化防止剤として4,4’-チオビス[2-t-ブチル-5-メチルフェノール]ビス[3-(ドデシルチオ)プロピオネート]、チオビス[2-(1,1-ジメチルエチル)-5-メチル-4,1-フェニレン]ビス[3-(テトラデシルチオ)-プロピオネート]、ペンタエリスリトールテトラキス(3-n-ドデシルチオプロピオネート)、ビス(トリデシル)チオジプロピオネートが挙げられる。酸化防止剤は単独で用いてもよいし、2種類以上を併用してもよい。 The modified polyarylate resin and polyarylate resin composition of the present invention (for example, the above blends (1) to (6)) may contain an antioxidant as long as the characteristics are not impaired. For example, as a hindered phenol-based antioxidant, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2 -Methyl-5-tert-butylphenyl) butane, 1,1-bis (3-tert-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethylethyl) -4 -Hydroxy-benzenepropanoic acid, pentaerythrityl tetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy-5-methyl- Benzenepropanoic acid, 3,9-bis [1,1-dimethyl-2-[(3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] 2,4,8,10-tetraoxaspiro [5.5] undecane, 1,3,5-trimethyl-2,4,6-tris (3 ′, 5′-di-t-butyl-4′-hydroxy And benzyl) benzene. As phosphorus antioxidants, 3,9-bis (p-nonylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis ( Octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, tri (monononylphenyl) phosphite, triphenoxyphosphine, isodecylphosphite, iso Decylphenyl phosphite, diphenyl 2-ethylhexyl phosphite, dinonylphenyl bis (nonylphenyl) ester phosphoric acid, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-t-butylphenyl) ) Butane, tris (2,4-di-t-butylphenyl) phosphite, pentaerythritol (2,4-di-t-butylphenyl phosphite), 2,2′-methylenebis (4,6-di-t-butylphenyl) 2-ethylhexyl phosphite, bis (2,6-di-t- Butyl-4-methylphenyl) pentaerythritol diphosphite and the like. 4,4′-thiobis [2-tert-butyl-5-methylphenol] bis [3- (dodecylthio) propionate], thiobis [2- (1,1-dimethylethyl) -5-methyl as a thioether antioxidant -4,1-phenylene] bis [3- (tetradecylthio) -propionate], pentaerythritol tetrakis (3-n-dodecylthiopropionate), bis (tridecyl) thiodipropionate. An antioxidant may be used independently and may use 2 or more types together.
 本発明の樹脂組成物(例えば、上記配合(1)~(6))は難燃剤を含有してもよい。環境への影響の観点から非ハロゲン系難燃剤が好ましい。難燃剤としてはリン系難燃剤、窒素系難燃剤、シリコーン系難燃剤等が挙げられる。難燃剤は単独で用いてもよいし、2種類以上を併用してもよい。 The resin composition of the present invention (for example, the above blends (1) to (6)) may contain a flame retardant. Non-halogen flame retardants are preferred from the viewpoint of environmental impact. Examples of the flame retardant include phosphorus-based flame retardant, nitrogen-based flame retardant, and silicone-based flame retardant. A flame retardant may be used independently and may use 2 or more types together.
[変性ポリアリレート樹脂またはポリアリレート樹脂組成物の溶液およびその使用]
 本発明の変性ポリアリレート樹脂およびポリアリレート樹脂組成物は、有機溶媒に溶解し、樹脂溶液とすることができる。樹脂溶液の作製方法は特に限定されないが、ポリアリレート樹脂組成物の樹脂溶液を作製する場合、例えば、変性ポリアリレート樹脂とエポキシ樹脂を同時に有機溶媒に溶解するよりも、予め変性ポリアリレート樹脂とエポキシ樹脂をそれぞれ有機溶媒に溶解した後、それらを混合する方が、短時間で均一な樹脂溶液を得やすい。なお、後者の場合、両者の樹脂溶液の固形分濃度が近い方が、より短時間で均一な樹脂溶液を得やすい。また例えば、同様の観点から、予め変性ポリアリレート樹脂と、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂とをそれぞれ有機溶媒に溶解した後、それらを混合することが好ましい。
[Solution of modified polyarylate resin or polyarylate resin composition and use thereof]
The modified polyarylate resin and polyarylate resin composition of the present invention can be dissolved in an organic solvent to form a resin solution. The method for preparing the resin solution is not particularly limited, but when preparing a resin solution of the polyarylate resin composition, for example, rather than dissolving the modified polyarylate resin and the epoxy resin in an organic solvent at the same time, the modified polyarylate resin and the epoxy are previously prepared. It is easier to obtain a uniform resin solution in a shorter time by dissolving the resins in an organic solvent and then mixing them. In the latter case, it is easier to obtain a uniform resin solution in a shorter time when the solid concentration of both resin solutions is closer. For example, from the same viewpoint, it is preferable to previously dissolve the modified polyarylate resin, the (meth) acrylate resin and / or the epoxy (meth) acrylate resin in an organic solvent, and then mix them.
 本発明の変性ポリアリレート樹脂の樹脂溶液に用いる有機溶媒は、変性ポリアリレート樹脂が均一に溶解できれば特に限定されず、環境への影響の観点から非ハロゲン化溶媒が好ましい。本発明のポリアリレート樹脂組成物の樹脂溶液に用いる有機溶媒は、エポキシ樹脂と変性ポリアリレート樹脂が均一に溶解できれば特に限定されず、環境への影響の観点から非ハロゲン化溶媒が好ましい。このような非ハロゲン化溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド化合物;1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン等のエーテル化合物;メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン化合物;トルエン、キシレン等の芳香族炭化水素類;酢酸エチル、プロピレングリコールモノエチルエーテルアセテート等の酢酸エステル類が挙げられる。これらの非ハロゲン化溶媒はいずれも汎用溶媒として有用であり、ケトン化合物および芳香族炭化水素類、特にメチルエチルケトンおよびトルエンはより汎用的な溶剤として有用である。最も有用な汎用溶媒はメチルエチルケトンである。前記有機溶媒は単独で用いてもよいし、2種以上を併用してもよい。 The organic solvent used in the resin solution of the modified polyarylate resin of the present invention is not particularly limited as long as the modified polyarylate resin can be uniformly dissolved, and a non-halogenated solvent is preferable from the viewpoint of influence on the environment. The organic solvent used in the resin solution of the polyarylate resin composition of the present invention is not particularly limited as long as the epoxy resin and the modified polyarylate resin can be uniformly dissolved, and a non-halogenated solvent is preferable from the viewpoint of influence on the environment. Examples of such non-halogenated solvents include amide compounds such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone; 1,4-dioxane, 1,3-dioxolane, Ether compounds such as tetrahydrofuran; ketone compounds such as methyl ethyl ketone, cyclopentanone and cyclohexanone; aromatic hydrocarbons such as toluene and xylene; and acetates such as ethyl acetate and propylene glycol monoethyl ether acetate. All of these non-halogenated solvents are useful as general-purpose solvents, and ketone compounds and aromatic hydrocarbons, particularly methyl ethyl ketone and toluene are useful as more general-purpose solvents. The most useful general purpose solvent is methyl ethyl ketone. The said organic solvent may be used independently and may use 2 or more types together.
 本発明の変性ポリアリレート樹脂およびポリアリレート樹脂組成物は、非ハロゲン化溶媒への溶解性に非常に優れるため、それぞれの樹脂溶液の固形分濃度を高くすることができ、具体的には、10質量%以上、特に20質量%以上とすることができ、好ましくは30質量%以上、より好ましくは40質量%以上とすることができ、さらに好ましくは50質量%以上とすることができる。特にポリアリレート樹脂は、例えば、5~40質量%、好ましくは10~40質量%、より好ましくは20~40質量%、さらに好ましくは30~40質量%の固形分濃度で非ハロゲン化溶媒に溶解させることができる。本発明の樹脂溶液の溶媒として用いるメチルエチルケトンおよびトルエンは、電気電子分野で、幅広く用いられており、入手しやすく、かつ、安価であることから、特に利便性が高い有機溶媒である。従来、ポリアリレート樹脂は、芳香環の濃度が高いため、前記溶媒には溶解しにくいと考えられていた。しかしながら、ポリアリレート樹脂を前記したような特定の樹脂組成とし、さらに、末端に不飽和基および/またはエポキシ基を含有させることにより、前記溶媒に高濃度で溶解することがわかった。そのため、本発明の変性ポリアリレート樹脂およびポリアリレート樹脂組成物は、被膜およびフィルムの形成ならびにプリプレグの作製において、非常に取扱い性が高く、その工業的意義は非常に高い。 Since the modified polyarylate resin and polyarylate resin composition of the present invention are very excellent in solubility in a non-halogenated solvent, the solid content concentration of each resin solution can be increased. It can be set to mass% or more, particularly 20 mass% or more, preferably 30 mass% or more, more preferably 40 mass% or more, and further preferably 50 mass% or more. In particular, the polyarylate resin is dissolved in a non-halogenated solvent at a solid content concentration of, for example, 5 to 40% by mass, preferably 10 to 40% by mass, more preferably 20 to 40% by mass, and further preferably 30 to 40% by mass. Can be made. Methyl ethyl ketone and toluene used as the solvent for the resin solution of the present invention are widely used in the electrical and electronic field, are easily available, and are inexpensive, and are particularly convenient organic solvents. Conventionally, polyarylate resins have been thought to be difficult to dissolve in the solvent because of the high concentration of aromatic rings. However, it has been found that the polyarylate resin has a specific resin composition as described above, and further contains an unsaturated group and / or an epoxy group at the terminal, thereby being dissolved in the solvent at a high concentration. Therefore, the modified polyarylate resin and polyarylate resin composition of the present invention are very easy to handle in the formation of coatings and films and the preparation of prepregs, and their industrial significance is very high.
 本発明の樹脂溶液を基材に塗布乾燥した後、被膜を形成し、基材から剥離することにより、フィルムを得ることができる。被膜およびフィルムを形成するときの樹脂溶液は、変性ポリアリレート樹脂を有機溶媒に溶解した樹脂溶液であってもよいし、またはポリアリレート樹脂組成物を有機溶媒に溶解した樹脂溶液、あるいはポリアリレート樹脂組成物と高分子量樹脂を有機溶媒に溶解した樹脂溶液であってもよい。 After the resin solution of the present invention is applied to a substrate and dried, a film can be obtained by forming a film and peeling it from the substrate. The resin solution for forming the coating film and the film may be a resin solution obtained by dissolving a modified polyarylate resin in an organic solvent, or a resin solution obtained by dissolving a polyarylate resin composition in an organic solvent, or a polyarylate resin. A resin solution in which the composition and the high molecular weight resin are dissolved in an organic solvent may be used.
 基材としては、例えば、PETフィルム、ポリイミドフィルム、ガラス板、ステンレス板が挙げられる。塗布方法としては、例えば、ワイヤーバーコーター塗り法、フィルムアプリケーター塗り法、はけ塗り法、スプレー塗り法、グラビアロールコーティング法、スクリーン印刷法、リバースロールコーティング法、リップコーティング法、エアナイフコーティング法、カーテンフローコーティング法、浸漬コーティング法が挙げられる。 Examples of the substrate include a PET film, a polyimide film, a glass plate, and a stainless plate. Application methods include, for example, wire bar coater coating method, film applicator coating method, brush coating method, spray coating method, gravure roll coating method, screen printing method, reverse roll coating method, lip coating method, air knife coating method, curtain Examples thereof include a flow coating method and a dip coating method.
 本発明の樹脂溶液は、強化繊維クロスに含浸または塗布させた後、乾燥することにより、プリプレグを得ることができる。プリプレグを製造するときの樹脂溶液は、少なくとも変性ポリアリレート樹脂を有機溶媒に溶解した樹脂溶液であり、例えば、ポリアリレート樹脂組成物を有機溶媒に溶解した樹脂溶液である。 The resin solution of the present invention can be impregnated or coated on a reinforcing fiber cloth and then dried to obtain a prepreg. The resin solution for producing the prepreg is a resin solution in which at least a modified polyarylate resin is dissolved in an organic solvent, for example, a resin solution in which a polyarylate resin composition is dissolved in an organic solvent.
 強化繊維クロスを構成する強化繊維としては、例えば、ガラス繊維、炭素繊維、有機系繊維、セラミック系繊維が挙げられる。これらの強化繊維は、織布、不織布等いかなる形態のものも用いることができる。また、フィブリドを用いてこれらの繊維を短繊維の状態で混合抄紙した合成紙を用いてもよい。中でも、加工性に優れることから、ガラス繊維、炭素繊維が好ましい。強化繊維クロスの厚みは、5~50μmとすることが好ましく、10~45μmとすることがより好ましく、15~40μmとすることがさらに好ましい。 Examples of the reinforcing fiber constituting the reinforcing fiber cloth include glass fiber, carbon fiber, organic fiber, and ceramic fiber. These reinforcing fibers can be used in any form such as woven fabric and non-woven fabric. Moreover, you may use the synthetic paper which mixed paper-made these fibers in the state of the short fiber using fibrid. Among these, glass fiber and carbon fiber are preferable because of excellent processability. The thickness of the reinforcing fiber cloth is preferably 5 to 50 μm, more preferably 10 to 45 μm, and even more preferably 15 to 40 μm.
 強化繊維クロスに樹脂溶液を含浸する方法は特に限定されず、公知の方法を用いることができる。前記含浸方法としては、例えば市販または自作の連続含浸装置を用いる方法、変性ポリアリレート樹脂からなる樹脂溶液に強化繊維を浸漬する方法、離型紙、ガラス板、ステンレス板等の板上に強化繊維をひろげ、変性ポリアリレート樹脂からなる樹脂溶液を塗工する方法が挙げられる。プリプレグは、前記塗工後、塗工した樹脂溶液から有機溶媒を蒸発乾燥させることで得られる。 The method of impregnating the reinforcing fiber cloth with the resin solution is not particularly limited, and a known method can be used. Examples of the impregnation method include a method using a commercially available or self-made continuous impregnation apparatus, a method of immersing reinforcing fibers in a resin solution made of a modified polyarylate resin, a reinforcing fiber on a plate such as a release paper, a glass plate, and a stainless plate. Examples thereof include a method of applying a resin solution composed of a widened and modified polyarylate resin. The prepreg is obtained by evaporating and drying an organic solvent from the coated resin solution after the coating.
 強化繊維クロスに樹脂溶液を塗工する方法は特に限定されず、公知の方法を用いることができる。前記塗工方法としては、例えば市販の塗工機を用いて塗工が可能である。両面塗工を行う場合は、片面塗工を行った後、一旦乾燥し再び反対面に塗工する方法、片面塗工を行った後乾燥を経ないで反対面に塗工する方法、同時に両面に塗工する方法が挙げられる。それら塗工方法は、作業性、得られるプリプレグの性能を加味して適宜選択することができる。プリプレグは、前記塗工後、塗工した樹脂溶液から有機溶媒を蒸発乾燥させることで得られる。 The method for applying the resin solution to the reinforcing fiber cloth is not particularly limited, and a known method can be used. As the coating method, for example, coating can be performed using a commercially available coating machine. When performing double-sided coating, after single-sided coating, once dried and then coated again on the opposite side, after single-sided coating and then coated on the opposite side without drying, both sides simultaneously The method of coating is mentioned. These coating methods can be appropriately selected in consideration of workability and performance of the obtained prepreg. The prepreg is obtained by evaporating and drying an organic solvent from the coated resin solution after the coating.
 プリプレグの厚みは、用いる強化繊維クロスの厚みによって異なるが、10~150μmであることが好ましく、20~140μmであることがより好ましく、30~130μmであることがさらに好ましい。なお、プリプレグは強化繊維クロスに樹脂溶液を含浸または塗工後、乾燥することで得られるが、用いる強化繊維クロスの厚みの概ね3倍の厚みとなるように、プリプレグを得ることで耐熱性、機械特性、接着性さらに外観に優れたプリプレグとすることができる。 The thickness of the prepreg varies depending on the thickness of the reinforcing fiber cloth to be used, but is preferably 10 to 150 μm, more preferably 20 to 140 μm, and further preferably 30 to 130 μm. The prepreg is obtained by impregnating or applying a resin solution to the reinforcing fiber cloth, and then drying, but heat resistance is obtained by obtaining the prepreg so that the thickness of the reinforcing fiber cloth used is approximately three times the thickness. A prepreg excellent in mechanical properties, adhesiveness and appearance can be obtained.
 本発明のプリプレグは硬化のための加熱処理等することなくそのままで用いることができる。また、プリプレグに含有する変性ポリアリレート樹脂はそのガラス転移温度以上に加熱すると溶融し流動性を示すので、プリプレグをそのままあるいは何枚か積層し、加熱プレスすることにより、緻密化して、積層体とすることができる。前記積層体は、プリプレグ同士の接着性に優れるため、機械的強度が十分に向上し耐熱性にも優れている。また、前記積層体は高強度の板状成形体として用いることができる。さらに、この板状成形体は所望の形状に成形することもできる。成形性に関しては、用いる強化繊維クロスの材質、プリプレグ含有の固形分量によっても異なるが、所定金型に応じた賦型加工が可能である。機械特性を大きく損なわない範囲において、打ち抜き等を行ってもよい。本発明のプリプレグは、熱硬化性樹脂を用いていないため、特に、接着性、賦型加工性、打ち抜き性等の加工性に優れている。なお、賦型加工、打ち抜きは冷間加工も可能であるが、必要に応じて加温下加工を行うこともできる。 The prepreg of the present invention can be used as it is without being subjected to heat treatment for curing. In addition, the modified polyarylate resin contained in the prepreg melts and exhibits fluidity when heated above its glass transition temperature. can do. Since the laminate is excellent in adhesion between prepregs, the mechanical strength is sufficiently improved and the heat resistance is also excellent. Moreover, the said laminated body can be used as a high intensity | strength plate-shaped molded object. Furthermore, this plate-shaped molded body can be molded into a desired shape. The moldability varies depending on the material of the reinforcing fiber cloth to be used and the amount of the solid content containing the prepreg, but can be formed according to a predetermined mold. Punching or the like may be performed as long as the mechanical characteristics are not significantly impaired. Since the prepreg of the present invention does not use a thermosetting resin, it is particularly excellent in workability such as adhesion, moldability, and punchability. The forming and punching can be performed by cold working, but can be performed under heating as necessary.
 本発明のポリアリレート樹脂組成物の溶液を用いて得られた被膜、フィルムならびにプリプレグおよびその積層体を加熱することにより、変性ポリアリレート樹脂とエポキシ樹脂、または、変性ポリアリレート樹脂と(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂とを反応させ、硬化を完全に達成することができる。加熱温度(硬化温度)は通常、110~250℃であり、好ましくは130~220℃である。加熱時間(硬化時間)通常、1分~20時間であり、好ましくは5分~10時間である。 By heating the coating film, film, prepreg and laminate thereof obtained by using the polyarylate resin composition solution of the present invention, a modified polyarylate resin and an epoxy resin, or a modified polyarylate resin and a (meth) acrylate The resin and / or epoxy (meth) acrylate resin can be reacted to achieve complete cure. The heating temperature (curing temperature) is usually 110 to 250 ° C., preferably 130 to 220 ° C. The heating time (curing time) is usually 1 minute to 20 hours, preferably 5 minutes to 10 hours.
 本発明の変性ポリアリレート樹脂は、耐熱性を有しつつ、反応性に優れているため、プリント配線板等の絶縁材料として好適に用いることができる。 Since the modified polyarylate resin of the present invention has heat resistance and excellent reactivity, it can be suitably used as an insulating material for printed wiring boards and the like.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。なお、ポリアリレート樹脂およびその樹脂組成物、ならびに変性ポリアリレート樹脂の物性測定は以下の方法により行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. The physical properties of the polyarylate resin, its resin composition, and the modified polyarylate resin were measured by the following methods.
(1)ポリアリレート樹脂および変性ポリアリレート樹脂の樹脂組成およびヒドロキシル基濃度、ならびに、変性ポリアリレート樹脂の不飽和基濃度またはエポキシ基濃度およびヒドロキシル基濃度
 高分解能核磁気共鳴装置(日本電子社製ECZ 400R)を用いて、H-NMR分析することにより、それぞれの共重合成分のピーク面積から樹脂組成を求めた。また、H-NMR分析することにより、フェノール性ヒドロキシル基に対してオルト位またはメタ位に位置するプロトンのピーク面積を算出して、ヒドロキシル基を定量化することによりヒドロキシル基濃度、不飽和基濃度、エポキシ基濃度を求めた。(分解能:400MHz、溶媒:重水素化トリフルオロ酢酸と重水素化テトラクロロエタンとの容量比が1/11の混合溶媒、温度:50℃)。
(1) Resin composition and hydroxyl group concentration of polyarylate resin and modified polyarylate resin, and unsaturated group concentration or epoxy group concentration and hydroxyl group concentration of modified polyarylate resin High resolution nuclear magnetic resonance apparatus (ECZ manufactured by JEOL Ltd.) 400R), the resin composition was determined from the peak areas of the respective copolymer components by 1 H-NMR analysis. Also, by analyzing the 1 H-NMR, the peak area of the proton located at the ortho position or the meta position with respect to the phenolic hydroxyl group is calculated, and the hydroxyl group is quantified to determine the hydroxyl group concentration, unsaturated group. The concentration and the epoxy group concentration were determined. (Resolution: 400 MHz, solvent: mixed solvent having a volume ratio of deuterated trifluoroacetic acid to deuterated tetrachloroethane of 1/11, temperature: 50 ° C.).
(2)ポリアリレート樹脂および変性ポリアリレート樹脂のガラス転移温度
 示差走査熱量測定装置(パーキンエルマー社製DSC7)を用いて、昇温速度20℃/分で40℃から340℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
(2) Glass transition temperature of polyarylate resin and modified polyarylate resin Using a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer), the temperature was increased from 40 ° C. to 340 ° C. at a temperature increase rate of 20 ° C./min. The onset temperature of the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve was defined as the glass transition temperature.
(3)ポリアリレート樹脂および変性ポリアリレート樹脂の数平均分子量
 クロロホルムを溶媒とし、ポリアリレート樹脂のペレットを濃度1000ppmとなるよう溶解させて溶液を得た。GPC分析により、ポリスチレン換算で数平均分子量を求めた。
(3) Number average molecular weight of polyarylate resin and modified polyarylate resin A solution was obtained by dissolving pellets of polyarylate resin to a concentration of 1000 ppm using chloroform as a solvent. The number average molecular weight was calculated in terms of polystyrene by GPC analysis.
(4)変性ポリアリレート樹脂の可溶固形分濃度
 内容量50mLのガラス製ねじ口瓶に、合計量が30gで、溶液濃度が5、10、20、30質量%になるように変性ポリアリレート樹脂とトルエンを秤量した。その後、ガラス製ねじ口瓶を密封し、23℃の室温でミックスローターを使用して70rpmで24時間回転させ、23℃の室温下、48時間静置した。静置後、樹脂溶液を目視で観察し、以下の基準で溶液安定性を判断した。
 良好:透明性が維持されており、増粘していなかった。
 不良:透明性が維持されていなかったか、増粘していたか、あるいは溶け残りがあった。
 溶液濃度が5、10、20、30質量%のうち、溶液安定性が良好で、かつ溶液濃度が最も高い溶液の溶液濃度を可溶固形分濃度とした。
 なお、いずれの溶液濃度においても溶液安定性が良好な結果が得られなかった場合は、表には「0」と記載した。
 また、溶媒がトルエンの場合と同様にして、溶媒がメチルエチルケトンの場合についても可溶固形分濃度を求めた。
 本発明の変性ポリアリレート樹脂は、これらの両方の溶媒への溶解性、特にメチルエチルケトンへの溶解性が良好であることが好ましい。上記溶液濃度が高いほど、当該溶媒への溶解性は良好である。
(4) Soluble solid content concentration of modified polyarylate resin Modified polyarylate resin so that the total amount is 30 g and the solution concentration is 5, 10, 20, and 30% by mass in a glass screw cap bottle with an internal volume of 50 mL. And toluene were weighed. Then, the glass screw cap bottle was sealed, rotated at 70 rpm for 24 hours at room temperature of 23 ° C., and allowed to stand at room temperature of 23 ° C. for 48 hours. After standing, the resin solution was visually observed, and the solution stability was judged according to the following criteria.
Good: Transparency was maintained and the viscosity was not increased.
Poor: The transparency was not maintained, the viscosity was increased, or there was an undissolved residue.
Among the solution concentrations of 5, 10, 20, and 30% by mass, the solution concentration of the solution having the highest solution concentration and the highest solution concentration was defined as the soluble solid content concentration.
In addition, when the result with favorable solution stability was not obtained in any solution concentration, it described as "0" in the table | surface.
Further, in the same manner as when the solvent was toluene, the soluble solid content concentration was also obtained when the solvent was methyl ethyl ketone.
The modified polyarylate resin of the present invention preferably has good solubility in both of these solvents, particularly solubility in methyl ethyl ketone. The higher the solution concentration, the better the solubility in the solvent.
 本評価においては、トルエンへの可溶固形分濃度(質量%)とメチルエチルケトンへの可溶固形分濃度(質量%)との和(T)について、以下の基準に従って評価した。
 S(最良):60=T;
 A(優良):50≦T<60;
 B(良):35≦T<50;
 C(合格):20≦T<35(実用上問題なし);
 D(不合格):T<20(実用上問題あり)。
In this evaluation, the sum (T) of the soluble solid content concentration (% by mass) in toluene and the soluble solid content concentration (% by mass) in methyl ethyl ketone was evaluated according to the following criteria.
S (best): 60 = T;
A (excellent): 50 ≦ T <60;
B (good): 35 ≦ T <50;
C (pass): 20 ≦ T <35 (no problem in practical use);
D (failed): T <20 (problematic problems).
(5)不飽和基が含有された変性ポリアリレート樹脂組成物、ならびに不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂組成物の硬化物特性(ガラス転移温度)
 不飽和基が含有された変性ポリアリレート樹脂(または不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂組成物)40質量部と、ノボラック型エポキシアクリレート樹脂(SP4010、昭和高分子社製)60質量部、トルエン100質量部とを混合し、透明になるまで攪拌し、樹脂溶液を得た。なお、トルエンに溶解しない場合は塩化メチレンを用いた。
 得られた樹脂溶液を、アルミカップに注ぎ、室温で2時間乾燥させた。その後、真空乾燥機を用いて、200Pa下、170℃で2時間、続いて、200Pa下、200℃で3時間乾燥して、脱溶媒および硬化を行い、硬化物を得た。
 得られた硬化物の板を切削し、示差走査熱量測定装置(パーキンエルマー社製DSC7)を測定した。昇温速度20℃/分で30℃から300℃まで昇温し、降温後、再度30℃から300℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
 本発明においては、硬化物のガラス転移温度が140℃以上の場合、「合格」とした。
 S(最良):162℃≦Tg;
 A(優良):150℃≦Tg<162℃;
 B(良):145℃≦Tg<150℃;
 C(合格):140℃≦Tg<145℃(実用上問題なし);
 D(不合格):Tg<140℃。
(5) Modified polyarylate resin composition containing unsaturated groups, and cured product properties (glass transition temperature) of modified polyarylate resin compositions containing unsaturated groups and epoxy groups
40 parts by mass of a modified polyarylate resin containing an unsaturated group (or a modified polyarylate resin composition containing an unsaturated group and an epoxy group), and a novolac-type epoxy acrylate resin (SP4010, Showa Polymer Co., Ltd.) 60 Part by mass and 100 parts by mass of toluene were mixed and stirred until transparent to obtain a resin solution. When not dissolved in toluene, methylene chloride was used.
The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C. for 2 hours, followed by drying at 200 Pa and 200 ° C. for 3 hours to perform solvent removal and curing to obtain a cured product.
The obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured. The temperature was raised from 30 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min. After the temperature was lowered, the temperature was raised again from 30 ° C. to 300 ° C., and the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve The starting temperature was the glass transition temperature.
In this invention, when the glass transition temperature of hardened | cured material is 140 degreeC or more, it was set as "pass".
S (best): 162 ° C. ≦ Tg;
A (excellent): 150 ° C. ≦ Tg <162 ° C .;
B (good): 145 ° C. ≦ Tg <150 ° C .;
C (pass): 140 ° C. ≦ Tg <145 ° C. (no problem in practical use);
D (failure): Tg <140 ° C.
(6)エポキシ基が含有された変性ポリアリレート樹脂組成物の硬化物特性(ガラス転移温度)
 エポキシ基が含有された変性ポリアリレート樹脂70質量部と、エポキシ樹脂(jER828、三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量184~194g/eq、粘度120~150(25℃)、軟化点20℃以下)15質量部、フェノールノボラック樹脂(TD-2131、DIC社製、官能基当量105g/eq、軟化点80℃)15質量部、硬化促進剤(2-エチル-4-メチルイミダゾール、東京化成工業社製)0.2質量部と、トルエン100質量部とを混合し、透明になるまで攪拌し、樹脂溶液を得た。なお、トルエンに溶解しない場合は塩化メチレンを用いた。
 得られた樹脂溶液を、アルミカップに注ぎ、室温で2時間乾燥させた。その後、真空乾燥機を用いて、200Pa下、170℃で2時間、続いて、200Pa下、200℃で3時間乾燥して、脱溶媒および硬化を行い、硬化物を得た。
 得られた硬化物の板を切削し、示差走査熱量測定装置(パーキンエルマー社製DSC7)を測定した。昇温速度20℃/分で30℃から300℃まで昇温し、降温後、再度30℃から300℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
 本発明においては、硬化物のガラス転移温度が160℃以上の場合、「合格」とした。
 S(最良):178℃≦Tg;
 A(優良):169℃≦Tg<178℃;
 B(良):165℃≦Tg<169℃;
 C(合格):160℃≦Tg<165℃(実用上問題なし);
 D(不合格):Tg<160℃。
(6) Cured product properties (glass transition temperature) of a modified polyarylate resin composition containing an epoxy group
70 parts by mass of a modified polyarylate resin containing an epoxy group, an epoxy resin (jER828, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 184 to 194 g / eq, viscosity 120 to 150 (25 ° C.), softening point 15 parts by mass of 20 ° C. or less), phenol novolac resin (TD-2131, manufactured by DIC, functional group equivalent of 105 g / eq, softening point 80 ° C.), 15 parts by mass, curing accelerator (2-ethyl-4-methylimidazole, Tokyo) (Made by Kasei Kogyo Co., Ltd.) 0.2 parts by mass and 100 parts by mass of toluene were mixed and stirred until transparent to obtain a resin solution. When not dissolved in toluene, methylene chloride was used.
The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C. for 2 hours, followed by drying at 200 Pa and 200 ° C. for 3 hours to perform solvent removal and curing to obtain a cured product.
The obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured. The temperature was raised from 30 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min. After the temperature was lowered, the temperature was raised again from 30 ° C. to 300 ° C., and the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve The starting temperature was the glass transition temperature.
In this invention, when the glass transition temperature of hardened | cured material is 160 degreeC or more, it was set as the "pass".
S (best): 178 ° C. ≦ Tg;
A (excellent): 169 ° C. ≦ Tg <178 ° C .;
B (good): 165 ° C. ≦ Tg <169 ° C .;
C (pass): 160 ° C. ≦ Tg <165 ° C. (no problem in practical use);
D (failure): Tg <160 ° C.
<実験例1:不飽和基が含有された変性ポリアリレート樹脂およびエポキシ基が含有された変性ポリアリレート樹脂>
実施例1
(ポリアリレート樹脂の合成)
 撹拌装置を備えた反応容器に、TPA6.7質量部、IPA6.7質量部、BisTMC31.0質量部、無水酢酸20.4質量部を投入し(TPA:IPA:BisTMC:無水酢酸(モル比)=50:50:125:250)、窒素雰囲気下で、常圧、140℃で2時間撹拌混合させて反応させた(アセチル化反応)。
 続いて、140℃でPHBA5.5質量部を投入した後、280℃まで3時間かけて昇温し、280℃で1時間保持した。その後、280℃おいて90分かけて130Paまで減圧し、2時間撹拌して、ポリアリレート樹脂を得た後、ポリアリレート樹脂を反応容器から抜き出した(脱酢酸重合反応)。
 得られたポリアリレート樹脂の樹脂組成を分析したところ、TPA:IPA:BisTMC:PHBA=50:50:125:50(モル比)と、仕込みの組成と同一であった。
<Experimental example 1: modified polyarylate resin containing unsaturated groups and modified polyarylate resin containing epoxy groups>
Example 1
(Synthesis of polyarylate resin)
A reaction vessel equipped with a stirrer was charged with 6.7 parts by mass of TPA, 6.7 parts by mass of IPA, 31.0 parts by mass of BisTMC, and 20.4 parts by mass of acetic anhydride (TPA: IPA: BisTMC: acetic anhydride (molar ratio)). = 50: 50: 125: 250), under a nitrogen atmosphere, the mixture was stirred and mixed at normal pressure and 140 ° C. for 2 hours (acetylation reaction).
Subsequently, 5.5 parts by mass of PHBA was added at 140 ° C., and then the temperature was raised to 280 ° C. over 3 hours and held at 280 ° C. for 1 hour. Thereafter, the pressure was reduced to 130 Pa over 90 minutes at 280 ° C., and the mixture was stirred for 2 hours to obtain a polyarylate resin. Then, the polyarylate resin was extracted from the reaction vessel (deacetic acid polymerization reaction).
When the resin composition of the obtained polyarylate resin was analyzed, it was TPA: IPA: BisTMC: PHBA = 50: 50: 125: 50 (molar ratio), which was the same as the charged composition.
(不飽和基が含有された変性ポリアリレート樹脂の合成)
 反応容器に、ポリアリレート樹脂170質量部と、アクリル酸17.29質量部と、酸触媒としてp-トルエンスルホン酸一水和物4.0質量部と、重合禁止剤としてハイドロキノン1.8質量部と、トルエン130質量部とを加え溶解し、110℃で2時間、脱水縮合反応させた。得られた反応溶液を水酸化ナトリウム水溶液で中和し、水で洗浄し、減圧することにより未反応のアクリル酸を除去して、不飽和基が含有された変性ポリアリレート樹脂を得た。
 得られた変性ポリアリレート樹脂の樹脂組成を分析したところ、TPA:IPA:BisTMC:PHBAの比率は上記ポリアリレート樹脂の比率と同じであった。また、不飽和基由来のピークの存在が確認できた。このことより、不飽和基が末端に含有されたポリアリレート樹脂Aが得られたものと判断をした。
(Synthesis of modified polyarylate resin containing unsaturated groups)
In a reaction vessel, 170 parts by mass of polyarylate resin, 17.29 parts by mass of acrylic acid, 4.0 parts by mass of p-toluenesulfonic acid monohydrate as an acid catalyst, and 1.8 parts by mass of hydroquinone as a polymerization inhibitor And 130 parts by mass of toluene were added and dissolved, and a dehydration condensation reaction was performed at 110 ° C. for 2 hours. The resulting reaction solution was neutralized with an aqueous sodium hydroxide solution, washed with water, and decompressed to remove unreacted acrylic acid, thereby obtaining a modified polyarylate resin containing an unsaturated group.
When the resin composition of the obtained modified polyarylate resin was analyzed, the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an unsaturated group has been confirmed. From this, it was judged that the polyarylate resin A in which the unsaturated group was contained at the terminal was obtained.
(エポキシ基が含有された変性ポリアリレート樹脂の合成)
 反応容器に、ポリアリレート樹脂170質量部と、エピクロルヒドリン70質量部と、N-メチルピロリドン500質量部とを加え溶解し、65℃で45質量%水酸化ナトリウム水溶液を18質量部滴下して中和し、90℃で2時間反応させた。その後、メチルイソブチルケトンにより塩を除去し、余分なエピクロルヒドリンと溶媒をエバポレーターを用いて加熱することにより除去して、エポキシ基が含有された変性ポリアリレート樹脂を得た。
 得られた変性ポリアリレート樹脂の樹脂組成を分析したところ、TPA:IPA:BisTMC:PHBAの比率は上記ポリアリレート樹脂の比率と同じであった。また、エポキシ基由来のピークの存在が確認できた。このことより、エポキシ基が末端に含有されたポリアリレート樹脂Bが得られたものと判断をした。
(Synthesis of modified polyarylate resin containing epoxy group)
In a reaction vessel, 170 parts by mass of a polyarylate resin, 70 parts by mass of epichlorohydrin and 500 parts by mass of N-methylpyrrolidone are added and dissolved, and 18 parts by mass of a 45% by mass sodium hydroxide aqueous solution is added dropwise at 65 ° C. to neutralize. And reacted at 90 ° C. for 2 hours. Thereafter, the salt was removed with methyl isobutyl ketone, and excess epichlorohydrin and the solvent were removed by heating using an evaporator to obtain a modified polyarylate resin containing an epoxy group.
When the resin composition of the obtained modified polyarylate resin was analyzed, the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an epoxy group has been confirmed. From this, it was judged that the polyarylate resin B in which the epoxy group was contained in the terminal was obtained.
実施例2~18、比較例1~6
 表1に記載のように原料の仕込の樹脂組成を変更したこと以外は、実施例1と同様の操作を行って、ポリアリレート樹脂を得た。
 得られたポリアリレート樹脂を用いて、実施例1と同様の操作を行って、不飽和基が含有された変性ポリアリレート樹脂およびエポキシ基が含有された変性ポリアリレート樹脂を得た。
Examples 2 to 18 and Comparative Examples 1 to 6
A polyarylate resin was obtained in the same manner as in Example 1 except that the resin composition of the raw material charge was changed as shown in Table 1.
The obtained polyarylate resin was used in the same manner as in Example 1 to obtain a modified polyarylate resin containing an unsaturated group and a modified polyarylate resin containing an epoxy group.
参考例1
 ノボラック型エポキシアクリレート(SP4010、昭和高分子社製)100質量部、トルエン100質量部とを混合し、透明になるまで攪拌し、樹脂溶液を得た。
 得られた樹脂溶液を、アルミカップに注ぎ、室温で2時間乾燥させた。その後、真空乾燥機を用いて、200Pa下、170℃で2時間、続いて、200Pa下、200℃で3時間乾燥して、脱溶媒および硬化を行い、硬化物を得た。
 得られた硬化物の板を切削し、示差走査熱量測定装置(パーキンエルマー社製DSC7)を測定した。昇温速度20℃/分で30℃から300℃まで昇温し、降温後、再度30℃から300℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
 ガラス転移温度は112℃であった。
Reference example 1
100 parts by weight of novolac epoxy acrylate (SP4010, Showa Polymer Co., Ltd.) and 100 parts by weight of toluene were mixed and stirred until transparent to obtain a resin solution.
The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C. for 2 hours, followed by drying at 200 Pa and 200 ° C. for 3 hours to perform solvent removal and curing to obtain a cured product.
The obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured. The temperature was raised from 30 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min. After the temperature was lowered, the temperature was raised again from 30 ° C. to 300 ° C., and the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve The starting temperature was the glass transition temperature.
The glass transition temperature was 112 ° C.
参考例2
 エポキシ樹脂(jER828、三菱化学社製、ビスフェノールA型エポキシ樹脂、エポキシ当量184~194g/eq、粘度120~150(25℃)、軟化点20℃以下)67質量部、フェノールノボラック樹脂(TD-2131、DIC社製、官能基当量105g/eq、軟化点80℃)33質量部、硬化促進剤(2-エチル-4-メチルイミダゾール、東京化成工業社製)1質量部と、トルエン100質量部とを混合し、透明になるまで攪拌し、樹脂溶液を得た。
 得られた樹脂溶液を、アルミカップに注ぎ、室温で2時間乾燥させた。その後、真空乾燥機を用いて、200Pa下、170℃で2時間、続いて、200Pa下、200℃で3時間乾燥して、脱溶媒および硬化を行い、硬化物を得た。
 得られた硬化物の板を切削し、示差走査熱量測定装置(パーキンエルマー社製DSC7)を測定した。昇温速度20℃/分で30℃から300℃まで昇温し、降温後、再度30℃から300℃まで昇温し、得られた昇温曲線中のガラス転移温度に由来する不連続変化の開始温度をガラス転移温度とした。
 ガラス転移温度は132℃であった。
Reference example 2
Epoxy resin (jER828, manufactured by Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, epoxy equivalent 184 to 194 g / eq, viscosity 120 to 150 (25 ° C.), softening point 20 ° C. or less) 67 parts by mass, phenol novolac resin (TD-2131) DIC Corporation, functional group equivalent 105 g / eq, softening point 80 ° C.) 33 parts by mass, curing accelerator (2-ethyl-4-methylimidazole, Tokyo Chemical Industry Co., Ltd.) 1 part by mass, toluene 100 parts by mass, Were mixed and stirred until it became transparent to obtain a resin solution.
The obtained resin solution was poured into an aluminum cup and dried at room temperature for 2 hours. Thereafter, using a vacuum dryer, drying was performed at 200 ° C. and 170 ° C. for 2 hours, followed by drying at 200 Pa and 200 ° C. for 3 hours to perform solvent removal and curing to obtain a cured product.
The obtained cured plate was cut, and a differential scanning calorimeter (DSC7, manufactured by Perkin Elmer) was measured. The temperature was raised from 30 ° C. to 300 ° C. at a rate of temperature rise of 20 ° C./min. After the temperature was lowered, the temperature was raised again from 30 ° C. to 300 ° C., and the discontinuous change derived from the glass transition temperature in the obtained temperature rise curve The starting temperature was the glass transition temperature.
The glass transition temperature was 132 ° C.
<実験例2:不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂>
実施例19
(ポリアリレート樹脂の合成)
 撹拌装置を備えた反応容器に、TPA4.4質量部、IPA10.2質量部、BisA12.5質量部、BisTMC17.1質量部、無水酢酸22.4質量部を投入し(TPA:IPA:BisA:BisTMC:無水酢酸(モル比)=30:70:62.5:62.5:250)、窒素雰囲気下で、常圧、140℃で2時間撹拌混合させて反応させた(アセチル化反応)。
 続いて、140℃でPHBA6.1質量部を投入した後、280℃まで3時間かけて昇温し、280℃で1時間保持した。その後、280℃おいて90分かけて130Paまで減圧し、2時間撹拌して、ポリアリレート樹脂を得た後、ポリアリレート樹脂を反応容器から抜き出した(脱酢酸重合反応)。
 得られたポリアリレート樹脂の樹脂組成を分析したところ、TPA:IPA:BisA:BisTMC:PHBA=50:50:62.5:62.5:50(モル比)と、仕込みの組成と同一であった。
<Experimental Example 2: Modified Polyarylate Resin Containing Unsaturated Group and Epoxy Group>
Example 19
(Synthesis of polyarylate resin)
A reaction vessel equipped with a stirrer is charged with 4.4 parts by mass of TPA, 10.2 parts by mass of IPA, 12.5 parts by mass of BisA, 17.1 parts by mass of BisTMC, and 22.4 parts by mass of acetic anhydride (TPA: IPA: BisA: BisTMC: acetic anhydride (molar ratio) = 30: 70: 62.5: 62.5: 250), under a nitrogen atmosphere, the mixture was stirred and mixed at normal pressure and 140 ° C. for 2 hours (acetylation reaction).
Subsequently, 6.1 parts by mass of PHBA was added at 140 ° C., then the temperature was raised to 280 ° C. over 3 hours, and held at 280 ° C. for 1 hour. Thereafter, the pressure was reduced to 130 Pa over 90 minutes at 280 ° C., and the mixture was stirred for 2 hours to obtain a polyarylate resin. Then, the polyarylate resin was extracted from the reaction vessel (deacetic acid polymerization reaction).
When the resin composition of the obtained polyarylate resin was analyzed, TPA: IPA: BisA: BisTMC: PHBA = 50: 50: 62.5: 62.5: 50 (molar ratio) was the same as the charged composition. It was.
(不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂の合成)
 反応容器に、ポリアリレート樹脂170質量部と、アクリル酸10.28質量部と、酸触媒としてp-トルエンスルホン酸一水和物4.0質量部と、重合禁止剤としてハイドロキノン1.8質量部と、トルエン130質量部とを加え溶解し、110℃で2時間、脱水縮合反応させた。得られた反応溶液を水酸化ナトリウム水溶液で中和し、水で洗浄し、減圧することにより未反応のアクリル酸を除去して、不飽和基が含有された変性ポリアリレート樹脂Aを得た。
 次に、反応容器に、上記した不飽和基が含有された変性ポリアリレート樹脂A170質量部と、エピクロルヒドリン35.15質量部と、N-メチルピロリドン500質量部とを加え溶解し、65℃で45質量%水酸化ナトリウム水溶液を18質量部滴下して中和し、90℃で2時間反応させた。その後、メチルイソブチルケトンにより塩を除去し、余分なエピクロルヒドリンと溶媒をエバポレーターを用いて加熱することにより除去して、変性ポリアリレート樹脂Aに対し、さらにエポキシ基が含有された変性ポリアリレート樹脂Cを得た。
 得られた変性ポリアリレート樹脂の樹脂組成を分析したところ、TPA:IPA:BisTMC:PHBAの比率は上記ポリアリレート樹脂の比率と同じであった。また、不飽和基とエポキシ基由来のピークの存在が確認できた。このことより不飽和基とエポキシ基が、それぞれ末端に含有されたポリアリレート樹脂Cが得られたものと判断をした。
(Synthesis of modified polyarylate resin containing unsaturated groups and epoxy groups)
In a reaction vessel, 170 parts by mass of polyarylate resin, 10.28 parts by mass of acrylic acid, 4.0 parts by mass of p-toluenesulfonic acid monohydrate as an acid catalyst, and 1.8 parts by mass of hydroquinone as a polymerization inhibitor And 130 parts by mass of toluene were added and dissolved, and a dehydration condensation reaction was performed at 110 ° C. for 2 hours. The obtained reaction solution was neutralized with an aqueous sodium hydroxide solution, washed with water, and decompressed to remove unreacted acrylic acid, thereby obtaining a modified polyarylate resin A containing an unsaturated group.
Next, 170 parts by mass of the modified polyarylate resin A containing the unsaturated group described above, 35.15 parts by mass of epichlorohydrin, and 500 parts by mass of N-methylpyrrolidone were added to the reaction vessel and dissolved. 18 parts by mass of a mass% aqueous sodium hydroxide solution was added dropwise for neutralization, and the mixture was reacted at 90 ° C for 2 hours. Thereafter, the salt is removed with methyl isobutyl ketone, the excess epichlorohydrin and the solvent are removed by heating using an evaporator, and the modified polyarylate resin C further containing an epoxy group is removed from the modified polyarylate resin A. Obtained.
When the resin composition of the obtained modified polyarylate resin was analyzed, the ratio of TPA: IPA: BisTMC: PHBA was the same as the ratio of the polyarylate resin. Moreover, presence of the peak derived from an unsaturated group and an epoxy group has been confirmed. From this, it was judged that a polyarylate resin C containing an unsaturated group and an epoxy group at each end was obtained.
<評価>
 実施例および比較例で得られた変性ポリアリレート樹脂について物性測定をおこなった。結果を表1~表4に示す。
<Evaluation>
The physical properties of the modified polyarylate resins obtained in Examples and Comparative Examples were measured. The results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例1~18で得られた不飽和基が含有された変性ポリアリレート樹脂は、ポリアリレート樹脂のヒドロキシル基末端に不飽和基が導入されたため、不飽和基濃度が増え、ヒドロキシル基濃度が減っていた。
 実施例1~18で得られたエポキシ基が含有された変性ポリアリレート樹脂は、ポリアリレート樹脂のヒドロキシル基末端にエポキシ基が導入されたため、エポキシ基濃度が増え、ヒドロキシル基濃度が減っていた。
In the modified polyarylate resins containing unsaturated groups obtained in Examples 1 to 18, the unsaturated group concentration increased and the hydroxyl group concentration decreased because the unsaturated group was introduced at the hydroxyl group terminal of the polyarylate resin. It was.
In the modified polyarylate resins containing the epoxy group obtained in Examples 1 to 18, the epoxy group concentration was increased and the hydroxyl group concentration was decreased because the epoxy group was introduced into the hydroxyl group terminal of the polyarylate resin.
 実施例1~18で得られた不飽和基が含有された変性ポリアリレート樹脂の硬化物のガラス転移温度は140℃以上であって、実施例1~18で得られたエポキシ基が含有された変性ポリアリレート樹脂の硬化物のガラス転移温度は160℃以上であり、これらの硬化物の耐熱性が高かった。 The glass transition temperature of the cured product of the modified polyarylate resin containing unsaturated groups obtained in Examples 1 to 18 was 140 ° C. or more, and the epoxy group obtained in Examples 1 to 18 was contained. The glass transition temperature of the hardened | cured material of modified polyarylate resin was 160 degreeC or more, and the heat resistance of these hardened | cured material was high.
 実施例19で得られた不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂Cは、ポリアリレート樹脂のヒドロキシル基末端に不飽和基およびエポキシ基が導入されたため、不飽和基濃度およびエポキシ基濃度が増え、ヒドロキシル基濃度が減っていた。 In the modified polyarylate resin C containing an unsaturated group and an epoxy group obtained in Example 19, the unsaturated group concentration and the epoxy group were introduced because the unsaturated group and the epoxy group were introduced at the hydroxyl group terminal of the polyarylate resin. The concentration increased and the hydroxyl group concentration decreased.
 実施例19で得られた不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂Cの硬化物のガラス転移温度は162℃以上であり、硬化物の耐熱性が高かった。 The glass transition temperature of the cured product of the modified polyarylate resin C containing an unsaturated group and an epoxy group obtained in Example 19 was 162 ° C. or higher, and the cured product had high heat resistance.
 実施例より、メチルエチルケトンへの溶解性のさらなる向上の観点から、以下の組成条件を満たすことが好ましい。ポリアリレート樹脂は以下の組成条件(1)を満たすことが好ましく、組成条件(2)を満たすことがより好ましく、組成条件(3)を満たすことがさらに好ましく、組成条件(4)を満たすことが最も好ましい:
 組成条件(1);全モノマー成分に対するヒドロキシカルボン酸成分の割合=2~30モル%。
 組成条件(2);全モノマー成分に対するヒドロキシカルボン酸成分の割合=5~30モル%および(BisA+BisAP)/(BisTMC+BisCDE)の含有比率=10/90~90/10(モル比)。
 組成条件(3);全モノマー成分に対するヒドロキシカルボン酸成分の割合=5~25モル%、(BisA+BisAP)/(BisTMC+BisCDE)の含有比率=25/75~75/25(モル比)および(TPA+NDCA)/IPAの含有比率=0/100~60/40(モル比)。
 組成条件(4);全モノマー成分に対するヒドロキシカルボン酸成分の割合=10~25モル%、(BisA+BisAP)/(BisTMC+BisCDE)の含有比率=35/65~65/35(モル比)および(TPA+NDCA)/IPAの含有比率=10/90~40/60(モル比)。
From the examples, it is preferable to satisfy the following composition conditions from the viewpoint of further improving the solubility in methyl ethyl ketone. The polyarylate resin preferably satisfies the following composition condition (1), more preferably satisfies the composition condition (2), further preferably satisfies the composition condition (3), and satisfies the composition condition (4). Most preferred:
Composition condition (1): ratio of hydroxycarboxylic acid component to all monomer components = 2 to 30 mol%.
Composition condition (2): ratio of hydroxycarboxylic acid component to all monomer components = 5 to 30 mol% and content ratio of (BisA + BisAP) / (BisTMC + BisCDE) = 10/90 to 90/10 (molar ratio).
Composition condition (3): ratio of hydroxycarboxylic acid component to total monomer component = 5 to 25 mol%, (BisA + BisAP) / (BisTMC + BisCDE) content ratio = 25/75 to 75/25 (molar ratio) and (TPA + NDCA) / Content ratio of IPA = 0/100 to 60/40 (molar ratio).
Composition condition (4): ratio of hydroxycarboxylic acid component to total monomer components = 10 to 25 mol%, (BisA + BisAP) / (BisTMC + BisCDE) content ratio = 35/65 to 65/35 (molar ratio) and (TPA + NDCA) / IPA content ratio = 10/90 to 40/60 (molar ratio).
 比較例1~7で得られた変性ポリアリレート樹脂は、いずれも不飽和基またはエポキシ基が100geq/トン未満であったため、硬化物の耐熱性が低かった。 The modified polyarylate resins obtained in Comparative Examples 1 to 7 each had an unsaturated group or epoxy group of less than 100 geq / ton, and thus the heat resistance of the cured product was low.
 本発明に係る不飽和基が含有された変性ポリアリレート樹脂は、活性エネルギー線やラジカルでの硬化性樹脂組成物や熱硬化性樹脂組成物に汎用的に用いることが可能である。本発明に係る不飽和基が含有された変性ポリアリレート樹脂は、熱硬化性樹脂、UV硬化性樹脂、ソルダーレジスト、塗料用樹脂、印刷インキ、成形用樹脂、フィルム等に使用できる。 The modified polyarylate resin containing an unsaturated group according to the present invention can be widely used for a curable resin composition or a thermosetting resin composition with active energy rays or radicals. The modified polyarylate resin containing an unsaturated group according to the present invention can be used for thermosetting resins, UV curable resins, solder resists, coating resins, printing inks, molding resins, films and the like.
 本発明に係るエポキシ基が含有された変性ポリアリレート樹脂は、熱硬化性樹脂組成物に汎用的に用いることが可能である。本発明に係るエポキシ基が含有された変性ポリアリレート樹脂は、熱硬化性樹脂、基板用絶縁材料、CFRP(炭素繊維強化プラスチック)、塗料用樹脂、印刷インキ、封止材、成形用樹脂、フィルム等に使用できる。 The modified polyarylate resin containing an epoxy group according to the present invention can be used for a thermosetting resin composition for general purposes. The modified polyarylate resin containing an epoxy group according to the present invention includes a thermosetting resin, a substrate insulating material, CFRP (carbon fiber reinforced plastic), a coating resin, a printing ink, a sealing material, a molding resin, and a film. Can be used for etc.
 本発明に係る不飽和基およびエポキシ基が含有された変性ポリアリレート樹脂は、上記した不飽和基が含有された変性ポリアリレート樹脂またはエポキシ基が含有された変性ポリアリレート樹脂のいずれの変性ポリアリレート樹脂としても汎用的に用いることが可能である。 The modified polyarylate resin containing an unsaturated group and an epoxy group according to the present invention is any one of the above modified polyarylate resin containing an unsaturated group or a modified polyarylate resin containing an epoxy group. It can be used as a resin for general purposes.
 本発明に係る変性ポリアリレート樹脂は、特に、電子機器(例えば半導体デバイス)におけるプリント配線板等の絶縁材料の分野で有用である。 The modified polyarylate resin according to the present invention is particularly useful in the field of insulating materials such as printed wiring boards in electronic equipment (for example, semiconductor devices).

Claims (16)

  1.  ポリアリレート樹脂の末端の一部または全部に、不飽和基および/またはエポキシ基を含有する変性ポリアリレート樹脂であって、
     前記ポリアリレート樹脂が、二価フェノール成分および芳香族ジカルボン酸成分を含有し、前記二価フェノール成分が一般式(1)で示される脂環式二価フェノールを含有し、
     不飽和基および/またはエポキシ基濃度が、100eq/トン以上である変性ポリアリレート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R、RおよびRは、それぞれ独立して、水素原子、炭素原子数1~12の炭化水素基またはハロゲン原子を表す;RおよびRは、それぞれ独立して、水素原子または炭素原子数1~4の炭化水素基を表す;mは4~12の整数を表す;Xはヒドロキシフェニル基が結合する炭素原子とともに飽和脂肪族炭化水素環を形成する炭素原子を表す]
    A modified polyarylate resin containing an unsaturated group and / or an epoxy group at a part or all of the terminals of the polyarylate resin,
    The polyarylate resin contains a dihydric phenol component and an aromatic dicarboxylic acid component, and the dihydric phenol component contains an alicyclic dihydric phenol represented by the general formula (1),
    A modified polyarylate resin having an unsaturated group and / or epoxy group concentration of 100 eq / ton or more.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 12 carbon atoms or a halogen atom; R 5 and R 6 are Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; m represents an integer of 4 to 12; X represents a saturated aliphatic hydrocarbon ring together with the carbon atom to which the hydroxyphenyl group is bonded. Represents the carbon atom to be formed]
  2.  前記ポリアリレート樹脂において、ヒドロキシカルボン酸成分をさらに含有する請求項1に記載の変性ポリアリレート樹脂。 The modified polyarylate resin according to claim 1, further comprising a hydroxycarboxylic acid component in the polyarylate resin.
  3.  前記ポリアリレート樹脂において、前記ヒドロキシカルボン酸成分が全モノマー成分に対して2~50モル%の割合で含有される請求項2に記載の変性ポリアリレート樹脂。 The modified polyarylate resin according to claim 2, wherein in the polyarylate resin, the hydroxycarboxylic acid component is contained in an amount of 2 to 50 mol% with respect to the total monomer components.
  4.  前記ポリアリレート樹脂において、前記脂環式二価フェノールが全二価フェノール成分に対して15モル%以上の割合で含有される請求項1~3のいずれかに記載の変性ポリアリレート樹脂。 The modified polyarylate resin according to any one of claims 1 to 3, wherein in the polyarylate resin, the alicyclic dihydric phenol is contained at a ratio of 15 mol% or more with respect to the total dihydric phenol component.
  5.  前記ポリアリレート樹脂において、二価フェノール成分が、2,2-ビス(4-ヒドロキシフェニル)プロパン(BisA)および/または1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(BisAP)と、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(BisTMC)および/または1,1-ビス(4-ヒドロキシフェニル)-シクロドデカン(BisCDE)とを含有する請求項1~4のいずれかに記載の変性ポリアリレート樹脂。 In the polyarylate resin, the dihydric phenol component is 2,2-bis (4-hydroxyphenyl) propane (BisA) and / or 1,1-bis (4-hydroxyphenyl) -1-phenylethane (BisAP). , 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BisTMC) and / or 1,1-bis (4-hydroxyphenyl) -cyclododecane (BisCDE) 5. The modified polyarylate resin according to any one of 1 to 4.
  6.  前記ポリアリレート樹脂において、前記BisAおよび/または前記BisAPの合計含有量と、前記BisTMCおよび/または前記BisCDEの合計含有量との含有比率((BisA+BisAP)/(BisTMC+BisCDE))が、25/75~75/25(モル比)である請求項5に変性ポリアリレート樹脂。 In the polyarylate resin, the content ratio ((BisA + BisAP) / (BisTMC + BisCDE)) of the total content of the BisA and / or the BisAP and the total content of the BisTMC and / or the BisCDE is 25/75 to 75 The modified polyarylate resin according to claim 5, which is / 25 (molar ratio).
  7.  前記芳香族ジカルボン酸成分が、テレフタル酸(TPA)および/または2,6-ナフタレンジカルボン酸(NDCA)と、イソフタル酸(IPA)とを含有する、請求項1~6のいずれかに記載の変性ポリアリレート樹脂。 The modification according to any one of claims 1 to 6, wherein the aromatic dicarboxylic acid component contains terephthalic acid (TPA) and / or 2,6-naphthalenedicarboxylic acid (NDCA) and isophthalic acid (IPA). Polyarylate resin.
  8.  前記TPAおよび/または前記NDCAの合計含有量と、前記IPAの含有量との含有比率((TPA+NDCA)/IPA)が0/100~80/20(モル比)である、請求項7に記載の変性ポリアリレート樹脂。 The content ratio of the total content of the TPA and / or the NDCA and the content of the IPA ((TPA + NDCA) / IPA) is 0/100 to 80/20 (molar ratio). Modified polyarylate resin.
  9.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂およびエポキシ樹脂を含み、
     前記変性ポリアリレート樹脂が、エポキシ基を含有し、かつ不飽和基を含有しない変性ポリアリレート樹脂である、ポリアリレート樹脂組成物。
    Comprising the modified polyarylate resin and epoxy resin according to any one of claims 1 to 8,
    A polyarylate resin composition, wherein the modified polyarylate resin is a modified polyarylate resin containing an epoxy group and no unsaturated group.
  10.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂、および、(メタ)アクリレート樹脂および/またはエポキシ(メタ)アクリレート樹脂を含有し、
     前記変性ポリアリレート樹脂が、不飽和基を含有し、かつエポキシ基を含有しない変性ポリアリレート樹脂である、ポリアリレート樹脂組成物。
    The modified polyarylate resin according to any one of claims 1 to 8, and a (meth) acrylate resin and / or an epoxy (meth) acrylate resin,
    A polyarylate resin composition, wherein the modified polyarylate resin is a modified polyarylate resin containing an unsaturated group and no epoxy group.
  11.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂を含む被膜。 A film comprising the modified polyarylate resin according to any one of claims 1 to 8.
  12.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂を含むフィルム。 A film comprising the modified polyarylate resin according to any one of claims 1 to 8.
  13.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂および有機溶媒を含有する樹脂溶液。 A resin solution containing the modified polyarylate resin according to any one of claims 1 to 8 and an organic solvent.
  14.  請求項13に記載の樹脂溶液が強化繊維クロスに含浸または塗布されているプリプレグ。 A prepreg in which the resin solution according to claim 13 is impregnated or applied to a reinforcing fiber cloth.
  15.  請求項14に記載のプリプレグが積層されている積層体。 A laminate in which the prepreg according to claim 14 is laminated.
  16.  請求項1~8のいずれかに記載の変性ポリアリレート樹脂を製造する方法であって、
     アセチル化反応および脱酢酸重合反応を行いポリアリレート樹脂を製造した後、得られたポリアリレート樹脂のヒドロキシル基末端と不飽和基含有化合物を脱水縮合反応させるか、かつ/またはポリアリレート樹脂のヒドロキシル基末端とエポキシ基含有化合物を反応させる、変性ポリアリレート樹脂の製造方法。
    A method for producing the modified polyarylate resin according to any one of claims 1 to 8,
    After producing a polyarylate resin by performing an acetylation reaction and a deacetic acid polymerization reaction, a hydroxyl group terminal of the obtained polyarylate resin and an unsaturated group-containing compound are subjected to a dehydration condensation reaction and / or a hydroxyl group of the polyarylate resin. A method for producing a modified polyarylate resin, wherein a terminal and an epoxy group-containing compound are reacted.
PCT/JP2018/016715 2017-04-28 2018-04-25 Modified polyarylate resin WO2018199127A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514557A JPWO2018199127A1 (en) 2017-04-28 2018-04-25 Modified polyarylate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090012 2017-04-28
JP2017-090012 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199127A1 true WO2018199127A1 (en) 2018-11-01

Family

ID=63919185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016715 WO2018199127A1 (en) 2017-04-28 2018-04-25 Modified polyarylate resin

Country Status (3)

Country Link
JP (1) JPWO2018199127A1 (en)
TW (1) TW201843212A (en)
WO (1) WO2018199127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930074A (en) * 2021-11-03 2022-01-14 航天特种材料及工艺技术研究所 Toughened bismaleimide resin cured product and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995737A (en) * 2020-09-08 2020-11-27 桂林智龙电工器材有限公司 Preparation method of moisture-heat-resistant unsaturated polyester resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934137A (en) * 1995-07-17 1997-02-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH10161332A (en) * 1996-12-03 1998-06-19 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2009128745A (en) * 2007-11-27 2009-06-11 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus
JP2013253153A (en) * 2012-06-06 2013-12-19 Mitsubishi Chemicals Corp Epoxy resin, epoxy resin composition, cured product, and optical member
JP2016537458A (en) * 2013-11-18 2016-12-01 ローム アンド ハース カンパニーRohm And Haas Company Epoxy-terminated polyester
WO2017073549A1 (en) * 2015-10-30 2017-05-04 ユニチカ株式会社 Polyarylate resin, method for preparing same, and polyarylate resin composition
WO2018020981A1 (en) * 2016-07-28 2018-02-01 Jsr株式会社 Polymer, composition, molded article, cured product, and laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934137A (en) * 1995-07-17 1997-02-07 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JPH10161332A (en) * 1996-12-03 1998-06-19 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2009128745A (en) * 2007-11-27 2009-06-11 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus and process cartridge for image forming apparatus
JP2013253153A (en) * 2012-06-06 2013-12-19 Mitsubishi Chemicals Corp Epoxy resin, epoxy resin composition, cured product, and optical member
JP2016537458A (en) * 2013-11-18 2016-12-01 ローム アンド ハース カンパニーRohm And Haas Company Epoxy-terminated polyester
WO2017073549A1 (en) * 2015-10-30 2017-05-04 ユニチカ株式会社 Polyarylate resin, method for preparing same, and polyarylate resin composition
WO2018020981A1 (en) * 2016-07-28 2018-02-01 Jsr株式会社 Polymer, composition, molded article, cured product, and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930074A (en) * 2021-11-03 2022-01-14 航天特种材料及工艺技术研究所 Toughened bismaleimide resin cured product and preparation method thereof
CN113930074B (en) * 2021-11-03 2023-04-25 航天特种材料及工艺技术研究所 Toughened bismaleimide resin cured product and preparation method thereof

Also Published As

Publication number Publication date
JPWO2018199127A1 (en) 2020-03-12
TW201843212A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
JP6152235B1 (en) Polyarylate resin, method for producing the same, and polyarylate resin composition
JP6676529B2 (en) Resin composition and laminate using the same
KR101314785B1 (en) Polyamide resin, epoxy resin compositions, and cured articles thereof
US7141627B2 (en) Epoxy resin composition
JP2003082063A (en) Epoxy resin composition for electronic material and electronic material having low permittivity
TW201840624A (en) Epoxy resin, production method, and epoxy resin composition and cured object obtained therefrom
JP6951707B2 (en) Polyarylate resin and its resin composition
JP5135951B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
WO2018199127A1 (en) Modified polyarylate resin
JP7217472B2 (en) Polyarylate resin and polyarylate resin composition
JP2004210941A (en) Resin composition, resin cured product, sheet-shaped resin cured product and laminate
TWI748014B (en) High molecular compound containing carboxylic acid group and adhesive composition containing the high molecular compound
WO2019127389A1 (en) Epoxy resin composition, prepreg, laminate and printed circuit board
JP7444068B2 (en) Curable resin composition, cured product, and sheet-shaped molded product
WO2020217672A1 (en) Curable resin composition
JP4509539B2 (en) Epoxy resin composition sheet
WO2023145108A1 (en) Curable resin, curable resin composition, and cured article
JP2004231790A (en) Epoxy resin composition and cured product of the same
JP2006063256A (en) Epoxy resin composition and laminate using the same
TW202313753A (en) Modified epoxy resin, resin composition, cured object, laminate for electrical/electronic circuit, and method for producing modified epoxy resin
TW202248268A (en) Modified epoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and modified epoxy resin production method
JP2022097063A (en) Aromatic ether-ether-ketone based polymer and production method thereof, and resin composition and resin cured product which are based on that polymer
JPWO2020116467A1 (en) Thermosetting resin composition and sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790677

Country of ref document: EP

Kind code of ref document: A1