WO2018199084A1 - Wiring substrate and method for manufacturing same - Google Patents

Wiring substrate and method for manufacturing same Download PDF

Info

Publication number
WO2018199084A1
WO2018199084A1 PCT/JP2018/016589 JP2018016589W WO2018199084A1 WO 2018199084 A1 WO2018199084 A1 WO 2018199084A1 JP 2018016589 W JP2018016589 W JP 2018016589W WO 2018199084 A1 WO2018199084 A1 WO 2018199084A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
metal foil
stretchable
insulating layer
conductive
Prior art date
Application number
PCT/JP2018/016589
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 関本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018199084A1 publication Critical patent/WO2018199084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a wiring board and a manufacturing method thereof.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-143763
  • a stretchable base material is prepared, a stretchable wiring having a desired pattern is formed on the stretchable base material, and an electronic component is mounted on the stretchable base material. It is written to do so.
  • a silicone rubber sheet is cited as an example of a stretchable substrate. Since the stretchable base material is rubbery at normal temperature, it is generally easily deformed. In addition, since the stretchable base material is a rubber-like member, it shrinks greatly when heated compared to a normal printed wiring board or the like. Therefore, a dimensional change or the like is likely to occur during each process of the manufacturing method, and it is difficult to suppress undesired deformation during manufacturing.
  • an object of the present invention is to provide a wiring board that can suppress undesired deformation during manufacturing, and a method for manufacturing the wiring board, although the wiring board has elasticity.
  • a wiring board comprises an insulating layer that is a laminate of two or more layers using a stretchable insulating material as a main material and a stretchable conductive material as a main material, and the insulation in the laminate.
  • a conductive layer disposed at a boundary between the layers, and at least one disposed so as to cover at least a part of a main surface located on the outermost side of the stacked body and facing a direction parallel to the stacking direction of the stacked body A metal foil pattern.
  • the manufacturing method of the wiring board in Embodiment 2 based on this invention it is the 1st explanatory drawing of the process performed when screen printing is employ
  • Wiring substrate 101 in the present embodiment includes insulating layers 2a and 2b forming laminate 1 with two or more layers of a stretchable insulating material as a main material, and insulating layers in laminate 1 using a stretchable conductive material as a main material.
  • the wiring board in the present embodiment includes the laminate 1 having elasticity by using a stretchable insulating material as a main material, and the conductive layer 7 disposed on the surface of the insulating layer also has elasticity, as a whole A wiring board having elasticity can be obtained.
  • the metal foil pattern 4 is provided on the main surface 1u of the laminate 1 while having elasticity as described above, the metal foil that is the source of the metal foil pattern 4 can be used as a support plate during manufacturing. . That is, since it can be manufactured by a manufacturing method as will be described later, undesired deformation during manufacturing can be suppressed. As described above, according to the present embodiment, it is possible to provide a wiring board that can suppress undesired deformation during manufacturing, although it is a wiring board having elasticity.
  • the metal foil pattern 4 provided on the surface of the wiring board can be used as a land on which components can be mounted. Since the connection with other substrates and components can be made through the metal foil pattern 4, it is possible to make a reliable connection as compared with the case where the connection is made through the pattern formed of the stretchable conductive material. it can.
  • the stretchable conductive material except the conductive component has the same main composition as the stretchable insulating material.
  • the method for manufacturing a wiring board in the present embodiment is a manufacturing method for obtaining the wiring board described in the first embodiment.
  • FIG. 2 shows a flowchart of a method for manufacturing a wiring board in the present embodiment.
  • the first surface of the metal foil is stretched by applying a stretchable insulating material paste to the main surface of the metal foil and drying the paste.
  • It includes a step S3 of forming a stretchable second insulating layer by applying and drying a paste of an insulating material, and a step S4 of forming a metal foil pattern by patterning the metal foil.
  • a metal foil 14 is prepared.
  • the metal foil 14 is rigid to such an extent that it can support its posture even if it is not supported by other objects.
  • the metal foil 14 may have a recognition hole 15.
  • the metal foil 14 is a copper foil, for example.
  • the metal foil 14 is a copper foil produced by, for example, electrolytic plating.
  • the thickness of the metal foil 14 is, for example, not less than 6 ⁇ m and not more than 70 ⁇ m. More preferably, the thickness of the metal foil 14 is 12 ⁇ m or more and 18 ⁇ m or less.
  • the surface of the copper foil preferably has a surface roughness Rz of 0.5 ⁇ m or more and 2.5 ⁇ m or less.
  • a paste 12 of a stretchable insulating material is applied to one surface of the metal foil 14 as shown in FIG.
  • the stretchable insulating material is preferably one that does not break even when stretched by 50%. In particular, those that do not break even when stretched by 500% or more are preferable.
  • the stretchable insulating material is preferably rubber or resin.
  • the stretchable insulating material is preferably classified as an elastomer among rubber or resin.
  • Examples of rubbers or resins classified as elastomers include NBR (nitrile rubber), CR (chloroprene rubber), EPDM (ethylene propylene rubber), Si (silicone rubber), IIR (butyl rubber), SBR (styrene rubber), U ( Urethane rubber), CSM (hypalon), FKM (fluoro rubber), epoxy resin, and the like are applicable.
  • an insulating layer 2a as a first insulating layer is formed as shown in FIG.
  • a hot air oven may be used for drying.
  • Via holes 9 are formed in the insulating layer 2a by laser processing.
  • FIG. 5 shows a state after the via hole 9 is formed.
  • the method of forming the via hole 9 is not limited to laser processing.
  • printing may be used instead of laser processing.
  • the printing here is, for example, screen printing.
  • the metal foil 14 is placed on the printing stage 20, and the screen plate 21 is placed on the upper side of the metal foil 14.
  • the screen plate 21 has an opening 22.
  • the paste 12 is placed on the upper side of the screen plate 22 and is rubbed with a squeegee 23.
  • the paste 12 passes through the opening 22 and adheres to the upper surface of the metal foil 14.
  • FIG. 8 when the screen plate 21 is removed, the paste 12 is placed on the upper surface of the metal foil 14.
  • the via hole 9 can be formed at a desired position by screen printing. If very high accuracy is not required for the via hole 9, the via hole 9 may be formed by screen printing in this way.
  • a conductive layer 7 having stretchability is formed by printing a paste of a stretchable conductive material on the surface of the insulating layer 2a as the first insulating layer.
  • the stretchable conductive material only needs to be a stretchable conductor.
  • a conductive polymer material typified by polyacetylene, poly (p-phenylene), poly (p-phenylene vinylene), polypyrrole, polythiophene, PEDOT, polyaniline, polyacene, graphene, or the like may be used. .
  • a material obtained by kneading a one-dimensional conductor represented by Ag nanowire, carbon nanotube, or the like to the above-described stretchable insulating material may be used as the stretchable conductive material.
  • the metal filler for example, a spherical or flaky material can be used.
  • the material of the metal filler may be, for example, any of Ag, Cu, Au, Ni, Zn, Sn, Al, or an alloy thereof.
  • a material of the metal filler a material having high conductivity is preferable.
  • the volume resistivity of the metal filler is preferably 10 ⁇ 5 ⁇ cm or less.
  • the conductive layer 7 In order to dry the conductive layer 7, for example, it is heated at 170 ° C. for 5 minutes in a hot air oven.
  • the formation of the insulating layer by printing the stretchable insulating material paste and the formation of the conductive layer by printing the stretchable conductive material paste are alternately repeated as many times as necessary. By repeating many times, a laminate having a large number of layers can be manufactured. In this embodiment mode, only one conductive layer 7 is provided, but a plurality of conductive layers 7 may be formed.
  • the paste 12 of a stretchable insulating material is apply
  • an insulating layer 2b as a second insulating layer having elasticity is formed as shown in FIG.
  • the paste 12 is dried by heating at 170 ° C. for 5 minutes using, for example, a hot air oven.
  • the cover film 3 is affixed on the upper side of the insulating layer 2b.
  • the cover film 3 may be a PET film, for example.
  • the cover film 3 is preferably any heat resistant film.
  • the metal foil pattern 4 is formed by patterning the metal foil 14.
  • the wiring board 101 shown in FIG. 1 is obtained.
  • a photolithography technique can be used for the patterning of the metal foil 14. That is, for example, a photosensitive resin layer is formed on the surface of the metal foil 14, a desired mask pattern is formed by exposure, and the metal foil 14 is etched using ferric chloride. Thus, a desired metal foil pattern 4 can be formed.
  • the paste 12 or the conductive layer 7 may be printed by inkjet printing.
  • UV curing by irradiation with ultraviolet light may be used.
  • curing by electron beam irradiation may be used.
  • the metal foil 14 having sufficient rigidity is first prepared and each layer is formed on the surface of the metal foil 14, undesired deformation at the time of manufacture can be suppressed. That is, the wiring board can be manufactured while using the metal foil 14 as a support to stabilize the overall posture.
  • the metal foil 14 eventually becomes a part of the wiring board 101 as the metal foil pattern 4.
  • the metal foil pattern 4 can be used as a wiring or an electrode of the wiring board 101. In the present embodiment, a part of the metal foil 14 can be effectively used as described above.
  • each step of the manufacturing method may be performed in the state of an aggregate substrate as shown in FIG.
  • the collective substrate here is one large-sized substrate including portions corresponding to a plurality of products.
  • a plurality of products can be efficiently manufactured collectively.
  • a plurality of individual products can be obtained from the aggregate substrate.
  • a plurality of openings 43 are arranged in a matrix while being surrounded by an outer frame 41, and the products 42 are arranged in an island shape inside each opening 43.
  • the product 42 corresponds to one wiring board.
  • the laminate 1 and the cover film 3 extend in a state of overlapping.
  • the metal foil pattern 4 is formed inside the product 42.
  • the recognition holes 15 are provided at both left and right ends. However, in the collective board, the recognition holes 15 are not provided in one product 42, but the outer frame 41. It is good also as providing in.
  • the wiring board 101 has the cover film 3 on the lower surface.
  • the cover film 3 protects the lower surface of the wiring board 101 and handles the posture of the wiring board 101 during handling, transportation, and storage, for example.
  • the main purpose is to maintain.
  • the cover film 3 may be removed when the wiring substrate 101 is actually used.
  • the cover film 3 may be peeled off and used as the wiring board 101a.
  • the cover film 3 can be peeled off.
  • the wiring board 101a after the cover film 3 is removed may be used alone as it is, or may be used by being attached to the surface of an arbitrary object, for example.
  • the step of attaching carrier film As shown in the second embodiment, before the step S4 of forming the metal foil pattern, the step of attaching the carrier film to the main surface opposite to the metal foil 14 and forming the metal foil pattern S4 after this, the wiring board is preferably supported by the carrier film.
  • the carrier film is, for example, the cover film 3.
  • the metal foil 14 has a first surface and a second surface having a surface roughness larger than that of the first surface, and the main surface of the metal foil 14 on the side where the insulating layer 2a as the first insulating layer is formed.
  • the surface is preferably the second surface.
  • a material obtained by removing the conductive component from the stretchable conductive material preferably has the same composition as the stretchable insulating material.
  • the first and second embodiments have been described based on an example in which the stacked body 1 has a two-layer structure including the insulating layers 2a and 2b. Actually, the stacked body 1 may have a structure including a larger number of insulating layers. With reference to FIG. 15, description will be given of wiring board 102 according to the third embodiment of the present invention.
  • the laminate 1 has a four-layer structure including insulating layers 2a, 2b, 2c, and 2d.
  • the laminated body 1 may have a three-layer structure or a structure having five or more layers.
  • the conductive layer 7 is distributed and arranged at two or more positions in the stacking direction 94 determined by the boundary between the insulating layers in the stacked body 1.
  • the number of layers of the stacked body 1 is large, and the conductive layer 7 is distributed and arranged at two or more positions in the stacking direction 94, so that the degree of freedom in design is increased.
  • the interlayer connection conductor 11 that electrically connects the conductive layers 7 at different positions in the stacking direction 94 through the insulating layer.
  • an electrical path can be set across different layers.
  • the interlayer connection conductor 11 is preferably made of the same material as the conductive layer 7. In this way, if the same material is used, the physical properties can be made substantially the same between the conductive layer 7 and the interlayer connection conductor 11, so that the reliability of connection between the two can be improved.
  • FIGS. 16 to 18 A plan view of the wiring substrate 103 in this embodiment is shown in FIG. 16, and a side view thereof is shown in FIG.
  • the wiring board 103 is basically the same as the wiring board 101 described in the first embodiment, but differs in the following points from the wiring board 101.
  • at least one metal foil pattern or a protective pattern 30 as a plate-like rigid body is disposed on the main surface of the laminate 1, thereby forming a non-extension part.
  • non-extendable portion refers to a portion where the elongation is significantly smaller than other portions even when a tensile force is applied.
  • the protective pattern 30 is disposed on the lowermost surface of the multilayer body 1.
  • the protective pattern 30 may be a kind of the metal foil pattern 4 formed by patterning the metal foil 14. In this case, for example, one protective pattern 30 may be one metal foil pattern 3. Alternatively, the protective pattern 30 may be some plate-like rigid body attached later.
  • the protective pattern 30 may be a conductor or an insulator.
  • the protective pattern 30 may be a metal foil pattern that does not play the role of wiring.
  • FIG. 18 shows a state where a tensile force is applied to the wiring board 103.
  • the laminated body 1 is extended.
  • the part where the protective pattern 30 overlaps the laminated body 1 it becomes a non-extension part by suppressing extension.
  • the protective pattern 30 is formed of an insulator, the degree of freedom in design increases. Since it can avoid that the protective pattern 30 causes the short circuit defect between wiring, it is preferable. As shown in this embodiment, if a region in which deformation is suppressed even when stretched is formed and a desired wiring pattern is arranged so as to overlap this region, the resistance that tends to be caused by deformation in this wiring pattern It is possible to prevent a change in value, and it is also possible to prevent disconnection that may occur in the wiring pattern due to deformation. As described above, the region in which the deformation is suppressed even when the metal foil pattern or the plate-like rigid body is arranged can be used as a region for protecting the wiring pattern.
  • FIG. 19 A plan view of the wiring board 104 in this embodiment is shown in FIG. 19, and a cross-sectional view is shown in FIG. FIG. 21 shows an enlarged part of FIG.
  • the wiring board 104 has the same basic configuration as the wiring board 101 described in the first embodiment, but differs in the following points from the wiring board 101.
  • the conductive layer 7 and the metal foil pattern 4 are connected by a connection conductor 6 that penetrates and electrically connects the insulating layer 2 a, and the connection conductor 6 connects the outer edge 4 e of the metal foil pattern 4. It is connected to the metal foil pattern 4 at a portion that is avoided.
  • connection conductor 6 is connected to the metal foil pattern 4 at a site that is recessed inward by a distance A from the outer edge 4 e of the metal foil pattern 4.
  • the portion 25 of the insulating layer 2 a extends between the metal foil pattern 4 and the conductive layer 7 beyond the outer edge 4 e of the metal foil pattern 4.
  • FIG. 22 shows a part of the wiring board 104 when a tensile force 92 is applied to the wiring board 104.
  • FIG. 22 shows the same part as shown in FIG.
  • the connection conductor 6 is preferably formed of a stretchable conductive material like the conductive layer 7.
  • the metal foil pattern 4 is a rigid body and acts as a non-extension part when a tensile force acts on the wiring board 104.
  • the metal foil pattern 4 hardly extends, but the conductive layer 7 is formed of a stretchable conductive material, and thus greatly extends.
  • an interface having a greatly different degree of elongation occurs at any location between the elongated portion and the non-extended portion, and stress is concentrated.
  • due to the concentration of stress there is a possibility that the connection portion is broken and the electrical connection is broken.
  • connection conductor 6 is connected to the metal foil pattern 4 at a portion that is recessed inward by the distance A from the outer edge 4e of the metal foil pattern 4, the outer edge 4e of the metal pattern 4 itself. Then, stress concentration hardly occurs.
  • connection conductor 6 when a tensile force is applied, the connection conductor 6 is deformed.
  • the connection conductor 6 if the connection conductor 6 is made of a stretchable conductive material, the connection conductor 6 can be greatly elastically deformed. Even if a positional shift occurs between the metal pattern 4 and the conductive layer 7, it is possible to avoid breaking as much as possible by deforming the connection conductor 6.
  • FIG. 23 shows a wiring board 104i.
  • the wiring board 104i has the same structure as the wiring board 104, but the metal foil pattern 4 is divided into two.
  • the electronic component 10 is mounted on the wiring board 104i using the two metal foil patterns 4 as lands.
  • the metal foil pattern 4 is in a non-extension part.
  • the connection conductor 6 is connected to the metal foil pattern 4 at a portion where the outer edge 4e of the metal foil pattern 4 is avoided, the stress concentration is reduced, and as a result, the bonded portion Can be avoided as much as possible.
  • the wiring board 105 includes the insulating layer 2a as the only insulating layer.
  • the wiring substrate 105 has a stretchable insulating material as a main material, an insulating layer 2a having one and the other main surfaces, and a conductive material that has a stretchable conductive material as a main material and is disposed on the one main surface of the insulating layer 2a.
  • the same effect as in the first embodiment can be obtained without stacking the insulating layer 2a.
  • the metal foil pattern 4 can be used as a wiring or an electrode of the wiring board 105. In this embodiment mode, since the insulating layer is not a stacked body, the whole can be thinned.
  • the wiring board 106 includes only one layer of the insulating layer 2a as an insulating layer.
  • the wiring board 107 may be attached to the step of the member 34.
  • the wiring board 107 includes an insulating layer having a single-layer structure or a stacked structure using a stretchable insulating material as a main material, and a conductive layer disposed on at least one surface of the insulating layer using a stretchable conductive material as a main material. Therefore, it is flexible and rich in elasticity as a whole. Accordingly, the wiring substrate 107 can be attached to such a step along the shape of the step.
  • a member having a simple step is exemplified as the member 34, but the member 34 may have a more complicated three-dimensional shape.
  • Member 34 may be part of some device, for example.
  • a card-shaped wiring board 108 is also conceivable.
  • the wiring board 108 can be bent flexibly as shown in FIG.
  • the wiring board 108 includes two land electrodes and one coil-like portion, which is schematically shown as an example only, and the position, size, number, and the like of the metal foil pattern to be formed are Not exclusively.
  • the wiring board 109 includes a wristband 120 and a sensor 110.
  • the wiring board 109 is attached to the human hand 35.
  • a control unit 130 is disposed on the wristband 120.
  • the sensor 110 is disposed near the tip of the finger 36.
  • the finger 36 is extended substantially straight, but the finger 36 may be bent as shown in FIG. Even when the finger 36 is bent in this way, the wiring board 109 can follow flexibly without being damaged.

Abstract

A wiring substrate (101) is provided with: two or more insulation layers (2a, 2b) comprising an expandable insulating material as a main material and forming a laminated body (1); an electrically conductive layer (7) comprising an expandable electrically conductive material as a main material and disposed at a boundary of the insulation layers in the laminated body (1); and at least one metal foil pattern (4) which is positioned on the outer-most side of the laminated body (1) and which is disposed so as to cover at least a part of a main surface (1u) oriented in a direction parallel with a lamination direction of the laminated body (1).

Description

配線基板およびその製造方法Wiring board and manufacturing method thereof
 本発明は、配線基板およびその製造方法に関するものである。 The present invention relates to a wiring board and a manufacturing method thereof.
 「伸縮性回路基板」なるものが、特開2016-143763号公報(特許文献1)に記載されている。特許文献1では、伸縮性回路基板の製造方法として、伸縮性基材を用意し、伸縮性基材上に所望のパターンの伸縮性配線を形成し、さらに伸縮性基材上に電子部品を実装する旨が記載されている。 “A stretchable circuit board” is described in Japanese Unexamined Patent Publication No. 2016-143763 (Patent Document 1). In Patent Document 1, as a method of manufacturing a stretchable circuit board, a stretchable base material is prepared, a stretchable wiring having a desired pattern is formed on the stretchable base material, and an electronic component is mounted on the stretchable base material. It is written to do so.
特開2016-143763号公報JP 2016-143663 A
 特許文献1では、伸縮性基材の一例としてシリコーンゴムシートが挙げられている。伸縮性基材は、常温でゴム状であるので、一般的に変形しやすい。また、伸縮性基材はゴム状の部材であるので、加熱した際には通常のプリント配線板などに比べて大きく収縮する。したがって、製造方法の各工程を実施している間に寸法変化などが生じやすく、製造時の不所望な変形を抑制することが困難である。 In Patent Document 1, a silicone rubber sheet is cited as an example of a stretchable substrate. Since the stretchable base material is rubbery at normal temperature, it is generally easily deformed. In addition, since the stretchable base material is a rubber-like member, it shrinks greatly when heated compared to a normal printed wiring board or the like. Therefore, a dimensional change or the like is likely to occur during each process of the manufacturing method, and it is difficult to suppress undesired deformation during manufacturing.
 そこで、本発明は、伸縮性を有する配線基板でありながら、製造時の不所望な変形を抑制することができる配線基板およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a wiring board that can suppress undesired deformation during manufacturing, and a method for manufacturing the wiring board, although the wiring board has elasticity.
 上記目的を達成するため、本発明に基づく配線基板は、伸縮性絶縁材料を主材料として2層以上で積層体をなす絶縁層と、伸縮性導電材料を主材料とし、上記積層体内の上記絶縁層同士の境界に配置された導電層と、上記積層体の最も外側に位置し、上記積層体の積層方向に平行な方向を向く主表面の少なくとも一部を覆うように配置された少なくとも1つの金属箔パターンとを備える。 In order to achieve the above object, a wiring board according to the present invention comprises an insulating layer that is a laminate of two or more layers using a stretchable insulating material as a main material and a stretchable conductive material as a main material, and the insulation in the laminate. A conductive layer disposed at a boundary between the layers, and at least one disposed so as to cover at least a part of a main surface located on the outermost side of the stacked body and facing a direction parallel to the stacking direction of the stacked body A metal foil pattern.
 本発明によれば、伸縮性を有する配線基板でありながら、製造時の不所望な変形を抑制することができる。 According to the present invention, undesired deformation at the time of manufacture can be suppressed while the wiring board has elasticity.
本発明に基づく実施の形態1における配線基板の断面図である。It is sectional drawing of the wiring board in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法で、ビア孔を形成するためにスクリーン印刷を採用した場合に行なわれる工程の第1の説明図である。In the manufacturing method of the wiring board in Embodiment 2 based on this invention, it is the 1st explanatory drawing of the process performed when screen printing is employ | adopted in order to form a via hole. 本発明に基づく実施の形態2における配線基板の製造方法で、ビア孔を形成するためにスクリーン印刷を採用した場合に行なわれる工程の第2の説明図である。It is the 2nd explanatory view of a process performed when screen printing is adopted in order to form a via hole in a manufacturing method of a wiring board in Embodiment 2 based on the present invention. 本発明に基づく実施の形態2における配線基板の製造方法で、ビア孔を形成するためにスクリーン印刷を採用した場合に行なわれる工程の第3の説明図である。It is the 3rd explanatory view of a process performed when screen printing is adopted in order to form a via hole in a manufacturing method of a wiring board in Embodiment 2 based on the present invention. 本発明に基づく実施の形態2における配線基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the wiring board in Embodiment 2 based on this invention. 本発明に基づく実施の形態2における配線基板の製造方法を集合基板の状態で行なう場合の説明図である。It is explanatory drawing at the time of performing the manufacturing method of the wiring board in Embodiment 2 based on this invention in the state of an assembly board. 本発明に基づく配線基板からカバーフィルムを剥がす様子の説明図である。It is explanatory drawing of a mode that a cover film is peeled from the wiring board based on this invention. 本発明に基づく実施の形態3における配線基板の断面図である。It is sectional drawing of the wiring board in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における配線基板の平面図である。It is a top view of the wiring board in Embodiment 4 based on this invention. 本発明に基づく実施の形態4における配線基板の側面図である。It is a side view of the wiring board in Embodiment 4 based on this invention. 本発明に基づく実施の形態4における配線基板に引張力を加えた状態の説明図である。It is explanatory drawing of the state which applied the tensile force to the wiring board in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における配線基板の平面図である。It is a top view of the wiring board in Embodiment 5 based on this invention. 本発明に基づく実施の形態5における配線基板の断面図である。It is sectional drawing of the wiring board in Embodiment 5 based on this invention. 本発明に基づく実施の形態5における配線基板の部分拡大断面図である。It is the elements on larger scale of the wiring board in Embodiment 5 based on this invention. 本発明に基づく実施の形態5における配線基板に引張力を加えたときの部分拡大断面図である。It is a partial expanded sectional view when tensile force is applied to the wiring board in Embodiment 5 based on this invention. 本発明に基づく実施の形態5における配線基板の変形例に電子部品を実装した状態の断面図である。It is sectional drawing of the state which mounted the electronic component in the modification of the wiring board in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における配線基板の断面図である。It is sectional drawing of the wiring board in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における配線基板の変形例の製造途中の説明図である。It is explanatory drawing in the middle of manufacture of the modification of the wiring board in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における配線基板の変形例の断面図である。It is sectional drawing of the modification of the wiring board in Embodiment 6 based on this invention. 本発明に基づく配線基板の第1の使用例の説明図である。It is explanatory drawing of the 1st usage example of the wiring board based on this invention. 本発明に基づく配線基板の第2の使用例の第1の説明図である。It is 1st explanatory drawing of the 2nd usage example of the wiring board based on this invention. 本発明に基づく配線基板の第2の使用例の第2の説明図である。It is 2nd explanatory drawing of the 2nd usage example of the wiring board based on this invention. 本発明に基づく配線基板の第3の使用例の第1の説明図である。It is the 1st explanatory view of the 3rd example of use of a wiring board based on the present invention. 本発明に基づく配線基板の第3の使用例の第2の説明図である。It is the 2nd explanatory view of the 3rd example of use of a wiring board based on the present invention.
 図面において示す寸法比は、必ずしも忠実に現実のとおりを表しているとは限らず、説明の便宜のために寸法比を誇張して示している場合がある。以下の説明において、上または下の概念に言及する際には、絶対的な上または下を意味するとは限らず、図示された姿勢の中での相対的な上または下を意味する場合がある。 The dimensional ratios shown in the drawings do not always faithfully represent the actual ones, and the dimensional ratios may be exaggerated for convenience of explanation. In the following description, when referring to a concept above or below, it does not necessarily mean absolute above or below, but may mean relative above or below in the illustrated posture. .
 (実施の形態1)
 図1を参照して、本発明に基づく実施の形態1における配線基板について説明する。本実施の形態における配線基板101は、伸縮性絶縁材料を主材料として2層以上で積層体1をなす絶縁層2a,2bと、伸縮性導電材料を主材料とし、積層体1内の絶縁層同士の境界に配置された導電層7と、積層体1の最も外側に位置し、積層体1の積層方向に平行な方向を向く主表面1uの少なくとも一部を覆うように配置された少なくとも1つの金属箔パターン4とを備える。
(Embodiment 1)
With reference to FIG. 1, the wiring board in Embodiment 1 based on this invention is demonstrated. Wiring substrate 101 in the present embodiment includes insulating layers 2a and 2b forming laminate 1 with two or more layers of a stretchable insulating material as a main material, and insulating layers in laminate 1 using a stretchable conductive material as a main material. Conductive layer 7 arranged at the boundary between each other and at least one arranged so as to cover at least a part of main surface 1u located on the outermost side of laminated body 1 and facing in a direction parallel to the laminating direction of laminated body 1 Two metal foil patterns 4.
 本実施の形態における配線基板は、伸縮性絶縁材料を主材料とすることによって伸縮性を有する積層体1を含み、絶縁層の表面に配置される導電層7も伸縮性を有するので、全体として伸縮性を有する配線基板とすることができる。このように伸縮性を有していながら、積層体1の主表面1uに金属箔パターン4を備えるので、この金属箔パターン4の元となる金属箔を製造時の支持板として利用することができる。すなわち、後述するような製造方法で作製することができるので、製造時の不所望な変形を抑制することができる。このように、本実施の形態では、伸縮性を有する配線基板でありながら、製造時の不所望な変形を抑制することができる配線基板とすることができる。 Since the wiring board in the present embodiment includes the laminate 1 having elasticity by using a stretchable insulating material as a main material, and the conductive layer 7 disposed on the surface of the insulating layer also has elasticity, as a whole A wiring board having elasticity can be obtained. Since the metal foil pattern 4 is provided on the main surface 1u of the laminate 1 while having elasticity as described above, the metal foil that is the source of the metal foil pattern 4 can be used as a support plate during manufacturing. . That is, since it can be manufactured by a manufacturing method as will be described later, undesired deformation during manufacturing can be suppressed. As described above, according to the present embodiment, it is possible to provide a wiring board that can suppress undesired deformation during manufacturing, although it is a wiring board having elasticity.
 配線基板の表面に備わる金属箔パターン4は、部品実装可能なランドとして用いることができる。他の基板、部品などとの接続は金属箔パターン4を介して行なうことができるので、伸縮性導電材料によって形成されたパターンを介して接続を行なう場合に比べて、確実な接続をすることができる。 The metal foil pattern 4 provided on the surface of the wiring board can be used as a land on which components can be mounted. Since the connection with other substrates and components can be made through the metal foil pattern 4, it is possible to make a reliable connection as compared with the case where the connection is made through the pattern formed of the stretchable conductive material. it can.
 本実施の形態における配線基板において、前記伸縮性導電材料から導電成分を除いたものは、前記伸縮性絶縁材料と主たる組成が同じであることが好ましい。 In the wiring board according to the present embodiment, it is preferable that the stretchable conductive material except the conductive component has the same main composition as the stretchable insulating material.
 (実施の形態2)
 図2~図12を参照して、本発明に基づく実施の形態2における配線基板の製造方法について説明する。本実施の形態における配線基板の製造方法は、実施の形態1で説明した配線基板を得るための製造方法である。
(Embodiment 2)
With reference to FIGS. 2 to 12, a method of manufacturing a wiring board according to the second embodiment of the present invention will be described. The method for manufacturing a wiring board in the present embodiment is a manufacturing method for obtaining the wiring board described in the first embodiment.
 本実施の形態における配線基板の製造方法のフローチャートを図2に示す。本実施の形態における配線基板の製造方法は、金属箔の主表面に、伸縮性絶縁材料のペーストを塗布して乾燥させることによって、前記金属箔によって支持され、伸縮性を有する第1絶縁層を形成する工程S1と、前記第1絶縁層の表面に伸縮性導電材料のペーストを印刷することによって、伸縮性を有する導電層を形成する工程S2と、前記導電層を覆うように、前記伸縮性絶縁材料のペーストを塗布して乾燥させることによって、伸縮性を有する第2絶縁層を形成する工程S3と、前記金属箔をパターニングすることによって金属箔パターンを形成する工程S4とを含む。 FIG. 2 shows a flowchart of a method for manufacturing a wiring board in the present embodiment. In the method for manufacturing a wiring board in the present embodiment, the first surface of the metal foil is stretched by applying a stretchable insulating material paste to the main surface of the metal foil and drying the paste. Step S1 of forming, Step S2 of forming a conductive layer having elasticity by printing a paste of a stretchable conductive material on the surface of the first insulating layer, and the stretchability so as to cover the conductive layer It includes a step S3 of forming a stretchable second insulating layer by applying and drying a paste of an insulating material, and a step S4 of forming a metal foil pattern by patterning the metal foil.
 各工程について詳しく説明する。まず、図3に示すように、金属箔14を用意する。金属箔14は、他の物に支えられなくても自らの姿勢を支えることができる程度に剛性を有する。図3に示すように、金属箔14は、認識穴15を有していてもよい。金属箔14は、たとえば銅箔である。金属箔14は、たとえば電解めっきによって作製された銅箔である。金属箔14が銅箔である場合、金属箔14の厚みは、たとえば6μm以上70μm以下である。より好ましくは、金属箔14の厚みは、12μm以上18μm以下である。銅箔の表面は、表面粗さRzが0.5μm以上2.5μm以下であることが好ましい。 Each process will be described in detail. First, as shown in FIG. 3, a metal foil 14 is prepared. The metal foil 14 is rigid to such an extent that it can support its posture even if it is not supported by other objects. As shown in FIG. 3, the metal foil 14 may have a recognition hole 15. The metal foil 14 is a copper foil, for example. The metal foil 14 is a copper foil produced by, for example, electrolytic plating. When the metal foil 14 is a copper foil, the thickness of the metal foil 14 is, for example, not less than 6 μm and not more than 70 μm. More preferably, the thickness of the metal foil 14 is 12 μm or more and 18 μm or less. The surface of the copper foil preferably has a surface roughness Rz of 0.5 μm or more and 2.5 μm or less.
 工程S1として、図4に示すように、金属箔14の一方の面に、伸縮性絶縁材料のペースト12を塗布する。伸縮性絶縁材料は50%の伸長によっても破断しないものであることが好ましい。特に、500%以上の伸長によっても破断しないものが好ましい。伸縮性絶縁材料は、ゴムまたは樹脂であることが好ましい。伸縮性絶縁材料は、ゴムまたは樹脂の中でも、エラストマーに分類されるものであることが好ましい。エラストマーに分類されるゴムまたは樹脂とは、たとえばNBR(ニトリルゴム)、CR(クロロプレンゴム)、EPDM(エチレンプロピレンゴム)、Si(シリコーンゴム)、IIR(ブチルゴム)、SBR(スチレンゴム)、U(ウレタンゴム)、CSM(ハイパロン)、FKM(フッ素ゴム)、エポキシ樹脂などが該当する。 As step S1, a paste 12 of a stretchable insulating material is applied to one surface of the metal foil 14 as shown in FIG. The stretchable insulating material is preferably one that does not break even when stretched by 50%. In particular, those that do not break even when stretched by 500% or more are preferable. The stretchable insulating material is preferably rubber or resin. The stretchable insulating material is preferably classified as an elastomer among rubber or resin. Examples of rubbers or resins classified as elastomers include NBR (nitrile rubber), CR (chloroprene rubber), EPDM (ethylene propylene rubber), Si (silicone rubber), IIR (butyl rubber), SBR (styrene rubber), U ( Urethane rubber), CSM (hypalon), FKM (fluoro rubber), epoxy resin, and the like are applicable.
 塗布して層状に形成されたペースト12を乾燥させることによって、図5に示すように、第1絶縁層としての絶縁層2aを形成する。乾燥にはたとえば熱風式オーブンを用いてもよい。ペースト12の乾燥のためには、たとえば170℃で5分間加熱する。絶縁層2aにレーザ加工でビア孔9を形成する。図5では、ビア孔9を形成した後の状態を示している。 By applying and drying the paste 12 formed in a layer shape, an insulating layer 2a as a first insulating layer is formed as shown in FIG. For example, a hot air oven may be used for drying. In order to dry the paste 12, for example, it is heated at 170 ° C. for 5 minutes. Via holes 9 are formed in the insulating layer 2a by laser processing. FIG. 5 shows a state after the via hole 9 is formed.
 ビア孔9を形成する方法は、レーザ加工に限らない。ビア孔9を形成するためには、レーザ加工による代わりに印刷によってもよい。ここでいう印刷とはたとえばスクリーン印刷である。たとえば、図6に示すように、印刷ステージ20上に金属箔14を載置し、金属箔14の上側にスクリーン版21を載せる。スクリーン版21は開口部22を有する。図7に示すように、スクリーン版22の上側にペースト12を配置し、スキージ23で擦過する。ペースト12が開口部22を通って金属箔14の上面に付着する。図8に示すように、スクリーン版21を取り外すと、金属箔14の上面にペースト12が配置された状態となる。このとき、スクリーン版21に妨げられてペースト12が付着しなかった箇所がビア孔9となりうる。このように、スクリーン印刷によって所望の位置にビア孔9を形成することができる。ビア孔9に関してあまり高い精度が必要でない場合には、このようにスクリーン印刷によってビア孔9を形成してもよい。 The method of forming the via hole 9 is not limited to laser processing. In order to form the via hole 9, printing may be used instead of laser processing. The printing here is, for example, screen printing. For example, as shown in FIG. 6, the metal foil 14 is placed on the printing stage 20, and the screen plate 21 is placed on the upper side of the metal foil 14. The screen plate 21 has an opening 22. As shown in FIG. 7, the paste 12 is placed on the upper side of the screen plate 22 and is rubbed with a squeegee 23. The paste 12 passes through the opening 22 and adheres to the upper surface of the metal foil 14. As shown in FIG. 8, when the screen plate 21 is removed, the paste 12 is placed on the upper surface of the metal foil 14. At this time, a portion where the paste 12 is not adhered due to the screen plate 21 can be the via hole 9. Thus, the via hole 9 can be formed at a desired position by screen printing. If very high accuracy is not required for the via hole 9, the via hole 9 may be formed by screen printing in this way.
 工程S2として、図9に示すように、第1絶縁層としての絶縁層2aの表面に伸縮性導電材料のペーストを印刷することによって、伸縮性を有する導電層7を形成する。伸縮性導電材料は伸縮性を有する導電体であればよい。伸縮性導電材料としては、ポリアセチレン、ポリ(p-フェニレン)、ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、PEDOT、ポリアニリン、ポリアセン、グラフェンなどに代表される導電性高分子材料を用いてもよい。あるいは、伸縮性導電材料として、上記伸縮性絶縁材料にAgナノワイヤ、カーボンナノチューブなどに代表される1次元導体を混錬したものを用いてもよい。あるいは、伸縮性導電材料として、上記伸縮性絶縁材料にカーボン、金属フィラーなどの粒状導体を混錬したものを用いてもよい。金属フィラーとしては、たとえば球状、フレーク状のものを用いることができる。金属フィラーの材質は、たとえばAg,Cu,Au,Ni,Zn,Sn,Alのいずれかまたはこれらの合金であってよい。金属フィラーの材質としては、導電性の高いものが好ましい。金属フィラーの体積抵抗率は、10-5Ωcm以下であることが好ましい。 As step S2, as shown in FIG. 9, a conductive layer 7 having stretchability is formed by printing a paste of a stretchable conductive material on the surface of the insulating layer 2a as the first insulating layer. The stretchable conductive material only needs to be a stretchable conductor. As the stretchable conductive material, a conductive polymer material typified by polyacetylene, poly (p-phenylene), poly (p-phenylene vinylene), polypyrrole, polythiophene, PEDOT, polyaniline, polyacene, graphene, or the like may be used. . Alternatively, a material obtained by kneading a one-dimensional conductor represented by Ag nanowire, carbon nanotube, or the like to the above-described stretchable insulating material may be used as the stretchable conductive material. Or you may use what knead | mixed granular conductors, such as carbon and a metal filler, to the said stretchable insulating material as a stretchable electrically-conductive material. As the metal filler, for example, a spherical or flaky material can be used. The material of the metal filler may be, for example, any of Ag, Cu, Au, Ni, Zn, Sn, Al, or an alloy thereof. As a material of the metal filler, a material having high conductivity is preferable. The volume resistivity of the metal filler is preferably 10 −5 Ωcm or less.
 導電層7を乾燥させるために、たとえば熱風式オーブンにより170℃で5分間加熱する。伸縮性絶縁材料のペーストの印刷による絶縁層の形成と、伸縮性導電材料のペーストの印刷による導電層の形成とを交互に必要回数だけ繰り返す。多く繰り返すことにより、層数が多い積層体を作製することができる。本実施の形態では、導電層7を1層のみとするが、導電層7を複数層形成してもよい。 In order to dry the conductive layer 7, for example, it is heated at 170 ° C. for 5 minutes in a hot air oven. The formation of the insulating layer by printing the stretchable insulating material paste and the formation of the conductive layer by printing the stretchable conductive material paste are alternately repeated as many times as necessary. By repeating many times, a laminate having a large number of layers can be manufactured. In this embodiment mode, only one conductive layer 7 is provided, but a plurality of conductive layers 7 may be formed.
 工程S3として、図10に示すように、導電層7を覆うように、伸縮性絶縁材料のペースト12を塗布する。このペースト12を乾燥させることによって、図11に示すように、伸縮性を有する第2絶縁層としての絶縁層2bを形成する。ペースト12の乾燥には、たとえば熱風式オーブンを用いて170℃で5分間加熱する。 As process S3, as shown in FIG. 10, the paste 12 of a stretchable insulating material is apply | coated so that the conductive layer 7 may be covered. By drying the paste 12, an insulating layer 2b as a second insulating layer having elasticity is formed as shown in FIG. The paste 12 is dried by heating at 170 ° C. for 5 minutes using, for example, a hot air oven.
 さらに全体を硬化させるために、熱風式オーブンにより200℃で120分間加熱する。さらに図12に示すように、絶縁層2bの上側にカバーフィルム3を貼り付ける。カバーフィルム3は、たとえばPETフィルムであってよい。カバーフィルム3は何らかの耐熱フィルムであることが好ましい。 In order to further cure the whole, it is heated at 200 ° C. for 120 minutes in a hot air oven. Furthermore, as shown in FIG. 12, the cover film 3 is affixed on the upper side of the insulating layer 2b. The cover film 3 may be a PET film, for example. The cover film 3 is preferably any heat resistant film.
 工程S4として、金属箔14をパターニングすることによって金属箔パターン4を形成する。こうして、図1に示した配線基板101が得られる。金属箔14のパターニングのためには、たとえばフォトリソグラフィ技術を用いることができる。すなわち、たとえば感光性樹脂の層を金属箔14の表面に形成し、露光によって所望のマスクパターンを形成し、塩化第二鉄を用いて金属箔14をエッチングする。こうして、所望の金属箔パターン4を形成することができる。 As step S4, the metal foil pattern 4 is formed by patterning the metal foil 14. In this way, the wiring board 101 shown in FIG. 1 is obtained. For the patterning of the metal foil 14, for example, a photolithography technique can be used. That is, for example, a photosensitive resin layer is formed on the surface of the metal foil 14, a desired mask pattern is formed by exposure, and the metal foil 14 is etched using ferric chloride. Thus, a desired metal foil pattern 4 can be formed.
 ペースト12または導電層7の印刷には、スクリーン印刷の他に、インクジェットによる印刷を行なってもよい。伸縮性絶縁材料のペースト12を硬化させるためには、加熱して熱硬化させるという方法に代えて、紫外光の照射によるUV硬化を用いてもよい。あるいは、電子線照射による硬化を用いてもよい。 In addition to screen printing, the paste 12 or the conductive layer 7 may be printed by inkjet printing. In order to cure the paste 12 of the stretchable insulating material, instead of the method of heating and thermosetting, UV curing by irradiation with ultraviolet light may be used. Alternatively, curing by electron beam irradiation may be used.
 本実施の形態では、十分な剛性を有する金属箔14を最初に用意して、この金属箔14の表面において各層を形成するので、製造時の不所望な変形を抑制することができる。すなわち、金属箔14を支持体として利用して全体の姿勢を安定させつつ、配線基板を製造することができる。金属箔14は、最終的には金属箔パターン4として配線基板101の一部となる。金属箔パターン4は、配線基板101の配線または電極として利用することができる。本実施の形態では、このように、金属箔14の一部を有効に活用することができる。 In the present embodiment, since the metal foil 14 having sufficient rigidity is first prepared and each layer is formed on the surface of the metal foil 14, undesired deformation at the time of manufacture can be suppressed. That is, the wiring board can be manufactured while using the metal foil 14 as a support to stabilize the overall posture. The metal foil 14 eventually becomes a part of the wiring board 101 as the metal foil pattern 4. The metal foil pattern 4 can be used as a wiring or an electrode of the wiring board 101. In the present embodiment, a part of the metal foil 14 can be effectively used as described above.
 ここまで、1つの製品に注目して、製造方法を説明してきたが、図13に示すように集合基板の状態で製造方法の各工程を行なってもよい。ここでいう集合基板とは、複数の製品に対応する部分を含む1枚の大判の基板である。集合基板状態で各工程を行なうことによって、複数の製品を一括して効率良く製造することができる。最終的には、集合基板から複数の個別の製品を得ることができる。図13に示した例では、外枠41に取り囲まれた中に、複数の開口部43がマトリックス状に配置されており、各開口部43の内部にアイランド状に製品42が配置されている。製品42は1つの配線基板に相当する。開口部43の内側で製品42の外側の領域では、積層体1およびカバーフィルム3が重なった状態で延在している。図13では詳しく表示していないが、製品42の内部に金属箔パターン4が形成されている。図1に示した配線基板101では、左右両端に認識穴15が設けられているが、集合基板においては、このような認識穴15は1つの製品42の中に設けるのではなく、外枠41に設けることとしてもよい。 Up to this point, the manufacturing method has been described focusing on one product, but each step of the manufacturing method may be performed in the state of an aggregate substrate as shown in FIG. The collective substrate here is one large-sized substrate including portions corresponding to a plurality of products. By performing each process in the aggregate substrate state, a plurality of products can be efficiently manufactured collectively. Ultimately, a plurality of individual products can be obtained from the aggregate substrate. In the example shown in FIG. 13, a plurality of openings 43 are arranged in a matrix while being surrounded by an outer frame 41, and the products 42 are arranged in an island shape inside each opening 43. The product 42 corresponds to one wiring board. In the region outside the product 42 inside the opening 43, the laminate 1 and the cover film 3 extend in a state of overlapping. Although not shown in detail in FIG. 13, the metal foil pattern 4 is formed inside the product 42. In the wiring board 101 shown in FIG. 1, the recognition holes 15 are provided at both left and right ends. However, in the collective board, the recognition holes 15 are not provided in one product 42, but the outer frame 41. It is good also as providing in.
 (カバーフィルムを剥がして使用することについて)
 実施の形態1,2に共通してあてはまることであるが、配線基板使用時のカバーフィルムの扱いについて説明する。図1では、配線基板101は、下面にカバーフィルム3を有しているが、カバーフィルム3は、たとえばハンドリング、輸送、保管の際に配線基板101の下面を保護し、配線基板101の姿勢を維持することを主目的としたものである。カバーフィルム3は、配線基板101を実際に使用する際には取り去るものであってもよい。たとえば図14に示すように、カバーフィルム3を剥がして配線基板101aとして使用することとしてもよい。矢印93に示すようにカバーフィルム3を剥がすことができる。カバーフィルム3を取り去った後の配線基板101aを、そのまま単独で使用してもよいし、たとえば任意の物体の表面に貼り付けて使用することとしてもよい。
(About removing the cover film before use)
The same applies to the first and second embodiments, but the handling of the cover film when the wiring board is used will be described. In FIG. 1, the wiring board 101 has the cover film 3 on the lower surface. However, the cover film 3 protects the lower surface of the wiring board 101 and handles the posture of the wiring board 101 during handling, transportation, and storage, for example. The main purpose is to maintain. The cover film 3 may be removed when the wiring substrate 101 is actually used. For example, as shown in FIG. 14, the cover film 3 may be peeled off and used as the wiring board 101a. As shown by the arrow 93, the cover film 3 can be peeled off. The wiring board 101a after the cover film 3 is removed may be used alone as it is, or may be used by being attached to the surface of an arbitrary object, for example.
 (キャリア膜を貼り付ける工程)
 実施の形態2で示したように、金属箔パターンを形成する工程S4の前に、金属箔14とは反対側の主表面にキャリア膜を貼り付ける工程を含み、金属箔パターンを形成する工程S4の後には、前記配線基板は前記キャリア膜によって支持されることが好ましい。キャリア膜は、たとえばカバーフィルム3である。この方法を採用することにより、金属箔パターンを形成する工程S4の後は配線基板の姿勢を安定的に維持することができる。
(Process of attaching carrier film)
As shown in the second embodiment, before the step S4 of forming the metal foil pattern, the step of attaching the carrier film to the main surface opposite to the metal foil 14 and forming the metal foil pattern S4 After this, the wiring board is preferably supported by the carrier film. The carrier film is, for example, the cover film 3. By adopting this method, the posture of the wiring board can be stably maintained after step S4 of forming the metal foil pattern.
 (金属箔の表面粗さ)
 金属箔14は、第1面と、前記第1面よりも表面粗さが大きい第2面とを有し、前記第1絶縁層としての絶縁層2aが形成される側の金属箔14の主表面は、前記第2面であることが好ましい。この方法を採用することにより、第1絶縁層は金属箔14の表裏のうち表面粗さが大きい方の面に形成されることとなるので、第1絶縁層と金属箔14との間の接合を強固なものとすることができる。
(Surface roughness of metal foil)
The metal foil 14 has a first surface and a second surface having a surface roughness larger than that of the first surface, and the main surface of the metal foil 14 on the side where the insulating layer 2a as the first insulating layer is formed. The surface is preferably the second surface. By adopting this method, the first insulating layer is formed on the surface having the larger surface roughness of the front and back surfaces of the metal foil 14, so that the bonding between the first insulating layer and the metal foil 14 is performed. Can be made strong.
 (材料の組成)
 前記伸縮性導電材料から導電成分を除いたものは、前記伸縮性絶縁材料と組成が同じであることが好ましい。この方法を採用することにより、伸縮性を有する導電層7と伸縮性を有する各絶縁層との間で物性を近づけることができるので、両者の接合箇所の信頼性を高めることができる。
(Material composition)
A material obtained by removing the conductive component from the stretchable conductive material preferably has the same composition as the stretchable insulating material. By adopting this method, the physical properties can be made closer between the stretchable conductive layer 7 and each stretchable insulating layer, so that the reliability of the joint between them can be improved.
 (実施の形態3)
 実施の形態1,2では、積層体1が絶縁層2a,2bを含む2層構造である例に基づいて説明してきた。実際には、積層体1はより多くの数の絶縁層を含む構造であってもよい。図15を参照して、本発明に基づく実施の形態3における配線基板102について説明する。
(Embodiment 3)
The first and second embodiments have been described based on an example in which the stacked body 1 has a two-layer structure including the insulating layers 2a and 2b. Actually, the stacked body 1 may have a structure including a larger number of insulating layers. With reference to FIG. 15, description will be given of wiring board 102 according to the third embodiment of the present invention.
 配線基板102においては、積層体1は絶縁層2a,2b,2c,2dを含む4層構造である。積層体1は、3層構造であってもよいし、5層以上の構造であってもよい。図15に示したように、導電層7は、積層体1内の絶縁層同士の境界によって定まる積層方向94の2以上の位置に分散して配置されている。 In the wiring board 102, the laminate 1 has a four-layer structure including insulating layers 2a, 2b, 2c, and 2d. The laminated body 1 may have a three-layer structure or a structure having five or more layers. As shown in FIG. 15, the conductive layer 7 is distributed and arranged at two or more positions in the stacking direction 94 determined by the boundary between the insulating layers in the stacked body 1.
 本実施の形態では、積層体1の層数が多く、導電層7が積層方向94の2以上の位置に分散して配置されているので、設計の自由度が高まる。 In the present embodiment, the number of layers of the stacked body 1 is large, and the conductive layer 7 is distributed and arranged at two or more positions in the stacking direction 94, so that the degree of freedom in design is increased.
 本実施の形態で示したように、積層方向94の異なる位置にある導電層7同士を、前記絶縁層を貫通して電気的に接続する層間接続導体11を備えることが好ましい。このような層間接続導体11を備えることにより、異なる層にまたがって電気的経路を設定することができる。 As shown in the present embodiment, it is preferable to include the interlayer connection conductor 11 that electrically connects the conductive layers 7 at different positions in the stacking direction 94 through the insulating layer. By providing such an interlayer connection conductor 11, an electrical path can be set across different layers.
 層間接続導体11は、導電層7と同じ材料からなることが好ましい。このように同じ材料であれば、導電層7と層間接続導体11との間で物性をほぼ同じに揃えることができるので、両者の間の接続の信頼性を高めることができる。 The interlayer connection conductor 11 is preferably made of the same material as the conductive layer 7. In this way, if the same material is used, the physical properties can be made substantially the same between the conductive layer 7 and the interlayer connection conductor 11, so that the reliability of connection between the two can be improved.
 (実施の形態4)
 図16~図18を参照して、本発明に基づく実施の形態4における配線基板について説明する。本実施の形態における配線基板103の平面図を図16に示し、側面図を図17に示す。配線基板103は、基本的な構成としては、実施の形態1で説明した配線基板101と同様であるが、配線基板101に比べて以下の点が異なる。配線基板103では、少なくとも1つの金属箔パターンまたは板状の剛体としての保護パターン30が積層体1の主表面に配置されることによって、非伸長部が形成されている。ここでいう非伸長部とは、引張力が作用した場合においても他の部分に比べて伸びが著しく小さい部分を指す。非伸長部といえども理論上は伸びが完全に0であるとは限らない。保護パターン30が積層体1に重なっている領域が非伸長部である。配線基板103では、保護パターン30は積層体1の最下面に配置されている。保護パターン30は金属箔14をパターニングすることによって形成された金属箔パターン4の一種であってもよい。この場合、たとえば1つの保護パターン30が1つの金属箔パターン3であってよい。あるいは、保護パターン30は、後から貼り付けられた何らかの板状の剛体であってもよい。保護パターン30は、導電体であってもよく、絶縁体であってもよい。保護パターン30は配線の役割を果たさない金属箔パターンであってもよい。
(Embodiment 4)
With reference to FIGS. 16 to 18, a wiring board according to the fourth embodiment of the present invention will be described. A plan view of the wiring substrate 103 in this embodiment is shown in FIG. 16, and a side view thereof is shown in FIG. The wiring board 103 is basically the same as the wiring board 101 described in the first embodiment, but differs in the following points from the wiring board 101. In the wiring substrate 103, at least one metal foil pattern or a protective pattern 30 as a plate-like rigid body is disposed on the main surface of the laminate 1, thereby forming a non-extension part. The term “non-extendable portion” as used herein refers to a portion where the elongation is significantly smaller than other portions even when a tensile force is applied. Even in the non-extension part, theoretically, the elongation is not always zero. A region where the protective pattern 30 overlaps the stacked body 1 is a non-extension part. In the wiring substrate 103, the protective pattern 30 is disposed on the lowermost surface of the multilayer body 1. The protective pattern 30 may be a kind of the metal foil pattern 4 formed by patterning the metal foil 14. In this case, for example, one protective pattern 30 may be one metal foil pattern 3. Alternatively, the protective pattern 30 may be some plate-like rigid body attached later. The protective pattern 30 may be a conductor or an insulator. The protective pattern 30 may be a metal foil pattern that does not play the role of wiring.
 配線基板103に引張力を加えた状態を図18に示す。保護パターン30が積層体1に重なっていない部分では、積層体1が伸長している。保護パターン30が積層体1に重なっている部分では、伸びが抑えられることによって非伸長部となっている。 FIG. 18 shows a state where a tensile force is applied to the wiring board 103. In a portion where the protective pattern 30 does not overlap the laminated body 1, the laminated body 1 is extended. In the part where the protective pattern 30 overlaps the laminated body 1, it becomes a non-extension part by suppressing extension.
 本実施の形態では、積層体の表面に少なくとも1つの金属箔パターンまたは板状の剛体を配置しているので、伸長時にも変形が抑制される領域を確保することができる。保護パターン30を絶縁体で形成すれば、設計の自由度が高まる。保護パターン30が配線間の短絡不良の原因となることを避けることができるので、好ましい。本実施の形態で示したように、伸長時にも変形が抑制される領域を形成し、所望の配線パターンをこの領域に重なるように配置しておけば、この配線パターンにおいて変形によって生じがちな抵抗値変化を防ぐことが可能であるし、変形によってこの配線パターン内に生じうる断線を防止することも可能である。このように、金属箔パターンまたは板状の剛体を配置したことによって伸長時にも変形が抑制される領域は、配線パターンを保護する領域として利用することができる。 In this embodiment, since at least one metal foil pattern or a plate-like rigid body is arranged on the surface of the laminate, it is possible to secure a region in which deformation is suppressed even when stretched. If the protective pattern 30 is formed of an insulator, the degree of freedom in design increases. Since it can avoid that the protective pattern 30 causes the short circuit defect between wiring, it is preferable. As shown in this embodiment, if a region in which deformation is suppressed even when stretched is formed and a desired wiring pattern is arranged so as to overlap this region, the resistance that tends to be caused by deformation in this wiring pattern It is possible to prevent a change in value, and it is also possible to prevent disconnection that may occur in the wiring pattern due to deformation. As described above, the region in which the deformation is suppressed even when the metal foil pattern or the plate-like rigid body is arranged can be used as a region for protecting the wiring pattern.
 (実施の形態5)
 図19~図22を参照して、本発明に基づく実施の形態5における配線基板について説明する。本実施の形態における配線基板104の平面図を図19に示し、断面図を図20に示す。図20の一部を拡大したところを図21に示す。配線基板104は、基本的な構成としては、実施の形態1で説明した配線基板101と同様であるが、配線基板101に比べて以下の点が異なる。配線基板104では、導電層7と金属箔パターン4とが、絶縁層2aを貫通して電気的に接続する接続導体6によって接続されており、接続導体6は、金属箔パターン4の外縁4eを避けた部位において金属箔パターン4に対して接続している。接続導体6は、金属箔パターン4の外縁4eから距離Aだけ内側に後退した部位において金属箔パターン4に対して接続している。絶縁層2aの部分25は、金属箔パターン4の外縁4eを越えて金属箔パターン4と導電層7との間に入り込んでいる。
(Embodiment 5)
A wiring board according to the fifth embodiment of the present invention will be described with reference to FIGS. A plan view of the wiring board 104 in this embodiment is shown in FIG. 19, and a cross-sectional view is shown in FIG. FIG. 21 shows an enlarged part of FIG. The wiring board 104 has the same basic configuration as the wiring board 101 described in the first embodiment, but differs in the following points from the wiring board 101. In the wiring board 104, the conductive layer 7 and the metal foil pattern 4 are connected by a connection conductor 6 that penetrates and electrically connects the insulating layer 2 a, and the connection conductor 6 connects the outer edge 4 e of the metal foil pattern 4. It is connected to the metal foil pattern 4 at a portion that is avoided. The connection conductor 6 is connected to the metal foil pattern 4 at a site that is recessed inward by a distance A from the outer edge 4 e of the metal foil pattern 4. The portion 25 of the insulating layer 2 a extends between the metal foil pattern 4 and the conductive layer 7 beyond the outer edge 4 e of the metal foil pattern 4.
 配線基板104に引張力92を加えた際の配線基板104の一部の状態を図22に示す。図22は、図21に示したのと同じ部分を示している。接続導体6は、導電層7と同じく伸縮性導電材料で形成されていることが好ましい。 FIG. 22 shows a part of the wiring board 104 when a tensile force 92 is applied to the wiring board 104. FIG. 22 shows the same part as shown in FIG. The connection conductor 6 is preferably formed of a stretchable conductive material like the conductive layer 7.
 金属箔パターン4は剛体であり、配線基板104に引張力が作用したときには非伸長部として働く。金属箔パターン4はほとんど伸びないが、導電層7は伸縮性導電材料で形成されているので、大きく伸びる。このとき、伸長部と非伸長部との間のいずれかの箇所で伸び具合が大きく異なる界面が生じ、応力が集中する。状況によっては、応力の集中により、接続箇所が破断し、電気的接続が断絶するおそれがある。 The metal foil pattern 4 is a rigid body and acts as a non-extension part when a tensile force acts on the wiring board 104. The metal foil pattern 4 hardly extends, but the conductive layer 7 is formed of a stretchable conductive material, and thus greatly extends. At this time, an interface having a greatly different degree of elongation occurs at any location between the elongated portion and the non-extended portion, and stress is concentrated. Depending on the situation, due to the concentration of stress, there is a possibility that the connection portion is broken and the electrical connection is broken.
 しかし、本実施の形態では、接続導体6は、金属箔パターン4の外縁4eから距離Aだけ内側に後退した部位において金属箔パターン4に対して接続しているので、金属パターン4の外縁4eそのものでは応力集中が起こりにくい。 However, in the present embodiment, since the connection conductor 6 is connected to the metal foil pattern 4 at a portion that is recessed inward by the distance A from the outer edge 4e of the metal foil pattern 4, the outer edge 4e of the metal pattern 4 itself. Then, stress concentration hardly occurs.
 図22に示すように、引張力が作用したときには、接続導体6が変形する。特に接続導体6が伸縮性導電材料で形成されていれば、接続導体6は大きく弾性変形することができる。金属パターン4と導電層7との間で位置のずれが生じても、接続導体6が変形することにより、破断することをなるべく回避することができる。 As shown in FIG. 22, when a tensile force is applied, the connection conductor 6 is deformed. In particular, if the connection conductor 6 is made of a stretchable conductive material, the connection conductor 6 can be greatly elastically deformed. Even if a positional shift occurs between the metal pattern 4 and the conductive layer 7, it is possible to avoid breaking as much as possible by deforming the connection conductor 6.
 (変形例)
 本発明に基づく実施の形態5における配線基板の変形例として、図23に配線基板104iを示す。配線基板104iは、配線基板104と同様の構造を備えるが、金属箔パターン4が2つに分かれている。図23に示した例では、配線基板104iにおいて2つの金属箔パターン4をランドとして利用して電子部品10が実装されている。電子部品10との電気的接続を維持する上では、金属箔パターン4は非伸長部にあることが好都合である。引張力が加わったとき、金属箔パターン4自体はほとんど伸びないが、導電層7は伸縮性導電材料で形成されているので大きく伸びる。図23に示した例においても、接続導体6は、金属箔パターン4の外縁4eを避けた部位において金属箔パターン4に対して接続しているので、応力集中を緩和し、その結果、接合部位における破断をなるべく避けることができる。
(Modification)
As a modification of the wiring board in the fifth embodiment based on the present invention, FIG. 23 shows a wiring board 104i. The wiring board 104i has the same structure as the wiring board 104, but the metal foil pattern 4 is divided into two. In the example shown in FIG. 23, the electronic component 10 is mounted on the wiring board 104i using the two metal foil patterns 4 as lands. In order to maintain the electrical connection with the electronic component 10, it is advantageous that the metal foil pattern 4 is in a non-extension part. When a tensile force is applied, the metal foil pattern 4 itself hardly stretches, but the conductive layer 7 is greatly stretched because it is made of a stretchable conductive material. Also in the example shown in FIG. 23, since the connection conductor 6 is connected to the metal foil pattern 4 at a portion where the outer edge 4e of the metal foil pattern 4 is avoided, the stress concentration is reduced, and as a result, the bonded portion Can be avoided as much as possible.
 (実施の形態6)
 図24を参照して、本発明に基づく実施の形態6における配線基板について説明する。本実施の形態における配線基板105の断面図を図24に示す。配線基板105においては、絶縁層が積層体を構成しておらず単層構造となっている。配線基板105は、唯一の絶縁層として絶縁層2aを備える。配線基板105は、伸縮性絶縁材料を主材料とし、一方および他方の主表面を有する絶縁層2aと、伸縮性導電材料を主材料とし、絶縁層2aの前記一方の主表面に配置された導電層7と、絶縁層2aの前記他方の主表面の少なくとも一部を覆うように配置された少なくとも1つの金属箔パターン4とを備える。
(Embodiment 6)
With reference to FIG. 24, a wiring board according to the sixth embodiment of the present invention will be described. A cross-sectional view of the wiring substrate 105 in this embodiment is shown in FIG. In the wiring board 105, the insulating layer does not constitute a laminated body but has a single layer structure. The wiring board 105 includes the insulating layer 2a as the only insulating layer. The wiring substrate 105 has a stretchable insulating material as a main material, an insulating layer 2a having one and the other main surfaces, and a conductive material that has a stretchable conductive material as a main material and is disposed on the one main surface of the insulating layer 2a. A layer 7 and at least one metal foil pattern 4 arranged to cover at least a part of the other main surface of the insulating layer 2a.
 本実施の形態では、絶縁層2aを積層しなくても、実施の形態1と同様の効果を得ることができる。金属箔パターン4は、配線基板105の配線または電極として利用することができる。本実施の形態では、絶縁層が積層体となっていないので、全体を薄くすることができる。 In the present embodiment, the same effect as in the first embodiment can be obtained without stacking the insulating layer 2a. The metal foil pattern 4 can be used as a wiring or an electrode of the wiring board 105. In this embodiment mode, since the insulating layer is not a stacked body, the whole can be thinned.
 (変形例)
 本発明に基づく実施の形態5における配線基板の変形例について説明する。図24に示した例では、最外面に導電層7が露出している。導電層7が露出したままであると、金属箔パターン4を得るために金属箔14をエッチングする際に導電層7が損傷する可能性も考えられる。そこで、金属箔14のエッチングなどから導電層7を保護するために、図25に示すように、金属箔14が覆っているのと反対側の面にカバーフィルム3を貼り付けることとしてもよい。カバーフィルム3を貼り付けてから、図26に示すように金属箔14をパターニングして金属箔パターン4を得ることにより、配線基板106が得られる。配線基板106は、絶縁層としては絶縁層2aの1層のみを備える。
(Modification)
A modification of the wiring board according to the fifth embodiment of the present invention will be described. In the example shown in FIG. 24, the conductive layer 7 is exposed on the outermost surface. If the conductive layer 7 remains exposed, the conductive layer 7 may be damaged when the metal foil 14 is etched to obtain the metal foil pattern 4. Therefore, in order to protect the conductive layer 7 from etching of the metal foil 14, the cover film 3 may be attached to the surface opposite to the metal foil 14 as shown in FIG. After the cover film 3 is attached, the metal foil 14 is patterned to obtain the metal foil pattern 4 as shown in FIG. The wiring board 106 includes only one layer of the insulating layer 2a as an insulating layer.
 (配線基板の使用例)
 以下では、これまでの実施の形態で説明した配線基板のいくつかの使用例について説明する。たとえば図27に示すように、配線基板107を部材34の段差に貼り付けることとしてもよい。配線基板107は、伸縮性絶縁材料を主材料として単層構造または積層構造をなす絶縁層と、伸縮性導電材料を主材料とし絶縁層の少なくともいずれかの表面に配置された導電層とを備えるので、全体として柔軟で伸縮性に富む。したがって、配線基板107は、このような段差に対しても段差の形状に沿わせて貼り付けることができる。ここでは部材34として単純な段差を有するものを例示したが、部材34はより複雑な立体形状を有するものであってもよい。部材34はたとえば何らかの装置の一部であってよい。
(Usage example of wiring board)
Hereinafter, some examples of use of the wiring board described in the above embodiments will be described. For example, as shown in FIG. 27, the wiring board 107 may be attached to the step of the member 34. The wiring board 107 includes an insulating layer having a single-layer structure or a stacked structure using a stretchable insulating material as a main material, and a conductive layer disposed on at least one surface of the insulating layer using a stretchable conductive material as a main material. Therefore, it is flexible and rich in elasticity as a whole. Accordingly, the wiring substrate 107 can be attached to such a step along the shape of the step. Here, a member having a simple step is exemplified as the member 34, but the member 34 may have a more complicated three-dimensional shape. Member 34 may be part of some device, for example.
 図28に示すように、カード形の配線基板108も考えられる。配線基板108は、図29に示すように、柔軟に曲げることができる。配線基板108は、2つのランド電極と1つのコイル状部分を備えるが、これはあくまで一例として模式的に示したものであり、形成される金属箔パターンの位置、大きさ、個数などはこれに限らない。 As shown in FIG. 28, a card-shaped wiring board 108 is also conceivable. The wiring board 108 can be bent flexibly as shown in FIG. The wiring board 108 includes two land electrodes and one coil-like portion, which is schematically shown as an example only, and the position, size, number, and the like of the metal foil pattern to be formed are Not exclusively.
 図30に示す配線基板109のようなものであってもよい。配線基板109は、リストバンド120とセンサ110とを備える。配線基板109は、人間の手35に貼り付けられる。リストバンド120には制御部130が配置されている。センサ110は指36の先端近傍に配置される。図30では、指36はほぼ真っ直ぐ延ばされているが、図31に示すように指36は曲げられる場合がある。指36がこのように曲げられた場合においても、配線基板109は破損することなく柔軟に追従することができる。 It may be a wiring board 109 shown in FIG. The wiring board 109 includes a wristband 120 and a sensor 110. The wiring board 109 is attached to the human hand 35. A control unit 130 is disposed on the wristband 120. The sensor 110 is disposed near the tip of the finger 36. In FIG. 30, the finger 36 is extended substantially straight, but the finger 36 may be bent as shown in FIG. Even when the finger 36 is bent in this way, the wiring board 109 can follow flexibly without being damaged.
 配線基板107,108,109においては、詳細な構造を図示していないが、これまでの実施の形態で説明してきたいずれかの構造が採用されていてよい。 In the wiring boards 107, 108, and 109, although a detailed structure is not shown, any structure described in the above embodiments may be adopted.
 なお、上記実施の形態のうち複数を適宜組み合わせて採用してもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
In addition, you may employ | adopt combining suitably two or more among the said embodiment.
In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 積層体、1u 主表面、2a (第1絶縁層としての)絶縁層、2b (第2絶縁層としての)絶縁層、2c,2d 絶縁層、3 カバーフィルム、4 金属箔パターン、4e 外縁、6 (金属箔に対して接続する)接続導体、7 導電層、9 ビア孔、10 電子部品、10a,10b (電子部品の)外部端子、11 (導電層同士を接続する)層間接続導体、12 (絶縁材料の)ペースト、14 金属箔、15 認識穴、20 印刷ステージ、21 スクリーン版、22 開口部、23 スキージ、25 (金属箔の裏側に入り込んだ)部分、30 保護パターン、34 部材、35 手、36 指、41 外枠、42 製品、43 開口部、91,93 矢印、92 引張力、94 積層方向、101,101a,102,103,104,104i,105,106,107,108,109 配線基板、110 センサ部、120 リストバンド、130 制御部。 1 laminated body, 1u main surface, 2a insulating layer (as the first insulating layer), 2b insulating layer (as the second insulating layer), 2c, 2d insulating layer, 3 cover film, 4 metal foil pattern, 4e outer edge, 6 (connected to metal foil) connecting conductor, 7 conductive layer, 9 via hole, 10 electronic component, 10a, 10b (electronic component) external terminal, 11 (connecting conductive layers) interlayer connecting conductor, 12 (Insulating material) paste, 14 metal foil, 15 recognition hole, 20 printing stage, 21 screen version, 22 opening, 23 squeegee, 25 (entry into the back side of metal foil), 30 protective pattern, 34 member, 35 Hand, 36 fingers, 41 outer frame, 42 products, 43 openings, 91, 93 arrows, 92 tensile force, 94 stacking direction, 101, 101a, 102 103,104,104i, 105,106,107,108,109 wiring board, 110 sensor unit, 120 wristband, 130 controller.

Claims (12)

  1.  伸縮性絶縁材料を主材料として2層以上で積層体をなす絶縁層と、
     伸縮性導電材料を主材料とし、前記積層体内の前記絶縁層同士の境界に配置された導電層と、
     前記積層体の最も外側に位置し、前記積層体の積層方向に平行な方向を向く主表面の少なくとも一部を覆うように配置された少なくとも1つの金属箔パターンとを備える、配線基板。
    An insulating layer comprising a laminate of two or more layers of a stretchable insulating material as a main material;
    A conductive layer having a stretchable conductive material as a main material and disposed at a boundary between the insulating layers in the laminate,
    A wiring board comprising: at least one metal foil pattern disposed so as to cover at least a part of a main surface located on the outermost side of the laminate and facing a direction parallel to a lamination direction of the laminate.
  2.  伸縮性絶縁材料を主材料とし、一方および他方の主表面を有する絶縁層と、
     伸縮性導電材料を主材料とし、前記絶縁層の前記一方の主表面に配置された導電層と、
     前記絶縁層の前記他方の主表面の少なくとも一部を覆うように配置された少なくとも1つの金属箔パターンとを備える、配線基板。
    An insulating layer having a stretchable insulating material as a main material and having one and the other main surfaces;
    A conductive layer having a stretchable conductive material as a main material and disposed on the one main surface of the insulating layer;
    A wiring board comprising: at least one metal foil pattern arranged to cover at least a part of the other main surface of the insulating layer.
  3.  前記導電層は、前記積層体内の前記絶縁層同士の境界によって定まる積層方向の2以上の位置に分散して配置されている、請求項1に記載の配線基板。 The wiring board according to claim 1, wherein the conductive layers are distributed and arranged at two or more positions in a stacking direction determined by a boundary between the insulating layers in the stack.
  4.  積層方向の異なる位置にある前記導電層同士を、前記絶縁層を貫通して電気的に接続する層間接続導体を備える、請求項3に記載の配線基板。 The wiring board according to claim 3, further comprising an interlayer connection conductor that electrically connects the conductive layers at different positions in the stacking direction through the insulating layer.
  5.  前記層間接続導体は、前記導電層と同じ材料からなる、請求項4に記載の配線基板。 The wiring board according to claim 4, wherein the interlayer connection conductor is made of the same material as the conductive layer.
  6.  前記伸縮性導電材料から導電成分を除いたものは、前記伸縮性絶縁材料と主たる組成が同じである、請求項1から5のいずれかに記載の配線基板。 The wiring board according to any one of claims 1 to 5, wherein a main component of the stretchable conductive material excluding a conductive component is the same as that of the stretchable insulating material.
  7.  前記少なくとも1つの金属箔パターンまたは板状の剛体が前記積層体の主表面に配置されることによって、非伸長部が形成されている、請求項1および3から6のうちいずれか1項に記載の配線基板。 The at least one metal foil pattern or the plate-shaped rigid body is disposed on the main surface of the laminated body to form a non-extendable portion, according to any one of claims 1 and 3 to 6. Wiring board.
  8.  前記導電層と前記金属箔パターンとが、前記絶縁層を貫通して電気的に接続する接続導体によって接続されており、前記接続導体は、前記金属箔パターンの外縁を避けた部位において前記金属箔パターンに対して接続している、請求項1から7のいずれかに記載の配線基板。 The conductive layer and the metal foil pattern are connected to each other by a connection conductor that penetrates and electrically connects the insulating layer, and the connection conductor avoids the outer edge of the metal foil pattern. The wiring board according to claim 1, wherein the wiring board is connected to the pattern.
  9.  金属箔の主表面に、伸縮性絶縁材料のペーストを塗布して乾燥させることによって、前記金属箔によって支持され、伸縮性を有する第1絶縁層を形成する工程と、
     前記第1絶縁層の表面に伸縮性導電材料のペーストを印刷することによって、伸縮性を有する導電層を形成する工程と、
     前記導電層を覆うように、前記伸縮性絶縁材料のペーストを塗布して乾燥させることによって、伸縮性を有する第2絶縁層を形成する工程と、
     前記金属箔をパターニングすることによって金属箔パターンを形成する工程とを含む、配線基板の製造方法。
    Forming a first insulating layer supported by the metal foil and having elasticity by applying and drying a paste of the elastic insulating material on the main surface of the metal foil; and
    Forming a stretchable conductive layer by printing a paste of a stretchable conductive material on the surface of the first insulating layer;
    Forming a stretchable second insulating layer by applying and drying the stretchable insulating material paste so as to cover the conductive layer;
    Forming a metal foil pattern by patterning the metal foil.
  10.  前記金属箔パターンを形成する工程の前に、前記金属箔とは反対側の主表面にキャリア膜を貼り付ける工程を含み、前記金属箔パターンを形成する工程の後には、前記配線基板は前記キャリア膜によって支持される、請求項9に記載の配線基板の製造方法。 Before the step of forming the metal foil pattern, the method includes a step of attaching a carrier film to the main surface opposite to the metal foil, and after the step of forming the metal foil pattern, the wiring board is the carrier. The method for manufacturing a wiring board according to claim 9, which is supported by a film.
  11.  前記金属箔は、第1面と、前記第1面よりも表面粗さが大きい第2面とを有し、前記第1絶縁層が形成される側の前記金属箔の主表面は、前記第2面である、請求項9または10に記載の配線基板の製造方法。 The metal foil has a first surface and a second surface having a surface roughness larger than that of the first surface, and a main surface of the metal foil on the side where the first insulating layer is formed is the first surface. The method for manufacturing a wiring board according to claim 9 or 10, wherein the wiring board has two surfaces.
  12.  前記伸縮性導電材料から導電成分を除いたものは、前記伸縮性絶縁材料と組成が同じである、請求項9から11のいずれかに記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 9 to 11, wherein a composition obtained by removing a conductive component from the stretchable conductive material has the same composition as the stretchable insulating material.
PCT/JP2018/016589 2017-04-28 2018-04-24 Wiring substrate and method for manufacturing same WO2018199084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-090379 2017-04-28
JP2017090379 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199084A1 true WO2018199084A1 (en) 2018-11-01

Family

ID=63918395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016589 WO2018199084A1 (en) 2017-04-28 2018-04-24 Wiring substrate and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018199084A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213681A1 (en) * 2019-04-18 2020-10-22 パナソニックIpマネジメント株式会社 Stretchable laminate, material for stretchable device, and stretchable device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
JP2016143763A (en) * 2015-02-02 2016-08-08 株式会社フジクラ Elastic circuit board
JP2016219782A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Elastic flexible substrate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187380A (en) * 2012-03-08 2013-09-19 Nippon Mektron Ltd Elastic flexible circuit board and manufacturing method of the same
WO2015186589A1 (en) * 2014-06-03 2015-12-10 三井金属鉱業株式会社 Metal foil with releasing resin layer, and printed wiring board
JP2016143763A (en) * 2015-02-02 2016-08-08 株式会社フジクラ Elastic circuit board
JP2016219782A (en) * 2015-05-25 2016-12-22 パナソニックIpマネジメント株式会社 Elastic flexible substrate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213681A1 (en) * 2019-04-18 2020-10-22 パナソニックIpマネジメント株式会社 Stretchable laminate, material for stretchable device, and stretchable device
US11864310B2 (en) 2019-04-18 2024-01-02 Panasonic Intellectual Property Management Co., Ltd. Stretchable laminate, material for stretchable device, and stretchable device

Similar Documents

Publication Publication Date Title
TWI627641B (en) Flexible wiring board
US9173289B2 (en) Multilayer substrate
US8883287B2 (en) Structured material substrates for flexible, stretchable electronics
JP6191991B2 (en) Stretchable flexible substrate and manufacturing method thereof
US20080179079A1 (en) Printed-Wiring Board, Bending Processing Method for Printed-Wiring Board, and Electronic Equipment
US20160211473A1 (en) Electrically interconnecting foil
JP6065119B2 (en) Multilayer board
JP2006324406A (en) Flexible/rigid multilayer printed circuit board
WO2016024415A1 (en) Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
US20110036619A1 (en) Flex-rigid wiring board and method for manufacturing the same
TWI472277B (en) Rigid-flexible circuit substrate, rigid-flexible circuit board and method for manufacturing same
WO2018199084A1 (en) Wiring substrate and method for manufacturing same
WO2017029952A1 (en) Elastic conductor
KR101151473B1 (en) Flexible Printed Circuits Board and Manufacturing method of the same
JP5075568B2 (en) Shielded circuit wiring board and method for manufacturing the same
TWI472276B (en) Rigid-flexible circuit substrate, rigid-flexible circuit board and method for manufacturing same
CN112423472B (en) Rigid-flexible circuit board and manufacturing method thereof
JP6428038B2 (en) Circuit board
US9549463B1 (en) Rigid to flexible PC transition
JP2000196205A (en) Flexible printed board
JP5398513B2 (en) Printed wiring board
JP6380533B2 (en) Resin multilayer board
JP7036213B2 (en) Flexible substrates and their manufacturing methods, as well as electronic devices
JP2006165341A (en) Electronic circuit substrate, its manufacturing method, and display device using the same
JP7424868B2 (en) Method for producing electrical connection parts and wiring structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP