WO2018199057A1 - Wireless power transmitter, wireless power receiver for medical use, and wireless power supply system thereof - Google Patents

Wireless power transmitter, wireless power receiver for medical use, and wireless power supply system thereof Download PDF

Info

Publication number
WO2018199057A1
WO2018199057A1 PCT/JP2018/016531 JP2018016531W WO2018199057A1 WO 2018199057 A1 WO2018199057 A1 WO 2018199057A1 JP 2018016531 W JP2018016531 W JP 2018016531W WO 2018199057 A1 WO2018199057 A1 WO 2018199057A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
wireless power
wireless
receiver
Prior art date
Application number
PCT/JP2018/016531
Other languages
French (fr)
Japanese (ja)
Inventor
高木 裕
芳雄 鈴木
鈴木 太郎
賢司 永井
雅 橋本
Original Assignee
株式会社ユニバーサルビュー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニバーサルビュー filed Critical 株式会社ユニバーサルビュー
Publication of WO2018199057A1 publication Critical patent/WO2018199057A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a wireless power transmitter, a medical wireless power receiver, and a wireless power feeding system thereof, and in particular, the wireless power transmitter finds a power feeding pattern on the power receiving side in response to a request from the wireless power receiver, and the power feeding.
  • the present invention is suitable for application to an interactive wireless power general-purpose power feeding system that feeds power to a load circuit on the power receiving side based on a pattern.
  • Patent Documents 1 and 2 In recent years, in the technical field of electric vehicles, there is a battery charging system that transmits power in a non-contact manner by using an electromagnetic induction method from a charging device on a power transmission side installed on the ground to a battery of a vehicle on a power receiving side that is aligned. It has been developed (Patent Documents 1 and 2).
  • non-contact power transmission is performed from a desktop-mounted charger to a secondary battery of a portable terminal such as an electric toothbrush, electric shaver or smartphone using an electromagnetic induction method.
  • Battery charging systems are used (Patent Documents 3 to 5).
  • the wireless power feeding system has the following problems. i.
  • the abnormality detecting unit is provided on the power receiving side, and when abnormality occurs on the power receiving side, the abnormality detecting information is transmitted to the wireless power transmitting device side by the wireless communication unit and the antenna. Feedback.
  • the power transmission condition is changed based on the abnormality detection information, and the changed power is transmitted to the power receiving side. For this reason, even if the transmission power can be changed in response to an abnormality on the power receiving side, there is a problem that the power transmission condition cannot be changed unless an abnormality actually occurs on the power receiving side.
  • the wireless power transmission device disclosed in Patent Document 2 two power supply units are provided, the output voltage value of the first power supply unit is set higher than the output voltage value of the second power supply unit, and the first power supply The output current value of the part is set higher than the output current value of the second power supply part. For this reason, even if the said power supply part can be selected corresponding to the impedance of a power transmission coil, there exists a problem that a power supply part will be switched irrespective of the electric power feeding conditions on a receiving side.
  • the current detection unit is provided on the power receiving circuit side, the output current on the power receiving side is measured, and the current measurement information is wirelessly communicated to the power transmission circuit side. Feedback is provided via the unit and the antenna.
  • a switching pulse signal to the power amplifier is selected based on the current measurement information. For this reason, even if the power based on the switching operation after the change can be transmitted to the power receiving side, there is a problem that a large amount of power may be transmitted to the power receiving side from the beginning of power feeding.
  • the power conversion circuit is provided on the power receiving side, and the input impedance of the power conversion circuit is set higher than the output impedance. For this reason, even if an overcurrent can be prevented on the wireless power receiving apparatus side, the power transmission information on the power receiving side cannot be detected on the power transmission side, and thus there is a problem that the power transmission conditions cannot be changed in accordance with the power supply information.
  • a biometric sensor and a storage unit are provided on the power transmission side.
  • the biometric sensor detects the posture of the user and associates the posture of the user with the power transmission pattern. Is read out. For this reason, even if it is possible to suppress useless transmission power from the transmission side to the reception side, the power reception side is equipped with a biological sensor and does not employ a configuration for supplying wireless power from the power transmission side to the power reception side. There is a problem that the power transmission conditions corresponding to the information cannot be changed.
  • a biological sensor and a battery (DC power supply) are provided on the power receiving side that is a structure for a dental prosthesis, and the biological information is detected by the biological sensor.
  • wireless power is supplied from the power transmission side serving as a cleaning device for cleaning the structure to the power receiving side. For this reason, even if biometric information can be transmitted from the power receiving side to the power transmission side during battery charging, the power transmission side cannot detect power supply information on the power receiving side at the time of initial power supply of the DC power supply. There is a problem that it cannot be changed.
  • the DC power source when a large amount of power is supplied from the beginning to a storage battery with a small charge capacity, such as a contact lens that is directly worn on the eyeball, a pinhole contact lens, or a load circuit, the DC power source is There is a problem of inducing circuit stress. In addition, if the storage battery is forcibly charged, there is a problem that the DC power source may generate heat due to overcharging or seriously adversely affect the eyeball.
  • the present invention has been created in view of the above-described problems.
  • the DC power supply on the power receiving side can be overcharged or not. It is an object of the present invention to provide a wireless power transmitter, a medical wireless power receiver, and a wireless power feeding system for the wireless power transmitter capable of preventing intentional heat generation.
  • the wireless power transmitter according to claim 1 for solving the above-described problem is a wireless power transmitter that supplies power to a medical wireless power receiver that can be mounted on a biological sensor for biological wearing, Power supply information is converted from a power amplifier that converts the output of the DC power source into a high-frequency signal of a predetermined frequency and outputs the high-frequency signal to the power transmission coil, and the wireless power receiver that captures the high-frequency signal derived from the power transmission coil.
  • a wireless communication unit for receiving, a storage unit for storing a plurality of power supply patterns respectively corresponding to the power supply information obtained from the wireless communication unit, and the power based on one power supply pattern read from the storage unit
  • a control unit for controlling the output of the amplification unit, wherein the first power for starting up the wireless power receiver is P1, and the second power for supplying power to the wireless power receiver during steady power supply is When P2 is set, P1 ⁇ P2 is set at the initial stage of power supply, and the control unit outputs the first power lower than the second power to the wireless power receiver at the initial stage of power supply.
  • a step of controlling the amplifying unit; a step of detecting power supply information indicating a charging condition of the wireless power receiver as the wireless power receiver rises; and a reading code included in the power supply information at the time of steady power supply A step of reading one power supply pattern corresponding to the read code from among a plurality of power supply patterns, a step of determining an output of the power amplification unit based on the read power supply pattern, and an output of the determined power amplification unit Powering the second power based on the power to the wireless power receiver.
  • the wireless power transmitter according to claim 1, it is possible to start up the wireless power receiver with the first power lower than the second power at the time of initial power supply and at the time of steady power supply.
  • the wireless power transmitter according to the first aspect, wherein the storage unit is at least one of temperature-current power supply characteristics, current-voltage power supply characteristics, current-time power supply characteristics, and voltage-time power supply characteristics.
  • the storage unit is at least one of temperature-current power supply characteristics, current-voltage power supply characteristics, current-time power supply characteristics, and voltage-time power supply characteristics.
  • One power feeding pattern is stored.
  • the medical wireless power receiver according to claim 3 is a medical wireless power receiver that can be mounted on a biological sensor mounted on a living body, and receives a high-frequency signal induced from a power transmission coil of the wireless power transmitter.
  • a power conversion unit that takes in through a power receiving coil and converts it into direct current
  • a control unit that feeds an output of a DC power source supplied with direct current from the power conversion unit to a load circuit, and power supply information indicating a charging condition of the load circuit Is transmitted to the wireless power transmitter side via an antenna, and at least the first power for starting up the control unit is P1, and the load circuit during steady power supply is connected to the load circuit.
  • P1 ⁇ P2 is set at the initial stage of power supply, and the control unit receives the first power lower than the second power at the initial time of power supply.
  • Step for controlling the power converter And detecting the power supply information of the load circuit along with the rise of the power converter, and during steady power supply, the read code included in the power supply information is used as an address to correspond to the read code from a plurality of power supply patterns. Executing the step of reading the one power feeding pattern and the step of feeding the second power based on the output of the wireless power transmitter determined based on the power feeding pattern corresponding to the readout code to the load circuit. To do.
  • the wireless power receiver for medical use according to claim 3, it becomes possible to reduce power supply shock, circuit stress, etc. as much as possible at the initial stage of power supply, and overcharge of the power reception side, DC power source, and unintentional heat generation. Can be prevented.
  • the medical wireless power receiver according to claim 4 is the medical wireless power receiver according to claim 3, wherein when the power conversion unit receives first power for starting up the control unit, the wireless communication unit is connected to the control unit.
  • the power supply information is output to the wireless power transmitter with the rise of the second power, and the control unit outputs second power based on the output of the wireless power transmitter determined based on the power supply pattern corresponding to the power supply information.
  • the power conversion unit is controlled to receive.
  • the medical wireless power receiver according to claim 5 is the medical wireless power receiver according to claim 3, wherein a detection unit is provided in a load circuit that receives power supply from the output of the DC power source, and the power supply information is obtained from the detection unit. Information indicating a predetermined detection amount is included.
  • a medical wireless power receiver is the medical wireless power receiver according to the fifth aspect, wherein the detection unit includes a biological sensor that detects biological information of a living organism.
  • the medical wireless power supply system is a medical wireless power supply system that supplies power to a medical wireless power receiver that can be mounted on a biological sensor for wearing on a living body.
  • the output of the DC power source is converted into a high-frequency signal of a predetermined frequency, the wireless power transmitter that outputs the high-frequency signal to the power transmission coil, and the high-frequency signal is received via the power receiving coil, and the high-frequency signal is converted into direct current
  • a wireless power receiver for medical use that feeds the output of a DC power source to a load circuit, and the first power for starting up the wireless power receiver is P1, and the wireless power receiver at the time of steady power supply
  • P2 is the second power for power feeding
  • P1 ⁇ P2 is set at the initial stage of power feeding.
  • the wireless power transmitter transmits the second power to the wireless power receiver at the initial stage of power feeding. Lower than electricity
  • the first power is output, and when the wireless power receiver rises, the wireless power transmitter detects power supply information indicating a charging condition of the load circuit, and at the time of steady power supply, the wireless power transmitter includes the power supply information.
  • One power supply pattern corresponding to the read code is read out from a plurality of power supply patterns using the read code included as an address, the output on the transmission side is determined based on the power supply pattern corresponding to the read code, and the wireless power The transmitter supplies the second power based on the determined output on the transmitting side to the wireless power receiver.
  • the wireless power supply system for medical use it is possible to reduce the power supply shock, circuit stress, etc. at the initial stage of power supply in the wireless power receiver as much as possible, and the DC power supply in the steady state of power supply in the receiver. Overcharge and unintentional heat generation can be prevented. Thereby, an interactive wireless communication general-purpose charging system can be constructed.
  • the medical wireless power supply system according to claim 8 is the medical wireless power supply system according to claim 7, wherein the wireless power transmitter of any one of claims 1 and 2 is used as the wireless power transmitter. .
  • the medical wireless power supply system according to claim 9 is the medical wireless power supply system according to claim 7, wherein the wireless power receiver is the wireless power receiver according to any one of claims 3, 4, 5, and 6. A transceiver is used.
  • the medical wireless power supply system according to claim 10 is the medical wireless power supply system according to claim 7, wherein the wireless power transmitter is mounted on at least one of an external device that operates the load circuit and a smartphone that can be connected to the Internet. Is.
  • a medical wireless power supply system is the medical wireless power supply system according to the seventh aspect, wherein the wireless power receiver is mounted on a sensor module in which the load circuit and a DC power source are integrated.
  • the medical power source at the initial stage of power feeding, can be mounted on a biological sensor for wearing on a living body that is started up with a first power lower than the second power at the time of steady power feeding.
  • the power transmission information of the DC power source of the wireless power receiver for example, the charging capacity and the charging temperature can be detected (recognized) on the power transmission side from the power feeding pattern corresponding to the power feeding information before charging.
  • the medical wireless power receiver that can be mounted on the living body sensor according to the present invention, it is possible to reduce power feeding shock, circuit stress, etc. at the initial stage of power feeding as much as possible, and to directly wear on the eyeball. It becomes possible to prevent overcharging of the DC power source and unintentional heat generation for a storage battery with a small charge capacity constituting the power receiving side, a load circuit or the like such as a lens or a pinhole contact lens. Moreover, the number of control steps of the wireless power receiver can be reduced compared to the number of control steps of the wireless power transmitter.
  • the wireless power transmitter transmits the power according to the charge capacity on the power receiving side. It becomes possible to adjust (select) the output of the high-frequency signal or to stop the output of the high-frequency signal based on information indicating the end of charging.
  • an interactive wireless communication general-purpose charging system or the like can be constructed.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless power supply system 1 as an embodiment according to the present invention. It is a block diagram which shows the structural example of the wireless power transmitter 20 and the wireless power receiver 30 as embodiment. 3 is a circuit diagram showing a configuration example of a power amplification unit 21 and a power conversion unit 32.
  • FIG. 6 is a graph illustrating an example of a power feeding pattern characteristic in a storage unit 26. It is a table
  • FIG. 6 is a plan view of a patchwork type biosensor 301 showing a mounting example (part 1) of the wireless power receiver 30; FIG.
  • FIG. 6 is a perspective view of a ring-type biosensor 302 showing a mounting example (part 2) of the wireless power receiver 30.
  • 6 is a plan view of a contact lens 303 showing a mounting example (No. 3) of the wireless power receiver 30.
  • FIG. FIG. 6 is a plan view of a pinhole contact lens 304 showing a mounting example (part 4) of the wireless power receiver 30;
  • 3 is a flowchart illustrating an example of control in the wireless power supply system 1.
  • a medical wireless power supply system 1 shown in FIG. 1 is suitable for application to an interactive wireless power general-purpose power supply system or the like, and supplies wireless power from a power transmission side to a power reception side using an electromagnetic induction method.
  • the interactive wireless power general-purpose power supply system means that a power transmission-side wireless power transmitter finds a power-receiving-side power supply pattern in response to a request from a power-receiving medical wireless power receiver, and based on the power supply pattern.
  • the power transmission side has a DC power supply 10, a wireless power transmitter 20, a power transmission coil 22 and an antenna 23, and the power reception side has a wireless power receiver 30, a power reception coil 31, an antenna 34, and a DC power supply. 40 and a load circuit 50.
  • the DC power source 10 is connected to the wireless power transmitter 20, and the power transmission coil 22 and the antenna 23 are connected to the wireless power transmitter 20.
  • the wireless power transmitter 20 converts the output of the DC power source 10 into a high-frequency signal having a predetermined frequency and outputs the high-frequency signal to the power transmission coil 22.
  • any one of the wireless power transmitters according to the present invention is used as the wireless power transmitter 20, and the wireless power transmitter 20 performs medical wireless communication based on the first power P1 at the initial stage of power feeding.
  • the power supply information of the power receiver 30 is detected, and the second power P2 based on the power supply information is supplied to the wireless power receiver 30 during steady power supply.
  • the power supply information refers to information indicating a power supply (charging condition) pattern to an object on which the wireless power receiver 30 is mounted.
  • the power supply information includes code data indicating individual identification (charge type, etc.), and this code data forms a read code, such as 00001, 00002, 00003, 00004... For reading the power supply pattern. It functions as an address.
  • the power supply information includes information indicating the charging capacity of the DC power supply 40 of the wireless power receiver 30, information indicating the end of charging of the DC power supply 40, information indicating the type of biosensor, and the like.
  • the wireless power transmitter 20 is mounted on at least one of an external device that operates the load circuit 50 and a smartphone that can be connected to the Internet.
  • an external device that operates the load circuit 50
  • a smartphone that can be connected to the Internet.
  • external devices headphones, earrings, brooches, watches, glasses, headbands, etc. that are portable and convenient to carry are mounted with DC power supply 10, wireless power transmitter 20, power transmission coil 22 and antenna 23. it can.
  • the power receiving coil 31 and the antenna 34 are connected to the wireless power receiver 30 and the DC power source 40 is connected to the wireless power receiver 30.
  • a load circuit 50 is connected to the DC power source 40.
  • any wireless power transceiver according to the present invention is used.
  • the wireless power receiver 30 receives the high-frequency signal via the power receiving coil 31 and supplies the load circuit 50 with the output of the DC power source 40 obtained by converting the high-frequency signal into direct current.
  • the wireless power transmitter 20 illustrated in FIG. 2 includes a power amplification unit 21, a wireless communication unit 24, and a control unit 25.
  • a DC power source 10, a power amplifying unit 21, and a wireless communication unit 24 are connected to the control unit 25, and a power transmission coil 22 is connected to the power amplifying unit 21.
  • An antenna 23 is connected to the wireless communication unit 24.
  • a power amplifying unit 21 is connected to the DC power source 10, and the power amplifying unit 21 (see FIG. 3) converts (modulates) the output of the DC power source 10 into a high frequency signal having a predetermined frequency f, and the high frequency signal is transmitted to the power transmission coil 22. It works to output.
  • the wireless communication unit 24 receives power supply information from the wireless power receiver 30. The power supply information is for reading a power supply pattern.
  • the wireless communication unit 24 can use a short-range wireless communication standard such as Bluetooth (registered trademark).
  • the control unit 25 controls the output of the power amplifying unit 21 based on the power supply information obtained from the wireless communication unit 24. For example, the control unit 25 detects the power supply information of the wireless power receiver 30 based on the first power P1 at the initial stage of power supply, and the wireless power receiver 30 uses the second power P2 based on the power supply information at the time of steady power supply. Supply power to The relationship between the power P1 and the power P2 is P1 ⁇ P2.
  • the power P1 is at least the minimum power that can be driven by the control unit 35 and the wireless communication unit 33, and the voltage is V0 and the current is I0 at the initial stage of power feeding.
  • the electric power P2 is the electric power that can be charged to the storage battery 41.
  • the voltage at the time of steady power supply is V1, V2, V3, V4... Larger than the voltage V0, and the current at that time is Ia, Ib , Id, Id,... Larger than the current I0 (see FIGS. 4 and 5).
  • the electrolytic capacitor C1 and the storage battery 11 shown in FIG. A storage battery 11 is connected in parallel to the electrolytic capacitor C1, and the storage battery 11 is charged and used.
  • the present invention is not limited to this, and a dry cell may be used, or power may be supplied via an AC-DC converter that operates on a commercial power source AC100.
  • the storage battery 11 is a secondary battery such as a lithium ion battery.
  • the + symbol of the electrolytic capacitor C1 indicates the high potential side, and GND is ground (earth).
  • a power amplifying unit 21 is connected to the storage battery 11, and the output (DC voltage VDD) of the DC power source 10 is applied to the power amplifying unit 21.
  • the power amplifying unit 21 includes a variable oscillator 201, gate drivers 202 and 203, capacitances C0, C2, C3, C11 and C21, variable capacitance C4, resistance elements R11, R12, R21 and R22, and a variable coil L.
  • GaN semiconductor elements are used for the field effect transistors FET1 and FET2.
  • Gate drivers 202 and 203 are connected to the variable oscillator 201 via a capacitance C0.
  • the gate drivers 202 and 203 are connected between the DC power supply 10 and the ground line GND.
  • the oscillation signal generated by the variable oscillator 201 is input to the gate drivers 202 and 203.
  • the gate driver 202 is connected to a capacitance C11 and a resistance element R11 as circuit constant elements. One ends of the capacitance C11 and the resistance element R11 are grounded. Similarly, a capacitance C21 and a resistance element R21 are connected to the gate driver 203. One ends of the capacitance C21 and the resistance element R21 are grounded.
  • the P-type field effect transistor FET1 is connected to the output of the gate driver 202 via a resistance element R12.
  • the field effect transistor FET1 is turned on when a low level switching pulse signal is input to the gate, and is turned off when a high level switching signal is input.
  • the P-type field effect transistor FET2 is also connected to the output of the gate driver 203 via the resistance element R22.
  • the field effect transistor FET2 is also turned on when a low level switching pulse signal is input to the gate, and is turned off when a high level switching signal is input.
  • the field effect transistors FET1 and FET2 constitute a class E push-pull power amplifier circuit.
  • the sources of the field effect transistors FET1 and FET2 are grounded, and their drains are connected to the primary side of the transformer T, respectively.
  • the midpoint of the primary side of the transformer T is connected to the DC power source 10 via the variable coil L, and the output (DC voltage VDD) of the DC power source 10 is applied to the midpoint via the variable coil L.
  • the DC voltage VDD is supplied to the drains of the field effect transistors FET1 and FET2.
  • the electrostatic capacity C2 is connected to the high potential side of the variable coil L.
  • One end of the capacitance C2 is connected to the ground GND.
  • a resistance element R1 is connected in series to the secondary side of the transformer T, and a capacitance C3 and a variable capacity C4 are connected in parallel to the other end of the resistance element R1, and the secondary side of the transformer T and the resistance element R1 are connected.
  • the capacitance C3 and the variable capacitance C4 constitute a parallel resonance circuit.
  • the control unit 25 includes a storage unit 26.
  • the storage unit 26 has temperature-current supply characteristics, current-time supply characteristics, current-voltage supply characteristics, and voltage-time supply characteristics. At least one of the power supply patterns is stored. For example, in the graph shown in FIG. 4, the storage unit 26 stores data indicating a voltage-time power supply characteristic example on the power receiving side.
  • the vertical axis represents voltage [V], the lower part is small, and the upper part is large.
  • the horizontal axis is time [T], the left is small, and the right is large.
  • the voltage V0 is a power supply initial voltage.
  • the first power P1 is V0 ⁇ I0.
  • V0 is about 2V.
  • I0 is a unit of several [mA].
  • the V0-T power supply characteristic is an initial power supply pattern.
  • the voltage V1 is the first steady power supply voltage.
  • the second power P21 is V1 ⁇ Ia.
  • V1 is about 4V.
  • the V1-T feed characteristic is the first steady feed pattern I.
  • the voltage V2 is a second steady power supply voltage. If the steady power supply current is Ib (see FIG. 5), the second power P22 is V2 ⁇ Ib. For example, V2 is about 5V.
  • the V2-T feeding characteristic is the second steady feeding pattern II.
  • the voltage V3 is a third steady power supply voltage. If the steady power supply current is Ic (see FIG. 5), the second power P23 is V3 ⁇ Ic. For example, V3 is about 6V.
  • the V3-T feeding characteristic is the third steady feeding pattern III.
  • the voltage V4 is a fourth steady power supply voltage. When the steady power supply current is Id (see FIG. 5), the second power P24 is V4 ⁇ Id. For example, V4 is about 7V.
  • the V4-T power supply characteristic is the fourth steady power supply pattern IV.
  • Tx is the switching time between initial energization and steady energization. The switching time Tx is a time after an arbitrary settling time (determination period) has elapsed since the time when the voltage V0 was reached from the zero voltage. The shorter the settling time, the better.
  • the feeding patterns I to IV are different depending on the object on which the wireless power receiver 30 is mounted. Note that description of the temperature-current feeding characteristics, current-time feeding characteristics, and current-voltage feeding characteristics is omitted.
  • the wireless power receiver 30 illustrated in FIG. 2 includes a power conversion unit 32, a wireless communication unit 33, and a control unit 35 in order to capture a high frequency signal induced from the power transmission coil 22.
  • the control unit 35 is connected to the power conversion unit 32, the wireless communication unit 33, and the DC power supply 40, and the power receiving coil 31 is connected to the power conversion unit 32.
  • a DC power source 40 is connected to the power converter 32 and a load circuit 50 is connected to the DC power source 40.
  • a power converter 32 is connected to the power receiving coil 31, and a high-frequency signal derived from the power transmitting coil 22 of the wireless power transmitter 20 is captured via the power receiving coil 31 and converted to direct current.
  • the control unit 35 controls the power conversion unit 32 and the DC power supply 40 so as to supply DC power supplied with direct current from the power conversion unit 32 to the load circuit 50.
  • the wireless communication unit 33 transmits the power supply information of the load circuit 50 to the wireless power transmitter 20 side through the antenna 34.
  • the control unit 35 outputs the power supply information of the DC power supply 40 based on the first power P1 at the initial stage of power supply, and supplies the second power P2 based on the power supply information to the load circuit 50 at the time of steady power supply.
  • the power conversion unit 32 shown in FIG. 3 includes, for example, a capacitance C5, diodes D1 to D4, and a resistance element R2.
  • the electrostatic capacitance C5 is connected in parallel to the power receiving coil 31, and constitutes a resonance circuit together with the power receiving coil 31.
  • the diodes D1 to D4 constitute a full-wave rectifier circuit, and convert the high-frequency signal acquired from the power receiving coil 31 into direct current.
  • Electrolytic capacitor C6 is connected to the outputs of diodes D1 to D4, and electrolytic capacitor C6 smoothes the pulsating flow to direct current.
  • the LED is connected in series between the connection point of the diodes D1 and D2 and the load circuit 50, and is used for energization display and circuit protection.
  • an electrolytic capacitor C6 and a storage battery 41 constitute a DC power source 40.
  • a storage battery 41 is connected in parallel to the electrolytic capacitor C6, and the storage battery 41 is charged.
  • the + symbol of the electrolytic capacitor C6 indicates the high potential side, and GND is ground (earth).
  • a load circuit 50 is connected to the storage battery 41, and a resistance element R2 for circuit protection is connected to the load circuit 50 in parallel.
  • a detection unit 51 is provided in the load circuit 50 that receives power supply from the DC power supply 40, and the power supply information includes information indicating a predetermined detection amount obtained from the detection unit 51.
  • the detection unit 51 detects the temperature ⁇ of the storage battery 41 during charging and generates a temperature detection signal.
  • the temperature detection signal is binarized and becomes power supply information.
  • the terminal voltage V of the storage battery 41 is binarized and becomes power supply information.
  • a wireless power receiver 30 shown in FIG. 6 constitutes a patchwork type biosensor 301 in the wireless power supply system 1.
  • the patchwork type biosensor 301 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a base 71.
  • the power receiving coil 31 and the antenna 34 are arranged on the outer peripheral edge of the base 71, and the power conversion unit 32, the wireless communication unit 33, the control unit 35, the DC power source 40, and the detection in the same base.
  • the part 51 is integrally arranged to constitute a sensor module.
  • the patchwork type biosensor 301 is used by being attached to the skin surface.
  • a flexible material such as cotton tape or medical tape is used. Stretchable material can be used.
  • the detection unit 51 of this example includes a biological sensor that detects biological information of a living thing.
  • a glucose sensor for self blood glucose level management that measures the blood glucose level can be used.
  • Glucose Oxidase (GOD) is used for the glucose sensor, and the measurement principle is that GOD is immobilized in a polymer gel such as polyacrylamide, and oxygen consumption in the vicinity of the electrode accompanying the enzyme reaction is measured by the electrode response ( By grasping it as a decrease in the current value, the glucose concentration is selectively measured.
  • a minute nanostructured oxide semiconductor is embedded in a biosensor, and a transparent device detects the minute glucose concentration in tears.
  • the enzyme oxidizes blood sugar when in contact with tear glucose. This changes the pH level in the mixture and causes a measurable change in the current of the IGZO transistor.
  • Tears contain a lot of detectable information. Tears contain not only glucose but also information on lactic acid (sepsis / liver disease), dopamine (glaucoma), urea (renal function), and protein (cancer).
  • the wireless power receiver 30 shown in FIG. 7 constitutes a ring-type biosensor 302 in the wireless power supply system 1.
  • the ring-type biosensor 302 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, a base 72, and a ring unit 73.
  • the ring-type biosensor 302 has the power receiving coil 31 and the antenna 34 disposed in the outer peripheral edge of the base 72, and the power conversion unit 32, the wireless communication unit 33, the control unit 35, the DC power source 40, and the detection unit 51 are integrally disposed. Then, the integrated sensor module is fixed to the ring portion 73.
  • the ring part 73 is used by fitting to the finger part.
  • the ring-type biosensor 302 is used by being attached to any of the index finger, middle finger, ring finger, little finger, and the like.
  • a photoelectric pulse wave sensor is used for the ring-type biological sensor 302.
  • the photoelectric pulse wave sensor uses the light absorption characteristics of hemoglobin in the blood, receives the reflected light of the infrared light irradiated to the blood vessel of the finger by the internal light emitting element, and captures pulsation etc. from the intensity change It is made like.
  • a wireless communication module that conforms to the low-power Bluetooth low Energy standard (registered trademark) is used.
  • the wireless power receiver 30 shown in FIG. 8 constitutes the contact lens type biosensor 303 in the wireless power feeding system 1.
  • the contact lens type biosensor 303 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a lens body 74.
  • the lens body 74 includes a soft contact lens and a hard contact lens.
  • the contact lens type biosensor 303 In the contact lens type biosensor 303, the power receiving coil 31, the power conversion unit 32, the wireless communication unit 33, the antenna 34, the control unit 35, the DC power source 40, and the detection unit 51 are integrated on the outer peripheral edge of the lens body 74. It is arranged and constitutes a sensor module.
  • the contact lens type biosensor 303 is worn on the cornea.
  • a wireless power receiver 30 shown in FIG. 9 constitutes a pinhole contact lens type biosensor 304 in the wireless power supply system 1.
  • the pinhole contact lens type biosensor 304 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a pinhole lens main body 75.
  • the pinhole lens main body 75 has a light shielding portion 76 and a pinhole 77.
  • the power receiving coil 31 and the antenna 34 are disposed on the outer peripheral edge of the pinhole lens body 75, and the power conversion unit 32, the radio communication unit 33, the control unit 35, The DC power supply 40 and the detection unit 51 are integrated to constitute a sensor module.
  • the pinhole contact lens type biosensor 304 is also worn on the cornea.
  • the contact lens type biosensor and the pinhole contact lens type biosensor described above constitute a smart contact lens.
  • the semiconductor elements integrated circuit itself: several mm square
  • the insulating light-shielding portion 76 is formed so as to electrically insulate the semiconductor elements in common, and at the same time, the black color of the light-shielding portion 76 (high light shielding rate) is realized.
  • the insulating structure between the elements of the semiconductor chip can be made common, and the mounting chip (for example, 1.6 mm ⁇ 1.6 mm microcomputer chip) can be miniaturized and thinned.
  • the sensor module includes a patchwork-type biosensor 301, a smart contact lens, a ring-type biosensor 302, and an in-vivo sensor.
  • a continuous glucose monitor (CGM) that can continuously monitor the glucose concentration by developing a glucose sensor has been developed. According to CGM, interstitial fluid in the skin is sucked in painlessly, absorbed in a patch containing GOD, and the glucose concentration is quantified with a hydrogen peroxide electrode.
  • the wireless power receiver 30 is mounted on a contact lens on the power receiving side, and the power supply information of this contact lens is the power supply pattern II shown in FIG. Assume a case. *
  • control unit 25 (hereinafter referred to as the power transmission side) of the wireless power transmitter 20 outputs the first power P1 for starting up the wireless power receiver 30 in step S11 of the flowchart shown in FIG.
  • the power amplifying unit 21 is controlled as described above.
  • the power conversion unit 32 receives from the wireless power transmitter 20 the first power P1 for starting up the control unit 35 in step S21.
  • the power P1 is, for example, a voltage V0 and a feeding current I0.
  • step S22 the wireless communication unit 33 transmits power supply information to the wireless power transmitter 20 via the antenna 34 when the control unit 35 is started up.
  • step S13 the control unit 25 detects the power supply information and determines it.
  • Control data D Ib, V2, and ⁇ 2 are control targets on the power receiving side.
  • the frequency f is a power transmission target value, and the voltage of the high frequency signal on the power transmission side can be controlled.
  • step S14 the control unit 25 determines the output of the power amplification unit 21 based on the power supply information.
  • the current / voltage of the high-frequency signal on the power transmission side is determined by the turns ratio of the transformer T.
  • Vn1 is achieved by adjusting the variable coil L.
  • the current of the high-frequency signal on the power transmission side achieves the target value of the current Ib on the power reception side by adjusting the variable capacitor C4.
  • step S15 the control unit 25 supplies the second power P2 (P1 ⁇ P2) based on the determined output of the power amplification unit 21 to the wireless power receiver 30.
  • step S23 the control unit 35 controls the power conversion unit 32 to receive the second power P2 based on the output of the wireless power transmitter 20 determined based on the power supply information.
  • step S26 power is supplied to the load circuit 50 (step S26) and the storage battery 41 can be charged.
  • step S24 the control unit 35 determines whether or not the storage battery 41 is fully charged. Whether or not the battery is fully charged is determined, for example, by measuring the terminal voltage (V2) of the storage battery 41 and reaching a specified value. When the battery is not fully charged, the process returns to step S22, and power supply information is returned to the power transmission side via the wireless communication unit 33 and the antenna 34.
  • V2 terminal voltage
  • charging completion information is transmitted to the power transmission side via the wireless communication part 33 and the antenna 34 at step S25.
  • the control unit 25 turns off the power supply.
  • the control unit 25 resets the second power P2 set after the determination to the initial first power P1, and prepares for the next initial power supply (reset operation).
  • the wireless power transmitter 20 finds a power supply pattern on the power receiving side in response to a request from the wireless power receiver 30, and the DC power supply 40 is based on the power supply pattern.
  • the storage battery 41 according to the method is charged.
  • the wireless power receiver 30 can be started up with the first power P1 lower than the second power P2 at the time of steady power supply at the initial stage of power supply. That is, the first power P1 for starting up the wireless power receiver 30 can be suppressed to be lower than the second power P2 based on the output of the determined power amplification unit 21 at the initial stage of power supply.
  • the power supply information of the DC power source 40 of the wireless power receiver 30, such as the charging capacity and the charging temperature, can be detected (recognized) on the power transmission side before charging.
  • the wireless power receiver 30 it is possible to reduce the power supply shock, circuit stress, etc. at the initial stage of power supply as much as possible, and overcharge of the DC power source 40 on the power receiving side and unintentional heat generation. Can be prevented.
  • the above-described insulating sealing structure can make the inter-element insulating structure of the semiconductor chip common, and the mounted chip can be miniaturized and thinned. As a result, the minimum necessary semiconductor chip can be efficiently mounted on a contact lens having a small mounting area. For example, the memory area for storing the address code can be kept to a minimum.
  • the output of the high-frequency signal transmitted from the wireless power transmitter can be adjusted (selected) according to the charge capacity on the power receiving side, or the output of the high-frequency signal can be stopped based on information indicating the end of charging. Become. Thereby, an interactive wireless communication general-purpose charging system or the like can be constructed.
  • the electromagnetic induction (electromagnetic coupling) method has been described with respect to the wireless power feeding system 1.
  • the present invention is not limited to this, and a magnetic resonance method as shown in Japanese Patent No. 6056477 may be used.
  • the LC resonance circuit 60 is arranged close to the power transmission side and the power reception side in a non-contact manner.
  • the LC resonance circuit 60 is designed to have a predetermined resonance frequency and a very high Q value.
  • the resonance frequencies of the LC resonance circuit 60 on the power transmission side and the power reception side are both set equal.
  • L ′ is a resonance coil (inductor)
  • C ′ is a variable capacitor (capacitor).
  • the LC resonance circuit 60 on the power transmission side is arranged at a predetermined interval so that its center axis coincides with the center axis of the LC resonance circuit 60 on the power reception side.
  • the distance between the LC resonance circuit 60 on the power transmission side and the power reception side may be about several meters. If the resonance Q of the LC resonance circuit 60 is sufficiently large, electric power can be transmitted by magnetic field resonance even if it is several meters away.
  • the reason why the central axes coincide is to cause good magnetic field resonance between the LC resonance circuit 60 on the power transmission side and the power reception side.
  • the present invention is not limited to this, and according to the magnetic field resonance method, the power transmission coil 22 and the power reception coil 31 are used. There is also a merit that it is stronger than the electromagnetic induction method.
  • the distance or position shift between the LC resonance circuits 60 has a higher degree of freedom than the electromagnetic induction method, and is characterized by position free.
  • the LC resonance circuit 60 does not have to be arranged with the central axes coincident with each other, and may be arranged in a positional relationship having an angle with each other.
  • the diameter of the LC resonance circuit 60 is different on the power transmission side and the power reception side. Also good.
  • the diameter of the LC resonance circuit 60 may differ by about 10 times between the power transmission side and the power reception side. This is because power transmission by magnetic field resonance is different from power transmission by electromagnetic induction using electromagnetic field coupling, and power can be transmitted even if the separation distance between the LC resonance circuit 60 on the power transmission side and the power reception side is somewhat separated. Because.
  • the GOD method (one of the enzyme electrode methods) has been described with respect to the measurement of the blood glucose level.
  • the present invention is not limited to this, and a glucose dehydrogenase (GDH) method, which is another example of the enzyme electrode method, is used. May be used.
  • GDH glucose dehydrogenase
  • GDH in the glucose sensor reacts with glucose in the blood to generate gluconolactone and electrons.
  • the ferricyanide ion contained in the glucose sensor changes to reduced ferricyanide ion, and again oxidizes to ferricyanide ion, generating an electromotive force at the electrode, which is the concentration of glucose in the blood.
  • an electromotive force at the electrode, which is the concentration of glucose in the blood.
  • the present invention is not limited to this.
  • a simultaneous power supply method of supplying power to the plurality of wireless power receivers 30 at the same time may be employed.
  • SYMBOLS 1 ... Wireless power feeding system, 10, 40 ... DC power supply, 11.41 ... Storage battery, 20 ... Wireless power transmitter, 21 ... Power amplification part, 22 ... Power transmission coil, 23, 34 ... antenna, 24, 33 ... wireless communication unit, 25, 35 ... control unit, 26 ... storage unit, 30 ... wireless power receiver, 31 ... receiving coil, 32 ... Power conversion unit, 50 ... Load circuit, 51 ... Detection unit, 60 ... LC resonance circuit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The present invention makes it possible to prevent overcharging of a DC power source and undesired heat generation on the power-receiving side at the time of steady-state power supply, without causing power supply shock, circuit stress or the like to affect the power-receiving side at the initial time of power supply. A wireless power supply system 1 comprises: a wireless power transmitter 20 that converts the output of a DC power source 10 on the power-transmission side to a high frequency signal of a prescribed frequency, and outputs the high frequency signal to a power transmission coil 22; and a wireless power receiver 30 that receives the high frequency signal via a power-receiving coil 31, and supplies to a load circuit 50 the output of a DC power source 40 which has converted the high frequency signal to a direct current. The wireless power transmitter 20 detects power supply information of the wireless power receiver 30 on the basis of a first power P1 at the time of initial power supply, and at the time of steady-state power supply, supplies a second power P2 based on the power supply information to the wireless power receiver 30. The first power P1 is lower than the second power P2.

Description

無線電力送信器、医療用の無線電力受信器及びその無線電力給電システムWireless power transmitter, medical wireless power receiver and wireless power feeding system thereof
 本発明は、無線電力送信器、医療用の無線電力受信器及びその無線電力給電システムに関し、特に、無線電力受信器の要求に応じて無線電力送信器が受電側の給電パターンを見出し、当該給電パターンに基づいて受電側の負荷回路へ給電する対話型無線電力汎用給電システム等に適用して好適なものである。 The present invention relates to a wireless power transmitter, a medical wireless power receiver, and a wireless power feeding system thereof, and in particular, the wireless power transmitter finds a power feeding pattern on the power receiving side in response to a request from the wireless power receiver, and the power feeding. The present invention is suitable for application to an interactive wireless power general-purpose power feeding system that feeds power to a load circuit on the power receiving side based on a pattern.
 近年、電気自動車の技術分野において、地上に設置された送電側の充電機器から、位置合わせされた受電側の自動車のバッテリーへ電磁気誘導方式を利用して非接触に電力を伝送するバッテリー充電システムが開発されている(特許文献1,2)。 In recent years, in the technical field of electric vehicles, there is a battery charging system that transmits power in a non-contact manner by using an electromagnetic induction method from a charging device on a power transmission side installed on the ground to a battery of a vehicle on a power receiving side that is aligned. It has been developed (Patent Documents 1 and 2).
 また、携帯電子機器の技術分野において、卓上の据付型充電器から、電動歯ブラシ、電動髭剃りやスマートフォン等の携帯端末器の二次電池へ電磁気誘導方式を利用して非接触に電力を伝送するバッテリー充電システムが利用されている(特許文献3~5)。 Also, in the technical field of portable electronic devices, non-contact power transmission is performed from a desktop-mounted charger to a secondary battery of a portable terminal such as an electric toothbrush, electric shaver or smartphone using an electromagnetic induction method. Battery charging systems are used (Patent Documents 3 to 5).
 更に、医療機器の技術分野においては、所定の位置に据付られた医療用端末機器から、患者に装着された生体センサへ電磁気誘導方式を利用して非接触に電力を伝送すると共に、非接触で生体データを外部端末機器に取り込むワイヤレス生体センサシステム等が開発されている(特許文献6,7)。これらの充電システムや、生体センサシステムには、無線電力給電システムが備えられる。 Furthermore, in the technical field of medical equipment, electric power is transmitted from a medical terminal device installed at a predetermined position to a biosensor mounted on a patient in a non-contact manner using an electromagnetic induction method. Wireless biosensor systems that capture biometric data into external terminal devices have been developed (Patent Documents 6 and 7). These charging systems and biosensor systems are equipped with a wireless power supply system.
特開2016-092986号公報JP 2016-092986 A 特開2016-019366号公報JP 2016-019366 A 特開2016-039749号公報JP 2016-039749 A 特開2016-092921号公報Japanese Unexamined Patent Publication No. 2016-092921 特開2014-135836号公報JP 2014-135836 A 特許第5853784号Japanese Patent No. 5835784 特許第6056477号Patent No. 6056477
 ところで、従来例に係る無線電力給電システムによれば、次のような問題がある。
i.特許文献1に開示された無線受電機器によれば、受電側に異常検出部が設けられ、受電側で異常が発生した場合に、異常検出情報が無線送電機器の側に無線通信部及びアンテナを介して、フィードバックされる。送電側では異常検出情報に基づいて送電条件を変更し、変更後の電力を受電側に送信するようになされる。このため、受電側の異常に対応して送信電力を変更できても、受電側で実際に異常が発生しないと送電条件を変更できないという問題がある。
By the way, the wireless power feeding system according to the conventional example has the following problems.
i. According to the wireless power receiving device disclosed in Patent Document 1, the abnormality detecting unit is provided on the power receiving side, and when abnormality occurs on the power receiving side, the abnormality detecting information is transmitted to the wireless power transmitting device side by the wireless communication unit and the antenna. Feedback. On the power transmission side, the power transmission condition is changed based on the abnormality detection information, and the changed power is transmitted to the power receiving side. For this reason, even if the transmission power can be changed in response to an abnormality on the power receiving side, there is a problem that the power transmission condition cannot be changed unless an abnormality actually occurs on the power receiving side.
 ii.特許文献2に開示された無線送電機器によれば、2つの電源部が備えられ、第1電源部の出力電圧値が第2電源部の出力電圧値よりも高く設定され、かつ、第1電源部の出力電流値が第2電源部の出力電流値よりも高く設定される。このため、送電コイルのインピーダンスに対応して当該電源部を選択できても、受電側の給電条件に係わらず電源部が切り替えられてしまうという問題がある。 Ii. According to the wireless power transmission device disclosed in Patent Document 2, two power supply units are provided, the output voltage value of the first power supply unit is set higher than the output voltage value of the second power supply unit, and the first power supply The output current value of the part is set higher than the output current value of the second power supply part. For this reason, even if the said power supply part can be selected corresponding to the impedance of a power transmission coil, there exists a problem that a power supply part will be switched irrespective of the electric power feeding conditions on a receiving side.
 iii.特許文献3,4に開示された非接触電力伝送装置によれば、受電回路の側に電流検出部が設けられ、受電側の出力電流が測定され、電流測定情報が送電回路の側に無線通信部及びアンテナを介して、フィードバックされる。送電側では電流測定情報に基づいて電力増幅部へのスイッチングパルス信号を選択するようになされる。このため、変更後のスイッチング動作に基づく電力を受電側に送信できても、給電当初から受電側に大きな電力が送電されるおそれがあるという問題がある。 Iii. According to the non-contact power transmission devices disclosed in Patent Documents 3 and 4, the current detection unit is provided on the power receiving circuit side, the output current on the power receiving side is measured, and the current measurement information is wirelessly communicated to the power transmission circuit side. Feedback is provided via the unit and the antenna. On the power transmission side, a switching pulse signal to the power amplifier is selected based on the current measurement information. For this reason, even if the power based on the switching operation after the change can be transmitted to the power receiving side, there is a problem that a large amount of power may be transmitted to the power receiving side from the beginning of power feeding.
 iv.特許文献5に開示された無線受電装置によれば、受電側に電力変換回路が設けられ、この電力変換回路の入力インピーダンスがその出力インピーダンスよりも高く設定されている。このため、無線受電装置の側で過電流を防止できても、送電側で受電側の給電情報を検出できないので、給電情報に対応して送電条件を変更できないという問題がある。 Iv. According to the wireless power receiving device disclosed in Patent Document 5, the power conversion circuit is provided on the power receiving side, and the input impedance of the power conversion circuit is set higher than the output impedance. For this reason, even if an overcurrent can be prevented on the wireless power receiving apparatus side, the power transmission information on the power receiving side cannot be detected on the power transmission side, and thus there is a problem that the power transmission conditions cannot be changed in accordance with the power supply information.
 v.特許文献6に開示されたワイヤレス生体センサによれば、送電側に生体センサ及び記憶部が設けられ、この生体センサで利用者の姿勢を検知すると共に、利用者の姿勢とを対応付けた送電パターンを読み出すようになされる。このため、送信側から受信側への無駄な送信電力を抑制できても、受電側に生体センサを備え、送電側から受電側へ無線電力を供給する構成を採っていないので、受電側の給電情報に対応した送電条件を変更できないという問題がある。 V. According to the wireless biosensor disclosed in Patent Document 6, a biometric sensor and a storage unit are provided on the power transmission side. The biometric sensor detects the posture of the user and associates the posture of the user with the power transmission pattern. Is read out. For this reason, even if it is possible to suppress useless transmission power from the transmission side to the reception side, the power reception side is equipped with a biological sensor and does not employ a configuration for supplying wireless power from the power transmission side to the power reception side. There is a problem that the power transmission conditions corresponding to the information cannot be changed.
 vi.特許文献7に開示された磁界共鳴方式の生体情報取得システムによれば、歯科補綴用の構造体となる受電側に生体センサ及びバッテリー(DC電源)が設けられ、この生体センサで生体情報を検知すると共に、当該構造体を洗浄するための洗浄装置となる送電側から、受電側へ無線電力を給電するようになされる。このため、バッテリー充電中に受電側から送電側への生体情報を送信できても、DC電源の初期給電時に、送電側で受電側の給電情報を検出できないので、給電情報に対応した送電条件を変更できないという問題がある。 Vi. According to the magnetic field resonance system biological information acquisition system disclosed in Patent Document 7, a biological sensor and a battery (DC power supply) are provided on the power receiving side that is a structure for a dental prosthesis, and the biological information is detected by the biological sensor. In addition, wireless power is supplied from the power transmission side serving as a cleaning device for cleaning the structure to the power receiving side. For this reason, even if biometric information can be transmitted from the power receiving side to the power transmission side during battery charging, the power transmission side cannot detect power supply information on the power receiving side at the time of initial power supply of the DC power supply. There is a problem that it cannot be changed.
 特に、眼球に直接装用するコンタクトレンズや、ピンホールコンタクトレンズ等のように受電側を構成する充電容量の小さい蓄電池や、負荷回路等に、最初から大電力を給電すると、DC電源が給電衝撃や、回路ストレスを招くという問題がある。また、無理やり蓄電池を充電すると過充電を原因としてDC電源が発熱をしたり、眼球に深刻な悪影響を与えたりする恐れがあるという問題がある。 In particular, when a large amount of power is supplied from the beginning to a storage battery with a small charge capacity, such as a contact lens that is directly worn on the eyeball, a pinhole contact lens, or a load circuit, the DC power source is There is a problem of inducing circuit stress. In addition, if the storage battery is forcibly charged, there is a problem that the DC power source may generate heat due to overcharging or seriously adversely affect the eyeball.
 そこで、本発明は上述の課題に鑑み創作されたものであり、給電初期時、受電側における給電衝撃や回路ストレス等を与えることなく、給電定常時、受電側におけるDC電源の過充電や、不本意な発熱を防止できるようにした無線電力送信器、医療用の無線電力受信器及びその無線電力給電システムを提供することを目的とする。 Therefore, the present invention has been created in view of the above-described problems.In the initial stage of power supply, without causing a power supply shock or circuit stress on the power receiving side, the DC power supply on the power receiving side can be overcharged or not It is an object of the present invention to provide a wireless power transmitter, a medical wireless power receiver, and a wireless power feeding system for the wireless power transmitter capable of preventing intentional heat generation.
 上述の課題を解決するための請求項1に記載の無線電力送信器は、生体装着用の生体センサに実装可能な医療用の無線電力受信器に電力を供給する無線電力送信器であって、DC電源の出力を所定周波数の高周波信号に変換し、当該高周波信号を送電コイルに出力する電力増幅部と、前記送電コイルから誘導される前記高周波信号を取り込む前記無線電力受信器から、給電情報を受信する無線通信部と、前記無線通信部から得られる前記給電情報に各々対応させた複数の給電パターンを記憶する記憶部と、前記記憶部から読み出された一つの給電パターンに基づいて前記電力増幅部の出力を制御する制御部とを備え、前記無線電力受信器を立ち上げるための第1の電力をP1とし、定常給電時の前記無線電力受信器に給電するための第2の電力をP2としたとき、給電初期時にP1<P2に設定され、前記制御部は、給電初期時、前記無線電力受信器へ前記第2の電力よりも低い前記第1の電力を出力するように前記電力増幅部を制御するステップと、前記無線電力受信器の立ち上がりと共に当該無線電力受信器の充電条件を示す給電情報を検知するステップと、定常給電時、前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出すステップと、読み出した前記給電パターンに基づいて前記電力増幅部の出力を決定するステップと、決定した前記電力増幅部の出力に基づく前記第2の電力を前記無線電力受信器へ給電するステップとを、実行する。 The wireless power transmitter according to claim 1 for solving the above-described problem is a wireless power transmitter that supplies power to a medical wireless power receiver that can be mounted on a biological sensor for biological wearing, Power supply information is converted from a power amplifier that converts the output of the DC power source into a high-frequency signal of a predetermined frequency and outputs the high-frequency signal to the power transmission coil, and the wireless power receiver that captures the high-frequency signal derived from the power transmission coil. A wireless communication unit for receiving, a storage unit for storing a plurality of power supply patterns respectively corresponding to the power supply information obtained from the wireless communication unit, and the power based on one power supply pattern read from the storage unit And a control unit for controlling the output of the amplification unit, wherein the first power for starting up the wireless power receiver is P1, and the second power for supplying power to the wireless power receiver during steady power supply is When P2 is set, P1 <P2 is set at the initial stage of power supply, and the control unit outputs the first power lower than the second power to the wireless power receiver at the initial stage of power supply. A step of controlling the amplifying unit; a step of detecting power supply information indicating a charging condition of the wireless power receiver as the wireless power receiver rises; and a reading code included in the power supply information at the time of steady power supply A step of reading one power supply pattern corresponding to the read code from among a plurality of power supply patterns, a step of determining an output of the power amplification unit based on the read power supply pattern, and an output of the determined power amplification unit Powering the second power based on the power to the wireless power receiver.
 請求項1に係る無線電力送信器によれば、給電初期時、定常給電時の第2の電力よりも低い第1の電力で無線電力受信器を立ち上げることができる。 According to the wireless power transmitter according to claim 1, it is possible to start up the wireless power receiver with the first power lower than the second power at the time of initial power supply and at the time of steady power supply.
 請求項2に記載の無線電力送信器は、請求項1において、前記記憶部は、温度-電流給電特性、電流-電圧給電特性、電流-時間給電特性及び電圧-時間給電特性の少なくともいずれか1つの給電パターンを記憶するものである。 According to a second aspect of the present invention, there is provided the wireless power transmitter according to the first aspect, wherein the storage unit is at least one of temperature-current power supply characteristics, current-voltage power supply characteristics, current-time power supply characteristics, and voltage-time power supply characteristics. One power feeding pattern is stored.
 請求項3に記載の医療用の無線電力受信器は、生体装着用の生体センサに実装可能な医療用の無線電力受信器であって、無線電力送信器の送電コイルから誘導される高周波信号を、受電コイルを介して取り込み直流に変換する電力変換部と、前記電力変換部より直流が供給されるDC電源の出力を負荷回路に給電する制御部と、前記負荷回路の充電条件を示す給電情報を、アンテナを介して、前記無線電力送信器の側へ送信する無線通信部とを備え、少なくとも、前記制御部を立ち上げるための第1の電力をP1とし、定常給電時の前記負荷回路に給電するための第2の電力をP2としたとき、給電初期時にP1<P2に設定され、前記制御部は、給電初期時、前記第2の電力よりも低い前記第1の電力を受け取るように前記電力変換部を制御するステップと、前記電力変換部の立ち上がりと共に前記負荷回路の給電情報を検知するステップと、定常給電時、前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出すステップと、前記読み出しコードに対応した給電パターンに基づいて決定される前記無線電力送信器の出力に基づく前記第2の電力を前記負荷回路へ給電するステップとを、実行するものである。 The medical wireless power receiver according to claim 3 is a medical wireless power receiver that can be mounted on a biological sensor mounted on a living body, and receives a high-frequency signal induced from a power transmission coil of the wireless power transmitter. A power conversion unit that takes in through a power receiving coil and converts it into direct current, a control unit that feeds an output of a DC power source supplied with direct current from the power conversion unit to a load circuit, and power supply information indicating a charging condition of the load circuit Is transmitted to the wireless power transmitter side via an antenna, and at least the first power for starting up the control unit is P1, and the load circuit during steady power supply is connected to the load circuit. When P2 is the second power for power supply, P1 <P2 is set at the initial stage of power supply, and the control unit receives the first power lower than the second power at the initial time of power supply. Step for controlling the power converter And detecting the power supply information of the load circuit along with the rise of the power converter, and during steady power supply, the read code included in the power supply information is used as an address to correspond to the read code from a plurality of power supply patterns. Executing the step of reading the one power feeding pattern and the step of feeding the second power based on the output of the wireless power transmitter determined based on the power feeding pattern corresponding to the readout code to the load circuit. To do.
 請求項3に係る医療用の無線電力受信器によれば、給電初期時、給電衝撃・回路ストレス等を極力低減できるようになると共に、給電受電側、DC電源の過充電や、不本意な発熱を防止できるようになる。 According to the wireless power receiver for medical use according to claim 3, it becomes possible to reduce power supply shock, circuit stress, etc. as much as possible at the initial stage of power supply, and overcharge of the power reception side, DC power source, and unintentional heat generation. Can be prevented.
 請求項4に記載の医療用の無線電力受信器は請求項3において、前記電力変換部が、前記制御部を立ち上げるための第1の電力を受け取ると、前記無線通信部が、前記制御部の立ち上がりと共に前記給電情報を前記無線電力送信器へ出力し、前記制御部が、前記給電情報に対応させた給電パターンに基づいて決定された前記無線電力送信器の出力に基づく第2の電力を受け取るように前記電力変換部を制御するものである。 The medical wireless power receiver according to claim 4 is the medical wireless power receiver according to claim 3, wherein when the power conversion unit receives first power for starting up the control unit, the wireless communication unit is connected to the control unit. The power supply information is output to the wireless power transmitter with the rise of the second power, and the control unit outputs second power based on the output of the wireless power transmitter determined based on the power supply pattern corresponding to the power supply information. The power conversion unit is controlled to receive.
 請求項5に記載の医療用の無線電力受信器は請求項3において、前記DC電源の出力から給電を受ける負荷回路には検知部が設けられ、前記給電情報には、前記検知部から得られる所定の検出量を示す情報が含まれるものである。 The medical wireless power receiver according to claim 5 is the medical wireless power receiver according to claim 3, wherein a detection unit is provided in a load circuit that receives power supply from the output of the DC power source, and the power supply information is obtained from the detection unit. Information indicating a predetermined detection amount is included.
 請求項6に記載の医療用の無線電力受信器は請求項5において、前記検知部には、生物の生体情報を検知する生体センサが含まれるものである。 A medical wireless power receiver according to a sixth aspect is the medical wireless power receiver according to the fifth aspect, wherein the detection unit includes a biological sensor that detects biological information of a living organism.
 請求項7に記載の医療用の無線電力給電システムは、生体装着用の生体センサに実装可能な医療用の無線電力受信器に電力を供給する医療用の無線電力給電システムであって、送電側のDC電源の出力を所定周波数の高周波信号に変換し、当該高周波信号を送電コイルに出力する無線電力送信器と、前記高周波信号を、受電コイルを介して受け取り、当該高周波信号を直流に変換したDC電源の出力を負荷回路に給電する、医療用の無線電力受信器とを備え、前記無線電力受信器を立ち上げるための第1の電力をP1とし、定常給電時の前記無線電力受信器に給電するための第2の電力をP2としたとき、給電初期時にP1<P2に設定され、無線電力給電システムでは、給電初期時、前記無線電力送信器が前記無線電力受信器へ前記第2の電力よりも低い前記第1の電力を出力し、前記無線電力受信器の立ち上がりと共に前記無線電力送信器が負荷回路の充電条件を示す給電情報を検知し、定常給電時、前記無線電力送信器が前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出し、前記読み出しコードに対応した給電パターンに基づいて送信側の出力を決定し、前記無線電力送信器が、決定された送信側の出力に基づく前記第2の電力を前記無線電力受信器へ給電するものである。 The medical wireless power supply system according to claim 7 is a medical wireless power supply system that supplies power to a medical wireless power receiver that can be mounted on a biological sensor for wearing on a living body. The output of the DC power source is converted into a high-frequency signal of a predetermined frequency, the wireless power transmitter that outputs the high-frequency signal to the power transmission coil, and the high-frequency signal is received via the power receiving coil, and the high-frequency signal is converted into direct current A wireless power receiver for medical use that feeds the output of a DC power source to a load circuit, and the first power for starting up the wireless power receiver is P1, and the wireless power receiver at the time of steady power supply When P2 is the second power for power feeding, P1 <P2 is set at the initial stage of power feeding. In the wireless power feeding system, the wireless power transmitter transmits the second power to the wireless power receiver at the initial stage of power feeding. Lower than electricity The first power is output, and when the wireless power receiver rises, the wireless power transmitter detects power supply information indicating a charging condition of the load circuit, and at the time of steady power supply, the wireless power transmitter includes the power supply information. One power supply pattern corresponding to the read code is read out from a plurality of power supply patterns using the read code included as an address, the output on the transmission side is determined based on the power supply pattern corresponding to the read code, and the wireless power The transmitter supplies the second power based on the determined output on the transmitting side to the wireless power receiver.
 請求項7に係る医療用の無線電力給電システムよれば、無線電力受信器における給電初期時の給電衝撃・回路ストレス等を極力低減できるようになると共に、当該受信器における給電定常時のDC電源の過充電や、不本意な発熱を防止できるようになる。これにより、対話型無線通信汎用充電システムを構築できる。 According to the wireless power supply system for medical use according to claim 7, it is possible to reduce the power supply shock, circuit stress, etc. at the initial stage of power supply in the wireless power receiver as much as possible, and the DC power supply in the steady state of power supply in the receiver. Overcharge and unintentional heat generation can be prevented. Thereby, an interactive wireless communication general-purpose charging system can be constructed.
 請求項8に記載の医療用の無線電力給電システムは、請求項7において、前記無線電力送信器には、請求項1又は請求項2のいずれかの無線電力送信器が使用されるものである。 The medical wireless power supply system according to claim 8 is the medical wireless power supply system according to claim 7, wherein the wireless power transmitter of any one of claims 1 and 2 is used as the wireless power transmitter. .
 請求項9に記載の医療用の無線電力給電システムは、請求項7において、前記無線電力受信器には請求項3、請求項4、請求項5及び請求項6に記載のいずれかの無線電力送受信器が使用されるものである。 The medical wireless power supply system according to claim 9 is the medical wireless power supply system according to claim 7, wherein the wireless power receiver is the wireless power receiver according to any one of claims 3, 4, 5, and 6. A transceiver is used.
 請求項10に記載の医療用の無線電力給電システムは、請求項7において、前記無線電力送信器が、前記負荷回路を操作する外部機器及びインターネットに接続可能なスマートフォンの少なくともいずれか一方に実装されるものである。 The medical wireless power supply system according to claim 10 is the medical wireless power supply system according to claim 7, wherein the wireless power transmitter is mounted on at least one of an external device that operates the load circuit and a smartphone that can be connected to the Internet. Is.
 請求項11に記載の医療用の無線電力給電システムは、請求項7において、前記無線電力受信器が、前記負荷回路及びDC電源を一体化したセンサモジュールに実装されるものである。 A medical wireless power supply system according to an eleventh aspect is the medical wireless power supply system according to the seventh aspect, wherein the wireless power receiver is mounted on a sensor module in which the load circuit and a DC power source are integrated.
 本発明に係る無線電力送信器によれば、給電初期時には、定常給電時の第2の電力よりも低い第1の電力で立ち上げられた、生体装着用の生体センサに実装可能な医療用の無線電力受信器のDC電源の給電情報、例えば、充電容量や充電温度等を、給電情報に対応させた給電パターンから充電前に送電側において検知(認知)できるようになる。 According to the wireless power transmitter according to the present invention, at the initial stage of power feeding, the medical power source can be mounted on a biological sensor for wearing on a living body that is started up with a first power lower than the second power at the time of steady power feeding. The power transmission information of the DC power source of the wireless power receiver, for example, the charging capacity and the charging temperature can be detected (recognized) on the power transmission side from the power feeding pattern corresponding to the power feeding information before charging.
 本発明に係る生体装着用の生体センサに実装可能な医療用の無線電力受信器によれば、給電初期時の給電衝撃・回路ストレス等を極力低減できるようになると共に、眼球に直接装用するコンタクトレンズや、ピンホールコンタクトレンズ等のように、受電側を構成する充電容量の小さい蓄電池や、負荷回路等に対して、DC電源の過充電や、不本意な発熱を防止できるようになる。しかも、無線電力送電器の制御ステップの数に比べて無線電力受信器の制御ステップの数を低減できるようになる。 According to the medical wireless power receiver that can be mounted on the living body sensor according to the present invention, it is possible to reduce power feeding shock, circuit stress, etc. at the initial stage of power feeding as much as possible, and to directly wear on the eyeball. It becomes possible to prevent overcharging of the DC power source and unintentional heat generation for a storage battery with a small charge capacity constituting the power receiving side, a load circuit or the like such as a lens or a pinhole contact lens. Moreover, the number of control steps of the wireless power receiver can be reduced compared to the number of control steps of the wireless power transmitter.
 本発明に係る生体装着用の生体センサに実装可能な医療用の無線電力受信器を含む医療用の無線電力給電システムによれば、受電側の充電容量に応じて無線電力送信器から送信される高周波信号の出力を調節した(選択した)り、充電終了を示す情報に基づいて高周波信号の出力を停止できるようになる。これにより、対話型無線通信汎用充電システム等を構築できるようになる。 According to the medical wireless power feeding system including the medical wireless power receiver that can be mounted on the biological sensor for wearing on the living body according to the present invention, the wireless power transmitter transmits the power according to the charge capacity on the power receiving side. It becomes possible to adjust (select) the output of the high-frequency signal or to stop the output of the high-frequency signal based on information indicating the end of charging. Thereby, an interactive wireless communication general-purpose charging system or the like can be constructed.
本発明に係る実施形態としての無線電力給電システム1の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a wireless power supply system 1 as an embodiment according to the present invention. 実施形態としての無線電力送信器20及び無線電力受信器30の構成例を示すブロック図である。It is a block diagram which shows the structural example of the wireless power transmitter 20 and the wireless power receiver 30 as embodiment. 電力増幅部21及び電力変換部32の構成例を示す回路図である。3 is a circuit diagram showing a configuration example of a power amplification unit 21 and a power conversion unit 32. FIG. 記憶部26における給電パターンの特性例を示すグラフ図である。6 is a graph illustrating an example of a power feeding pattern characteristic in a storage unit 26. 給電パターンI,II,III,IVの格納例を示す表図である。It is a table | surface figure which shows the example of storage of electric power feeding pattern I, II, III, IV. 無線電力受信器30の実装例(その1)を示すパッチワーク型生体センサ301の平面図である。FIG. 6 is a plan view of a patchwork type biosensor 301 showing a mounting example (part 1) of the wireless power receiver 30; 無線電力受信器30の実装例(その2)を示す指輪型生体センサ302の斜視図である。FIG. 6 is a perspective view of a ring-type biosensor 302 showing a mounting example (part 2) of the wireless power receiver 30. 無線電力受信器30の実装例(その3)を示すコンタクトレンズ303の平面図である。6 is a plan view of a contact lens 303 showing a mounting example (No. 3) of the wireless power receiver 30. FIG. 無線電力受信器30の実装例(その4)を示すピンホールコンタクトレンズ304の平面図である。FIG. 6 is a plan view of a pinhole contact lens 304 showing a mounting example (part 4) of the wireless power receiver 30; 無線電力給電システム1における制御例を示すフローチャートである。3 is a flowchart illustrating an example of control in the wireless power supply system 1.
 以下、図1~図10を参照して、本発明を実施するための最良の形態(以下、実施形態という)としての無線電力送信器、医療用の無線電力受信器及びその無線電力給電システムについて説明する。 1 to 10, a wireless power transmitter, a medical wireless power receiver, and a wireless power feeding system thereof as the best mode for carrying out the present invention (hereinafter referred to as an embodiment) explain.
 <無線電力給電システム> 
 図1に示す医療用の無線電力給電システム1は、対話型無線電力汎用給電システム等に適用して好適なものであり、電磁気誘導方式を利用して送電側から受電側へ無線電力を給電するシステムである。ここに、対話型無線電力汎用給電システムとは、受電側の医療用の無線電力受信器の要求に応じて送電側の無線電力送信器が受電側の給電パターンを見出し、当該給電パターンに基づいて受電側の負荷回路へ給電するシステムをいう。
<Wireless power supply system>
A medical wireless power supply system 1 shown in FIG. 1 is suitable for application to an interactive wireless power general-purpose power supply system or the like, and supplies wireless power from a power transmission side to a power reception side using an electromagnetic induction method. System. Here, the interactive wireless power general-purpose power supply system means that a power transmission-side wireless power transmitter finds a power-receiving-side power supply pattern in response to a request from a power-receiving medical wireless power receiver, and based on the power supply pattern. A system that supplies power to the load circuit on the power receiving side.
 この医療用の無線電力給電システム1では、送電側がDC電源10、無線電力送信器20、送電コイル22及びアンテナ23を有し、受電側が無線電力受信器30、受電コイル31、アンテナ34、DC電源40及び負荷回路50を有している。DC電源10は無線電力送信器20に接続されると共に送電コイル22及びアンテナ23が無線電力送信器20に接続される。無線電力送信器20はDC電源10の出力を所定周波数の高周波信号に変換し、当該高周波信号を送電コイル22に出力する。 In this medical wireless power supply system 1, the power transmission side has a DC power supply 10, a wireless power transmitter 20, a power transmission coil 22 and an antenna 23, and the power reception side has a wireless power receiver 30, a power reception coil 31, an antenna 34, and a DC power supply. 40 and a load circuit 50. The DC power source 10 is connected to the wireless power transmitter 20, and the power transmission coil 22 and the antenna 23 are connected to the wireless power transmitter 20. The wireless power transmitter 20 converts the output of the DC power source 10 into a high-frequency signal having a predetermined frequency and outputs the high-frequency signal to the power transmission coil 22.
 この例では、無線電力送信器20には、本発明に係るいずれかの無線電力送信器が使用され、無線電力送信器20が、給電初期時、第1の電力P1に基づいて医療用の無線電力受信器30の給電情報を検知し、定常給電時、給電情報に基づく第2の電力P2を無線電力受信器30へ給電するようになる。 In this example, any one of the wireless power transmitters according to the present invention is used as the wireless power transmitter 20, and the wireless power transmitter 20 performs medical wireless communication based on the first power P1 at the initial stage of power feeding. The power supply information of the power receiver 30 is detected, and the second power P2 based on the power supply information is supplied to the wireless power receiver 30 during steady power supply.
 ここに給電情報とは、無線電力受信器30が実装される物体への給電(充電条件)パターンを示す情報をいう。例えば、給電情報には固体識別(充電種別等)を示すコードデータが含まれ、このコードデータは読み出しコードを成し、給電パターンを読み出すための00001,00002,00003,00004・・・・等のアドレスとして機能するものである。なお、給電情報には、無線電力受信器30のDC電源40の充電容量を示す情報や、当該DC電源40の充電終了を示す情報、生体センサの種類別を示す情報等が含まれる。 Here, the power supply information refers to information indicating a power supply (charging condition) pattern to an object on which the wireless power receiver 30 is mounted. For example, the power supply information includes code data indicating individual identification (charge type, etc.), and this code data forms a read code, such as 00001, 00002, 00003, 00004... For reading the power supply pattern. It functions as an address. The power supply information includes information indicating the charging capacity of the DC power supply 40 of the wireless power receiver 30, information indicating the end of charging of the DC power supply 40, information indicating the type of biosensor, and the like.
 無線電力給電システム1において、無線電力送信器20は、負荷回路50を操作する外部機器及びインターネットに接続可能なスマートフォンの少なくともいずれか一方に実装されるものである。外部機器には、携帯性が良く、持ち運びが便利なヘッドホーン、イヤリング、ブローチ、腕時計、眼鏡、カチューシャ等にDC電源10、無線電力送信器20、送電コイル22及びアンテナ23を実装したものが使用できる。 In the wireless power supply system 1, the wireless power transmitter 20 is mounted on at least one of an external device that operates the load circuit 50 and a smartphone that can be connected to the Internet. For external devices, headphones, earrings, brooches, watches, glasses, headbands, etc. that are portable and convenient to carry are mounted with DC power supply 10, wireless power transmitter 20, power transmission coil 22 and antenna 23. it can.
 受電側では、受電コイル31及びアンテナ34が無線電力受信器30に接続されると共にDC電源40が無線電力受信器30に接続される。DC電源40には負荷回路50が接続されている。無線電力受信器30には、本発明に係るいずれかの無線電力送受信器が使用される。無線電力受信器30は高周波信号を、受電コイル31を介して受け取り、当該高周波信号を直流に変換したDC電源40の出力を負荷回路50に給電する。 On the power receiving side, the power receiving coil 31 and the antenna 34 are connected to the wireless power receiver 30 and the DC power source 40 is connected to the wireless power receiver 30. A load circuit 50 is connected to the DC power source 40. As the wireless power receiver 30, any wireless power transceiver according to the present invention is used. The wireless power receiver 30 receives the high-frequency signal via the power receiving coil 31 and supplies the load circuit 50 with the output of the DC power source 40 obtained by converting the high-frequency signal into direct current.
 <無線電力送信器> 
 図2に示す無線電力送信器20は、電力増幅部21、無線通信部24及び制御部25を有している。制御部25にはDC電源10、電力増幅部21及び無線通信部24が接続されると共に、電力増幅部21には送電コイル22が接続される。無線通信部24にはアンテナ23が接続される。
<Wireless power transmitter>
The wireless power transmitter 20 illustrated in FIG. 2 includes a power amplification unit 21, a wireless communication unit 24, and a control unit 25. A DC power source 10, a power amplifying unit 21, and a wireless communication unit 24 are connected to the control unit 25, and a power transmission coil 22 is connected to the power amplifying unit 21. An antenna 23 is connected to the wireless communication unit 24.
 DC電源10には電力増幅部21が接続され、電力増幅部21(図3参照)は、DC電源10の出力を所定周波数fの高周波信号に変換(変調)し、当該高周波信号を送電コイル22に出力するように動作する。無線通信部24は無線電力受信器30から給電情報を受信する。給電情報は給電パターンを読み出すためのものである。無線通信部24にはブルートゥース(登録商標)等の近距離無線通信規格のものが使用できる。 A power amplifying unit 21 is connected to the DC power source 10, and the power amplifying unit 21 (see FIG. 3) converts (modulates) the output of the DC power source 10 into a high frequency signal having a predetermined frequency f, and the high frequency signal is transmitted to the power transmission coil 22. It works to output. The wireless communication unit 24 receives power supply information from the wireless power receiver 30. The power supply information is for reading a power supply pattern. The wireless communication unit 24 can use a short-range wireless communication standard such as Bluetooth (registered trademark).
 制御部25は、無線通信部24から得られる給電情報に基づいて電力増幅部21の出力を制御する。例えば、制御部25は、給電初期時、第1の電力P1に基づいて無線電力受信器30の給電情報を検知し、定常給電時、給電情報に基づく第2の電力P2を無線電力受信器30へ給電する。電力P1と電力P2との関係は、P1<P2である。電力P1は、少なくとも、制御部35、無線通信部33が駆動可能な最小電力であって、給電初期時、電圧がV0で電流がI0である。電力P2は、蓄電池41に充電可能な電力で、充電容量にもよるが定常給電時の電圧がV1,V2,V3,V4・・・で電圧V0よりも大きく、その際の電流がIa,Ib,Id,Id・・で、電流I0よりも大きい(図4及び図5参照)。 The control unit 25 controls the output of the power amplifying unit 21 based on the power supply information obtained from the wireless communication unit 24. For example, the control unit 25 detects the power supply information of the wireless power receiver 30 based on the first power P1 at the initial stage of power supply, and the wireless power receiver 30 uses the second power P2 based on the power supply information at the time of steady power supply. Supply power to The relationship between the power P1 and the power P2 is P1 <P2. The power P1 is at least the minimum power that can be driven by the control unit 35 and the wireless communication unit 33, and the voltage is V0 and the current is I0 at the initial stage of power feeding. The electric power P2 is the electric power that can be charged to the storage battery 41. Depending on the charging capacity, the voltage at the time of steady power supply is V1, V2, V3, V4... Larger than the voltage V0, and the current at that time is Ia, Ib , Id, Id,... Larger than the current I0 (see FIGS. 4 and 5).
 なお、図3に示す電解コンデンサC1及び蓄電池11はDC電源10を構成する。電解コンデンサC1には蓄電池11が並列に接続され、蓄電池11は充電して使用される。もちろん、これに限られることはなく、乾電池を使用してもよく、商用電源AC100で動作するAC-DCコンバータを介して電源供給してもよい。この例で、蓄電池11にはリチウムイオン電池等の二次電池が用いられる。電解コンデンサC1の+記号は高電位側を示しており、GNDは接地(アース)である。 Note that the electrolytic capacitor C1 and the storage battery 11 shown in FIG. A storage battery 11 is connected in parallel to the electrolytic capacitor C1, and the storage battery 11 is charged and used. Of course, the present invention is not limited to this, and a dry cell may be used, or power may be supplied via an AC-DC converter that operates on a commercial power source AC100. In this example, the storage battery 11 is a secondary battery such as a lithium ion battery. The + symbol of the electrolytic capacitor C1 indicates the high potential side, and GND is ground (earth).
 蓄電池11には電力増幅部21が接続され、電力増幅部21にはDC電源10の出力(DC電圧VDD)が印加される。この例で、電力増幅部21は、可変発振器201、ゲートドライバ202,203、静電容量C0,C2,C3,C11,C21、可変容量C4、抵抗素子R11,R12,R21,R22、可変コイルL、プッシュプル用のトランスT、P型の電界効果トランジスタFET1,FET2を有して構成される。電界効果トランジスタFET1,FET2にはGaN半導体素子が使用される。 A power amplifying unit 21 is connected to the storage battery 11, and the output (DC voltage VDD) of the DC power source 10 is applied to the power amplifying unit 21. In this example, the power amplifying unit 21 includes a variable oscillator 201, gate drivers 202 and 203, capacitances C0, C2, C3, C11 and C21, variable capacitance C4, resistance elements R11, R12, R21 and R22, and a variable coil L. , A push-pull transformer T, and P-type field effect transistors FET1 and FET2. GaN semiconductor elements are used for the field effect transistors FET1 and FET2.
 可変発振器201は、例えば、発振周波数f=6.78MHzを中心周波数にして±αMHzの発振信号を発生するものである。もちろん、これに限られることはなく発振周波数f=13.56MHzでも、これ以上の発振周波数であってもよい。可変発振器201には静電容量C0を介してゲートドライバ202,203が接続されている。ゲートドライバ202,203はDC電源10と接地線GNDとの間に各々接続される。可変発振器201が発生させた発振信号はゲートドライバ202,203に入力される。 The variable oscillator 201 generates, for example, an oscillation signal of ± α MHz with an oscillation frequency f = 6.78 MHz as a center frequency. Of course, the present invention is not limited to this, and the oscillation frequency f = 13.56 MHz or a higher oscillation frequency may be used. Gate drivers 202 and 203 are connected to the variable oscillator 201 via a capacitance C0. The gate drivers 202 and 203 are connected between the DC power supply 10 and the ground line GND. The oscillation signal generated by the variable oscillator 201 is input to the gate drivers 202 and 203.
 ゲートドライバ202には回路定数素子として、静電容量C11及び抵抗素子R11が接続されている。静電容量C11及び抵抗素子R11の一端は接地されている。ゲートドライバ203には同様にして、静電容量C21及び抵抗素子R21が接続されている。静電容量C21及び抵抗素子R21の一端は接地される。 The gate driver 202 is connected to a capacitance C11 and a resistance element R11 as circuit constant elements. One ends of the capacitance C11 and the resistance element R11 are grounded. Similarly, a capacitance C21 and a resistance element R21 are connected to the gate driver 203. One ends of the capacitance C21 and the resistance element R21 are grounded.
 ゲートドライバ202の出力には抵抗素子R12を介してP型の電界効果トランジスタFET1が接続される。ゲートドライバ202は、発振周波数f=6.78MHzの発振信号に基づいてスイッチングパルス信号を発生し、電界効果トランジスタFET1のゲートにスイッチングパルス信号を出力するようになされる。電界効果トランジスタFET1は、ロー・レベルのスイッチングパルス信号がゲートに入力されるとONし、ハイ・レベルのスイッチング信号が入力されるとOFFするようになされる。 The P-type field effect transistor FET1 is connected to the output of the gate driver 202 via a resistance element R12. The gate driver 202 generates a switching pulse signal based on an oscillation signal having an oscillation frequency f = 6.78 MHz, and outputs the switching pulse signal to the gate of the field effect transistor FET1. The field effect transistor FET1 is turned on when a low level switching pulse signal is input to the gate, and is turned off when a high level switching signal is input.
 ゲートドライバ203の出力にも抵抗素子R22を介してP型の電界効果トランジスタFET2が接続される。ゲートドライバ203は、発振周波数f=6.78MHzの発振信号に基づいて位相角πだけ遅れたスイッチングパルス信号を発生し、電界効果トランジスタFET2のゲートに当該スイッチングパルス信号を出力するようになされる。電界効果トランジスタFET2も、ロー・レベルのスイッチングパルス信号がゲートに入力されるとONし、ハイ・レベルのスイッチング信号が入力されるとOFFするようになされる。 The P-type field effect transistor FET2 is also connected to the output of the gate driver 203 via the resistance element R22. The gate driver 203 generates a switching pulse signal delayed by a phase angle π based on an oscillation signal having an oscillation frequency f = 6.78 MHz, and outputs the switching pulse signal to the gate of the field effect transistor FET2. The field effect transistor FET2 is also turned on when a low level switching pulse signal is input to the gate, and is turned off when a high level switching signal is input.
 電界効果トランジスタFET1及びFET2はE級プッシュプル電力増幅回路を構成する。電界効果トランジスタFET1及びFET2のソースは接地され、そのドレインはトランスTの一次側に各々接続されている。トランスTの一次側の中点には可変コイルLを介してDC電源10に接続され、その中点には可変コイルLを介してDC電源10の出力(DC電圧VDD)が印加され、各々の電界効果トランジスタFET1及びFET2のドレインにDC電圧VDDが供給される。 The field effect transistors FET1 and FET2 constitute a class E push-pull power amplifier circuit. The sources of the field effect transistors FET1 and FET2 are grounded, and their drains are connected to the primary side of the transformer T, respectively. The midpoint of the primary side of the transformer T is connected to the DC power source 10 via the variable coil L, and the output (DC voltage VDD) of the DC power source 10 is applied to the midpoint via the variable coil L. The DC voltage VDD is supplied to the drains of the field effect transistors FET1 and FET2.
 可変コイルLの高電位側には静電容量C2が接続される。静電容量C2の一端は接地GNDに接続される。トランスTの二次側には抵抗素子R1が直列に接続され、当該抵抗素子R1の他端には静電容量C3及び可変容量C4が並列に接続され、トランスTの二次側及び抵抗素子R1と静電容量C3及び可変容量C4とが並列共振回路を構成している。 The electrostatic capacity C2 is connected to the high potential side of the variable coil L. One end of the capacitance C2 is connected to the ground GND. A resistance element R1 is connected in series to the secondary side of the transformer T, and a capacitance C3 and a variable capacity C4 are connected in parallel to the other end of the resistance element R1, and the secondary side of the transformer T and the resistance element R1 are connected. The capacitance C3 and the variable capacitance C4 constitute a parallel resonance circuit.
 電界効果トランジスタFET1及びFET2は発振周波数f=6.78MHzのスイッチングパルス信号に基づいて交互(位相角π毎)にON/OFFを繰り返し、相補性形の高周波信号(交流)を発生する。これにより、発振周波数f=6.78MHzの高周波信号を送電コイル22に出力できるようになる。 The field effect transistors FET1 and FET2 repeat ON / OFF alternately (every phase angle π) based on a switching pulse signal with an oscillation frequency f = 6.78 MHz, and generate complementary high-frequency signals (AC). As a result, a high-frequency signal having an oscillation frequency f = 6.78 MHz can be output to the power transmission coil 22.
 また、無線電力送信器20において、制御部25には記憶部26が設けられ、記憶部26は、温度-電流給電特性、電流-時間給電特性、電流-電圧給電特性及び電圧-時間給電特性の少なくともいずれか1つの給電パターンを記憶する。例えば、図4に示すグラフ図において、記憶部26には受電側の電圧-時間給電特性例を示すデータが格納される。縦軸は電圧[V]であり、下方が小であり、上方が大である。横軸は、時間[T]であり、左方が小であり、右方が大である。 In the wireless power transmitter 20, the control unit 25 includes a storage unit 26. The storage unit 26 has temperature-current supply characteristics, current-time supply characteristics, current-voltage supply characteristics, and voltage-time supply characteristics. At least one of the power supply patterns is stored. For example, in the graph shown in FIG. 4, the storage unit 26 stores data indicating a voltage-time power supply characteristic example on the power receiving side. The vertical axis represents voltage [V], the lower part is small, and the upper part is large. The horizontal axis is time [T], the left is small, and the right is large.
 電圧V0は給電初期電圧であり、初期給電電流をI0(図示せず)とすると、第1の電力P1はV0・I0となる。例えば、V0は2V程度である。I0は数[mA]単位である。V0-T給電特性は初期給電パターンとなる。電圧V1は第1の定常給電電圧であり、定常給電電流をIa(図5参照)とすると、第2の電力P21はV1・Iaとなる。例えば、V1は4V程度である。V1-T給電特性は第1の定常給電パターンIとなる。電圧V2は第2の定常給電電圧であり、定常給電電流をIb(図5参照)とすると、第2の電力P22はV2・Ibとなる。例えば、V2は5V程度である。V2-T給電特性は第2の定常給電パターンIIとなる。 The voltage V0 is a power supply initial voltage. When the initial power supply current is I0 (not shown), the first power P1 is V0 · I0. For example, V0 is about 2V. I0 is a unit of several [mA]. The V0-T power supply characteristic is an initial power supply pattern. The voltage V1 is the first steady power supply voltage. When the steady power supply current is Ia (see FIG. 5), the second power P21 is V1 · Ia. For example, V1 is about 4V. The V1-T feed characteristic is the first steady feed pattern I. The voltage V2 is a second steady power supply voltage. If the steady power supply current is Ib (see FIG. 5), the second power P22 is V2 · Ib. For example, V2 is about 5V. The V2-T feeding characteristic is the second steady feeding pattern II.
 電圧V3は第3の定常給電電圧であり、定常給電電流をIc(図5参照)とすると、第2の電力P23はV3・Icとなる。例えば、V3は6V程度である。V3-T給電特性は第3の定常給電パターンIIIとなる。電圧V4は第4の定常給電電圧であり、定常給電電流をId(図5参照)とすると、第2の電力P24はV4・Idとなる。例えば、V4は7V程度である。V4-T給電特性は第4の定常給電パターンIVとなる。なお、Txは初期通電-定常通電の切り替え時刻である。切り替え時刻Txは零電圧から電圧V0へ到達した時点から任意の静定時間(決定期間)経過後の時刻である。静定時間は短いほどよい。 The voltage V3 is a third steady power supply voltage. If the steady power supply current is Ic (see FIG. 5), the second power P23 is V3 · Ic. For example, V3 is about 6V. The V3-T feeding characteristic is the third steady feeding pattern III. The voltage V4 is a fourth steady power supply voltage. When the steady power supply current is Id (see FIG. 5), the second power P24 is V4 · Id. For example, V4 is about 7V. The V4-T power supply characteristic is the fourth steady power supply pattern IV. Tx is the switching time between initial energization and steady energization. The switching time Tx is a time after an arbitrary settling time (determination period) has elapsed since the time when the voltage V0 was reached from the zero voltage. The shorter the settling time, the better.
 図5に示す表図において、例えば、読み出しコード00001に対して給電パターンIが対応付けられ、受電側の制御目標となる制御データD=Ia(電流),V1(電圧),f1(周波数),θ1(温度)が格納される。同様にして、読み出しコード00002に対して給電パターンIIが対応付けられ、その制御データD=Ib,V2,f2,θ2が格納される。 In the table shown in FIG. 5, for example, the power supply pattern I is associated with the read code 00001, and control data D = Ia (current), V1 (voltage), f1 (frequency), which is a control target on the power receiving side, θ1 (temperature) is stored. Similarly, the power supply pattern II is associated with the read code 00002, and the control data D = Ib, V2, f2, and θ2 are stored.
 読み出しコード00003に対して給電パターンIIIが対応付けられ、その制御データD=Ic,V3,f3,θ3が格納される。読み出しコード00004に対して給電パターンIVが対応付けられ、その制御データD=Id,V4,f4,θ4が格納される。給電パターンI~IVは無線電力受信器30が実装される物体によって異なるものである。なお、温度-電流給電特性、電流-時間給電特性、電流-電圧給電特性については、その説明を省略する。 The power supply pattern III is associated with the read code 00003, and the control data D = Ic, V3, f3, θ3 is stored. The power supply pattern IV is associated with the read code 00004, and the control data D = Id, V4, f4, θ4 is stored. The feeding patterns I to IV are different depending on the object on which the wireless power receiver 30 is mounted. Note that description of the temperature-current feeding characteristics, current-time feeding characteristics, and current-voltage feeding characteristics is omitted.
 <無線電力受信器>
 図2に示す無線電力受信器30は、送電コイル22から誘導される高周波信号を取り込むために電力変換部32、無線通信部33及び制御部35を備えている。制御部35には、電力変換部32、無線通信部33及びDC電源40が接続されると共に、受電コイル31は電力変換部32に接続される。電力変換部32にはDC電源40が接続されると共にDC電源40には負荷回路50が接続される。
<Wireless power receiver>
The wireless power receiver 30 illustrated in FIG. 2 includes a power conversion unit 32, a wireless communication unit 33, and a control unit 35 in order to capture a high frequency signal induced from the power transmission coil 22. The control unit 35 is connected to the power conversion unit 32, the wireless communication unit 33, and the DC power supply 40, and the power receiving coil 31 is connected to the power conversion unit 32. A DC power source 40 is connected to the power converter 32 and a load circuit 50 is connected to the DC power source 40.
 受電コイル31には電力変換部32が接続され、無線電力送信器20の送電コイル22から誘導される高周波信号を、受電コイル31を介して取り込み直流に変換する。制御部35は、電力変換部32より直流が供給されるDC電力を負荷回路50に給電するように電力変換部32及びDC電源40を制御する。 A power converter 32 is connected to the power receiving coil 31, and a high-frequency signal derived from the power transmitting coil 22 of the wireless power transmitter 20 is captured via the power receiving coil 31 and converted to direct current. The control unit 35 controls the power conversion unit 32 and the DC power supply 40 so as to supply DC power supplied with direct current from the power conversion unit 32 to the load circuit 50.
 無線通信部33は、負荷回路50の給電情報を、アンテナ34を介して無線電力送信器20の側へ送信する。制御部35は、給電初期時、第1の電力P1に基づいてDC電源40の給電情報を出力し、定常給電時、給電情報に基づく第2の電力P2を負荷回路50へ給電する。 The wireless communication unit 33 transmits the power supply information of the load circuit 50 to the wireless power transmitter 20 side through the antenna 34. The control unit 35 outputs the power supply information of the DC power supply 40 based on the first power P1 at the initial stage of power supply, and supplies the second power P2 based on the power supply information to the load circuit 50 at the time of steady power supply.
 なお、図3に示す電力変換部32は、例えば、静電容量C5、ダイオードD1~D4、抵抗素子R2を有して構成される。静電容量C5は受電コイル31に並列に接続され、受電コイル31と共に共振回路を構成する。ダイオードD1~D4は全波整流回路を構成し、受電コイル31から取得される高周波信号を直流に変換する。 Note that the power conversion unit 32 shown in FIG. 3 includes, for example, a capacitance C5, diodes D1 to D4, and a resistance element R2. The electrostatic capacitance C5 is connected in parallel to the power receiving coil 31, and constitutes a resonance circuit together with the power receiving coil 31. The diodes D1 to D4 constitute a full-wave rectifier circuit, and convert the high-frequency signal acquired from the power receiving coil 31 into direct current.
 ダイオードD1~D4の出力には、電解コンデンサC6が接続され、電解コンデンサC6は脈流を直流に平滑するようになされる。LEDはダイオードD1,D2の接続点と負荷回路50との間に直列に接続され、通電表示及び回路保護に用いられる。 Electrolytic capacitor C6 is connected to the outputs of diodes D1 to D4, and electrolytic capacitor C6 smoothes the pulsating flow to direct current. The LED is connected in series between the connection point of the diodes D1 and D2 and the load circuit 50, and is used for energization display and circuit protection.
 図中、電解コンデンサC6、蓄電池41はDC電源40を構成する。電解コンデンサC6には蓄電池41が並列に接続され、蓄電池41が充電される。電解コンデンサC6の+記号は高電位側を示しており、GNDは接地(アース)である。蓄電池41には負荷回路50が接続され、負荷回路50には回路保護用の抵抗素子R2が並列に接続される。 In the figure, an electrolytic capacitor C6 and a storage battery 41 constitute a DC power source 40. A storage battery 41 is connected in parallel to the electrolytic capacitor C6, and the storage battery 41 is charged. The + symbol of the electrolytic capacitor C6 indicates the high potential side, and GND is ground (earth). A load circuit 50 is connected to the storage battery 41, and a resistance element R2 for circuit protection is connected to the load circuit 50 in parallel.
 無線電力受信器30において、DC電源40から給電を受ける負荷回路50には検知部51が設けられ、給電情報には、検知部51から得られる所定の検出量を示す情報が含まれるものである。検知部51は例えば、充電時の蓄電池41の温度θを検知して温度検知信号を発生する。温度検知信号は二値化されて給電情報となる。また、蓄電池41の端子電圧Vは二値化されて給電情報となる。 In the wireless power receiver 30, a detection unit 51 is provided in the load circuit 50 that receives power supply from the DC power supply 40, and the power supply information includes information indicating a predetermined detection amount obtained from the detection unit 51. . For example, the detection unit 51 detects the temperature θ of the storage battery 41 during charging and generates a temperature detection signal. The temperature detection signal is binarized and becomes power supply information. Further, the terminal voltage V of the storage battery 41 is binarized and becomes power supply information.
 ここで、図6~図9を参照して、無線電力受信器30の実装例について説明をする。図6に示す無線電力受信器30は無線電力給電システム1において、パッチワーク型生体センサ301を構成するものである。パッチワーク型生体センサ301は、無線電力受信器30、受電コイル31、アンテナ34、DC電源40、検知部51及び基台71を有している。 Here, an implementation example of the wireless power receiver 30 will be described with reference to FIGS. A wireless power receiver 30 shown in FIG. 6 constitutes a patchwork type biosensor 301 in the wireless power supply system 1. The patchwork type biosensor 301 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a base 71.
 パッチワーク型生体センサ301は基台71の外周縁部上に受電コイル31、アンテナ34が配置され、同一基台内に電力変換部32、無線通信部33、制御部35、DC電源40及び検知部51が一体化して配置され、センサモジュールを構成するものである。パッチワーク型生体センサ301は皮膚表面に貼着して使用される。基台71には綿テープや、医療用テープ等のフレキシブル素材が使用される。伸縮自在な素材が使用できる。 In the patchwork type biosensor 301, the power receiving coil 31 and the antenna 34 are arranged on the outer peripheral edge of the base 71, and the power conversion unit 32, the wireless communication unit 33, the control unit 35, the DC power source 40, and the detection in the same base. The part 51 is integrally arranged to constitute a sensor module. The patchwork type biosensor 301 is used by being attached to the skin surface. For the base 71, a flexible material such as cotton tape or medical tape is used. Stretchable material can be used.
 本例の検知部51には、生物の生体情報を検知する生体センサが含まれるものである。生体センサには血糖値を測定する自己血糖値管理用のグルコースセンサが使用できる。グルコースセンサには、グルコース酸化酵素(Glucose Oxidase:GOD)が用いられ、その測定原理は、GODをポリアクリルアミドなどの高分子ゲル中に固定化し、酵素反応に伴う電極近傍の酸素消費を電極応答(電流値の減少)として捉えることで、グルコース濃度を選択的に計測するものである。 The detection unit 51 of this example includes a biological sensor that detects biological information of a living thing. As the biological sensor, a glucose sensor for self blood glucose level management that measures the blood glucose level can be used. Glucose Oxidase (GOD) is used for the glucose sensor, and the measurement principle is that GOD is immobilized in a polymer gel such as polyacrylamide, and oxygen consumption in the vicinity of the electrode accompanying the enzyme reaction is measured by the electrode response ( By grasping it as a decrease in the current value, the glucose concentration is selectively measured.
 例えば、微小なナノ構造の酸化物半導体(IGZO)がバイオセンサー内に埋め込まれ、透明なデバイスが涙の微小なグルコース濃度を検出するようになる。IGZOバイオセンサーでは、涙のグルコースと接触すると、酵素が血糖を酸化する。すると混合物中のpHレベルが変化し、IGZOトランジスタの電流に測定可能な変化が起こるようになる。涙には、検知可能な情報量を多く含んでいる。涙にはグルコースだけでなく、乳酸(敗血症・肝臓病)、ドーパミン(緑内障)、尿素(腎機能)、タンパク質(癌)の情報が含まれている。 For example, a minute nanostructured oxide semiconductor (IGZO) is embedded in a biosensor, and a transparent device detects the minute glucose concentration in tears. In the IGZO biosensor, the enzyme oxidizes blood sugar when in contact with tear glucose. This changes the pH level in the mixture and causes a measurable change in the current of the IGZO transistor. Tears contain a lot of detectable information. Tears contain not only glucose but also information on lactic acid (sepsis / liver disease), dopamine (glaucoma), urea (renal function), and protein (cancer).
 糖尿病治療では、血糖値をコントロールすることが基本で、血糖の状態に合わせて、インスリンの投与や、食事の調整が必要である。このため、きめ細かい血糖のモニターが欠かせず、日常の生活でも血糖をチェックできるようにしなければならない(自己血糖測定モニター)。この自己血糖測定モニターによって、それまで医療機関でしかできなかった血糖測定を、いつでも、どこでもリアルタイムに正確に行うことができるようになり、その測定結果を治療にフィードバックすることによって、糖尿病患者の治療による生活への負担を軽減できるようになる。  In diabetes treatment, it is fundamental to control blood sugar levels, and it is necessary to administer insulin and adjust meals according to the blood sugar level. For this reason, a detailed blood glucose monitor is indispensable, and it is necessary to be able to check blood sugar in daily life (self blood glucose monitor). This self-monitoring blood glucose monitor makes it possible to accurately and accurately perform blood glucose measurements that could only be done at medical institutions anytime and anywhere in real time. The burden on life due to can be reduced. *
 図7に示す無線電力受信器30は無線電力給電システム1において、指輪型生体センサ302を構成するものである。指輪型生体センサ302は、無線電力受信器30、受電コイル31、アンテナ34、DC電源40、検知部51、基台72及び環部73を有している。指輪型生体センサ302は基台72の外周縁部内に受電コイル31及びアンテナ34が配置され、電力変換部32、無線通信部33、制御部35、DC電源40及び検知部51が一体化して配置され、一体化されたセンサモジュールが環部73に固定されるものである。 The wireless power receiver 30 shown in FIG. 7 constitutes a ring-type biosensor 302 in the wireless power supply system 1. The ring-type biosensor 302 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, a base 72, and a ring unit 73. The ring-type biosensor 302 has the power receiving coil 31 and the antenna 34 disposed in the outer peripheral edge of the base 72, and the power conversion unit 32, the wireless communication unit 33, the control unit 35, the DC power source 40, and the detection unit 51 are integrally disposed. Then, the integrated sensor module is fixed to the ring portion 73.
 環部73は指部に嵌合して使用される。例えば、指輪型生体センサ302は人差し指、中指、薬指、小指等のいずれかに装着して使用される。指輪型生体センサ302には、光電脈波センサが用いられる。光電脈波センサは、血液中のヘモグロビンの光吸収特性を利用し、内臓の発光素子により指の血管に照射した赤外光の反射光を受光素子で受け、その強度変化から拍動等を捉えるようになされる。光電脈波センサで捉えた拍動データを無配線でスマートフォンやパソコン等に伝送する無線通信機器には、低消費電力のBluetooth low Energy 規格(登録商標)に準拠した無線通信モジュールが使用される。 The ring part 73 is used by fitting to the finger part. For example, the ring-type biosensor 302 is used by being attached to any of the index finger, middle finger, ring finger, little finger, and the like. A photoelectric pulse wave sensor is used for the ring-type biological sensor 302. The photoelectric pulse wave sensor uses the light absorption characteristics of hemoglobin in the blood, receives the reflected light of the infrared light irradiated to the blood vessel of the finger by the internal light emitting element, and captures pulsation etc. from the intensity change It is made like. For wireless communication equipment that transmits pulsation data captured by a photoelectric pulse wave sensor to a smartphone or personal computer without wiring, a wireless communication module that conforms to the low-power Bluetooth low Energy standard (registered trademark) is used.
 図8に示す無線電力受信器30は無線電力給電システム1において、コンタクトレンズ型生体センサ303を構成するものである。コンタクトレンズ型生体センサ303は、無線電力受信器30、受電コイル31、アンテナ34、DC電源40、検知部51、及びレンズ本体74を有している。レンズ本体74にはソフトコンタクトレンズや、ハードコンタクトレンズが含まれる。 The wireless power receiver 30 shown in FIG. 8 constitutes the contact lens type biosensor 303 in the wireless power feeding system 1. The contact lens type biosensor 303 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a lens body 74. The lens body 74 includes a soft contact lens and a hard contact lens.
 コンタクトレンズ型生体センサ303は、レンズ本体74の外周縁部上に受電コイル31、電力変換部32、無線通信部33、アンテナ34、制御部35、DC電源40及び検知部51が一体化されて配置され、センサモジュールを構成するものである。コンタクトレンズ型生体センサ303は、角膜上に装用するようになされる。 In the contact lens type biosensor 303, the power receiving coil 31, the power conversion unit 32, the wireless communication unit 33, the antenna 34, the control unit 35, the DC power source 40, and the detection unit 51 are integrated on the outer peripheral edge of the lens body 74. It is arranged and constitutes a sensor module. The contact lens type biosensor 303 is worn on the cornea.
 図9に示す無線電力受信器30は無線電力給電システム1において、ピンホールコンタクトレンズ型生体センサ304を構成するものである。ピンホールコンタクトレンズ型生体センサ304は、無線電力受信器30、受電コイル31、アンテナ34、DC電源40、検知部51、及びピンホールレンズ本体75を有している。ピンホールレンズ本体75は遮光部76及びピンホール77を有している。 A wireless power receiver 30 shown in FIG. 9 constitutes a pinhole contact lens type biosensor 304 in the wireless power supply system 1. The pinhole contact lens type biosensor 304 includes a wireless power receiver 30, a power receiving coil 31, an antenna 34, a DC power supply 40, a detection unit 51, and a pinhole lens main body 75. The pinhole lens main body 75 has a light shielding portion 76 and a pinhole 77.
 ピンホールコンタクトレンズ型生体センサ304は、ピンホールレンズ本体75の外周縁部上に受電コイル31及びアンテナ34が配置され、その遮光部76に電力変換部32、無線通信部33、制御部35、DC電源40及び検知部51が一体化されてセンサモジュールを構成するものである。 In the pinhole contact lens type biosensor 304, the power receiving coil 31 and the antenna 34 are disposed on the outer peripheral edge of the pinhole lens body 75, and the power conversion unit 32, the radio communication unit 33, the control unit 35, The DC power supply 40 and the detection unit 51 are integrated to constitute a sensor module.
 ピンホールコンタクトレンズ型生体センサ304も角膜上に装用するようになされる。上述のコンタクトレンズ型生体センサや、ピンホールコンタクトレンズ型生体センサは、スマートコンタクトレンズを構成する。例えば、電力変換部32、無線通信部33、制御部35、DC電源40及び検知部51を構成する半導体素子(集積回路自体:数mm角)を絶縁性のピンホールレンズ本体75の上に直接形成し、絶縁性の遮光部76で、電気的に半導体素子間を共通に絶縁すると共に、遮光部76の黒色等(高遮光率)を実現するようにする。この絶縁封止構造により半導体チップの素子間絶縁構造を共通化でき、搭載チップ(例えば、1.6mm×1.6mmのマイコンチップなど)の微細化及び薄膜化を図ることができる。 The pinhole contact lens type biosensor 304 is also worn on the cornea. The contact lens type biosensor and the pinhole contact lens type biosensor described above constitute a smart contact lens. For example, the semiconductor elements (integrated circuit itself: several mm square) constituting the power conversion unit 32, the wireless communication unit 33, the control unit 35, the DC power supply 40, and the detection unit 51 are directly mounted on the insulating pinhole lens body 75. The insulating light-shielding portion 76 is formed so as to electrically insulate the semiconductor elements in common, and at the same time, the black color of the light-shielding portion 76 (high light shielding rate) is realized. With this insulating sealing structure, the insulating structure between the elements of the semiconductor chip can be made common, and the mounting chip (for example, 1.6 mm × 1.6 mm microcomputer chip) can be miniaturized and thinned.
 センサモジュールには、パッチワーク型生体センサ301や、スマートコンタクトレンズ、指輪型生体センサ302の他に体内埋め込みセンサ等が含まれる。体内埋め込みセンサには、グルコースセンサを体内に埋め込み、グルコース濃度を連続的にモニタ可能な連続グルコースモニタ(Continuous Glucose Monitoring:CGM)が開発されている。CGMによれば、皮膚内部の間質液を無痛で吸出し、GODを含ませたパッチに吸収させ、過酸化水素電極によって、グルコース濃度を定量するものである。 The sensor module includes a patchwork-type biosensor 301, a smart contact lens, a ring-type biosensor 302, and an in-vivo sensor. As the in-vivo sensor, a continuous glucose monitor (CGM) that can continuously monitor the glucose concentration by developing a glucose sensor has been developed. According to CGM, interstitial fluid in the skin is sucked in painlessly, absorbed in a patch containing GOD, and the glucose concentration is quantified with a hydrogen peroxide electrode.
 続いて、図10を参照して、無線電力給電システム1の制御例について説明する。この例では、無線電力受信器30を受電側のコンタクトレンズ等に実装した場合であって、このコンタクトレンズの給電情報は、図5に示した給電パターンIIで、読み出しコード00002が設定されている場合を想定する。  Subsequently, a control example of the wireless power supply system 1 will be described with reference to FIG. In this example, the wireless power receiver 30 is mounted on a contact lens on the power receiving side, and the power supply information of this contact lens is the power supply pattern II shown in FIG. Assume a case. *
 これらを制御条件にして、図10に示すフローチャートのステップS11で無線電力送信器20の制御部25(以下送電側という)は、無線電力受信器30を立ち上げるための第1の電力P1を出力するように電力増幅部21を制御する。 Under these control conditions, the control unit 25 (hereinafter referred to as the power transmission side) of the wireless power transmitter 20 outputs the first power P1 for starting up the wireless power receiver 30 in step S11 of the flowchart shown in FIG. The power amplifying unit 21 is controlled as described above.
 無線電力受信器30の側(以下受電側という)ではステップS21で、電力変換部32が、制御部35を立ち上げるための第1の電力P1を無線電力送信器20から受け取る。電力P1は例えば、電圧がV0で給電電流がI0である。初期給電時の給電電力はP1=I0・V0である。 On the wireless power receiver 30 side (hereinafter referred to as the power receiving side), the power conversion unit 32 receives from the wireless power transmitter 20 the first power P1 for starting up the control unit 35 in step S21. The power P1 is, for example, a voltage V0 and a feeding current I0. The feeding power at the time of initial feeding is P1 = I0 · V0.
 次に、ステップS22では無線通信部33が、制御部35の立ち上がりと共に給電情報を、アンテナ34を介して無線電力送信器20へ送信する。この例では給電情報が読み出しコード=00002の場合である。送電側では、ステップS12で無線通信部24が給電情報、すなわち、読み出しコード=00002を、アンテナ23を介して受信する。 Next, in step S22, the wireless communication unit 33 transmits power supply information to the wireless power transmitter 20 via the antenna 34 when the control unit 35 is started up. In this example, the power supply information is a read code = 00002. On the power transmission side, the wireless communication unit 24 receives power supply information, that is, read code = 00002 via the antenna 23 in step S12.
 次に、ステップS13で制御部25が給電情報を検知し、その判別を行う。この判別では、記憶部26が参照(図5)され、読み出しコード=00002に対応する給電パターンIIに必要な制御データD=Ib,V2,f2,θ2が読み出される。制御データD=Ib,V2,θ2は受電側の制御目標である。周波数fは送電目標値であり、送電側の高周波信号の電圧を制御できるようになる。 Next, in step S13, the control unit 25 detects the power supply information and determines it. In this determination, the storage unit 26 is referred to (FIG. 5), and control data D = Ib, V2, f2, and θ2 necessary for the power feeding pattern II corresponding to the read code = 000002 are read. Control data D = Ib, V2, and θ2 are control targets on the power receiving side. The frequency f is a power transmission target value, and the voltage of the high frequency signal on the power transmission side can be controlled.
 次いで、ステップS14で制御部25は、給電情報に基づいて電力増幅部21の出力を決定する。この例では、トランスTの巻数比によって、送電側の高周波信号の電流・電圧が決定される。一次側の巻数n1とし、二次側の巻数n2とすると誘起電圧は、n1:n2=Vn1:Vn2となる。この例ではVn2=V2となるように一次側の印加電圧Vn1を決定する。Vn1は可変コイルLを調整することで達成する。送電側の高周波信号の電流は、可変容量C4を調整することで、受電側の電流Ibの目標値を達成する。 Next, in step S14, the control unit 25 determines the output of the power amplification unit 21 based on the power supply information. In this example, the current / voltage of the high-frequency signal on the power transmission side is determined by the turns ratio of the transformer T. When the number of turns on the primary side is n1 and the number of turns on the secondary side is n2, the induced voltage is n1: n2 = Vn1: Vn2. In this example, the applied voltage Vn1 on the primary side is determined so that Vn2 = V2. Vn1 is achieved by adjusting the variable coil L. The current of the high-frequency signal on the power transmission side achieves the target value of the current Ib on the power reception side by adjusting the variable capacitor C4.
 そして、ステップS15で制御部25は、決定した電力増幅部21の出力に基づく第2の電力P2(P1<P2)を無線電力受信器30へ供給する。受電側ではステップS23で制御部35は、給電情報に基づいて決定された無線電力送信器20の出力に基づく第2の電力P2を受け取るように電力変換部32を制御する。この制御により、負荷回路50へ給電する(ステップS26)と共に蓄電池41に充電できるようになる。 In step S15, the control unit 25 supplies the second power P2 (P1 <P2) based on the determined output of the power amplification unit 21 to the wireless power receiver 30. On the power receiving side, in step S23, the control unit 35 controls the power conversion unit 32 to receive the second power P2 based on the output of the wireless power transmitter 20 determined based on the power supply information. By this control, power is supplied to the load circuit 50 (step S26) and the storage battery 41 can be charged.
 そして、ステップS24で制御部35は蓄電池41が満充電になったか否かを判別する。満充電になったか否かは、例えば、蓄電池41の端子電圧(V2)を測定し、規定値に達したか否かで判別する。満充電になっていない場合は、ステップS22に戻って給電情報を無線通信部33及びアンテナ34を介して送電側に返信する。 In step S24, the control unit 35 determines whether or not the storage battery 41 is fully charged. Whether or not the battery is fully charged is determined, for example, by measuring the terminal voltage (V2) of the storage battery 41 and reaching a specified value. When the battery is not fully charged, the process returns to step S22, and power supply information is returned to the power transmission side via the wireless communication unit 33 and the antenna 34.
 この際の給電情報には、蓄電池41の端子電圧(V2)の他に、DC電源40の出力の温度θに関する情報や、給電電流Ibに係る情報が送電側に通知される。送電側では、ステップS12~S15の処理内容を実行して、再決定した電力増幅部21の出力に基づく第2の電力P2’(P2=P2’、P2<P2’又は、P2>P2’)を無線電力受信器30へ供給する。 In the power supply information at this time, in addition to the terminal voltage (V2) of the storage battery 41, information related to the temperature θ of the output of the DC power supply 40 and information related to the power supply current Ib are notified to the power transmission side. On the power transmission side, the processing contents of steps S12 to S15 are executed, and the second power P2 ′ (P2 = P2 ′, P2 <P2 ′ or P2> P2 ′) based on the re-determined output of the power amplifying unit 21. Is supplied to the wireless power receiver 30.
 そして、満充電となった場合は、ステップS25で無線通信部33及びアンテナ34を介して送電側へ充電満了情報を送信する。送電側ではステップS16で無線通信部24が充電満了情報を受信すると、ステップS17で制御部25は充電満了情報を検知して蓄電池41が充電満了したか否かを判別する。例えば、充電満了情報=ハイ・レベルを検知する。充電満了を検知していない場合(充電満了情報=ロー・レベル)は、ステップS16に戻って無線通信部24は充電満了情報の受信を継続する。充電満了を検知した場合は、制御部25は給電をOFFする。なお、制御部25は、決定後設定されていた第2の電力P2を、初期の第1の電力P1にリセットし、次回の初期給電に備えるようになる(リセット動作)。 And when it is fully charged, charging completion information is transmitted to the power transmission side via the wireless communication part 33 and the antenna 34 at step S25. On the power transmission side, when the wireless communication unit 24 receives the charging expiration information in step S16, the control unit 25 detects the charging expiration information and determines whether or not the storage battery 41 has completed charging in step S17. For example, charging expiration information = high level is detected. If the charging expiration is not detected (charging expiration information = low level), the process returns to step S16 and the wireless communication unit 24 continues to receive the charging expiration information. When the expiration of charging is detected, the control unit 25 turns off the power supply. The control unit 25 resets the second power P2 set after the determination to the initial first power P1, and prepares for the next initial power supply (reset operation).
 このように、実施形態としての無線電力給電システム1によれば、無線電力受信器30の要求に応じて無線電力送信器20が受電側の給電パターンを見出し、当該給電パターンに基づいてDC電源40に係る蓄電池41を充電するようになる。 As described above, according to the wireless power supply system 1 as the embodiment, the wireless power transmitter 20 finds a power supply pattern on the power receiving side in response to a request from the wireless power receiver 30, and the DC power supply 40 is based on the power supply pattern. The storage battery 41 according to the method is charged.
 また、実施形態に係る無線電力送信器20によれば、給電初期時には、定常給電時の第2の電力P2よりも低い第1の電力P1で無線電力受信器30を立ち上げることができる。すなわち、給電初期時、決定後の電力増幅部21の出力に基づく第2の電力P2よりも、無線電力受信器30を立ち上げるための第1の電力P1を低く抑えることができる。 Moreover, according to the wireless power transmitter 20 according to the embodiment, the wireless power receiver 30 can be started up with the first power P1 lower than the second power P2 at the time of steady power supply at the initial stage of power supply. That is, the first power P1 for starting up the wireless power receiver 30 can be suppressed to be lower than the second power P2 based on the output of the determined power amplification unit 21 at the initial stage of power supply.
 しかも、無線電力受信器30のDC電源40の給電情報、例えば、充電容量や充電温度等を充電前に送電側において検知(認知)できるようになる。 Moreover, the power supply information of the DC power source 40 of the wireless power receiver 30, such as the charging capacity and the charging temperature, can be detected (recognized) on the power transmission side before charging.
 更に、本発明に係る無線電力受信器30によれば、給電初期時の給電衝撃・回路ストレス等を極力低減できるようになると共に、受電側におけるDC電源40の過充電や、不本意な発熱を防止できるようになる。また、上述した絶縁封止構造により半導体チップの素子間絶縁構造を共通化でき、搭載チップの微細化及び薄膜化を図ることができる。これにより、実装面積の狭いコンタクトレンズ等に必要最低限の半導体チップを効率よく実装できるようになる。例えば、アドレスコードを記憶するためのメモリ領域を、最小限に留めることができる。 Furthermore, according to the wireless power receiver 30 according to the present invention, it is possible to reduce the power supply shock, circuit stress, etc. at the initial stage of power supply as much as possible, and overcharge of the DC power source 40 on the power receiving side and unintentional heat generation. Can be prevented. In addition, the above-described insulating sealing structure can make the inter-element insulating structure of the semiconductor chip common, and the mounted chip can be miniaturized and thinned. As a result, the minimum necessary semiconductor chip can be efficiently mounted on a contact lens having a small mounting area. For example, the memory area for storing the address code can be kept to a minimum.
 しかも、受電側の充電容量に応じて無線電力送信器から送信される高周波信号の出力を調節した(選択した)り、充電終了を示す情報に基づいて高周波信号の出力を停止したりできるようになる。これにより、対話型無線通信汎用充電システム等を構築できるようになる。 Moreover, the output of the high-frequency signal transmitted from the wireless power transmitter can be adjusted (selected) according to the charge capacity on the power receiving side, or the output of the high-frequency signal can be stopped based on information indicating the end of charging. Become. Thereby, an interactive wireless communication general-purpose charging system or the like can be constructed.
 なお、上述の実施形態では無線電力給電システム1に関して、電磁気誘導(電磁界結合)方式について説明したが、これに限られることはなく、特許第6056477号に見られるような磁界共鳴方式としてもよい。例えば、図3の二点鎖線内に示すように、LC共振回路60を送電側及び受電側に非接触で近接して配置する。LC共振回路60は、所定の共振周波数を有し、非常に高いQ値を有するように設計される。送電側及び受電側のLC共振回路60の共振周波数は共に等しく設定される。L´は共振コイル(インダクタ)であり、C´は可変容量(キャパシタ)である。 In the above-described embodiment, the electromagnetic induction (electromagnetic coupling) method has been described with respect to the wireless power feeding system 1. However, the present invention is not limited to this, and a magnetic resonance method as shown in Japanese Patent No. 6056477 may be used. . For example, as shown in a two-dot chain line in FIG. 3, the LC resonance circuit 60 is arranged close to the power transmission side and the power reception side in a non-contact manner. The LC resonance circuit 60 is designed to have a predetermined resonance frequency and a very high Q value. The resonance frequencies of the LC resonance circuit 60 on the power transmission side and the power reception side are both set equal. L ′ is a resonance coil (inductor), and C ′ is a variable capacitor (capacitor).
 送電側のLC共振回路60は、所定の間隔を隔てて、自己の中心軸が受電側のLC共振回路60の中心軸と一致するように配置される。送電側及び受電側のLC共振回路60の間隔は、例えば、数メートル程度であってもよい。LC共振回路60の共振Qが十分大きければ、数メートル程度離れていても、磁界共鳴による電力の伝送が可能となる。 The LC resonance circuit 60 on the power transmission side is arranged at a predetermined interval so that its center axis coincides with the center axis of the LC resonance circuit 60 on the power reception side. For example, the distance between the LC resonance circuit 60 on the power transmission side and the power reception side may be about several meters. If the resonance Q of the LC resonance circuit 60 is sufficiently large, electric power can be transmitted by magnetic field resonance even if it is several meters away.
 なお、中心軸を一致させるのは、送電側及び受電側のLC共振回路60の間に良好な磁界共鳴を生じさせるためである。この例では、送電側及び受電側のLC共振回路60の各々の中心軸が一致する場合について説明したが、これに限られることはなく、磁界共鳴方式によれば、送電コイル22と受電コイル31の位置ずれに対しても、電磁気誘導方式よりも強いというメリットがある。 The reason why the central axes coincide is to cause good magnetic field resonance between the LC resonance circuit 60 on the power transmission side and the power reception side. In this example, the case where the central axes of the LC resonance circuits 60 on the power transmission side and the power reception side coincide with each other has been described. However, the present invention is not limited to this, and according to the magnetic field resonance method, the power transmission coil 22 and the power reception coil 31 are used. There is also a merit that it is stronger than the electromagnetic induction method.
 換言すると、磁界共鳴方式によれば、LC共振回路60同士の間の距離又は位置ずれについて、電磁気誘導方式よりも自由度が高く、ポジションフリー(Position free)という特長がある。この結果、LC共振回路60は、中心軸を一致させて配置する必要はなく、互いに角度を有するような位置関係で配設するようにしてもよい。 In other words, according to the magnetic field resonance method, the distance or position shift between the LC resonance circuits 60 has a higher degree of freedom than the electromagnetic induction method, and is characterized by position free. As a result, the LC resonance circuit 60 does not have to be arranged with the central axes coincident with each other, and may be arranged in a positional relationship having an angle with each other.
 また、送電側及び受電側のLC共振回路60は、ある程度距離が離れていても磁界共鳴方式による電力の伝送が可能であるため、LC共振回路60の直径は送電側及び受電側で異なっていてもよい。例えば、LC共振回路60の直径は送電側と受電側とで10倍程度異なっていてもよい。これは、磁界共鳴による電力の伝送は、電磁界結合を利用した電磁気誘導方式による電力の伝送と異なり、送電側及び受電側のLC共振回路60の離隔距離がある程度離れていても電力を伝送できるからである。 Further, since the LC resonance circuit 60 on the power transmission side and the power reception side can transmit power by the magnetic field resonance method even if they are separated to some extent, the diameter of the LC resonance circuit 60 is different on the power transmission side and the power reception side. Also good. For example, the diameter of the LC resonance circuit 60 may differ by about 10 times between the power transmission side and the power reception side. This is because power transmission by magnetic field resonance is different from power transmission by electromagnetic induction using electromagnetic field coupling, and power can be transmitted even if the separation distance between the LC resonance circuit 60 on the power transmission side and the power reception side is somewhat separated. Because.
 上述の実施形態では血糖値の測定に関して、GOD法(酵素電極法の1つ)について説明したが、これに限られることはなく、酵素電極法の他の一例となるグルコースデヒドロゲナーゼ(GDH)法を利用してもよい。GDH法の測定原理によれば、グルコースセンサ中のGDHが血液中のブドウ糖と反応し、グルコノラクトンと電子を発生する。すると、グルコースセンサ中に含まれるフェリシアン化イオンが還元型のフェリシアン化イオンに変化し、再び、フェリシアン化イオンに酸化して、電極に起電力が発生し、これが血液中のブドウ糖の濃度に比例する現象を起こす。これの現象を利用したものである。 In the above-described embodiment, the GOD method (one of the enzyme electrode methods) has been described with respect to the measurement of the blood glucose level. However, the present invention is not limited to this, and a glucose dehydrogenase (GDH) method, which is another example of the enzyme electrode method, is used. May be used. According to the measurement principle of the GDH method, GDH in the glucose sensor reacts with glucose in the blood to generate gluconolactone and electrons. Then, the ferricyanide ion contained in the glucose sensor changes to reduced ferricyanide ion, and again oxidizes to ferricyanide ion, generating an electromotive force at the electrode, which is the concentration of glucose in the blood. Cause a phenomenon proportional to This phenomenon is utilized.
 また、上述した実施形態では、給電可能なエリア内に1つの無線電力受信器30が存在する場合について説明したが、これに限られることはない。例えば、給電可能なエリア内に複数の無線電力受信器30が存在する場合であって、それぞれの給電条件が異なる場合は、最初にアドレスコードを送信した無線電力受信器30から、先着順に給電を開始するようにしてもよい。更に、給電条件が同じ無線電力受信器30が複数存在していた場合は、複数の無線電力受信器30を同時に給電する同時給電方式を採ってもよい。 In the above-described embodiment, the case where one wireless power receiver 30 is present in the power supplyable area has been described, but the present invention is not limited to this. For example, when there are a plurality of wireless power receivers 30 in an area where power can be supplied and the power supply conditions are different, power is supplied in order of arrival from the wireless power receiver 30 that first transmitted the address code. You may make it start. Furthermore, when there are a plurality of wireless power receivers 30 having the same power supply conditions, a simultaneous power supply method of supplying power to the plurality of wireless power receivers 30 at the same time may be employed.
 1・・・無線電力給電システム、10,40・・・DC電源、11.41・・・蓄電池、20・・・無線電力送信器、21・・・電力増幅部、22・・・送電コイル、23,34・・・アンテナ、24,33・・・無線通信部、25,35・・・制御部、26・・・記憶部、30・・・無線電力受信器、31・・・受電コイル、32・・・電力変換部、50・・・負荷回路、51・・・検知部、60・・・LC共振回路 DESCRIPTION OF SYMBOLS 1 ... Wireless power feeding system, 10, 40 ... DC power supply, 11.41 ... Storage battery, 20 ... Wireless power transmitter, 21 ... Power amplification part, 22 ... Power transmission coil, 23, 34 ... antenna, 24, 33 ... wireless communication unit, 25, 35 ... control unit, 26 ... storage unit, 30 ... wireless power receiver, 31 ... receiving coil, 32 ... Power conversion unit, 50 ... Load circuit, 51 ... Detection unit, 60 ... LC resonance circuit

Claims (11)

  1.  生体装着用の生体センサに実装可能な医療用の無線電力受信器に電力を供給する無線電力送信器であって、
     DC電源の出力を所定周波数の高周波信号に変換し、当該高周波信号を送電コイルに出力する電力増幅部と、
     前記送電コイルから誘導される前記高周波信号を取り込む前記無線電力受信器から、給電情報を受信する無線通信部と、
     前記無線通信部から得られる前記給電情報に各々対応させた複数の給電パターンを記憶する記憶部と、
     前記記憶部から読み出された一つの給電パターンに基づいて前記電力増幅部の出力を制御する制御部とを備え、
     前記無線電力受信器を立ち上げるための第1の電力をP1とし、
     定常給電時の前記無線電力受信器に給電するための第2の電力をP2としたとき、
     給電初期時にP1<P2に設定され、
     前記制御部は、
     給電初期時、前記無線電力受信器へ前記第2の電力よりも低い前記第1の電力を出力するように前記電力増幅部を制御するステップと、
     前記無線電力受信器の立ち上がりと共に当該無線電力受信器の充電条件を示す給電情報を検知するステップと、
     定常給電時、前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出すステップと、
     読み出した前記給電パターンに基づいて前記電力増幅部の出力を決定するステップと、
     決定した前記電力増幅部の出力に基づく前記第2の電力を前記無線電力受信器へ給電するステップとを、
     実行する無線電力送信器。
    A wireless power transmitter for supplying power to a medical wireless power receiver that can be mounted on a biological sensor for biological wearing,
    A power amplifier that converts the output of the DC power source into a high-frequency signal of a predetermined frequency and outputs the high-frequency signal to the power transmission coil;
    A wireless communication unit that receives power supply information from the wireless power receiver that captures the high-frequency signal induced from the power transmission coil;
    A storage unit for storing a plurality of power supply patterns respectively corresponding to the power supply information obtained from the wireless communication unit;
    A control unit for controlling the output of the power amplification unit based on one power feeding pattern read from the storage unit,
    The first power for starting up the wireless power receiver is P1,
    When the second power for supplying power to the wireless power receiver at the time of steady power supply is P2,
    P1 <P2 is set at the beginning of power supply,
    The controller is
    Controlling the power amplifying unit to output the first power lower than the second power to the wireless power receiver at an initial feeding stage; and
    Detecting power supply information indicating a charging condition of the wireless power receiver together with the rising of the wireless power receiver;
    At the time of steady power supply, a step of reading one power supply pattern corresponding to the read code from a plurality of power supply patterns with the read code included in the power supply information as an address;
    Determining an output of the power amplifier based on the read power supply pattern;
    Feeding the second power based on the determined output of the power amplifier to the wireless power receiver;
    Wireless power transmitter to run.
  2.  前記記憶部は、温度-電流給電特性、電流-電圧給電特性、電流-時間給電特性及び電圧-時間給電特性の少なくともいずれか1つの給電パターンを記憶する請求項1に記載の無線電力送信器。 The wireless power transmitter according to claim 1, wherein the storage unit stores at least one of a power supply pattern of temperature-current power supply characteristics, current-voltage power supply characteristics, current-time power supply characteristics, and voltage-time power supply characteristics.
  3.  生体装着用の生体センサに実装可能な医療用の無線電力受信器であって、
     無線電力送信器の送電コイルから誘導される高周波信号を、受電コイルを介して取り込み直流に変換する電力変換部と、
     前記電力変換部より直流が供給されるDC電源の出力を負荷回路に給電する制御部と、
     前記負荷回路の充電条件を示す給電情報を、アンテナを介して、前記無線電力送信器の側へ送信する無線通信部とを備え、
     少なくとも、前記制御部を立ち上げるための第1の電力をP1とし、
     定常給電時の前記負荷回路に給電するための第2の電力をP2としたとき、
     給電初期時にP1<P2に設定され、
     前記制御部は、
     給電初期時、前記第2の電力よりも低い前記第1の電力を受け取るように前記電力変換部を制御するステップと、
     前記電力変換部の立ち上がりと共に前記負荷回路の給電情報を検知するステップと、
     定常給電時、前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出すステップと、
     前記読み出しコードに対応した給電パターンに基づいて決定される前記無線電力送信器の出力に基づく前記第2の電力を前記負荷回路へ給電するステップとを、
    実行する
     医療用の無線電力受信器。
    A wireless power receiver for medical use that can be mounted on a biological sensor for biological wearing,
    A power converter that takes in a high-frequency signal derived from the power transmission coil of the wireless power transmitter and converts it into direct current through the power receiving coil;
    A controller that feeds an output of a DC power source to which a direct current is supplied from the power converter, to a load circuit;
    A wireless communication unit that transmits power supply information indicating a charging condition of the load circuit to the wireless power transmitter side via an antenna;
    At least the first power for starting up the control unit is P1,
    When the second power for supplying power to the load circuit during steady power supply is P2,
    P1 <P2 is set at the beginning of power supply,
    The controller is
    Controlling the power conversion unit so as to receive the first power lower than the second power at the beginning of power supply; and
    Detecting power supply information of the load circuit as the power conversion unit rises;
    At the time of steady power supply, a step of reading one power supply pattern corresponding to the read code from a plurality of power supply patterns with the read code included in the power supply information as an address;
    Supplying the second power to the load circuit based on the output of the wireless power transmitter determined based on a power supply pattern corresponding to the read code;
    Run a wireless power receiver for medical use.
  4.  前記電力変換部が、
     前記制御部を立ち上げるための第1の電力を受け取ると、
     前記無線通信部が、
     前記制御部の立ち上がりと共に前記給電情報を前記無線電力送信器へ出力し、
     前記制御部が、
     前記給電情報に対応させた給電パターンに基づいて決定された前記無線電力送信器の出力に基づく第2の電力を受け取るように前記電力変換部を制御する請求項3に記載の医療用の無線電力受信器。
    The power converter is
    When receiving the first power for starting up the control unit,
    The wireless communication unit is
    Output the power supply information to the wireless power transmitter with the rise of the control unit,
    The control unit is
    The medical wireless power according to claim 3, wherein the power conversion unit is controlled to receive second power based on an output of the wireless power transmitter determined based on a power supply pattern corresponding to the power supply information. Receiver.
  5.  前記DC電源から給電を受ける負荷回路には検知部が設けられ、
     前記給電情報には、
     前記検知部から得られる所定の検出量を示す情報が含まれる請求項3に記載の医療用の無線電力受信器。
    The load circuit that receives power from the DC power supply is provided with a detection unit,
    The power supply information includes
    The medical wireless power receiver according to claim 3, comprising information indicating a predetermined detection amount obtained from the detection unit.
  6.  前記検知部には、生物の生体情報を検知する生体センサが含まれる請求項5に記載の医療用の無線電力受信器。 The medical wireless power receiver according to claim 5, wherein the detection unit includes a biological sensor that detects biological information of a living organism.
  7.  生体装着用の生体センサに実装可能な医療用の無線電力受信器に電力を供給する医療用の無線電力給電システムであって、
     送電側のDC電源の出力を所定周波数の高周波信号に変換し、当該高周波信号を送電コイルに出力する無線電力送信器と、
     前記高周波信号を、受電コイルを介して受け取り、当該高周波信号を直流に変換したDC電源の出力を負荷回路に給電する、医療用の無線電力受信器とを備え、
     前記無線電力受信器を立ち上げるための第1の電力をP1とし、
     定常給電時の前記無線電力受信器に給電するための第2の電力をP2としたとき、
     給電初期時にP1<P2に設定され、
     無線電力給電システムでは、
     給電初期時、前記無線電力送信器が前記無線電力受信器へ前記第2の電力よりも低い前記第1の電力を出力し、
     前記無線電力受信器の立ち上がりと共に前記無線電力送信器が負荷回路の充電条件を示す給電情報を検知し、
     定常給電時、前記無線電力送信器が前記給電情報に含まれる読み出しコードをアドレスにして複数の給電パターンの中から当該読み出しコードに対応した1つの給電パターンを読み出し、
     前記読み出しコードに対応した給電パターンに基づいて送信側の出力を決定し、
     前記無線電力送信器が、決定された送信側の出力に基づく前記第2の電力を前記無線電力受信器へ給電する
     医療用の無線電力給電システム。
    A medical wireless power feeding system that supplies power to a medical wireless power receiver that can be mounted on a biological sensor for wearing on a living body,
    A wireless power transmitter that converts the output of the DC power supply on the power transmission side to a high frequency signal of a predetermined frequency, and outputs the high frequency signal to the power transmission coil;
    A radio power receiver for medical use, receiving the high-frequency signal through a power receiving coil, and feeding the output of a DC power source obtained by converting the high-frequency signal into direct current to a load circuit;
    The first power for starting up the wireless power receiver is P1,
    When the second power for supplying power to the wireless power receiver at the time of steady power supply is P2,
    P1 <P2 is set at the beginning of power supply,
    In the wireless power supply system,
    At the initial feeding time, the wireless power transmitter outputs the first power lower than the second power to the wireless power receiver,
    With the rise of the wireless power receiver, the wireless power transmitter detects power supply information indicating a charging condition of the load circuit,
    At the time of steady power supply, the wireless power transmitter reads one power supply pattern corresponding to the read code from a plurality of power supply patterns with the read code included in the power supply information as an address,
    Determine the output on the transmission side based on the power feeding pattern corresponding to the read code,
    The medical wireless power supply system in which the wireless power transmitter supplies the second power based on the determined output on the transmission side to the wireless power receiver.
  8.  前記無線電力送信器には、
     請求項1又は請求項2のいずれかの無線電力送信器が使用される請求項7に記載の医療用の無線電力給電システム。
    The wireless power transmitter includes:
    The medical wireless power supply system according to claim 7, wherein the wireless power transmitter according to claim 1 or 2 is used.
  9.  前記無線電力受信器には、
     請求項3、請求項4、請求項5及び請求項6に記載のいずれかの医療用の無線電力受信器が使用される請求項7に記載の医療用の無線電力給電システム。
    The wireless power receiver includes
    The medical wireless power supply system according to claim 7, wherein the medical wireless power receiver according to any one of claims 3, 4, 5, and 6 is used.
  10.  前記無線電力送信器が、前記負荷回路を操作する外部機器及びインターネットに接続可能なスマートフォンの少なくともいずれか一方に実装される請求項7に記載の医療用の無線電力給電システム。 The medical wireless power supply system according to claim 7, wherein the wireless power transmitter is mounted on at least one of an external device that operates the load circuit and a smartphone that can be connected to the Internet.
  11.  前記無線電力受信器が、前記負荷回路及びDC電源を一体化したセンサモジュールに実装される請求項7に記載の医療用の無線電力給電システム。 The medical wireless power supply system according to claim 7, wherein the wireless power receiver is mounted on a sensor module in which the load circuit and a DC power source are integrated.
PCT/JP2018/016531 2017-04-27 2018-04-24 Wireless power transmitter, wireless power receiver for medical use, and wireless power supply system thereof WO2018199057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017088421A JP2018186683A (en) 2017-04-27 2017-04-27 Wireless power transmitter, wireless power receiver and wireless power feeding system
JP2017-088421 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018199057A1 true WO2018199057A1 (en) 2018-11-01

Family

ID=63919006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016531 WO2018199057A1 (en) 2017-04-27 2018-04-24 Wireless power transmitter, wireless power receiver for medical use, and wireless power supply system thereof

Country Status (2)

Country Link
JP (1) JP2018186683A (en)
WO (1) WO2018199057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512150B1 (en) * 2021-01-29 2023-03-20 홍익대학교 산학협력단 Wireless power transmitting apparatus for using moire lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314318A (en) * 1997-05-21 1998-12-02 Kaajiopeeshingu Res Lab:Kk Heart pacemaker device
WO2015064473A1 (en) * 2013-10-28 2015-05-07 京セラ株式会社 Control device
WO2016125227A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Non-contact power transmission device, electric apparatus, and non-contact power transmission system
JP2016531662A (en) * 2013-07-29 2016-10-13 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ Embedded charging station control by wireless link
JP2017017988A (en) * 2016-09-05 2017-01-19 ソニー株式会社 Terminal device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007596A1 (en) * 2000-07-21 2002-01-31 Medtronic, Inc. Measurement and communication of body parameters
US9132276B2 (en) * 2010-12-10 2015-09-15 Cochlear Limited Portable power charging of implantable medical devices
JP2012223070A (en) * 2011-04-14 2012-11-12 Sony Corp Power controller, power control method, and program
US9079043B2 (en) * 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
US9270134B2 (en) * 2012-01-27 2016-02-23 Medtronic, Inc. Adaptive rate recharging system
US9504842B2 (en) * 2013-07-23 2016-11-29 Ado Holding Sa Electronic medical system with implantable medical device, having wireless power supply transfer
KR102337934B1 (en) * 2014-11-04 2021-12-13 삼성전자주식회사 Electronic device and method for sharing electric power in wireless charging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10314318A (en) * 1997-05-21 1998-12-02 Kaajiopeeshingu Res Lab:Kk Heart pacemaker device
JP2016531662A (en) * 2013-07-29 2016-10-13 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ Embedded charging station control by wireless link
WO2015064473A1 (en) * 2013-10-28 2015-05-07 京セラ株式会社 Control device
WO2016125227A1 (en) * 2015-02-02 2016-08-11 三菱電機株式会社 Non-contact power transmission device, electric apparatus, and non-contact power transmission system
JP2017017988A (en) * 2016-09-05 2017-01-19 ソニー株式会社 Terminal device

Also Published As

Publication number Publication date
JP2018186683A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US11986290B2 (en) Analyte sensor
US11777340B2 (en) Charging case for electronic contact lens
US9380971B2 (en) Method and system for powering an electronic device
CN104662787B (en) The feedback control coil actuator transmitted for induction power
Li et al. Body-area powering with human body-coupled power transmission and energy harvesting ICs
EP2889982A1 (en) Wireless power transmission apparatus and energy charging apparatus
US20180126053A1 (en) Wristwatch for monitoring operation of an implanted ventricular assist device
TW202033152A (en) Optical communication of ophthalmic devices
US20240028535A1 (en) Remotely-powered sensing system with multiple sensing devices
WO2018199057A1 (en) Wireless power transmitter, wireless power receiver for medical use, and wireless power supply system thereof
Pandey et al. Toward an active contact lens: Integration of a wireless power harvesting IC
Nguyen et al. A smart health tracking ring powered by wireless power transfer
US20180254631A1 (en) Power Receiving Unit For Charging While In Pre-Overvoltage Protection
US7912547B2 (en) Device for optimizing transmitting energy and transmitting position for an implantable electrical stimulator
CN100508876C (en) Wrist watch for detecting human body physiological state
Olivo et al. Electronic implants: Power delivery and management
US9399142B2 (en) Implantable medical device and system
Leoni et al. RF energy harvested sensory headwear for quadriplegic people
JP2024509675A (en) Network physical layer configuration for portable physiological parameter monitoring and therapeutic intervention systems
CN205377465U (en) Can indicate wireless charger and chargeable implanted medical instrument of adjustment position
Liu et al. Body-based capacitive coupling and conductive channel power transfer for wearable and implant electronics
EP3261529B1 (en) Analyte sensor and method of using analyte sensor
Kuwana et al. Implantable telemetry capsule for monitoring arterial oxygen saturation and heartbeat
Chaari et al. Overview and Challenges of Wireless Communication and Power Transfer for Implanted Sensors
Dentis Wireless Charging and Power Management System for Biomedical Implantable Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790366

Country of ref document: EP

Kind code of ref document: A1