WO2018198457A1 - Laminate for biosensor and biosensor - Google Patents

Laminate for biosensor and biosensor Download PDF

Info

Publication number
WO2018198457A1
WO2018198457A1 PCT/JP2018/002670 JP2018002670W WO2018198457A1 WO 2018198457 A1 WO2018198457 A1 WO 2018198457A1 JP 2018002670 W JP2018002670 W JP 2018002670W WO 2018198457 A1 WO2018198457 A1 WO 2018198457A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
layer
base material
probe
sensitive adhesive
Prior art date
Application number
PCT/JP2018/002670
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
豊田 英志
敬史 竹村
森 重恭
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2018198457A1 publication Critical patent/WO2018198457A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor

Definitions

  • the present invention relates to a biosensor laminate and a biosensor.
  • a wearable device As a biosensor, a wearable device has been proposed in which a printed circuit board including a flexible insulating layer and a conductive pattern embedded in an upper portion of the insulating layer is attached to a user's skin. (For example, refer to Patent Document 1).
  • the conductor pattern includes a wiring and two terminals continuous at both ends thereof, and a memory and a sensor are mounted on each of the two terminals.
  • the present invention provides a biosensor laminate and a biosensor capable of preventing a short circuit through a living body surface.
  • the present invention (1) includes a pressure-sensitive adhesive layer for application to the surface of a living body, a base layer having elasticity that is disposed on the top surface of the pressure-sensitive adhesive layer, and a wiring layer disposed on the base layer.
  • the probe embedded in the pressure-sensitive adhesive layer so as to be exposed from the lower surface of the pressure-sensitive adhesive layer, and electrically connecting the wiring layer and the probe so as to pass through the pressure-sensitive adhesive layer.
  • a biosensor laminate comprising a connection portion for connection.
  • the probe since the probe is exposed from the lower surface of the pressure-sensitive adhesive layer, if the lower surface of the pressure-sensitive adhesive layer is attached to the living body surface, the probe can contact the living body surface and sense the living body. can do.
  • the wiring layer is disposed on the base material layer disposed on the upper surface of the pressure-sensitive adhesive layer, that is, disposed on the base material layer disposed on the opposite side of the pressure-sensitive adhesive layer from the side where the probe is embedded. Yes. Therefore, the wiring layer can prevent contact with the surface of the living body. As a result, the wiring layer can prevent a short circuit through the living body surface.
  • the present invention (2) includes the biosensor laminate according to (1), wherein at least a part of the wiring layer is embedded in the base material layer.
  • the wiring layer is embedded in the base material layer, so that the thickness can be reduced.
  • the present invention (3) includes the biosensor laminate according to (1) or (2), wherein the material of the pressure-sensitive adhesive layer has biocompatibility.
  • the material of the pressure-sensitive adhesive layer has biocompatibility, the load on the living body can be suppressed.
  • the present invention (4) includes the biosensor laminate according to any one of (1) to (3), wherein the material of the base material layer is a polyurethane resin.
  • the material of the base material layer is a polyurethane resin
  • the base material layer has excellent stretchability. Therefore, the sticking feeling of the living body (feeling that the living body is sticking. Wearing feeling) can be reduced.
  • the present invention (5) is mounted on the base material layer so as to be electrically connected to the biosensor laminate according to any one of (1) to (4) and the wiring layer.
  • a biosensor including an electronic component.
  • this biosensor includes the above-described laminated body for biosensors, reliable sensing can be performed.
  • the laminate for a biosensor and the biosensor of the present invention can reliably sense a living body.
  • FIG. 1 shows the top view of one Embodiment of the laminated body for biosensors of this invention.
  • 2A and 2B are cross-sectional views of the biosensor laminate shown in FIG. 1.
  • FIG. 2A is a cross-sectional view taken along the line AA
  • FIG. 2B is a cross-sectional view taken along the line BB.
  • 3A to 3D are manufacturing process diagrams of the biosensor laminate shown in FIG. 2A.
  • FIG. 3A is a process for preparing a base material layer and a wiring layer
  • FIG. 3B is a pressure-sensitive adhesive layer and a base material layer.
  • 3C shows a step of forming an opening and preparing a probe member
  • FIG. 3D shows a step of fitting the probe member into the opening, and a step of forming a connection portion.
  • FIG. 4 is a perspective view of the probe-containing sheet as viewed from below, and shows a perspective view in which a part of the second release sheet is cut out.
  • FIG. 5 is a perspective view for explaining a manufacturing process of the probe member.
  • An upper side view is a perspective view seen from the lower side.
  • a lower side view shows a perspective view seen from the upper side.
  • 6A to 6C are exploded perspective views of the probe member.
  • FIG. 6A shows the probe member
  • FIG. 6B shows the connection portion
  • FIG. 6C shows the opening at one end portion in the longitudinal direction of the biosensor laminate.
  • FIG. 7A to 7D are cross-sectional views of a biosensor laminate according to a modification of one embodiment.
  • FIG. 7A shows an embodiment in which the lower part of the wiring layer is embedded in the base material layer, and FIG. A mode in which the wiring layer is not exposed from the base material layer without being embedded in the material layer,
  • FIG. 7C is a mode in which the wiring layer is embedded in the base material layer, FIG. The aspect embedded in a base material layer so that it may be exposed from the base material lower surface is shown.
  • FIG. 8 shows a cross-sectional view of a biosensor laminate (an embodiment in which an upper portion of a probe is embedded in a pressure-sensitive adhesive layer) according to a modification of one embodiment.
  • FIG. 8 shows a cross-sectional view of a biosensor laminate (an embodiment in which an upper portion of a probe is embedded in a pressure-sensitive adhesive layer) according to a modification of one embodiment.
  • FIG. 9 is a cross-sectional view of a biosensor laminate (probe is substantially plate-shaped) according to a modification of the embodiment.
  • FIG. 10 is a cross-sectional view of a biosensor laminate (probe having a solid columnar shape) according to a modification of the embodiment.
  • FIG. 11 is a plan view of a biosensor laminate (a connection portion is substantially a rod (needle) column shape) according to a modified example of the embodiment.
  • FIG. 12 is a cross-sectional view taken along line AA of the biosensor laminate shown in FIG.
  • FIG. 13 is a cross-sectional view of a biosensor laminate (a connection portion is a substantially rod (needle) shape and a probe is a substantially plate shape) according to a modification of one embodiment.
  • FIG. 14A and 14B are further modifications of the biosensor laminate shown in FIG. 12, in which FIG. 14A is an embodiment in which a conductive pressure-sensitive adhesive layer is provided on the lower surface of the probe, and FIG. 14B is a pressure-sensitive strong adhesive layer as a probe. The aspect provided in this hole is shown.
  • FIG. 15 shows the top view of the laminated body for biosensors (mode which a probe and a connection part are integrated) of the modification of one Embodiment.
  • FIG. 16 is a cross-sectional view taken along line AA of the biosensor laminate shown in FIG. 17A and 17B show a modification in which the probe is larger than the connection portion, FIG. 17A is a sectional view, and FIG. 17B is an enlarged perspective view of the probe and the connection portion shown in FIG. 17A.
  • a biosensor laminate 1 as an embodiment of the biosensor laminate of the present invention will be described with reference to FIGS. 1 to 6C.
  • the horizontal direction on the paper surface is the longitudinal direction (first direction) of the biosensor laminate 1.
  • the right side of the drawing is one side in the longitudinal direction (one side in the first direction), and the left side of the drawing is the other side in the longitudinal direction (the other side in the first direction).
  • the up and down direction on the paper surface is the short direction (the direction perpendicular to the longitudinal direction, the width direction, and the second direction perpendicular to the first direction) of the biosensor laminate 1.
  • the upper side of the drawing is one side in the short direction (one side in the width direction, one side in the second direction), and the lower side of the drawing is the other side in the short direction (the other side in the width direction, the other side in the second direction).
  • the paper thickness direction is the vertical direction of the biosensor laminate 1 (thickness direction, third direction orthogonal to the first direction and the second direction).
  • the front side of the paper is the upper side (one side in the thickness direction, the one side in the third direction), and the back side of the paper is the lower side (the other side in the thickness direction, the other side in the third direction).
  • the direction conforms to the direction arrow described in each drawing.
  • the biosensor laminate 1 has a substantially flat plate shape extending in the longitudinal direction.
  • the biosensor laminate 1 includes a pressure-sensitive adhesive layer 2, a base material layer 3 disposed on the top surface of the pressure-sensitive adhesive layer 2, a wiring layer 4 disposed on the base material layer 3, and a pressure-sensitive adhesive layer 2.
  • the probe 5 embedded in the pressure-sensitive adhesive layer 2 and the connection part 6 that electrically connects the wiring layer 4 and the probe 5 are provided so as to be exposed from the adhesive lower surface 9 as an example of the lower surface of the electrode.
  • the pressure-sensitive adhesive layer 2 forms the lower surface of the biosensor laminate 1.
  • the pressure-sensitive adhesive layer 2 is a layer that imparts pressure-sensitive adhesiveness to the lower surface of the biosensor laminate 1 in order to attach the lower surface of the biosensor laminate 1 to the living body surface (skin 33 or the like). .
  • the pressure-sensitive adhesive layer 2 forms the outer shape of the biosensor laminate 1.
  • the pressure sensitive adhesive layer 2 has a flat plate shape extending in the longitudinal direction. Specifically, for example, the pressure-sensitive adhesive layer 2 has a strip shape extending in the longitudinal direction, and has a shape in which the center portion in the longitudinal direction swells toward both outer sides in the lateral direction. Further, in the pressure-sensitive adhesive layer 2, both ends in the short direction of the central portion in the longitudinal direction are located on both outer sides in the short direction with respect to both ends in the short direction other than the central portion in the longitudinal direction.
  • the pressure-sensitive adhesive layer 2 has an adhesive upper surface 8 as an example of an upper surface and an adhesive lower surface 9.
  • the adhesive upper surface 8 is a flat surface.
  • the adhesive lower surface 9 is disposed to face the lower side of the adhesive upper surface 8 with a gap.
  • the pressure-sensitive adhesive layer 2 has two adhesive openings 11 at both ends in the longitudinal direction.
  • Each of the two bonding openings 11 has a substantially ring shape in plan view.
  • the adhesive opening 11 penetrates the thickness direction of the pressure-sensitive adhesive layer 2.
  • the bonding opening 11 is filled with the connecting portion 6.
  • the adhesive lower surface 9 inside the adhesive opening 11 has an adhesive groove 10 corresponding to the probe 5 (described later).
  • the adhesive groove 10 is opened downward.
  • the material of the pressure-sensitive adhesive layer 2 is not particularly limited as long as it is a material having pressure-sensitive adhesiveness, and preferably includes a material having biocompatibility.
  • examples of such materials include acrylic pressure sensitive adhesives and silicone pressure sensitive adhesives.
  • an acrylic pressure sensitive adhesive is used.
  • the acrylic pressure-sensitive adhesive include acrylic polymers described in JP-A-2003-325441.
  • the keratin peeling area ratio is, for example, 50% or less, preferably 30% or less, more preferably 15% or less, and for example, 0% or more. is there. If the stratum corneum peeling area ratio is equal to or less than the above upper limit, even if the pressure-sensitive adhesive layer 2 is adhered to a living body, the load on the living body can be suppressed. That is, the material of the pressure-sensitive adhesive layer 2 can have excellent biocompatibility.
  • the stratum corneum peeling test is measured by the method described in JP-A-2004-83425.
  • the moisture permeability of the pressure-sensitive adhesive layer 2 is, for example, 300 (g / m 2 / day) or more, preferably 600 (g / m 2 / day) or more, and more preferably 1000 (g / m 2 / day). That's it.
  • the moisture permeability of the pressure-sensitive adhesive layer 2 is equal to or higher than the lower limit described above, even if the pressure-sensitive adhesive layer 2 is attached to a living body, the load on the living body can be suppressed. That is, the material of the pressure-sensitive adhesive layer 2 can have excellent biocompatibility.
  • the material of the pressure-sensitive adhesive layer 2 is biocompatible.
  • the thickness of the pressure-sensitive adhesive layer 2 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and, for example, less than 100 ⁇ m, preferably as the distance between the adhesive upper surface 8 and the adhesive lower surface 9 in the region other than the adhesive groove 10. 50 ⁇ m or less.
  • the base material layer 3 forms the upper surface of the biosensor laminate 1.
  • the base material layer 3 forms the outer shape of the biosensor laminate 1 together with the pressure-sensitive adhesive layer 2.
  • the planar view shape of the base material layer 3 is the same as the planar view shape of the pressure-sensitive adhesive layer 2.
  • the base material layer 3 is disposed on the entire upper surface of the pressure-sensitive adhesive layer 2 (however, excluding the region where the connection portion 6 is provided).
  • the base material layer 3 is a support layer that supports the pressure-sensitive adhesive layer 2.
  • the base material layer 3 has a flat plate shape extending in the longitudinal direction.
  • the substrate layer 3 has a substrate lower surface 12 and a substrate upper surface 13 as an example of the upper surface.
  • the base material lower surface 12 is a flat surface.
  • the base material lower surface 12 is in contact (pressure-sensitive adhesion) with the adhesive upper surface 8 of the pressure-sensitive adhesive layer 2.
  • the base material upper surface 13 is disposed to face the upper surface of the base material lower surface 12 with a gap.
  • the base material upper surface 13 has a base material groove 14 corresponding to the wiring layer 4.
  • the substrate groove 14 has the same pattern shape as the wiring layer 4 in plan view.
  • the base material groove 14 is opened upward.
  • the base material layer 3 has a base material opening 15 corresponding to the adhesive opening 11.
  • the base material opening 15 communicates with the bonding opening 11 in the thickness direction.
  • the base material opening 15 has a substantially ring shape in plan view having the same shape and the same dimensions as the bonding opening 11.
  • the material of the base material layer 3 has stretchability. Moreover, the material of the base material layer 3 has an insulating layer, for example.
  • An example of such a material is a resin.
  • the resin include thermoplastic resins such as polyurethane resins, silicone resins, acrylic resins, polystyrene resins, vinyl chloride resins, and polyester resins.
  • the material of the base material layer 3 is preferably a polyurethane resin.
  • the breaking elongation of the base material layer 3 is, for example, 100% or more, preferably 200% or more, more preferably 300% or more, and for example, 2000% or less. If the breaking elongation is not less than the above lower limit, the material of the base material layer 3 can have excellent stretchability.
  • the elongation at break is measured according to JIS K 7127 (1999) with a tensile rate of 5 mm / min and a test piece type 2.
  • the tensile strength at 20 ° C. of the base material layer 3 (100 mm between chucks, tensile speed 300 mm / min, strength at break) is, for example, 0.1 N / 20 mm or more, preferably 1 N / 20 mm or more. For example, it is 20 N / 20 mm or less.
  • the tensile strength is JIS Measured based on K 7127 (1999).
  • the tensile storage elastic modulus E ′ at 20 ° C. of the base material layer 3 is, for example, 2,000 MPa or less, preferably 1,000 MPa or less, more preferably 100 MPa or less, still more preferably 50 MPa or less, particularly preferably. , 20 MPa or less, and for example, 0.1 MPa or more. If the tensile storage elastic modulus E ′ of the base material layer 3 is not more than the above upper limit, the material of the base material layer 3 can have excellent stretchability.
  • the tensile storage elastic modulus E ′ at 20 ° C. of the base material layer 3 is obtained by measuring the dynamic viscoelasticity of the base material layer 3 under the conditions of a frequency of 1 Hz and a temperature increase rate of 10 ° C./min.
  • the elongation at break is 100% or more
  • the tensile strength is 20 N / 20 mm or less
  • the tensile storage elastic modulus E ′ is at least one requirement of 2,000 MPa or less, preferably 2 If one or more requirements, more preferably all three requirements are satisfied, the material of the base material layer 3 has elasticity.
  • the thickness of the base material layer 3 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, for example, 300 ⁇ m or less, as the distance between the base material lower surface 12 and the base material upper surface 13 in the region other than the base material groove 14. Preferably, it is 10 ⁇ m or less.
  • the wiring layer 4 is embedded in the base material groove 14. Specifically, the wiring layer 4 is embedded in the upper part of the base material layer 3 so as to be exposed from the base material upper surface 13 of the base material layer 3.
  • the wiring layer 4 has an upper surface and a lower surface that are spaced apart from each other, and a side surface that connects their peripheral edges. All of the lower surface and all of the side surfaces are in contact with the base material layer 3.
  • the upper surface is exposed from the substrate upper surface 13 (excluding the substrate groove 14).
  • the upper surface of the wiring layer 4 forms the upper surface of the biosensor laminate 1 together with the substrate upper surface 13.
  • the wiring layer 4 has a wiring pattern for connecting the connecting portion 6 to an electronic component 31 (described later) and a battery 32 (described later). Specifically, the wiring layer 4 includes a first wiring pattern 41 and a second wiring pattern 42 independently.
  • the first wiring pattern 41 is arranged on one side in the longitudinal direction of the base material layer 3.
  • the first wiring pattern 41 includes a first wiring 16A, and a first terminal 17A and a second terminal 17B continuous thereto.
  • the first wiring pattern 41 has a substantially T shape in plan view. Specifically, the first wiring pattern 41 extends from one end of the base material layer 3 in the longitudinal direction (the connecting portion 6) to the other side in the longitudinal direction, and branches at the center in the longitudinal direction of the base material layer 3. , Extending toward both outer sides in the short direction.
  • Each of the first terminal 17A and the second terminal 17B is disposed at each of both ends of the base layer 3 in the longitudinal direction center.
  • Each of the first terminal 17A and the second terminal 17B has a substantially rectangular shape (land shape) in plan view.
  • Each of the first terminal 17A and the second terminal 17B is continuous with both end portions of the first wiring 16A extending outward in the lateral direction at the center portion in the longitudinal direction of the base material layer 3.
  • the second wiring pattern 42 is provided on the other side in the longitudinal direction of the first wiring pattern 41 with an interval.
  • the second wiring pattern 42 includes a second wiring 16B, and a third terminal 17C and a fourth terminal 17D continuous thereto.
  • the second wiring pattern 42 has a substantially T shape in plan view. Specifically, the second wiring pattern 42 extends from the other end portion in the longitudinal direction of the base material layer 3 (the connection portion 6 located in the longitudinal direction) to one side in the longitudinal direction, and branches at the central portion in the longitudinal direction of the base material layer 3. Extending toward the outside in the lateral direction.
  • Each of the 3rd terminal 17C and the 4th terminal 17D is arranged in each of both ends of the transversal direction in the longitudinal direction central part of base material layer 3.
  • Each of the third terminal 17C and the fourth terminal 17D has a substantially rectangular shape (land shape) in plan view.
  • Each of the third terminal 17C and the fourth terminal 17D is continuous with each of both end portions of the second wiring 16B extending outward in the lateral direction at the center portion in the longitudinal direction of the base material layer 3.
  • Examples of the material of the wiring layer 4 include conductors such as copper, nickel, gold, and alloys thereof.
  • the material of the wiring layer 4 is preferably copper.
  • the thickness of the wiring layer 4 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 5 ⁇ m or less.
  • the probe 5 is an electrode that, when the pressure-sensitive adhesive layer 2 is attached to the surface of a living body, comes into contact with the surface of the living body and senses an electrical signal, temperature, vibration, sweat, metabolites, and the like from the living body.
  • the probe 5 is embedded in the adhesive groove 10 in the pressure-sensitive adhesive layer 2 inside the adhesive opening 11. That is, the probe 5 is embedded in the lower end portion of the pressure-sensitive adhesive layer 2 inside the adhesive opening 11.
  • the probe 5 has a substantially grid shape (or substantially mesh shape) in plan view. In other words, the probe 5 has holes that are spaced from each other in the surface direction (longitudinal direction and short direction). The hole is filled with the pressure-sensitive adhesive layer 2.
  • the probe 5 has a substantially rectangular shape in a cross-sectional view orthogonal to the direction in which the probe 5 extends.
  • the probe 5 includes a probe lower surface 20, a probe upper surface 21 that is disposed opposite to the probe lower surface 20 with a space therebetween, and a side surface that connects the probe lower surface 20 and the peripheral edge of the probe upper surface 21.
  • the probe lower surface 20 is exposed from the adhesive lower surface 9 (excluding the adhesive groove 10) of the pressure-sensitive adhesive layer 2.
  • the probe lower surface 20 is flush with the adhesive lower surface 9.
  • the probe lower surface 20 forms the lower surface of the biosensor laminate 1 together with the adhesive lower surface 9.
  • the probe upper surface 21 is covered with the pressure-sensitive adhesive layer 2.
  • the outermost surface of the side surfaces of the probe 5 is the outer surface 22.
  • the outer side surface 22 forms a virtual circle that passes through the outer side surface 22 in plan view.
  • Examples of the material of the probe 5 include the materials exemplified in the wiring layer 4 (specifically, conductors).
  • the external dimensions of the probe 5 are set so that the virtual circle passing through the outer surface 22 overlaps the inner peripheral surface defining the bonding opening 11 in plan view.
  • the thickness of the probe 5 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, less than 100 ⁇ m, preferably 75 ⁇ m or less.
  • connection part 6 is provided corresponding to the base material opening part 15 and the adhesion
  • the connection part 6 penetrates (passes) the base material layer 3 and the pressure-sensitive adhesive layer 2 in the thickness direction (vertical direction), and is filled in the base material opening 15 and the adhesive opening 11.
  • the connecting portion 6 has an endless shape in plan view along the outer surface 22 of the probe 5. Specifically, the connecting portion 6 has a substantially cylindrical shape whose axis extends in the thickness direction (along a virtual circle passing through the outer surface 22).
  • the inner surface of the connecting portion 6 is in contact with the outer surface 22 of the probe 5.
  • the connecting portion 6 is pressure-sensitively bonded to the pressure-sensitive adhesive layer 2 outside the adhesive opening 11 and the pressure-sensitive adhesive layer 2 inside the adhesive opening 11.
  • the upper surface of the connecting portion 6 is flush with the upper surface 13 of the base material.
  • the lower surface of the connecting portion 6 is flush with the adhesive lower surface 9.
  • connection portion 6 located on one side in the longitudinal direction is continuous with one end edge in the longitudinal direction of the first wiring 16 ⁇ / b> A located on one side in the longitudinal direction at the upper end portion.
  • connection portion 6 located on the other side in the longitudinal direction is continuous with the other end in the longitudinal direction of the wiring 16B located on the other side in the longitudinal direction at the upper end thereof.
  • connection part 6 electrically connects the wiring layer 4 and the probe 5.
  • Examples of the material of the connecting portion 6 include metals, conductive resins (including conductive polymers), and preferably include conductive resins.
  • the thickness (vertical length) of the connecting portion 6 is the same as the total thickness of the base material layer 3 and the pressure-sensitive adhesive layer 2.
  • the length in the radial direction of the connecting portion 6 (half value of the value obtained by subtracting the inner diameter from the outer diameter) is, for example, 1 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • a base material layer 3 and a wiring layer 4 are prepared.
  • the base material layer 3 and the wiring layer 4 are prepared so that the wiring layer 4 is embedded in the base material groove 14 by a method described in Japanese Patent Application Laid-Open Nos. 2017-2222236 and 2017-22237.
  • the pressure-sensitive adhesive layer 2 is arranged on the lower surface 12 of the base material.
  • the pressure-sensitive adhesive layer 2 In order to arrange the pressure-sensitive adhesive layer 2 on the lower surface 12 of the substrate, for example, first, a coating liquid containing the material of the pressure-sensitive adhesive layer 2 is prepared, and then the coating liquid is applied to the upper surface of the first release sheet 19. It is applied and then dried by heating. Thereby, the pressure-sensitive adhesive layer 2 is disposed on the upper surface of the first release sheet 19.
  • the first release sheet 19 has, for example, a substantially flat plate shape that extends in the longitudinal direction. Examples of the material of the first release sheet 19 include resins such as polyethylene terephthalate.
  • the pressure-sensitive adhesive layer 2 and the base material layer 3 are bonded together by, for example, a laminator. Specifically, the adhesion upper surface 8 of the pressure-sensitive adhesive layer 2 and the substrate lower surface 12 of the substrate layer 3 are brought into contact with each other.
  • the base material layer 3 and the pressure-sensitive adhesive layer 2 do not have the base material opening 15 and the adhesive opening 11, respectively.
  • the opening 23 is formed in the base material layer 3 and the pressure-sensitive adhesive layer 2.
  • the opening 23 penetrates the base material layer 3 and the pressure-sensitive adhesive layer 2.
  • the opening 23 is a substantially circular hole (through hole) in plan view defined by an outer peripheral surface that defines the base material opening 15 and an outer peripheral surface that defines the bonding opening 11.
  • the opening 23 is opened upward.
  • the lower end of the opening 23 is closed by the first release sheet 19.
  • the pressure-sensitive adhesive layer 2 and the base material layer 3 are punched and half-etched, for example.
  • the probe member 18 is prepared and fitted into the opening 23.
  • a probe-containing sheet 26 is prepared as shown in FIG.
  • the probe-containing sheet 26 includes a second release sheet 29, a probe pattern 25 formed on the second release sheet 29, and a pressure-sensitive adhesive layer 2 formed on the second release sheet 29 to embed the probe pattern 25. And a base material layer 3 disposed on the adhesive upper surface 8 of the pressure-sensitive adhesive layer 2.
  • the second release sheet 29 has the same configuration as the first release sheet 19 described above.
  • the probe pattern 25 has the same pattern shape as the probe 5, and the material of the probe pattern 25 is the same as the material of the probe 5.
  • the probe pattern 25 has a larger plane area than the virtual circle that passes through the outer surface 22 of the probe 5.
  • Each of the pressure-sensitive adhesive layer 2 and the base material layer 3 in the probe-containing sheet 26 has the same configuration as each of the pressure-sensitive adhesive layer 2 and the base material layer 3 described above.
  • the probe-containing sheet 26 is prepared by a method described in, for example, Japanese Patent Application Laid-Open No. 2017-22236 and Japanese Patent Application Laid-Open No. 2017-22237.
  • a photoresist is laminated on the entire upper surface of the seed layer.
  • the photoresist is exposed and developed to form a photoresist in the reverse pattern of the probe pattern 25.
  • the photoresist is removed.
  • a coating solution containing the material for the pressure-sensitive adhesive layer 2 is applied so as to cover the probe pattern 25 and cured to form the pressure-sensitive adhesive layer 2.
  • the base material layer 3 is bonded to the upper surface of the pressure-sensitive adhesive layer 2 using, for example, a laminator.
  • the second release sheet 29 has the same configuration as the first release sheet 19 described above.
  • the cutting line 27 is formed in the probe pattern 25, the pressure-sensitive adhesive layer 2, and the base material layer 3 in a substantially circular shape in plan view.
  • the cutting line 27 is formed by, for example, punching.
  • the cutting line 27 divides the probe pattern 25, the pressure-sensitive adhesive layer 2 and the base material layer 3 into and out of the probe pattern 25, but is not formed on the second release sheet 29.
  • the dimension of the cutting line 27 is the same as the inner diameter of the bonding opening 11 and the base material opening 15. That is, the cutting line 27 coincides with a virtual circle that passes through the outer surface 22.
  • the probe member 18 is formed by forming the cutting line 27.
  • the outer surface 22 of the probe 5 is flush with the outer surface of the pressure-sensitive adhesive layer 2. In the probe member 18, the outer surface 22 is exposed radially outward from the outer surface of the pressure-sensitive adhesive layer 2.
  • the probe member 18 is pulled up from the second release sheet 29. Specifically, the adhesive lower surface 9 and the probe lower surface 20 in the probe member 18 are peeled from the second release sheet 29.
  • the probe member 18 is fitted into the opening 23 as shown by the arrow in FIG. 3C.
  • a space is provided between the pressure-sensitive adhesive layer 2, the base material layer 3 and the probe 5 of the probe member 18 and the pressure-sensitive adhesive layer 2 and the base material layer 3 around the opening 23. That is, the probe member 18 is fitted into the opening 23 so that the base material opening 15 and the bonding opening 11 are formed.
  • the connecting portion 6 is provided in the base material opening 15 and the bonding opening 11.
  • the conductive resin composition is injected (or applied) into the base material opening 15 and the adhesive opening 11. Thereafter, the conductive resin composition is heated as necessary.
  • the biosensor laminate 1 is manufactured.
  • the biosensor laminate 1 includes a pressure-sensitive adhesive layer 2, a base material layer 3, a wiring layer 4, a probe 5, a connection portion 6, and a first release sheet 19, preferably only these Consists of. As shown in FIG. 2A, the biosensor laminate 1 does not include the first release sheet 19, and includes the pressure-sensitive adhesive layer 2, the base material layer 3, the wiring layer 4, the probe 5, and the connection portion. It may consist only of 6.
  • the laminated body 1 for biosensors is a device that can be distributed and used industrially. Specifically, the biosensor laminate 1 can be distributed separately from the electronic component 31 and the battery 32 (see the phantom line in FIG. 1) described below. That is, the biosensor laminate 1 is a component for manufacturing the pasted electrocardiograph 30 without mounting the electronic component 31 and the battery 32.
  • the adhesive electrocardiograph 30 for example, first, the biosensor laminate 1, the electronic component 31, and the battery 32 are prepared.
  • an analog front end for processing and storing an electric signal from a living body acquired by the probe 5, a microcomputer, a memory, and further converting the electric signal into a radio wave, and receiving this externally Examples include a communication IC for wireless transmission to a machine, a transmitter, and the like.
  • the electronic component 31 may have some or all of them.
  • the electronic component 31 has two or three or more terminals (not shown) provided on the lower surface thereof.
  • the battery 32 has two terminals (not shown) provided on the lower surface thereof.
  • the two terminals of the electronic component 31 are electrically connected to the first terminal 17A and the third terminal 17C. Further, the two terminals of the battery 32 are electrically connected to the second terminal 17B and the fourth terminal 17D.
  • the pasted electrocardiograph 30 including the biosensor laminate 1, the electronic component 31 and the battery 32 mounted thereon is manufactured.
  • the first release sheet 19 (see the arrow and the phantom line in FIG. 3D) is peeled from the pressure-sensitive adhesive layer 2 and the probe 5.
  • the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2 is then brought into contact with the human skin 33, for example. Specifically, the pressure-sensitive adhesive layer 2 is pressure-bonded to the surface of the skin 33.
  • the probe lower surface 20 of the probe 5 comes into contact with the surface of the skin 33 by the pressure-sensitive adhesion (sticking) of the adhesion lower surface 9 to the skin 33.
  • the probe 5 senses the cardiac action potential as an electrical signal, and the electrical signal sensed by the probe 5 is input to the electronic component 31 via the connection portion 6 and the wiring layer 4.
  • the electronic component 31 processes an electrical signal based on the power supplied from the battery 32 and stores it as information. Furthermore, if necessary, the electric signal is converted into a radio wave and wirelessly transmitted to an external receiver.
  • the probe 5 is exposed from the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2, and therefore, if the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2 is attached to the skin 33, the probe 5. Can touch the skin 33 and sense the action potential of the heart.
  • the wiring layer 4 is disposed on the base material layer 3 disposed on the adhesion upper surface 8 of the pressure-sensitive adhesive layer 2, that is, disposed on the opposite side (upper side) of the wiring layer 4 to the side where the probe 5 is embedded.
  • the base material layer 3 is disposed. Therefore, the wiring layer 4 can prevent contact with the skin 33. As a result, the wiring layer 4 can prevent a short circuit through the skin 33.
  • biosensor laminate 1 it is possible to reliably sense the action potential of the heart.
  • the wiring layer 4 is embedded in the base material layer 3, so that the thickness can be reduced.
  • the material of the base material layer 3 has biocompatibility, safety to the living body can be improved.
  • the base material layer 3 is excellent in stretchability.
  • this biosensor 30 includes the above-described laminate 1 for biosensors, reliable sensing can be performed.
  • the line passing through the outer surface 22 is circular, but the shape is not particularly limited.
  • the line may be rectangular. Good.
  • the entire side surface of the wiring layer 4 is in contact with the base material layer 3.
  • the lower part of the side surface of the wiring layer 4 is in contact with the base material layer 3, and the upper part of the side surface of the wiring layer 4 is from the base material upper surface 13 of the base material layer 3. Can be exposed. That is, the upper part of the wiring layer 4 protrudes from the upper surface 13 of the base material layer 3 and the lower part of the wiring layer 4 is embedded in the base material layer 3.
  • the entire side surface of the wiring layer 4 can be exposed.
  • the substrate upper surface 13 does not have the substrate groove 14 and is a flat surface.
  • the lower surface of the wiring layer 4 is placed in contact with the substrate upper surface 13. That is, the wiring layer 4 shown in FIG. 7B is not embedded in the base material layer 3 and is disposed on the base material upper surface 13.
  • the wiring layer 4 may be completely embedded in the base material layer 3. That is, the wiring layer 4 is embedded in the base material layer 3. The upper surface, the lower surface, and the side surfaces of the wiring layer 4 are all covered with the base material layer 3. The wiring layer 4 is located between the substrate upper surface 13 and the substrate lower surface 12 in the substrate layer 3.
  • the wiring layer 4 is embedded in the base material layer 3 so as to be exposed from the base material lower surface 12.
  • the lower surface of the wiring layer 4 is flush with the lower surface 12 of the base material and contacts the bonding upper surface 8.
  • the connection portion 6 does not pass through the base material layer 3 but passes only through the pressure-sensitive adhesive layer 2. That is, the connection portion 6 is filled only in the bonding opening 11.
  • first wiring 16A and / or the second wiring 16B may have a planar wave shape.
  • the entire side surface (except the outer surface 22) of the probe 5 is in contact with the pressure-sensitive adhesive layer 2, and the probe lower surface 20 of the probe 5 is connected to the pressure-sensitive adhesive layer 2. It is flush with the adhesive lower surface 9.
  • the upper portion of the side surface (excluding the outer surface 22) of the probe 5 can be in contact with the pressure-sensitive adhesive layer 2 and the lower portion can be exposed from the adhesive lower surface 9.
  • the probe lower surface 20 is positioned below the bonding lower surface 9. That is, only the upper part of the probe 5 is embedded in the pressure-sensitive adhesive layer 2, and the lower part of the probe 5 protrudes downward from the adhesive lower surface 9.
  • the probe 5 does not have a hole and can have a substantially plate shape (specifically, a substantially disk shape) extending in the surface direction.
  • the outer peripheral surface of the probe 5 is in contact with the inner peripheral surface of the lower end portion of the connection portion 6.
  • the probe 5 may have a substantially columnar shape (specifically, a substantially cylindrical shape) that passes through the pressure-sensitive adhesive layer 2 and the base material layer 3.
  • the probe upper surface 21 is exposed from the substrate upper surface 13 of the substrate layer 3 and the upper surface of the connection portion 6.
  • the entire outer peripheral surface of the probe 5 is in contact with the entire inner peripheral surface of the connection portion 6.
  • the connecting portion 6 can also have a substantially bar (round bar) (needle) shape whose axis extends along the thickness direction.
  • the connecting part 6 and the probe 5 are in a point-like contact.
  • the connecting portion 6 has a substantially columnar shape
  • the probe 5 has a substantially plate shape (specifically, a substantially disc shape) that does not have a hole and extends in the surface direction. be able to.
  • a conductive pressure-sensitive adhesive layer 28 can be provided on the lower surface of the probe 5.
  • the conductive pressure-sensitive adhesive layer 28 has a substantially disk shape having the same dimensions as a virtual circle passing through the outer surface 22.
  • the upper surface of the conductive pressure-sensitive adhesive layer 28 is in contact with the probe lower surface 20 and the adhesive lower surface 9 in the virtual circle described above.
  • the conductive pressure-sensitive adhesive layer 28 is provided in order to suppress a decrease in sensing accuracy and noise caused by a difference in moisture content and surface unevenness in the skin 33 depending on a living body (individual), and moisture for adjusting the moisture content in the skin 33. It may have a function of adjusting the amount (or stabilizing the amount of water).
  • the material of the conductive pressure-sensitive adhesive layer 28 may include a conductive material (for example, a hydrophilic compound) having a moisture content adjusting function (or moisture content stabilizing function).
  • the materials include pressure sensitive adhesives such as silicone, acrylic and urethane, and hydrophilic polymers such as polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG).
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • PEG polyethylene glycol
  • a pressure-sensitive strong adhesive layer 45 may be filled in the hole of the probe 5.
  • the lower surface of the pressure-sensitive strong adhesive layer 45 is flush with the probe lower surface 20 and the adhesive lower surface 9.
  • Examples of the material of the pressure-sensitive strong adhesive layer 45 include pressure-sensitive strong adhesives such as silicone, acrylic, and urethane.
  • the peel peel strength of the pressure sensitive adhesive layer 45 is, for example, 1.5 times or more that of the pressure sensitive adhesive layer 2. Since the probe 5 is firmly fixed to the skin 33 by the pressure-sensitive strong adhesive layer 45, the signal processing accuracy is further improved.
  • the probe 5 and the connecting portion 6 may be integrated.
  • the probe 5 also serves as the connection portion 6.
  • the probe 5 has a solid substantially cylindrical shape.
  • the probe lower surface 20 is exposed from the adhesive lower surface 9.
  • the probe upper surface 21 is exposed from the substrate upper surface 13.
  • One end edge in the longitudinal direction of the first wiring 16A and the other edge in the longitudinal direction of the second wiring 16B are in contact with the upper ends of the two probes 5, respectively.
  • Examples of the material of the probe 5 include the same material as that of the connection portion 6.
  • the connecting portion 6 may be smaller than the probe 5 in plan view.
  • the virtual circle 34 that passes through the outer surface 22 of the probe 5 includes the connection portion 6 and is larger than the connection portion 6 in plan view.
  • the lower end edge of the connecting portion 6 is in contact with a portion in the surface direction of the probe 5 (a portion on the inner side of the outer surface 22).
  • the longitudinal center portion of the biosensor laminate 1 is swollen, but the present invention is not limited to this.
  • the biosensor laminate 1 is long.
  • the central portion in the direction does not swell and may have a substantially rectangular shape in plan view.
  • the patch type electrocardiograph 30 is given as an example of the biosensor of the present invention.
  • the biosensor include a device that can sense a biological signal and monitor the health state of the living body. Examples thereof include an adhesive electroencephalograph, an adhesive blood pressure monitor, an adhesive pulse meter, an adhesive electromyograph, and an adhesive thermometer.
  • the living body includes a human body and animals other than the human body, and is preferably a human body.
  • the said invention was provided as exemplary embodiment of this invention, this is only a mere illustration and should not be interpreted limitedly. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
  • the biosensor laminate is provided in a biosensor.

Abstract

A laminate for a biosensor is provided with a pressure-sensitive adhesive layer for affixation to a living body surface, a stretchable substrate layer disposed on the upper surface of the pressure-sensitive adhesive layer, a wiring layer disposed on the substrate layer, a probe embedded in the pressure-sensitive adhesive layer so as to be exposed from the lower surface of the pressure-sensitive adhesive layer, and a connection part that electrically connects the wiring layer and the probe so as to pass through at least the pressure-sensitive adhesive layer.

Description

生体センサ用積層体および生体センサLaminate for biosensor and biosensor
 本発明は、生体センサ用積層体および生体センサに関する。 The present invention relates to a biosensor laminate and a biosensor.
 従来、生体センサとして、柔軟性を有する絶縁層と、絶縁層の上部に埋め込まれている導体パターンとを備える配線回路基板を、ユーザの皮膚に貼付して使用されるウエアラブルデバイスが提案されている(例えば、特許文献1参照。)。 Conventionally, as a biosensor, a wearable device has been proposed in which a printed circuit board including a flexible insulating layer and a conductive pattern embedded in an upper portion of the insulating layer is attached to a user's skin. (For example, refer to Patent Document 1).
 特許文献1に記載のウエアラブルデバイスでは、導体パターンは、配線と、その両端部に連続する2つの端子とを備えており、2つの端子のそれぞれには、メモリおよびセンサが実装される。 In the wearable device described in Patent Document 1, the conductor pattern includes a wiring and two terminals continuous at both ends thereof, and a memory and a sensor are mounted on each of the two terminals.
特開2017-22237号公報JP 2017-22237 A
 しかるに、特許文献1に記載のウエアラブルデバイスの上面を皮膚に貼着すれば、配線、端子、メモリおよびセンサは、絶縁層に対して同じ側にあるので、それら全てが、皮膚に接触する。すると、それらは、皮膚を介して短絡するという不具合がある。 However, if the upper surface of the wearable device described in Patent Document 1 is attached to the skin, the wiring, terminals, memory, and sensor are on the same side with respect to the insulating layer, so that they all contact the skin. Then, they have the fault of short-circuiting through the skin.
 本発明は、生体表面を介した短絡を防止できる生体センサ用積層体および生体センサを提供する。 The present invention provides a biosensor laminate and a biosensor capable of preventing a short circuit through a living body surface.
 本発明(1)は、生体表面に貼付するための感圧接着層と、前記感圧接着層の上面に配置され、伸縮性を有する基材層と、前記基材層に配置される配線層と、前記感圧接着層の下面から露出するように、前記感圧接着層に埋め込まれているプローブと、少なくとも前記感圧接着層内を通過するように、前記配線層と前記プローブとを電気的に接続する接続部とを備える、生体センサ用積層体を含む。 The present invention (1) includes a pressure-sensitive adhesive layer for application to the surface of a living body, a base layer having elasticity that is disposed on the top surface of the pressure-sensitive adhesive layer, and a wiring layer disposed on the base layer. The probe embedded in the pressure-sensitive adhesive layer so as to be exposed from the lower surface of the pressure-sensitive adhesive layer, and electrically connecting the wiring layer and the probe so as to pass through the pressure-sensitive adhesive layer. A biosensor laminate comprising a connection portion for connection.
 この生体センサ用積層体では、プローブは、感圧接着層の下面から露出しているので、感圧接着層の下面を生体表面に貼付すれば、プローブは、生体表面に接触でき、生体をセンシングすることができる。 In this biosensor laminate, since the probe is exposed from the lower surface of the pressure-sensitive adhesive layer, if the lower surface of the pressure-sensitive adhesive layer is attached to the living body surface, the probe can contact the living body surface and sense the living body. can do.
 一方、配線層は、感圧接着層の上面に配置される基材層に配置されており、つまり、感圧接着層においてプローブを埋め込む側の反対側に配置される基材層に配置されている。
そのため、配線層は、生体表面と接触することを防止できる。その結果、配線層は、生体表面を介した短絡を防止することができる。
On the other hand, the wiring layer is disposed on the base material layer disposed on the upper surface of the pressure-sensitive adhesive layer, that is, disposed on the base material layer disposed on the opposite side of the pressure-sensitive adhesive layer from the side where the probe is embedded. Yes.
Therefore, the wiring layer can prevent contact with the surface of the living body. As a result, the wiring layer can prevent a short circuit through the living body surface.
 従って、この生体センサ用積層体によれば、生体を確実にセンシングすることができる。 Therefore, according to this biosensor laminate, it is possible to reliably sense the living body.
 本発明(2)は、前記配線層の少なくとも一部が、前記基材層に埋め込まれている、(1)に記載の生体センサ用積層体を含む。 The present invention (2) includes the biosensor laminate according to (1), wherein at least a part of the wiring layer is embedded in the base material layer.
 この生体センサ用積層体では、配線層の少なくとも一部が、基材層に埋め込まれているので、薄型化を図ることができる。 In this biosensor laminate, at least a part of the wiring layer is embedded in the base material layer, so that the thickness can be reduced.
 本発明(3)は、前記感圧接着層の材料が、生体適合性を有する、(1)または(2)に記載の生体センサ用積層体を含む。 The present invention (3) includes the biosensor laminate according to (1) or (2), wherein the material of the pressure-sensitive adhesive layer has biocompatibility.
 感圧接着層の材料が、生体適合性を有するので、生体への負荷を抑制することができる。 Since the material of the pressure-sensitive adhesive layer has biocompatibility, the load on the living body can be suppressed.
 本発明(4)は、前記基材層の材料が、ポリウレタン系樹脂である、(1)~(3)のいずれか一項に記載の生体センサ用積層体を含む。 The present invention (4) includes the biosensor laminate according to any one of (1) to (3), wherein the material of the base material layer is a polyurethane resin.
 この生体センサ用積層体では、基材層の材料が、ポリウレタン系樹脂であるので、基材層は、伸縮性に優れる。そのため、生体の貼付感(生体が貼付していることを感じること。装着感)を低減することができる。 In this biosensor laminate, since the material of the base material layer is a polyurethane resin, the base material layer has excellent stretchability. Therefore, the sticking feeling of the living body (feeling that the living body is sticking. Wearing feeling) can be reduced.
 本発明(5)は、(1)~(4)のいずれか一項に記載の生体センサ用積層体と、前記配線層に電気的に接続されるように、前記基材層に実装される電子部品とを備える、生体センサを含む。 The present invention (5) is mounted on the base material layer so as to be electrically connected to the biosensor laminate according to any one of (1) to (4) and the wiring layer. A biosensor including an electronic component.
 この生体センサは、上記した生体センサ用積層体を備えるので、確実なセンシングを実施することができる。 Since this biosensor includes the above-described laminated body for biosensors, reliable sensing can be performed.
 本発明の生体センサ用積層体および生体センサは、生体を確実にセンシングすることができる。 The laminate for a biosensor and the biosensor of the present invention can reliably sense a living body.
図1は、本発明の生体センサ用積層体の一実施形態の平面図を示す。FIG. 1: shows the top view of one Embodiment of the laminated body for biosensors of this invention. 図2Aおよび図2Bは、図1に示す生体センサ用積層体の断面図であり、図2Aが、A-A線に沿う断面図、図2Bが、B-B線に沿う断面図を示す。2A and 2B are cross-sectional views of the biosensor laminate shown in FIG. 1. FIG. 2A is a cross-sectional view taken along the line AA, and FIG. 2B is a cross-sectional view taken along the line BB. 図3A~図3Dは、図2Aに示す生体センサ用積層体の製造工程図であり、図3Aが、基材層および配線層を準備する工程、図3Bが、感圧接着層および基材層を貼り合わせる工程、図3Cが、開口部を形成し、プローブ部材を準備する工程、図3Dが、プローブ部材を開口部に嵌め込む工程、および、接続部を形成する工程を示す。3A to 3D are manufacturing process diagrams of the biosensor laminate shown in FIG. 2A. FIG. 3A is a process for preparing a base material layer and a wiring layer, and FIG. 3B is a pressure-sensitive adhesive layer and a base material layer. 3C shows a step of forming an opening and preparing a probe member, FIG. 3D shows a step of fitting the probe member into the opening, and a step of forming a connection portion. 図4は、プローブ含有シートを下から見た斜視図であり、第2剥離シートの一部を切り欠いた斜視図を示す。FIG. 4 is a perspective view of the probe-containing sheet as viewed from below, and shows a perspective view in which a part of the second release sheet is cut out. 図5は、プローブ部材の作製工程を説明する斜視図であり、上側図は、下側から見た斜視図下側図は、上側から見た斜視図を示す。FIG. 5 is a perspective view for explaining a manufacturing process of the probe member. An upper side view is a perspective view seen from the lower side. A lower side view shows a perspective view seen from the upper side. 図6A~図6Cは、プローブ部材の分解斜視図であり、図6Aが、プローブ部材、図6Bが、接続部、図6Cが、生体センサ用積層体の長手方向一端部の開口部を示す。6A to 6C are exploded perspective views of the probe member. FIG. 6A shows the probe member, FIG. 6B shows the connection portion, and FIG. 6C shows the opening at one end portion in the longitudinal direction of the biosensor laminate. 図7A~図7Dは、一実施形態の変形例の生体センサ用積層体の断面図であり、図7Aが、配線層の下部が基材層に埋め込まれる態様、図7Bが、配線層が基材層に埋め込まれず、基材層より上側に位置する態様、図7Cが、配線層が基材層から露出せず、配線層が基材層に埋め込まれる態様、図7Dが、配線層が、基材下面から露出するように、基材層に埋め込まれる態様を示す。7A to 7D are cross-sectional views of a biosensor laminate according to a modification of one embodiment. FIG. 7A shows an embodiment in which the lower part of the wiring layer is embedded in the base material layer, and FIG. A mode in which the wiring layer is not exposed from the base material layer without being embedded in the material layer, FIG. 7C is a mode in which the wiring layer is embedded in the base material layer, FIG. The aspect embedded in a base material layer so that it may be exposed from the base material lower surface is shown. 図8は、一実施形態の変形例の生体センサ用積層体(プローブの上部が感圧接着層に埋め込まれる態様)の断面図を示す。FIG. 8 shows a cross-sectional view of a biosensor laminate (an embodiment in which an upper portion of a probe is embedded in a pressure-sensitive adhesive layer) according to a modification of one embodiment. 図9は、一実施形態の変形例の生体センサ用積層体(プローブが略板形状)の断面図を示す。FIG. 9 is a cross-sectional view of a biosensor laminate (probe is substantially plate-shaped) according to a modification of the embodiment. 図10は、一実施形態の変形例の生体センサ用積層体(プローブが中実の略柱形状)の断面図を示す。FIG. 10 is a cross-sectional view of a biosensor laminate (probe having a solid columnar shape) according to a modification of the embodiment. 図11は、一実施形態の変形例の生体センサ用積層体(接続部が略棒(針)柱形状)の平面図を示す。FIG. 11 is a plan view of a biosensor laminate (a connection portion is substantially a rod (needle) column shape) according to a modified example of the embodiment. 図12は、図11に示す生体センサ用積層体のA-A線に沿う断面図を示す。FIG. 12 is a cross-sectional view taken along line AA of the biosensor laminate shown in FIG. 図13は、一実施形態の変形例の生体センサ用積層体(接続部が略棒(針)形状、かつ、プローブが略板形状)の断面図を示す。FIG. 13 is a cross-sectional view of a biosensor laminate (a connection portion is a substantially rod (needle) shape and a probe is a substantially plate shape) according to a modification of one embodiment. 図14Aおよび図14Bは、図12に示す生体センサ用積層体のさらなる変形例であり、図14Aが、導電性感圧接着層がプローブ下面に設けられる態様、図14Bが、感圧強接着層がプローブの孔に設けられる態様を示す。14A and 14B are further modifications of the biosensor laminate shown in FIG. 12, in which FIG. 14A is an embodiment in which a conductive pressure-sensitive adhesive layer is provided on the lower surface of the probe, and FIG. 14B is a pressure-sensitive strong adhesive layer as a probe. The aspect provided in this hole is shown. 図15は、一実施形態の変形例の生体センサ用積層体(プローブおよび接続部が一体である態様)の平面図を示す。FIG. 15: shows the top view of the laminated body for biosensors (mode which a probe and a connection part are integrated) of the modification of one Embodiment. 図16は、図15に示す生体センサ用積層体のA-A線に沿う断面図を示す。FIG. 16 is a cross-sectional view taken along line AA of the biosensor laminate shown in FIG. 図17Aおよび図17Bは、プローブが接続部より大きい変形例を示し、図17Aが、断面図、図17Bが、図17Aに示すプローブおよび接続部の拡大斜視図を示す。17A and 17B show a modification in which the probe is larger than the connection portion, FIG. 17A is a sectional view, and FIG. 17B is an enlarged perspective view of the probe and the connection portion shown in FIG. 17A.
 <一実施形態>
 本発明の生体センサ用積層体の一実施形態である生体センサ用積層体1を、図1~図6Cを参照して説明する。
<One Embodiment>
A biosensor laminate 1 as an embodiment of the biosensor laminate of the present invention will be described with reference to FIGS. 1 to 6C.
 図1において、紙面左右方向は、生体センサ用積層体1の長手方向(第1方向)である。紙面右側は、長手方向一方側(第1方向一方側)であり、紙面左側は、長手方向他方側(第1方向他方側)である。 1, the horizontal direction on the paper surface is the longitudinal direction (first direction) of the biosensor laminate 1. The right side of the drawing is one side in the longitudinal direction (one side in the first direction), and the left side of the drawing is the other side in the longitudinal direction (the other side in the first direction).
 図1において、紙面上下方向は、生体センサ用積層体1の短手方向(長手方向に直交する方向、幅方向、第1方向に直交する第2方向)である。紙面上側は、短手方向一方側(幅方向一方側、第2方向一方側)であり、紙面下側は、短手方向他方側(幅方向他方側、第2方向他方側)である。 1, the up and down direction on the paper surface is the short direction (the direction perpendicular to the longitudinal direction, the width direction, and the second direction perpendicular to the first direction) of the biosensor laminate 1. The upper side of the drawing is one side in the short direction (one side in the width direction, one side in the second direction), and the lower side of the drawing is the other side in the short direction (the other side in the width direction, the other side in the second direction).
 図1において、紙面紙厚方向は、生体センサ用積層体1の上下方向(厚み方向、第1方向および第2方向に直交する第3方向)である。紙面手前側は、上側(厚み方向一方側、第3方向一方側)であり、紙面奥側は、下側(厚み方向他方側、第3方向他方側)である。 In FIG. 1, the paper thickness direction is the vertical direction of the biosensor laminate 1 (thickness direction, third direction orthogonal to the first direction and the second direction). The front side of the paper is the upper side (one side in the thickness direction, the one side in the third direction), and the back side of the paper is the lower side (the other side in the thickness direction, the other side in the third direction).
 方向は、各図面に記載の方向矢印に準拠する。 The direction conforms to the direction arrow described in each drawing.
 これらの方向の定義により、生体センサ用積層体1および貼付型心電計30(後述)の製造時および使用時の向きを限定する意図はない。 These directions are not intended to limit the orientation of the biosensor laminate 1 and the pasted electrocardiograph 30 (described later) during manufacture and use.
 図1~図2Bに示すように、生体センサ用積層体1は、長手方向に延びる略平板形状を有する。生体センサ用積層体1は、感圧接着層2と、感圧接着層2の上面に配置される基材層3と、基材層3に配置される配線層4と、感圧接着層2の下面の一例としての接着下面9から露出するように、感圧接着層2に埋め込まれているプローブ5と、配線層4およびプローブ5を電気的に接続する接続部6とを備える。 As shown in FIGS. 1 to 2B, the biosensor laminate 1 has a substantially flat plate shape extending in the longitudinal direction. The biosensor laminate 1 includes a pressure-sensitive adhesive layer 2, a base material layer 3 disposed on the top surface of the pressure-sensitive adhesive layer 2, a wiring layer 4 disposed on the base material layer 3, and a pressure-sensitive adhesive layer 2. The probe 5 embedded in the pressure-sensitive adhesive layer 2 and the connection part 6 that electrically connects the wiring layer 4 and the probe 5 are provided so as to be exposed from the adhesive lower surface 9 as an example of the lower surface of the electrode.
 感圧接着層2は、生体センサ用積層体1の下面を形成する。感圧接着層2は、生体センサ用積層体1の下面を生体表面(皮膚33など)に対して貼付するために、生体センサ用積層体1の下面に感圧接着性を付与する層である。感圧接着層2は、生体センサ用積層体1の外形形状を形成している。感圧接着層2は、長手方向に延びる平板形状を有する。具体的には、例えば、感圧接着層2は、長手方向に延びる帯状を有し、長手方向中央部が短手方向両外側に向かって膨らむ形状を有する。また、感圧接着層2において、長手方向中央部の短手方向両端縁は、長手方向中央部以外の短手方向両端縁に対して、短手方向両外側に位置する。 The pressure-sensitive adhesive layer 2 forms the lower surface of the biosensor laminate 1. The pressure-sensitive adhesive layer 2 is a layer that imparts pressure-sensitive adhesiveness to the lower surface of the biosensor laminate 1 in order to attach the lower surface of the biosensor laminate 1 to the living body surface (skin 33 or the like). . The pressure-sensitive adhesive layer 2 forms the outer shape of the biosensor laminate 1. The pressure sensitive adhesive layer 2 has a flat plate shape extending in the longitudinal direction. Specifically, for example, the pressure-sensitive adhesive layer 2 has a strip shape extending in the longitudinal direction, and has a shape in which the center portion in the longitudinal direction swells toward both outer sides in the lateral direction. Further, in the pressure-sensitive adhesive layer 2, both ends in the short direction of the central portion in the longitudinal direction are located on both outer sides in the short direction with respect to both ends in the short direction other than the central portion in the longitudinal direction.
 感圧接着層2は、上面の一例としての接着上面8と、接着下面9とを有する。 The pressure-sensitive adhesive layer 2 has an adhesive upper surface 8 as an example of an upper surface and an adhesive lower surface 9.
 接着上面8は、平坦面である。 The adhesive upper surface 8 is a flat surface.
 接着下面9は、接着上面8の下側に間隔を隔てて対向配置されている。 The adhesive lower surface 9 is disposed to face the lower side of the adhesive upper surface 8 with a gap.
 また、感圧接着層2は、その長手方向両端部のそれぞれに、2つの接着開口部11のそれぞれを有する。2つの接着開口部11のそれぞれは、平面視略リング形状を有する。接着開口部11は、感圧接着層2の厚み方向を貫通する。接着開口部11には、接続部6が充填される。 Further, the pressure-sensitive adhesive layer 2 has two adhesive openings 11 at both ends in the longitudinal direction. Each of the two bonding openings 11 has a substantially ring shape in plan view. The adhesive opening 11 penetrates the thickness direction of the pressure-sensitive adhesive layer 2. The bonding opening 11 is filled with the connecting portion 6.
 また、接着開口部11の内側における接着下面9は、プローブ5(後述)に対応する接着溝10を有する。接着溝10は、下側に向かって開放される。 The adhesive lower surface 9 inside the adhesive opening 11 has an adhesive groove 10 corresponding to the probe 5 (described later). The adhesive groove 10 is opened downward.
 感圧接着層2の材料としては、例えば、感圧接着性を有する材料であれば特に限定されず、好ましくは、生体適合性を有する材料が挙げられる。そのような材料として、アクリル系感圧接着剤、シリコーン系感圧接着剤などが挙げられる。好ましくは、アクリル系感圧接着剤が挙げられる。アクリル系感圧接着剤としては、例えば、特開2003-342541号公報に記載のアクリルポリマーなどが挙げられる。 The material of the pressure-sensitive adhesive layer 2 is not particularly limited as long as it is a material having pressure-sensitive adhesiveness, and preferably includes a material having biocompatibility. Examples of such materials include acrylic pressure sensitive adhesives and silicone pressure sensitive adhesives. Preferably, an acrylic pressure sensitive adhesive is used. Examples of the acrylic pressure-sensitive adhesive include acrylic polymers described in JP-A-2003-325441.
 感圧接着層2を角質剥離試験したときに、角質剥離面積率が、例えば、50%以下、好ましくは、30%以下、より好ましくは、15%以下であり、また、例えば、0%以上である。角質剥離面積率が上記した上限以下であれば、感圧接着層2を生体に貼着しても、生体の負荷を抑制することができる。つまり、感圧接着層2の材料が、優れた生体適合性を有することができる。角質剥離試験は、特開2004-83425号公報に記載の方法によって、測定される。 When the pressure-sensitive adhesive layer 2 is subjected to a keratin peeling test, the keratin peeling area ratio is, for example, 50% or less, preferably 30% or less, more preferably 15% or less, and for example, 0% or more. is there. If the stratum corneum peeling area ratio is equal to or less than the above upper limit, even if the pressure-sensitive adhesive layer 2 is adhered to a living body, the load on the living body can be suppressed. That is, the material of the pressure-sensitive adhesive layer 2 can have excellent biocompatibility. The stratum corneum peeling test is measured by the method described in JP-A-2004-83425.
 感圧接着層2の透湿度は、例えば、300(g/m2/day)以上、好ましくは、600(g/m2/day)以上、さらに好ましくは、1000(g/m2/day)以上である。感圧接着層2の透湿度が上記した下限以上であれば、感圧接着層2を生体に貼着しても、生体の負荷を抑制することができる。つまり、感圧接着層2の材料が、優れた生体適合性を有することができる。 The moisture permeability of the pressure-sensitive adhesive layer 2 is, for example, 300 (g / m 2 / day) or more, preferably 600 (g / m 2 / day) or more, and more preferably 1000 (g / m 2 / day). That's it. When the moisture permeability of the pressure-sensitive adhesive layer 2 is equal to or higher than the lower limit described above, even if the pressure-sensitive adhesive layer 2 is attached to a living body, the load on the living body can be suppressed. That is, the material of the pressure-sensitive adhesive layer 2 can have excellent biocompatibility.
 そして、(1)角質剥離試験の角質剥離面積率が50%以下、(2)透湿度が300(g/m2/day)以上の少なくともいずれかの要件を満たせば、好ましくは、(1)および(2)の両方の要件を満たせば、感圧接着層2の材料は、生体適合性を有する。 And (1) If the keratin exfoliation area rate of the keratin exfoliation test satisfies at least one of the requirements of 50% or less and (2) moisture permeability of 300 (g / m 2 / day) or more, preferably (1) If both requirements (2) and (2) are satisfied, the material of the pressure-sensitive adhesive layer 2 is biocompatible.
 感圧接着層2の厚みは、接着溝10以外の領域における接着上面8および接着下面9間の距離として、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、100μm未満、好ましくは、50μm以下である。 The thickness of the pressure-sensitive adhesive layer 2 is, for example, 10 μm or more, preferably 20 μm or more, and, for example, less than 100 μm, preferably as the distance between the adhesive upper surface 8 and the adhesive lower surface 9 in the region other than the adhesive groove 10. 50 μm or less.
 基材層3は、生体センサ用積層体1の上面を形成する。基材層3は、感圧接着層2とともに生体センサ用積層体1の外形形状を形成している。基材層3の平面視形状は、感圧接着層2の平面視形状と同一である。基材層3は、感圧接着層2の上面全面(ただし、接続部6が設けられる領域を除く)に配置されている。基材層3は、感圧接着層2を支持する支持層である。基材層3は、長手方向に延びる平板形状を有する。基材層3は、基材下面12と、上面の一例としての基材上面13とを有する。 The base material layer 3 forms the upper surface of the biosensor laminate 1. The base material layer 3 forms the outer shape of the biosensor laminate 1 together with the pressure-sensitive adhesive layer 2. The planar view shape of the base material layer 3 is the same as the planar view shape of the pressure-sensitive adhesive layer 2. The base material layer 3 is disposed on the entire upper surface of the pressure-sensitive adhesive layer 2 (however, excluding the region where the connection portion 6 is provided). The base material layer 3 is a support layer that supports the pressure-sensitive adhesive layer 2. The base material layer 3 has a flat plate shape extending in the longitudinal direction. The substrate layer 3 has a substrate lower surface 12 and a substrate upper surface 13 as an example of the upper surface.
 基材下面12は、平坦面である。基材下面12は、感圧接着層2の接着上面8に接触(感圧接着)している。 The base material lower surface 12 is a flat surface. The base material lower surface 12 is in contact (pressure-sensitive adhesion) with the adhesive upper surface 8 of the pressure-sensitive adhesive layer 2.
 基材上面13は、基材下面12の上側に間隔を隔てて対向配置されている。基材上面13は、配線層4に対応する基材溝14を有する。基材溝14は、平面視において、配線層4と同一のパターン形状を有する。基材溝14は、上側に向かって開放される。 The base material upper surface 13 is disposed to face the upper surface of the base material lower surface 12 with a gap. The base material upper surface 13 has a base material groove 14 corresponding to the wiring layer 4. The substrate groove 14 has the same pattern shape as the wiring layer 4 in plan view. The base material groove 14 is opened upward.
 また、基材層3は、接着開口部11に対応する基材開口部15を有する。基材開口部15は、接着開口部11に厚み方向に連通する。基材開口部15は、接着開口部11と同一形状および同一寸法の平面視略リング形状を有する。 The base material layer 3 has a base material opening 15 corresponding to the adhesive opening 11. The base material opening 15 communicates with the bonding opening 11 in the thickness direction. The base material opening 15 has a substantially ring shape in plan view having the same shape and the same dimensions as the bonding opening 11.
 基材層3の材料は、伸縮性を有する。また、基材層3の材料は、例えば、絶縁層を有する。そのような材料としては、例えば、樹脂が挙げられる。樹脂としては、例えば、ポリウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂、ポリスチレン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂などの熱可塑性樹脂が挙げられる。 The material of the base material layer 3 has stretchability. Moreover, the material of the base material layer 3 has an insulating layer, for example. An example of such a material is a resin. Examples of the resin include thermoplastic resins such as polyurethane resins, silicone resins, acrylic resins, polystyrene resins, vinyl chloride resins, and polyester resins.
 基材層3の材料として、より優れた伸縮性および透湿性を確保する観点から、好ましくは、ポリウレタン系樹脂が挙げられる。 From the viewpoint of ensuring more excellent stretchability and moisture permeability, the material of the base material layer 3 is preferably a polyurethane resin.
 基材層3の破断伸度は、例えば、100%以上、好ましくは、200%以上、より好ましくは、300%以上であり、また、例えば、2000%以下である。破断伸度が上記下限以上であれば、基材層3の材料が優れた伸縮性を有することができる。なお、破断伸度は、JIS K 7127(1999年)に従い、引張速度5mm/分、試験片タイプ2で、測定される。 The breaking elongation of the base material layer 3 is, for example, 100% or more, preferably 200% or more, more preferably 300% or more, and for example, 2000% or less. If the breaking elongation is not less than the above lower limit, the material of the base material layer 3 can have excellent stretchability. The elongation at break is measured according to JIS K 7127 (1999) with a tensile rate of 5 mm / min and a test piece type 2.
 また、基材層3の20℃における引張強度(チャック間100mm,引張速度300mm/min,破断時の強度)は、例えば、0.1N/20mm以上、好ましくは、1N/20mm以上であり、また、例えば、20N/20mm以下である。引張強度は、JIS
 K 7127(1999年)に基づいて、測定される。
Further, the tensile strength at 20 ° C. of the base material layer 3 (100 mm between chucks, tensile speed 300 mm / min, strength at break) is, for example, 0.1 N / 20 mm or more, preferably 1 N / 20 mm or more. For example, it is 20 N / 20 mm or less. The tensile strength is JIS
Measured based on K 7127 (1999).
 さらに、基材層3の20℃における引張貯蔵弾性率E’は、例えば、2,000MPa以下、好ましくは、1,000MPa以下、より好ましくは、100MPa以下、さらに好ましくは、50MPa以下、とりわけ好ましくは、20MPa以下であり、また、例えば、0.1MPa以上である。基材層3の引張貯蔵弾性率E’が上記した上限以下であれば、基材層3の材料が優れた伸縮性を有することができる。基材層3の20℃における引張貯蔵弾性率E’は、周波数1Hzおよび昇温速度10℃/分の条件で基材層3を動的粘弾性測定することにより求められる。 Furthermore, the tensile storage elastic modulus E ′ at 20 ° C. of the base material layer 3 is, for example, 2,000 MPa or less, preferably 1,000 MPa or less, more preferably 100 MPa or less, still more preferably 50 MPa or less, particularly preferably. , 20 MPa or less, and for example, 0.1 MPa or more. If the tensile storage elastic modulus E ′ of the base material layer 3 is not more than the above upper limit, the material of the base material layer 3 can have excellent stretchability. The tensile storage elastic modulus E ′ at 20 ° C. of the base material layer 3 is obtained by measuring the dynamic viscoelasticity of the base material layer 3 under the conditions of a frequency of 1 Hz and a temperature increase rate of 10 ° C./min.
 そして、(3)破断伸度が100%以上、(4)引張強度が20N/20mm以下、(5)引張貯蔵弾性率E’が2,000MPa以下の少なくともいずれか1つの要件、好ましくは、2つ以上の要件、より好ましくは、3つすべての要件を満たせば、基材層3の材料が、伸縮性を有する。 And (3) the elongation at break is 100% or more, (4) the tensile strength is 20 N / 20 mm or less, and (5) the tensile storage elastic modulus E ′ is at least one requirement of 2,000 MPa or less, preferably 2 If one or more requirements, more preferably all three requirements are satisfied, the material of the base material layer 3 has elasticity.
 基材層3の厚みは、基材溝14以外の領域における基材下面12および基材上面13間の距離として、例えば、1μm以上、好ましくは、5μm以上であり、また、例えば、300μm以下、好ましくは、10μm以下である。 The thickness of the base material layer 3 is, for example, 1 μm or more, preferably 5 μm or more, for example, 300 μm or less, as the distance between the base material lower surface 12 and the base material upper surface 13 in the region other than the base material groove 14. Preferably, it is 10 μm or less.
 配線層4は、基材溝14に埋め込まれている。詳しくは、配線層4は、基材層3の基材上面13から露出するように、基材層3の上部に埋め込まれている。配線層4は、互いに間隔を隔てて配置される上面および下面と、それらの周端縁を連結する側面とを有する。
下面の全部および側面の全部は、基材層3に接触している。上面は、基材上面13(基材溝14を除く)から露出している。配線層4の上面は、基材上面13とともに、生体センサ用積層体1の上面を形成する。
The wiring layer 4 is embedded in the base material groove 14. Specifically, the wiring layer 4 is embedded in the upper part of the base material layer 3 so as to be exposed from the base material upper surface 13 of the base material layer 3. The wiring layer 4 has an upper surface and a lower surface that are spaced apart from each other, and a side surface that connects their peripheral edges.
All of the lower surface and all of the side surfaces are in contact with the base material layer 3. The upper surface is exposed from the substrate upper surface 13 (excluding the substrate groove 14). The upper surface of the wiring layer 4 forms the upper surface of the biosensor laminate 1 together with the substrate upper surface 13.
 配線層4は、接続部6と、電子部品31(後述)および電池32(後述)とを接続する配線パターンを有する。具体的には、配線層4は、第1配線パターン41と、第2配線パターン42とを独立して備える。 The wiring layer 4 has a wiring pattern for connecting the connecting portion 6 to an electronic component 31 (described later) and a battery 32 (described later). Specifically, the wiring layer 4 includes a first wiring pattern 41 and a second wiring pattern 42 independently.
 第1配線パターン41は、基材層3における長手方向一方側に配置される。第1配線パターン41は、第1配線16Aと、それに連続する第1端子17Aおよび第2端子17Bとを備える。 The first wiring pattern 41 is arranged on one side in the longitudinal direction of the base material layer 3. The first wiring pattern 41 includes a first wiring 16A, and a first terminal 17A and a second terminal 17B continuous thereto.
 第1配線パターン41は、平面視略T字形状を有する。詳しくは、第1配線パターン41は、基材層3の長手方向一端部(に位置する接続部6)から長手方向他方側に向かって延び、基材層3の長手方向中央部で分岐して、短手方向両外側に向かって延びる。 The first wiring pattern 41 has a substantially T shape in plan view. Specifically, the first wiring pattern 41 extends from one end of the base material layer 3 in the longitudinal direction (the connecting portion 6) to the other side in the longitudinal direction, and branches at the center in the longitudinal direction of the base material layer 3. , Extending toward both outer sides in the short direction.
 第1端子17Aおよび第2端子17Bのそれぞれは、基材層3の長手方向中央部における短手方向両端部のそれぞれに配置されている。第1端子17Aおよび第2端子17Bのそれぞれは、平面視略矩形状(ランド形状)を有する。第1端子17Aおよび第2端子17Bのそれぞれは、基材層3の長手方向中央部において短手方向両外側に延びる第1配線16Aの両端部のそれぞれに連続する。 Each of the first terminal 17A and the second terminal 17B is disposed at each of both ends of the base layer 3 in the longitudinal direction center. Each of the first terminal 17A and the second terminal 17B has a substantially rectangular shape (land shape) in plan view. Each of the first terminal 17A and the second terminal 17B is continuous with both end portions of the first wiring 16A extending outward in the lateral direction at the center portion in the longitudinal direction of the base material layer 3.
 第2配線パターン42は、第1配線パターン41の長手方向他方側に間隔を隔てて設けられる。第2配線パターン42は、第2配線16Bと、それに連続する第3端子17Cおよび第4端子17Dとを備える。 The second wiring pattern 42 is provided on the other side in the longitudinal direction of the first wiring pattern 41 with an interval. The second wiring pattern 42 includes a second wiring 16B, and a third terminal 17C and a fourth terminal 17D continuous thereto.
 第2配線パターン42は、平面視略T字形状を有する。詳しくは、第2配線パターン42は、基材層3の長手方向他端部(に位置する接続部6)から長手方向一方側に向かって延び、基材層3の長手方向中央部で分岐して、短手方向両外側に向かって延びる。 The second wiring pattern 42 has a substantially T shape in plan view. Specifically, the second wiring pattern 42 extends from the other end portion in the longitudinal direction of the base material layer 3 (the connection portion 6 located in the longitudinal direction) to one side in the longitudinal direction, and branches at the central portion in the longitudinal direction of the base material layer 3. Extending toward the outside in the lateral direction.
 第3端子17Cおよび第4端子17Dのそれぞれは、基材層3の長手方向中央部における短手方向両端部のそれぞれに配置されている。第3端子17Cおよび第4端子17Dのそれぞれは、平面視略矩形状(ランド形状)を有する。第3端子17Cおよび第4端子17Dのそれぞれは、基材層3の長手方向中央部において短手方向両外側に延びる第2配線16Bの両端部のそれぞれに連続する。 Each of the 3rd terminal 17C and the 4th terminal 17D is arranged in each of both ends of the transversal direction in the longitudinal direction central part of base material layer 3. Each of the third terminal 17C and the fourth terminal 17D has a substantially rectangular shape (land shape) in plan view. Each of the third terminal 17C and the fourth terminal 17D is continuous with each of both end portions of the second wiring 16B extending outward in the lateral direction at the center portion in the longitudinal direction of the base material layer 3.
 配線層4の材料としては、例えば、銅、ニッケル、金、それらの合金などの導体が挙げられる。配線層4の材料として、好ましくは、銅が挙げられる。 Examples of the material of the wiring layer 4 include conductors such as copper, nickel, gold, and alloys thereof. The material of the wiring layer 4 is preferably copper.
 配線層4の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm以下、好ましくは、5μm以下である。 The thickness of the wiring layer 4 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 100 μm or less, preferably 5 μm or less.
 プローブ5は、感圧接着層2が生体表面に貼付されたときに、生体表面に接触して、生体からの電気信号や温度、振動、汗、代謝物などをセンシングする電極である。プローブ5は、接着開口部11の内側において、感圧接着層2における接着溝10に埋め込まれている。つまり、プローブ5は、接着開口部11の内側において、感圧接着層2の下端部に埋め込まれている。プローブ5は、平面視略碁盤目形状(あるいは略メッシュ形状)を有する。換言すれば、プローブ5は、面方向(長手方向および短手方向)において互いに間隔を隔てる孔を有する。なお、孔には、感圧接着層2が充填されている。 The probe 5 is an electrode that, when the pressure-sensitive adhesive layer 2 is attached to the surface of a living body, comes into contact with the surface of the living body and senses an electrical signal, temperature, vibration, sweat, metabolites, and the like from the living body. The probe 5 is embedded in the adhesive groove 10 in the pressure-sensitive adhesive layer 2 inside the adhesive opening 11. That is, the probe 5 is embedded in the lower end portion of the pressure-sensitive adhesive layer 2 inside the adhesive opening 11. The probe 5 has a substantially grid shape (or substantially mesh shape) in plan view. In other words, the probe 5 has holes that are spaced from each other in the surface direction (longitudinal direction and short direction). The hole is filled with the pressure-sensitive adhesive layer 2.
 また、プローブ5は、それが延びる方向に直交する断面視において、略矩形状を有する。プローブ5は、プローブ下面20と、プローブ下面20の上側に間隔を隔てて対向配置されるプローブ上面21と、プローブ下面20およびプローブ上面21の周端縁を連結する側面とを有する。 Further, the probe 5 has a substantially rectangular shape in a cross-sectional view orthogonal to the direction in which the probe 5 extends. The probe 5 includes a probe lower surface 20, a probe upper surface 21 that is disposed opposite to the probe lower surface 20 with a space therebetween, and a side surface that connects the probe lower surface 20 and the peripheral edge of the probe upper surface 21.
 プローブ下面20は、感圧接着層2の接着下面9(接着溝10を除く)から露出する。プローブ下面20は、接着下面9と面一である。プローブ下面20は、接着下面9とともに、生体センサ用積層体1の下面を形成している。 The probe lower surface 20 is exposed from the adhesive lower surface 9 (excluding the adhesive groove 10) of the pressure-sensitive adhesive layer 2. The probe lower surface 20 is flush with the adhesive lower surface 9. The probe lower surface 20 forms the lower surface of the biosensor laminate 1 together with the adhesive lower surface 9.
 プローブ上面21は、感圧接着層2に被覆されている。 The probe upper surface 21 is covered with the pressure-sensitive adhesive layer 2.
 図5に示すように、プローブ5の側面のうち、最外側に位置する面は、外側面22である。外側面22は、平面視において、外側面22を通過する仮想円を形成する。 As shown in FIG. 5, the outermost surface of the side surfaces of the probe 5 is the outer surface 22. The outer side surface 22 forms a virtual circle that passes through the outer side surface 22 in plan view.
 プローブ5の材料としては、配線層4で例示した材料(具体的には、導体)が挙げられる。 Examples of the material of the probe 5 include the materials exemplified in the wiring layer 4 (specifically, conductors).
 プローブ5の外形寸法は、外側面22を通過する仮想円が、接着開口部11を区画する内周面が平面視で重複するように、設定されている。 The external dimensions of the probe 5 are set so that the virtual circle passing through the outer surface 22 overlaps the inner peripheral surface defining the bonding opening 11 in plan view.
 プローブ5の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、100μm未満、好ましくは、75μm以下である。 The thickness of the probe 5 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, less than 100 μm, preferably 75 μm or less.
 接続部6は、基材開口部15および接着開口部11に対応して設けられており、それらと同一形状を有する。接続部6は、基材層3および感圧接着層2を厚み方向(上下方向)に貫通(通過)しており、基材開口部15および接着開口部11に充填されている。接続部6は、プローブ5の外側面22に沿う、平面視無端形状を有する。具体的には、接続部6は、軸線が厚み方向に延びる(外側面22を通過する仮想円に沿う)略円筒形状を有する。 The connection part 6 is provided corresponding to the base material opening part 15 and the adhesion | attachment opening part 11, and has the same shape as them. The connection part 6 penetrates (passes) the base material layer 3 and the pressure-sensitive adhesive layer 2 in the thickness direction (vertical direction), and is filled in the base material opening 15 and the adhesive opening 11. The connecting portion 6 has an endless shape in plan view along the outer surface 22 of the probe 5. Specifically, the connecting portion 6 has a substantially cylindrical shape whose axis extends in the thickness direction (along a virtual circle passing through the outer surface 22).
 接続部6の内側面は、プローブ5の外側面22に接触している。接続部6は、接着開口部11の外側の感圧接着層2と、接着開口部11の内側の感圧接着層2とに感圧接着している。 The inner surface of the connecting portion 6 is in contact with the outer surface 22 of the probe 5. The connecting portion 6 is pressure-sensitively bonded to the pressure-sensitive adhesive layer 2 outside the adhesive opening 11 and the pressure-sensitive adhesive layer 2 inside the adhesive opening 11.
 接続部6の上面は、基材上面13と面一である。接続部6の下面は、接着下面9と面一である。 The upper surface of the connecting portion 6 is flush with the upper surface 13 of the base material. The lower surface of the connecting portion 6 is flush with the adhesive lower surface 9.
 図1に示すように、2つの接続部6のうち、長手方向一方側に位置する接続部6は、その上端部において、長手方向一方側に位置する第1配線16Aの長手方向一端縁に連続する。長手方向他方側に位置する接続部6は、その上端部において、長手方向他方側に位置する配線16Bの長手方向他端縁に連続する。 As shown in FIG. 1, of the two connection portions 6, the connection portion 6 located on one side in the longitudinal direction is continuous with one end edge in the longitudinal direction of the first wiring 16 </ b> A located on one side in the longitudinal direction at the upper end portion. To do. The connection portion 6 located on the other side in the longitudinal direction is continuous with the other end in the longitudinal direction of the wiring 16B located on the other side in the longitudinal direction at the upper end thereof.
 これにより、接続部6は、配線層4とプローブ5とを電気的に接続する。 Thereby, the connection part 6 electrically connects the wiring layer 4 and the probe 5.
 接続部6の材料としては、例えば、金属、導電性樹脂(導電性高分子を含む)などが挙げられ、好ましくは、導電性樹脂などが挙げられる。 Examples of the material of the connecting portion 6 include metals, conductive resins (including conductive polymers), and preferably include conductive resins.
 接続部6の厚み(上下方向長さ)は、基材層3および感圧接着層2の総厚みと同一である。接続部6の径方向長さ(外径から内径を差し引いた値の半値)は、例えば、1μm以上、好ましくは、100μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The thickness (vertical length) of the connecting portion 6 is the same as the total thickness of the base material layer 3 and the pressure-sensitive adhesive layer 2. The length in the radial direction of the connecting portion 6 (half value of the value obtained by subtracting the inner diameter from the outer diameter) is, for example, 1 μm or more, preferably 100 μm or more, and for example, 1000 μm or less, preferably 500 μm or less.
 次に、生体センサ用積層体1の製造方法を説明する。 Next, a manufacturing method of the biosensor laminate 1 will be described.
 図3Aに示すように、この方法では、まず、基材層3および配線層4を準備する。 As shown in FIG. 3A, in this method, first, a base material layer 3 and a wiring layer 4 are prepared.
 例えば、特開2017-22236号公報、特開2017-22237号公報に記載される方法によって、配線層4が基材溝14に埋め込まれるように、基材層3および配線層4を準備する。 For example, the base material layer 3 and the wiring layer 4 are prepared so that the wiring layer 4 is embedded in the base material groove 14 by a method described in Japanese Patent Application Laid-Open Nos. 2017-2222236 and 2017-22237.
 図3Bに示すように、次いで、感圧接着層2を基材下面12に配置する。 Next, as shown in FIG. 3B, the pressure-sensitive adhesive layer 2 is arranged on the lower surface 12 of the base material.
 感圧接着層2を基材下面12に配置するには、例えば、まず、感圧接着層2の材料を含有する塗布液を調製し、続いて、塗布液を第1剥離シート19の上面に塗布し、その後、加熱により乾燥させる。これによって、感圧接着層2を第1剥離シート19の上面に配置する。第1剥離シート19は、例えば、長手方向に延びる略平板形状を有する。第1剥離シート19の材料としては、例えば、ポリエチレンテレフタレートなどの樹脂が挙げられる。 In order to arrange the pressure-sensitive adhesive layer 2 on the lower surface 12 of the substrate, for example, first, a coating liquid containing the material of the pressure-sensitive adhesive layer 2 is prepared, and then the coating liquid is applied to the upper surface of the first release sheet 19. It is applied and then dried by heating. Thereby, the pressure-sensitive adhesive layer 2 is disposed on the upper surface of the first release sheet 19. The first release sheet 19 has, for example, a substantially flat plate shape that extends in the longitudinal direction. Examples of the material of the first release sheet 19 include resins such as polyethylene terephthalate.
 次いで、感圧接着層2および基材層3を、例えば、ラミネータなどにより、貼り合わせる。具体的には、感圧接着層2の接着上面8と、基材層3の基材下面12とを接触させる。 Next, the pressure-sensitive adhesive layer 2 and the base material layer 3 are bonded together by, for example, a laminator. Specifically, the adhesion upper surface 8 of the pressure-sensitive adhesive layer 2 and the substrate lower surface 12 of the substrate layer 3 are brought into contact with each other.
 なお、この時点では、基材層3および感圧接着層2のそれぞれは、基材開口部15および接着開口部11のそれぞれを有しない。 At this point, the base material layer 3 and the pressure-sensitive adhesive layer 2 do not have the base material opening 15 and the adhesive opening 11, respectively.
 図3Cに示すように、次いで、開口部23を、基材層3および感圧接着層2に形成する。 Next, as shown in FIG. 3C, the opening 23 is formed in the base material layer 3 and the pressure-sensitive adhesive layer 2.
 開口部23は、基材層3および感圧接着層2を貫通する。開口部23は、基材開口部15を区画する外周面と、接着開口部11を区画する外周面とによって区画される平面視略円形状の穴(貫通穴)である。開口部23は、上側に向かって開口される。一方、開口部23の下端は、第1剥離シート19によって閉塞されている。 The opening 23 penetrates the base material layer 3 and the pressure-sensitive adhesive layer 2. The opening 23 is a substantially circular hole (through hole) in plan view defined by an outer peripheral surface that defines the base material opening 15 and an outer peripheral surface that defines the bonding opening 11. The opening 23 is opened upward. On the other hand, the lower end of the opening 23 is closed by the first release sheet 19.
 開口部23を形成するには、感圧接着層2および基材層3を、例えば、パンチング、ハーフエッチングする。 To form the opening 23, the pressure-sensitive adhesive layer 2 and the base material layer 3 are punched and half-etched, for example.
 次いで、プローブ部材18を準備し、これを開口部23内に嵌め込む。 Next, the probe member 18 is prepared and fitted into the opening 23.
 プローブ部材18を準備するには、まず、図4に示すように、プローブ含有シート26を準備する。 To prepare the probe member 18, first, a probe-containing sheet 26 is prepared as shown in FIG.
 プローブ含有シート26は、第2剥離シート29と、第2剥離シート29の上に形成されるプローブパターン25と、第2剥離シート29の上に形成され、プローブパターン25を埋め込む感圧接着層2と、感圧接着層2の接着上面8に配置される基材層3とを備える。 The probe-containing sheet 26 includes a second release sheet 29, a probe pattern 25 formed on the second release sheet 29, and a pressure-sensitive adhesive layer 2 formed on the second release sheet 29 to embed the probe pattern 25. And a base material layer 3 disposed on the adhesive upper surface 8 of the pressure-sensitive adhesive layer 2.
 第2剥離シート29は、上記した第1剥離シート19と同様の構成を有する。 The second release sheet 29 has the same configuration as the first release sheet 19 described above.
 プローブパターン25は、プローブ5と同一のパターン形状を有し、プローブパターン25の材料は、プローブ5の材料と同一である。プローブパターン25は、プローブ5の外側面22を通過する仮想円より大きい平面積を有する。 The probe pattern 25 has the same pattern shape as the probe 5, and the material of the probe pattern 25 is the same as the material of the probe 5. The probe pattern 25 has a larger plane area than the virtual circle that passes through the outer surface 22 of the probe 5.
 プローブ含有シート26における感圧接着層2および基材層3のそれぞれは、上記した感圧接着層2および基材層3のそれぞれと同一構成を有する。 Each of the pressure-sensitive adhesive layer 2 and the base material layer 3 in the probe-containing sheet 26 has the same configuration as each of the pressure-sensitive adhesive layer 2 and the base material layer 3 described above.
 プローブ含有シート26は、例えば、特開2017-22236号公報、特開2017-22237号公報に記載される方法によって準備される。 The probe-containing sheet 26 is prepared by a method described in, for example, Japanese Patent Application Laid-Open No. 2017-22236 and Japanese Patent Application Laid-Open No. 2017-22237.
 図示しないが、具体的には、ステンレスからなる剥離層の上面に、銅からなるシード層を形成した後、シード層の上面全体にフォトレジストを積層する。次いで、フォトレジストを露光および現像して、フォトレジストをプローブパターン25の逆パターンに形成する。続いて、電解めっきにより、プローブパターン25をシード層の上面に形成した後、フォトレジストを除去する。その後、感圧接着層2の材料を含有する塗布液を、プローブパターン25を被覆するように塗布し、硬化させて感圧接着層2を形成する。次いで、感圧接着層2の上面に、基材層3を、例えば、ラミネータなどにより、貼り合わせる。そして、シード層の下面から剥離層を剥離し、続いて、シード層を除去する。その後、必要に応じて、感圧接着層2の下面に、第2剥離シート29を貼り合わせる。第2剥離シート29は、上記した第1剥離シート19と同様の構成を有する。 Although not shown, specifically, after forming a seed layer made of copper on the upper surface of the release layer made of stainless steel, a photoresist is laminated on the entire upper surface of the seed layer. Next, the photoresist is exposed and developed to form a photoresist in the reverse pattern of the probe pattern 25. Subsequently, after the probe pattern 25 is formed on the upper surface of the seed layer by electrolytic plating, the photoresist is removed. Thereafter, a coating solution containing the material for the pressure-sensitive adhesive layer 2 is applied so as to cover the probe pattern 25 and cured to form the pressure-sensitive adhesive layer 2. Next, the base material layer 3 is bonded to the upper surface of the pressure-sensitive adhesive layer 2 using, for example, a laminator. Then, the peeling layer is peeled off from the lower surface of the seed layer, and then the seed layer is removed. Then, the 2nd peeling sheet 29 is bonded together to the lower surface of the pressure sensitive adhesive layer 2 as needed. The second release sheet 29 has the same configuration as the first release sheet 19 described above.
 これによって、プローブ含有シート26が準備される。 Thereby, the probe-containing sheet 26 is prepared.
 次いで、図5に示すように、切断線27を、プローブパターン25、感圧接着層2および基材層3に、平面視略円形状に形成する。切断線27は、例えば、パンチングなどによって形成される。切断線27は、プローブパターン25、感圧接着層2および基材層3をその内外に分断するが、第2剥離シート29には形成されない。また、切断線27の寸法は、接着開口部11および基材開口部15の内径と同一である。つまり、切断線27は、外側面22を通過する仮想円と一致する。 Next, as shown in FIG. 5, the cutting line 27 is formed in the probe pattern 25, the pressure-sensitive adhesive layer 2, and the base material layer 3 in a substantially circular shape in plan view. The cutting line 27 is formed by, for example, punching. The cutting line 27 divides the probe pattern 25, the pressure-sensitive adhesive layer 2 and the base material layer 3 into and out of the probe pattern 25, but is not formed on the second release sheet 29. The dimension of the cutting line 27 is the same as the inner diameter of the bonding opening 11 and the base material opening 15. That is, the cutting line 27 coincides with a virtual circle that passes through the outer surface 22.
 切断線27の形成によって、プローブ部材18が形成される。 The probe member 18 is formed by forming the cutting line 27.
 プローブ部材18において、プローブ5の外側面22は、感圧接着層2の外側面と面一である。また、プローブ部材18において、外側面22は、感圧接着層2の外側面から径方向外方に露出する。 In the probe member 18, the outer surface 22 of the probe 5 is flush with the outer surface of the pressure-sensitive adhesive layer 2. In the probe member 18, the outer surface 22 is exposed radially outward from the outer surface of the pressure-sensitive adhesive layer 2.
 続いて、図5の矢印で示すように、プローブ部材18を、第2剥離シート29から引き上げる。具体的には、プローブ部材18における接着下面9およびプローブ下面20を、第2剥離シート29から剥離する。 Subsequently, as shown by the arrow in FIG. 5, the probe member 18 is pulled up from the second release sheet 29. Specifically, the adhesive lower surface 9 and the probe lower surface 20 in the probe member 18 are peeled from the second release sheet 29.
 その後、図3Cの矢印で示すように、プローブ部材18を、開口部23内に嵌め込む。 Thereafter, the probe member 18 is fitted into the opening 23 as shown by the arrow in FIG. 3C.
 この際、プローブ部材18の感圧接着層2、基材層3およびプローブ5と、開口部23の周囲の感圧接着層2および基材層3との間に、間隔を隔てる。つまり、基材開口部15および接着開口部11が形成されるように、プローブ部材18を開口部23内に嵌め込む。 At this time, a space is provided between the pressure-sensitive adhesive layer 2, the base material layer 3 and the probe 5 of the probe member 18 and the pressure-sensitive adhesive layer 2 and the base material layer 3 around the opening 23. That is, the probe member 18 is fitted into the opening 23 so that the base material opening 15 and the bonding opening 11 are formed.
 その後、図3Dに示すように、接続部6を、基材開口部15および接着開口部11内に設ける。 Thereafter, as shown in FIG. 3D, the connecting portion 6 is provided in the base material opening 15 and the bonding opening 11.
 接続部6の材料が導電性樹脂組成物である場合には、導電性樹脂組成物を基材開口部15および接着開口部11に注入(あるいは塗布)する。その後、必要により、導電性樹脂組成物を加熱する。 When the material of the connecting part 6 is a conductive resin composition, the conductive resin composition is injected (or applied) into the base material opening 15 and the adhesive opening 11. Thereafter, the conductive resin composition is heated as necessary.
 これにより、生体センサ用積層体1を製造する。 Thereby, the biosensor laminate 1 is manufactured.
 この生体センサ用積層体1は、感圧接着層2と、基材層3と、配線層4と、プローブ5と、接続部6と、第1剥離シート19とを備え、好ましくは、それらのみからなる。図2Aに示すように、また、生体センサ用積層体1は、第1剥離シート19を備えず、感圧接着層2と、基材層3と、配線層4と、プローブ5と、接続部6とのみからなっていてもよい。 The biosensor laminate 1 includes a pressure-sensitive adhesive layer 2, a base material layer 3, a wiring layer 4, a probe 5, a connection portion 6, and a first release sheet 19, preferably only these Consists of. As shown in FIG. 2A, the biosensor laminate 1 does not include the first release sheet 19, and includes the pressure-sensitive adhesive layer 2, the base material layer 3, the wiring layer 4, the probe 5, and the connection portion. It may consist only of 6.
 生体センサ用積層体1は、単独で流通し、産業上利用可能なデバイスである。具体的には、生体センサ用積層体1は、次に説明する電子部品31および電池32(図1の仮想線参照)とは別に、単独で流通することができる。つまり、生体センサ用積層体1は、電子部品31および電池32を実装しておらず、貼付型心電計30を製造するための部品である。 The laminated body 1 for biosensors is a device that can be distributed and used industrially. Specifically, the biosensor laminate 1 can be distributed separately from the electronic component 31 and the battery 32 (see the phantom line in FIG. 1) described below. That is, the biosensor laminate 1 is a component for manufacturing the pasted electrocardiograph 30 without mounting the electronic component 31 and the battery 32.
 次に、生体センサ用積層体1を用いて、生体センサの一例としての貼付型心電計30の製造方法および貼付型心電計30の使用方法を説明する。 Next, a method for manufacturing the patch electrocardiograph 30 as an example of a biosensor and a method for using the patch electrocardiograph 30 will be described using the biosensor laminate 1.
 図1および図2Aに示すように、貼付型心電計30を製造するには、例えば、まず、生体センサ用積層体1、電子部品31および電池32のそれぞれを用意する。 As shown in FIG. 1 and FIG. 2A, in order to manufacture the adhesive electrocardiograph 30, for example, first, the biosensor laminate 1, the electronic component 31, and the battery 32 are prepared.
 電子部品31としては、例えば、プローブ5で取得した生体からの電気信号を処理して記憶するためのアナログフロントエンド、マイコン、メモリ、さらには、電気信号を電波に変換し、これを外部の受信機に無線送信するための通信IC、送信機などが挙げられる。電子部品31は、これらのうち一部あるいは全てを有していてもい。電子部品31は、その下面に設けられる2つあるいは3つ以上の端子(図示せず)を有する。 As the electronic component 31, for example, an analog front end for processing and storing an electric signal from a living body acquired by the probe 5, a microcomputer, a memory, and further converting the electric signal into a radio wave, and receiving this externally Examples include a communication IC for wireless transmission to a machine, a transmitter, and the like. The electronic component 31 may have some or all of them. The electronic component 31 has two or three or more terminals (not shown) provided on the lower surface thereof.
 電池32は、その下面に設けられる2つの端子(図示せず)を有する。 The battery 32 has two terminals (not shown) provided on the lower surface thereof.
 次いで、電子部品31の2つの端子を、第1端子17Aおよび第3端子17Cと電気的に接続する。また、電池32の2つの端子を、第2端子17Bおよび第4端子17Dと電気的に接続する。 Next, the two terminals of the electronic component 31 are electrically connected to the first terminal 17A and the third terminal 17C. Further, the two terminals of the battery 32 are electrically connected to the second terminal 17B and the fourth terminal 17D.
 これにより、生体センサ用積層体1と、それに実装される電子部品31および電池32とを備える貼付型心電計30を製造する。 Thereby, the pasted electrocardiograph 30 including the biosensor laminate 1, the electronic component 31 and the battery 32 mounted thereon is manufactured.
 貼付型心電計30を使用するには、まず、第1剥離シート19(図3Dの矢印および仮想線が参照)を、感圧接着層2およびプローブ5から剥離する。 To use the affixed electrocardiograph 30, first, the first release sheet 19 (see the arrow and the phantom line in FIG. 3D) is peeled from the pressure-sensitive adhesive layer 2 and the probe 5.
 図2Aの仮想線で示すように、次いで、感圧接着層2の接着下面9を、例えば、人体の皮膚33に接触させる。具体的には、感圧接着層2を皮膚33の表面に感圧接着させる。 2A, the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2 is then brought into contact with the human skin 33, for example. Specifically, the pressure-sensitive adhesive layer 2 is pressure-bonded to the surface of the skin 33.
 すると、プローブ5のプローブ下面20は、接着下面9が皮膚33に感圧接着(貼付)することによって、皮膚33の表面に接触する。 Then, the probe lower surface 20 of the probe 5 comes into contact with the surface of the skin 33 by the pressure-sensitive adhesion (sticking) of the adhesion lower surface 9 to the skin 33.
 続いて、プローブ5が心臓の活動電位を電気信号としてセンシングし、プローブ5でセンシングした電気信号が、接続部6および配線層4を介して、電子部品31に入力される。電子部品31は、電池32から供給される電力に基づいて、電気信号を処理して情報として記憶する。さらには、必要により、電気信号を電波に変換し、これを外部の受信機に無線送信する。 Subsequently, the probe 5 senses the cardiac action potential as an electrical signal, and the electrical signal sensed by the probe 5 is input to the electronic component 31 via the connection portion 6 and the wiring layer 4. The electronic component 31 processes an electrical signal based on the power supplied from the battery 32 and stores it as information. Furthermore, if necessary, the electric signal is converted into a radio wave and wirelessly transmitted to an external receiver.
 そして、この生体センサ用積層体1では、プローブ5は、感圧接着層2の接着下面9から露出しているので、感圧接着層2の接着下面9を皮膚33に貼付すれば、プローブ5は、皮膚33に接触でき、心臓の活動電位をセンシングすることができる。 In this biosensor laminate 1, the probe 5 is exposed from the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2, and therefore, if the adhesive lower surface 9 of the pressure-sensitive adhesive layer 2 is attached to the skin 33, the probe 5. Can touch the skin 33 and sense the action potential of the heart.
 一方、配線層4は、感圧接着層2の接着上面8に配置される基材層3に配置されており、つまり、配線層4においてプローブ5を埋め込む側の反対側(上側)に配置される基材層3に配置されている。そのため、配線層4は、皮膚33と接触することを防止できる。
その結果、配線層4は、皮膚33を介した短絡を防止することができる。
On the other hand, the wiring layer 4 is disposed on the base material layer 3 disposed on the adhesion upper surface 8 of the pressure-sensitive adhesive layer 2, that is, disposed on the opposite side (upper side) of the wiring layer 4 to the side where the probe 5 is embedded. The base material layer 3 is disposed. Therefore, the wiring layer 4 can prevent contact with the skin 33.
As a result, the wiring layer 4 can prevent a short circuit through the skin 33.
 従って、この生体センサ用積層体1によれば、心臓の活動電位を確実にセンシングすることができる。 Therefore, according to the biosensor laminate 1, it is possible to reliably sense the action potential of the heart.
 また、この生体センサ用積層体1では、配線層4が、基材層3に埋め込まれているので、薄型化を図ることができる。 Further, in the biosensor laminate 1, the wiring layer 4 is embedded in the base material layer 3, so that the thickness can be reduced.
 また、この生体センサ用積層体1では、基材層3の材料が、生体適合性を有すれば、生体への安全性を向上させることができる。 In the biosensor laminate 1, if the material of the base material layer 3 has biocompatibility, safety to the living body can be improved.
 また、この生体センサ用積層体1では、基材層3の材料が、ポリウレタン系樹脂であれば、基材層3は、伸縮性に優れる。 Further, in this biosensor laminate 1, if the material of the base material layer 3 is a polyurethane resin, the base material layer 3 is excellent in stretchability.
 この生体センサ30は、上記した生体センサ用積層体1を備えるので、確実なセンシングを実施することができる。 Since this biosensor 30 includes the above-described laminate 1 for biosensors, reliable sensing can be performed.
 <変形例>
 以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例を適宜組み合わせることができる。さらに、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。
<Modification>
In the following modifications, members and processes similar to those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Moreover, each modification can be combined suitably. Furthermore, each modification can produce the same effects as those of the embodiment, unless otherwise specified.
 図1および図5に示すように、一実施形態では、外側面22を通過する線は、円形状であるが、その形状は特に限定されず、例えば、図示しないが、矩形状であってもよい。 As shown in FIGS. 1 and 5, in one embodiment, the line passing through the outer surface 22 is circular, but the shape is not particularly limited. For example, although not shown, the line may be rectangular. Good.
 図2Bに示すように、配線層4の側面の全部は、基材層3に接触している。 As shown in FIG. 2B, the entire side surface of the wiring layer 4 is in contact with the base material layer 3.
 一方、図7Aに示すように、この変形例では、配線層4の側面の下部が、基材層3に接触し、配線層4の側面の上部が、基材層3の基材上面13から露出することができる。つまり、配線層4の上部が基材層3の基材上面13から突出し、配線層4の下部が基材層3に埋め込まれている。 On the other hand, as shown in FIG. 7A, in this modification, the lower part of the side surface of the wiring layer 4 is in contact with the base material layer 3, and the upper part of the side surface of the wiring layer 4 is from the base material upper surface 13 of the base material layer 3. Can be exposed. That is, the upper part of the wiring layer 4 protrudes from the upper surface 13 of the base material layer 3 and the lower part of the wiring layer 4 is embedded in the base material layer 3.
 図7Bに示すように、配線層4の側面の全部が、露出することもできる。基材上面13は、基材溝14を有さず、平坦面である。配線層4の下面が、基材上面13に接触し、載置されている。つまり、図7Bに示す配線層4は、基材層3に埋め込まれず、基材上面13に配置されている。 As shown in FIG. 7B, the entire side surface of the wiring layer 4 can be exposed. The substrate upper surface 13 does not have the substrate groove 14 and is a flat surface. The lower surface of the wiring layer 4 is placed in contact with the substrate upper surface 13. That is, the wiring layer 4 shown in FIG. 7B is not embedded in the base material layer 3 and is disposed on the base material upper surface 13.
 図7Cに示すように、配線層4は、基材層3に完全に埋め込まれていてよい。つまり、配線層4は、基材層3中に埋設されている。配線層4の上面、下面および側面の全ては、基材層3に被覆されている。配線層4は、基材層3における基材上面13および基材下面12の間に位置する。 As shown in FIG. 7C, the wiring layer 4 may be completely embedded in the base material layer 3. That is, the wiring layer 4 is embedded in the base material layer 3. The upper surface, the lower surface, and the side surfaces of the wiring layer 4 are all covered with the base material layer 3. The wiring layer 4 is located between the substrate upper surface 13 and the substrate lower surface 12 in the substrate layer 3.
 図7Dに示すように、配線層4は、基材下面12から露出するように、基材層3に埋め込まれている。配線層4の下面は、基材下面12と面一であり、接着上面8に接触する。
この場合には、図示しないが、接続部6が、基材層3を通過せず、感圧接着層2のみを通過する。つまり、接続部6が、接着開口部11のみに充填されている。
As shown in FIG. 7D, the wiring layer 4 is embedded in the base material layer 3 so as to be exposed from the base material lower surface 12. The lower surface of the wiring layer 4 is flush with the lower surface 12 of the base material and contacts the bonding upper surface 8.
In this case, although not shown, the connection portion 6 does not pass through the base material layer 3 but passes only through the pressure-sensitive adhesive layer 2. That is, the connection portion 6 is filled only in the bonding opening 11.
 また、図示しないが、例えば、第1配線16Aおよび/または第2配線16Bは、平面視波形状を有することもできる。 Although not shown, for example, the first wiring 16A and / or the second wiring 16B may have a planar wave shape.
 図2Aに示すように、一実施形態では、プローブ5の側面(外側面22を除く)の全部が感圧接着層2に接触しており、プローブ5のプローブ下面20が、感圧接着層2の接着下面9に対して面一である。 As shown in FIG. 2A, in one embodiment, the entire side surface (except the outer surface 22) of the probe 5 is in contact with the pressure-sensitive adhesive layer 2, and the probe lower surface 20 of the probe 5 is connected to the pressure-sensitive adhesive layer 2. It is flush with the adhesive lower surface 9.
 一方、図8に示すように、プローブ5の側面(外側面22を除く)の上部が感圧接着層2に接触し、下部が接着下面9から露出することもできる。プローブ下面20は、接着下面9に対して下側に位置する。つまり、プローブ5の上部のみが感圧接着層2に埋め込まれ、プローブ5の下部が、接着下面9から下に向かって突出する。 On the other hand, as shown in FIG. 8, the upper portion of the side surface (excluding the outer surface 22) of the probe 5 can be in contact with the pressure-sensitive adhesive layer 2 and the lower portion can be exposed from the adhesive lower surface 9. The probe lower surface 20 is positioned below the bonding lower surface 9. That is, only the upper part of the probe 5 is embedded in the pressure-sensitive adhesive layer 2, and the lower part of the probe 5 protrudes downward from the adhesive lower surface 9.
 図9に示すように、プローブ5は、孔を有さず、面方向に延びる略板形状(具体的には、略円板形状)を有することができる。プローブ5の外周面は、接続部6の下端部の内周面に接触する。 As shown in FIG. 9, the probe 5 does not have a hole and can have a substantially plate shape (specifically, a substantially disk shape) extending in the surface direction. The outer peripheral surface of the probe 5 is in contact with the inner peripheral surface of the lower end portion of the connection portion 6.
 図10に示すように、プローブ5が、感圧接着層2および基材層3を通過する略柱形状(具体的には、略円柱形状)であってよい。プローブ上面21は、基材層3の基材上面13と接続部6の上面とから露出する。プローブ5の外周面の全部は、接続部6の内周面の全部に接触する。 As shown in FIG. 10, the probe 5 may have a substantially columnar shape (specifically, a substantially cylindrical shape) that passes through the pressure-sensitive adhesive layer 2 and the base material layer 3. The probe upper surface 21 is exposed from the substrate upper surface 13 of the substrate layer 3 and the upper surface of the connection portion 6. The entire outer peripheral surface of the probe 5 is in contact with the entire inner peripheral surface of the connection portion 6.
 図11および図12に示すように、接続部6は、軸線が厚み方向に沿って延びる略棒(丸棒)(針)形状を有することもできる。 As shown in FIG. 11 and FIG. 12, the connecting portion 6 can also have a substantially bar (round bar) (needle) shape whose axis extends along the thickness direction.
 接続部6と、プローブ5とは、点状で接触する。 The connecting part 6 and the probe 5 are in a point-like contact.
 図13に示すように、接続部6は、略柱形状であり、かつ、プローブ5は、孔を有さず、面方向に延びる略板形状(具体的には、略円板形状)を有することができる。 As shown in FIG. 13, the connecting portion 6 has a substantially columnar shape, and the probe 5 has a substantially plate shape (specifically, a substantially disc shape) that does not have a hole and extends in the surface direction. be able to.
 図14Aに示すように、プローブ5の下面に導電性感圧接着層28を設けることもできる。 As shown in FIG. 14A, a conductive pressure-sensitive adhesive layer 28 can be provided on the lower surface of the probe 5.
 導電性感圧接着層28は、外側面22を通過する仮想円と同一寸法の略円板形状を有する。導電性感圧接着層28の上面は、上記した仮想円内におけるプローブ下面20および接着下面9に接触している。 The conductive pressure-sensitive adhesive layer 28 has a substantially disk shape having the same dimensions as a virtual circle passing through the outer surface 22. The upper surface of the conductive pressure-sensitive adhesive layer 28 is in contact with the probe lower surface 20 and the adhesive lower surface 9 in the virtual circle described above.
 導電性感圧接着層28は、皮膚33における水分量や表面凹凸が生体(個体)によって異なることに起因するセンシング精度の低下やノイズを抑制するために設けられ、皮膚33における水分量を調整する水分量調整(あるいは水分量安定化)機能を有していてもよい。 The conductive pressure-sensitive adhesive layer 28 is provided in order to suppress a decrease in sensing accuracy and noise caused by a difference in moisture content and surface unevenness in the skin 33 depending on a living body (individual), and moisture for adjusting the moisture content in the skin 33. It may have a function of adjusting the amount (or stabilizing the amount of water).
 導電性感圧接着層28の材料は、導電性を有し、水分量調整機能(あるいは水分量安定化機能)を有する材料(例えば、親水性化合物など)を含むものであってもよい。例えば、材料としては、シリコーン系、アクリル系、ウレタン系などの感圧接着剤と、ポリエチレンオキサイド(PEO)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリエチレングリコール(PEG)などの親水性ポリマー(親水性化合物)とを配合した組成物が挙げられる。これら材料は、例えば、塗布されて、導電性感圧接着層28が設けられる。 The material of the conductive pressure-sensitive adhesive layer 28 may include a conductive material (for example, a hydrophilic compound) having a moisture content adjusting function (or moisture content stabilizing function). For example, the materials include pressure sensitive adhesives such as silicone, acrylic and urethane, and hydrophilic polymers such as polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG). The composition which mix | blended (hydrophilic compound) is mentioned. These materials are applied, for example, to provide the conductive pressure sensitive adhesive layer 28.
 また、図14Bに示すように、感圧強接着層45を、プローブ5の孔に充填してもよい。感圧強接着層45の下面は、プローブ下面20および接着下面9と面一である。感圧強接着層45の材料としては、例えば、シリコーン系、アクリル系、ウレタン系などの感圧強接着剤が挙げられる。感圧強接着層45のピール剥離力は、感圧接着層2のそれに対して、例えば、1.5倍以上である。感圧強接着層45によって、プローブ5が皮膚33に強固に固定されるため、信号処理精度がより向上する。 Further, as shown in FIG. 14B, a pressure-sensitive strong adhesive layer 45 may be filled in the hole of the probe 5. The lower surface of the pressure-sensitive strong adhesive layer 45 is flush with the probe lower surface 20 and the adhesive lower surface 9. Examples of the material of the pressure-sensitive strong adhesive layer 45 include pressure-sensitive strong adhesives such as silicone, acrylic, and urethane. The peel peel strength of the pressure sensitive adhesive layer 45 is, for example, 1.5 times or more that of the pressure sensitive adhesive layer 2. Since the probe 5 is firmly fixed to the skin 33 by the pressure-sensitive strong adhesive layer 45, the signal processing accuracy is further improved.
 図15および図16に示すように、プローブ5および接続部6が一体であってもよい。 As shown in FIGS. 15 and 16, the probe 5 and the connecting portion 6 may be integrated.
 つまり、プローブ5は、接続部6を兼ねる。プローブ5は、中実の略円柱形状を有する。プローブ下面20は、接着下面9から露出する。プローブ上面21は、基材上面13から露出する。2つのプローブ5のそれぞれの上端部に、第1配線16Aの長手方向一端縁、および第2配線16Bの長手方向他端縁のそれぞれが接触する。プローブ5の材料としては、例えば、接続部6と同様の材料が挙げられる。 That is, the probe 5 also serves as the connection portion 6. The probe 5 has a solid substantially cylindrical shape. The probe lower surface 20 is exposed from the adhesive lower surface 9. The probe upper surface 21 is exposed from the substrate upper surface 13. One end edge in the longitudinal direction of the first wiring 16A and the other edge in the longitudinal direction of the second wiring 16B are in contact with the upper ends of the two probes 5, respectively. Examples of the material of the probe 5 include the same material as that of the connection portion 6.
 図17Aおよび図17Bに示すように、接続部6が、平面視において、プローブ5より小さくてもよい。プローブ5の外側面22を通過する仮想円34は、平面視において、接続部6を含み、接続部6より大きい。接続部6の下端縁は、プローブ5の面方向途中部分(外側面22より内側部分)に接触している。 17A and 17B, the connecting portion 6 may be smaller than the probe 5 in plan view. The virtual circle 34 that passes through the outer surface 22 of the probe 5 includes the connection portion 6 and is larger than the connection portion 6 in plan view. The lower end edge of the connecting portion 6 is in contact with a portion in the surface direction of the probe 5 (a portion on the inner side of the outer surface 22).
 一実施形態では、図1に示すように、生体センサ用積層体1の長手方向中央部が膨らんでいるが、これに限定されず、例えば、図示しないが、生体センサ用積層体1は、長手方向中央部が膨まず、平面視略矩形状を有することもできる。 In one embodiment, as shown in FIG. 1, the longitudinal center portion of the biosensor laminate 1 is swollen, but the present invention is not limited to this. For example, although not shown, the biosensor laminate 1 is long. The central portion in the direction does not swell and may have a substantially rectangular shape in plan view.
 一実施形態では、本発明の生体センサの一例として貼付型心電計30を挙げたが、例えば、生体信号をセンシングして生体の健康状態をモニタできる装置などが挙げられ、具体的には、貼付型脳波計、貼付型血圧計、貼付型脈拍計、貼付型筋電計、貼付型温度計などが挙げられる。 In one embodiment, the patch type electrocardiograph 30 is given as an example of the biosensor of the present invention. Examples of the biosensor include a device that can sense a biological signal and monitor the health state of the living body. Examples thereof include an adhesive electroencephalograph, an adhesive blood pressure monitor, an adhesive pulse meter, an adhesive electromyograph, and an adhesive thermometer.
 なお、生体は、人体および人体以外の動物を含むが、好ましくは、人体である。
なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
The living body includes a human body and animals other than the human body, and is preferably a human body.
In addition, although the said invention was provided as exemplary embodiment of this invention, this is only a mere illustration and should not be interpreted limitedly. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 生体センサ用積層体は、生体センサに備えられる。 The biosensor laminate is provided in a biosensor.
1 生体センサ用積層体
2 感圧接着層
3 基材層
4 配線層
5 プローブ
6 接続部
8 接着上面(感圧接着層の上面の一例)
9 接着下面(感圧接着層の下面の一例)
13 基材上面(基材層の上面の一例)
30 貼付型心電計
31 電子部品
DESCRIPTION OF SYMBOLS 1 Laminated body for biosensors 2 Pressure sensitive adhesive layer 3 Base material layer 4 Wiring layer 5 Probe 6 Connection part 8 Adhesive upper surface (an example of the upper surface of a pressure sensitive adhesive layer)
9 Adhesive bottom surface (an example of the bottom surface of the pressure-sensitive adhesive layer)
13 Upper surface of base material (example of upper surface of base material layer)
30 Attached ECG 31 Electronic components

Claims (5)

  1.  生体表面に貼付するための感圧接着層と、
     前記感圧接着層の上面に配置され、伸縮性を有する基材層と、
     前記基材層に配置される配線層と、
     前記感圧接着層の下面から露出するように、前記感圧接着層に埋め込まれているプローブと、
     少なくとも前記感圧接着層内を通過するように、前記配線層と前記プローブとを電気的に接続する接続部と
    を備えることを特徴とする、生体センサ用積層体。
    A pressure-sensitive adhesive layer for application to the surface of a living body;
    A base material layer disposed on an upper surface of the pressure-sensitive adhesive layer and having elasticity; and
    A wiring layer disposed on the base material layer;
    A probe embedded in the pressure-sensitive adhesive layer so as to be exposed from the lower surface of the pressure-sensitive adhesive layer;
    A biosensor laminate, comprising: a connecting portion that electrically connects the wiring layer and the probe so as to pass through at least the pressure-sensitive adhesive layer.
  2.  前記配線層の少なくとも一部が、前記基材層に埋め込まれていることを特徴とする、請求項1に記載の生体センサ用積層体。 The biosensor laminate according to claim 1, wherein at least a part of the wiring layer is embedded in the base material layer.
  3.  前記感圧接着層の材料が、生体適合性を有することを特徴とする、請求項1に記載の生体センサ用積層体。 The laminate for a biosensor according to claim 1, wherein the material of the pressure-sensitive adhesive layer has biocompatibility.
  4.  前記基材層の材料が、ポリウレタン系樹脂であることを特徴とする、請求項1に記載の生体センサ用積層体。 The biosensor laminate according to claim 1, wherein the material of the base material layer is a polyurethane resin.
  5.  請求項1に記載の生体センサ用積層体と、
     前記配線層に電気的に接続されるように、前記基材層に実装される電子部品と
    を備えることを特徴とする、生体センサ。
    The biosensor laminate according to claim 1,
    A biosensor comprising: an electronic component mounted on the base material layer so as to be electrically connected to the wiring layer.
PCT/JP2018/002670 2017-04-28 2018-01-29 Laminate for biosensor and biosensor WO2018198457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-090538 2017-04-28
JP2017090538A JP7037285B2 (en) 2017-04-28 2017-04-28 Laminates for biosensors and biosensors

Publications (1)

Publication Number Publication Date
WO2018198457A1 true WO2018198457A1 (en) 2018-11-01

Family

ID=63918209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002670 WO2018198457A1 (en) 2017-04-28 2018-01-29 Laminate for biosensor and biosensor

Country Status (3)

Country Link
JP (1) JP7037285B2 (en)
TW (1) TW201838588A (en)
WO (1) WO2018198457A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396999B2 (en) * 2018-10-31 2023-12-12 三井化学株式会社 Bendable wiring boards, expandable wiring boards, and electronic devices based on them
JP2020156692A (en) * 2019-03-26 2020-10-01 日東電工株式会社 Electrode junction structure and biological sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108195A (en) * 1995-10-20 1997-04-28 Nec Corp Surface electrode for electric circuit built-in type living body
JP2002325740A (en) * 2001-04-13 2002-11-12 Ge Medical Systems Information Technologies Inc Electrocardiogram electrode patch

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848353A (en) * 1986-09-05 1989-07-18 Minnesota Mining And Manufacturing Company Electrically-conductive, pressure-sensitive adhesive and biomedical electrodes
US20040122500A1 (en) 2002-12-19 2004-06-24 Kimberly-Clark Worldwide, Inc. Electrode for utilizing edge effect to create uniform current density
EP2729067A4 (en) 2011-07-14 2014-10-29 Mc10 Inc Detection of a force on a foot or footwear
WO2015119208A1 (en) 2014-02-06 2015-08-13 独立行政法人科学技術振興機構 Electrode array and biological sensor
US20160338646A1 (en) 2015-05-20 2016-11-24 Mc10, Inc. Ultra-thin wearable sensing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108195A (en) * 1995-10-20 1997-04-28 Nec Corp Surface electrode for electric circuit built-in type living body
JP2002325740A (en) * 2001-04-13 2002-11-12 Ge Medical Systems Information Technologies Inc Electrocardiogram electrode patch

Also Published As

Publication number Publication date
TW201838588A (en) 2018-11-01
JP2018186957A (en) 2018-11-29
JP7037285B2 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
EP1552785B1 (en) Body surface bio-potential sensor having multiple electrodes and apparatus comprising the body surface bio-potential sensor
JP6997533B2 (en) Biosensor sheet
JP5670604B2 (en) Biological electrode
JP7033469B2 (en) Biosensor
JP6181356B2 (en) Bioelectrode pad
WO2018198571A1 (en) Laminate for biosensor and method for producing laminate for biosensor
JP7017426B2 (en) Method for manufacturing a laminate for a biosensor and a laminate for a biosensor
WO2018198457A1 (en) Laminate for biosensor and biosensor
WO2019092919A1 (en) Adhesively attachable biological sensor
WO2018198569A1 (en) Biosensor
EP3766413A1 (en) Biosensor laminate and biosensor
JPWO2019093144A1 (en) Stick-on biosensor
WO2024024694A1 (en) Biological adhesive and biosensor
WO2019176839A1 (en) Biosensor laminate and biosensor
Yoshioka et al. Biosensor
JP2020062156A (en) Biological signal measuring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791203

Country of ref document: EP

Kind code of ref document: A1