WO2018198252A1 - 二次電池、二次電池システム及び発電システム - Google Patents

二次電池、二次電池システム及び発電システム Download PDF

Info

Publication number
WO2018198252A1
WO2018198252A1 PCT/JP2017/016629 JP2017016629W WO2018198252A1 WO 2018198252 A1 WO2018198252 A1 WO 2018198252A1 JP 2017016629 W JP2017016629 W JP 2017016629W WO 2018198252 A1 WO2018198252 A1 WO 2018198252A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
porosity
electrolyte
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2017/016629
Other languages
English (en)
French (fr)
Inventor
修一郎 足立
北川 雅規
明博 織田
祐一 利光
酒井 政則
杉政 昌俊
渉太 伊藤
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/016629 priority Critical patent/WO2018198252A1/ja
Publication of WO2018198252A1 publication Critical patent/WO2018198252A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery, a secondary battery system, and a power generation system.
  • a flow battery can be applied as a large-capacity storage battery
  • a use on the power supply side and a use on the power demand side include, for example, a use on the power supply side and a use on the power demand side.
  • the former is expected to be applied to, for example, securing power generation reserves and surplus power storage in thermal power plants, and frequency control, securing supply surplus and load leveling in substations.
  • securing power generation reserves and surplus power storage in thermal power plants and frequency control, securing supply surplus and load leveling in substations.
  • UPS Uninterruptable Power Supply
  • UPS Uninterruptable Power Supply
  • a flow battery is composed of a positive electrode and a negative electrode, a positive electrode electrolyte and a negative electrode electrolyte, a positive electrode electrolyte reservoir and a negative electrode electrolyte reservoir, a liquid feed pump, a pipe, and the like.
  • Charging / discharging is performed by circulating between the liquid reservoir and the negative electrode electrolyte circulating between the negative electrode and the negative electrode electrolyte reservoir.
  • the positive electrode and the negative electrode are usually separated by a diaphragm, and mixing of the positive electrode electrolyte and the negative electrode electrolyte is prevented.
  • the active material in the flow battery ions whose valence changes can be candidates.
  • vanadium (V / V) flow batteries and the like have been put into practical use from the viewpoint of safety and the like.
  • the electrode reaction of the V / V flow battery is shown below.
  • Positive VO 2+ (4-valent) + H 2 O ⁇ VO 2 + ( 5 valence) + 2H + + e - ⁇
  • Negative electrode V 3+ (trivalent) + e ⁇ ⁇ V 2+ (divalent) (2)
  • a reaction from left to right represents a charging reaction
  • a reaction from right to left represents a discharging reaction.
  • the reaction from the left to the right occurs, the supplied electric power is consumed in changing the valence of V ions in the positive electrode and the negative electrode, and is stored in the electrolytic solution.
  • the electric power stored in electrolyte solution can be taken out by reverse reaction.
  • the positive electrode and the negative electrode have an end portion close to the side where the electrolyte is supplied and an end portion close to the outflow side.
  • a configuration in which at least one of the portions has a surface area per electrode unit volume smaller than a central portion therebetween see, for example, Patent Document 2.
  • the positive electrode and the negative electrode are electrode layers in which a plurality of layered electrodes are stacked, and per electrode unit volume in the electrode layer closer to the diaphragm. The remaining electrode layer is smaller in at least one of the end portion near the side where the electrolyte solution is supplied and the end portion near the side where the electrolyte solution flows out than the central portion therebetween.
  • a configuration is also proposed.
  • V / V flow batteries have a long history of development and are undergoing large-scale demonstration tests at home and abroad.
  • V / V type flow batteries have problems in terms of raw material cost and energy density, and a system using alternative materials is expected.
  • the alternative material include cerium / zinc (Ce / Zn), zinc / bromine (Zn / Br), zinc / iodine (Zn / I), and iron / chromium (Fe / Cr). .
  • a carbon felt electrode whose surface is activated may be used for a flow battery in view of the activity of electrode reaction, acid resistance, reaction area, and the like.
  • a carbon felt electrode is a method in which polyacrylonitrile (PAN) or rayon fibers are flame-resistant in air at a temperature of 200 ° C. to 300 ° C. and then made into a nonwoven fabric and carbonized at a temperature of about 1000 ° C. It is manufactured using a direct carbonization method or the like.
  • the specific surface area of the carbon felt electrode In this case, the diameter of the fibers constituting the carbon felt electrode is reduced, and the gap is fine.
  • the specific surface area of the carbon felt electrode is increased, the pressure loss when the electrolyte is circulated and the electrolyte is supplied to the electrode, that is, the fluid dynamic energy loss per unit time unit flow rate increases. As a result, when the pressure loss increases, the energy efficiency of the entire flow battery, including the power loss of the liquid feed pump, decreases, for example, when the pump is driven by the power of the flow battery itself.
  • metal Zn is deposited on the negative electrode during the charging reaction. At this time, it is considered that the pressure loss further increases when deposition of metal or the like proceeds in the carbon felt electrode.
  • the electrode layer close to the diaphragm side where the battery reaction actively occurs has a high surface area density ( High-density) electrode layer.
  • the V / V composition shown in Patent Document 1 can be expected to have a certain effect, but in other compositions (especially, the composition accompanied by precipitation of metal or the like as described above). It is thought that it cannot respond to a flow battery.
  • the electrode layer close to the diaphragm side has a high density, the gap of the electrode is blocked by a solid such as a metal deposited during the charging reaction or discharging reaction, and the reactivity in this portion is reduced. There is a possibility that the internal resistance of the flow battery increases and the pressure loss increases.
  • the technique described in Patent Document 2 is provided with a portion where the surface area per unit volume of the electrode is smaller than that of the central portion in order to prevent deterioration of the electrode, and does not correspond to prevention of pressure loss of the flow battery. Absent. Specifically, the flow of the electrolyte is directional, and when the battery reaction does not occur uniformly in the electrode in the direction of the flow of the electrolyte, the current density is a relative characteristic as a general characteristic of the battery. In particular, there is a tendency for deterioration in a high electrode region. In particular, the current density tends to be relatively high on the positive electrode outlet side during charging and the negative electrode inlet side during discharging, and deterioration of the electrodes tends to become obvious.
  • a flow battery is composed of a laminated structure of single cells of a battery, and a bipolar plate (bipolar plate, electrode) structure that most easily matches this structure with a current collecting function is often used as a positive electrode and negative electrode structure.
  • a bipolar plate bipolar plate, electrode
  • Patent Document 2 since the deterioration of the electrode becomes significant on the side of the bipolar plate having a relatively high current density, the surface area per unit electrode volume is adjusted to the electrode layer on the side of the bipolar plate, and the reactivity is ensured. From this point, it is considered that the electrode layer on the diaphragm side has no surface area gradient per unit electrode volume.
  • the electrode layer close to the diaphragm side has a high density, and thus deposited during the charging reaction or discharging reaction.
  • the void portion of the electrode is blocked by a solid such as metal, and the reactivity at this portion is reduced, which may increase the internal resistance of the flow battery and increase the pressure loss.
  • An object of one embodiment of the present invention is to provide a secondary battery in which an increase in pressure loss is suppressed when an electrolytic solution is flowed, and a secondary battery system and a power generation system including the secondary battery.
  • a secondary battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing an active material, and satisfying any one of the following (1) to (3).
  • (1) It further includes a pair of bipolar plates provided on the opposite side of the positive electrode and the negative electrode opposite to the side where the positive electrode and the negative electrode face each other, and at least one of the positive electrode and the negative electrode is in the thickness direction.
  • the bipolar plate having at least two regions having different porosity, wherein the porosity of the electrode on the side where the positive electrode and the negative electrode face each other is opposite to the side where the positive electrode and the negative electrode face each other It is higher than the porosity of the electrode on the side.
  • the porosity of the electrode on the side into which the electrolyte solution flows is higher than the porosity of the electrode on the side from which the electrolyte solution flows out.
  • a pair of bipolar plates provided on the opposite side of the positive electrode and the negative electrode on the opposite side of the positive electrode and the negative electrode, respectively, and a reservoir for supplying the electrolyte to the positive electrode and the negative electrode, respectively.
  • At least one of the positive electrode and the negative electrode is an electrode having at least two regions having different porosity in the flow direction of the electrolyte, and the porosity of the electrode on the side into which the electrolyte flows Is higher than the porosity of the electrode on the side from which the electrolyte flows out, and the electrode having at least two regions having different porosity in the flow direction of the electrolyte has different porosity in the thickness direction. It has at least two areas.
  • the porosity distribution of the electrode in the thickness direction from at least a part of the end side of the electrode where the positive electrode and the negative electrode face each other The absolute value of the average change rate of the porosity of the electrode obtained from the slope of the straight line approximated by the least square method is 0.5% / mm to 8.0% / mm, In the case where (2) or (3) is satisfied, a minimum of two in the graph in which the distribution of the porosity of the electrode in the flow direction is plotted from at least a part of the end of the electrode on the side into which the electrolyte flows.
  • ⁇ 6> The secondary battery according to any one of ⁇ 1> to ⁇ 5>, wherein the electrode is accompanied by precipitation of the active material in a charging reaction or a discharging reaction.
  • ⁇ 8> The secondary battery according to any one of ⁇ 1> to ⁇ 7>, wherein the porosity of the electrode is determined by weight measurement.
  • ⁇ 9> The secondary battery according to any one of ⁇ 1> to ⁇ 8>, wherein the electrolytic solution contains at least one of iodine ions and iodine molecules as the active material.
  • the secondary battery according to ⁇ 11> comprising a positive electrode electrolyte containing a positive electrode active material and a negative electrode electrolyte containing a negative electrode active material as the electrolyte.
  • the reservoir is a positive electrolyte reservoir that stores the positive electrolyte and a negative electrolyte reservoir that stores the negative electrolyte, and is between the positive electrode and the positive electrolyte reservoir.
  • a secondary battery system comprising: the secondary battery according to any one of ⁇ 1> to ⁇ 14>, and a control unit that controls charging and discharging of the secondary battery.
  • a power generation system comprising a power generation device and a secondary battery system according to ⁇ 15>.
  • the content of each component in the electrolytic solution is the total of the plurality of types of substances present in the electrolytic solution unless there is a specific indication when there are multiple types of substances corresponding to the respective components in the electrolytic solution. Mean content. Further, in the present disclosure, “content ratio” represents mass% of each component when the total amount of each electrolytic solution is 100 mass% unless otherwise specified.
  • the term “solid” refers to a material that is deposited by an electrochemical reaction on at least one of a positive electrode and a negative electrode used in a secondary battery, and specifically includes a metal solid and a nonmetal solid.
  • the non-metallic solid include molecular solids such as iodine molecules (I 2 ) described later, and organic molecular solids such as polymers and plastics. Further, the non-metallic solid may be a complex such as a complex.
  • the “thickness direction” in the positive electrode refers to the direction from the side facing the negative electrode that is the counter electrode to the opposite side (for example, the direction of the bipolar plate side that exchanges electrons with the positive electrode). Indicates the direction from the side facing the positive electrode, which is the counter electrode, to the opposite side (for example, the direction from the side of the bipolar plate that exchanges electrons with the negative electrode).
  • the “porosity gradient” means that at least two regions having different porosity exist in an electrode in a certain direction, and the gradient of the porosity (a constant ratio) is present in at least a part of the electrode in a certain direction.
  • the present invention is not limited to a configuration having a continuous change).
  • the porosity of the electrode on the side where the positive electrode and the negative electrode face each other refers to the length of 5.0% from the end surface on the side facing the counter electrode in the thickness direction of the electrode. Refers to the porosity of at least a portion of the region.
  • the porosity of the electrode on the side of the bipolar plate is defined as “a positive electrode and a positive electrode on the basis of a surface that penetrates 50% in the thickness direction of the electrode from the end surface facing the counter electrode”. It refers to the porosity of a region that is plane-symmetric with the region from which the “porosity of the electrode on the side facing the negative electrode” is obtained.
  • the porosity of the electrode on the side into which the electrolyte solution flows refers to a region from the end side of the electrode on which the electrolyte solution flows into the length of 5.0% in the flow direction.
  • the porosity of at least a part of the present disclosure, the “porosity of the electrode on the side from which the electrolyte flows out” refers to a surface that has entered a length of 50% from the end surface on the side into which the electrolyte flows into the flow direction. It refers to the porosity of a region that is plane-symmetric with the region from which the “porosity of the electrode on the side from which the electrolyte flows out”.
  • the secondary battery according to the first embodiment of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution containing an active material.
  • at least one of the positive electrode and the negative electrode is an electrode having at least two regions having different porosity in the thickness direction, and the electrode on the side where the positive electrode and the negative electrode face each other Is higher than the porosity of the electrode on the side of the bipolar plate opposite to the side where the positive electrode and the negative electrode face each other (that is, the side of the bipolar plate that exchanges electrons with the electrode).
  • an electrode having at least two regions having different porosity is also referred to as “an electrode having a porosity gradient”.
  • the secondary battery of the present disclosure is provided with the above-described porosity gradient in the thickness direction on at least one of the positive electrode and the negative electrode.
  • the secondary battery of the present disclosure includes a positive electrode and a negative electrode. At least one of the positive electrode and the negative electrode is an electrode having a porosity gradient in the thickness direction, and the porosity of the electrode on the side facing the counter electrode is the porosity of the electrode on the side of the bipolar plate that exchanges electrons with the electrode Higher than. This suppresses an increase in pressure loss when the electrolyte is flowed, and also suppresses power loss of the liquid feed pump. These reasons are considered as follows, for example.
  • the porosity of the electrode on the side facing the counter electrode is higher than the porosity of the electrode on the bipolar plate side that exchanges electrons with the electrode. Yes. Therefore, the deposition of metal or the like is less likely to occur on the side closer to the counter electrode where an electrochemical reaction is likely to occur, and the gap is less likely to be blocked.
  • the side closer to the counter electrode it is possible to suppress the flow of the electrolytic solution from being inhibited and increase the pressure loss, and it is also possible to prevent the electrochemical reaction from proceeding easily.
  • an increase in power loss of the liquid feed pump is suppressed, and a decrease in output such as current density and discharge capacity is suppressed, and a secondary battery having a high current density and high output can be maintained for a long time.
  • a positive electrode and a negative electrode what is used for a conventionally well-known secondary battery can be used.
  • Specific examples include metals such as aluminum, copper, and zinc, and carbon (graphite).
  • conductive materials such as InSnO 2 , SnO 2 , ZnO, In 2 O 2 , fluorine-doped tin oxide (SnO 2 : F), antimony-doped tin oxide (SnO 2 : Sb), tin-doped indium oxide (In 2 O 3).
  • Examples of the shape of the positive electrode and the negative electrode include a plate shape and a mesh shape.
  • the electrode provided with at least one of the positive electrode and the negative electrode preferably a porosity gradient
  • contains carbon fiber it may be a porous body made of carbon fiber from the viewpoint of handling, processability, manufacturability and surface area.
  • the porous body made of carbon fibers include carbon felt, carbon cloth, and carbon paper. Among them, it is preferable to use carbon felt from the viewpoint of reaction activity and surface area during charge / discharge.
  • carbon fiber raw material fibers include carbonizable fibers, and specific examples include cellulose-based, acrylic-based, rayon-based, phenol-based, aromatic polyamide-based, pitch-based fibers, and polyacrylonitrile-based fibers.
  • raw fibers before firing are laminated and spread into a sheet shape, and then a web is formed. Then, a gap between fibers is appropriately determined by a known method such as a needle punch method, a thermal bond method, or a stitch bond method. There is a method of bonding, finishing in a felt shape, and finally performing a heat treatment.
  • the conditions for the heat treatment are not particularly limited, and include, for example, a step (carbonization treatment) in which a felt material made of raw material fibers is heat treated in an inert gas at a temperature of 800 ° C. to 2000 ° C.
  • a step of heat treatment at a temperature of 100 ° C. to 500 ° C. before the carbonization treatment (flame resistance) and a step of heat treatment at a temperature of 2000 ° C. to 3000 ° C. after the carbonization treatment (graphitization treatment) are included. You may go out.
  • the carbonized raw material fibers are further graphitized, the crystal structure as graphite becomes regular, and excess functional groups on the carbon fiber surface are removed, so that the electrode physical properties such as conductivity are improved. There is a tendency.
  • Other conditions for heat treatment include, for example, a step (activation treatment) of heat treating a felt material made of raw material fibers at a temperature of 800 ° C. to 2000 ° C. in a water vapor atmosphere.
  • activation treatment of heat treating a felt material made of raw material fibers at a temperature of 800 ° C. to 2000 ° C. in a water vapor atmosphere.
  • carbon cloth and carbon paper can also be suitably manufactured by performing heat treatment after finishing the raw fiber into a cloth shape or a paper shape by a known method.
  • the fiber diameter of the carbon fiber is preferably 1.0 ⁇ m to 30.0 ⁇ m, preferably 1.5 ⁇ m to 25 ⁇ m, from the viewpoints of physical properties as a carbon felt, production method, efficiency of electron transfer reaction with the electrolyte active material, and the like.
  • the thickness is more preferably 0.0 ⁇ m, and further preferably 2.0 ⁇ m to 20.0 ⁇ m.
  • the positive electrode and the negative electrode are preferably compressed in the thickness direction when mounted (filled) in the flow battery.
  • the electrical conductivity of the material which comprises a positive electrode and a negative electrode (in the case of carbon felt, carbon fiber) and a bipolar plate improves, and it exists in the tendency which can reduce cell resistance.
  • the ratio of the thickness before and after compression is preferably 1.1 to 4.0, preferably 1.2 to 3 Is more preferably 0.8, and still more preferably 1.3 to 3.6.
  • At least one of the positive electrode and the negative electrode is an electrode having a porosity gradient
  • the porosity of the electrode on the side facing the counter electrode is the porosity of the electrode on the side of the bipolar plate that exchanges electrons with the electrode.
  • the porosity of this electrode can be determined by weight measurement, for example.
  • the porosity of the electrode after compression (when used as an electrode for a secondary battery) It is preferable to calculate.
  • the porosity of the electrode after compression is calculated.
  • is the porosity (%)
  • V is the true volume (cm 3 ) of the electrode
  • V ′ is the apparent volume (cm 3 ) of the electrode.
  • the true volume V of the electrode can be calculated by dividing the mass of the material constituting the electrode by the density (g / cm 3 ) of the material.
  • At least one of the positive electrode and the negative electrode has a higher porosity of the electrode from the side of the bipolar plate that transmits and receives electrons toward the side facing the counter electrode.
  • the porosity of the electrode may increase stepwise or discontinuously from the side of the bipolar plate toward the side facing the counter electrode, or the porosity of the electrode may increase continuously. That is, it is preferable that the porosity of the electrode tends to increase from the side of the bipolar plate that transmits and receives electrons toward the side facing the counter electrode.
  • Both the positive electrode and the negative electrode are electrodes provided with a porosity gradient, and the porosity of the electrode on the side facing the counter electrode may be higher than the porosity of the electrode on the side of the bipolar plate that exchanges electrons with the electrode. At this time, the degree of the porosity gradient may be the same or different between the positive electrode and the negative electrode.
  • FIGS. 4A and 4B Examples of electrodes provided with a porosity gradient used in the first embodiment are shown in FIGS. 4A and 4B.
  • Figure 4A by combining the porosity phi 1 of the electrode and the porosity phi 2 of the electrode, a positive electrode 1a and the anode 1b porosity gradient is provided are formed.
  • Figure 4A satisfies the ⁇ 1> ⁇ 2 relationship, the porosity of the counter electrode and the opposite side (phi 1) is higher than the bipolar plate (not shown) side porosity (phi 2).
  • the following two methods can be given as examples of the method of giving the electrode a porosity gradient.
  • the first is a method in which members having different porosity before compression are arranged from the side facing the counter electrode to the bipolar plate in order of increasing porosity, and these are compressed to form an electrode having a porosity gradient. It is. At this time, the order of the porosity of the electrode after compression (a state used as an electrode of the secondary battery) is also in the same order as before compression.
  • the second method is to provide a difference in the porosity of the electrode material when a structure such as carbon felt is manufactured, particularly when a porous body made of carbon fiber is used. That is, the porosity can be changed continuously or discontinuously in the same electrode member by selecting conditions for the web lamination method and the needle punch method.
  • the difference from the porosity of the electrode at the position where 0% penetrated was 1. It is preferably 0% to 50.0%, more preferably 1.5% to 45.0%, still more preferably 2.0% to 40.0%, and more preferably 2.0% to 30.0% is particularly preferable, 2.0% to 20.0% is even more preferable, and 2.0% to 10.0% is even more preferable.
  • the above-described difference in porosity is 1.0% or more, the pressure loss of the electrolytic solution tends to be effectively suppressed even when a deposition reaction of metal or the like is involved in the electrode. Moreover, when the above-described difference in porosity is 50.0% or less, the uniformity of the reaction of the active material in the electrode is increased, and the activity of the charge / discharge reaction tends to be improved.
  • the least square method is used.
  • the absolute value of the average change rate of the porosity of the electrode obtained from the slope of the approximated straight line is preferably 0.5% / mm to 8.0% / mm, and preferably 0.75% / mm to 7. It is more preferably 0% / mm, further preferably 1.0% / mm to 6.5% / mm, particularly preferably 1.0% / mm to 6.0% / mm. .
  • the absolute value of the average change rate When the absolute value of the average change rate is 0.5% / mm or more, the pressure loss of the electrolytic solution tends to be effectively suppressed even when a deposition reaction of metal or the like is involved in the electrode. . In addition, when the absolute value of the average change rate is 8.0% / mm or less, the uniformity of the reaction of the active material in the electrode is increased, and the charge / discharge reaction activity tends to be improved.
  • the absolute value of the average change rate of the porosity in the electrode thickness direction can be obtained, for example, as follows. First, the coordinate in the thickness direction of the electrode (distance from the end of the electrode facing the counter electrode) is plotted on the horizontal axis, and the porosity of the electrode is plotted on the vertical axis. Next, linear approximation is performed by the least square method to obtain an approximate expression. When the porosity of the electrode increases from the bipolar plate side to the side facing the counter electrode, since the slope of the approximate expression is negative, the value obtained by multiplying the slope in the approximate expression by minus 1 ( ⁇ 1) is the gap. It can be the absolute value of the average rate of change of the rate.
  • the absolute value of the average change rate of porosity is calculated as follows. First, as shown in FIGS. 5A to 5D, the coordinate in the thickness direction of the electrode (distance from the end on the diaphragm side) is plotted on the horizontal axis, and the porosity of the electrode is plotted on the vertical axis, and plotted on a graph. Next, linear approximation is performed by the least square method to obtain an approximate expression. When the porosity of the electrode increases from the bipolar plate side to the side facing the counter electrode, since the slope of the approximate expression is negative, the value obtained by multiplying the slope in the approximate expression by minus 1 ( ⁇ 1) is the gap. It can be the absolute value of the average rate of change of the rate. For example, FIG.
  • 5A shows a calculation result when two types of electrodes having a porosity of 91.2% and 85.3% are arranged at a ratio (length) shown on the horizontal axis of the graph.
  • 5B shows two types of electrodes with porosity of 95.6% and 85.3%
  • FIG. 5C shows three types of electrodes with porosity of 93.3%, 89.0% and 87.2%.
  • FIG. 5D shows calculation results when three types of electrodes having a porosity of 91.5%, 90.4%, and 89.3% are arranged at the ratios (lengths) indicated on the horizontal axis of the graph. It is shown.
  • a bulk density is an example of an index that defines the density of the electrode.
  • the bulk density is defined as a density in a unit volume including a void portion.
  • the bulk density of the electrode after compression is not particularly limited, for example, is preferably 0.04g / cm 3 ⁇ 0.50g / cm 3, 0.045g / more preferably cm 3 ⁇ is 0.45 g / cm 3, further preferably 0.05g / cm 3 ⁇ 0.40g / cm 3.
  • the bulk density of the electrode is 0.04 g / cm 3 or more, the pressure loss of the electrolytic solution tends to be suppressed.
  • the compressive stress when mounted on a flow battery is improved, and the cell resistance is reduced. There is a tendency to be able to. Moreover, when the bulk density of the electrode is 0.50 g / cm 3 or less, the pressure loss of the electrolytic solution tends to be effectively reduced.
  • the surface area of the positive electrode and the surface area of the negative electrode are each independently preferably 1 m 2 / g to 100 m 2 / g, more preferably 2 m 2 / g to 80 m 2 / g, and 3 m 2 / g to 60 m 2. More preferably, it is / g. It exists in the tendency which can improve the reaction activity in charging / discharging reaction because the surface area of a positive electrode or the surface area of a negative electrode is 1 m ⁇ 2 > / g or more. Moreover, it exists in the tendency which can suppress a pressure loss effectively because the surface area of a positive electrode or the surface area of a negative electrode is 100 m ⁇ 2 > / g or less. For measuring the surface area of the positive electrode and the surface area of the negative electrode, a normal BET method or the like can be used.
  • the secondary battery may further include a diaphragm between the positive electrode and the negative electrode.
  • the diaphragm is not particularly limited as long as it can withstand the usage conditions of the secondary battery.
  • Examples of the diaphragm include an ion conductive polymer film capable of conducting ions, an ion conductive solid electrolyte film, a polyolefin porous film, and a cellulose porous film.
  • ion conductive polymer membrane examples include a cation exchange membrane and an anion exchange membrane, and more specifically, Seleion APS (registered trademark) (AGC), Nafion (registered trademark) (DuPont) and Neoceptor. (Registered trademark) (Astom).
  • AAC Seleion APS
  • Nafion registered trademark
  • DuPont Nafion
  • Neoceptor registered trademark
  • the secondary battery includes an electrolytic solution containing an active material.
  • the electrolyte solution may be a one-component electrolyte solution containing a positive electrode active material and a negative electrode active material, or a positive electrode electrolyte solution containing a positive electrode active material and a negative electrode electrolyte solution containing a negative electrode active material.
  • the electrolytic solution may contain a liquid medium in which the active material is dispersed or dissolved.
  • an electrolytic solution containing a positive electrode active material and a negative electrode active material When an electrolytic solution containing a positive electrode active material and a negative electrode active material is used, this electrolytic solution is supplied to an electrode chamber in which the positive electrode and the negative electrode are arranged, the positive electrode active material is collected on the positive electrode side, and the negative electrode active material is on the negative electrode side. It is preferable to arrange the positive electrode and the negative electrode so as to gather.
  • the positive electrode active material and the negative electrode active material are the positive electrode active material and the negative electrode contained in the negative electrode electrolyte, respectively.
  • An active material may be used.
  • the positive electrode electrolyte is supplied to the positive electrode and the negative electrode electrolyte is supplied to the negative electrode. Further, it is preferable that the positive electrode electrolyte is supplied from one end side of the positive electrode toward the other end side, and the negative electrode electrolyte solution is supplied from one end side of the negative electrode toward the other end side.
  • a plate-like, rod-like positive electrode and negative electrode are arranged along the vertical direction, and a positive electrode electrolyte is supplied along the vertical direction (for example, vertically upward) from one end side of the positive electrode to the other end side. More preferably, the liquid is supplied from one end side of the negative electrode to the other end side along the vertical direction (for example, vertically upward direction).
  • the active material in the electrolytic solution preferably contains ions whose valence changes, and known materials can be used.
  • the active material in the electrolytic solution is an oxidant / reductant satisfying the following reaction formula (4) or the reaction formula (5) (hereinafter sometimes referred to as a redox pair). May be contained.
  • n and x are integers and n ⁇ x
  • n and x are positive integers.
  • Examples of the redox pair satisfying the general formula (4) or (5) include Fe 3+ / Fe 2+ , Cr 3+ / Cr 2+ , Ga 3+ / Ga 2+ , Ti 3+ / Ti 2+ , Co 3+ / Co 2+ , Cu 2+ / Cu + , V 3+ / V 2+ , V 5+ / V 4+ , Ce 4+ / Ce 3+ , Cl ⁇ / Cl 3 ⁇ , Br ⁇ / Br 3 ⁇ , Zn 2+ / Zn, Pb 2+ / Pb, Fe 2+ / Fe, Cr 2+ / Cr, Ga 2+ / Ga, Ti 2+ / Ti, Mn 2+ / Mn, Mg 2+ / Mg, Mg + / Mg, Ag + / Ag, Cd 2+ / Cd, Co 2+ / Co, Cu 2+ / Cu, Cu + / Cu, Hg 2+ / Hg, and the like.
  • the secondary battery of the present disclosure is at least one of a positive electrode and a negative electrode, and the electrode provided with the above-described porosity gradient is preferably accompanied by precipitation of an active material by a charge reaction or a discharge reaction. Moreover, it is more preferable that the precipitate contains a metal.
  • the void of the electrode is blocked by a solid such as a metal deposited during the charge reaction or the discharge reaction, and the reactivity at this part decreases.
  • the internal resistance increases and the pressure loss may increase.
  • the porosity gradient is formed in the thickness direction at the electrode accompanied by the deposition of the active material, and therefore, when the electrolytic solution is flowed, an increase in pressure loss is suppressed. There is a tendency.
  • Examples of the oxidation-reduction pair that involves precipitation of metal or the like at the negative electrode during the charge reaction include, for example, Zn 2+ / Zn, Pb 2+ / Pb, Fe 2+ / Fe, Cr 2+ / Cr, Ga 2+ / Ga, Ti 2+ / Ti, Mn 2+ / Mn, Mg 2+ / Mg, Mg + / Mg, Ag + / Ag, Cd 2+ / Cd, Co 2+ / Co, Cu 2+ / Cu, Cu + / Cu, Hg 2+ / Hg, etc. It is done.
  • an electrolytic solution containing these redox couples as a negative electrode active material may be used, or a negative electrode electrolytic solution containing these redox couples as a negative electrode active material may be used.
  • a combination of the positive electrode active material and the negative electrode active material may be selected so that the standard redox potential of the negative electrode is lower than the standard redox potential of the positive electrode.
  • the deposit preferably contains a metal, and more preferably a metal. Further, the volume resistivity of the metal is preferably 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less. When the deposit is a metal and the volume resistivity of the metal is 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less, the metal deposited on the electrode becomes a new current collector during charge and discharge, It tends to be able to suppress a decrease in the efficiency of electron transfer reaction during charging and discharging.
  • the electrolytic solution preferably contains at least one of zinc ions (Zn 2+ ) and zinc (Zn) as an active material, and more preferably an aqueous solution system containing water as a liquid medium.
  • an aqueous solution system containing water as a liquid medium.
  • the zinc ion may be derived from a compound containing zinc.
  • the compounds containing zinc include zinc iodide, zinc acetate, zinc nitrate, zinc terephthalate, zinc sulfate, zinc chloride, zinc bromide, zinc oxide, zinc peroxide, zinc selenide, zinc diphosphate, acrylic acid Examples thereof include zinc, zinc hydroxide carbonate, zinc stearate, zinc propionate, zinc fluoride, and zinc citrate. Of these, zinc chloride and zinc sulfate are preferable.
  • the electrolytic solution preferably contains at least one of iodine ions and iodine molecules as an active material, and more preferably an aqueous solution system containing water as a liquid medium.
  • an aqueous solution system containing water as a liquid medium.
  • iodine ions examples include I ⁇ , I 3 ⁇ , I 5 ⁇ and the like. Therefore, when the electrolytic solution contains at least one of iodine ions and iodine molecules as an active material, for example, it only needs to contain at least one of I ⁇ , I 3 ⁇ , I 5 ⁇ and I 2 .
  • the electrolyte may contain an iodine compound, the iodine compound, CuI, ZnI 2, NaI, KI, HI, LiI, NH 4 I, BaI 2, CaI 2, MgI 2, SrI 2, CI 4 , AgI, NI 3 , tetraalkylammonium iodide, pyridinium iodide, pyrrolidinium iodide, sulfonium iodide and the like can be mentioned.
  • Iodine ions are preferably dissolved in the electrolytic solution.
  • the iodine compound is preferably at least one of NaI, KI, and NH 4 I. Since NaI, KI, and NH 4 I have high solubility in water, the energy density of the secondary battery can be further improved by using at least one of NaI, KI, and NH 4 I.
  • the electrolytic solution contains at least one of iodine ions and iodine molecules as the positive electrode active material
  • the main redox pair in the charge / discharge reaction is I ⁇ / I 3 ⁇
  • the reaction formula of the following formula (6) happenss. 3I ⁇ ⁇ I 3 ⁇ + 2e ⁇ (6)
  • iodine molecules do not precipitate, and high current density and high output characteristics can be realized in the secondary battery.
  • the electrolytic solution contains at least one of iodine ions and iodine molecules as the positive electrode active material
  • a reaction such as the following formula (7) is involved depending on charge / discharge conditions and the like.
  • 2I - ⁇ I 2 + 2e - ⁇ (7) In the reaction of the formula (7), it means that the I ⁇ ion is oxidized during the charging to generate I 2 .
  • I 2 When I 2 is generated, I 2 may be deposited on the electrode surface as a solid, which may increase the pressure loss.
  • the positive electrode diaphragm side that is, the side opposite to the negative electrode in the positive electrode, than the bipolar plate side. It is preferable to increase the porosity of the positive electrode.
  • the total content of iodine compounds and iodine molecules is preferably 1% by mass to 80% by mass, more preferably 3% by mass to 70% by mass, and 5% by mass to 50% by mass. More preferably.
  • the total content of the iodine compound and iodine molecules is preferably 1% by mass or more, a secondary battery suitable for practical use with a high capacity tends to be obtained.
  • the solubility or dispersibility in a liquid medium it exists in the tendency for the solubility or dispersibility in a liquid medium to become favorable because the total content rate of an iodine compound and an iodine molecule shall be 80 mass% or less.
  • the iodine compound and iodine molecule content ratio represents the total content of ions derived from iodine compounds and iodine molecules in the electrolytic solution, and ions derived from iodine compounds in the electrolytic solution (for example, I ⁇ and I 3). - , I 5 - and their counter ions) and the total content of iodine molecules (I 2 ).
  • electrolyte solution may contain oxidation-reduction substances other than an iodine molecule and an iodine ion as a positive electrode active material.
  • redox substances other than iodine molecules and iodine ions include chromium, vanadium, zinc, quinone compounds, lithium cobaltate, sodium manganate, lithium nickelate, cobalt-nickel-lithium manganate, and lithium iron phosphate. .
  • a combination of a positive electrode electrolytic solution containing at least one of iodine molecules and iodine ions as a positive electrode active material and a negative electrode electrolytic solution containing a redox pair that accompanies deposition of a metal or the like as a negative electrode active material a combination of a positive electrode electrolyte containing at least one of iodine molecules and iodine ions as a positive electrode active material and a negative electrode electrolyte containing at least one of zinc and zinc ions as a negative electrode active material is more preferable.
  • the positive electrode electrolyte may contain the above-described oxidation-reduction substances other than iodine molecules and iodine ions as the positive electrode active material, and if necessary, the negative electrode electrolyte may be used as the negative electrode active material.
  • An oxidation-reduction substance other than the above-described oxidation-reduction pair may be contained.
  • the content of the positive electrode active material in the positive electrode electrolyte is not particularly limited, and is preferably 0.1% by mass to 80.0% by mass, for example, 0.5% by mass from the viewpoint of charge / discharge reaction activity. More preferably, it is ⁇ 75.0% by mass, and further preferably 1.0% by mass to 70.0% by mass.
  • the content of the negative electrode active material in the negative electrode electrolyte is not particularly limited, and is preferably 0.1% by mass to 80.0% by mass, for example, 0.5% by mass from the viewpoint of the activity of the charge / discharge reaction. More preferably, it is ⁇ 75.0% by mass, and further preferably 1.0% by mass to 70.0% by mass.
  • the electrolytic solution is preferably one in which at least one active material is dissolved or dispersed in a liquid medium.
  • a liquid medium means a medium in a liquid state at room temperature (25 ° C.).
  • Liquid media include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone Ketone solvents such as diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl ether, Tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glyco
  • terpene solvents such as ⁇ -terpinene, myrcene, alloocimene, limonene, dipentene, ⁇ -pinene, ⁇ -pinene, terpineol, carvone, ocimene, and ferrandrene; water and the like.
  • a liquid medium may be used individually by 1 type, and may use 2 or more types together. Among these, water is preferable as the liquid medium. By using water as the liquid medium, the electrolyte solution tends to have a low viscosity, and the secondary battery tends to have a high output.
  • the positive electrode electrolytic solution preferably contains at least one of iodine molecules and iodine ions, it may contain a polymer that forms a complex with iodine ions.
  • the electrolytic solution contains a polymer that forms a complex with iodine ions, precipitation of iodine molecules that may occur during the oxidation-reduction reaction of iodine ions is suppressed, and the secondary battery tends to have high output.
  • Polymers that form complexes with iodine ions include nylon 6, polytetrahydrofuran, polyvinyl alcohol, polyacrylonitrile, poly-4-vinylpyridine, polyvinylpyrrolidone, polymethyl (meth) acrylate, polytetramethylene ether glycol, polyacrylamide, polypropylene glycol , Polyethylene glycol, polyethylene oxide and the like. These polymers may be used individually by 1 type, and may use 2 or more types together.
  • the positive electrode electrolytic solution preferably contains at least one of iodine molecules and iodine ions, it is preferable to contain a good solvent for iodine molecules in addition to water.
  • the electrolytic solution contains a good solvent for iodine molecules, the film formed on the positive electrode during the charge reaction is thinned, and the inhibition of the charge / discharge reaction by the film tends to be suppressed.
  • Good solvents for iodine molecules include amides such as dimethylformamide, diethylformamide, acetamide, dimethylacetamide, N-methylpyrrolidone and N-ethylpyrrolidone, ketones such as acetone and methylethylketone, methyl acetate, ethyl acetate and methyl nicotinate.
  • Examples thereof include esters, sulfoxides such as dimethyl sulfoxide, alcohols such as ethanol and ethylene glycol, ethers such as diethyl ether, pyridine derivatives such as nicotinamide and cyanopyridine.
  • a good solvent for halogen molecules one kind may be used alone, or two or more kinds may be used in combination.
  • the secondary battery is provided on a side opposite to the side facing the counter electrode, and includes a pair of bipolar plates that respectively exchange electrons with the positive electrode and the negative electrode.
  • the bipolar plate include a carbon material system and a metal material system, and it is preferable to use a carbon material system from the viewpoints of cost and corrosion resistance against an electrolytic solution.
  • the bipolar plate is preferably a plate-like bipolar plate obtained by subjecting a composite material obtained by kneading graphite powder, a binder or the like to molding such as pressing or injection.
  • a bipolar plate may be provided between the two.
  • a current collecting plate may serve as the bipolar plate.
  • the secondary battery may include a positive electrode reference electrode for measuring the positive electrode potential, or may include a negative electrode reference electrode for measuring the negative electrode potential.
  • the positive electrode reference electrode and the negative electrode reference electrode are not indispensable components. If necessary, the positive electrode reference electrode and the negative electrode reference electrode are used, and the positive electrode potential and the negative electrode potential in the secondary battery are used. May be measured.
  • the positive electrode reference electrode and the negative electrode reference electrode may be any one that can be converted into a potential with respect to a standard hydrogen electrode potential and can exhibit a stable electrochemical potential.
  • the reference electrode used as the electrochemical potential standard is indicated in textbooks and the like as the basics of electrochemistry (for example, “Allen J. Bard and Larry R. Faulkner,“ ELECTROCHEMICAL METHODS ”p. 3, (1980), John Wiley & Sons, Inc. ").
  • Reference electrodes include Ag / AgCl reference electrodes, saturated calomel electrodes, and the like, with Ag / AgCl reference electrodes being preferred.
  • an Ag / AgCl reference electrode for example, a RE-1CP saturated KCl silver-silver chloride reference electrode (BAS) may be used. Further, a reference electrode other than the Ag / AgCl reference electrode may be used as the positive electrode reference electrode and the negative electrode reference electrode, and the measured potential may be converted into the potential of the Ag / AgCl reference electrode.
  • BAS RE-1CP saturated KCl silver-silver chloride reference electrode
  • the secondary battery of the present disclosure may be a flow battery.
  • the secondary battery includes, as a storage unit, a positive electrode electrolyte storage unit that stores a positive electrode electrolyte solution, and a negative electrode electrolyte storage unit that stores a negative electrode electrolyte solution, and the positive electrode and the positive electrode electrolyte storage unit
  • the flow battery may further include a liquid feeding unit that circulates the positive electrode electrolyte between them and circulates the negative electrode electrolyte between the negative electrode and the negative electrode reservoir.
  • the flow battery includes a positive electrode electrolyte storage part that stores a positive electrode electrolyte and a negative electrode electrolyte storage part that stores a negative electrode electrolyte.
  • a positive electrode electrolyte storage part and a negative electrode electrolyte storage part an electrolyte storage tank is mentioned, for example.
  • the flow battery includes a liquid feeding unit that circulates the positive electrode electrolyte between the positive electrode and the positive electrode electrolyte reservoir, and circulates the negative electrode electrolyte between the negative electrode and the negative electrode electrolyte reservoir.
  • the positive electrode electrolyte stored in the positive electrode electrolyte reservoir is supplied to the positive electrode chamber where the positive electrode is disposed through the liquid delivery unit, and the negative electrode electrolyte stored in the negative electrode electrolyte reservoir is disposed through the liquid feeder. Supplied to the negative electrode chamber.
  • the liquid supply unit circulates the positive electrode electrolyte between the positive electrode chamber and the positive electrode electrolyte storage unit and circulates the negative electrode electrolyte between the negative electrode chamber and the negative electrode electrolyte storage unit.
  • a liquid feed pump circulates the positive electrode electrolyte between the positive electrode chamber and the positive electrode electrolyte storage unit and circulates the negative electrode electrolyte between the negative electrode chamber and the negative electrode electrolyte storage unit.
  • the amount of the positive electrode electrolyte to be circulated between the positive electrode chamber and the positive electrode electrolyte reservoir and the amount of the negative electrode electrolyte to be circulated between the negative electrode chamber and the negative electrode electrolyte reservoir are appropriately adjusted using a liquid feed pump, respectively. What is necessary is just to set suitably according to a battery scale, for example.
  • the pressure loss of the electrolytic solution can be measured by a known method. Specifically, a method of measuring the pressure on the inflow side and the outflow side of the electrolyte solution in the positive electrode and the negative electrode using a pressure sensor, and calculating the difference between the pressure and the like. Any pressure sensor may be used as long as it can measure the pressure of a fluid such as pure water, a liquid containing a chemical solution, or a gas.
  • the charge / discharge characteristics of the secondary battery include current efficiency (CE), voltage efficiency (VE), and power efficiency (EE) in addition to battery capacity.
  • the current efficiency CE is a ratio between the amount of electricity obtained by discharging and the amount of electricity required for charging.
  • the voltage efficiency VE is a ratio of the average voltage during discharging and the average voltage during charging.
  • the power efficiency EE is a ratio between the discharged electric energy and the charged electric energy.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the members of the flow battery according to the present embodiment.
  • the positive electrode 1 a and the negative electrode 1 b are separated by a diaphragm 2.
  • the bipolar plate 5 may be used as the bipolar plate frame 6.
  • the bipolar plate frame 6 has a structure in which the outer peripheral portion is surrounded by the sealing material 3 or the like in a state where the bipolar plate 5 having the same area as each electrode is exposed. Further, the bipolar plate 5 is in contact with the current collector plate 9 and is connected to an external terminal for charging and discharging.
  • the sealing material 3 and the liquid separation plate 4 are arrange
  • the positive electrode electrolyte injected from the positive electrode electrolyte electrode chamber inlet 8a reaches the positive electrode separator 4 and flows into the positive electrode 1a via the slit.
  • the flow direction of the positive electrode electrolyte in FIG. 1 is from the bottom to the top.
  • the ends of the positive electrode seal material 3, the diaphragm 2, the negative electrode seal material 3, the negative electrode separator plate 4, and the negative electrode bipolar plate frame 6 are provided. It flows out from the positive electrode electrolyte electrode chamber outlet 8b through the positive electrode electrolyte flow path (sometimes called a manifold) formed in the section.
  • the negative electrode electrolyte injected from the negative electrode electrolyte electrode chamber inlet 8c reaches the negative electrode separator 4 and flows into the negative electrode 1b through the slit.
  • the flow direction of the negative electrode electrolyte in FIG. 1 is from the bottom to the top.
  • FIG. 2 is a schematic diagram of a flow battery. That is, the positive electrode electrolyte solution 10a flowing out from the positive electrode electrolyte electrode chamber outlet 8b passes through the pipe (circulation path) 13 and is stored in the positive electrode electrolyte storage part 11a. Further, the negative electrode electrolyte 10b flowing out from the negative electrode electrolyte electrode chamber outlet 8d passes through the pipe (circulation path) 13 and is stored in the negative electrode electrolyte storage part 11b. In this way, during the charge / discharge reaction, the positive electrode electrolyte 10a and the negative electrode electrolyte 10b are circulated in the positive electrode 1a and the negative electrode 1b by operating the liquid feed pump 12, respectively, and the positive electrode electrolyte reservoir 11a. And the cycle which returns to the negative electrode electrolyte storage part 11b again is repeated. Electrical control when charging / discharging is performed using the power supply 14 and the external load 15.
  • FIG. 3 is a schematic view of a flow battery in a state where a combination of positive electrode and negative electrode members (also referred to as cells) shown in FIG. 2 is electrically connected in series to form a stack structure.
  • the output voltage of the flow battery can be increased.
  • the positive electrode 1a and the negative electrode 1b of the adjacent cells are electrically connected via the bipolar plate 5, and can exchange electrons during charging and discharging.
  • the positive electrode electrolyte solution 10a and the negative electrode electrolyte solution 10b are the same as FIG. 2 except having changed the structure of the piping (circulation path) 13 so that it can distribute
  • the side where the positive electrode and the negative electrode face each other is the side where no bipolar plate is provided between the positive electrode and the negative electrode.
  • the side where the diaphragm 2 exists between the positive electrode 1a and the negative electrode 1b is indicated.
  • the secondary battery system of the present disclosure includes the above-described secondary battery of the present disclosure and a control unit that controls charging / discharging of the secondary battery.
  • the secondary battery system of the present disclosure may be a flow battery system in which the secondary battery is a flow battery, and the control unit may be configured to control charge / discharge of the flow battery.
  • the secondary battery system includes a control unit that controls charging and discharging of the secondary battery.
  • the control unit may be configured to control the charging voltage in the secondary battery system, the charging potential of the positive electrode and the negative electrode, and the like.
  • the charging voltage indicates a potential difference between the negative electrode and the positive electrode, and the charging potential indicates a potential difference with respect to a reference electrode (reference electrode) having a constant reference potential.
  • a power generation system of the present disclosure includes a power generation device and the above-described secondary battery system of the present disclosure.
  • the power generation system of the present disclosure can level and stabilize power fluctuations or stabilize power supply and demand by combining a secondary battery system and a power generation device.
  • the power generation system includes a power generation device.
  • the power generation device is not particularly limited, and examples thereof include a power generation device that generates power using renewable energy, a hydroelectric power generation device, a thermal power generation device, and a nuclear power generation device. Among them, a power generation device that generates power using renewable energy is preferable. .
  • the amount of power generated by power generators using renewable energy varies greatly depending on weather conditions, etc., but when combined with a secondary battery system, the generated power can be leveled and supplied to the power system. it can.
  • Renewable energy includes wind power, sunlight, wave power, tidal power, running water, tide, geothermal heat, etc., preferably wind power or sunlight.
  • the generated power generated using renewable energy such as wind power and sunlight may be supplied to a high-voltage power system.
  • wind power generation and solar power generation are affected by weather such as wind direction, wind power, and weather, and thus generated power is not constant and tends to fluctuate greatly.
  • the generated power that is not constant is supplied to the high-voltage power system as it is, it is not preferable because it promotes instability of the power system.
  • the power generation system of the present embodiment can level the generated power waveform to the target power fluctuation level by superimposing the charge / discharge waveform of the secondary battery system on the generated power waveform.
  • the secondary battery of the second embodiment of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution containing an active material, and (2) further includes a storage unit that supplies the electrolytic solution to the positive electrode and the negative electrode, respectively.
  • At least one of the positive electrode and the negative electrode is an electrode having at least two regions having different porosity in the flow direction of the electrolytic solution, and the porosity of the electrode on the side into which the electrolytic solution flows is the electrode on the side from which the electrolytic solution flows out It is higher than the porosity.
  • an electrode having at least two regions having different porosity is also referred to as “an electrode provided with a porosity gradient”.
  • a porosity gradient is provided in the flow direction of the electrolyte in at least one of the positive electrode and the negative electrode.
  • the secondary battery of the present disclosure includes a positive electrode and a negative electrode. At least one of the positive electrode and the negative electrode is an electrode having a porosity gradient in the flow direction of the electrolytic solution, and the porosity of the electrode on the electrolyte flowing side is the porosity of the electrode on the electrolyte flowing side. Higher than. This suppresses an increase in pressure loss when the electrolyte is flowed, and also suppresses power loss of the liquid feed pump. These reasons are considered as follows, for example.
  • the rate of increase of the overvoltage of the electrochemical reaction on the side where the electrolyte flows in which is a place where the flow rate of the electrolyte is fast, can be suppressed lower than the rate of increase of the overvoltage of the electrochemical reaction on the side where the electrolyte flows.
  • pressure loss and battery reaction characteristics are closely related.
  • the flow path area decreases with the charging time, the region on the side into which the electrolyte solution flows is covered with the solid produced by the charging reaction, and the electrolyte solution may not flow.
  • the electrolyte stops flowing it is no longer a flow battery, and the battery function stops.
  • At least one of the positive electrode and the negative electrode is an electrode having a porosity gradient, and the porosity of the electrode on the side into which the electrolyte solution flows is higher than the porosity of the electrode on the side from which the electrolyte solution flows out. high.
  • the porosity of this electrode can be determined by weight measurement in the same manner as in the first embodiment described above, for example.
  • At least one of the positive electrode and the negative electrode has a higher porosity of the electrode from the side from which the electrolytic solution flows out to the side from which the electrolytic solution flows.
  • the porosity of the electrode may increase stepwise or discontinuously from the side from which the electrolytic solution flows out to the side from which the electrolytic solution flows, or the porosity of the electrode may increase continuously. Good. That is, it is preferable that the porosity of the electrode tends to increase from the side from which the electrolytic solution flows out to the side from which the electrolytic solution flows.
  • Both the positive electrode and the negative electrode are electrodes provided with a porosity gradient, and the porosity of the electrode on the side into which the electrolyte solution flows may be higher than the porosity of the electrode on the side from which the electrolyte solution flows out. At this time, the degree of the porosity gradient may be the same or different between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode are provided on the side opposite to the side where the positive electrode and the negative electrode face each other, and exchange of electrons with the positive electrode and the negative electrode is performed.
  • at least one of the positive electrode and the negative electrode may be an electrode having a porosity gradient in the thickness direction.
  • the porosity of the electrode on the bipolar plate side may be higher than the porosity of the electrode on the side facing the counter electrode.
  • the flow rate on the side of the bipolar plate increases when the electrolyte is circulated.
  • the supply speed of the active material into the electrode on the side facing the counter electrode is increased, and as a result, the secondary battery tends to have a higher output.
  • FIG. 6A ⁇ Example of electrode provided with porosity gradient>
  • the example of the electrode provided with the porosity gradient used by 2nd embodiment is shown to FIG. 6A and FIG. 6B.
  • the electrode 1 porosity gradient is provided are formed.
  • the relationship of ⁇ 1 > ⁇ 2 is satisfied, and the porosity ( ⁇ 1 ) on the side into which the electrolytic solution flows is higher than the porosity ( ⁇ 2 ) on the side from which the electrolytic solution flows out.
  • the porosity phi 1 of the electrode, combined with porosity phi 2 of the electrode, the electrode porosity phi 3, the electrode 1 porosity gradient is provided are formed.
  • the relationship of ⁇ 1 > ⁇ 2 > ⁇ 3 is satisfied, and the porosity of the electrode increases from the side ( ⁇ 3 ) from which the electrolyte flows out to the side ( ⁇ 1 ) from which the electrolyte flows. .
  • the following three methods can be given as a method for giving the electrode a porosity gradient.
  • members having different porosity before compression are arranged on the side from which the electrolyte flows in from the side where the electrolyte flows in order from the highest porosity, and these are compressed.
  • the electrode is provided with a porosity gradient.
  • the order of the porosity of the electrode after compression (a state used as an electrode of the secondary battery) is also in the same order as before compression.
  • the electrolyte solution flows out from the side where the electrolyte solution flows in the members having the same porosity and different thicknesses before compression in the order of decreasing thickness. It is the method of arrange
  • the porosity of the electrode increases from the electrolyte outflow side to the electrolyte inflow side. .
  • a trapezoidal member having a constant porosity is prepared, and compressed until the width (thickness) in the thickness direction of the electrode becomes the same in the flow direction of the electrolyte. Also good. Thereby, the porosity is high from the side where the electrolytic solution flows out to the side where the electrolytic solution flows, and an electrode having a constant porosity gradient can be formed.
  • the third method is to provide a difference in the porosity of the electrode material when a structure such as carbon felt is manufactured, particularly when a porous body made of carbon fiber is used. That is, the porosity can be changed continuously or discontinuously in the same electrode member by selecting conditions for the web lamination method and the needle punch method.
  • the difference from the porosity of the electrode is 1.0% to 50.0% It is preferably 1.5% to 45.0%, more preferably 2.0% to 40.0%, and further preferably 2.0% to 30.0%. Is particularly preferably 2.0% to 20.0%, more preferably 2.0% to 10.0%.
  • the above-described difference in porosity is 1.0% or more, the pressure loss of the electrolytic solution tends to be effectively suppressed even when a deposition reaction of metal or the like is involved in the electrode. Moreover, when the above-described difference in porosity is 50.0% or less, the uniformity of the reaction of the active material in the electrode is increased, and the activity of the charge / discharge reaction tends to be improved.
  • the least square method is used.
  • the absolute value of the average change rate of the porosity of the electrode obtained from the slope of the approximated straight line is preferably 0.1% / cm to 3.0% / cm, preferably 0.15% / cm to 2. It is more preferably 8% / cm, further preferably 0.2% / cm to 2.75% / cm, particularly preferably 0.25% / cm to 2.5% / cm.
  • 0.3% / cm to 2.0% / cm is even more preferable, 0.3% / cm to 1.5% / cm is still more preferable, and 0.3% / cm to It is especially more preferable that it is 1.0% / cm.
  • the absolute value of the average change rate is 0.1% / cm or more, the pressure loss of the electrolytic solution tends to be effectively suppressed even when a deposition reaction of metal or the like is involved in the electrode.
  • the absolute value of the average change rate is 3.0% / cm or less, the uniformity of the reaction of the active material in the electrode is increased, and the activity of the charge / discharge reaction tends to be improved.
  • the absolute value of the average change rate of porosity is calculated as follows. First, as shown in FIGS. 8A to 8F, the horizontal axis represents the coordinate in the flow direction of the electrolytic solution (distance from the end of the electrode on the side where the electrolytic solution flows), and the vertical axis represents the porosity of the electrode. Plot on graph. Next, linear approximation is performed by the least square method to obtain an approximate expression. When the porosity of the electrode increases from the electrolyte outflow side to the electrolyte inflow side, since the slope of the approximate expression is negative, the slope in the approximate expression is multiplied by minus 1 ( ⁇ 1). The absolute value can be used as the average change rate of the porosity. FIG. 8A and FIG.
  • 8B show calculation results when two types of electrodes having different porosity are arranged at a ratio (length) shown on the horizontal axis of the graph.
  • 8C to 8F show calculation results when three types of electrodes having different porosity are arranged at a ratio (length) shown on the horizontal axis of the graph.
  • the secondary battery according to the third embodiment of the present disclosure includes a positive electrode, a negative electrode, and an electrolytic solution containing an active material. (3) The side of the positive electrode and the negative electrode opposite to the side where the positive electrode and the negative electrode face each other. And a reservoir for supplying the electrolyte solution to the positive electrode and the negative electrode, respectively, and at least one of the positive electrode and the negative electrode has at least a region having a different porosity in the flow direction of the electrolyte solution.
  • the porosity of the electrode on the side into which the electrolyte solution flows is higher than the porosity of the electrode on the side from which the electrolyte solution flows out, and at least a region having a different porosity in the flow direction of the electrolyte solution.
  • the electrode having two or more has at least two regions having different porosity in the thickness direction.
  • the description is abbreviate
  • an electrode having at least two regions having different porosity is also referred to as “an electrode provided with a porosity gradient”.
  • the secondary battery of the third embodiment includes an electrode provided with a porosity gradient in the flow direction of the electrolytic solution and further provided with a porosity gradient in the thickness direction.
  • the porosity of the electrode on the side where the positive electrode and the negative electrode face each other is higher than the porosity of the electrode on the side of the bipolar plate that transmits and receives electrons to and from the point of suppressing an increase in pressure loss.
  • the porosity of the electrode on the side of the bipolar plate that transfers electrons to and from the electrode may be higher than the porosity of the electrode on the side where the positive electrode and the negative electrode face each other.
  • Both the positive electrode and the negative electrode are electrodes provided with a porosity gradient, and the porosity of the electrode on the side facing the counter electrode may be higher than the porosity of the electrode on the bipolar plate side that exchanges electrons with the electrode,
  • the porosity of the electrode on the side of the bipolar plate that exchanges electrons with the electrode may be higher than the porosity of the electrode on the side of the bipolar plate that exchanges electrons with the electrode.
  • the degree of the porosity gradient may be the same or different between the positive electrode and the negative electrode.
  • FIGS. 9A to 9F Examples of electrodes provided with a porosity gradient used in the third embodiment are shown in FIGS. 9A to 9F.
  • a positive electrode 1a and a negative electrode 1b each having a porosity gradient are formed by combining four electrodes having a porosity ⁇ 1 to a porosity ⁇ 4 .
  • the relationship of ⁇ 1 > ⁇ 2 > ⁇ 3 > ⁇ 4 is satisfied, and the porosity ( ⁇ 1 and ⁇ 2 ) on the side where the electrolyte flows in is the porosity ( ⁇ 3 on the side where the electrolyte flows out. And ⁇ 4 ).
  • At least one of the positive electrode and the negative electrode has a higher porosity in a direction from the bipolar plate side toward the side facing the counter electrode or in a direction from the side facing the counter electrode toward the bipolar plate side. That is, it is preferable that the porosity of at least one of the positive electrode and the negative electrode has a distribution that decreases in a direction from the side facing the counter electrode toward the bipolar plate side, or from the bipolar plate side toward the side facing the counter electrode. At this time, the porosity may be a stepwise or non-continuous distribution or a continuous distribution.
  • a positive electrode 1a and a negative electrode 1b each having a porosity gradient are formed by combining six electrodes having a porosity ⁇ 1 to a porosity ⁇ 6 .
  • the relationship of ⁇ 1 > ⁇ 2 > ⁇ 3 > ⁇ 4 > ⁇ 5 > ⁇ 6 is satisfied, and the porosity decreases from the side where the electrolytic solution flows to the side where the electrolytic solution flows.
  • the porosity gradient may be formed in the thickness direction.
  • the porosity gradient is not formed in the thickness direction, and the porosity gradient is formed from the side where the electrolytic solution flows to the side where the electrolytic solution flows. May be.
  • the following two methods can be given as examples of the method of giving the electrode a porosity gradient.
  • members having different porosity before compression are arranged so that the porosity is in the order shown in the figure, and these are compressed to provide a porosity gradient.
  • This is a method of forming an electrode.
  • the order of the porosity of the electrode after compression (a state used as an electrode of the secondary battery) is also in the same order as before compression.
  • the second method is to provide a difference in the porosity of the electrode material when a structure such as carbon felt is manufactured, particularly when a porous body made of carbon fiber is used. That is, the porosity can be changed continuously or discontinuously in the same electrode member by selecting conditions for the web lamination method and the needle punch method.
  • the absolute value of the difference from the porosity of the electrode at the position is preferably 1.0% to 50.0%, more preferably 1.5% to 45.0%, and more preferably 2.0% to It is more preferably 40.0%, particularly preferably 2.0% to 30.0%, still more preferably 2.0% to 20.0%, and more preferably 2.0% to 10%. More preferably, it is 0.0%.
  • the porosity of the electrode at the position where it penetrates 5.0% -the porosity of the electrode at the position where the length penetrates 95.0%) is preferably -50.0% to -1.0%,- It is more preferably 45.0% to -1.5%, further preferably -40.0% to -2.0%, and more preferably -30.0% to -2.0%. Particularly preferred is -20.0% to -2.0%, even more preferred is -10.0% to -2.0%.
  • the absolute value of the average change rate of the porosity of the electrode obtained from the slope of the straight line approximated by the least square method is preferably 0.5% / mm to 8.0% / mm, preferably 0.75% / mm. More preferably, it is from mm to 7.0% / mm, more preferably from 1.0% / mm to 6.5% / mm, and from 1.0% / mm to 6.0% / mm. It is particularly preferred.
  • the average rate of change is preferably ⁇ 8.0% / mm to ⁇ 0.5% / mm, and preferably ⁇ 7.0% / mm to ⁇ 0. More preferably, it is 75% / mm, more preferably ⁇ 6.5% / mm to ⁇ 1.0% / mm, and ⁇ 6.0% / mm to ⁇ 1.0% / mm. It is particularly preferred. Further, from the viewpoint of high output, the above average change rate is preferably 0.5% / mm to 8.0% / mm, and preferably 0.75% / mm to 7.0% / mm. More preferably, it is 1.0% / mm to 6.5% / mm, still more preferably 1.0% / mm to 6.0% / mm.
  • the absolute value of the average change rate of the porosity in the flow direction of the electrolytic solution can be obtained by the same method as in the second embodiment.
  • the absolute value of the average change rate of the porosity in the electrode thickness direction can be obtained, for example, as follows. First, the coordinate in the thickness direction of the electrode (distance from the end of the electrode facing the counter electrode) is plotted on the horizontal axis, and the porosity of the electrode is plotted on the vertical axis. Next, linear approximation is performed by the least square method to obtain an approximate expression. When the porosity of the electrode increases from the bipolar plate side to the side facing the counter electrode, since the slope of the approximate expression is negative, the value obtained by multiplying the slope in the approximate expression by minus 1 ( ⁇ 1) is the gap. It can be the absolute value of the average rate of change of the rate.
  • the slope of the approximate expression is positive, so that the value can be the absolute value of the average change rate of the porosity.
  • the average change rate of the porosity in the thickness direction of the electrode corresponds to the slope in the above-described similar equation.
  • Example 1-A Production of positive electrode and negative electrode
  • electrodes having a porosity gradient in the thickness direction as shown below were prepared. In order to prepare these electrodes, no. 1 and no. Two carbon felt electrodes were used. First, as shown in FIG. 4A, two types of electrodes were evenly arranged in the thickness direction of the electrodes. In addition, when attaching a positive electrode and a negative electrode to a flow battery, it compressed so that the thickness of a positive electrode and a negative electrode might be 2.5 mm. Moreover, the area of the surface perpendicular
  • (C) Production of Flow Battery In addition to the positive electrode and negative electrode produced above and the electrolyte, a cation exchange membrane “Nafion 117” as a diaphragm, and a bipolar plate made of highly conductive graphite fine powder as a bipolar plate (Showa Denko) 1 using an ethylene propylene rubber sheet as a sealing material, a copper (Cu) plate plated with nickel (Ni) as a current collecting plate, and a PVC tank and piping and a circulation pump (Iwaki Pump Co., Ltd.). A single cell type flow battery as shown in FIG. 2 was produced.
  • the member in the portion sandwiched between the current collector plates was appropriately compressed so that the attached positive electrode and negative electrode had a thickness of 2.5 mm. At this time, it was confirmed that there were no gaps and steps at the boundary between the compression-filled electrodes.
  • Example 2-A A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-A, except that the electrodes used in Example 1-A were changed as shown in Tables 1 and 2.
  • the absolute value of the average change rate of the porosity of the electrode was 6.02% / mm.
  • Example 3-A A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-A, except that the electrodes used in Example 1-A were changed as shown in Tables 1 and 2. The absolute value of the average change rate of the porosity of the electrode was 3.27% / mm.
  • Example 4-A A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-A, except that the electrodes used in Example 1-A were changed as shown in Tables 1 and 2. The absolute value of the average change rate of the porosity of the electrode was 1.13% / mm.
  • Example 5-A a flow battery was fabricated in the same manner as Example 1-A, except that the current density at the time of evaluating the characteristics of the flow battery was changed from 50 mA / cm 2 to 100 mA / cm 2. The characteristics were evaluated.
  • Example 6-A In Example 1-A, except that the flow rate of the electrolytic solution for evaluating the characteristics of the flow battery was changed from 0.20 L / min to 0.35 L / min, the flow was the same as in Example 1-A. A battery was fabricated and the characteristics were evaluated.
  • Example 1-A ⁇ Comparative Example 1-A>
  • Example 1-A only one type of electrode was used (No. 2 carbon felt electrode in Table 1).
  • a flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-A except that no porosity gradient was provided in the positive electrode and the negative electrode.
  • Comparative Example 2-A a flow battery was produced in the same manner as Comparative Example 1-A, except that the current density at the time of evaluating the characteristics of the flow battery was changed from 50 mA / cm 2 to 100 mA / cm 2. The characteristics were evaluated.
  • Table 3 shows the measurement results of the pressure loss before and after charging and discharging and the discharge capacity in each produced flow battery. As shown in Examples and Comparative Examples, it was confirmed that the discharge capacity can be increased by using a structure in which the porosity of the electrode on the diaphragm side is higher than that on the bipolar plate side. Focusing on the pressure loss, even in the flow battery produced in the example, although the pressure loss after charging is slightly increased particularly on the negative electrode side, the increase is suppressed as compared with the comparative example.
  • Example 1-B Preparation of positive electrode and negative electrode
  • electrodes having a porosity gradient in the flow direction of the electrolyte as shown below were prepared. In order to prepare these electrodes, no. 1 and no. Two carbon felt electrodes were used. First, as shown in FIG. 6A, two types of electrodes were evenly arranged in the length direction of the electrodes (the direction from the electrolyte inlet to the outlet). In addition, when attaching a positive electrode and a negative electrode to a flow battery, it compressed so that the thickness of a positive electrode and a negative electrode might be 2.2 mm.
  • vertical to the thickness direction of a positive electrode and a negative electrode was 150 mm x 100 mm.
  • the positive electrode and negative electrode which have the same porosity gradient in the distribution direction of electrolyte solution were produced. Details are as shown in Table 5. Therefore, No. after compression. 1 and No. 1
  • the porosity of the electrode of 2 is 95.0% and 91.7%, respectively, using the density of carbon felt and the density of graphite (2.26 g / cm 3 ).
  • No. 1 is from the side near the electrolyte inlet. 1 (porosity ⁇ 1 ) and No. 1 2 (porosity ⁇ 2 ) electrodes were arranged in this order.
  • the absolute value of the average change rate of the porosity of the electrode in such an arrangement was 0.33% / cm.
  • Example 2-B A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-B, except that the electrodes used in Example 1-B were changed as shown in Tables 4 and 5. The absolute value of the average change rate of the porosity of the electrode was 0.46% / cm.
  • Example 3-B A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-B, except that the electrodes used in Example 1-B were changed as shown in Tables 4 and 5. The absolute value of the average change rate of the porosity of the electrode was 0.39% / cm.
  • Example 4-B A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-B, except that the electrodes used in Example 1-B were changed as shown in Tables 4 and 5. The absolute value of the average change rate of the porosity of the electrode was 0.41% / cm.
  • Example 5-B A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-B, except that the electrodes used in Example 1-B were changed as shown in Tables 4 and 5. The absolute value of the average change rate of the porosity of the electrode was 0.52% / cm.
  • Example 6-B a flow battery was fabricated in the same manner as in Example 1-B, except that the current density at the time of evaluating the characteristics of the flow battery was changed from 50 mA / cm 2 to 100 mA / cm 2. The characteristics were evaluated.
  • Example 7-B In Example 1-B, except that the flow rate of the electrolytic solution for evaluating the characteristics of the flow battery was changed from 0.20 L / min to 0.35 L / min, the flow was the same as Example 1-B. A battery was fabricated and the characteristics were evaluated.
  • Example 1-B ⁇ Comparative Example 1-B> In Example 1-B, only one type of electrode was used (No. 5 carbon felt electrode in Table 4), and the same as Example 1-B, except that no porosity gradient was provided on the positive and negative electrodes. Then, a flow battery was produced and the characteristics were evaluated.
  • Comparative Example 2-B a flow battery was fabricated in the same manner as Comparative Example 1-B, except that the current density for evaluating the characteristics of the flow battery was changed from 50 mA / cm 2 to 100 mA / cm 2. The characteristics were evaluated.
  • Table 6 shows the measurement results of the pressure loss before and after charging and discharging and the discharge capacity in each produced flow battery. As shown in Examples and Comparative Examples, it was confirmed that the discharge capacity can be increased by using a structure in which the porosity of the electrode on the side into which the electrolyte solution flows is higher than on the side on which the electrolyte solution flows out. Focusing on the pressure loss, even in the flow battery produced in the example, although the pressure loss after charging is slightly increased particularly on the negative electrode side, the increase is suppressed as compared with the comparative example.
  • Example 1-C Preparation of positive electrode and negative electrode
  • electrodes having a porosity gradient in the thickness direction and a porosity gradient in the flow direction of the electrolyte were prepared as shown below. In order to prepare these electrodes, no. 1-No. 4 carbon felt electrodes were used. First, as shown in FIG. 9A, four types of electrodes were equally arranged. In addition, when attaching a positive electrode and a negative electrode to a flow battery, it compressed so that the thickness of an electrode might be 2.5 mm. Moreover, the area of the surface perpendicular
  • the positive electrode and negative electrode which have the same porosity gradient in the thickness direction and the distribution direction of electrolyte solution were produced. Details are as shown in Table 8. Therefore, No. after compression. 1-No.
  • the porosity of electrode 4 is 93.6%, 92.0%, 87.3%, and 84.1%, respectively, using the density of carbon felt and the density of graphite (2.26 g / cm 3 ). .
  • No. is located on the electrolyte inlet side and on the side close to the diaphragm. 1 (porosity ⁇ 1 ) on the electrolyte inlet side and No. 1 No. 1 at a position adjacent to the electrode No. 1 No.
  • Example 2-C> As a positive electrode and a negative electrode, No. 1 in Table 7 was used. 1-No. 6 carbon felt electrodes were used. When the six types of electrodes are evenly arranged as shown in FIG. 9B, No. 2 is placed on the electrolyte inlet side and the side close to the diaphragm. 1 (porosity ⁇ 1 ) on the electrolyte inlet side and No. 1 No. 1 at a position adjacent to the electrode No. 1 No. 2 electrode (porosity ⁇ 2 ) on the electrolyte outflow side and the side close to the diaphragm. 5 (porosity ⁇ 5 ) on the electrolyte outflow side and No. 5 No.
  • No. 6 electrode (porosity ⁇ 6 ) is located on the side close to the diaphragm. 1 and No. 1 No. 5 between the No. 5 electrodes. 3 (porosity ⁇ 3 ), No. 3 Adjacent to the electrode of No. 3, 2 and No. 2 Between the electrodes of No. 6 Four electrodes (porosity ⁇ 4 ) were respectively arranged. The absolute value of the average rate of change in the electrode porosity in each direction when such an arrangement is used is as shown in Table 9. A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-C except that the electrodes were arranged as described above.
  • Example 3-C As a positive electrode and a negative electrode, No. 1 in Table 7 was used. 3, no. 4 and no. 5 carbon felt electrodes were used. When the three types of electrodes are arranged as shown in FIG. 9C, No. 2 is placed on the electrolyte inlet side and on the side close to the diaphragm. No. 3 (porosity ⁇ 1 ) No. 3 on the electrolyte outflow side and the side close to the diaphragm. No. 4 electrode (porosity ⁇ 2 ) 3 and No. 3 No. 4 on the bipolar plate side. 5 electrodes (porosity ⁇ 3 ) were respectively arranged. The absolute value of the average rate of change in the electrode porosity in each direction when such an arrangement is used is as shown in Table 9. A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-C except that the electrodes were arranged as described above.
  • Example 4-C As a positive electrode and a negative electrode, No. 1 in Table 1 was used. 1, no. 3 and no. 4 carbon felt electrodes were used. When the three types of electrodes are arranged as shown in FIG. 9D, No. 2 is placed on the electrolyte inlet side and the side close to the diaphragm. No. 3 (porosity ⁇ 1 ) No. 3 on the electrolyte outflow side and the side close to the diaphragm. No. 4 electrode (porosity ⁇ 2 ) 3 and No. 3 No. 4 on the bipolar plate side. 1 electrodes (porosity ⁇ 3 ) were respectively arranged. The absolute value of the average rate of change in the electrode porosity in each direction when such an arrangement is used is as shown in Table 9. A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-C except that the electrodes were arranged as described above.
  • Example 5-C As the positive electrode electrolyte, an aqueous solution containing 6.0 mol / L sodium iodide (NaI) and 10.0% by mass of polyvinylpyrrolidone “PVP K30” (Wako Pure Chemical Industries, Ltd., number average molecular weight is 40,000) is used. did. A flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-C, except that the composition of the positive electrode electrolyte was changed as described above.
  • Example 1-C ⁇ Comparative Example 1-C>
  • Example 1-C only one type of electrode was used (No. 4 carbon felt electrode in Table 7).
  • a flow battery was prepared and the characteristics were evaluated in the same manner as in Example 1-C except that no porosity gradient was provided in the positive electrode and the negative electrode.
  • Table 10 the measurement result of the pressure loss before and behind charging / discharging in each produced flow battery and discharge capacity are shown.
  • the discharge capacity is obtained by using a structure in which the porosity of the electrode on the side into which the electrolyte flows is higher than the side on which the electrolyte flows out and a porosity gradient is provided in the thickness direction of the electrode. Confirmed that it can be increased. Focusing on the pressure loss, even in the flow battery produced in the example, although the pressure loss after charging is slightly increased particularly on the negative electrode side, the increase is suppressed as compared with the comparative example.
  • Example 5-C polyvinylpyrrolidone was added to the positive electrode electrolyte as a compound capable of forming a complex with iodine molecules or iodide ions, and the viscosity of the positive electrode electrolyte was increased.
  • the pressure loss before charging and the pressure loss after charging are larger than those of Example 4-C.
  • the pressure loss before charging and the pressure loss after charging are smaller than those of Comparative Example 1-C, and also in Example 5-C, the electrode has the above-described structure, so that the pressure during charging is reduced. It was found that the increase in loss can be suppressed and the discharge capacity can be kept higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極と、負極と、活物質を含有する電解液と、前記正極及び前記負極における前記正極と前記負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板と、を備え、前記正極及び前記負極の少なくとも一方は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記正極と前記負極とが対向する側の前記電極の空隙率は、前記正極と前記負極とが対向する側とは反対の前記双極板側の前記電極の空隙率よりも高い、二次電池。

Description

二次電池、二次電池システム及び発電システム
 本発明は、二次電池、二次電池システム及び発電システムに関するものである。
 近年、地球温暖化問題の対策として、化石燃料に替わる、再生可能な自然エネルギーの需要が高まっており、再生可能エネルギー市場は今後も堅調に成長していくと考えられる。このような背景の中、太陽光、風力等の自然力を利用する発電の課題である出力の変動への対策の一つとして、蓄電池を活用した電力貯蔵技術がクローズアップされている。その中でも電解液を流動させて活物質の酸化還元反応を生じさせることで充電と放電とを行うフロー電池は、充放電サイクル寿命が長く、用途に応じた出力・容量設計が可能なことから、特に大容量蓄電池として注目されている。
 大容量蓄電池としてフロー電池が適用できる他の形態として、例えば、電力の供給側における用途及び電力の需要側における用途が挙げられる。前者は、例えば、火力発電所における発電予備力の確保及び余剰電力の貯蔵、並びに変電所における周波数制御、供給余力確保及び負荷平準化への適用が期待される。また後者については、工場等の産業施設において、電力コストの削減を目的としたピークカット又はタイムシフト用途、瞬間停電(瞬停)、停電時の無停電電源装置(Uninterruptible Power Supply、UPS)又は非常用電源としての用途等への適用が期待される。
 フロー電池は、電池反応を行う正極と負極、正極電解液と負極電解液、正極電解液貯留部と負極電解液貯留部、送液ポンプ、配管等から構成され、正極電解液が正極と正極電解液貯留部との間を循環し、かつ、負極電解液が負極と負極電解液貯留部との間を循環することで充放電を行う。正極と負極は、通常隔膜によって隔てられており、正極電解液と負極電解液の混合が防止される。ここで、フロー電池における活物質は、価数が変化するイオンが候補になり得る。中でも安全性等の点から、バナジウム(V/V)系フロー電池等が実用化されている。
 V/V系フロー電池の電極反応を以下に示す。
 正極:VO2+(4価)+HO⇔VO (5価)+2H+e・・・(1)
 負極:V3+(3価)+e⇔V2+(2価)・・・(2)
 ここで、左から右への反応が充電反応を、右から左への反応が放電反応を表している。上記の左から右への反応が起こることで、供給された電力は正極及び負極中のVイオンの価数変化に費やされ、電解液に蓄えられる。また放電時には、逆反応によって電解液中に貯蔵した電力を取り出すことができる。
 V/V系フロー電池としては、隔膜側に炭素繊維からなる高表面多孔質電極の層、及びバイポーラ板側に炭素繊維からなる低表面多孔質電極の層を有する二層の液透過性多孔質電極を用いる構成が提案されている(例えば、特許文献1参照)。
 また、V/V系フロー電池としては、例えば、電極の劣化を抑制する点から、正極電極及び負極電極が、電解液が供給される側に近い端の部分及び流出される側に近い端の部分のうちの少なくとも一方で、電極単位体積当りの表面積が、その間の中央部よりも小さくする構成が提案されている(例えば、特許文献2参照)。また、特許文献2には、電極の劣化を抑制する点から、正極電極及び負極電極が、層状の電極を複数枚積層した電極層であり、隔膜に近い側の電極層にて電極単位体積当りの表面積が均一であり、残りの電極層は、電解液が供給される側に近い端の部分及び電解液が流出される側に近い端の部分の少なくとも一方が、その間の中央部よりも小さい構成も提案されている。
特開平8-287938号公報 特開2000-188123号公報
 V/V系フロー電池は開発の歴史が古く、国内外で大規模な実証試験が進められている。一方で、V/V系フロー電池は原料コストとエネルギー密度の点で課題を残しており、代替材料を用いた系が期待されている。代替材料としては、例えば、セリウム/亜鉛(Ce/Zn)系、亜鉛/臭素(Zn/Br)系、亜鉛/ヨウ素(Zn/I)系、鉄/クロム(Fe/Cr)系等が挙げられる。
 ところで、フロー電池には、電極反応の活性、耐酸性、反応面積等の点から、表面を活性化させたカーボンフェルト電極が用いられることがある。カーボンフェルト電極は、ポリアクリロニトリル(PAN)又はレーヨンの繊維を空気中200℃~300℃の温度で耐炎化した後、不織布化し、約1000℃の温度で炭化する方法、原料の繊維からなる不織布を直接炭化処理する方法等を用いて製造される。
 また反応面積を増加させるためにカーボンフェルト電極の比表面積を増加させることが好ましく、この場合、カーボンフェルト電極を構成する繊維の径が小さくなり、また、空隙部が微細になる。しかしながら、カーボンフェルト電極の比表面積を増加させると、電解液を流通させ、電極に電解液が供給される際の圧力損失、すなわち、単位時間単位流量あたりの流体力学上のエネルギー損失が増大する。結果として、圧力損失が大きくなると、フロー電池自身の電力でポンプを動かす場合等、送液ポンプの動力損失も含めたフロー電池全体のエネルギー効率が低下してしまう。
 特に、上記で挙げたV/V系以外の組成のうち、Zn/I系及びZn/Br系は、充電反応中に金属Znが負極に析出する。このとき、カーボンフェルト電極内に金属等の析出が進んだ際は、上記圧力損失が更に増大すると考えられる。
 ここで、特許文献1に記載された技術は、電解液の圧力損失を抑制しながら、電極反応を活性化させるために、電池反応が活発に起こる隔膜側に近い電極層を表面積密度の高い(高密度)構造の電極層としている。このような構造では、特許文献1に示されているV/V系の組成では、ある程度の効果が期待できるが、それ以外の組成(特に、上述したような金属等の析出を伴う組成)において、フロー電池に対応できないと考えられる。特に、隔膜側に近い電極層が高密度であるために、充電反応中又は放電反応中に析出した金属等の固体によって電極の空隙部が閉塞し、この部分での反応性が低下することで、フロー電池の内部抵抗が増大し、圧力損失が増加する可能性がある。
 また、特許文献2に記載された技術は、電極の劣化を防止するために電極単位体積当りの表面積が中央部よりも小さい箇所を設けており、フロー電池の圧力損失の防止に対応するものではない。具体的には、電解液の流れには方向性があり、電極内で、電解液の流れる方向に渡って均一に電池反応が起こらないときに、電池の一般的な特徴として電流密度が相対的に高い電極領域での劣化が生じる傾向にある。特に充電時の正極出口側及び放電時の負極入口側にて電流密度が相対的に高くなりやすく、電極の劣化が顕在化しやすい。フロー電池は電池の単セルの積層構造で構成され、この構造と集電機能が最もマッチングし易い双極板(バイポーラ極板、電極)構造を正極と負極の電極構造として多用する。ここで、特許文献2では、電流密度が相対的に高い双極板側で電極の劣化が顕著になるため、双極板側にて電極層に電極単位体積当りの表面積を調整し、かつ反応性確保の点から、隔膜側の電極層に電極単位体積当りの表面積の勾配を設けていないと考えられる。しかしながら、V/V系以外の組成(特に、上述したような金属等の析出を伴う組成)において、隔膜側に近い電極層が高密度であるために、充電反応中又は放電反応中に析出した金属等の固体によって電極の空隙部が閉塞し、この部分での反応性が低下することで、フロー電池の内部抵抗が増大し、圧力損失が増加する可能性がある。
 本発明の一形態は、電解液を流動させた場合に、圧力損失の増加が抑制される二次電池並びにこの二次電池を備える二次電池システム及び発電システムを提供することを目的とする。
 前記課題を解決するための具体的手段には、以下の実施態様が含まれる。
<1> 正極と、負極と、活物質を含有する電解液と、を備え、以下の(1)~(3)のいずれか1つを満たす二次電池。
(1)前記正極及び前記負極における前記正極と前記負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板を更に備え、前記正極及び前記負極の少なくとも一方は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記正極と前記負極とが対向する側の前記電極の空隙率は、前記正極と前記負極とが対向する側とは反対の前記双極板側の前記電極の空隙率よりも高い。
(2)前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部を更に備え、前記正極及び前記負極の少なくとも一方は、前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記電解液が流入する側の前記電極の空隙率は、前記電解液が流出する側の前記電極の空隙率よりも高い。
(3)前記正極及び前記負極における前記正極と前記負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板と、前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部と、を更に備え、前記正極及び前記負極の少なくとも一方は、前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記電解液が流入する側の前記電極の空隙率は、前記電解液が流出する側の前記電極の空隙率よりも高く、かつ前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する前記電極は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する。
<2> 前記電極は、炭素繊維を含有する、<1>に記載の二次電池。
<3> 前記(1)を満たす場合に前記双極板側から前記正極と前記負極とが対向する側に向かって前記電極の空隙率が高くなり、前記(3)を満たす場合に、前記双極板側から前記正極と前記負極とが対向する側に向かって前記電極の空隙率が高くなるか、又は、前記正極と前記負極とが対向する側から前記双極板側に向かって前記電極の空隙率が高くなり、前記(2)又は前記(3)を満たす場合に前記電解液が流出する側から前記電解液が流入する側に向かって前記電極の空隙率が高くなる、<1>又は<2>に記載の二次電池。
<4> 前記(1)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差が1.0%~50.0%であり、前記(3)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差の絶対値が1.0%~50.0%であり、前記(2)又は前記(3)を満たす場合に、前記電極の前記電解液が流入する側の端側の少なくとも一部から前記流通方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差が1.0%~50.0%である、<1>~<3>のいずれか1つに記載の二次電池。
<5> 前記(1)又は前記(3)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向における前記電極の空隙率の分布をプロットしたグラフにおいて、最小二乗法にて近似した直線の傾きから求めた前記電極の空隙率の平均変化率の絶対値が、0.5%/mm~8.0%/mmであり、前記(2)又は前記(3)を満たす場合に、前記電極の前記電解液が流入する側の端側の少なくとも一部から前記流通方向における前記電極の空隙率の分布をプロットしたグラフにおいて、最小二乗法にて近似した直線の傾きから求めた前記電極の空隙率の平均変化率の絶対値が、0.1%/cm~3.0%/cmである、<1>~<4>のいずれか1つに記載の二次電池。
<6> 前記電極は、充電反応又は放電反応にて前記活物質の析出を伴う<1>~<5>のいずれか1つに記載の二次電池。
<7> 析出物が金属を含有する、<6>に記載の二次電池。
<8> 前記電極の空隙率は、重量測定により求める<1>~<7>のいずれか1つに記載の二次電池。
<9> 前記電解液が、前記活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有する、<1>~<8>のいずれか1つに記載の二次電池。
<10> 前記電解液が、前記活物質として亜鉛イオン及び亜鉛の少なくとも一方を含有する、<1>~<9>のいずれか1つに記載の二次電池。
<11> 前記(1)を満たす場合に前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部を更に備える、<1>~<10>のいずれか1つに記載の二次電池。
<12> 前記電解液として、正極活物質を含有する正極電解液と、負極活物質を含有する負極電解液とを備える、<11>に記載の二次電池。
<13> 前記正極活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有し、かつ前記負極活物質として亜鉛イオン及び亜鉛の少なくとも一方を含有する、<12>に記載の二次電池。
<14> 前記貯留部は、前記正極電解液を貯留する正極電解液貯留部及び前記負極電解液を貯留する負極電解液貯留部であり、前記正極と前記正極電解液貯留部との間で前記正極電解液を循環させ、前記負極と前記負極電解液貯留部との間で前記負極電解液を循環させる送液部を更に備えるフロー電池である、<12>又は<13>に記載の二次電池。
<15> <1>~<14>のいずれか1つに記載の二次電池と、前記二次電池の充放電を制御する制御部と、を備える二次電池システム。
<16> 発電装置と、<15>の二次電池システムと、を備える発電システム。
<17> 前記発電装置は、再生可能エネルギーを用いて発電する、<16>に記載の発電システム。
本開示のフロー電池の部材構成の一例を示す模式図である。 本開示のフロー電池の模式図である。 セルスタック構成を有するフロー電池の模式図である。 第一実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第一実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 電極厚さ方向における電極の空隙率の分布を示す図である。 電極厚さ方向における電極の空隙率の分布を示す図である。 電極厚さ方向における電極の空隙率の分布を示す図である。 電極厚さ方向における電極の空隙率の分布を示す図である。 第二実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第二実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第二実施形態に係る電極の構造のうち、圧縮前後の電極の空隙率分布の変化を示す図である。 第二実施形態に係る電極の構造のうち、圧縮前後の電極の空隙率分布の変化を示す図である。 第二実施形態に係る電極の構造のうち、圧縮前後の電極の空隙率分布の変化を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 電解液流通方向における電極の空隙率の分布を示す図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。 第三実施形態に係る電極の構造及び空隙率の異なる電極の組み合わせを示す模式図である。
 以下、本発明の実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において電解液中の各成分の含有率は、電解液中に各成分に該当する物質が複数種存在する場合、特に断らない限り、電解液中に存在する当該複数種の物質の合計の含有率を意味する。
 また、本開示において、「含有率」とは、特に記載がなければ、各電解液の全量を100質量%としたときの、各成分の質量%を表す。
 本開示において、「固体」とは、二次電池に使用される正極及び負極の少なくとも一方にて電気化学反応により析出するものを指し、具体的には金属の固体及び非金属の固体が挙げられる。非金属の固体としては、後述するヨウ素分子(I)等の分子性固体、ポリマー状、プラスチック状等の有機分子性固体を挙げることができる。また、非金属の固体としては、錯体等の複合体であってもよい。
 本開示において、「厚さ方向」とは、正極においては、対極である負極と対向する側からその反対側の方向(例えば、正極と電子の授受を行う双極板側の方向)を指し、負極においては、対極である正極と対向する側からその反対側の方向(例えば、負極と電子の授受を行う双極板側の方向)を指す。
 本開示において、「空隙率勾配」とは、ある方向において電極に空隙率の異なる領域が少なくとも二つ存在していることを指し、ある方向において電極の少なくとも一部に空隙率の傾斜(一定割合での連続的な変化)がある構成に限定されない。
 本開示において、「正極と負極とが対向する側の電極の空隙率」とは、電極の対極と対向する側の端面から電極の厚さ方向に向かって、長さ5.0%侵入するまでの領域の少なくとも一部の空隙率を指す。
 本開示において、「双極板側の電極の空隙率」とは、電極の対極と対向する側の端面から電極の厚さ方向に向かって、長さ50%侵入した面を基準に、「正極と負極とが対向する側の電極の空隙率」を求めた領域と面対称となる領域の空隙率を指す。
 本開示において、「電解液が流入する側の電極の空隙率」とは、電極の電解液が流入する側の端側から前記流通方向に向かって、長さ5.0%侵入するまでの領域の少なくとも一部の空隙率を指す。
 本開示において、「電解液が流出する側の電極の空隙率」とは、電極の電解液が流入する側の端面から前記流通方向に向かって、長さ50%侵入した面を基準に、「電解液が流出する側の電極の空隙率」を求めた領域と面対称となる領域の空隙率を指す。
[第一実施形態]
〔二次電池〕
 本開示の第一実施形態の二次電池は、正極と、負極と、活物質を含有する電解液と、を備え、(1)正極及び負極における正極と負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板を更に備え、正極及び負極の少なくとも一方は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、正極と負極とが対向する側の電極の空隙率は、正極と負極とが対向する側とは反対の双極板側(すなわち、電極と電子の授受を行う双極板側)の電極の空隙率よりも高い。なお、以下の本実施形態の説明では、「空隙率の異なる領域を少なくとも二つ有する電極」を「空隙率勾配が設けられた電極」とも称する。
 本開示の二次電池は、正極及び負極の少なくとも一方にて厚さ方向に前述の空隙率勾配が設けられている。これにより、特に、空隙率勾配が設けられた電極にて充放電反応により金属等の析出反応を伴う場合でも、電解液を流動させたときに圧力損失の増加が抑制され、また、送液ポンプの動力損失も抑制されるため、二次電池において高電流密度かつ高出力特性を得ることができる。
(正極及び負極)
 本開示の二次電池は、正極及び負極をそれぞれ備える。正極及び負極の少なくとも一方は、厚さ方向に空隙率勾配が設けられた電極であり、対極と対向する側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高い。これにより、電解液を流動させたときに圧力損失の増加が抑制され、また、送液ポンプの動力損失も抑制される。これらの理由は、例えば、以下のように考えられる。
 二次電池では、充放電反応にて活物質の金属等の析出を伴う場合、電池反応が活発に起こる対極(counter electrode)側で、金属等が多く析出される傾向がある。これは、原理的に対極により近い位置がオーミック損の絶対値が小さく、電気化学反応場として、電位的に有利な位置にあるためである。例えば、負極において空隙率が均一、あるいは、対極である正極側において空隙率が小さく、充放電反応にて活物質の金属等の析出を伴う場合、正極により近い側にて金属等の析出が生じやすく、空隙部が閉塞されやすくなる。その結果、正極により近い側にて、電解液の流通が阻害されて圧力損失が増加するとともに、電解液を介してのイオン伝導性が損なわれ、電池反応が進行しにくくなる。その結果、送液ポンプの動力損失が増加し、かつ電流密度、放電容量等の出力が低下する。
 一方、本開示の二次電池では、正極及び負極の少なくとも一方において、対極と対向する側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高くなっている。そのため、電気化学反応が生じやすい対極により近い側において金属等の析出が生じにくくなっており、空隙部が閉塞されにくくなっている。その結果、対極により近い側にて、電解液の流通が阻害されて圧力損失が増加することが抑制され、電気化学反応が進行しにくくなることも抑制される。その結果、送液ポンプの動力損失の増加も抑制されるとともに、電流密度、放電容量等の出力の低下が抑制され、高電流密度かつ高出力の二次電池を長時間維持することができる。
 正極及び負極としては、従来公知の二次電池に用いられるものを用いることができる。具体的には、アルミニウム、銅、亜鉛等の金属、炭素(グラファイト)などが挙げられる。また、InSnO、SnO、ZnO、In等の導電材、フッ素ドープ酸化錫(SnO:F)、アンチモンドープ酸化錫(SnO:Sb)、錫ドープ酸化インジウム(In:Sn)、Alドープ酸化亜鉛(ZnO:Al)、Gaドープ酸化亜鉛(ZnO:Ga)等の不純物がドープされた導電材等の単層又は複層を、ガラス又は高分子上に形成させたものが挙げられる。また、正極及び負極の形状としては、板状、メッシュ状等が挙げられる。
 正極及び負極の少なくとも一方、好ましくは空隙率勾配が設けられた電極は、活物質との電子の授受としての反応場、すなわち電極面積を増やす点から、炭素繊維を含有することが好ましい。
 正極及び負極の少なくとも一方、好ましくは空隙率勾配が設けられた電極が、炭素繊維を含有する場合、取り扱い、加工性、製造性及び表面積の点から、炭素繊維からなる多孔質体であることが好ましい。具体的には、炭素繊維からなる多孔質体としては、カーボンフェルト、カーボンクロス及びカーボンペーパーが挙げられる。中でも、充放電中の反応活性及び表面積の点から、カーボンフェルトを用いることが好ましい。
 炭素繊維の原料繊維としては、炭化可能なものが挙げられ、具体的にはセルロース系、アクリル系、レーヨン系、フェノール系、芳香族ポリアミド系、ピッチ系繊維、ポリアクリロニトリル系繊維等が挙げられる。
 カーボンフェルトの製造法としては、焼成前の原料繊維を積層してシート状に広げることでウェブとし、次いで、繊維間をニードルパンチ法、サーマルボンド法、ステッチボンド法等の公知の方法で適度に結合させて、フェルト状に仕上げ、最後に熱処理を行う方法が挙げられる。
 熱処理の条件としては、特に制限されず、例えば、原料繊維からなるフェルト材を、不活性ガス中で800℃~2000℃の温度で熱処理する工程(炭化処理)を含む。また、必要に応じて、炭化処理の前に100℃~500℃の温度で熱処理する工程(耐炎化)及び炭化処理の後に2000℃~3000℃の温度で熱処理する工程(黒鉛化処理)を含んでいてもよい。黒鉛化処理を行うことで、炭化した原料繊維が更に黒鉛化し、グラファイトとしての結晶構造が規則正しくなり、また炭素繊維表面の余分な官能基が除去されるため、導電率等の電極物性が向上する傾向にある。
 熱処理の他の条件としては、例えば、原料繊維からなるフェルト材を、水蒸気雰囲気下で、800℃~2000℃の温度で熱処理する工程(賦活処理)を含む。これにより、炭化した原料繊維が多孔質化し、活性炭素繊維となり、活物質の繊維表面への吸着効率を高めることができる傾向にある。
 なお、カーボンクロス及びカーボンペーパーにおいても、原料繊維を公知の手法でクロス状又はペーパー状に仕上げた後に、熱処理を行うことで、好適に製造することができる。
 炭素繊維の繊維径は、カーボンフェルトとしての物性、製造法、電解液活物質との電子授受反応の効率等の点から、1.0μm~30.0μmであることが好ましく、1.5μm~25.0μmであることがより好ましく、2.0μm~20.0μmであることが更に好ましい。
 正極及び負極は、図2及び図3に示したように、フロー電池に搭載(充填)された状態では、厚さ方向に圧縮された状態であることが好ましい。これにより、正極及び負極を構成する素材(カーボンフェルトの場合は、炭素繊維)と双極板との導電性が向上し、セル抵抗を低減できる傾向にある。
 正極及び負極を圧縮して用いる場合の圧縮前後の厚さの比率(圧縮前の厚さ/圧縮後の厚さ)は、1.1~4.0であることが好ましく、1.2~3.8であることがより好ましく、1.3~3.6であることが更に好ましい。
 二次電池では、正極及び負極の少なくとも一方は空隙率勾配が設けられた電極であり、対極と対向する側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高い。この電極の空隙率は、例えば、重量測定にて求めることができる。
 空隙率勾配が設けられた電極に、カーボンフェルト等の、圧縮前後で空隙率が変化するような材質を用いる場合、圧縮後(二次電池の電極として使用される状態)の電極の空隙率を算出することが好ましい。また、圧縮前後の電極の厚さから計算される圧縮率と空隙率の関係が分かっている場合は、二次電池に搭載されておらず、圧縮されていない状態の電極の空隙率を測定、算出し、圧縮後の電極の空隙率を求めてもよい。
 空隙率を重量測定から算出する場合、以下の式(3)を用いればよい。
 φ=(1-V/V’)×100・・・(3)
 式(3)中で、φは空隙率(%)、Vは電極の真の体積(cm)、及びV’は電極の見かけの体積(cm)である。また、電極の真の体積Vは、電極を構成する材料の質量を、その材料の密度(g/cm)で除して算出することができる。
 正極及び負極の少なくとも一方は、電子の授受を行う双極板側から対極と対向する側に向かって電極の空隙率が高くなることが好ましい。このとき、双極板側から対極と対向する側に向かって、段階的又は非連続的に電極の空隙率が高くなってもよく、連続的に電極の空隙率が高くなってもよい。すなわち、電極の空隙率は、電子の授受を行う双極板側から対極と対向する側に向かって増加していく傾向が見られることが好ましい。
 正極及び負極はともに空隙率勾配が設けられた電極であり、対極と対向する側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高くてもよい。このとき、空隙率勾配の度合いは、正極と負極で同じであってもよく、異なっていてもよい。
<空隙率勾配が設けられた電極の例>
 以下、第一実施形態にて用いる空隙率勾配が設けられた電極の例を図4A及び図4Bに示す。図4Aでは、空隙率φの電極と空隙率φの電極を組み合わせることで、空隙率勾配が設けられた正極1a及び負極1bがそれぞれ形成されている。図4Aでは、φ>φの関係を満たし、対極と対向する側の空隙率(φ)が、双極板(図示せず)側の空隙率(φ)よりも高くなっている。
 図4Bでは、空隙率φの電極と、空隙率φの電極と、空隙率φの電極を組み合わせることで、空隙率勾配が設けられた正極1a及び負極1bがそれぞれ形成されている。図4Bでは、φ>φ>φの関係を満たし、双極板側(φ)から対極と対向する側(φ)に向かって電極の空隙率が高くなっている。
 電極に空隙率勾配を持たせる方法として、例えば、以下の2つの方法が挙げられる。1つ目は、圧縮前の空隙率が異なる部材を、空隙率が高い順に、対極と対向する側から双極板側に配置し、これらを圧縮して空隙率勾配が設けられた電極とする方法である。このとき、圧縮後(二次電池の電極として使用される状態)の電極の空隙率の順位も、圧縮前と同じ順序になる。
 2つ目は、特に炭素繊維からなる多孔体を用いる場合に、カーボンフェルト等の構造を製造する際、電極材料の空隙率に差を持たせる方法である。すなわち、ウェブの積層方法、ニードルパンチ法に条件等を選定することで、同一の電極部材の中で、空隙率を、連続的又は非連続的に変化させることができる。
 電極の厚さ方向において、電極の対極と対向する側の端側の少なくとも一部から厚さ方向に向かって、長さ5.0%侵入した位置での電極の空隙率と、長さ95.0%侵入した位置での電極の空隙率との差(長さ5.0%侵入した位置での電極の空隙率-長さ95.0%侵入した位置での電極の空隙率)が1.0%~50.0%であることが好ましく、1.5%~45.0%であることがより好ましく、2.0%~40.0%であることが更に好ましく、2.0%~30.0%であることが特に好ましく、2.0%~20.0%であることがより一層好ましく、2.0%~10.0%であることが更に一層好ましい。前述の空隙率の差が1.0%以上であることにより、電極内で金属等の析出反応を伴う場合でも電解液の圧力損失を効果的に抑制することができる傾向にある。また、前述の空隙率の差が50.0%以下であることにより、電極内での活物質の反応の均一性が高まり、充放電反応の活性が向上する傾向にある。
 また、電極の対極と対向する側の端側の少なくとも一部から厚さ方向における電極の空隙率の分布をプロット(例えば、0.05mmの等間隔にてプロット)したグラフにおいて、最小二乗法にて近似した直線の傾きから求めた電極の空隙率の平均変化率の絶対値が、0.5%/mm~8.0%/mmであることが好ましく、0.75%/mm~7.0%/mmであることがより好ましく、1.0%/mm~6.5%/mmであることが更に好ましく、1.0%/mm~6.0%/mmであることが特に好ましい。前述の平均変化率の絶対値が0.5%/mm以上であることにより、電極内で金属等の析出反応を伴う場合でも電解液の圧力損失を効果的に抑制することができる傾向にある。また、前述の平均変化率の絶対値が8.0%/mm以下であることにより、電極内での活物質の反応の均一性が高まり、充放電反応の活性が向上する傾向にある。
 電極の厚さ方向における空隙率の平均変化率の絶対値は、例えば、以下のようにして求めることができる。まず、横軸に電極の厚さ方向の座標(対極と対向する側の電極の端側からの距離)を、縦軸に電極の空隙率をとり、グラフにプロットする。次いで、最小二乗法による線形近似を行い、近似式を求める。双極板側から対極と対向する側に向かって電極の空隙率が高くなる場合、近似式の傾きはマイナスであるため、その近似式中の傾きにマイナス1(-1)を乗じた値を空隙率の平均変化率の絶対値とすることができる。
 例えば、空隙率の平均変化率の絶対値は、以下のようにして算出する。まず、図5A~図5Dに示すように、横軸に電極の厚さ方向の座標(隔膜側の端部からの距離)を、縦軸に電極の空隙率をとり、グラフにプロットする。次いで、最小二乗法による線形近似を行い、近似式を求める。双極板側から対極と対向する側に向かって電極の空隙率が高くなる場合、近似式の傾きはマイナスであるため、その近似式中の傾きにマイナス1(-1)を乗じた値を空隙率の平均変化率の絶対値とすることができる。例えば、図5Aには、空隙率が91.2%と85.3%の2種類の電極を、グラフの横軸に示す割合(長さ)で配置した場合の計算結果が示されている。図5Bには、空隙率が95.6%と85.3%の2種類の電極、図5Cには、空隙率が93.3%と89.0%と87.2%の3種類の電極、図5Dには、空隙率が91.5%と90.4%と89.3%の3種類の電極を、それぞれグラフの横軸に示す割合(長さ)で配置した場合の計算結果が示されている。
 なお、電極の空隙率の他に、電極の粗密を規定する指標としてかさ密度が挙げられる。かさ密度は、空隙部を含めた単位体積での密度と定義される。
 圧縮後(二次電池の電極として使用される状態)における電極のかさ密度は、特に制限されず、例えば、0.04g/cm~0.50g/cmであることが好ましく、0.045g/cm~0.45g/cmであることがより好ましく、0.05g/cm~0.40g/cmであることが更に好ましい。電極のかさ密度が0.04g/cm以上であることにより、電解液の圧力損失を抑制できる傾向にあり、例えば、フロー電池に装着した場合の圧縮応力が向上し、セル抵抗を低減することができる傾向にある。また、電極のかさ密度が0.50g/cm以下であることにより、電解液の圧力損失を効果的に低減できる傾向にある。
 正極の表面積及び負極の表面積はそれぞれ独立に、1m/g~100m/gであることが好ましく、2m/g~80m/gであることがより好ましく、3m/g~60m/gであることが更に好ましい。正極の表面積又は負極の表面積が1m/g以上であることで、充放電反応中の反応活性を向上させることができる傾向にある。また正極の表面積又は負極の表面積が100m/g以下であることで、圧力損失を効果的に抑制することができる傾向にある。正極の表面積及び負極の表面積の測定には、通常のBET法等を用いることができる。
(隔膜)
 二次電池は、正極と負極との間に隔膜を更に備えていてもよい。隔膜としては、二次電池の使用条件に耐えうる膜であれば特に制限されない。隔膜としては、例えば、イオンを伝導可能なイオン伝導性高分子膜、イオン伝導性固体電解質膜、ポリオレフィン多孔質膜、セルロース多孔質膜等が挙げられる。
 イオン伝導性高分子膜としては、例えば、カチオン交換膜及びアニオン交換膜が挙げられ、より具体的には、Selemion APS(登録商標)(AGC社)、Nafion(登録商標)(DuPont社)及びネオセプタ(登録商標)(アストム社)が挙げられる。
(電解液)
 二次電池は、活物質を含有する電解液を備える。電解液としては、正極活物質及び負極活物質を含有する一液系の電解液であってもよく、正極活物質を含有する正極電解液及び負極活物質を含有する負極電解液であってもよい。
 また、電解液は、活物質を分散又は溶解する液状媒体を含有していてもよい。
 正極活物質及び負極活物質を含有する電解液を用いる場合、この電解液が正極及び負極が配置された電極室に供給され、正極側に正極活物質が集まり、かつ負極側に負極活物質が集まるように、正極及び負極を配置することが好ましい。なお、正極活物質及び負極活物質を含有する一液系の電解液において、正極活物質及び負極活物質としては、それぞれ正極電解液に含有される正極活物質及び負極電解液に含有される負極活物質を用いればよい。
 正極活物質を含有する正極電解液及び負極活物質を含有する負極電解液を電解液として用いる場合、正極電解液が正極に供給され、負極電解液が負極に供給される。また、正極電解液が正極の一端側から他端側に向かって供給され、負極電解液が負極の一端側から他端側に向かって供給されることが好ましい。平板状、棒状等の正極及び負極が鉛直方向に沿って配置されており、正極電解液が正極の一端側から他端側に鉛直方向(例えば、鉛直上方向)に沿って供給され、負極電解液が負極の一端側から他端側に鉛直方向(例えば、鉛直上方向)に沿って供給されることがより好ましい。
 電解液中の活物質は、価数が変化するイオンを含有することが好ましく、公知のものを用いることができる。
 電解液中の活物質は、具体的に、以下の一般式(4)の反応式又は一般式(5)の反応式を満たす酸化体/還元体(以降、酸化還元対と呼ぶことがある)を含有していてもよい。
 An++xe⇔A(n-x)+・・・(4)
 An-+xe⇔A(n+x)-・・・(5)
 なお、一般式(4)においては、n及びxは整数であり、かつn≧xであり、一般式(5)においては、n及びxは正の整数である。
 一般式(4)又は一般式(5)を満たす酸化還元対としては、Fe3+/Fe2+、Cr3+/Cr2+、Ga3+/Ga2+、Ti3+/Ti2+、Co3+/Co2+、Cu2+/Cu、V3+/V2+、V5+/V4+、Ce4+/Ce3+、Cl/Cl3-、Br/Br3-、Zn2+/Zn、Pb2+/Pb、Fe2+/Fe、Cr2+/Cr、Ga2+/Ga、Ti2+/Ti、Mn2+/Mn、Mg2+/Mg、Mg/Mg、Ag/Ag、Cd2+/Cd、Co2+/Co、Cu2+/Cu、Cu/Cu、Hg2+/Hg、等が挙げられる。
 一般式(4)又は一般式(5)を満たす酸化還元対以外の酸化還元対としては、I /I、S 2-/S 2-等が挙げられる。
 また、本開示の二次電池は、正極及び負極の少なくとも一方であり、かつ前述の空隙率勾配が設けられた電極は、充電反応又は放電反応にて活物質の析出を伴うことが好ましい。また、析出物は金属を含有することがより好ましい。充電反応又は放電反応にて電解液中の活物質が析出することにより、例えば、隔膜を通じた正極側から負極側へのイオンの移動が抑制されてイオン伝導抵抗の上昇が抑制され、高電流密度かつ高出力な二次電池とすることができる傾向にある。しかし、通常の二次電池では、電解液を流動させた場合に、充電反応中又は放電反応中に析出した金属等の固体によって電極の空隙部が閉塞し、この部分での反応性が低下することで、内部抵抗が増大し、圧力損失が増加する可能性がある。一方、本開示の二次電池では、活物質の析出を伴う電極にて厚さ方向に空隙率勾配が形成されているため、電解液を流動させた場合に、圧力損失の増加が抑制される傾向にある。
 充電反応時に負極にて金属等の析出を伴うような酸化還元対としては、例えば、Zn2+/Zn、Pb2+/Pb、Fe2+/Fe、Cr2+/Cr、Ga2+/Ga、Ti2+/Ti、Mn2+/Mn、Mg2+/Mg、Mg/Mg、Ag/Ag、Cd2+/Cd、Co2+/Co、Cu2+/Cu、Cu/Cu、Hg2+/Hg、等が挙げられる。したがって、本開示の二次電池において、これらの酸化還元対を負極活物質として含有する電解液を用いてもよく、これらの酸化還元対を負極活物質として含有する負極電解液を用いてもよい。
 なお、これらの酸化還元対を正極活物質として含有する正極電解液と、これらの酸化還元対を負極活物質として含有する負極電解液とを用いてもよい。このとき、負極の標準酸化還元電位が正極の標準酸化還元電位よりも低くなるように、正極活物質と負極活物質の組み合わせを選択すればよい。
 上記析出物は、金属を含有することが好ましく、金属であることがより好ましい。また、その金属の体積抵抗率が1.0×10-5Ωcm以下であることが好ましい。上記析出物が金属であり、かつその金属の体積抵抗率が1.0×10-5Ωcm以下であることにより、電極上に析出した金属等が、充放電中の新たな集電体となり、充放電中の電子の授受反応効率の低下を抑制することができる傾向にある。
 電解液は、活物質として亜鉛イオン(Zn2+)及び亜鉛(Zn)の少なくとも一方を含有することが好ましく、更に液状媒体として水を含む水溶液系であることがより好ましい。電解液を水溶液系とすることで、電解液を低粘度化でき、特に電解液を流動させる場合に、二次電池を高出力化できる傾向にある。また、活物質として亜鉛イオン及び亜鉛の少なくとも一方を含有することで、安全性に優れ、環境負荷が小さく、また高エネルギー密度の二次電池が実現できる。亜鉛イオンは、亜鉛を含む化合物由来であってもよい。また、亜鉛を含む化合物としては、ヨウ化亜鉛、酢酸亜鉛、硝酸亜鉛、テレフタル酸亜鉛、硫酸亜鉛、塩化亜鉛、臭化亜鉛、酸化亜鉛、過酸化亜鉛、セレン化亜鉛、二燐酸亜鉛、アクリル酸亜鉛、水酸化炭酸亜鉛、ステアリン酸亜鉛、プロピオン酸亜鉛、フッ化亜鉛、クエン酸亜鉛等が挙げられる。中でも、塩化亜鉛及び硫酸亜鉛が好ましい。
 電解液は、活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有することが好ましく、更に液状媒体として水を含む水溶液系であることがより好ましい。電解液を水溶液系とすることで、電解液を低粘度化でき、特に電解液を流動させる場合に、二次電池を高出力化できる傾向にある。また、活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有することで、安全性に優れ、環境負荷が小さく、また高エネルギー密度の二次電池が実現できる。ヨウ素イオン及びヨウ素分子の少なくとも一方は、液状媒体に分散又は溶解された状態で使用されることが好ましい。
 ヨウ素イオンとしては、I、I 、I 等が挙げられる。そのため、電解液が活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有する場合、例えば、I、I 、I 及びIの少なくとも1種を含有していればよい。
 また、電解液は、ヨウ素化合物を含有していてもよく、ヨウ素化合物としては、CuI、ZnI、NaI、KI、HI、LiI、NHI、BaI、CaI、MgI、SrI、CI、AgI、NI、テトラアルキルアンモニウムヨージド、ピリジニウムヨージド、ピロリジニウムヨージド、スルフォニウムヨージド等が挙げられる。
 ヨウ素イオンは、電解液中に溶解していることが好ましく、液状媒体として水を用いる場合、ヨウ素化合物としては、NaI、KI及びNHIの少なくともいずれかであることが好ましい。NaI、KI及びNHIは水への溶解度が高いため、NaI、KI及びNHIの少なくともいずれかを用いることで、二次電池のエネルギー密度をより向上させることが可能である。
 電解液が、正極活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有する場合は、充放電反応における主な酸化還元対はI/I であり、以下の式(6)の反応式が起こる。
 3I⇔I +2e・・・(6)
 この式(6)の反応では、ヨウ素分子の析出は生じず、二次電池において高電流密度及び高出力な特性を実現できる。
 電解液が、正極活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有する場合は、式(6)の反応以外に、充放電条件等によっては、以下の式(7)のような反応を伴うことがある。
 2I⇔I+2e・・・(7)
 この式(7)の反応では、充電中にIイオンが酸化されてIを生成することを意味している。Iが生成する場合、Iが固体として電極表面に析出し、圧力損失を増加させる可能性がある。このため、正極活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を用いる場合、圧力損失の増加を抑制する点から、正極の隔膜側、すなわち、正極における負極と対向する側において、双極板側よりも正極の空隙率を高くすることが好ましい。
 電解液において、ヨウ素化合物及びヨウ素分子の合計の含有率は、1質量%~80質量%であることが好ましく、3質量%~70質量%であることがより好ましく、5質量%~50質量%であることが更に好ましい。ヨウ素化合物及びヨウ素分子の合計の含有率を1質量%以上とすることで、高容量で実用に適した二次電池が得られる傾向にある。また、ヨウ素化合物及びヨウ素分子の合計の含有率を80質量%以下とすることで、液状媒体中での溶解性又は分散性が良好なものとなる傾向にある。なお、ヨウ素化合物及びヨウ素分子の含有率とは、電解液中におけるヨウ素化合物由来のイオン及びヨウ素分子の合計の含有率を表し、電解液中におけるヨウ素化合物由来のイオン(例えば、I、I 、I 及びこれらの対イオン)及びヨウ素分子(I)の合計の含有率を表す。
 また、電解液は、正極活物質として、ヨウ素分子及びヨウ素イオン以外の酸化還元物質を含有していてもよい。ヨウ素分子及びヨウ素イオン以外の酸化還元物質としては、I/I及びI/I 系との混成電位を形成してI/I及びI/I 系の正極電位の低下が顕在化しないものが好ましい。
 ヨウ素分子及びヨウ素イオン以外の酸化還元物質としては、クロム、バナジウム、亜鉛、キノン化合物、コバルト酸リチウム、マンガン酸ナトリウム、ニッケル酸リチウム、コバルト-ニッケル-マンガン酸リチウム、リン酸鉄リチウム等が挙げられる。
 電解液としては、正極活物質としてヨウ素分子及びヨウ素イオンの少なくとも一方を含有する正極電解液と、負極活物質として金属等の析出を伴うような酸化還元対を含有する負極電解液との組み合わせが好ましく、正極活物質としてヨウ素分子及びヨウ素イオンの少なくとも一方を含有する正極電解液と、負極活物質として亜鉛及び亜鉛イオンの少なくとも一方を含有する負極電解液との組み合わせがより好ましい。更に、必要に応じて正極電解液は、正極活物質としてヨウ素分子及びヨウ素イオン以外の前述の酸化還元物質を含有していてもよく、また、必要に応じて負極電解液は、負極活物質として前述の酸化還元対以外の酸化還元物質を含有していてもよい。
 正極電解液中の正極活物質の含有率は特に制限はなく、充放電反応の活性の点から、例えば、0.1質量%~80.0質量%であることが好ましく、0.5質量%~75.0質量%であることがより好ましく、1.0質量%~70.0質量%であることが更に好ましい。
 負極電解液中の負極活物質の含有率は特に制限はなく、充放電反応の活性の点から、例えば、0.1質量%~80.0質量%であることが好ましく、0.5質量%~75.0質量%であることがより好ましく、1.0質量%~70.0質量%であることが更に好ましい。
<液状媒体>
 電解液は、少なくとも一種の活物質が液状媒体に溶解又は分散されたものであることが好ましい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
 液状媒体としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン系溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル系溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート系溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル系溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル系溶剤;α-テルピネン、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、ターピネオール、カルボン、オシメン、フェランドレン等のテルペン系溶剤;水などが挙げられる。液状媒体は、1種を単独で用いてもよく、2種以上を併用してもよい。中でも、液状媒体としては、水が好ましい。液状媒体として水を用いることで電解液を低粘度化でき、二次電池を高出力化できる傾向にある。
<ポリマー>
 電解液、好ましくは正極電解液がヨウ素分子及びヨウ素イオンの少なくとも一方を含有する場合、ヨウ素イオンと錯体を形成するポリマーを含有していてもよい。電解液がヨウ素イオンと錯体を形成するポリマーを含有することで、ヨウ素イオンの酸化還元反応中に生じる可能性のあるヨウ素分子の析出が抑制され、二次電池を高出力化できる傾向にある。ヨウ素イオンと錯体を形成するポリマーとしては、ナイロン6、ポリテトラヒドロフラン、ポリビニルアルコール、ポリアクリロニトリル、ポリ-4-ビニルピリジン、ポリビニルピロリドン、ポリメチル(メタ)アクリレート、ポリテトラメチレンエーテルグリコール、ポリアクリルアミド、ポリプロピレングリコール、ポリエチレングリコール、ポリエチレンオキシド等が挙げられる。これらのポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
<ヨウ素分子に対する良溶媒>
 また、電解液、好ましくは正極電解液がヨウ素分子及びヨウ素イオンの少なくとも一方を含有する場合、水以外にヨウ素分子に対する良溶媒を含むことが好ましい。電解液がヨウ素分子に対する良溶媒を含むことにより、充電反応の際に正極に形成される皮膜が薄膜化され、皮膜による充放電反応の阻害が抑えられる傾向にある。ヨウ素分子に対する良溶媒としては、ジメチルホルムアミド、ジエチルホルムアミド、アセトアミド、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン等のアミド、アセトン、メチルエチルケトン等のケトン、酢酸メチル、酢酸エチル、ニコチン酸メチル等のエステル、ジメチルスルホキシド等のスルホキシド、エタノール、エチレングリコール等のアルコール、ジエチルエーテル等のエーテル、ニコチンアミド、シアノピリジン等のピリジン誘導体などが挙げられる。ハロゲン分子に対する良溶媒としては、1種を単独で用いてもよく、2種以上を併用してもよい。
(双極板)
 二次電池は、対極と対向する側とは反対側に設けられ、正極及び負極と電子の授受をそれぞれ行う一対の双極板を備えている。双極板としては、例えば、カーボン材料系及び金属材料系が挙げられ、コスト及び電解液に対する耐食性の点から、カーボン材料系を用いることが好ましい。また、双極板としては、黒鉛粉、バインダー等を混練した複合材にプレス、射出等の成形を施して得られる板状の双極板が好ましい。
 また、二次電池が正極及び負極を1つずつ有する単セル構造の場合、Cu等の集電板の腐食を抑制する点から、集電板と正極との間、及び集電板と負極との間に双極板を備えていてもよい。また、単セル構造の場合、集電板及び双極板の両方を備える構成に限定されず、集電板が双極板を兼ねていてもよい。
(参照電極)
 二次電池は、正極の電位を計測するための正極用参照電極を備えていてもよく、負極の電位を測定するための負極用参照電極を備えていてもよい。なお、二次電池では、正極用参照電極及び負極用参照電極は必須の構成ではなく、必要に応じて正極用参照電極及び負極用参照電極を用い、二次電池における正極の電位及び負極の電位を測定してもよい。
 正極用参照電極及び負極用参照電極は標準水素電極電位(standard hydrogen electrode potential)に対する電位に換算可能で、安定した電気化学電位を示せるものであればよい。電気化学電位基準となる参照電極は、電気化学の基本事項として教科書等に示されている(例えば、“Allen J.Bard and Larry R.Faulkner 、「ELECTROCHEMICAL METHODS」p.3、(1980)、John Wiley & Sons, Inc.”)。参照電極としては、Ag/AgCl参照電極、飽和カロメル電極(saturated calomel electrode)等が挙げられ、Ag/AgCl参照電極が好ましい。
 参照電極としてAg/AgCl参照電極を用いる場合、例えば、RE-1CP飽和KCl銀塩化銀参照電極(BAS社)を用いてもよい。
 また、正極用参照電極及び負極用参照電極としてAg/AgCl参照電極以外の参照電極を用い、測定した電位をAg/AgCl参照電極の電位に換算してもよい。
 本開示の二次電池は、フロー電池であってもよい。例えば、二次電池は、貯留部として、正極電解液を貯留する正極電解液貯留部と、負極電解液を貯留する負極電解液貯留部と、を備え、かつ、正極と正極電解液貯留部との間で正極電解液を循環させ、負極と負極電解液貯留部との間で負極電解液を循環させる送液部を更に備えるフロー電池であってもよい。
 以下、フロー電池の各構成について説明する。
(正極電解液貯留部及び負極電解液貯留部)
 フロー電池は、正極電解液を貯留する正極電解液貯留部及び負極電解液を貯留する負極電解液貯留部を備える。正極電解液貯留部及び負極電解液貯留部としては、例えば、電解液貯留タンクが挙げられる。
(送液部)
 フロー電池は、正極と正極電解液貯留部との間で正極電解液を循環させ、負極と負極電解液貯留部との間で負極電解液を循環させる送液部を備える。正極電解液貯留部に貯留された正極電解液が送液部を通じて正極が配置された正極室に供給され、負極電解液貯留部に貯留された負極電解液が送液部を通じて負極が配置された負極室に供給される。
 フロー電池では、送液部は例えば、正極室と正極電解液貯留部との間で正極電解液を循環させ、かつ負極室と負極電解液貯留部との間で負極電解液を循環させる循環経路及び送液ポンプを備えていてもよい。
 正極室と正極電解液貯留部との間で循環させる正極電解液の量及び負極室と負極電解液貯留部との間で循環させる負極電解液の量は、それぞれ送液ポンプを用いて適宜調整すればよく、例えば、電池スケールに応じて適宜設定することができる。
(電解液の圧力損失)
 フロー電池において、電解液の圧力損失は、公知の方法によって測定することができる。具体的には、圧力センサを用い、正極及び負極における電解液の流入側の圧力と流出側の圧力を計測し、その差分を算出する方法等が挙げられる。
 圧力センサとしては、純水、薬液を含む液体、気体等の流体の圧力を計測可能なものであればよい。
(二次電池の充放電特性)
 二次電池の充放電特性としては、電池容量の他に、電流効率(Current Efficiency:CE)、電圧効率(Voltage Efficiency:VE)及び電力効率(Energy Efficiency:EE)が挙げられる。
 電流効率CEは、放電で得られた電気量と充電に要した電気量の割合である。電圧効率VEは、放電時平均電圧と充電時平均電圧の割合である。また電力効率EEは、放電した電力量と充電した電力量の割合である。
 図1は、本実施形態のフロー電池の部材の構成の一例を示す模式図である。正極1aと負極1bは、隔膜2によって隔てられている。充放電反応時は、各電極と双極板5の間で電子の授受が行われる。双極板5は、双極板フレーム6として用いられることがある。双極板フレーム6は、各電極と同程度の面積の双極板5が露出した状態で、外周部をシール材3等で囲われた構造を有している。更に双極板5は、集電板9と接触しており、充放電を行う際の外部端子に接続される。また各電極の外周部には、シール材3及び分液板4が配置され、分液板4にはスリット(溝、図示せず)が形成されており、電解液(図示せず)を各電極内に流通させることができる。
 具体的には、正極電解液極室入口8aから注入された正極電解液は、正極の分液板4に到達し、スリットを経由して正極1a内に流通する。ここで、図1における正極電解液の流通方向は下方から上方である。ついで、正極1aの上端から正極の分液板4に形成されたスリットを通じ、正極のシール材3、隔膜2、負極のシール材3、負極の分液板4及び負極の双極板フレーム6の端部に形成された正極電解液流通経路(マニホールドと呼ぶことがある)を通じ、正極電解液極室出口8bから流出する。
 また、負極電解液極室入口8cから注入された負極電解液は、負極の分液板4に到達し、スリットを経由して負極1b内に流通する。ここで、図1における負極電解液の流通方向は下方から上方である。ついで、負極1bの上端から負極の分液板4に形成されたスリットを通じ、負極のシール材3、隔膜2、正極のシール材3、正極の分液板4及び正極の双極板フレーム6の端部に形成された負極電解液流通経路(マニホールドと呼ぶことがある)を通じ、負極電解液極室出口8dから流出する。
 図2は、フロー電池の模式図である。すなわち、正極電解液極室出口8bから流出した正極電解液10aは、配管(循環経路)13を通り、正極電解液貯留部11aに貯留される。また、負極電解液極室出口8dから流出した負極電解液10bは、配管(循環経路)13を通り、負極電解液貯留部11bに貯留される。このようにして、充放電反応中には、正極電解液10a及び負極電解液10bが、送液ポンプ12を作動させることで、それぞれ正極1a及び負極1b内に流通し、正極電解液貯留部11a及び負極電解液貯留部11bに再び戻ってくるサイクルを繰り返す。充放電を行う際の電気的な制御は、電源14及び外部負荷15を用いて行われる。
 図3は、図2で示した正極及び負極の各部材の組み合わせ(セルとも呼ぶ)を、電気的に直列に接続し、スタック構造にした状態のフロー電池の模式図である。セルの数を増やし、スタック構造にすることで、フロー電池の出力電圧を増加させることができる。ここで、隣り合うセルの正極1a及び負極1bは、双極板5を介して電気的に接続されており、充放電時の電子の授受が可能になる。また正極電解液10a及び負極電解液10bは、直列に配置された各電極に並列に流通できるよう、配管(循環経路)13の構造を変更したこと以外は、図2と同様である。なお、スタック構造にした状態の二次電池、好ましくはスタック構造にした状態のフロー電池において、正極と負極とが対向する側とは、正極と負極との間に双極板が設けられていない側を指し、図3では、正極1aと負極1bとの間に隔膜2が存在する側を指す。
[二次電池システム]
 本開示の二次電池システムは、前述の本開示の二次電池と、二次電池の充放電を制御する制御部と、を備える。本開示の二次電池システムは、二次電池がフロー電池であるフロー電池システムであってもよく、制御部は、フロー電池の充放電を制御する構成であってもよい。
(制御部)
 二次電池システムは、二次電池の充放電を制御する制御部を備える。例えば、制御部は、二次電池システムにおける充電電圧、正極及び負極の充電電位等を制御する構成であってもよい。
 なお、充電電圧は負極と正極との間の電位差を示すものであり、充電電位は基準となる一定の電位を持つ基準電極(参照電極)に対する電位差を示すものである。
[発電システム]
 本開示の発電システムは、発電装置と、前述の本開示の二次電池システムと、を備える。本開示の発電システムは、二次電池システムと発電装置とを組み合わせることで、電力変動を平準化及び安定化したり、電力の需給を安定化したりすることができる。
 発電システムは、発電装置を備える。発電装置としては、特に制限されず、再生可能エネルギーを用いて発電する発電装置、水力発電装置、火力発電装置、原子力発電装置等が挙げられ、中でも再生可能エネルギーを用いて発電する発電装置が好ましい。
 再生可能エネルギーを用いた発電装置は、気象条件等によって発電量が大きく変動するが、二次電池システムと組み合わせることで変動する発電電力を平準化して電力系統に平準化した電力を供給することができる。
 再生可能エネルギーとしては、風力、太陽光、波力、潮力、流水、潮汐、地熱等が挙げられるが、風力又は太陽光が好ましい。
 風力、太陽光等の再生可能エネルギーを用いて発電した発電電力は、高電圧の電力系統に供給する場合がある。通常、風力発電及び太陽光発電は、風向、風力、天気等の気象によって影響を受けるため、発電電力は一定とならず、大きく変動する傾向にある。一定ではない発電電力を高電圧の電力系統にそのまま供給すると、電力系統の不安定化を助長するため好ましくない。本実施形態の発電システムは、例えば、二次電池システムの充放電波形を発電電力波形に重畳させることで、目標とする電力変動レベルまで発電電力波形を平準化させることができる。
[第二実施形態]
〔二次電池〕
 本開示の第二実施形態の二次電池は、正極と、負極と、活物質を含有する電解液と、を備え、(2)電解液を正極及び負極にそれぞれ供給する貯留部を更に備え、正極及び負極の少なくとも一方は、電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、電解液が流入する側の電極の空隙率は、電解液が流出する側の電極の空隙率よりも高い。なお、第二実施形態の二次電池において、前述の第一実施形態の二次電池と共通する事項についてはその説明を省略する。また、以下の本実施形態の説明では、「空隙率の異なる領域を少なくとも二つ有する電極」を「空隙率勾配が設けられた電極」とも称する。
 本開示の二次電池は、正極及び負極の少なくとも一方にて電解液の流通方向に空隙率勾配が設けられている。これにより、特に、空隙率勾配が設けられた電極にて充放電反応により金属等の析出反応を伴う場合でも、電解液を流動させたときに圧力損失の増加が抑制され、また、送液ポンプの動力損失も抑制されるため、二次電池において高電流密度かつ高出力特性を得ることができる。
(正極及び負極)
 本開示の二次電池は、正極及び負極をそれぞれ備える。正極及び負極の少なくとも一方は、電解液の流通方向に空隙率勾配が設けられた電極であり、電解液が流入する側の電極の空隙率は、電解液が流出する側の前記電極の空隙率よりも高い。これにより、電解液を流動させたときに圧力損失の増加が抑制され、また、送液ポンプの動力損失も抑制される。これらの理由は、例えば、以下のようにして考えられる。
 流体がある空間を流れる場合、流体が接触する材料との摩擦に起因する抵抗を受ける。これが圧力損失が発生する基本的な原因である。層流における圧力損失はいわゆるハーゲン・ポアズイユ(Hagen-Poiseuille)の式で求めることができる。
 電池反応の基本構成反応である、正極と負極の電気化学反応の反応速度と圧力損失には明確な関係がある。圧力損失が変化する場合、それを評価する電解液が流れる空間において、流速が変化することを意味する。電気化学反応の速度と反応場の流速の関係は、高流速場の方が低流速場よりも反応速度が速い。高流速場は低流速場に比べて電極界面の物質移動層厚が薄くなり、活物質の供給速度であるフラックス(モル/(cm・秒))が大きくなるためである。したがって、反応場の電位を一定に制御した場合、電解液が流入する側の反応速度は圧力損失が発生している電解液が流出する側よりも速くなる。定電流制御の場合、すなわち反応場の反応速度を外部制御で一定にする場合、電解液が流入する側と電解液が流出する側で、圧力損失に伴い電池反応の反応過電圧の違いに変化が生じる。すなわち、電解液の流速の速い場所である、電解液が流入する側の電気化学反応の過電圧の上昇速度が、電解液が流出する側の電気化学反応の過電圧の上昇速度に比べて低く抑えられる。このように圧力損失と電池の反応の特性は密接な関係を持つ。
 充放電反応により、電極上に金属等が析出し、電解液の流路面積に影響を及ぼす場合も同様である。しかし、電池反応に析出反応が伴う場合、上記の圧力損失に伴う電池の反応への影響はより顕在化する。例えば、負極で金属等の析出が充電反応により生じる場合、圧力損失がより増幅される。この理由は、電解液が流入する側で反応速度が速いため、析出した金属等によって、電解液が流入する側の流路面積が充電時間とともに小さくなることにある。流路面積が充電時間とともに小さくなると、電解液が流入する側の領域が充電反応で生成された固体に覆われてしまい、電解液が流れなくなるおそれがある。電解液が流れなくなると、もはやフロー電池ではなくなり、電池機能は停止してしまう。
 例えば、亜鉛が負極上に充電反応において析出する場合、まず反応速度が速い電解液が流入する側に亜鉛が析出することにより、電解液が流入する側から流路面積が低下し、圧力損失が増加して送液ポンプの動力損失が増加し、また、電解液が流れにくくなる。これらを抑制するため、上流側である電解液が流入する側の電極の空隙率を、下流側である電解液が流出する側の電極の空隙率よりも高くしている。これにより、金属等の析出による、電極の閉塞化を抑制し、かつ圧力損失の増加も抑制できる。
 二次電池では、正極及び負極の少なくとも一方は空隙率勾配が設けられた電極であり、電解液が流入する側の電極の空隙率は、電解液が流出する側の前記電極の空隙率よりも高い。この電極の空隙率は、例えば、前述の第一実施形態と同様にして重量測定にて求めることができる。
 正極及び負極の少なくとも一方は、電解液が流出する側から電解液が流入する側に向かって電極の空隙率が高くなることが好ましい。このとき、電解液が流出する側から電解液が流入する側に向かって、段階的又は非連続的に電極の空隙率が高くなってもよく、連続的に電極の空隙率が高くなってもよい。すなわち、電極の空隙率は、電解液が流出する側から電解液が流入する側に向かって増加していく傾向が見られることが好ましい。
 正極及び負極はともに空隙率勾配が設けられた電極であり、電解液が流入する側の電極の空隙率は、電解液が流出する側の電極の空隙率よりも高くてもよい。このとき、空隙率勾配の度合いは、正極と負極で同じであってもよく、異なっていてもよい。
 また、第二実施形態の二次電池において、第一実施形態の二次電池と同様、正極及び負極における正極と負極とが対向する側とは反対側に設けられ、正極及び負極と電子の授受をそれぞれ行う一対の双極板を更に備える場合、正極及び負極の少なくとも一方は、厚さ方向に空隙率勾配が設けられた電極であってもよい。このとき、第一実施形態の二次電池と異なり、双極板側の電極の空隙率が、対極と対向する側の電極の空隙率よりも高くてもよい。これにより、二次電池は、ハイレート放電及び高出力設計に対応することができる。双極板側で空隙率を高くすることにより、電解液を流通したときに、双極板側の流速が増大する。これによって、対極と対向する側の電極内への活物質の供給速度が増大し、結果として二次電池の高出力化を達成できる傾向にある。
<空隙率勾配が設けられた電極の例>
 以下、第二実施形態にて用いる空隙率勾配が設けられた電極の例を図6A及び図6Bに示す。図6Aでは、空隙率φの電極と空隙率φの電極を組み合わせることで、空隙率勾配が設けられた電極1がそれぞれ形成されている。図6Aでは、φ>φの関係を満たし、電解液が流入する側の空隙率(φ)が、電解液が流出する側の空隙率(φ)よりも高くなっている。
 図6Bでは、空隙率φの電極と、空隙率φの電極と、空隙率φの電極を組み合わせることで、空隙率勾配が設けられた電極1がそれぞれ形成されている。図6Bでは、φ>φ>φの関係を満たし、電解液が流出する側(φ)から電解液が流入する側(φ)に向かって電極の空隙率が高くなっている。
 電極に空隙率勾配を持たせる方法として、例えば、以下の3つの方法が挙げられる。1つ目は、図7Aに示すように、圧縮前の空隙率が異なる部材を、空隙率が高い順に、電解液が流入する側から電解液が流出する側に配置し、これらを圧縮して空隙率勾配が設けられた電極とする方法である。このとき、圧縮後(二次電池の電極として使用される状態)の電極の空隙率の順位も、圧縮前と同じ順序になる。
 2つ目は、図7Bに示すように、同一の空隙率を有し、かつ圧縮前の厚さがそれぞれ異なる部材を、厚さが小さい順に、電解液が流入する側から電解液が流出する側に配置し、各部材が同じ厚さになるまで圧縮する方法である。このとき、電解液が流入する側から電解液が流出する側に向かって圧縮の程度が大きくなるため、電解液が流出する側から電解液が流入する側に向かって電極の空隙率が高くなる。
 また、このとき、図7Cに示すように、台形状で空隙率が一定の部材を準備し、電極の厚さ方向における幅(厚さ)が電解液の流通方向において同じになるまで圧縮してもよい。これにより、電解液が流出する側から電解液が流入する側に向かって空隙率が高く、連続的に一定の空隙率勾配を有する電極を形成することができる。
 3つ目は、特に炭素繊維からなる多孔体を用いる場合に、カーボンフェルト等の構造を製造する際、電極材料の空隙率に差を持たせる方法である。すなわち、ウェブの積層方法、ニードルパンチ法に条件等を選定することで、同一の電極部材の中で、空隙率を、連続的又は非連続的に変化させることができる。
 電極の電解液が流入する側の端側の少なくとも一部から流通方向に向かって、長さ5.0%侵入した位置での電極の空隙率と、長さ95.0%侵入した位置での電極の空隙率との差(長さ5.0%侵入した位置での電極の空隙率-長さ95.0%侵入した位置での電極の空隙率)が1.0%~50.0%であることが好ましく、1.5%~45.0%であることがより好ましく、2.0%~40.0%であることが更に好ましく、2.0%~30.0%であることが特に好ましく、2.0%~20.0%であることがより一層好ましく、2.0%~10.0%であることが更に一層好ましい。前述の空隙率の差が1.0%以上であることにより、電極内で金属等の析出反応を伴う場合でも電解液の圧力損失を効果的に抑制することができる傾向にある。また、前述の空隙率の差が50.0%以下であることにより、電極内での活物質の反応の均一性が高まり、充放電反応の活性が向上する傾向にある。
 また、電極の電解液が流入する側の端側の少なくとも一部から流通方向における電極の空隙率の分布をプロット(例えば、0.1cmの等間隔にてプロット)したグラフにおいて、最小二乗法にて近似した直線の傾きから求めた電極の空隙率の平均変化率の絶対値が、0.1%/cm~3.0%/cmであることが好ましく、0.15%/cm~2.8%/cmであることがより好ましく、0.2%/cm~2.75%/cmであることが更に好ましく、0.25%/cm~2.5%/cmであることが特に好ましく、0.3%/cm~2.0%/cmであることがより一層好ましく、0.3%/cm~1.5%/cmであることが更に一層好ましく、0.3%/cm~1.0%/cmであることが特に一層好ましい。前述の平均変化率の絶対値0.1%/cm以上であることにより、電極内で金属等の析出反応を伴う場合でも電解液の圧力損失を効果的に抑制することができる傾向にある。また、前述の平均変化率の絶対値が3.0%/cm以下であることにより、電極内での活物質の反応の均一性が高まり、充放電反応の活性が向上する傾向にある。
 例えば、空隙率の平均変化率の絶対値は、以下のようにして算出する。まず、図8A~図8Fに示すように、横軸に電解液の流通方向の座標(電極の電解液が流入する側の端部からの距離)を、縦軸に電極の空隙率をとり、グラフにプロットする。次いで、最小二乗法による線形近似を行い、近似式を求める。電解液が流出する側から電解液が流入する側に向かって電極の空隙率が高くなる場合、近似式の傾きはマイナスであるため、その近似式中の傾きにマイナス1(-1)を乗じた絶対値を空隙率の平均変化率とすることができる。図8A及び図8Bには、空隙率が異なる2種類の電極をグラフの横軸に示す割合(長さ)で配置した場合の計算結果が示されている。また、図8C~図8Fには、空隙率が異なる3種類の電極をグラフの横軸に示す割合(長さ)で配置した場合の計算結果が示されている。
[第三実施形態]
〔二次電池〕
 本開示の第三実施形態の二次電池は、正極と、負極と、活物質を含有する電解液と、を備え、(3)正極及び負極における正極と負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板と、電解液を正極及び負極にそれぞれ供給する貯留部と、を更に備え、正極及び負極の少なくとも一方は、電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、電解液が流入する側の電極の空隙率は、電解液が流出する側の電極の空隙率よりも高く、かつ電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する。なお、第三実施形態の二次電池において、前述の第一実施形態の二次電池と共通する事項についてはその説明を省略する。また、以下の本実施形態の説明では、「空隙率の異なる領域を少なくとも二つ有する電極」を「空隙率勾配が設けられた電極」とも称する。
 第三実施形態の二次電池は、電解液の流通方向に空隙率勾配が設けられ、かつその厚さ方向に空隙率勾配が更に設けられた電極を備えている。これにより、特に、空隙率勾配が設けられた電極にて充放電反応により金属等の析出反応を伴う場合でも、電解液を流動させたときに圧力損失の増加が抑制され、また、送液ポンプの動力損失も抑制されるため、二次電池において高電流密度かつ高出力特性を得ることができる。なお、第三実施形態において、電解液の流通方向の空隙率勾配の好ましい構成は、前述の第二実施形態と同様であるため、その説明を省略する。
 本開示の二次電池では、圧力損失増加を抑制する点から、正極と負極とが対向する側の電極の空隙率が、電極と電子の授受を行う双極板側の電極の空隙率よりも高くてもよく、高出力化の点から、電極と電子の授受を行う双極板側の電極の空隙率が、正極と負極とが対向する側の電極の空隙率よりも高くてもよい。
 正極及び負極はともに空隙率勾配が設けられた電極であり、対極と対向する側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高くてもよく、電極と電子の授受を行う双極板側の電極の空隙率は、電極と電子の授受を行う双極板側の電極の空隙率よりも高くてもよい。このとき、空隙率勾配の度合いは、正極と負極で同じであってもよく、異なっていてもよい。
<空隙率勾配が設けられた電極の例>
 以下、第三実施形態にて用いる空隙率勾配が設けられた電極の例を図9A~図9Fに示す。図9Aでは、空隙率φ~空隙率φの4つの電極を組み合わせることで、空隙率勾配が設けられた正極1a及び負極1bがそれぞれ形成されている。図9Aでは、φ>φ>φ>φの関係を満たし、電解液が流入する側の空隙率(φ及びφ)が、電解液が流出する側の空隙率(φ及びφ)よりも高くなっている。
 正極及び負極の少なくとも一方は、双極板側から対極と対向する側に向かう方向又は対極と対向する側から双極板側に向かう方向に、空隙率が高くなることが好ましい。すなわち、正極及び負極の少なくとも一方の空隙率は、対極と対向する側から双極板側に向かう方向又は双極板側から対極と対向する側に向かう方向に減少していく分布を有することが好ましい。このとき、空隙率は、段階的又は非連続的な分布であってもよく、連続的な分布であってもよい。
 また、図9Bでは、空隙率φ~空隙率φの6つの電極を組み合わせることで、空隙率勾配が設けられた正極1a及び負極1bがそれぞれ形成されている。図9Bでは、φ>φ>φ>φ>φ>φの関係を満たし、電解液が流入する側から電解液が流出する側に向かって空隙率が小さくなっている。
 また、図9C~図9Fに示すように、正極及び負極の少なくとも一方にて、電解液が流入する側から電解液が流出する側に向かって空隙率勾配が形成されていない領域が存在し、かつ厚み方向にて空隙率勾配が形成されていてよい。
 なお、正極及び負極の少なくとも一方にて、厚み方向にて空隙率勾配が形成されていない領域が存在し、かつ電解液が流入する側から電解液が流出する側に向かって空隙率勾配が形成されていてもよい。
 電極に空隙率勾配を持たせる方法として、例えば、以下の2つの方法が挙げられる。1つ目は、図9A~図9Fに示すように、圧縮前の空隙率が異なる部材を、空隙率が図に示す順になるように配置し、これらを圧縮して空隙率勾配が設けられた電極とする方法である。このとき、圧縮後(二次電池の電極として使用される状態)の電極の空隙率の順位も、圧縮前と同じ順序になる。
 2つ目は、特に炭素繊維からなる多孔体を用いる場合に、カーボンフェルト等の構造を製造する際、電極材料の空隙率に差を持たせる方法である。すなわち、ウェブの積層方法、ニードルパンチ法に条件等を選定することで、同一の電極部材の中で、空隙率を、連続的又は非連続的に変化させることができる。
 電極の正極と負極とが対向する側の端側の少なくとも一部から厚さ方向に向かって、長さ5.0%侵入した位置での電極の空隙率と、長さ95.0%侵入した位置での電極の空隙率との差の絶対値が1.0%~50.0%であることが好ましく、1.5%~45.0%であることがより好ましく、2.0%~40.0%であることが更に好ましく、2.0%~30.0%であることが特に好ましく、2.0%~20.0%であることがより一層好ましく、2.0%~10.0%であることが更に一層好ましい。
 なお、圧力損失増加を抑制する点から、前述の長さ5.0%侵入した位置での電極の空隙率と、前述の長さ95.0%侵入した位置での電極の空隙率との差(長さ5.0%侵入した位置での電極の空隙率-長さ95.0%侵入した位置での電極の空隙率)が1.0%~50.0%であることが好ましく、1.5%~45.0%であることがより好ましく、2.0%~40.0%であることが更に好ましく、2.0%~30.0%であることが特に好ましく、2.0%~20.0%であることがより一層好ましく、2.0%~10.0%であることが更に一層好ましい。
 また、高出力化の点から、前述の長さ5.0%侵入した位置での電極の空隙率と、前述の長さ95.0%侵入した位置での電極の空隙率との差(長さ5.0%侵入した位置での電極の空隙率-長さ95.0%侵入した位置での電極の空隙率)が-50.0%~-1.0%であることが好ましく、-45.0%~-1.5%であることがより好ましく、-40.0%~-2.0%であることが更に好ましく、-30.0%~-2.0%であることが特に好ましく、-20.0%~-2.0%であることがより一層好ましく、-10.0%~-2.0%であることが更に一層好ましい。
 また、電極の正極と負極とが対向する側の端側の少なくとも一部から厚さ方向における前記電極の空隙率の分布をプロット(例えば、0.05mmの等間隔にてプロット)したグラフにおいて、最小二乗法にて近似した直線の傾きから求めた電極の空隙率の平均変化率の絶対値が、0.5%/mm~8.0%/mmであることが好ましく、0.75%/mm~7.0%/mmであることがより好ましく、1.0%/mm~6.5%/mmであることが更に好ましく、1.0%/mm~6.0%/mmであることが特に好ましい。
 なお、圧力損失増加を抑制する点から、前述の平均変化率が、-8.0%/mm~-0.5%/mmであることが好ましく、-7.0%/mm~-0.75%/mmであることがより好ましく、-6.5%/mm~-1.0%/mmであることが更に好ましく、-6.0%/mm~-1.0%/mmであることが特に好ましい。
 また、高出力化の点から、前述の平均変化率が、0.5%/mm~8.0%/mmであることが好ましく、0.75%/mm~7.0%/mmであることがより好ましく、1.0%/mm~6.5%/mmであることが更に好ましく、1.0%/mm~6.0%/mmであることが特に好ましい。
 電解液の流通方向における空隙率の平均変化率の絶対値は、前述の第二実施形態と同様の方法で求めることができる。
 電極の厚さ方向における空隙率の平均変化率の絶対値は、例えば、以下のようにして求めることができる。まず、横軸に電極の厚さ方向の座標(対極と対向する側の電極の端側からの距離)を、縦軸に電極の空隙率をとり、グラフにプロットする。次いで、最小二乗法による線形近似を行い、近似式を求める。双極板側から対極と対向する側に向かって電極の空隙率が高くなる場合、近似式の傾きはマイナスであるため、その近似式中の傾きにマイナス1(-1)を乗じた値を空隙率の平均変化率の絶対値とすることができる。一方、対極と対向する側から双極板側に向かって電極の空隙率が高くなる場合、近似式の傾きはプラスであるため、その値を空隙率の平均変化率の絶対値とすることができる。
 なお、電極の厚さ方向における空隙率の平均変化率は、前述の似式中の傾きに対応する。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1-A>
(a)正極及び負極の作製
 正極及び負極として、以下に示すように厚さ方向に空隙率勾配が設けられた電極を準備した。これらの電極を準備するために、表1中のNo.1及びNo.2のカーボンフェルト電極を用いた。まず、図4Aに示すように2種類の電極を、電極の厚さ方向に、均等に配置した。なお、フロー電池に正極及び負極を装着する際は、正極及び負極の厚さが2.5mmになるように圧縮した。また、正極及び負極の、厚さ方向に垂直な面の面積を、150mm×100mmとした。これにより、厚さ方向に同様の空隙率勾配を有する正極及び負極を作製した。詳細は表2に示すとおりである。
 従って、圧縮後のNo.1の電極及びNo.2の電極の空隙率は、カーボンフェルトの密度及びグラファイトの密度(2.26g/cm)を用いて、それぞれ91.2%及び85.3%である。図4Aにおいては、隔膜に近い側(正極と負極とが対面する側)からNo.1(空隙率φ)及びNo.2(空隙率φ)の電極を、この順に配置した。また、このような配置をした場合の電極の空隙率の平均変化率の絶対値は3.41%/mmであった。
(b)電解液の調製
 正極電解液には、6.0mol/Lのヨウ化ナトリウム(NaI)を含有する水溶液を調製した。また、負極電解液には、2.0mol/Lの塩化亜鉛(ZnCl)と、pH調整剤として2.5mol/Lの塩化アンモニウム(NHCl)を含有する水溶液を調製した。
(c)フロー電池の作製
 上記で作製した正極及び負極と電解液の他に、隔膜として陽イオン交換膜「ナフィオン117」を、双極板として高導電性黒鉛微粉からなるバイポーラプレート(昭和電工社)を、シール材としてエチレンプロピレンゴムシートを、集電板としてニッケル(Ni)めっきを施した銅(Cu)板を、また塩ビ製タンクと配管と循環ポンプ(イワキポンプ社)とを用い、図1及び図2に示すような単セル型のフロー電池を作製した。なお、上述したように、装着された正極及び負極の厚さが2.5mmになるように、集電板に挟まれた部分の部材を適宜圧縮した。このとき、圧縮充填された電極間の境界には、隙間及び段差がないことを確認した。
(d)フロー電池特性の評価
 作製したフロー電池の、各電解液の流入側及び流出側の配管部に圧力センサ(HPS-24-F、サーパス工業社)と取り付けた。次いで、正極電解液貯留部及び負極電解液貯留部に上記で準備した正極電解液及び負極電解液をそれぞれ0.50Lずつ貯留し、循環ポンプを用いて、正極電解液及び負極電解液の流量がそれぞれ毎分0.20Lとなるように、循環ポンプの出力を調節しながら、正極及び負極に、正極電解液及び負極電解液をそれぞれ流通させた。
 その後、正極電解液及び負極電解液の流量が一定になったことを確認した後、電流密度50mA/cmで充放電実験を実施した。具体的には、電流密度を一定にし、セル電圧が1.5Vになるまで充電し、その後、同じ電流密度でカットオフ電圧0.7Vになるまで放電し、電池の電気容量(Ah)を求めた。
 更に、充電開始時及び終了時の圧力損失を、正極電解液及び負極電解液のそれぞれについて測定した。
 なお、フロー電池の特性を評価する際は、温度を25℃に保った。
<実施例2-A>
 実施例1-Aにおいて使用した電極を、表1及び表2のように変更したこと以外は、実施例1-Aと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は6.02%/mmであった。
<実施例3-A>
 実施例1-Aにおいて使用した電極を、表1及び表2のように変更したこと以外は、実施例1-Aと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は3.27%/mmであった。
<実施例4-A>
 実施例1-Aにおいて使用した電極を、表1及び表2のように変更したこと以外は、実施例1-Aと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は1.13%/mmであった。
<実施例5-A>
 実施例1-Aにおいて、フロー電池の特性を評価する際の電流密度を50mA/cmから100mA/cmに変更したこと以外は、実施例1-Aと同等にして、フロー電池を作製し、特性を評価した。
<実施例6-A>
 実施例1-Aにおいて、フロー電池の特性を評価する際の電解液の流量を0.20L/minから0.35L/minに変更したこと以外は、実施例1-Aと同等にして、フロー電池を作製し、特性を評価した。
<比較例1-A>
 実施例1-Aにおいて、用いた電極は1種類(表1中のNo.2のカーボンフェルト電極)のみとした。正極及び負極に空隙率勾配を設けないこと以外は、実施例1-Aと同様にして、フロー電池を作製し、特性を評価した。
<比較例2-A>
 比較例1-Aにおいて、フロー電池の特性を評価する際の電流密度を50mA/cmから100mA/cmに変更したこと以外は、比較例1-Aと同等にして、フロー電池を作製し、特性を評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表3に、作製した各フロー電池における、充放電前後の圧力損失の測定結果と、放電容量を示す。実施例及び比較例で示したように、隔膜側における電極の空隙率が、双極板側よりも高い構造を用いることで、放電容量を高めることができることを確認した。
 圧力損失に着目すると、実施例で作製したフロー電池においても、特に負極側で、充電後の圧力損失は多少増加しているものの、比較例よりもその増加幅は抑制されている。これは、反応活性が高い隔膜側において、亜鉛の析出に伴う空隙部の減少を考慮し、予め空隙率を向上させておくことにより、充電中に亜鉛が析出した場合でも、析出割合が電極の厚さ方向に均一性高く分布できたためと考えられる。
Figure JPOXMLDOC01-appb-T000003
<実施例1-B>
(a)正極及び負極の作製
 正極及び負極として、以下に示すように電解液の流通方向に空隙率勾配が設けられた電極を準備した。これらの電極を準備するために、表4中のNo.1及びNo.2のカーボンフェルト電極を用いた。まず、図6Aに示すように2種類の電極を、電極の長さ方向(電解液入り口から出口に向かう方向)に、均等に配置した。なお、フロー電池に正極及び負極を装着する際は、正極及び負極の厚さが2.2mmになるように圧縮した。また、正極及び負極の、厚さ方向に垂直な面の面積を、150mm×100mmとした。これにより、電解液の流通方向に同様の空隙率勾配を有する正極及び負極を作製した。詳細は表5に示すとおりである。
 従って、圧縮後のNo.1の電極及びNo.2の電極の空隙率は、カーボンフェルトの密度及びグラファイトの密度(2.26g/cm)を用いて、それぞれ95.0%及び91.7%である。図6Aにおいては、電解液の入口に近い側からNo.1(空隙率φ)及びNo.2(空隙率φ)の電極を、この順に配置した。またこのような配置をした場合の電極の空隙率の平均変化率の絶対値は0.33%/cmであった。
(b)電解液の調製
 正極電解液及び負極電解液として、実施例1-Aと同様の水溶液をそれぞれ調製した。
(c)フロー電池の作製
 上記にて作製した正極及び負極を用い、装着された正極及び負極の厚さが2.2mmになるように、集電板に挟まれた部分の部材を適宜圧縮したこと以外は実施例1-Aと同様にしてフロー電池を作製した。
(d)フロー電池特性の評価
 作製したフロー電池について、実施例1-Aと同様にして特性を評価した。
<実施例2-B>
 実施例1-Bにおいて使用した電極を、表4及び表5のように変更したこと以外は、実施例1-Bと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は0.46%/cmであった。
<実施例3-B>
 実施例1-Bにおいて使用した電極を、表4及び表5のように変更したこと以外は、実施例1-Bと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は0.39%/cmであった。
<実施例4-B>
 実施例1-Bにおいて使用した電極を、表4及び表5のように変更したこと以外は、実施例1-Bと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は0.41%/cmであった。
<実施例5-B>
 実施例1-Bにおいて使用した電極を、表4及び表5のように変更したこと以外は、実施例1-Bと同様にして、フロー電池を作製し、特性を評価した。
 電極の空隙率の平均変化率の絶対値は0.52%/cmであった。
<実施例6-B>
 実施例1-Bにおいて、フロー電池の特性を評価する際の電流密度を50mA/cmから100mA/cmに変更したこと以外は、実施例1-Bと同等にして、フロー電池を作製し、特性を評価した。
<実施例7-B>
 実施例1-Bにおいて、フロー電池の特性を評価する際の電解液の流量を0.20L/minから0.35L/minに変更したこと以外は、実施例1-Bと同等にして、フロー電池を作製し、特性を評価した。
<比較例1-B>
 実施例1-Bにおいて、用いた電極は1種類(表4中のNo.5のカーボンフェルト電極)のみとし、正極及び負極に空隙率勾配を設けないこと以外は、実施例1-Bと同様にして、フロー電池を作製し、特性を評価した。
<比較例2-B>
 比較例1-Bにおいて、フロー電池の特性を評価する際の電流密度を50mA/cmから100mA/cmに変更したこと以外は、比較例1-Bと同等にして、フロー電池を作製し、特性を評価した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表6に、作製した各フロー電池における、充放電前後の圧力損失の測定結果と、放電容量を示す。実施例及び比較例に示すように、電解液が流入する側における電極の空隙率が、流出する側よりも高い構造を用いることで、放電容量を高めることができることを確認した。
 圧力損失に着目すると、実施例で作製したフロー電池においても、特に負極側で、充電後の圧力損失は多少増加しているものの、比較例よりもその増加幅は抑制されている。これは、反応活性が高い電解液流入側において、亜鉛の析出に伴う空隙部の減少を考慮し、予め空隙率を向上させておくことにより、充電中に亜鉛が析出した場合でも、析出割合が電解液の流通方向に均一性高く分布できたためと考えられる。
Figure JPOXMLDOC01-appb-T000006
<実施例1-C>
(a)正極及び負極の作製
 正極及び負極として、以下に示すように厚さ方向に空隙率勾配が設けられ、かつ電解液の流通方向に空隙率勾配が設けられた電極を準備した。これらの電極を準備するために、表7中のNo.1~No.4のカーボンフェルト電極を用いた。まず、図9Aに示すように4種類の電極を均等に配置した。なお、フロー電池に正極及び負極を装着する際は、電極の厚さが2.5mmになるように圧縮した。また、正極及び負極の、厚さ方向に垂直な面の面積を、150mm×100mmとした。これにより、厚さ方向及び電解液の流通方向に同様の空隙率勾配を有する正極及び負極を作製した。詳細は表8に示すとおりである。
 従って、圧縮後のNo.1~No.4の電極の空隙率は、カーボンフェルトの密度及びグラファイトの密度(2.26g/cm)を用いて、それぞれ93.6%、92.0%、87.3%及び84.1%である。図9Aにおいては、電解液入口側でかつ隔膜に近い側にNo.1の電極(空隙率φ)を、電解液入口側でかつNo.1の電極に隣接する位置にNo.2の電極(空隙率φ)を、電解液流出側でかつ隔膜に近い側にNo.3の電極(空隙率φ)を、電解液流出側でかつNo.3の電極に隣接する位置にNo.4の電極(空隙率φ)を、それぞれ配置した。また、このような配置をした場合の、各方向の電極の空隙率の平均変化率の絶対値は、表9に示す通りである。
(b)電解液の調製
 正極電解液及び負極電解液として、実施例1-Aと同様の水溶液をそれぞれ調製した。
(c)フロー電池の作製
 上記にて作製した正極及び負極を用いたこと以外は実施例1-Aと同様にしてフロー電池を作製した。
(d)フロー電池特性の評価
 作製したフロー電池について、実施例1-Aと同様にして特性を評価した。
<実施例2-C>
 正極及び負極として、表7中のNo.1~No.6のカーボンフェルト電極を用いた。6種類の電極を図9Bに示すように均等に配置する際、電解液入口側でかつ隔膜に近い側にNo.1の電極(空隙率φ)を、電解液入口側でかつNo.1の電極に隣接する位置にNo.2の電極(空隙率φ)を、電解液流出側でかつ隔膜に近い側にNo.5の電極(空隙率φ)を、電解液流出側でかつNo.5の電極に隣接する位置にNo.6の電極(空隙率φ)を、隔膜に近い側であってNo.1の電極とNo.5の電極との間にNo.3の電極(空隙率φ)を、No.3の電極に隣接し、No.2の電極とNo.6の電極の間にNo.4の電極(空隙率φ)を、それぞれ配置した。なお、このような配置をした場合の、各方向の電極空隙率の平均変化率の絶対値は、表9に示す通りである。
 上記のように電極を配置したこと以外は、実施例1-Cと同様にして、フロー電池を作製し、特性を評価した。
<実施例3-C>
 正極及び負極として、表7中のNo.3、No.4及びNo.5のカーボンフェルト電極を用いた。3種類の電極を、図9Cに示すように配置する際、電解液入口側でかつ隔膜に近い側にNo.3の電極(空隙率φ)を、電解液流出側でかつ隔膜に近い側にNo.4の電極(空隙率φ)を、No.3の電極及びNo.4の電極に隣接し、双極板側にNo.5の電極(空隙率φ)を、それぞれ配置した。なお、このような配置をした場合の、各方向の電極空隙率の平均変化率の絶対値は、表9に示す通りである。
 上記のように電極を配置したこと以外は、実施例1-Cと同様にして、フロー電池を作製し、特性を評価した。
<実施例4-C>
 正極及び負極として、表1中のNo.1、No.3及びNo.4のカーボンフェルト電極を用いた。3種類の電極を、図9Dに示すように配置する際、電解液入口側でかつ隔膜に近い側にNo.3の電極(空隙率φ)を、電解液流出側でかつ隔膜に近い側にNo.4の電極(空隙率φ)を、No.3の電極及びNo.4の電極に隣接し、双極板側にNo.1の電極(空隙率φ)を、それぞれ配置した。なお、このような配置をした場合の、各方向の電極空隙率の平均変化率の絶対値は、表9に示す通りである。
 上記のように電極を配置したこと以外は、実施例1-Cと同様にして、フロー電池を作製し、特性を評価した。
<実施例5-C>
 正極電解液としては、6.0mol/Lのヨウ化ナトリウム(NaI)及び10.0質量%のポリビニルピロリドン「PVP K30」(和光純薬工業社、数平均分子量は40000)を含有する水溶液を使用した。
 上述したように正極電解液の組成を変更したこと以外は、実施例1-Cと同様にして、フロー電池を作製し、特性を評価した。
<比較例1-C>
 実施例1-Cにおいて、用いた電極は1種類(表7中のNo.4のカーボンフェルト電極)のみとした。正極及び負極に空隙率勾配を設けないこと以外は、実施例1-Cと同様にして、フロー電池を作製し、特性を評価した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表10に、作製した各フロー電池における、充放電前後の圧力損失の測定結果と、放電容量を示す。実施例及び比較例で示すように、電解液が流入する側における電極の空隙率が流出する側よりも高く、かつ電極の厚さ方向に空隙率勾配を設けた構造を用いることで、放電容量を高めることができることを確認した。
 圧力損失に着目すると、実施例で作製したフロー電池においても、特に負極側で、充電後の圧力損失は多少増加しているものの、比較例よりもその増加幅は抑制されている。これは、反応活性が高い電解液流入側において、亜鉛の析出に伴う空隙部の減少を考慮し、予め空隙率を増大させておくことにより、充電中に亜鉛が析出した場合でも、析出割合が電解液の流通方向及び電極の厚さ方向に均一性高く分布できたためと考えられる。
 また、実施例5-Cでは、正極電解液にヨウ素分子又はヨウ化物イオンと錯体を形成可能な化合物としてポリビニルピロリドンを添加しており、正極電解液の粘度が増加したために、実施例1-C~実施例4-Cよりも充電前の圧力損失及び充電後の圧力損失が大きい。このような場合においても、比較例1-Cよりも充電前の圧力損失及び充電後の圧力損失が小さく、実施例5-Cにおいても、電極が上述した構造を有することで、充電中の圧力損失の増大を抑えることができ、放電容量をより高く保持できることが分かった。
Figure JPOXMLDOC01-appb-T000010
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 1…電極、1a…正極、1b…負極、2…隔膜、3…シール材、4…分液板、5…双極板、6…双極板フレーム、7…極室、8a…正極電解液極室入口、8b…正極電解液極室出口、8c…負極電解液極室入口、8d…負極電解液極室出口、9…集電板、10a…正極電解液、10b…負極電解液、11a…正極電解液貯留部、11b…負極電解液貯留部、12…送液ポンプ、13…配管(循環経路)、14…電源、15…外部負荷

Claims (17)

  1.  正極と、負極と、活物質を含有する電解液と、を備え、
     以下の(1)~(3)のいずれか1つを満たす二次電池。
    (1)前記正極及び前記負極における前記正極と前記負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板を更に備え、前記正極及び前記負極の少なくとも一方は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記正極と前記負極とが対向する側の前記電極の空隙率は、前記正極と前記負極とが対向する側とは反対の前記双極板側の前記電極の空隙率よりも高い。
    (2)前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部を更に備え、前記正極及び前記負極の少なくとも一方は、前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記電解液が流入する側の前記電極の空隙率は、前記電解液が流出する側の前記電極の空隙率よりも高い。
    (3)前記正極及び前記負極における前記正極と前記負極とが対向する側とは反対側にそれぞれ設けられた一対の双極板と、前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部と、を更に備え、前記正極及び前記負極の少なくとも一方は、前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する電極であり、前記電解液が流入する側の前記電極の空隙率は、前記電解液が流出する側の前記電極の空隙率よりも高く、かつ前記電解液の流通方向に空隙率の異なる領域を少なくとも二つ以上有する前記電極は、厚さ方向に空隙率の異なる領域を少なくとも二つ以上有する。
  2.  前記電極は、炭素繊維を含有する、請求項1に記載の二次電池。
  3.  前記(1)を満たす場合に前記双極板側から前記正極と前記負極とが対向する側に向かって前記電極の空隙率が高くなり、
     前記(3)を満たす場合に、前記双極板側から前記正極と前記負極とが対向する側に向かって前記電極の空隙率が高くなるか、又は、前記正極と前記負極とが対向する側から前記双極板側に向かって前記電極の空隙率が高くなり、
     前記(2)又は前記(3)を満たす場合に前記電解液が流出する側から前記電解液が流入する側に向かって前記電極の空隙率が高くなる、請求項1又は請求項2に記載の二次電池。
  4.  前記(1)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差が1.0%~50.0%であり、
     前記(3)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差の絶対値が1.0%~50.0%であり、
     前記(2)又は前記(3)を満たす場合に、前記電極の前記電解液が流入する側の端側の少なくとも一部から前記流通方向に向かって、長さ5.0%侵入した位置での前記電極の空隙率と、長さ95.0%侵入した位置での前記電極の空隙率との差が1.0%~50.0%である、請求項1~請求項3のいずれか1項に記載の二次電池。
  5.  前記(1)又は前記(3)を満たす場合に、前記電極の前記正極と前記負極とが対向する側の端側の少なくとも一部から前記厚さ方向における前記電極の空隙率の分布をプロットしたグラフにおいて、最小二乗法にて近似した直線の傾きから求めた前記電極の空隙率の平均変化率の絶対値が、0.5%/mm~8.0%/mmであり、
     前記(2)又は前記(3)を満たす場合に、前記電極の前記電解液が流入する側の端側の少なくとも一部から前記流通方向における前記電極の空隙率の分布をプロットしたグラフにおいて、最小二乗法にて近似した直線の傾きから求めた前記電極の空隙率の平均変化率の絶対値が、0.1%/cm~3.0%/cmである、請求項1~請求項4のいずれか1項に記載の二次電池。
  6.  前記電極は、充電反応又は放電反応にて前記活物質の析出を伴う請求項1~請求項5のいずれか1項に記載の二次電池。
  7.  析出物が金属を含有する、請求項6に記載の二次電池。
  8.  前記電極の空隙率は、重量測定により求める請求項1~請求項7のいずれか1項に記載の二次電池。
  9.  前記電解液が、前記活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有する、請求項1~請求項8のいずれか1項に記載の二次電池。
  10.  前記電解液が、前記活物質として亜鉛イオン及び亜鉛の少なくとも一方を含有する、請求項1~請求項9のいずれか1項に記載の二次電池。
  11.  前記(1)を満たす場合に前記電解液を前記正極及び前記負極にそれぞれ供給する貯留部を更に備える、請求項1~請求項10のいずれか1項に記載の二次電池。
  12.  前記電解液として、正極活物質を含有する正極電解液と、負極活物質を含有する負極電解液とを備える、請求項11に記載の二次電池。
  13.  前記正極活物質としてヨウ素イオン及びヨウ素分子の少なくとも一方を含有し、かつ前記負極活物質として亜鉛イオン及び亜鉛の少なくとも一方を含有する、請求項12に記載の二次電池。
  14.  前記貯留部は、前記正極電解液を貯留する正極電解液貯留部及び前記負極電解液を貯留する負極電解液貯留部であり、
     前記正極と前記正極電解液貯留部との間で前記正極電解液を循環させ、前記負極と前記負極電解液貯留部との間で前記負極電解液を循環させる送液部を更に備えるフロー電池である、請求項12又は請求項13に記載の二次電池。
  15.  請求項1~請求項14のいずれか1項に記載の二次電池と、
     前記二次電池の充放電を制御する制御部と、
     を備える二次電池システム。
  16.  発電装置と、
     請求項15の二次電池システムと、を備える発電システム。
  17.  前記発電装置は、再生可能エネルギーを用いて発電する、請求項16に記載の発電システム。
PCT/JP2017/016629 2017-04-26 2017-04-26 二次電池、二次電池システム及び発電システム WO2018198252A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016629 WO2018198252A1 (ja) 2017-04-26 2017-04-26 二次電池、二次電池システム及び発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/016629 WO2018198252A1 (ja) 2017-04-26 2017-04-26 二次電池、二次電池システム及び発電システム

Publications (1)

Publication Number Publication Date
WO2018198252A1 true WO2018198252A1 (ja) 2018-11-01

Family

ID=63919620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016629 WO2018198252A1 (ja) 2017-04-26 2017-04-26 二次電池、二次電池システム及び発電システム

Country Status (1)

Country Link
WO (1) WO2018198252A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509234A (zh) * 2019-12-30 2020-08-07 香港科技大学 一种用于沉积型液流电池负极的梯度电极及应用
CN112928321A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种液流电池结构
US11063263B2 (en) * 2016-11-09 2021-07-13 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
CN113228364A (zh) * 2019-01-29 2021-08-06 住友电气工业株式会社 电池单体、电池组及氧化还原液流电池
CN117059828A (zh) * 2023-10-12 2023-11-14 寰泰储能科技股份有限公司 一体化梯度孔隙率电极材料及其制备方法和全钒液流电池
EP4131509A4 (en) * 2020-03-30 2023-12-20 Ningde Amperex Technology Limited NEGATIVE POLE PIECE AND ELECTROCHEMICAL DEVICE THEREFROM

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207258A (ja) * 1984-03-31 1985-10-18 Mitsui Eng & Shipbuild Co Ltd 二次電池
JPH0419966A (ja) * 1990-05-11 1992-01-23 Agency Of Ind Science & Technol レドックス電池
JPH0992321A (ja) * 1995-09-27 1997-04-04 Kashimakita Kyodo Hatsuden Kk レドックス電池
JP2001167771A (ja) * 1999-12-08 2001-06-22 Toyobo Co Ltd レドックスフロー電池用電極材および電解槽
JP2002110191A (ja) * 2000-09-27 2002-04-12 Toyota Central Res & Dev Lab Inc 直接メタノール型燃料電池
JP2010021114A (ja) * 2008-07-14 2010-01-28 Panasonic Corp 直接酸化型燃料電池
JP2015122229A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 電極、およびレドックスフロー電池
JP2015122230A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015198059A (ja) * 2014-04-03 2015-11-09 株式会社日立製作所 フロー型畜電池
JP2016213034A (ja) * 2015-05-08 2016-12-15 株式会社日立製作所 蓄電装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207258A (ja) * 1984-03-31 1985-10-18 Mitsui Eng & Shipbuild Co Ltd 二次電池
JPH0419966A (ja) * 1990-05-11 1992-01-23 Agency Of Ind Science & Technol レドックス電池
JPH0992321A (ja) * 1995-09-27 1997-04-04 Kashimakita Kyodo Hatsuden Kk レドックス電池
JP2001167771A (ja) * 1999-12-08 2001-06-22 Toyobo Co Ltd レドックスフロー電池用電極材および電解槽
JP2002110191A (ja) * 2000-09-27 2002-04-12 Toyota Central Res & Dev Lab Inc 直接メタノール型燃料電池
JP2010021114A (ja) * 2008-07-14 2010-01-28 Panasonic Corp 直接酸化型燃料電池
JP2015122229A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 電極、およびレドックスフロー電池
JP2015122230A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2015198059A (ja) * 2014-04-03 2015-11-09 株式会社日立製作所 フロー型畜電池
JP2016213034A (ja) * 2015-05-08 2016-12-15 株式会社日立製作所 蓄電装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063263B2 (en) * 2016-11-09 2021-07-13 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
US11735747B2 (en) 2016-11-09 2023-08-22 Dalian Rongkepower Co., Ltd Electrode structure including electrode fiber having higher density of vertical tows to parallel tows, flow battery stack including the same, and sealing structure including sealing gaskets connected by sealing wire
CN113228364A (zh) * 2019-01-29 2021-08-06 住友电气工业株式会社 电池单体、电池组及氧化还原液流电池
CN113228364B (zh) * 2019-01-29 2023-11-03 住友电气工业株式会社 电池单体、电池组及氧化还原液流电池
CN112928321A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 一种液流电池结构
CN112928321B (zh) * 2019-12-06 2022-06-28 中国科学院大连化学物理研究所 一种液流电池结构
CN111509234A (zh) * 2019-12-30 2020-08-07 香港科技大学 一种用于沉积型液流电池负极的梯度电极及应用
CN111509234B (zh) * 2019-12-30 2022-07-29 香港科技大学 一种用于沉积型液流电池负极的梯度电极及应用
EP4131509A4 (en) * 2020-03-30 2023-12-20 Ningde Amperex Technology Limited NEGATIVE POLE PIECE AND ELECTROCHEMICAL DEVICE THEREFROM
CN117059828A (zh) * 2023-10-12 2023-11-14 寰泰储能科技股份有限公司 一体化梯度孔隙率电极材料及其制备方法和全钒液流电池
CN117059828B (zh) * 2023-10-12 2023-12-08 寰泰储能科技股份有限公司 一体化梯度孔隙率电极材料及其制备方法和全钒液流电池

Similar Documents

Publication Publication Date Title
WO2018198252A1 (ja) 二次電池、二次電池システム及び発電システム
JP2018186014A (ja) フロー電池、フロー電池システム及び発電システム
Zeng et al. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries
Kumar et al. Effect of flow field on the performance of an all-vanadium redox flow battery
Reed et al. Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW class all vanadium mixed acid redox flow battery
JP2019003750A (ja) フロー電池、フロー電池システム及び発電システム
Reed et al. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery
Park et al. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery
Zeng et al. A low-cost iron-cadmium redox flow battery for large-scale energy storage
Nikiforidis et al. Impact of electrolyte composition on the performance of the zinc–cerium redox flow battery system
Hsieh et al. Measurement of local current density of all-vanadium redox flow batteries
WO2012162383A1 (en) Flow battery
JP5712688B2 (ja) レドックスフロー電池
KR101494188B1 (ko) 측정 셀, 그를 이용한 측정 장치 및 레독스 플로우 전지
KR101359704B1 (ko) 레독스 흐름 전지용 전극 및 바이폴라 플레이트 복합체, 이의 제조 방법 및 레독스 흐름 전지
JP2018186013A (ja) フロー電池、フロー電池システム及び発電システム
JP2018195571A (ja) 電解液、二次電池、二次電池システム及び発電システム
Pichler et al. The impact of operating conditions on component and electrode development for zinc-air flow batteries
KR101163996B1 (ko) 메탈 폼 전극을 가지는 레독스 플로우 이차 전지
Chu et al. Semi-solid zinc slurry with abundant electron-ion transfer interfaces for aqueous zinc-based flow batteries
JP2018186206A (ja) ハイブリッドキャパシタ、ハイブリッドキャパシタシステム及び発電システム
KR20190072124A (ko) 탄소재 전극, 그의 표면 처리 방법 및 그를 갖는 아연-브롬 레독스 플로우 이차전지
WO2018016591A1 (ja) 二次電池、二次電池システム、正極電解液及び発電システム
KR102489785B1 (ko) 흐름 전지 및 이를 포함하는 발전 시스템
KR101262664B1 (ko) 카본-흑연-금속 복합계 바이폴라 플레이트 및 그를 갖는 레독스 플로우 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP