WO2018196501A1 - 上行功率控制方法及装置、通信设备及存储介质 - Google Patents

上行功率控制方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2018196501A1
WO2018196501A1 PCT/CN2018/079355 CN2018079355W WO2018196501A1 WO 2018196501 A1 WO2018196501 A1 WO 2018196501A1 CN 2018079355 W CN2018079355 W CN 2018079355W WO 2018196501 A1 WO2018196501 A1 WO 2018196501A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
terminal
information
reference beam
uplink
Prior art date
Application number
PCT/CN2018/079355
Other languages
English (en)
French (fr)
Inventor
郑毅
童辉
徐晓东
Original Assignee
***通信有限公司研究院
***通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信有限公司研究院, ***通信集团有限公司 filed Critical ***通信有限公司研究院
Publication of WO2018196501A1 publication Critical patent/WO2018196501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an uplink power control method and apparatus, a communication device, and a storage medium.
  • the terminal In the Long Term Evolution (LTE) system, the terminal needs to calculate the uplink transmit power based on the path loss. For example, the terminal receives the power measurement path loss according to the common reference signal transmitted by the base station.
  • the 5th Generation (5G) system in order to ensure that the reception quality of the base station is good enough, it is still necessary to calculate the uplink transmission power.
  • 5G 5th Generation
  • embodiments of the present invention are directed to providing an uplink power control method and apparatus that at least partially solve the above problems.
  • the first aspect of the embodiments of the present invention provides an uplink transmit power control method, which is applied to a terminal, and includes:
  • an uplink transmit power of an uplink beam of the uplink transmission is determined.
  • a second aspect of the embodiments of the present invention provides an uplink transmit power control method, which is applied to a base station, and includes:
  • a downlink beam is transmitted according to the reference beam.
  • a third aspect of the embodiments of the present invention provides an uplink transmit power control method, which is applied to a terminal, and includes:
  • a first determining unit configured to determine a downlink transmit reference beam
  • An acquiring unit configured to acquire a transmission loss of the reference beam
  • the second determining unit is configured to determine an uplink transmit power of the uplink beam of the uplink transmission based on the transmission loss.
  • a fourth aspect of the embodiments of the present invention provides an uplink transmit power control apparatus, which is applied to a base station, and includes:
  • a third determining unit configured to determine a reference beam used for uplink transmit power control
  • a transmitting unit configured to transmit a downlink beam according to the reference beam.
  • a fifth aspect of the embodiments of the present invention provides a communications device, including:
  • a memory configured to store a computer program
  • a processor coupled to the memory, configured to implement an uplink transmit power control method provided by any of the foregoing by executing the computer program.
  • a sixth aspect of the embodiments of the present invention provides a computer storage medium, wherein the computer storage medium stores a computer program, and after the computer program is executed by the processor, the uplink transmission power control method provided by any of the foregoing items can be implemented.
  • the terminal first determines the reference beam, and then performs measurement of the downlink transmission loss of the reference beam, and combines the obtained transmission loss of the downlink beam to calculate the uplink transmit power of the uplink beam, thereby enabling It ensures that the uplink beam received by the base station reaches the target receiving power, ensures the uplink communication quality, and has the characteristics of being simple and convenient.
  • FIG. 1 is a schematic flowchart diagram of a first uplink transmit power control method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second uplink transmit power control method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first uplink transmit power control apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a second uplink transmit power control apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of downlink beam transmission according to an embodiment of the present invention.
  • an embodiment of the present invention provides an uplink transmit power control method, which is applied to a terminal, and includes:
  • Step S110 determining a reference beam that is transmitted in the downlink
  • Step S120 Acquire transmission loss of the reference beam.
  • Step S130 Determine an uplink transmit power of the uplink beam of the uplink transmission based on the transmission loss.
  • the uplink transmit power control method provided by the embodiment of the present invention may be used in various terminals applied for communication by using a beam.
  • the terminal may become a User Equipment (UE), for example, a 5G communication mobile phone.
  • UE User Equipment
  • the coverage of the uplink beam and the downlink beam is smaller than the coverage area of the cell formed by the base station or the cell where the terminal is located.
  • the base station cell covers a 120-degree sector, and the downlink beam can only cover a range of less than 120 degrees. Such as 10 degrees, 20 degrees, etc.
  • the reference beam is one or more of downlink beams transmitted by the base station.
  • One of the reference beams can be used for calculation of uplink transmit power of uplink beams of one or more of the base stations.
  • step S120 the terminal estimates the transmission loss of the reference signal according to the received signal strength of the reference beam or the like.
  • the transmission loss is used to calculate the uplink transmission power.
  • the reference beam and the uplink resource corresponding to the uplink beam may be the same, different, or the same, thereby reducing the difference in transmission loss caused by different wavelengths, and thus the uplink transmit power calculation. Not precise enough.
  • the corresponding uplink beam is transmitted with the uplink transmit power.
  • the maximum uplink transmit power of the terminal is limited. If the currently calculated uplink transmit power is not greater than the maximum transmit power of the terminal, the uplink transmit power is transmitted with the currently calculated uplink transmit power; if the maximum transmit is greater than the terminal For power, the terminal transmits the uplink beam with its maximum transmit power.
  • each time the terminal performs uplink transmission it is necessary to re-determine the reference beam and determine the uplink transmit power of the uplink beam based on the reference beam.
  • the reference signal is not required to be re-determined, so that the determination of the reference signal can be implemented. Calculation of the uplink transmit power twice.
  • the step S110 may include:
  • the beam information includes at least one of a beam identifier of the reference beam, a resource identifier, and a port identifier of the base station that sends the reference beam.
  • the base station sends a downlink beam to the terminal, where the downlink beam can carry downlink signaling information, where the downlink signaling information can be various signaling information that the base station sends to the terminal, and the downlink signaling information includes And performing the downlink scheduling information of the transmission resource scheduling.
  • the downlink signaling information sent to the terminal carries the beam information of the reference beam determined by the base station.
  • the beam information herein may be at least one of a beam identifier (Identity, ID) of the reference beam, a resource identifier, and a port identifier of the base station.
  • the resource identifier is a resource identifier of a time-frequency resource of the reference beam. For example, the identifier of the resource block (RB) corresponding to the reference beam, and the like.
  • the terminal after receiving the corresponding downlink beam, the terminal can easily determine the reference beam by demodulating the beam information carried by the downlink beam, thereby facilitating the calculation of the uplink transmit power of the uplink beam by the subsequent terminal.
  • step S110 may include:
  • the base station pre-associates the downlink scheduling beam with the reference beam, thereby establishing a correspondence, which is known in advance by both the base station and the terminal. In this case, if the terminal receives a downlink scheduling beam, the reference beam indicated by the current base station can be determined according to the corresponding relationship.
  • the reference beam notified by the base station is obtained, and the information analysis is not required, and the implementation is also simple and convenient.
  • the method for determining the uplink transmit power in the step S130 is different.
  • the mapping between the reference beam and the uplink transmit power may be used to determine the uplink transmit power by using a query of the mapping table.
  • the uplink transmit power may be determined.
  • the function relationship is obtained by calculating the transmission power of the reference beam as an independent variable. Two alternative ways of calculating the uplink transmit power are provided below.
  • the step S130 may include:
  • the P UL is the uplink transmit power
  • the PL c, tx_beam_index is a transmission loss when the terminal receives the reference beam by using a default receive beam
  • the tx_beam_index is a beam identifier for transmitting the reference beam in a downlink
  • C is the serving cell of the terminal.
  • the step S130 may include:
  • the PL c, tx_beam_index, rx_beam_ is a transmission loss when the terminal receives the reference beam by using a beam with the beam identifier of the rx_beam_index; the rx_beam_index is a beam identifier of the receiving beam of the terminal receiving the reference beam .
  • the same symbols in the formulas represent the same meaning.
  • the P max is the maximum transmit power of the terminal
  • the M is the number of resource blocks corresponding to the uplink beam transmission
  • the P O is the target power of the base station receiving the uplink beam
  • Partial power adjustment factor is the ⁇ others.
  • a positive number which can be a positive number less than one.
  • the value of M is a positive number of 1, 2 or 3.
  • the ⁇ others are power compensation factors other than transmission loss and the like, and may be corresponding to the power adjustment value according to a modulation mode or a closed loop power control in which the terminal transmits information to the base station.
  • the uplink transmit beam is transmitted using the maximum transmit power of the terminal.
  • At least one of a beam identification of the reference beam and a beam identification of the receive beam is configured by a base station.
  • the terminal performs downlink beam measurement on the base station to obtain a measurement result, which may be determined by the terminal receiving strength or received power of the downlink beam at the current location.
  • the beam identification of the reference beam corresponds to the transmission parameter of the base station transmitting the reference beam.
  • the receiving identifier of the receiving beam corresponds to a receiving parameter of the terminal receiving the downlink beam.
  • the transmitting parameter and the receiving parameter may include a transmitting weight and/or a receiving weight of the base station.
  • the base station configures a beam identifier of the reference beam and/or a beam identifier of the receive beam based on the measurement result.
  • the base station may also select the reference beam and the receive beam according to its own resource scheduling status and/or channel condition, thereby determining the beam identifier of the reference beam and/or the receive beam.
  • At least one of a beam identification of the reference beam and a beam identification of the receive beam is reported by the terminal to the base station.
  • the terminal Before the determining of the uplink transmit power, the terminal may complete the measurement of the downlink beam and obtain the measurement result.
  • the receive beam and the reference beam may be provided by the terminal to select a range, and then the selected reference beam is selected. And the selective range of the receiving beam is reported to the base station, and the final selection confirmation is performed by the base station, and the beam identifier of the reference beam and/or the receiving beam may be reported by the terminal at this time.
  • the reference beam is one of the following beams:
  • the downlink beam detected by the terminal with the smallest interference of the neighboring cell is the downlink beam detected by the terminal with the smallest interference of the neighboring cell.
  • the base station when determining the reference beam, may determine according to the pre-configuration, or may determine, according to the feedback information of the measurement of the downlink beam by the terminal, which downlink beam corresponds to the beam with the best reception quality or the transmission loss.
  • the best beam, or the beam with the least interference, is used to determine the reference beam of the corresponding terminal.
  • the terminal Since the terminal generally selects the uplink beam that it considers to be the best to send information to the base station, the brightest and best downlink beam is usually selected as the reference beam, thereby ensuring the accuracy of the calculated uplink transmit power, so as not to be calculated.
  • the problem of waste of power caused by excessive uplink transmit power and short time of the terminal; and the problem that the calculated reception quality of the base station is small due to the calculated low uplink transmit power is also avoided; thereby ensuring the reception quality of the base station on the one hand, Reduce the power consumption of the terminal as much as possible.
  • the step S110 may further include:
  • a downlink beam for downlink channel measurement selecting a downlink beam of the optimal received power received by the terminal; or receiving, by the terminal, a downlink beam whose reception quality meets a preset condition and has the smallest interference; or The downlink beam with the smallest neighbor interference detected by the terminal is determined as the reference beam by itself; then the transmission loss of the reference beam is calculated by itself.
  • Calculating the transmission loss of the reference beam may be determined according to the difference between the downlink transmit power and the downlink receive power notified by the base station, or may be the difference between the downlink transmit power and the downlink receive power determined according to the negotiation with the base station or determined according to the communication protocol. The value is determined.
  • the terminal determine the transmission loss of the reference beam, and are not limited to any of the above.
  • this embodiment provides an uplink transmit power control method, which is applied to a base station, and includes:
  • Step S210 determining a reference beam used for uplink transmit power control
  • Step S220 Transmit a downlink beam according to the reference beam.
  • the uplink power control method applied to the base station in the embodiment is used by the base station to assist the terminal to control the uplink transmit power of the uplink beam.
  • the reference beam is determined, and then the downlink beam is transmitted based on the reference beam, and the reference beam of the terminal is directly notified or indirectly notified by the transmission of the downlink beam, so that the terminal can calculate the uplink transmit power based on the transmission loss of the reference beam.
  • step S110 There are various implementations of the step S110. Several alternative methods are provided below:
  • the receiving terminal is based on the beam information of the downlink beam measurement feedback;
  • the beam information herein may include one or more of a beam identifier of the reference beam, a resource identifier, and a port identifier of the base station.
  • the beam information may further include: beam information of the receiving beam that is received by the terminal and receives the corresponding downlink beam.
  • the beam information of the receiving beam may include: one or more of a beam identifier and a resource identifier of the receiving beam;
  • the reference beam is determined based on the beam information.
  • the receiving terminal based on the beam information of the downlink beam measurement feedback, includes:
  • the beam information is beam information of a single downlink beam
  • determining that the single downlink beam is the reference beam determining that the single downlink beam is the reference beam.
  • the base station can directly use the downlink beam corresponding to the beam information as a reference beam to notify the terminal.
  • the receiving terminal is based on beam information of downlink beam measurement feedback, including:
  • the beam information is beam information of multiple downlink beams
  • one or more of the plurality of downlink beams are selected as the reference beam according to a preset specification.
  • the terminal may report beam information of multiple downlink beams, and the base station may rotate one or more according to a preset rule according to one or more types of information such as current beam usage information and terminal location.
  • the beams are used as reference beams.
  • the beam information is beam information of multiple beams
  • selecting one or more of the multiple beams as the reference beam according to a preset requirement including at least one of the following:
  • the downlink beam with the smallest neighbor interference detected by the terminal is selected as the reference beam.
  • step S120 There are various implementations of the step S120, and two implementations are provided below.
  • the step S120 may include:
  • the beam information includes at least a beam identifier of the reference beam, a resource identifier, and at least a port identifier of a base station that sends the reference beam one of them.
  • the step S120 may include: transmitting a reference beam according to a correspondence between a downlink scheduling beam and a reference beam and the reference beam.
  • the embodiment provides an uplink transmit power control apparatus, which is applied to a terminal, and includes:
  • the first determining unit 110 is configured to determine a downlink transmit reference beam
  • the obtaining unit 120 is configured to acquire a transmission loss of the reference beam.
  • the second determining unit 130 is configured to determine an uplink transmit power of the uplink beam of the uplink transmission based on the transmission loss.
  • the uplink transmit power control device in this embodiment may be applied to various terminals, for example, a mobile phone, a tablet computer, and an in-vehicle device that are generally used for human calls.
  • the first determining unit 110, the obtaining unit 120, and the second determining unit 130 may each correspond to a processor or a processing circuit in the terminal;
  • the processor may include: a central processing unit, a microprocessor, a signal processor, and an application.
  • the processing circuit may include a central integrated circuit or the like.
  • the processor or processing circuit can implement the functions of the above units by formulating the execution of the code.
  • the first determining unit 110 is configured to receive downlink signaling information, and extract beam information of the reference beam from the downlink signaling information, where the beam information includes a beam of the reference beam At least one of an identifier, a resource identifier, and a port identifier of the base station that transmits the reference beam.
  • the first determining unit 110 corresponds to a receiving antenna and a demodulator.
  • the receiving antenna may be configured to receive a downlink beam sent by a base station, where the demodulator is configured to demodulate the beam information.
  • the beam information may facilitate the terminal to determine which downlink beam is indicated by the base station as a reference beam.
  • the first determining unit 110 is configured to receive downlink scheduling information, and select the selected one of the candidate beams according to a beam correspondence relationship between the bearer beam and the candidate beam that carries the downlink scheduling information. Reference beam.
  • the first determining unit 110 may also correspond to the receiving antenna, and the receiving antenna receives the downlink scheduling beam, and then combines the correspondence between the downlink scheduling beam and the predetermined beam, so that one of the predetermined beams can be easily determined.
  • the reference beam may also correspond to the receiving antenna, and the receiving antenna receives the downlink scheduling beam, and then combines the correspondence between the downlink scheduling beam and the predetermined beam, so that one of the predetermined beams can be easily determined.
  • the reference beam may also correspond to the receiving antenna, and the receiving antenna receives the downlink scheduling beam, and then combines the correspondence between the downlink scheduling beam and the predetermined beam, so that one of the predetermined beams can be easily determined.
  • the reference beam may also correspond to the receiving antenna, and the receiving antenna receives the downlink scheduling beam, and then combines the correspondence between the downlink scheduling beam and the predetermined beam, so that one of the predetermined beams can be easily determined.
  • the second determining unit 130 is configured to determine the uplink transmit power by using a formula:
  • the P UL is the uplink transmit power; the PL c, tx_beam_index is a transmission loss when the terminal receives the reference beam by using a default receive beam; and the tx_beam_index is a beam identifier of the downlink transmit the reference beam
  • the PL c, tx_beam_index, rx_beam_index is a transmission loss when the terminal receives the reference beam by using a beam identifier of the rx_beam_index, and the rx_beam_index is a beam of the receiving beam of the terminal receiving the reference beam Identification;
  • the C is a serving cell of the terminal.
  • the reference beam is one of the following beams:
  • the downlink beam detected by the terminal with the smallest interference of the neighboring cell is the downlink beam detected by the terminal with the smallest interference of the neighboring cell.
  • the reference beam may be a downlink beam carrying a reference signal, and is not limited to the foregoing downlink beams.
  • At least one of a beam identifier of the reference beam and a beam identifier of the receive beam is configured by a base station; or a beam identifier of the reference beam and a beam identifier of the receive beam At least one of them is reported by the terminal to the base station.
  • this embodiment provides a downlink transmit power control apparatus, which is applied to a base station, and includes:
  • a third determining unit 210 configured to determine a reference beam used for uplink transmit power control
  • the transmitting unit 220 is configured to transmit a downlink beam according to the reference beam.
  • the third determining unit 210 in this embodiment may correspond to a processor or a processing circuit of the base station.
  • the processor or processing circuit can be seen in the foregoing embodiments.
  • the transmitting unit 220 may correspond to a transmit antenna of a base station, and may be configured to transmit a downlink beam based on a reference beam.
  • the transmitting unit 220 may be configured to transmit the beam information of the reference beam in the downlink signaling information, where the beam information includes a beam identifier and a resource of the reference beam.
  • the identifier and the base station send at least one of the port identifiers of the reference beam; and/or the transmitting unit 220 is further configured to send the downlink according to the correspondence between the bearer beam and the candidate beam of the downlink scheduling information. Scheduling information.
  • the third determining unit 210 is configured to receive beam information of the terminal based on downlink beam measurement feedback; and determine the reference beam based on the beam information.
  • the third determining unit 210 is configured to determine that the single downlink beam is the reference beam when the beam information is beam information of a single downlink beam; or when the beam information is When the beam information of the downlink beam is selected, one or more of the plurality of downlink beams are selected as the reference beam according to a preset specification.
  • the third determining unit 210 is configured to perform at least one of the following:
  • the downlink beam with the smallest neighbor interference detected by the terminal is selected as the reference beam.
  • the embodiment of the invention provides a communication device, including:
  • a memory configured to store a computer program
  • the processor coupled to the memory, is configured to implement an uplink transmit power control method provided by any one of the foregoing technical solutions by executing the computer program, for example, an uplink transmit power control method as shown in FIG. 1 or FIG.
  • the communication device When the communication device is a terminal, the communication device can be used in the uplink transmit power control method shown in FIG. 1 and associated with FIG. When the communication device is a base station, the communication device can be used to perform the method shown in FIG. 2 and the uplink transmit power control method associated with FIG. 2.
  • memory various types of memory may be included, preferably a memory that may include a non-transitory storage medium configurable to store the computer program.
  • the processor can include a central processing unit, a microprocessor, an application processor, a digital signal processor or a programmable array, and the like.
  • the processor and the memory may be connected by a bus, where the bus may include an integrated circuit (IIC) bus, or an internal communication interface of a communication device such as a Peripheral Interconnect Standard (PCI) bus.
  • IIC integrated circuit
  • PCI Peripheral Interconnect Standard
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program, and after the computer program is executed by the processor, the uplink transmission power control method provided by any one of the foregoing technical solutions may be executable, for example, One or more of the methods shown in Figures 1 and 2.
  • the computer storage medium provided by the embodiment of the present invention may be a random storage medium, a read-only storage device, a flash memory or a mobile storage device, or an optical disk.
  • the computer storage medium can be a non-transitory storage medium.
  • the embodiment of the present invention further provides an uplink transmit power control method, which is applied to a base station, and includes:
  • the receiving terminal receives beam information based on downlink beam measurement feedback.
  • the beam information is used by the base station to determine the reference beam, and the information about the reference beam corresponding to the terminal is notified, the terminal measures the downlink transmission loss of the reference beam, and calculates the uplink transmit power of the terminal based on the downlink transmission loss.
  • the base station may send multiple beams to the UE at one time, or may send multiple beams to the UE multiple times.
  • the base station transmits six beams to the terminal, which are downlink beam 1, downlink beam 2, downlink beam 3, downlink beam 4, downlink beam 5, and downlink beam 6.
  • the base station performs beam scanning, and the terminal reports beam information (beam identification, port identification, resource identification, etc.) of a limited number of candidate beams, and the base station selects to transmit the downlink reference beam within the reported beam range.
  • the terminal performs received energy detection based on the resources transmitted on the beams and estimates the propagation loss on the corresponding beam.
  • the base station indicates the beam information referenced by the terminal through downlink signaling.
  • the terminal estimates the path loss according to the reference beam indicated by the base station to obtain the transmission loss of the reference beam.
  • the terminal can select the optimal beam for power reception according to its own situation, or select multiple beams for reception, and save the transmission loss separately.
  • the optimal transmit beam and the corresponding propagation loss are selected, and other saved uplink transmit beams and corresponding propagation loss setting powers may be selected and uplinked.
  • the terminal may be instructed to use one of the multiple UE side receiving beams as the uplink transmitting beam and use the corresponding uplink power control parameter based on the downlink signaling.
  • the base station will use the power reference beam of the previously indicated terminal as the uplink receive beam.
  • the terminal uplink power control will be performed according to the following formula.
  • PL C, TX_BEAM_1 represents the transmission measured on the downlink beam TX_BEAM_1 in the serving cell c.
  • the P PUSCH,c (i) is an ith subframe uplink transmit power of a physical uplink shared channel (PUSCH) in the cell c; the M PUSCH,c (i) is occupied by the i-th subframe of the PUSCH in the cell c
  • the P O_PUSCH is a target power on a base station PUSCH;
  • the ⁇ TF,c (i) is a power adjustment factor corresponding to a modulation mode; and the f c (i) is a closed loop power control adjustment factor.
  • the ⁇ C (j) is a partial power adjustment factor of sequence number j; the value of j may be 0, 1 or 2.
  • the j is 0, when the uplink service of the terminal is dynamic scheduling, the j is 1, when the terminal randomly initiates uplink service, Said j is 2.
  • the j takes a different value, the specific values of the ⁇ C (j) are different.
  • the base station uses the downlink beam 2 to send uplink scheduling signaling to the UE through the downlink scheduling beam, where the scheduling signaling may include beam information such as beam identification or set special indication information (for example, a specific certain beam identifier). Indicator), or no indication of carrying any power reference beam.
  • the terminal directly refers to the beam used by the base station downlink scheduling as the power reference beam, and ignores the beam information included in the downlink signaling.
  • the terminal may determine, according to the system configuration or according to the specific indication information carried in the read signaling, the beam information that will not be carried by the reference signaling.
  • the base station schedules the UE to use the downlink beam 2 as the reference beam for uplink transmission.
  • the beam id or port corresponding to the downlink beam 2 or the corresponding resource information will be included in the downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the UE uses the measured transmission loss on the beam as the reference information of the uplink transmission power.
  • the UE performs transmission according to the measurement information of the corresponding downlink beam according to the configuration on an uplink beam.
  • the reference beam carried in the DCI may be the same as or different from the beam sent by the downlink scheduling information.
  • the base station will receive the same beam at the time of uplink transmission of the UE according to the indication in the DCI.
  • the base station schedules the UE and performs downlink transmission, and the indication signaling (for example, DCI) of the downlink service includes: indication information of the beam.
  • the indication signaling for example, DCI
  • the propagation loss measured on the beam based on the indication in the DCI is used as the uplink transmission power reference.
  • the terminal performs downlink path loss measurement according to the downlink beam information indicated by the base station, and obtains a transmission loss of the reference beam.
  • the beam information can be configured for the base station or obtained according to the terminal report.
  • the base station configuration it may be a downlink beam that is more suitable for serving the user when the base station uses the different beam reception. It is also possible for the base station to configure a limited number of downlink beams based on certain principles.
  • the mode reported by the terminal may be beam information obtained through feedback from the terminal during beam scanning or other transmission.
  • the terminal adopts beam reception, the terminal can select the energy received on the specific beam as the path loss measurement according to the principle of optimal received power and/or other principles (for example, the best performance and the lowest interference). In this case, when the terminal transmits, the specific beam needs to be used as the uplink transmit beam.
  • the terminal when it uses beam reception, it can also save the corresponding transmission loss on a limited number of receive beams.
  • a certain beam is selected as the uplink transmission beam according to a specific principle (for example, the interference of the neighboring area is the lowest), and the downlink transmission loss corresponding to the beam is used as the reference information of the uplink transmission power.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the transmission loss of the downlink transmit reference beam is determined, and the transmit loss is introduced to calculate the uplink transmit power, so as to avoid the actual receive after the uplink beam reaches the base station due to ignoring the transmission loss.
  • the power is less than the target receiving power, thus ensuring the uplink communication command, has a positive industrial effect; and is simple to implement, and has the characteristics widely used in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行功率控制方法及装置、通信设备及存储介质。应用于终端中所述上行发射功率控制方法包括:确定下行发射的参考波束;获取所述参考波束的传输损耗;基于所述传输损耗,确定上行发射的上行波束的上行发射功率。本发明实施例提供的技术方案中,首先会确定出参考波束,然后进行参考波束的下行传输损耗的测量,再结合获取的下行波束的传输损耗,计算出上行波束的上行发射功率,从而能够确保基站接收到的上行波束达到目标接收功率,确保上行通信质量,具有实现简便的特点。

Description

上行功率控制方法及装置、通信设备及存储介质
相关申请的交叉引用
本申请基于申请号为201710278928.X、申请日为2017年04月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信领域,尤其涉及一种上行功率控制方法及装置、通信设备及存储介质。
背景技术
在长期演进(Long Term Evolution,LTE)***,终端需要根据路损计算上行发射功率。例如,终端根据基站发送的公共参考信号)接收功率测量路损。在第五代(5th Generation,5G)***中,为了确保基站的接收质量足够好,依然需要计算上行发送功率。而5G***中存在多个波束,如何进行传输损耗,是计算上行发送功率预先解决的问题。
发明内容
有鉴于此,本发明实施例期望提供一种上行功率控制方法及装置,至少部分解决上述问题。
为达到上述目的,本发明的技术方案是这样实现的:本发明实施例第一方面提供一种上行发射功率控制方法,应用于终端中,包括:
确定下行发射的参考波束;
获取所述参考波束的传输损耗;
基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
本发明实施例第二方面提供一种上行发射功率控制方法,应用于基站中,包括:
确定用于上行发射功率控制的参考波束;
根据所述参考波束,发射下行波束。
本发明实施例第三方面提供一种上行发射功率控制方法,应用于终端中,包括:
第一确定单元,配置为确定下行发射的参考波束;
获取单元,配置为获取所述参考波束的传输损耗;
第二确定单元,配置为基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
本发明实施例第四方面提供一种上行发射功率控制装置,应用于基站中,包括:
第三确定单元,配置为确定用于上行发射功率控制的参考波束;
发射单元,配置为根据所述参考波束,发射下行波束。
本发明实施例第五方面提供一种通信设备,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器连接,配置为通过执行所述计算机程序,实现前述任意项提供的上行发射功率控制方法。
本发明实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行之后,能够实现前述任意项提供的上行发射功率控制方法。
本发明实施例提供的技术方案中,终端首先会确定出参考波束,然后进行参考波束的下行传输损耗的测量,再结合获取的下行波束的传输损耗,计算出上行波束的上行发射功率,从而能够确保基站接收到的上行波束达 到目标接收功率,确保上行通信质量,具有实现简便的特点。
附图说明
图1为本发明实施例提供的第一种上行发射功率控制方法的流程示意图;
图2为本发明实施例提供的第二种上行发射功率控制方法的流程示意图;
图3为本发明实施例提供的第一种上行发射功率控制装置的结构示意图;
图4为本发明实施例提供的第二种上行发射功率控制装置的结构示意图;
图5为本发明实施例提供一种下行波束发射示意图。
具体实施方式
以下结合说明书附图及具体实施例对本发明的技术方案做进一步的详细阐述。
如图1所示,本发明实施例提供一种上行发射功率控制方法,应用于终端中,包括:
步骤S110:确定下行发射的参考波束;
步骤S120:获取所述参考波束的传输损耗;
步骤S130:基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
本发明实施例提供的上行发射功率控制方法,可为各种应用于利用波束进行通信的终端中。在本实施例中所述终端又可成为用户设备(User Equipment,UE),例如,5G的通信手机。
在本实施例中所述上行波束和下行波束的覆盖范围都小于基站形成的小区或终端所在小区的覆盖面积,比如基站小区覆盖120度扇区,而下行波束仅能覆盖小于120度的范围,如10度、20度等
在本实施例中所述参考波束为基站发射的下行波束中的一个或多个。一个所述参考波束,可用于1个或多个所述基站的上行波束的上行发射功率的计算。
在步骤S120中所述终端会根据对参考波束的接收信号强度等估算出所述参考信号的传输损耗。
在步骤S130中基于信道互易性,会利用该传输损耗来计算上行发射功率。
在本实施例中所述参考波束和所述上行波束对应的频率资源可以相同,也可以不同,也可为相同,从而减少因为波长不同而导致的传输损耗的差异,进而导致的上行发射功率计算的不够精确。
在本实施例中当计算出所述上行发射功率之后,就以该上行发射功率发射对应的上行波束。在一些场景下,终端的最大上行发射功率是有限的,若当前计算出的上行发射功率不大于终端的最大发射功率,则以当前计算出的上行发射功率发送上行波束;若大于终端的最大发射功率,则终端以其最大发射功率发送上行波束。
在一些实施例中终端每一次进行上行发送之前是,都需要重新确定参考波束,并基于参考波束确定所述上行波束的上行发射功率。在另一些场景中,若终端的移动范围小于预设范围,该预设范围小于终端所在小区的面积范围,则不需要重新进行参考信号的确定,从而可以实现一次参考信号的确定,用于至少两次的上行发射功率的计算。
所述步骤S110可包括:
接收下行信令信息;
从所述下行信令信息中提取所述参考波束的波束信息,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一。
在本实施例中基站会向终端发送下行波束,该下行波束可承载有下行信令信息,这里的下行信令信息可为基站向终端发送的各种信令信息,所述下行信令信息包括:进行传输资源调度的下行调度信息,在本实施例中在向终端发送的下行信令信息中携带基站确定的参考波束的波束信息。这里的波束信息可以为参考波束的波束标识(Identity,ID)、资源标识与基站的端口标识的至少其中之一。所述资源标识为参考波束的时频资源的资源标识。例如,所述参考波束对应的资源块(Resource Block,RB)的标识等。
这样的话,终端接收到对应的下行波束之后,通过解调该下行波束携带的波束信息,就可以简便的确定出参考波束;从而方便后续终端进行上行波束的上行发射功率的计算。
可选地,所述步骤S110可包括:
接收下行调度信息;
根据承载所述下行调度信息的承载波束与备选波束的波束对应关系,从所述备选波束中选择出所述参考波束。
在一些实施例中,基站将下行调度波束与参考波束进行预先的对应,从而建立了对应关系,这种对应关系是基站和终端都预先知道的。这样的话,若终端接收到一个下行调度波束之后,就可以根据这种对应关系,确定出当前基站指示的参考波束。
采用这种方式获知基站告知的参考波束,不用进行信息解析,同样具有实现简便的特点。
所述步骤S130确定出上行发射功率的方式有多种,可以基于参考波束与上行发射功率的映射关系表,通过映射表的查询从而确定出所述上行发 射功率,在一些实施例中还可以基于函数关系,以所述参考波束的传输损耗为自变量,通过计算得到所述上行发射功率。以下提供两种可选的计算上行发射功率的方式。
方式一:所述步骤S130可包括:
采用如下公式,确定所述上行发射功率;
P UL=f(PL c,tx_beam_index)
所述P UL是所述上行发射功率;所述PL c,tx_beam_index为所述终端采用默认接收波束接收所述参考波束时的传输损耗;所述tx_beam_index为下行发送所述参考波束的波束标识;所述C为所述终端的服务小区。
可选地,
Figure PCTCN2018079355-appb-000001
方式二:所述步骤S130可包括:
P UL=f(PL c,tx_beam_index,rx_beam_index),
所述PL c,tx_beam_index,rx_beam_为所述终端采用波束标识为所述rx_beam_index的接收波束接收所述参考波束时的传输损耗;所述rx_beam_index为所述终端接收所述参考波束的接收波束的波束标识。
可选地,在本方式中,
Figure PCTCN2018079355-appb-000002
在上述两种方式中,公式中的相同符号代表是相同的含义。具体如,所述P max是所述终端的最大发射功率;所述M为所述上行波束发射时对应的资源块数目;所述P O为基站接收上行波束的目标功率;所述
Figure PCTCN2018079355-appb-000003
为部分功率调整系数;所述δ others为功率调整量
在一些实施例中。所述
Figure PCTCN2018079355-appb-000004
通常为正数,可为小于1的正数。所述M的 取值为1、2或3等正数。所述δ others为传输损耗等以外的其他功率补偿因子,可根据终端向基站发送信息的调制方式或闭环功控等方式,给出相应的功率调整值。
在本实施例中当基于参考波束的传输损耗计算出的上行发射功率大于终端的最大发射功率时,就采用终端的最大发送功率进行上行波束的发射。
在一些实施例中,所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由基站配置的。
在一些实施例中终端会对基站进行下行波束测量,获得测量结果,该测量结果可表明终端在当前位置对下行波束的接收强度或接收功率,确定的。在本实施例中参考波束的波束标识,与基站发射所述参考波束的发射参数相对应。所述接收波束的接收标识与终端接收下行波束的接收参数相对应。在本实施例中所述发射参数和接收参数,可包括基站的发射权值和/或接收权值等。
总之,在本实施例中基站会基于所述测量结果,配置所述参考波束的波束标识和/或接收波束的波束标识。当然,基站也可以根据自身的资源调度状况和/或信道状况,选择所述参考波束和接收波束,从而确定出所述参考波束和/或接收波束的波束标识。
在一些实施例中,所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由所述终端上报给所述基站的。
终端在进行上行发射功率确定之前,可已经完成了下行波束的测量,获得测量结果,在本实施例中所述接收波束和所述参考波束可以由终端提供可选择范围,再将选择的参考波束和接收波束的可选择范围上报基站,由基站进行最终的选择确认的,则此时所述参考波束和/或接收波束的波束标识,都可是由所述终端上报的。
可选地,所述参考波束为以下波束之一:
所述终端接收的最优接收功率的下行波束;
所述终端接收的接收质量满足预设条件且干扰最小的下行波束;
所述终端检测的邻区干扰最小的下行波束。
在本实施例中基站在确定参考波束时,可以根据预先配置确定,也可以根据终端对下行波束的测量的反馈信息确定出,对应于终端哪些下行波束是接收质量最佳的波束或者,传输损耗最佳的波束,或者传输干扰最小的波束,从而确定出对应终端的参考波束。
由于终端一般情况下是选择其认为最佳的上行波束向基站发送信息,这个时候通常选择最亮最佳的下行波束作为参考波束,从而确保计算出的上行发射功率的精确性,以免计算出的上行发射功率过大导致的功率浪费和终端的时间短等问题;同时还可以避免计算出的上行发射功率过小导致的基站接收质量小的问题;从而一方面确保基站的接收质量,另一方面尽可能的减少终端的功耗。
在一些实施例中所述步骤S110还可包括:
终端接收用于下行信道测量的下行波束,选择出所述终端接收的最优接收功率的下行波束;或者,所述终端接收的接收质量满足预设条件且干扰最小的下行波束;或者,所述终端检测的邻区干扰最小的下行波束,自行确定为参考波束;然后自行计算所述参考波束的传输损耗。计算所述参考波束的传输损耗,可以根据基站告知的下行发射功率和下行接收功率的差值确定,也可以是根据与基站协商确定的或按照通信协议确定的下行发射功率与下行接收功率的差值确定。总之所述终端确定所述参考波束的传输损耗的方式有很多种,不局限于上述任意一种。
如图2所示,本实施例提供一种上行发射功率控制方法,应用于基站中,包括:
步骤S210:确定用于上行发射功率控制的参考波束;
步骤S220:根据所述参考波束,发射下行波束。
在本实施例中应用于基站的上行功率控制方法,用于基站协助终端控制上行波束的上行发射功率。
在本实施例中会确定出参考波束,然后基于参考波束发送下行波束,通过该下行波束的发送,直接告知或间接告知终端的参考波束,方便终端基于参考波束的传输损耗进行上行发射功率的计算。
所述步骤S110的实现方式有多种,以下提供几种可选方式:
可选方式一:
接收终端基于下行波束测量反馈的波束信息;这里的波束信息,可包括:参考波束的波束标识、资源标识及基站的端口标识中的一种或多种。在一些实施例中,所述波束信息还可包括:终端提供的接收对应的下行波束的接收波束的波束信息。接收波束的波束信息,可包括:接收波束的波束标识及资源标识中的一种或多种;
基于所述波束信息,确定所述参考波束。
可选地,所述接收终端基于下行波束测量反馈的波束信息,包括:
当所述波束信息为单一下行波束的波束信息时,确定所述单一下行波束为所述参考波束。
例如,当前终端上报的波束信息,仅包括一个下行波束的波束信息,则基站可以直接利用该波束信息对应的下行波束作为参考波束,告知终端。
在另一些实施例中,所述接收终端基于下行波束测量反馈的波束信息,包括:
当所述波束信息为多个下行波束的波束信息时,根据预设规定从多个下行波束中选择一个或多个为所述参考波束。
在一些实施例中终端可能上报了多个下行波束的波束信息,基站就可能根据当前波束使用状况信息、终端位置等多种信息的一种或多种,基于 预设规则,旋则一个或多个波束作为参考波束。
可选地,所述当所述波束信息为多个波束的波束信息时,根据预设规定从多个波束中选择一个或多个为所述参考波束,包括以下至少之一:
选择所述终端接收的最优接收功率的下行波束为所述参考波束;
选择所述终端接收的接收质量满足预设条件且干扰最小的下行波束为所述参考波束;
选择所述终端检测的邻区干扰最小的下行波束为所述参考波束。
所述步骤S120的实现方式有多种,以下提供两种可实现方式。
方式一:所述步骤S120可包括:
将所述参考波束的波束信息承载在所述下行信令信息中发送,其中,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一。
方式二:所述步骤S120可包括:根据下行调度波束与参考波束的对应关系及所述参考波束,发送参考波束。
如图3所示,本实施例提供一种上行发射功率控制装置,应用于终端中,包括:
第一确定单元110,配置为确定下行发射的参考波束;
获取单元120,配置为获取所述参考波束的传输损耗;
第二确定单元130,配置为基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
本实施例所述上行发射功率控制装置,可为应用于各种终端中,例如,通常用于人通话的手机、平板电脑和车载设备等。
所述第一确定单元110、获取单元120及第二确定单元130都可对应于终端内的处理器或处理电路;所述处理器可包括:中央处理器、微处理器、信号处理器、应用处理器或可编程阵列等;所述处理电路可包括:中央集 成电路等。
所述处理器或处理电路,可通过制定代码的执行,实现上述各个单元的功能。
可选地,所述第一确定单元110,配置为接收下行信令信息;从所述下行信令信息中提取所述参考波束的波束信息,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一。
在本实施例中所述第一确定单元110对应于接收天线和解调器。所述接收天线,可用于接收基站发送的下行波束;所述解调器用于解调所述波束信息。所述波束信息可方便终端确定出哪一个下行波束被基站指示为参考波束。
另外可选地,所述第一确定单元110,配置为接收下行调度信息;根据承载所述下行调度信息的承载波束与备选波束的波束对应关系,从所述备选波束中选择出所述参考波束。
在本实施例中所述第一确定单元110同样可对应于接收天线,接收天线通过下行调度波束的接收,再结合下行调度波束与预定波束的对应关系,可简便确定出预定波束中的一个作为所述参考波束。
可选地,所述第二确定单元130,配置为采用如下公式,确定所述上行发射功率;
P UL=f(PL c,tx_beam_index),或,P UL=f(PL c,tx_beam_index,rx_beam_index)
其中,所述P UL是所述上行发射功率;所述PL c,tx_beam_index为所述终端采用默认接收波束接收所述参考波束时的传输损耗;所述tx_beam_index为下行发送所述参考波束的波束标识;所述PL c,tx_beam_index,rx_beam_index为所述终端采用波束标识为所述rx_beam_index的接收波束接收所述参考波束时的传输损耗;所述rx_beam_index为所述终端接收所述参考波束的接收波束的波束标识;所述C为 所述终端的服务小区。
例如:
Figure PCTCN2018079355-appb-000005
或,
Figure PCTCN2018079355-appb-000006
在本实施例中、所述参考波束为以下波束之一:
所述终端接收的最优接收功率的下行波束;
所述终端接收的接收质量满足预设条件且干扰最小的下行波束;
所述终端检测的邻区干扰最小的下行波束。
在具体实现时,所述参考波束可为携带有参考信号的下行波束,不局限于上述各个下行波束。
在一些实施例中,所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由基站配置的;或,所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由所述终端上报给所述基站的。
如图4所示,本实施例提供一种下行发射功率控制装置,应用于基站中,包括:
第三确定单元210,配置为确定用于上行发射功率控制的参考波束;
发射单元220,配置为根据所述参考波束,发射下行波束。
本实施例所述第三确定单元210可对应于基站的处理器或处理电路。所述处理器或处理电路可以参见前述实施例。所述发射单元220可对应于基站的发射天线,可用于基于参考波束发送下行波束。
具体可如,所述发射单元220,可配置为将所述参考波束的波束信息承载在所述下行信令信息中发送,其中,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其 中之一;和/或,所述发射单元220,还可配置为根据下行调度信息的承载波束与备选波束的对应关系,发送所述下行调度信息。
可选地,所述第三确定单元210,配置为接收终端基于下行波束测量反馈的波束信息;基于所述波束信息,确定所述参考波束。
进一步可选地,所述第三确定单元210,配置为当所述波束信息为单一下行波束的波束信息时,确定所述单一下行波束为所述参考波束;或,当所述波束信息为多个下行波束的波束信息时,根据预设规定从多个下行波束中选择一个或多个为所述参考波束。
可选地,所述第三确定单元210,配置为至少执行下至少之一:
选择所述终端接收的最优接收功率的下行波束为所述参考波束;
选择所述终端接收的接收质量满足预设条件且干扰最小的下行波束为所述参考波束;
选择所述终端检测的邻区干扰最小的下行波束为所述参考波束。
本发明实施例提供一种通信设备,包括:
存储器,配置为存储计算机程序;
处理器,与所述存储器连接,配置为通过执行所述计算机程序,实现前述任意一个技术方案提供的上行发射功率控制方法,例如,如图1或图2所示的上行发射功率控制方法。
当所述通信设备为终端时,则该通信设备可用于图1所示及与图1关联的上行发射功率控制方法。当所述通信设备为基站时,则该通信设备可用于执行图2所示方法及与图2关联的上行发射功率控制方法。
在本实施例存储器,可包括各种类型的存储器,优选可包括非瞬间存储介质的存储器,可配置为存储所述计算机程序。
所述处理器可包括:中央处理器、微处理器、应用处理器、数字信号处理器或可编程阵列等。
所述处理器与存储器可通过总线连接,这里的总线可包括集成电路(IIC)总线,或外设互连标准(PCI)总线等通信设备的内部通信接口进行连接。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行之后,能够前述任意一个技术方案提供的上行发射功率控制方法,例如,可执行图1和图2所示的方法中的一个或多个。
本发明实施例提供的计算机存储介质可为随机存储介质、只读存储接孩子、闪存或移动存储设备或光盘等。所述计算机存储介质可为非瞬间存储介质。
本发明实施例还提供一种上行发射功率控制方法,应用于基站中,包括:
接收终端基于下行波束测量反馈的波束信息。
在一些实施例中,该波束信息,用于基站确定参考波束,告知终端对应的参考波束的信息,则终端会测量该参考波束的下行传输损耗,并基于该下行传输损耗计算终端的上行发射功率。
以下结合上述实施例中的一个或多个给出几个示例:
示例一:
如图5所示,基站可能会一次性向UE发送多个波束,也可能分多次向UE发送多个波束。图5中基站向终端发送了6个波束,分别是下行波束1、下行波束2、下行波束3、下行波束4、下行波束5及下行波束6。
基站进行波束扫描,终端上报有限个候选波束的波束信息(波束标识,端口标识,资源标识等),基站在上报的波束范围内,选取进行下行参考波束的传输。终端根据这些波束上传输的资源进行接收能量检测,并估算对应波束上的传播损耗。基站通过下行信令指示终端参考的波束信息。终端 根据基站指示的参考波束,进行路径损耗的估计得到参考波束的传输损耗。当终端可以采用多波束进行接受时,终端可以根据自身情况,选取最优波束下进行功率接收,也可以选取多个波束进行接收,分别保存传输损耗。终端在上行发送时,选取最优的发送波束和对应的传播损耗,也可以选取其他保存的上行发送波束和对应传播损耗设置功率并进行上行发送。当基站知道终端可以使用上述多个不同的接收波束时,可以基于下行的信令,指示终端使用上述多个UE侧接收波束中的某一个作为上行发送波束,同时使用对应上行功率控制参数。基站将采用之前指示终端的功率参考波束作为上行的接收波束。
当基站调度下行波束1作为终端的测量参考波束时,终端上行功率控制将按照下面的公式进行。
Figure PCTCN2018079355-appb-000007
其中,PL C,TX_BEAM_1表示服务小区c中下行波束TX_BEAM_1上测量得到的传输。所述P PUSCH,c(i)为小区c内物理上行共享信道(PUSCH)的第i个子帧上行发射功率;所述M PUSCH,c(i)为小区c内在PUSCH的第i个子帧所占用的RB的数量;所述P O_PUSCH为基站PUSCH上的目标功率;所述Δ TF,c(i)为对应于调制方式的功率调整因子;所述f c(i)为闭环功控调整因子。所述α C(j)是序号为j的部分功率调整因子;所述j的取值范围可为0,1或2。当基站对终端的上行业务是半持续调度时,所述j为0,当基站对终端的上行业务是动态调度是,所述j为1,当所述终端随机接入发起上行业务时,所述j为2。当所述j取不同值时,所述α C(j)的具体取值不同。
示例二:
在一些情况下,基站采用下行波束2通过下行调度波束向UE发送上行调度信令,其中调度信令中可包含波束标识等波束信息或者设置专门的指示信息(比如,特定的某个波束标识的指示符),或者没有携带任何功率 参考波束的指示信息。此时,终端将直接参考基站下行调度使用的波束作为功率参考波束,而忽略下行信令中包含的波束信息。终端可以根据***配置或者根据读取信令中携带的专门的指示信息,判断将不参考信令携带的波束信息。
示例三:
在上行业务传输的过程中,基站调度UE采用下行波束2作为上行发送的参考波束。其中下行波束2对应的波束id或端口或对应的资源信息,将包含在下行的下行控制信息(Downlink Control Information,DCI)当中。UE根据DCI指示的波束信息,按照指示的波束上测量得到的传输损耗,作为上行发送功率的参考信息。UE根据配置在某个上行波束上,按照对应下行波束的测量信息上进行发送。其中DCI中携带的参考波束,可以和下行调度信息发送的波束相同,也可以不同。基站将根据DCI中的指示,在UE上行发送时刻,采用相同的波束进行接收。
示例四:
在下行业务的传输过程中,基站调度UE并进行下行传输,下行业务的指示信令(比如,DCI)中将包含:波束的指示信息。UE在进行针对该次下行业务的传输的上行反馈时,将基于DCI中指示的波束上测量得到的传播损耗作为上行的发送功率参考。
终端根据基站指示的下行波束信息进行下行路径损耗的测量,得到参考波束的传输损耗。波束信息可以为基站配置或者根据终端上报获得。当采用基站配置时,可以为之前基于终端上行发送,基站采用不同的波束接收时,得到的更适于服务该用户的下行波束。也可以为基站基于特定原则配置的有限个下行波束。而终端上报的方式,可以是在进行波束扫描或者其他传输时,经过终端反馈得到的波束信息。当终端采用波束接收时,终端可以根据最优接收功率的原则和/或其他原则(比如,性能最优且干扰最 低)选取特定的波束上接收到的能量作为路径损耗测量。这种情况下,终端发射时,需要采用该特定波束作为上行发送波束。
另外,当终端采用波束接收时,也可以保存有限个接收波束上对应的传输损耗时。而在进行上行传输时,根据特定原则(如,邻区干扰最低)选取某个波束作为上行发送波束,并采用该波束对应的下行的传输损耗作为上行发射功率的参考信息。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的 步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例中在计算上行波束的上行发射功率之前,会确定出下行发射的参考波束的传输损耗,引入该传输损耗来计算上行发射功率,避免因为忽略传输损耗导致上行波束达到基站之后实际接收功率小于目标接收功率的问题,从而确保了上行通信指令,具有积极的工业效果;且实现简便,具有在工业上可广泛推广使用的特点。

Claims (20)

  1. 一种上行发射功率控制方法,应用于终端中,包括:
    确定下行发射的参考波束;
    获取所述参考波束的传输损耗;
    基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
  2. 根据权利要求1所述的方法,其中,
    所述基于所述传输损耗,确定上行发射的上行波束的上行发射功率,包括:
    采用如下公式,确定所述上行发射功率;
    P UL=f(PL c,tx_beam_index),或,P UL=f(PL c,tx_beam_index,rx_beam_index)
    其中,所述P UL是所述上行发射功率;所述PL c,tx_beam_index为所述终端采用默认接收波束接收所述参考波束时的传输损耗;所述tx_beam_index为下行发送所述参考波束的波束标识;所述PL c,tx_beam_index,rx_beam_index为所述终端采用波束标识为所述rx_beam_index的接收波束接收所述参考波束时的传输损耗;所述rx_beam_index为所述终端接收所述参考波束的接收波束的波束标识;所述C为所述终端的服务小区。
  3. 根据权利要求2所述的方法,其中,
    Figure PCTCN2018079355-appb-100001
    或,
    Figure PCTCN2018079355-appb-100002
    其中,所述P max是所述终端的最大发射功率;所述M为所述上行波束发射时对应的资源块数目;所述P O为基站接收上行波束的目标功率;所述
    Figure PCTCN2018079355-appb-100003
    为部分功率调整系数;所述δ others为功率调整量。
  4. 根据权利要求2所述的方法,其中,
    所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由基站配置的;
    或者,
    所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由所述终端上报给所述基站的。
  5. 根据权利要求1至4任一项所述的方法,其中,
    所述确定下行发射的参考波束,包括:
    接收下行信令信息;
    从所述下行信令信息中提取所述参考波束的波束信息,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一;
    或,
    接收下行调度信息;
    根据承载所述下行调度信息的承载波束与备选波束的波束对应关系,从所述备选波束中选择出所述参考波束;
    或,
    所述参考波束为以下波束之一:
    所述终端接收的最优接收功率的下行波束;
    所述终端接收的接收质量满足预设条件且干扰最小的下行波束;
    所述终端检测的邻区干扰最小的下行波束。
  6. 一种上行发射功率控制方法,应用于基站中,包括:
    确定用于上行发射功率控制的参考波束;
    根据所述参考波束,发射下行波束。
  7. 根据权利要求6所述的方法,其中,
    所述确定用于上行发射功率控制的参考波束,包括:
    接收终端基于下行波束测量反馈的波束信息;
    基于所述波束信息,确定所述参考波束。
  8. 根据权利要求7所述的方法,其中,
    所述基于所述波束信息,确定所述参考波束,包括:
    当所述波束信息为单一下行波束的波束信息时,确定所述单一下行波束为所述参考波束;
    或,
    当所述波束信息为多个下行波束的波束信息时,根据预设规定从多个下行波束中选择一个或多个为所述参考波束,其中,
    所述当所述波束信息为多个波束的波束信息时,根据预设规定从多个波束中选择一个或多个为所述参考波束,包括以下至少之一:
    选择所述终端接收的最优接收功率的下行波束为所述参考波束;
    选择所述终端接收的接收质量满足预设条件且干扰最小的下行波束为所述参考波束;
    选择所述终端检测的邻区干扰最小的下行波束为所述参考波束。
  9. 根据权利要求6至8任一项所述的方法,其中,
    所述根据所述参考波束,发射下行波束,包括以下至少之一:
    将所述参考波束的波束信息作为下行信令信息中一部分发送,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一;
    根据下行调度信息的承载波束与备选波束的对应关系,发送所述下行调度信息。
  10. 一种上行发射功率控制装置,应用于终端中,包括:
    第一确定单元,配置为确定下行发射的参考波束;
    获取单元,配置为获取所述参考波束的传输损耗;
    第二确定单元,配置为基于所述传输损耗,确定上行发射的上行波束的上行发射功率。
  11. 根据权利要求10所述的装置,其中,
    所述第二确定单元,配置为采用如下公式,确定所述上行发射功率;
    P UL=f(PL c,tx_beam_index),或,P UL=f(PL c,tx_beam_index,rx_beam_index)
    其中,所述P UL是所述上行发射功率;所述PL c,tx_beam_index为所述终端采用默认接收波束接收所述参考波束时的传输损耗;所述tx_beam_index为下行发送所述参考波束的波束标识;所述PL c,tx_beam_index,rx_beam_index为所述终端采用波束标识为所述rx_beam_index的接收波束接收所述参考波束时的传输损耗;所述rx_beam_index为所述终端接收所述参考波束的接收波束的波束标识;所述C为所述终端的服务小区。
  12. 根据权利要求11所述的装置,其中,
    Figure PCTCN2018079355-appb-100004
    或,
    Figure PCTCN2018079355-appb-100005
    其中,所述P max是所述终端的最大发射功率;所述M为所述上行波束发射时对应的资源块数目;所述P O为基站接收上行波束的目标功率;所述
    Figure PCTCN2018079355-appb-100006
    为部分功率调整系数;所述δ others为功率调整量。
  13. 根据权利要求12所述的装置,其中,
    所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由基站配置的;
    或者,
    所述参考波束的波束标识和所述接收波束的波束标识的至少其中之一,是由所述终端上报给所述基站的。
  14. 根据权利要求10至13任一项所述的装置,其中,
    所述第一确定单元,配置为接收下行信令信息;从所述下行信令信息中提取所述参考波束的波束信息,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一;
    或,
    接收下行调度信息;根据承载所述下行调度信息的承载波束与备选波束的波束对应关系,从所述备选波束中选择出所述参考波束;
    或者,
    所述参考波束为以下波束之一:
    所述终端接收的最优接收功率的下行波束;
    所述终端接收的接收质量满足预设条件且干扰最小的下行波束;
    所述终端检测的邻区干扰最小的下行波束。
  15. 一种上行发射功率控制装置,应用于基站中,包括:
    第三确定单元,配置为确定用于上行发射功率控制的参考波束;
    发射单元,配置为根据所述参考波束,发射下行波束。
  16. 根据权利要求15所述的装置,其中,
    所述第三确定单元,配置为接收终端基于下行波束测量反馈的波束信息;基于所述波束信息,确定所述参考波束。
  17. 根据权利要求16所述的装置,其中,
    所述第三确定单元,配置为当所述波束信息为单一下行波束的波束信息时,确定所述单一下行波束为所述参考波束;
    或,
    当所述波束信息为多个下行波束的波束信息时,根据预设规定从多个下行波束中选择一个或多个为所述参考波束;
    或者,
    所述第三确定单元,配置为至少执行下至少之一:
    选择所述终端接收的最优接收功率的下行波束为所述参考波束;
    选择所述终端接收的接收质量满足预设条件且干扰最小的下行波束为所述参考波束;
    选择所述终端检测的邻区干扰最小的下行波束为所述参考波束。
  18. 根据权利要求15至17任一项所述的装置,其中,
    所述根据所述参考波束,发射下行波束,包括以下至少之一:
    将所述参考波束的波束信息作为下行信令信息中一部分发送,其中,所述波束信息包括所述参考波束的波束标识、资源标识和基站发送所述参考波束的端口标识的至少其中之一;
    根据下行调度信息的承载波束与备选波束的对应关系,发送所述下行调度信息。
  19. 一种通信设备,包括:
    存储器,配置为存储计算机程序;
    处理器,与所述存储器连接,配置为通过执行所述计算机程序,实现权利要求1至9任一项所述的上行发射功率控制方法。
  20. 一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行之后,能够实现权利要求1至9任一项所述的上行发射功率控制方法。
PCT/CN2018/079355 2017-04-25 2018-03-16 上行功率控制方法及装置、通信设备及存储介质 WO2018196501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710278928.X 2017-04-25
CN201710278928.XA CN108738120B (zh) 2017-04-25 2017-04-25 上行功率控制方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2018196501A1 true WO2018196501A1 (zh) 2018-11-01

Family

ID=63919408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079355 WO2018196501A1 (zh) 2017-04-25 2018-03-16 上行功率控制方法及装置、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN108738120B (zh)
WO (1) WO2018196501A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432428B (zh) * 2019-01-10 2022-09-27 ***通信有限公司研究院 一种测量方法和设备
WO2023001217A1 (zh) * 2021-07-22 2023-01-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置
CN113804961B (zh) * 2021-10-11 2024-04-12 中国电信股份有限公司 智能表面设备和***,以及控制方法、装置和***
CN115002888A (zh) * 2022-05-20 2022-09-02 Oppo广东移动通信有限公司 射频***及其控制方法、无线通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025144A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget Lm Ericsson (Publ) A method and an apparatus in a user equipment for controlling transmission power of the user equipment
CN103621155A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
CN103716081A (zh) * 2013-12-20 2014-04-09 中兴通讯股份有限公司 下行波束确定方法、装置及***
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信***中的上行链路控制方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621155A (zh) * 2011-06-21 2014-03-05 瑞典爱立信有限公司 用于上行链路发送的发送功率控制的用户设备及其方法
WO2013025144A1 (en) * 2011-08-15 2013-02-21 Telefonaktiebolaget Lm Ericsson (Publ) A method and an apparatus in a user equipment for controlling transmission power of the user equipment
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信***中的上行链路控制方法和装置
CN103716081A (zh) * 2013-12-20 2014-04-09 中兴通讯股份有限公司 下行波束确定方法、装置及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "UL Power Control in Multi-Beam Based Approaches", 3GPP TSG RAN WG1 AH_NR MEETING R1-1703052, 20 January 2017 (2017-01-20), XP051221840 *
ZTE ET AL.: "Discussion on UL Power Control for NR", 3GPP TSG RAN WG1 MEETING #88BIS R1-1704418, 7 April 2017 (2017-04-07), XP051242565 *

Also Published As

Publication number Publication date
CN108738120A (zh) 2018-11-02
CN108738120B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN105430633B (zh) 一种确定中继节点的方法及设备
CN109890078B (zh) 一种资源配置方法及其装置
WO2018196501A1 (zh) 上行功率控制方法及装置、通信设备及存储介质
WO2018098790A1 (zh) 测量方法、终端设备和网络设备
US11516858B2 (en) System and method for providing time domain allocations in a communication system
EP3955475A1 (en) Uplink beam management method and apparatus
US11317418B2 (en) Communication method and communication apparatus
EP2770796A2 (en) Method for simultaneous communications with multiple base stations and related communication device
US11153053B2 (en) Method of performing data transmission by terminal device in a wireless communication system
EP3306981A1 (en) Channel measurement and measurement result reporting method, and device utilizing same
JP6953505B2 (ja) 通信方法、端末デバイス及びネットワークデバイス
JP2022521719A (ja) 電力制御方法および電力制御装置
JP6435399B2 (ja) 参照信号を用いるセルラ通信リンクと装置間(d2d)通信リンクとの間の選択
WO2019141839A1 (en) Beam selection priority
TW201909691A (zh) 在雙連結中設定一次要節點及回報的裝置及方法
US10863491B2 (en) Base station apparatus, control method, and storage medium
CN112752259B (zh) 一种终端类型的确定方法、网络设备及终端
EP2979488B1 (en) Method for initiating handover, wireless device and base station
CN110089140B (zh) 涉及基于上行链路测量的自动相邻检测的方法及节点
CN109644395A (zh) 处理单元和其中用于启动小区激活的方法
CN115278847A (zh) 调整参考信号发射功率的方法和装置
CN112740561A (zh) 在多trp***中管理干扰的方法和***
EP3714567A1 (en) Explicit measurement definition
CN111385865A (zh) 随机接入方法、装置、***及存储介质
US12052777B2 (en) System and method for providing time domain allocations in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.02.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18790684

Country of ref document: EP

Kind code of ref document: A1