WO2018196455A1 - 净水*** - Google Patents

净水*** Download PDF

Info

Publication number
WO2018196455A1
WO2018196455A1 PCT/CN2018/074289 CN2018074289W WO2018196455A1 WO 2018196455 A1 WO2018196455 A1 WO 2018196455A1 CN 2018074289 W CN2018074289 W CN 2018074289W WO 2018196455 A1 WO2018196455 A1 WO 2018196455A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
waste water
valve
return valve
purification system
Prior art date
Application number
PCT/CN2018/074289
Other languages
English (en)
French (fr)
Inventor
桂鹏
蔡雪刚
谈菲
Original Assignee
佛山市顺德区美的饮水机制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的饮水机制造有限公司, 美的集团股份有限公司 filed Critical 佛山市顺德区美的饮水机制造有限公司
Publication of WO2018196455A1 publication Critical patent/WO2018196455A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents

Definitions

  • the invention relates to the field of water purification technology, in particular to a water purification system.
  • the core component of the existing water purification system is a membrane filter element, and the pipeline connected thereto includes a raw water pipeline, a pure water pipeline, a waste water pipeline and a return pipeline, and the return pipeline connects the waste water pipeline and the raw water pipeline to A part of the waste water produced by filtering the membrane filter element can be re-flowed back into the membrane filter element for filtration, thereby increasing the water production rate of the entire water purification system and improving the water utilization rate.
  • the main object of the present invention is to propose a water purification system designed to prevent clogging of the water purification system through the piping of the wastewater.
  • a water purification system includes:
  • a membrane filter core having a raw water port communicating with the raw water pipe, a pure water port communicating with the pure water pipe, and a waste water port communicating with the waste water pipe;
  • a waste water valve installed on the waste water pipe and located on a water outlet side of the electromagnetic valve
  • a scale inhibiting device mounted on the waste pipe and located between the solenoid valve and the waste water valve;
  • waste water return valve the water inlet end of the waste water return valve is connected to a waste water pipe between the electromagnetic valve and the scale inhibiting device, and a water outlet end of the waste water return valve is connected to the raw water pipe;
  • a controller electrically connected to the waste water return valve, the booster pump, the electromagnetic valve, and the waste water valve, respectively, wherein the controller is configured to control when the waste water return valve meets a preset flushing condition
  • the booster pump and the solenoid valve are closed, and the waste water valve is controlled to open so that raw water in the raw water pipe flushes the waste water return valve.
  • the water purifying system further comprises a flow meter electrically connected to the controller, the flow meter is installed on the waste water return valve or the flow meter is installed on the water inlet end of the waste water return valve Or the water outlet;
  • the flow meter is configured to detect a wastewater flow value passing through the waste water return valve, and send the detection result to a controller;
  • the controller determines that the wastewater return valve meets the preset flushing condition when the wastewater flow value sent by the flow meter reaches a preset flow rate value.
  • the water purification system further includes a timer electrically connected to the controller;
  • the timer is configured to detect a working time of the wastewater return valve, and send the detection result to the controller;
  • the controller determines that the wastewater return valve meets the preset flushing condition when the working time sent by the timer reaches a preset working time.
  • the water purification system further includes a first TDS detecting device electrically connected to the controller, the first TDS detecting device is mounted on the waste water return valve or the first TDS detecting device is installed on The water inlet end or the water outlet end of the waste water return valve;
  • the first TDS detecting device is configured to detect a TDS value of the wastewater passing through the wastewater return valve, and send the detection result to the controller;
  • the controller determines that the wastewater return valve meets the preset flushing condition when the TDS value of the wastewater sent by the first TDS detecting device reaches a first preset TDS value.
  • the water purification system further comprises a two-way water pump connected in series to the water inlet end or the water outlet end of the waste water return valve.
  • the water purification system further includes a first one-way valve serially connected to the waste water pipe between the scale inhibiting device and the electromagnetic valve;
  • the water inlet end of the waste water return valve is connected to a waste water pipe between the first check valve and the solenoid valve.
  • the water purification system further includes a second TDS detecting device mounted on the waste water valve or the second TDS detecting device is mounted on the waste water pipe, the second The TDS detecting device is configured to detect the TDS value of the wastewater passing through the waste pipe;
  • the controller is electrically connected to the second TDS detecting device, and the controller is further configured to: when the TDS value detected by the second TDS detecting device is higher than a second preset TDS value, The opening degree of the waste water valve is increased; when the wastewater TDS value of the second TDS detecting device is equal to or lower than the second preset TDS value, the opening degree of the waste water valve is controlled to remain unchanged or decreased.
  • the water purification system further includes an inlet valve electrically connected to the controller, and the inlet valve is installed on a raw water pipe located on the inlet side of the booster pump.
  • the water purifying system further comprises a pre-filter, the water inlet of the pre-filter is in communication with a water source, and the water outlet of the pre-filter is in communication with the water inlet end of the raw water pipe.
  • the water purifying system further comprises a rear filter element, the water inlet of the rear filter element is in communication with the water outlet end of the pure water pipe, and the water outlet of the rear filter element is in communication with the external interface.
  • the water purification system further includes a pressure detecting device mounted on the pure water pipe, the pressure detecting device for detecting a pressure value in the pure water pipe;
  • the controller is further electrically connected to the pressure detecting device, and controls the boosting pump, the waste water return valve, the electromagnetic valve and the waste water valve to be simultaneously opened according to the detection result of the pressure detecting device or Close at the same time.
  • the invention is arranged on the raw water pipe which communicates with the raw water port of the membrane filter element, the electromagnetic valve is installed on the waste water pipe, the waste water valve is installed on the waste water pipe and is located on the water outlet side of the electromagnetic valve, and the scale inhibiting device is installed in the waste water
  • the tube is located between the solenoid valve and the waste water valve, and the water inlet end of the waste water return valve is connected to the waste water pipe between the electromagnetic valve and the scale inhibiting device, and the water outlet end of the waste water return valve is connected to the raw water pipe, and the water purification system
  • the controller is electrically connected to the booster pump, the solenoid valve and the waste water valve respectively, and the controller controls the booster pump and the solenoid valve to close when the waste water return valve meets the preset flushing condition, and controls the waste water valve to open to make the raw water
  • the raw water in the pipe rinses the waste water return valve.
  • the raw water can adhere to the waste water return valve and the waste water return valve when flowing through the waste water return valve.
  • the impurities such as calcium ions and magnesium ions in the pipeline are washed away, so that impurities such as calcium ions and magnesium ions in the waste water are prevented from forming scale on the waste water return valve and the pipeline where the waste water return valve is located, thereby ensuring the waste water return valve and The pipeline of the waste water return valve is not blocked; in addition, the scale inhibition device disposed on the waste water pipe can remove calcium ions and magnesium ions in the waste water discharged to the outside through the waste water pipe, thereby avoiding calcium in the waste water. The ions and magnesium ions form scale on the waste water valve and the waste water pipe, thereby ensuring that the waste water valve and the waste water pipe are not blocked.
  • FIG. 1 is a schematic structural view of a first embodiment of a water purification system according to the present invention
  • FIG. 2 is a schematic view showing another state of the water purification system of Figure 1;
  • FIG. 3 is a schematic structural view of a second embodiment of the water purification system of the present invention.
  • Figure 4 is a schematic structural view of a third embodiment of the water purification system of the present invention.
  • Figure 5 is a schematic structural view of a fourth embodiment of the water purification system of the present invention.
  • Figure 6 is a schematic structural view of a fifth embodiment of the water purification system of the present invention.
  • Figure 7 is a schematic view showing the structure of a sixth embodiment of the water purification system of the present invention.
  • the directional indication is only used to explain in a certain posture (as shown in the drawing)
  • the relative positional relationship between the components, the motion situation, and the like if the specific posture changes, the directional indication also changes accordingly.
  • first”, “second”, etc. in the embodiments of the present invention, the description of the "first”, “second”, etc. is used for the purpose of description only, and is not to be construed as an Its relative importance or implicit indication of the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the present invention provides a water purification system.
  • the water purification system 100 includes a membrane cartridge 10, a booster pump 15, a solenoid valve 20, a waste water valve 25, a scale inhibiting device 30, a waste water return valve 35, a controller (not shown), and other components.
  • the membrane cartridge 10 has a raw water port a, a pure water port b, and a waste water port c; the raw water port a of the membrane filter element 10 is connected to the raw water pipe, and the external raw water flows into the membrane filter element 10 through the raw water pipe; the pure water port b of the membrane filter element 10 Connected with the pure water pipe, the pure water produced by the filtration through the membrane filter element 10 is discharged through the pure water pipe; the waste water port c of the membrane filter element 10 is connected with the waste water pipe, and the waste water filtered by the membrane filter element 10 is discharged through the waste pipe, and the waste water pipe is discharged
  • the water outlet can also be connected to the waste water tank, which facilitates the collection of waste water, and the waste water collected in the waste water tank can also be used for other purposes, thus avoiding waste of water resources.
  • the booster pump 15 is installed on the raw water pipe, and is mainly used for pressurizing the raw water in the raw water pipe, so that the water pressure flowing from the raw water port a into the membrane filter element 10 is sufficiently high, thereby facilitating the improvement of the membrane filter core 10 to obtain pure The speed of the water.
  • the solenoid valve 20 is mounted on a waste pipe for controlling the on and off of the waste pipe.
  • the waste water valve 25 is installed on the waste water pipe and is located on the water outlet side of the electromagnetic valve 20.
  • the waste water valve 25 may be a valve whose opening degree can be adjusted, or a valve whose opening degree is fixed, and is not specifically limited herein.
  • the scale inhibiting device 30 is installed on the waste water pipe and located between the electromagnetic valve 20 and the waste water valve 25, and the scale inhibiting device 30 is provided with a scale inhibitor, which may be silicon phosphorus crystal, SP3, etc.
  • a scale inhibitor which may be silicon phosphorus crystal, SP3, etc.
  • Calcium ions and magnesium ions in the water form a soluble complex, which can effectively prevent calcium ions and magnesium ions from forming scale in the waste water valve 25 and the waste water pipe, thereby ensuring that the waste water pipe and the waste water valve 25 are not blocked by the agglomerated impurities.
  • the water inlet end of the wastewater return valve 35 is connected to a waste pipe located between the solenoid valve 20 and the scale inhibiting device 30, and the water outlet end of the waste water return valve 35 is connected to the raw water pipe.
  • a part of the waste water generated by the filtration of the membrane cartridge 10 can be returned to the membrane cartridge 10 and filtered, which is advantageous for improving the water utilization rate; on the other hand, the membrane water of the membrane cartridge 10 can be ensured.
  • the pressure is not too high, which is advantageous for extending the service life of the membrane cartridge 10.
  • the scale inhibitor is harmful to the human body, and the water inlet end of the waste water return valve 35 is disposed on the water inlet side of the scale inhibiting device 30, so that the wastewater returned to the membrane cartridge 10 through the waste water return valve 35 can be ensured. Carrying the scale inhibitor ensures that the ions in the pure water prepared by the water purification system 100 do not exceed the standard, thereby ensuring the safety of the pure water produced by the filtration of the membrane cartridge 10.
  • the controller is electrically connected to the booster pump 15, the waste water valve 25, the waste water return valve 35, and the electromagnetic valve 20 for controlling the operation of the booster pump 15, the waste water valve 25, the waste water return valve 35, and the electromagnetic valve 20, that is, The booster pump 15, the waste water valve 25, the waste water return valve 35, and the electromagnetic valve 20 are controlled to be turned on or off.
  • the controller may be a single chip microcomputer or a PWM controller, and the controller is not specifically limited herein.
  • the controller controls the booster pump 15, the waste water return valve 35, the electromagnetic valve 20, and the waste water valve 25 to be opened, and the low pressure raw water in the raw water pipe passes through the boosting pump 15 After pressurization, high-pressure raw water is formed, and the high-pressure raw water in the raw water pipe enters the membrane filter element 10 through the raw water port a of the membrane filter element 10, and the raw water entering the membrane filter element 10 is filtered through the membrane filter element 10 to form pure water and waste water, and pure water is taken from the membrane.
  • the pure water port b of the filter element 10 is discharged for user's access; the waste water is discharged into the waste water pipe from the waste water port c of the membrane filter element 10, and is discharged through the waste water pipe; and a part of the waste water entering the waste water pipe is directly discharged through the waste water pipe.
  • another part of the wastewater flows through the waste water return valve 35 and flows into the raw water pipe, and is mixed with the raw water in the raw water pipe and flows into the membrane filter element 10 for filtration, thereby reducing the wastewater discharge amount of the water purification system 100. That is, the water production rate of the water purification system 100 is increased.
  • the controller controls the booster pump 15 and the solenoid valve 20 to be closed, that is, the water inlet and the waste water port c of the membrane cartridge 10 are closed, so that the raw water cannot enter.
  • the waste water port c of the membrane cartridge 10 does not discharge waste water, and the raw water in the raw water pipe flows directly from the outlet end of the wastewater return valve 35 to the inlet end of the wastewater return valve 35.
  • the concentration of impurities such as calcium ions and magnesium ions in the raw water is much lower than the concentration of impurities such as calcium ions and magnesium ions in the wastewater
  • the tube attached to the wastewater return valve 25 can be attached.
  • the impurities such as calcium ions and magnesium ions on the road and the wastewater return valve 35 are washed away, so that impurities such as calcium ions and magnesium ions are prevented from accumulating and agglomerating at the piping where the wastewater return valve 25 is located and the waste water return valve 35, thereby further The problem that the piping in which the wastewater return valve 25 is located and the waste water return valve 35 are blocked by agglomerated impurities occurs.
  • the preset flushing condition of the waste water return valve 35 may be the working time of the waste water return valve 35, the cumulative flow rate through the waste water return valve 35, etc., which are not enumerated here, as long as the preset is satisfied.
  • the controller controls the booster pump 15 and the solenoid valve 20 to close to flush the waste water return valve 35.
  • the booster pump 15 is disposed on the raw water pipe communicating with the raw water port of the membrane cartridge 10, the electromagnetic valve 20 is mounted on the waste water pipe, and the waste water valve 25 is installed on the waste water pipe and located on the water outlet side of the electromagnetic valve 20,
  • the scale device 30 is installed on the waste water pipe and located between the electromagnetic valve 20 and the waste water valve 25, and the water inlet end of the waste water return valve 35 is connected to the waste water pipe between the electromagnetic valve 20 and the scale inhibiting device 30, and the waste water return valve 35
  • the water outlet end is connected to the raw water pipe, and the controller of the water purification system 100 is electrically connected to the booster pump 15, the electromagnetic valve 20 and the waste water valve 25, respectively, and the controller controls when the waste water return valve 35 satisfies the preset flushing condition.
  • the booster pump 15 and the solenoid valve 20 are closed, and the waste water valve 25 is controlled to open so that the raw water in the raw water pipe flushes the waste water return valve 35. Since the concentration of impurities such as calcium ions and magnesium ions contained in the raw water is lower than the concentration of impurities such as calcium ions and magnesium ions in the wastewater, the raw water can adhere to the calcium reflux valve 35 when flowing through the wastewater return valve 35. Impurities such as ions and magnesium ions are washed away, so that impurities such as calcium ions and magnesium ions in the wastewater are prevented from being fouled on the piping where the wastewater return valve 35 and the wastewater return valve 35 are located, thereby ensuring the wastewater return valve 35 and the wastewater return flow.
  • the scale inhibiting device 30 disposed on the waste water pipe can remove the calcium ions and magnesium ions in the waste water discharged to the outside through the waste pipe, thereby avoiding the waste water.
  • the calcium ion and magnesium ion plasma form scale on the waste water valve 25 and the waste water pipe, thereby avoiding the problem that the waste water valve 25 and the waste water pipe are blocked.
  • the water purification system 100 further includes a flow meter 40 electrically connected to the controller.
  • the flow meter 40 is mounted on the wastewater return valve 35 or the flow meter 40 is mounted on the flow meter 40.
  • the water inlet end or the water outlet end of the wastewater return valve 35 is not specifically limited herein.
  • the flow meter 40 is configured to detect a flow rate value through the waste water return valve 35, and the flow meter 40 feeds the detection result to the controller in real time; the controller controls the boost pump 15 and the electromagnetic valve 20 according to the detection result fed back by the flow meter 40. switch.
  • the controller controls the booster pump 15 and the electromagnetic valve 20 to be closed, and the raw water in the raw water pipe is discharged from the waste water return valve 35 at this time.
  • the end flows to the water inlet end of the waste water return valve 35 to flush the waste water return valve 35, so that impurities such as calcium ions and magnesium ions attached to the waste water return valve 35 are washed away by the raw water, thereby avoiding adhesion to the wastewater.
  • impurities on the valve 35 agglomerate and block the waste water return valve 35 occurs.
  • the controller controls both the booster pump 15 and the solenoid valve 20 to be turned on, that is, the water purification system 100 is switched to the pure water mode.
  • the entire water purification system 100 does not require user operation when preparing the pure water and the flushing wastewater return valve 35, that is, the water purification system 100 can be intelligently switched in both the pure water and the flushing wastewater return valve 35 modes.
  • the operation of the water purification system 100 is simplified, that is, the user only needs to power on the water purification system 100, thereby facilitating the user experience; on the other hand, the water purification system 100 intelligently flushes the wastewater return valve 35. It ensures that the waste water return valve 35 is not blocked, and the service life of the waste water return valve 35 is prolonged, thereby avoiding the frequent replacement of the waste water return valve 35 by the water purification system 100.
  • the controller will clear the value of the flow meter 40.
  • the above controller controls the first timing of the booster pump 15 and the solenoid valve 20 to be closed, that is, the flushing time of the waste water return valve 35 can be realized by a timing circuit or a timer known to those skilled in the art, due to timing. Circuits and timers are well known to those skilled in the art and will not be described herein.
  • the value of the preset flow value can be set relatively large, thus avoiding the situation that the water purification system 100 frequently flushes the wastewater return valve 35;
  • the water purification system 100 is used in an area where the water quality is poor, and the value of the preset flow rate value can be set relatively small, so that the waste water return valve 35 can be prevented from being blocked by the agglomerated impurities.
  • the water purification system 100 further includes a timer (not shown) electrically connected to the controller, the timer is configured to detect the working time of the wastewater return valve 35, and send the detection result to the The controller controls the switches of the booster pump 15 and the solenoid valve 20 based on the results of the timer transmission.
  • the controller controls the booster pump 15 and the electromagnetic valve 20 to be closed, and the raw water in the raw water pipe is discharged from the water outlet end of the waste water return valve 35.
  • the water is supplied to the water inlet end of the waste water return valve 35 to flush the waste water return valve 35, and the impurities adhering to the waste water return valve 35 are washed away by the raw water, thus avoiding the clogging of the waste water return valve 35.
  • both the booster pump 15 and the solenoid valve 20 are controlled to be turned on, that is, the water purifying system 100 is switched to the pure water mode.
  • the entire water purification system 100 does not require user operation when preparing the pure water and the flushing wastewater return valve 35, that is, the water purification system 100 can be intelligently switched in both the pure water and the flushing wastewater return valve 35 modes.
  • the operation of the water purification system 100 is simplified, that is, the user only needs to power on the water purification system 100, thereby facilitating the user experience; on the other hand, the water purification system 100 intelligently flushes the wastewater return valve 35. It ensures that the waste water return valve 35 is not blocked, and the service life of the waste water return valve 35 is prolonged, thereby avoiding the frequent replacement of the waste water return valve 35 by the water purification system 100.
  • the controller will clear the count of the timer.
  • the above controller controls the second timing of the booster pump 15 and the solenoid valve 20 to be closed, that is, the flushing time of the waste water return valve 35 can be realized by a timing circuit or a timer known to those skilled in the art, due to timing. Circuits and timers are well known to those skilled in the art and will not be described herein.
  • the preset working time of the wastewater return valve 35 can be set relatively long, thus avoiding frequent flushing of the wastewater by the water purification system 100.
  • the condition of the valve 35 occurs; if the water purifying system 100 is used in an area with poor water quality, the preset working time of the wastewater return valve 35 can be set relatively short, so that the impurities of the waste water return valve 35 can be prevented from being agglomerated. Blocked.
  • the water purification system 100 further includes a first TDS detecting device 45 electrically connected to the controller, and the first TDS detecting device 45 is mounted on the wastewater return valve 35 or The first TDS detecting device 45 is installed at the water inlet end or the water outlet end of the wastewater return valve 35.
  • the first TDS detecting device 45 is for detecting the TDS value of the wastewater flowing through the wastewater return valve 35, and sends the detection result to the controller.
  • the controller controls the switches of the booster pump 15 and the solenoid valve 20 based on the detection result transmitted by the first TDS detecting device 45.
  • the waste water in the waste water pipe is returned to the raw water pipe and mixed with the raw water of the raw water pipe, and then flows into the membrane filter element 10 for filtration, and a part of the waste water formed by the filtration is returned to the raw water pipe to be mixed with the raw water, so that the cycle This will increase the TDS value of the wastewater discharged from the waste pipe.
  • the controller controls the booster pump 15 and the solenoid valve 20 to be closed, at which time the raw water in the raw water pipe is discharged from the wastewater.
  • the water outlet end of the return valve 35 flows to the water inlet end of the waste water return valve 35 to flush the waste water return valve 35, and the raw water contains less impurities than the waste water returned to the raw water pipe, so that the raw water is attached thereto.
  • the impurities on the waste water return valve 35 are washed away by the raw water, thereby preventing the clogging of the waste water return valve 35.
  • the controller controls both the booster pump 15 and the solenoid valve 20 to be opened, that is, the water purification system 100 is switched to the pure water mode.
  • the entire water purification system 100 does not require user operation when preparing the pure water and the flushing wastewater return valve 35, that is, the water purification system 100 can be intelligently switched in both the pure water and the flushing wastewater return valve 35 modes.
  • the operation of the water purification system 100 is simplified, that is, the user only needs to power on the water purification system 100, thereby facilitating the user experience; on the other hand, the water purification system 100 intelligently flushes the wastewater return valve 35. It ensures that the waste water return valve 35 is not blocked, and the service life of the waste water return valve 35 is prolonged, thereby avoiding the frequent replacement of the waste water return valve 35 by the water purification system 100.
  • the above controller controls the booster pump 15 and the solenoid valve 20 to be closed for a third timing period, that is, the flushing time of the waste water return valve 35 can be realized by a timing circuit or a timer known to those skilled in the art, due to timing. Circuits and timers are well known to those skilled in the art and will not be described herein.
  • the controller compares the average value of the detection results sent by the first TDS detecting device 45 in the third timing duration with the first preset TDS value, and controls the booster pump 15 and the solenoid valve 20 according to the comparison result. .
  • the preset time period detected by the first TDS detecting device 45 can be set relatively long, thus avoiding frequent washing of the wastewater by the water purification system 100.
  • the condition of the return valve 35 occurs; if the water purification system 100 is used in an area with poor water quality, the preset time period detected by the first TDS detecting device 45 can be set relatively short, so that the waste water return valve 35 can be prevented from being The agglomerated impurities are blocked.
  • the water purification system 100 further includes a bidirectional water pump 50 connected in series to the water inlet end or the water outlet end of the wastewater return valve 35.
  • the bidirectional water pump 50 is electrically connected to the controller.
  • the controller controls the operation of the two-way water pump 50 according to the operation mode of the water purification system 100.
  • the controller controls the booster pump 15 and the electromagnetic valve 20 to open, and controls the two-way water pump 50 to rotate forward. Due to the existence of the two-way water pump 50, the waste pipe is returned to the original The flow rate of the wastewater in the water pipe is increased, so that more wastewater is returned to the membrane cartridge 10, thereby improving the water utilization rate.
  • the controller controls the booster pump 15 and the solenoid valve 20 to be closed, and also controls the reverse rotation of the two-way water pump 50 to flow from the water outlet end of the wastewater return valve 35 to the waste water return valve 35.
  • the raw water at the water end is increased under the pressure of the two-way water pump 50, and the flow rate and the water pressure are increased, thereby ensuring that the impurities adhering to the waste water return valve 35 can be washed away, thereby preventing the waste water return valve 35 from being agglomerated.
  • the problem of blockage of impurities occurs.
  • the water purification system 100 further includes a first one-way valve 55 connected in series to the tube between the scale inhibiting device 30 and the solenoid valve 20.
  • the water inlet end of the waste water return valve 35 is connected to the line between the first check valve 55 and the solenoid valve 20.
  • the first check valve 55 is disposed such that the waste water entering the waste pipe between the first check valve 55 and the scale inhibiting device 30 can only be discharged from the water discharge end of the waste pipe, that is, even within the scale inhibiting device 30
  • the scale inhibitor is dissolved in the wastewater, and the wastewater containing the scale inhibitor cannot be returned to the membrane cartridge 10 through the first check valve 55, which ensures the wastewater which is returned to the membrane cartridge 10 through the wastewater return valve 35.
  • the scale inhibitor is not contained, which ensures that the ion concentration of the pure water prepared by the membrane cartridge 10 does not exceed the standard.
  • the opening degree of the waste water valve 25 is adjustable for regulating the flow rate of the waste water discharged to the outside through the waste water pipe.
  • the water purification system 100 further includes a second TDS detecting device 60 electrically connected to the controller, and the second TDS detecting device 60 is mounted on the waste water valve 25 or installed on the waste water pipe. It is used to detect the TDS value of the wastewater discharged to the outside through the waste pipe, and the controller controls the operation of the wastegate 25 according to the detection result of the second TDS detecting device 60.
  • the controller controls the opening degree of the waste water valve 25 to decrease or remain unchanged, thereby reducing or maintaining the membrane filter element.
  • the waste water discharge amount of 10 that is, the waste water generated by the filtration of the membrane filter element 10 is mostly returned to the membrane filter element 10 through the line in which the waste water return valve 35 is located, thereby improving the water utilization rate and also improving the water purification system 100. Water production rate.
  • the controller controls the opening degree of the waste water valve 25 to increase, thereby increasing the displacement of the waste water pipe, that is, increasing The wastewater discharge speed and discharge amount of the membrane cartridge 10 are increased, so that the wastewater in the membrane cartridge 10 can be discharged in time.
  • the waste water valve 25 is in the fully open state, the wastewater discharge speed of the membrane cartridge 10 is maximized. Since the wastewater discharge speed of the membrane cartridge 10 is faster, the impurities remaining in the membrane cartridge 10 are easily washed out, which is advantageous for prolonging. The service life of the membrane cartridge 10.
  • the specification of the above-mentioned waste water valve 25 is less than or equal to 800 cc/min.
  • the waste water discharge amount of the water purification system 100 can be reduced to ensure the pure water discharge amount of the membrane filter element 10 and the wastewater discharge amount of the membrane filter element 10 even when the waste water valve 25 is in the fully open state.
  • the ratio is maintained at 3 to 1 or greater than 3 to 1, which greatly increases the water production rate of the water purification system 100 and reduces the generation of wastewater.
  • the water purification system 100 further includes an inlet valve 65 electrically connected to the controller, and the inlet valve 65 is installed in the addition.
  • the pressure pump 15 is on the raw water pipe on the water inlet side.
  • the controller controls the booster pump 15 and the inlet valve 65 to be closed, since the inlet valve 65 is located on the water inlet side of the booster pump 15, thus ensuring that the booster pump 15 is located.
  • Raw water remains in the raw water pipe between the inlet valves 65, thereby avoiding the occurrence of idling of the booster pump 15 when the water purification system 100 is started, thereby effectively protecting the booster pump 15.
  • the water purification system 100 further includes a front filter element 70.
  • the water inlet of the pre-filter element 70 is in communication with a water source.
  • the water purification system 100 The water outlet is connected to the inlet end of the raw water pipe.
  • the pre-filter element 70 may be a PP cotton filter element, an activated carbon filter element or other filter element having a pure water function, and is not specifically limited herein.
  • the pre-filter element 70 is disposed in front of the raw water pipe, so that the large particle impurities in the raw water can be effectively filtered, thereby preventing the particulate impurities in the raw water from adhering to the membrane filter element 10 and the waste water return valve 35, thereby causing the membrane element and the waste water return valve. 35 blocked problems occurred.
  • the pre-filter element 70 is a PAC composite filter element
  • the PAC composite filter element comprises a composite layer of a non-woven fabric, a carbon fiber and a PP cotton, that is, the PAC composite filter element combines the functions of a carbon fiber filter element and a PP cotton filter element, that is, a
  • the filter element can replace the two filter elements, thus reducing the number of pre-filter elements 70, thereby making the installation space required for the entire water purification system 100 smaller.
  • the water purification system 100 further includes a rear filter core 75, and the water inlet of the rear filter core 75 is connected to the water outlet end of the pure water pipe.
  • the water outlet of the rear filter element 75 is in communication with the external water receiving port.
  • the rear filter element 75 can be an activated carbon filter element.
  • the activated carbon filter element mainly uses activated carbon as a main raw material, which can remove residual chlorine and odor in the water, and can also improve the taste of the water, thereby facilitating the user experience.
  • the water purification system 100 further includes a second one-way valve 80 electrically connected to the controller, and the second one-way valve 80 is mounted on an external water pipe that communicates with the water outlet of the rear filter element 75, thereby avoiding The water flowing out of the rear filter element 75 is returned to the rear filter element 75.
  • the water purification system 100 further includes a UV germicidal faucet 85 installed at the water outlet end of the pure water pipe.
  • the UV germicidal faucet 85 can be turned on, and when the pure water in the membrane filter element 10 flows through the UV germicidal faucet 85, the UV germicidal faucet 85 can effectively sterilize the pure water, thus making the pure water The bacteria are killed, which ensures that the pure water taken by the user is clean and safe.
  • the water purification system 100 further includes a pressure detecting device 90 mounted on a pure water pipe, and the pressure detecting device 90 is configured to detect pure water.
  • the pressure inside the tube; the controller is electrically connected to the pressure detecting device 90, and controls the startup or shutdown of the water purifying system 100 according to the detection result sent by the pressure detecting device 90.
  • the pressure detecting device 90 is a pressure switch.
  • the pressure at the pressure switch is lowered, that is, the pressure value detected by the pressure switch is lower than that.
  • the preset pressure value at which time the controller controls the booster pump 15, the waste water return valve 35, the solenoid valve 20, and the waste water return valve 25 to be simultaneously opened, that is, the purified water system 100 is started to obtain pure water.
  • the pure water in the membrane filter element 10 will continue to flow to the outlet end of the pure water pipe until the entire pure water pipe is filled, so that the pressure in the pure water pipe is increased, that is, It is said that the pressure value detected by the pressure switch at this time is equal to or greater than the preset pressure value, and the controller controls the booster pump 15, the waste water return valve 35, the solenoid valve 20, and the waste water return valve 25 to be simultaneously closed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

一种净水***(100),其包括:膜滤芯(10),具有与原水管连通的原水口(a)、与纯水管连通的纯水口(b)以及与废水管连通的废水口(c);增压泵(15),安装于原水管上;电磁阀(20),安装于废水管上;废水阀(25),安装于废水管上电磁阀(20)的出水侧;阻垢装置(30),安装于废水管上并位于电磁阀(20)和废水阀(25)之间;废水回流阀(35),废水回流阀(35)的进水端连接至位于电磁阀(20)与阻垢装置(30)之间的废水管上,废水回流阀(35)的出水端连接至原水管上;以及控制器,分别与废水回流阀(35)、增压泵(15)、电磁阀(20)以及废水阀(25)电性连接,控制器用于在废水回流阀(35)满足预设的冲洗条件时,控制增压泵(15)和电磁阀(20)关闭,并控制废水阀(25)打开,以使得原水管内的原水对废水回流阀(35)进行冲洗。这样就保证了净水***中用于回流废水的管路和排放废水的管路不会被堵塞。

Description

净水***
技术领域
本发明涉及净水技术领域,特别涉及一种净水***。
背景技术
饮水问题是民众非常关注的问题,水中有很多不利于健康的物质已是不争的事实,这也是老百姓健康饮水已是得到加强的主要原因,也是净水设备市场火爆的根源。
现有净水***的核心部件是膜滤芯,与其连接的管路包括原水管路、纯水管路、废水管路以及回流管路,该回流管路将废水管路和原水管路连通,以使得膜滤芯过滤后产生的废水有一部分能够重新回流至膜滤芯内进行过滤,这样就提高了整个净水***的产水率,也提高了水的利用率。
由于膜滤芯过滤产生的废水,其钙离子、镁离子等杂质浓度较高,这样就容易导致回流管路上的废水回流阀以及废水管路上的废水阀出现结垢,进而导致净水***的回流管路以及废水管路出现堵塞的问题。
发明内容
本发明的主要目的是提出一种净水***,旨在避免净水***通过废水的管路出现堵塞。
为实现上述目的,本发明提出的一种净水***,其包括:
膜滤芯,具有与原水管连通的原水口、与纯水管连通的纯水口以及与废水管连通的废水口;
增压泵,安装于所述原水管上;
电磁阀,安装于所述废水管上;
废水阀,安装于所述废水管上并位于所述电磁阀的出水侧;
阻垢装置,安装于所述废水管上并位于所述电磁阀和所述废水阀之间;
废水回流阀,所述废水回流阀的进水端连接至位于所述电磁阀与所述阻垢装置之间的废水管上,所述废水回流阀的出水端连接至所述原水管上;以及,
控制器,分别与所述废水回流阀、所述增压泵、所述电磁阀以及所述废水阀电性连接,所述控制器用于在所述废水回流阀满足预设的冲洗条件时,控制所述增压泵和所述电磁阀关闭,并控制所述废水阀打开,以使得原水管内的原水对所述废水回流阀进行冲洗。
优选地,所述净水***还包括与所述控制器电性连接的流量计,所述流量计安装于所述废水回流阀上或者所述流量计安装于所述废水回流阀的进水端或出水端;
所述流量计用于检测通过所述废水回流阀的废水流量值,并将检测结果发送至控制器;
所述控制器在所述流量计发送的废水流量值达到预设流量值时,确定所述废水回流阀满足所述预设的冲洗条件。
优选地,所述净水***还包括与所述控制器电性连接的计时器;
所述计时器用于检测所述废水回流阀的工作时长,并将检测结果发送至控制器;
所述控制器在所述计时器发送的工作时长达到预设工作时长时,确定所述废水回流阀满足所述预设的冲洗条件。
优选地,所述净水***还包括与所述控制器电性连接的第一TDS检测装置,所述第一TDS检测装置安装于所述废水回流阀上或者所述第一TDS检测装置安装于所述废水回流阀的进水端或出水端;
所述第一TDS检测装置用于检测通过所述废水回流阀的废水的TDS值,并将检测结果发送至控制器;
所述控制器在所述第一TDS检测装置发送的废水的TDS值达到第一预设TDS值时,确定所述废水回流阀满足所述预设的冲洗条件。
优选地,所述净水***还包括双向水泵,所述双向水泵串接于所述废水回流阀的进水端或出水端。
优选地,所述净水***还包括第一单向阀,所述第一单向阀串接至所述阻垢装置与所述电磁阀之间的废水管上;
所述废水回流阀的进水端连接至位于所述第一单向阀和所述电磁阀之间的废水管上。
优选地,所述净水***还包括第二TDS检测装置,所述第二TDS检测装置安装于所述废水阀上或者所述第二TDS检测装置安装于所述废水管上,所述第二TDS检测装置用于检测通过所述废水管的废水TDS值;
所述控制器与所述第二TDS检测装置电性连接,所述控制器还用于,在所述第二TDS检测装置检测的废水TDS值高于第二预设TDS值时,控制所述废水阀的开度增大;在所述第二TDS检测装置的废水TDS值等于或低于第二预设TDS值时,控制所述废水阀的开度保持不变或减小。
优选地,所述净水***还包括与所述控制器电性连接的进水阀,所述进水阀安装于位于所述增压泵进水侧的原水管上。
优选地,所述净水***还包括前置滤芯,所述前置滤芯的进水口与水源连通,所述前置滤芯的出水口与所述原水管的进水端连通。
优选地,所述净水***还包括后置滤芯,所述后置滤芯的进水口与所述纯水管的出水端连通,所述后置滤芯的出水口与外部接口连通。
优选地,所述净水***还包括安装于所述纯水管上的压力检测装置,所述压力检测装置用于检测所述纯水管内的压力值;
所述控制器还与所述压力检测装置电性连接,并根据所述压力检测装置的检测结果控制所述增压泵、所述废水回流阀、所述电磁阀以及所述废水阀同时打开或者同时关闭。
本发明通过将增压泵设置于与膜滤芯的原水口连通的原水管上,电磁阀安装于废水管上,废水阀安装于废水管上并位于电磁阀的出水侧,阻垢装置安装于废水管上并位于电磁阀和废水阀之间,废水回流阀的进水端连接至位于电磁阀与阻垢装置之间的废水管上,废水回流阀的出水端连接至原水管上,净水***的控制器分别与增压泵、电磁阀以及废水阀电性连接,并且控制器在废水回流阀满足预设冲洗条件时,控制增压泵和电磁阀关闭,并控制废水阀打开,以使得原水管内的原水对废水回流阀进行冲洗。由于原水所含的钙离子、镁离子等杂质的浓度要低于废水中的钙离子、镁离子等杂质的浓度,原水在流经废水回流阀时,能够将附着于废水回流阀以及废水回流阀所在管路上的钙离子、镁离子等杂质冲洗掉,这样就避免了废水中的钙离子、镁离子等杂质在废水回流阀以及废水回流阀所在管路上形成结垢,进而确保了废水回流阀以及废水回流阀所在管路不会被堵塞;另外,设置于废水管上的阻垢装置能够将通过废水管排至外界的废水中的钙离子、镁离子等离子去除,这样就避免了废水中的钙离子、镁离子等离子在废水阀以及废水管上形成水垢,进而确保了废水阀以及废水管不会被堵塞。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明净水***第一实施例的结构示意图;
图2为图1中净水***的另一状态示意图;
图3为本发明净水***第二实施例的结构示意图;
图4为本发明净水***第三实施例的结构示意图;
图5为本发明净水***第四实施例的结构示意图;
图6为本发明净水***第五实施例的结构示意图;
图7为本发明净水***第六实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 净水*** 45 第一TDS检测装置
10 膜滤芯 50 双向水泵
15 增压泵 55 第一单向阀
20 电磁阀 60 第二TDS检测装置
25 废水阀 65 进水阀
30 阻垢装置 70 前置滤芯
35 废水回流阀 75 后置滤芯
a 原水口 80 第二单向阀
b 纯水口 85 UV杀菌水龙头
c 废水口 90 压力检测装置
40 流量计
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种净水***,请参照图1,图示出了本发明的净水***的结构示意图。该净水***100包括膜滤芯10、增压泵15、电磁阀20、废水阀25、阻垢装置30、废水回流阀35、控制器(未图示)以及其他部件。
该膜滤芯10具有原水口a、纯水口b以及废水口c;膜滤芯10的原水口a与原水管连接,外部的原水通过原水管流入膜滤芯10内;膜滤芯10的纯水口b与纯水管连接,经膜滤芯10过滤产生的纯水通过纯水管排出;膜滤芯10的废水口c与废水管连通,经膜滤芯10过滤产生的废水通过废水管排出,该废水管的出水端还可以与废水箱连通,这样就便于废水的收集,并且收集于废水箱中的废水还可以用作它用,这样就避免了水资源的浪费。
增压泵15安装于原水管上,其主要用于给原水管内的原水加压,这样就使得从原水口a流入膜滤芯10内的水压足够高,进而有利于提高膜滤芯10制取纯水的速度。
电磁阀20安装于废水管上,其用于控制废水管的通断。
废水阀25安装于废水管上并位于电磁阀20的出水侧,该废水阀25可以是开度可以调节的阀,也可以是开度固定的阀,在此不做具体的限定。
阻垢装置30安装于废水管上并位于电磁阀20和废水阀25之间,该阻垢装置30内设置有阻垢剂,该阻垢剂可以是硅磷晶、SP3等等,其能与水中钙离子、镁离子形成可溶性络合物,进而能够有效阻止钙离子、镁离子于废水阀25以及废水管内形成水垢,进而确保了废水管和废水阀25不会被结块杂质所堵塞。
废水回流阀35的进水端连接至位于电磁阀20与阻垢装置30之间的废水管上,废水回流阀35的出水端连接至所述原水管上。如此设置,一方面使得由膜滤芯10过滤产生的一部分废水能够回流至膜滤芯10内并得到过滤,这样就有利于提高水的利用率;另一方面,还能够保证膜滤芯10的膜前水压不会过高,这样就有利于延长膜滤芯10的使用寿命。
需要说明的是,阻垢剂对人体有害,将废水回流阀35的进水端设置于阻垢装置30的进水侧,这样就能确保通过废水回流阀35回流至膜滤芯10内的废水未携带阻垢剂,从而确保了净水***100制取的纯水中离子不会出现超标,进而确保了膜滤芯10过滤产生的纯水的安全性。
控制器与增压泵15、废水阀25、废水回流阀35以及电磁阀20均电性连接,其用于控制增压泵15、废水阀25、废水回流阀35以及电磁阀20的工作,即控制增压泵15、废水阀25、废水回流阀35以及电磁阀20的开启或关闭,该控制器可以是单片机,也可以是PWM控制器,在此对控制器不做具体的限定。
当净水***100制取纯水时,请参照图1,控制器控制增压泵15、废水回流阀35、电磁阀20、废水阀25均开启,原水管中的低压原水通过增压泵15增压后形成高压原水,并且原水管内的高压原水通过膜滤芯10的原水口a进入膜滤芯10内,进入膜滤芯10内的原水经膜滤芯10过滤后形成纯水和废水,纯水从膜滤芯10的纯水口b排出,以供用户取用;废水则从膜滤芯10的废水口c排入废水管中,并通过废水管排出;而进入废水管中的一部分废水直接通过废水管排至外界,另一部分废水流经废水回流阀35后流入原水管中,并与原水管中的原水混合后一同流入膜滤芯10中进行过滤,这样就减少了净水***100的废水排出量,也即提高了净水***100的产水率。
当废水回流阀35满足预设冲洗条件时,请参照图2,控制器控制增压泵15和电磁阀20关闭,也即关闭膜滤芯10的进水口和废水口c,这样就使得原水无法进入膜滤芯10内,膜滤芯10的废水口c也不排废水,原水管中的原水直接从废水回流阀35的出水端流向废水回流阀35的进水端。由于原水中钙离子、镁离子等杂质的浓度要远远低于废水中钙离子、镁离子等杂质的浓度,当原水流经废水回流阀35时,能够将附着于废水回流阀25所在的管路以及废水回流阀35上的钙离子、镁离子等杂质冲洗掉,这样就避免了钙离子、镁离子等杂质在废水回流阀25所在的管路以及废水回流阀35处堆积而结块,进而导致废水回流阀25所在的管路以及废水回流阀35被结块的杂质所堵塞的问题发生。
需要说明的是,上述废水回流阀35的预设冲洗条件可以是废水回流阀35的工作时长、可以是通过废水回流阀35的累计流量等等,在此就不一一列举,只要满足预设冲洗条件,控制器就控制增压泵15和电磁阀20关闭,以对废水回流阀35进行冲洗。
本发明通过将增压泵15设置于与膜滤芯10的原水口连通的原水管上,电磁阀20安装于废水管上,废水阀25安装于废水管上并位于电磁阀20的出水侧,阻垢装置30安装于废水管上并位于电磁阀20和废水阀25之间,废水回流阀35的进水端连接至位于电磁阀20与阻垢装置30之间的废水管上,废水回流阀35的出水端连接至原水管上,净水***100的控制器分别与增压泵15、电磁阀20以及废水阀25电性连接,并且控制器在废水回流阀35满足预设冲洗条件时,控制增压泵15和电磁阀20关闭,并控制废水阀25打开,以使得原水管内的原水对废水回流阀35进行冲洗。由于原水所含的钙离子、镁离子等杂质的浓度要低于废水中钙离子、镁离子等杂质的浓度,原水在流经废水回流阀35时,能够将附着于废水回流阀35上的钙离子、镁离子等杂质冲洗掉,这样就避免了废水中的钙离子、镁离子等杂质在废水回流阀35以及废水回流阀35所在的管路上结垢,进而确保了废水回流阀35以及废水回流阀35所在的管路被堵塞的问题发生;另外,设置于废水管上的阻垢装置30能够将通过废水管排至外界的废水中的钙离子、镁离子等离子去除,这样就避免了废水中的钙离子、镁离子等离子在废水阀25以及废水管上而形成水垢,进而避免了废水阀25以及废水管被堵塞的问题发生。
在本发明的一实施例中,请参照图3,该净水***100还包括与控制器电性连接的流量计40,该流量计40安装于废水回流阀35上或者该流量计40安装于废水回流阀35的进水端或出水端,在此不做具体的限定。该流量计40用于检测通过废水回流阀35的流量值,并且该流量计40将检测结果实时反馈给控制器;控制器根据流量计40反馈的检测结果控制增压泵15和电磁阀20的开关。
具体的,在流量计40检测到通过废水回流阀35的流量值达到预设流量值时,控制器控制增压泵15和电磁阀20关闭,此时原水管内的原水从废水回流阀35的出水端流向废水回流阀35的进水端,以对废水回流阀35进行冲洗,这样就使得附着于废水回流阀35上的钙离子、镁离子等杂质被原水冲洗掉,从而避免了附着于废水回流阀35上的杂质结块而将废水回流阀35堵塞的问题发生。
并且,控制器在增压泵15和电磁阀20关闭第一定时时长后,控制增压泵15和电磁阀20均开启,也即将净水***100切换至制取纯水模式。整个净水***100在制取纯水和冲洗废水回流阀35时均不需要用户操作,即净水***100可以在制取纯水和冲洗废水回流阀35两种模式下智能切换。如此设置,一方面简化了净水***100的操作,即用户只需为净水***100上电即可,进而有利于提高用户的体验;另一方面,净水***100智能冲洗废水回流阀35,确保了废水回流阀35不会被堵塞,延长了废水回流阀35的使用寿命,进而避免了净水***100需要频繁更换废水回流阀35。
需要说明的是,上述控制器在流量计40检测到通过废水回流阀35的流量值达预设流量值后,会将流量计40的数值进行清零处理。
应当说的是,上述控制器在增压泵15和电磁阀20关闭第一定时时长,也即废水回流阀35的冲洗时长可以采用本领域技术人员公知的定时电路或者定时器来实现,由于定时电路和定时器是本领域技术人员公知的技术,在此就不再赘述。
另外,若上述净水***100用在水质较好的地区,则预设流量值的数值可以设置的相对大一些,这样就避免了净水***100频繁冲洗废水回流阀35的情况出现;若上述净水***100用在水质较差的地区,则预设流量值的数值可以设置的相对较小一些,这样就能够避免废水回流阀35被结块的杂质所封堵。
在本发明的一实施例中,该净水***100还包括与控制器电性连接的计时器(未图示),该计时器用于检测废水回流阀35的工作时长,并将检测结果发送给控制器,控制器根据计时器发送的结果控制增压泵15和电磁阀20的开关。
具体的,在计时器检测到废水回流阀35的工作时长达到预设工作时长时,控制器控制增压泵15和电磁阀20均关闭,此时原水管内的原水从废水回流阀35的出水端流向废水回流阀35的进水端,以对废水回流阀35进行冲洗,附着于废水回流阀35上的杂质会被原水冲洗掉,这样就避免了废水回流阀35堵塞。
并且,控制器控制增压泵15和电磁阀20关闭第二定时时长后,控制增压泵15和电磁阀20均开启,也即将净水***100切换至制取纯水模式。整个净水***100在制取纯水和冲洗废水回流阀35时均不需要用户操作,即净水***100可以在制取纯水和冲洗废水回流阀35两种模式下智能切换。如此设置,一方面简化了净水***100的操作,即用户只需为净水***100上电即可,进而有利于提高用户的体验;另一方面,净水***100智能冲洗废水回流阀35,确保了废水回流阀35不会被堵塞,延长了废水回流阀35的使用寿命,进而避免了净水***100需要频繁更换废水回流阀35。
需要说明的是,上述控制器在计时器检测到废水回流阀35的工作时长达到预设工作时长时,会将计时器的计数进行清零处理。
应当说的是,上述控制器在增压泵15和电磁阀20关闭第二定时时长,也即废水回流阀35的冲洗时长可以采用本领域技术人员公知的定时电路或者定时器来实现,由于定时电路和定时器是本领域技术人员公知的技术,在此就不再赘述。
另外,需要说明的是,若上述净水***100用在水质较好的地区,则废水回流阀35的预设工作时长可以设置的相对长一点,这样就避免了净水***100频繁冲洗废水回流阀35的情况出现;若上述净水***100用在水质较差的地区,则废水回流阀35的预设工作时长可以设置的相对短一点,这样就能够避免废水回流阀35被结块的杂质所封堵。
在本发明的一实施例中,请参照图4,该净水***100还包括与控制器电性连接的第一TDS检测装置45,该第一TDS检测装置45安装于废水回流阀35上或者该第一TDS检测装置45安装于废水回流阀35的进水端或出水端,第一TDS检测装置45用于检测流经废水回流阀35的废水的TDS值,并将检测结果发送至控制器;控制器根据第一TDS检测装置45发送的检测结果控制增压泵15和电磁阀20的开关。
具体的,废水管中的废水回流至原水管中并与原水管的原水混合后一起流入膜滤芯10中进行过滤,过滤后形成的废水又会有一部分回流至原水管中与原水混合,如此循环,就会使得从废水管中排出的废水的TDS值升高。当第一TDS检测装置45检测到流经废水回流阀35的废水的TDS值达到第一预设TDS值时,控制器控制增压泵15和电磁阀20关闭,此时原水管内的原水从废水回流阀35的出水端流向废水回流阀35的进水端,以对废水回流阀35进行冲洗,原水与回流至原水管的废水相比较,原水中所含的杂质更少,这样就使得附着于废水回流阀35上的杂质会被原水冲洗掉,从而避免了废水回流阀35发生堵塞。
并且,控制器在增压泵15和电磁阀20关闭第三定时时长后,控制增压泵15和电磁阀20均开启,也即将净水***100切换至制取纯水模式。整个净水***100在制取纯水和冲洗废水回流阀35时均不需要用户操作,即净水***100可以在制取纯水和冲洗废水回流阀35两种模式下智能切换。如此设置,一方面简化了净水***100的操作,即用户只需为净水***100上电即可,进而有利于提高用户的体验;另一方面,净水***100智能冲洗废水回流阀35,确保了废水回流阀35不会被堵塞,延长了废水回流阀35的使用寿命,进而避免了净水***100需要频繁更换废水回流阀35。
应当说的是,上述控制器在增压泵15和电磁阀20关闭第三定时时长,也即废水回流阀35的冲洗时长可以采用本领域技术人员公知的定时电路或者定时器来实现,由于定时电路和定时器是本领域技术人员公知的技术,在此就不再赘述。
进一步地,上述控制器将第一TDS检测装置45在第三定时时长内发送的检测结果的平均值与第一预设TDS值比较,并根据比较的结果控制增压泵15和电磁阀20工作。如此设置,避免了净水***100用在水质较差的地区时,净水***100一直处于冲洗废水回流阀35的问题出现。
需要说明的是,若上述净水***100用在水质较好的地区,则第一TDS检测装置45检测的预设时间段可以设置的相对长一些,这样就避免了净水***100频繁冲洗废水回流阀35的情况出现;若上述净水***100用在水质较差的地区,则第一TDS检测装置45检测的预设时间段可以设置的相对短一些,这样就能够避免废水回流阀35被结块的杂质所封堵。
在本发明的一实施例中,请参照图5,该净水***100还包括串接至废水回流阀35的进水端或出水端的双向水泵50,该双向水泵50与控制器电性连接,控制器根据净水***100的工作模式控制双向水泵50工作。
具体的,在净水***100制取纯水时,控制器控制增压泵15和电磁阀20均开启,并控制双向水泵50正转,由于双向水泵50的存在,使得自废水管回流至原水管中的废水的流速提高,这样就使得更多的废水回流至膜滤芯10内,进而提高了水的利用率。在废水回流阀35满足预设冲洗条件时,控制器控制增压泵15和电磁阀20关闭的同时,还控制双向水泵50反转,从废水回流阀35的出水端流向废水回流阀35的进水端的原水在双向水泵50的加压下,其流速和水压都得到提高,这样就确保了附着于废水回流阀35上的杂质能够被冲洗掉,进而避免了废水回流阀35被结块的杂质所堵塞的问题出现。
在本发明的一实施例中,请参照图6,该净水***100还包括第一单向阀55,该第一单向阀55串接至阻垢装置30与电磁阀20之间的管路上,而废水回流阀35的进水端连接至位于第一单向阀55和电磁阀20之间的管路上。第一单向阀55的设置,使得进入第一单向阀55与阻垢装置30之间的废水管中的废水只能从废水管的出水端排出,也就是说,即使阻垢装置30内的阻垢剂溶解于废水中,含有阻垢剂的废水也无法通过第一单向阀55而回流至膜滤芯10内,这也就确保了通过废水回流阀35回流至膜滤芯10内的废水中不含阻垢剂,这样就保证了膜滤芯10制取的纯水的离子浓度不会出现超标。
在本发明的一实施例中,请参照图7,该废水阀25的开度是可调节的,其用于调节通过废水管排至外界的废水的流量大小。为了方便控制废水阀25的开度,该净水***100还包括与控制器电性连接的第二TDS检测装置60,第二TDS检测装置60安装于废水阀25上或者安装于废水管上,其用于检测通过废水管排至外界的废水TDS值,控制器根据第二TDS检测装置60的检测结果控制废水阀25工作。
具体的,在第二TDS检测装置60检测的废水TDS值小于或等于第二预设TDS值时,控制器控制废水阀25的开度减小或保持不变,这样就减少或保持了膜滤芯10的废水排出量,也即使得膜滤芯10过滤产生的废水大部分通过废水回流阀35所在的管路回流至膜滤芯10内,从而提高了水的利用率,也提高了净水***100的产水率。在第二TDS检测装置60检测到通过废水管的废水TDS值要大于第二预设TDS值时,控制器控制废水阀25的开度增大,这样就增大了废水管排水量,也即增大了膜滤芯10的废水排出速度和排出量,从而使得膜滤芯10中的废水能够及时排出。并且当废水阀25处于全开状态时,膜滤芯10的废水排出速度为最大,由于膜滤芯10的废水排出速度较快,存留于膜滤芯10内的杂质容易被冲洗出来,这样就有利于延长膜滤芯10的使用寿命。
进一步地,上述废水阀25的规格小于或等于800cc/min。采用规格小于800cc/min的废水阀25,能够减少净水***100的废水排出量,以确保废水阀25即使处于全开状态时,膜滤芯10的纯水排出量与膜滤芯10的废水排出量的比例保持为3比1或者大于3比1,这样就大大地提高了净水***100的产水率,减少了废水的产生。
在本发明的一实施例中,请参照图1至图7任意一附图,该净水***100还包括与控制器电性连接的进水阀65,并且该进水阀65安装于位于增压泵15进水侧的原水管上。当净水***100停止工作时,控制器控制增压泵15和进水阀65均关闭,由于进水阀65是位于增压泵15的进水侧,这样就保证了位于增压泵15和进水阀65之间的原水管中存留有原水,从而避免了净水***100启动工作时,增压泵15出现空转的情况出现,进而有效地保护了增压泵15。
在本发明的一实施例中,请参照图1至图7任意一附图,该净水***100还包括前置滤芯70,该前置滤芯70的进水口与水源连通,该净水***100的出水口与原水管的进水端连通。该前置滤芯70可以是PP棉滤芯、活性炭滤芯或者其他具有纯水功能的滤芯,在此不做具体的限定。在原水管前设置前置滤芯70,这样就能够有效的过滤掉原水中大颗粒杂质,进而避免了原水中颗粒杂质附着于膜滤芯10内和废水回流阀35上,进而导致膜元件和废水回流阀35被堵塞的问题发生。
优选地,上述前置滤芯70为PAC复合滤芯,该PAC复合滤芯包括无纺布、碳纤维和PP棉三层复合形成,即PAC复合滤芯集合了碳纤维滤芯和PP棉滤芯的功能,也即用一个滤芯可以代替两个滤芯,这样就减少了前置滤芯70的数量,进而使得整个净水***100所需要的安装空间更小。
在本发明的一实施例中,请参照图1至图7任意一附图,该净水***100还包括后置滤芯75,该后置滤芯75的进水口与纯水管的出水端连接,该后置滤芯75的出水口与外部接水口连通。该后置滤芯75可以是活性炭滤芯,活性炭滤芯主要以活性炭为主要原料,其能够去除水中的余氯、异味等,同时还能改善水的口感,进而有利于提升用户的体验。
进一步地,该净水***100还包括与控制器电性连接的第二单向阀80,该第二单向阀80安装于与后置滤芯75的出水口连通的外部水管上,这样就避免了从后置滤芯75流出的水回流至后置滤芯75内。
在本发明的一实施例中,请参照图1至图7任意一附图,该净水***100还包括UV杀菌水龙头85,其安装于纯水管的出水端。当用户需要取用纯水时,可打开UV杀菌水龙头85,膜滤芯10内的纯水流经UV杀菌水龙头85时,UV杀菌水龙头85能够对纯水进行有效地杀菌,这样就使得纯水中的细菌均被杀死,进而确保了用户取到的纯水是干净、安全的。
在本发明的一实施例中,请参照图1至图7任意一附图,该净水***100还包括安装于纯水管上的压力检测装置90,该压力检测装置90用于检测纯水管内的压力大小;控制器与压力检测装置90电性连接,并根据压力检测装置90发送的检测结果控制净水***100的启动或关闭。
具体的,该压力检测装置90为压力开关,当纯水管的出水端打开时,由于纯水向出水端流动,这样就使得压力开关处的压力降低,即压力开关检测的压力值要低于预设压力值,此时控制器控制增压泵15、废水回流阀35、电磁阀20以及废水回流阀25同时打开,也即启动净水***100制取纯水。当纯水管的出水端关闭时,此时膜滤芯10内的纯水会持续向纯水管的出水端流,直至充满整个纯水管,这样就使得纯水管内的压力增大,也就是说,此时压力开关检测到的压力值等于或大于预设压力值,控制器控制增压泵15、废水回流阀35、电磁阀20以及废水回流阀25同时关闭。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (11)

  1. 一种净水***,其特征在于,包括:
    膜滤芯,具有与原水管连通的原水口、与纯水管连通的纯水口以及与废水管连通的废水口;
    增压泵,安装于所述原水管上;
    电磁阀,安装于所述废水管上;
    废水阀,安装于所述废水管上并位于所述电磁阀的出水侧;
    阻垢装置,安装于所述废水管上并位于所述电磁阀和所述废水阀之间;
    废水回流阀,所述废水回流阀的进水端连接至位于所述电磁阀与所述阻垢装置之间的废水管上,所述废水回流阀的出水端连接至所述原水管上;以及,
    控制器,分别与所述废水回流阀、所述增压泵、所述电磁阀以及所述废水阀电性连接,所述控制器用于在所述废水回流阀满足预设的冲洗条件时,控制所述增压泵和所述电磁阀关闭,并控制所述废水阀打开,以使得原水管内的原水对所述废水回流阀进行冲洗。
  2. 如权利要求1所述的净水***,其特征在于,所述净水***还包括与所述控制器电性连接的流量计,所述流量计安装于所述废水回流阀上或者所述流量计安装于所述废水回流阀的进水端或出水端;
    所述流量计用于检测通过所述废水回流阀的废水流量值,并将检测结果发送至控制器;
    所述控制器在所述流量计发送的废水流量值达到预设流量值时,确定所述废水回流阀满足所述预设的冲洗条件。
  3. 如权利要求1所述的净水***,其特征在于,所述净水***还包括与所述控制器电性连接的计时器;
    所述计时器用于检测所述废水回流阀的工作时长,并将检测结果发送至控制器;
    所述控制器在所述计时器发送的工作时长达到预设工作时长时,确定所述废水回流阀满足所述预设的冲洗条件。
  4. 如权利要求1所述的净水***,其特征在于,所述净水***还包括与所述控制器电性连接的第一TDS检测装置,所述第一TDS检测装置安装于所述废水回流阀上或者所述第一TDS检测装置安装于所述废水回流阀的进水端或出水端;
    所述第一TDS检测装置用于检测通过所述废水回流阀的废水的TDS值,并将检测结果发送至控制器;
    所述控制器在所述第一TDS检测装置发送的废水的TDS值达到第一预设TDS值时,确定所述废水回流阀满足所述预设的冲洗条件。
  5. 如权利要求1至4中任意一项所述的净水***,所述净水***还包括双向水泵,所述双向水泵串接于所述废水回流阀的进水端或出水端。
  6. 如权利要求1至4中任意一项所述的净水***,其特征在于,所述净水***还包括第一单向阀,所述第一单向阀串接至所述阻垢装置与所述电磁阀之间的废水管上;
    所述废水回流阀的进水端连接至位于所述第一单向阀和所述电磁阀之间的废水管上。
  7. 如权利要求1至4中任意一项所述的净水***,其特征在于,所述净水***还包括第二TDS检测装置,所述第二TDS检测装置安装于所述废水阀上或者所述第二TDS检测装置安装于所述废水管上,所述第二TDS检测装置用于检测通过所述废水管的废水TDS值;
    所述控制器与所述第二TDS检测装置电性连接,所述控制器还用于,在所述第二TDS检测装置检测的废水TDS值高于第二预设TDS值时,控制所述废水阀的开度增大;在所述第二TDS检测装置的废水TDS值等于或低于第二预设TDS值时,控制所述废水阀的开度保持不变或减小。
  8. 如权利要求1所述的净水***,其特征在于,所述净水***还包括与所述控制器电性连接的进水阀,所述进水阀安装于位于所述增压泵进水侧的原水管上。
  9. 如权利要求1所述的净水***,其特征在于,所述净水***还包括前置滤芯,所述前置滤芯的进水口与水源连通,所述前置滤芯的出水口与所述原水管的进水端连通。
  10. 如权利要求1所述的净水***,其特征在于,所述净水***还包括后置滤芯,所述后置滤芯的进水口与所述纯水管的出水端连通,所述后置滤芯的出水口与外部接口连通。
  11. 如权利要求1所述的净水***,其特征在于,所述净水***还包括安装于所述纯水管上的压力检测装置,所述压力检测装置用于检测所述纯水管内的压力值;
    所述控制器还与所述压力检测装置电性连接,并根据所述压力检测装置的检测结果控制所述增压泵、所述废水回流阀、所述电磁阀以及所述废水阀同时打开或者同时关闭。
PCT/CN2018/074289 2017-04-27 2018-01-26 净水*** WO2018196455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710291041.4 2017-04-27
CN201710291041.4A CN108793524B (zh) 2017-04-27 2017-04-27 净水***

Publications (1)

Publication Number Publication Date
WO2018196455A1 true WO2018196455A1 (zh) 2018-11-01

Family

ID=63918721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074289 WO2018196455A1 (zh) 2017-04-27 2018-01-26 净水***

Country Status (2)

Country Link
CN (1) CN108793524B (zh)
WO (1) WO2018196455A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422938A (zh) * 2019-08-19 2019-11-08 中山市史麦斯净水科技有限公司 带纯水回流冲洗方式的***
CN110451675A (zh) * 2019-09-19 2019-11-15 北京科泰兴达高新技术有限公司 一种智能节水型纯净水机
CN112850818A (zh) * 2021-03-10 2021-05-28 嘉兴市绿洲塑业有限公司 一种减少细菌减少二次污染的净水机结构

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110898669A (zh) * 2019-12-06 2020-03-24 九牧厨卫股份有限公司 一种过滤装置和过滤***
CN114380357A (zh) * 2020-10-16 2022-04-22 云米互联科技(广东)有限公司 一种便于tds调控的净水***和方法、净水设备
CN112515485A (zh) * 2020-12-23 2021-03-19 深圳市家乐士净水科技有限公司 一种即热模块控制***
CN114262025A (zh) * 2021-12-29 2022-04-01 佛山市美的清湖净水设备有限公司 ***
CN114275849A (zh) * 2021-12-29 2022-04-05 佛山市美的清湖净水设备有限公司 带有双tds探头的***
CN114394647A (zh) * 2021-12-29 2022-04-26 佛山市美的清湖净水设备有限公司 ***
CN114394645A (zh) * 2021-12-29 2022-04-26 佛山市美的清湖净水设备有限公司 带有流量计和智能出水组件的***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170634A (ja) * 1999-12-14 2001-06-26 Denso Corp 整水装置
CN1902135A (zh) * 2003-11-13 2007-01-24 美国过滤器公司 水处理***和方法
CN101530851A (zh) * 2008-03-13 2009-09-16 中国铝业股份有限公司 一种阀门结垢的清洗装置
CN202230070U (zh) * 2011-09-28 2012-05-23 甘肃省膜科学技术研究院 反渗透阻垢剂结垢上限评价装置
CN205187941U (zh) * 2015-10-27 2016-04-27 杨思博 一种节水型反渗透净水机
CN106517422A (zh) * 2016-12-28 2017-03-22 温州大阳科技有限公司 节水型反渗透***
CN206692496U (zh) * 2017-04-27 2017-12-01 佛山市顺德区美的饮水机制造有限公司 净水***
CN206843256U (zh) * 2017-04-27 2018-01-05 佛山市顺德区美的饮水机制造有限公司 净水***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008949A1 (en) * 2010-07-13 2012-01-19 Siemens Industry, Inc. Slurry feed system and method
CN205917088U (zh) * 2016-08-12 2017-02-01 广东顺德滴恩环保科技有限公司 一种具有ro膜纯水正冲洗功能和废水回流利用的净水***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170634A (ja) * 1999-12-14 2001-06-26 Denso Corp 整水装置
CN1902135A (zh) * 2003-11-13 2007-01-24 美国过滤器公司 水处理***和方法
CN101530851A (zh) * 2008-03-13 2009-09-16 中国铝业股份有限公司 一种阀门结垢的清洗装置
CN202230070U (zh) * 2011-09-28 2012-05-23 甘肃省膜科学技术研究院 反渗透阻垢剂结垢上限评价装置
CN205187941U (zh) * 2015-10-27 2016-04-27 杨思博 一种节水型反渗透净水机
CN106517422A (zh) * 2016-12-28 2017-03-22 温州大阳科技有限公司 节水型反渗透***
CN206692496U (zh) * 2017-04-27 2017-12-01 佛山市顺德区美的饮水机制造有限公司 净水***
CN206843256U (zh) * 2017-04-27 2018-01-05 佛山市顺德区美的饮水机制造有限公司 净水***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422938A (zh) * 2019-08-19 2019-11-08 中山市史麦斯净水科技有限公司 带纯水回流冲洗方式的***
CN110451675A (zh) * 2019-09-19 2019-11-15 北京科泰兴达高新技术有限公司 一种智能节水型纯净水机
CN112850818A (zh) * 2021-03-10 2021-05-28 嘉兴市绿洲塑业有限公司 一种减少细菌减少二次污染的净水机结构

Also Published As

Publication number Publication date
CN108793524B (zh) 2023-09-26
CN108793524A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2018196455A1 (zh) 净水***
CN105540901A (zh) 一种智能净水***
WO2017115986A1 (ko) 유로가 일체형으로 형성된 측류유동형 ro필터
WO2018223844A1 (zh) 带有uv功能的水***及其控制方法
WO2019213906A1 (zh) 净水***
CN108569794A (zh) 一种反渗透净水***
CN206142935U (zh) 一种节水型净水机
CN211283817U (zh) 一种edr快速出水***及其***
CN206843256U (zh) 净水***
CN207919650U (zh) 智能直饮水给水售水***
CN215539848U (zh) 净水机
CN113105011B (zh) 净水***
CN205187941U (zh) 一种节水型反渗透净水机
CN209362241U (zh) 一种高水效净水***
CN210559829U (zh) 富氢水机整机***
CN208990376U (zh) 一种龙头净水机
CN207957981U (zh) 一种净水***
CN107142994B (zh) 智能无负压分质给水设备及其供水方法
CN108793324B (zh) 净水***
CN214990681U (zh) 净水***
CN206940634U (zh) 净水***
CN212200595U (zh) 一种带过滤杀菌装置的无负压供水设备
CN215975345U (zh) 一种超纯水制备机用的电离除杂装置
CN109433014A (zh) 一种高水效净水***
CN217265259U (zh) 一种具备杀菌消毒功能的***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/12/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18791795

Country of ref document: EP

Kind code of ref document: A1