WO2018196036A1 - 一种感测膜片以及mems麦克风 - Google Patents

一种感测膜片以及mems麦克风 Download PDF

Info

Publication number
WO2018196036A1
WO2018196036A1 PCT/CN2017/083569 CN2017083569W WO2018196036A1 WO 2018196036 A1 WO2018196036 A1 WO 2018196036A1 CN 2017083569 W CN2017083569 W CN 2017083569W WO 2018196036 A1 WO2018196036 A1 WO 2018196036A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive
sensing diaphragm
sensitive portion
sensing
diaphragm according
Prior art date
Application number
PCT/CN2017/083569
Other languages
English (en)
French (fr)
Inventor
詹竣凱
周宗燐
蔡孟錦
王宇
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2018196036A1 publication Critical patent/WO2018196036A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • the present invention relates to a sensing diaphragm, and more particularly to a diaphragm suitable for sounding; the invention also relates to a MEMS microphone.
  • MEMS sensing components are now widely used in consumer electronics. How to speed up the production process is the focus of current component suppliers. For example, the dust generated by the mobile phone production and assembly process is directly cleaned by air guns. The lowest cost option. Therefore, it is necessary to propose a large sound pressure or atmospheric pressure anti-blowing improvement scheme for the MEMS sensor to avoid the failure of the microphone due to the air gun cleaning during the assembly process.
  • the current improvement is to provide a pressure relief hole or a pressure relief valve structure on the diaphragm of the MEMS microphone.
  • the structure of the pressure relief hole will reduce the effective area of the diaphragm; the pressure relief valve structure provided on the diaphragm will directly affect the vibration characteristics of the diaphragm, especially affecting the low frequency characteristics of the diaphragm, and the dynamic stability of the diaphragm is relatively poor. .
  • a sensing diaphragm comprising a sensitive portion located at a central portion, and a fixing portion located at an outer edge of the sensitive portion and integrally formed with the sensitive portion; further comprising extending from the fixed portion to a slit portion at the edge of the sensitive portion and not closed, the slit portion enclosing a holding portion of the sensing film on the fixed portion and the free end extending to the upper edge of the sensitive portion; the sensitive portion is configured to Displacement with respect to the holding portion when subjected to an impact to form an air flow passage between the holding portion and the sensitive portion.
  • At least one of the holding portions is provided.
  • the holding portion is provided with at least three, uniformly distributed in the circumferential direction of the edge of the sensitive portion. on.
  • the slit portion includes a first segment extending from the fixed portion to the sensitive portion, and a second segment extending from the end of the first segment to the fixed portion.
  • first segment and the second segment are symmetrical along a central axis thereof.
  • the slit portion is generally U-shaped, square, semi-circular or semi-elliptical.
  • the free ends of the first and second segments are provided with extensions that are offset from the direction in which they extend.
  • the ratio of the area of the slit portion extending on the sensitive portion to the area of the sensitive portion is 5%-50%.
  • the slit portion is formed by etching or etching.
  • a MEMS microphone comprising a backing pole and the sensing diaphragm described above.
  • the sensing diaphragm of the present invention is different from the traditional pressure relief valve structure, and the pressure-dissipating airflow passage is generated by the pressure deformation of the sensitive portion itself, and the airflow passage can be adjusted according to the internal and external pressure difference of the sensitive portion in real time.
  • the size (the pressure relief opening rate is adjusted in real time by the self-pressing deformation) provides a pressure relief path to protect the sensing diaphragm.
  • the sensing diaphragm of the present invention has a small influence on the vibration characteristics of the sensitive portion due to the air flow passage being located at the edge of the sensitive portion and by the displacement of the sensitive portion itself, and the dynamic stability of the sensitive portion better.
  • the inventors of the present invention have found that in the prior art, the pressure relief valve structure provided on the diaphragm directly affects the vibration characteristics of the diaphragm, especially affecting the low frequency characteristics of the diaphragm, and the dynamic stability of the diaphragm is relatively poor. Therefore, the technical task to be achieved by the present invention or the technical problem to be solved is not thought of or expected by those skilled in the art, so the present invention is a new technical solution.
  • FIG. 1 is a schematic structural view of a MEMS microphone of the present invention.
  • FIG. 2 is a top plan view of a sensing diaphragm of the present invention.
  • Figure 3 is a schematic view showing the structure of the slit portion of Figure 2;
  • FIG. 4 is a schematic view of the displacement of the sensing diaphragm of FIG. 1 when subjected to an impact.
  • Fig. 5 is a schematic view showing the structure of another embodiment of the slit portion of the present invention.
  • the invention provides a sensing diaphragm, which may be a diaphragm applied in a microphone structure, or a sensitive film applied in other sensor structures, such as a pressure sensor, a sensitive film layer in a gas sensor.
  • a sensing diaphragm which may be a diaphragm applied in a microphone structure, or a sensitive film applied in other sensor structures, such as a pressure sensor, a sensitive film layer in a gas sensor.
  • the structure, material, and application environment of these sensing diaphragms are common knowledge in the field of sensors, and will not be specifically described herein.
  • the microphone is taken as an example to describe the technical solution of the present invention in detail. It should be understood that those skilled in the art may also be sensors of other structures.
  • a MEMS microphone includes a substrate 1 and a capacitor structure formed on the substrate 1, the capacitor structure including a sensing diaphragm (diaphragm) and a back pole 6;
  • the sensing diaphragm and the back pole 6 are supported by a supporting portion 7 such that there is a certain gap between the sensing diaphragm and the back pole 6.
  • the capacitor structure may be a structure in which the back electrode 6 is on the bottom and the sensing film is under, as shown in FIG. 1; for those skilled in the art, the back electrode 6 may be under, and the sensing film may be on the bottom. Structure, no specific description here.
  • the sensing diaphragm of the present invention includes a sensitive portion 2 located at a central portion, and a fixed portion 5 located at an outer edge of the sensitive portion 2 and integrally formed with the sensitive portion 2; the sensitive portion 2 acts as a vibration of the microphone
  • the pickup of the microphone mainly depends on the vibration characteristics of the sensitive portion 2.
  • the fixing portion 5 is for connecting the entire sensing film to the substrate 1, so that the sensitive portion 2 can be suspended above the rear cavity of the substrate 1. In a specific manufacturing process, a thin film layer is first deposited on the substrate 1 or on the insulating layer above the substrate 1, and then the fixing portion 5 on the outer side and the sensitive portion in the middle portion are formed by an etching or etching process. 2.
  • a folding ring portion (not shown) is further disposed between the sensitive portion 2 and the fixing portion 5, through which the folding portion is provided.
  • the sensitivity of the vibration of the sensitive portion 2 can be significantly improved.
  • the sensing diaphragm of the present invention further includes a slit portion 4 extending from the fixing portion 5 to the edge of the sensitive portion 2, the slit portion 4 being non-closed, and the non-closed slit portion 4 is surrounded by the sensing diaphragm
  • the holding portion 3 is located on the fixing portion 5, and its free end extends to the edge position of the sensitive portion 2, with reference to Figs.
  • the holding portion 3 is a part of the sensing diaphragm, and the shape of the holding portion 3 is determined by the shape of the slit portion 4.
  • the slit portion 4 can be formed, for example, by etching or etching a silicon film layer.
  • the free end is located at the edge position on the sensitive portion 2, and when the sensing film is attached to the substrate, when subjected to a large sound pressure or a large air current
  • the sensitive portion 2 is displaced upward or downward with respect to the holding portion 3 due to a large impact, so that an air flow passage that can be depressed is formed between the holding portion 3 and the sensitive portion 2.
  • the slit portion 4 includes a first segment 40 extending from the fixing portion 5 to the sensitive portion 2, and a portion extending from the first segment 40 to the fixing portion 5
  • the second paragraph 41 That is, the open end of the slot portion 4 is located at the position of the fixed portion 5, and the closed end surrounded by the first segment 40 and the second segment 41 is located on the sensitive portion 2, so that the first segment 40,
  • the root of the holding portion 3 surrounded by the second stage 41 is located at the position of the fixing portion 5, and the free end of the holding portion 3 is located at the position of the sensitive portion 2 of the sensing diaphragm.
  • the sensing diaphragm of the present invention is different from the traditional pressure relief valve structure, and the pressure-dissipating airflow passage is generated by the pressure deformation of the sensitive portion itself, and the airflow passage can be adjusted according to the internal and external pressure difference of the sensitive portion in real time.
  • the size (the pressure relief opening rate is adjusted in real time by the self-pressing deformation) provides a pressure relief path to protect the sensing diaphragm.
  • the sensing diaphragm of the present invention has a small influence on the vibration characteristics of the sensitive portion due to the air flow passage at the edge of the sensitive portion and is formed by the displacement of the sensitive portion itself, and the dynamic stability of the sensitive portion better.
  • the holding portion 3 of the present invention may be provided with one, two, three or more.
  • the three holding portions 3 are evenly distributed in the circumferential direction of the edge of the sensitive portion 2 to ensure the uniformity of the pressure relief and the stability of the displacement of the sensitive portion 2.
  • the first section 40 and the second section 41 are symmetrical along their central axes such that the formed retaining portion 3 is a centrally symmetrical structure.
  • the holding portion 3 can also be an asymmetrical structure, and when the sensitive portion 2 is displaced, a pressure-relieving airflow passage can also be formed.
  • the slit portion as a whole may have a regular or irregular U-shape, square shape, semi-circular shape, semi-elliptical shape, with reference to Fig. 5, or other shapes well known to those skilled in the art.
  • the free ends of the first section 40 and the second section 41 are provided with an extension 42 that deviates from the direction in which they extend.
  • the two extensions 42 may extend toward the center of the slit portion 4 or may extend opposite to the opposite.
  • the arrangement of the extension portion 42 can well release the stress when the slit portion 4 is formed on the film layer to ensure the flatness and stability of the sensing film. Sex.
  • the length of the slit portion 4 of the present invention on the sensitive portion 2 characterizes the extension of the holding portion 3 on the sensitive portion 2, which determines the size of the airflow passage after the displacement of the sensitive portion 2. That is, the greater the extension length of the slit portion 4 on the sensitive portion 2, the greater the pressure relief capability of the airflow passage between the sensitive portion 2 and the holding portion 3.
  • the ratio of the area of the slit portion 4 extending on the sensitive portion 2 to the area of the sensitive portion 2 is preferably set at 5% to 50%.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

一种感测膜片及MEMS麦克风,包括位于中部区域的敏感部(2),以及位于敏感部(2)外侧边缘且与敏感部(2)一体成型的固定部(5);还包括从固定部(5)延伸至敏感部(2)边缘位置且非封闭的缝隙部(4),缝隙部(4)在感测膜片上围成了根部位于固定部(5)上、自由端延伸至敏感部(2)上边缘位置的保持部(3);敏感部(2)被配置为在受到冲击时相对于保持部(3)发生位移,以在保持部(3)与敏感部(2)之间形成气流流通通道。感测膜片不同于传统的泄压阀结构,对敏感部的振动特性影响较小,敏感部的动态稳定性更好。

Description

一种感测膜片以及MEMS麦克风 技术领域
本发明涉及一种感测膜片,尤其涉及一种适用于发声的振膜;本发明还涉及一种MEMS麦克风。
背景技术
MEMS感测组件现已应用普及在消费性电子产品中,如何加快产品生产工艺是目前零组件供货商关注的焦点,例如手机生产组装过程中所产生的灰尘碎削通过***直接清理,是目前成本最低的方案。因此对MEMS传感器必须提出大声压或大气压的抗吹气改善方案,避免在组装过程,因***清理导致麦克风发生破裂失效。
例如在麦克风领域,目前的改善方案为在MEMS麦克风的振膜上设置泄压孔或者泄压阀结构。但是泄压孔的结构会减少振膜的有效面积;在振膜上设置的泄压阀结构会直接影响振膜的振动特性,尤其影响振膜的低频特性,而且振膜的动态稳定性比较差。
发明内容
本发明的一个目的是提供一种感测膜片的新技术方案。
根据本发明的第一方面,提供了一种感测膜片,包括位于中部区域的敏感部,以及位于敏感部外侧边缘且与所述敏感部一体成型的固定部;还包括从固定部延伸至敏感部边缘位置且非封闭的缝隙部,所述缝隙部在感测膜片上围成了根部位于固定部上、自由端延伸至敏感部上边缘位置的保持部;所述敏感部被配置为在受到冲击时相对于保持部发生位移,以在保持部与敏感部之间形成气流流通通道。
可选地,所述保持部至少设置有一个。
可选地,所述保持部至少设置有三个,均匀分布在敏感部边缘的周向 上。
可选地,所述缝隙部包括从固定部延伸至敏感部上的第一段,以及从第一段端头迂回延伸至固定部的第二段。
可选地,所述第一段、第二段沿其中心轴线对称。
可选地,所述缝隙部整体呈U形、方形、半圆形或半椭圆形。
可选地,在所述第一段、第二段的自由端头设置有偏离自身延伸方向的延伸部。
可选地,所述缝隙部在敏感部上延伸的面积与敏感部面积的比例为5%-50%。
可选地,所述缝隙部通过腐蚀或者刻蚀的方式形成。
根据本发明的另一方面,还提供了一种MEMS麦克风,包括背极以及上述的感测膜片。
本发明的感测膜片,不同于传统的泄压阀结构,泄压的气流流通通道通过敏感部自身受压变形量而产生,而且可实时依据敏感部的内外压力差来调整气流流通通道通的尺寸(通过自身受压的形变量实时调整泄压开口速率),提供泄压路径以此保护感测膜片。本发明的感测膜片,由于气流流通通道位于敏感部的边缘位置,而且通过敏感部自身的位移形成,这就使得气流流通通道对敏感部的振动特性影响较小,敏感部的动态稳定性更好。
本发明的发明人发现,在现有技术中,在振膜上设置的泄压阀结构会直接影响振膜的振动特性,尤其影响振膜的低频特性,而且振膜的动态稳定性比较差。因此,本发明所要实现的技术任务或者所要解决的技术问题是本领域技术人员从未想到的或者没有预期到的,故本发明是一种新的技术方案。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明MEMS麦克风的结构示意图。
图2是本发明感测膜片的俯视图。
图3是图2中缝隙部的结构示意图。
图4是图1中感测膜片在受到冲击时发生位移的示意图。
图5是本发明缝隙部另一实施方式的结构示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供的一种感测膜片,其可以是应用在麦克风结构中的振膜,也可以是应用在其它传感器结构中的敏感膜,例如压力传感器、气体传感器中的敏感膜层。这些感测膜片的结构、材质、应用环境均属于各传感器领域的公知常识,在此不再具体说明。
为了便于表述,现在麦克风为例,对本发明的技术方案进行详尽的描述,应当理解的是,对于本领域的技术人员而言,其还可以是其它结构的各传感器。
参考图1,本发明提供的一种MEMS麦克风,其包括衬底1,以及形成在衬底1上的电容器结构,该电容器结构包括感测膜片(振膜)、背极6; 所述感测膜片与背极6之间通过一支撑部7进行支撑,使得感测膜片与背极6之间具有一定的间隙。所述电容器结构可以是背极6在上、感测膜片在下的结构,如图1所示;对于本领域的技术人员而言,还可以是背极6在下、感测膜片在上的结构,在此不再具体说明。
本发明的感测膜片,参考图2,包括位于中部区域的敏感部2,以及位于敏感部2外侧边缘且与所述敏感部2一体成型的固定部5;该敏感部2作为麦克风的振动部,麦克风的拾音主要依靠敏感部2的振动特性。固定部5用于将整个感测膜片连接在衬底1上,从而使得敏感部2可以悬空在衬底1的后腔上方。在具体的制造工艺中,首先在衬底1上或者衬底1上方的绝缘层上沉积一层薄膜层,之后通过刻蚀或者腐蚀的工艺形成位于外侧的固定部5以及位于中部区域的敏感部2。
当然,对于本领域的技术人员而言,为了提高敏感部2的振动特性,在所述敏感部2与固定部5之间还设置有折环部(视图未给出),通过该折环部可以明显提高敏感部2振动的灵敏度。
本发明的感测膜片,还包括从固定部5延伸至敏感部2边缘位置的缝隙部4,该缝隙部4为非封闭的,通过该非封闭的缝隙部4在感测膜片上围成了保持部3,该保持部的根部位于固定部5上,其自由端延伸至敏感部2的边缘位置,参考图1、图2。保持部3为感测膜片的一部分,保持部3的形状由缝隙部4的形状而定。在成型的时候,例如可以通过腐蚀或者刻蚀硅膜层的方式形成所述缝隙部4。
由于保持部3的根部位于感测膜片的固定部5位置,自由端位于敏感部2上的边缘位置,当感测膜片连接在衬底上后,在受到大声压或者大气流的冲击时,所述敏感部2由于受到较大的冲击,其会相对于保持部3发生向上或者向下的位移,从而在保持部3与敏感部2之间形成了可以泄压的气流流通通道。
在本发明一个具体的实施方式中,参考图3,所述缝隙部4包括从固定部5延伸至敏感部2上的第一段40,以及从第一段40迂回延伸至固定部5的第二段41。也就是说,缝隙部4的开口端位于固定部5的位置,其由第一段40、第二段41围成的封闭端位于敏感部2上,使得由第一段40、 第二段41围成的保持部3的根部位于固定部5位置,保持部3的自由端位于感测膜片的敏感部2位置。
参考图4,当感测膜片受到自上而下的大声压时,由于保持部3的自由端仅延伸至敏感部2的边缘位置,敏感部2的受压面远远大于保持部3,敏感部2由于受到较大的冲击会向下发生位移,而保持部3则保持不动,这就使得在敏感部2与保持部3之间会相互错开,从而打开了保持部3与敏感部2之间的气流流通通道,以便可以快速地泄压。
本发明的感测膜片,不同于传统的泄压阀结构,泄压的气流流通通道通过敏感部自身受压变形量而产生,而且可实时依据敏感部的内外压力差来调整气流流通通道通的尺寸(通过自身受压的形变量实时调整泄压开口速率),提供泄压路径以此保护感测膜片。本发明的感测膜片,由于气流流通通道位于敏感部的边缘位置,而且通过敏感部自身的位移形成,这就使得气流流通通道对敏感部的振动特性影响非常小,敏感部的动态稳定性更好。
本发明的保持部3可以设置有一个、两个、三个或者更多个。本发明优选的是保持部3至少设置有三个,该三个保持部3均匀分布在敏感部2边缘的周向上。例如当敏感部2为圆形结构时,三个保持部3均匀分布在敏感部2边缘的圆周方向上,以保证泄压的均匀性以及敏感部2发生位移的稳定性。
在本发明优选的实施方式中,所述第一段40、第二段41沿其中心轴线对称,使得形成的保持部3为一中心对称结构。当然,对于本领域的技术人员而言,所述保持部3也可以为一非对称结构,在敏感部2发生位移的时候,同样可以形成泄压的气流流通通道。
所述缝隙部整体可以呈规则或者不规则的U形、方形、半圆形、半椭圆形,参考图5,或者本领域技术人员所熟知的其它形状等。
优选的是,在所述第一段40、第二段41的自由端头设置有偏离自身延伸方向的延伸部42。参考图3,所述两个延伸部42可以朝缝隙部4的中心方向进行延伸,也可以朝相反的相反延伸。延伸部42的设置可以很好地释放在膜层上形成缝隙部4时的应力,以保证感测膜片的平整度以及稳定 性。
本发明缝隙部4在敏感部2上的延伸长度表征了保持部3在敏感部2上的延伸长度,这决定了敏感部2发生位移后气流流通通道的大小。也就是说,缝隙部4在敏感部2上的延伸长度越大,则敏感部2与保持部3之间的气流流通通道的泄压能力就越大。
另外,如果保持部3占用敏感部2的面积过大,会导致在大声压时,保持部3也会发生相对的位移,这与本申请的技术方案是相违背的。因此,需要设计好保持部3与敏感部2之间的尺寸比例关系,这种比例关系本领域技术人员可以通过有效次实验得到。在本发明一个具体的实施方式中,所述缝隙部4在敏感部2上延伸的面积与敏感部2面积的比例关系优选设置在5%-50%。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种感测膜片,其特征在于:包括位于中部区域的敏感部(2),以及位于敏感部(2)外侧边缘且与所述敏感部(2)一体成型的固定部(5);还包括从固定部(5)延伸至敏感部(2)边缘位置且非封闭的缝隙部(4),所述缝隙部(4)在感测膜片上围成了根部位于固定部(5)上、自由端延伸至敏感部(2)上边缘位置的保持部(3);所述敏感部(2)被配置为在受到冲击时相对于保持部(3)发生位移,以在保持部(3)与敏感部(2)之间形成气流流通通道。
  2. 根据权利要求1所述的感测膜片,其特征在于:所述保持部(3)至少设置有一个。
  3. 根据权利要求2所述的感测膜片,其特征在于:所述保持部(3)至少设置有三个,均匀分布在敏感部(2)边缘的周向上。
  4. 根据权利要求1至3任一项所述的感测膜片,其特征在于:所述缝隙部(4)包括从固定部(5)延伸至敏感部(2)上的第一段(40),以及从第一段(40)端头迂回延伸至固定部(5)的第二段(41)。
  5. 根据权利要求4所述的感测膜片,其特征在于:所述第一段(40)、第二段(41)沿其中心轴线对称。
  6. 根据权利要求4或5所述的感测膜片,其特征在于:所述缝隙部(4)整体呈U形、方形、半圆形或半椭圆形。
  7. 根据权利要求4至6任一项所述的感测膜片,其特征在于:在所述第一段(40)、第二段(41)的自由端头设置有偏离自身延伸方向的延伸部(42)。
  8. 根据权利要求1至7任一项所述的感测膜片,其特征在于:所述缝隙部(4)在敏感部(2)上延伸的面积与敏感部(2)面积的比例为5%-50%。
  9. 根据权利要求1至8任一项所述的感测膜片,其特征在于:所述缝隙部(4)通过腐蚀或者刻蚀的方式形成。
  10. 一种MEMS麦克风,包括背极以及根据权利要求1-9任一项所述的感测膜片。
PCT/CN2017/083569 2017-04-28 2017-05-09 一种感测膜片以及mems麦克风 WO2018196036A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710297168.7A CN106996827B (zh) 2017-04-28 2017-04-28 一种感测膜片以及mems麦克风
CN201710297168.7 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196036A1 true WO2018196036A1 (zh) 2018-11-01

Family

ID=59434531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083569 WO2018196036A1 (zh) 2017-04-28 2017-05-09 一种感测膜片以及mems麦克风

Country Status (2)

Country Link
CN (1) CN106996827B (zh)
WO (1) WO2018196036A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343898B1 (en) * 2018-01-08 2019-07-09 Fortemedia, Inc. MEMS microphone with tunable sensitivity
US10715924B2 (en) * 2018-06-25 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS microphone having diaphragm
CN111137842B (zh) * 2019-12-31 2023-06-23 共达电声股份有限公司 Mems膜片及mems传感器芯片
CN112087698B (zh) * 2020-10-15 2021-07-23 潍坊歌尔微电子有限公司 Mems麦克风

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280319A1 (en) * 2005-06-08 2006-12-14 General Mems Corporation Micromachined Capacitive Microphone
CN101453683A (zh) * 2008-12-26 2009-06-10 瑞声声学科技(深圳)有限公司 硅电容式麦克风
CN203206466U (zh) * 2013-03-12 2013-09-18 北京卓锐微技术有限公司 一种硅电容麦克风
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
CN106375912A (zh) * 2016-08-31 2017-02-01 歌尔股份有限公司 一种mems麦克风中的振膜及mems麦克风

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338427A (zh) * 2013-07-18 2013-10-02 山东共达电声股份有限公司 Mems芯片以及mems麦克风
CN204425633U (zh) * 2014-11-28 2015-06-24 歌尔声学股份有限公司 一种mems麦克风、mems电容传感器和一种振膜
CN206024109U (zh) * 2016-08-04 2017-03-15 北京卓锐微技术有限公司 Mems麦克风振膜及mems麦克风
CN206905882U (zh) * 2017-04-28 2018-01-19 歌尔股份有限公司 一种感测膜片以及mems麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060280319A1 (en) * 2005-06-08 2006-12-14 General Mems Corporation Micromachined Capacitive Microphone
CN101453683A (zh) * 2008-12-26 2009-06-10 瑞声声学科技(深圳)有限公司 硅电容式麦克风
CN203206466U (zh) * 2013-03-12 2013-09-18 北京卓锐微技术有限公司 一种硅电容麦克风
CN204316746U (zh) * 2014-11-28 2015-05-06 歌尔声学股份有限公司 一种mems传感器和mems麦克风
CN106375912A (zh) * 2016-08-31 2017-02-01 歌尔股份有限公司 一种mems麦克风中的振膜及mems麦克风

Also Published As

Publication number Publication date
CN106996827B (zh) 2020-11-20
CN106996827A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2018196036A1 (zh) 一种感测膜片以及mems麦克风
US10393606B2 (en) Dynamic pressure sensor
JP6870150B2 (ja) 二層振動膜を有する差動コンデンサ型マイク
US9913040B2 (en) Capacitive silicon microphone and fabrication method thereof
US8705777B2 (en) MEMS microphone and method of manufacturing the same
CN104918169B (zh) 静电电容型转换器、音响传感器及传声器
US20140084394A1 (en) Micro electro mechanical system (mems) microphone and fabrication method thereof
US9860649B2 (en) Integrated package forming wide sense gap micro electro-mechanical system microphone and methodologies for fabricating the same
JP2006067547A (ja) 音響センサ
JPWO2014088020A1 (ja) ピエゾ抵抗型memsセンサ
US10123129B2 (en) MEMS device and process
US11297441B2 (en) Microphone
TW201933885A (zh) 壓電傳感器
US20180184212A1 (en) Capacitive transducer and acoustic sensor
US11363384B2 (en) Sensitive diaphragm with rim structure and sensor
KR101776725B1 (ko) 멤스 마이크로폰 및 그 제조방법
KR101496817B1 (ko) 음향 변환기
CN206905882U (zh) 一种感测膜片以及mems麦克风
KR101610128B1 (ko) 마이크로폰 및 그 제조방법
JP2017525263A (ja) 変換器素子
KR101300749B1 (ko) 음향 센서 및 이의 제조 방법
JP6650154B2 (ja) 圧力センサ
JP5654703B1 (ja) エレクトレットコンデンサマイクロホン
JP2019027849A (ja) 静電容量型圧力センサ
CN115442725A (zh) 一种压电式mems麦克风结构及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906820

Country of ref document: EP

Kind code of ref document: A1