WO2018196027A1 - 汽车防撞吸能结构及其制作工艺 - Google Patents

汽车防撞吸能结构及其制作工艺 Download PDF

Info

Publication number
WO2018196027A1
WO2018196027A1 PCT/CN2017/083247 CN2017083247W WO2018196027A1 WO 2018196027 A1 WO2018196027 A1 WO 2018196027A1 CN 2017083247 W CN2017083247 W CN 2017083247W WO 2018196027 A1 WO2018196027 A1 WO 2018196027A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
energy absorbing
core
reinforcing
automobile
Prior art date
Application number
PCT/CN2017/083247
Other languages
English (en)
French (fr)
Inventor
常健飞
Original Assignee
深圳市科聚新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科聚新材料有限公司 filed Critical 深圳市科聚新材料有限公司
Publication of WO2018196027A1 publication Critical patent/WO2018196027A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/023Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/18Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact
    • B60R19/22Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by the cross-section; Means within the bumper to absorb impact containing mainly cellular material, e.g. solid foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/30Elastomeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R2019/026Buffers, i.e. bumpers of limited extent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R2019/247Fastening of bumpers' side ends

Definitions

  • the present invention relates to the technical field of automobile parts and structures, and more particularly to an automobile anti-collision energy absorbing structure and a manufacturing process thereof.
  • the anti-collision beam and the energy absorbing box are generally installed on the front longitudinal beam of the automobile, so that the collision beam and the energy absorbing box can improve the energy absorption effect of the automobile during the collision of the automobile. Thereby slowing down the impact.
  • the anti-collision beam and the energy absorbing box on the market are generally connected by bolts, and the anti-collision beam is entirely made of metal materials such as steel and iron, so that not only the structure of the anti-collision beam is cumbersome, but also the anti-collision beam and The energy absorption of the energy absorbing box is not good.
  • An object of the present invention is to provide an automobile anti-collision energy absorbing structure and a manufacturing process thereof, so as to solve the problem that the anti-collision beam and the energy absorbing box existing in the prior art are connected by bolts and the anti-collision beam is made of a metal material.
  • the technical solution adopted by the present invention is: Provided to provide an automobile anti-collision and energy absorbing structure, which is mounted on a front longitudinal beam of an automobile, and the automobile anti-collision and energy absorbing structure includes an impact-absorbing structure. a collision preventing portion, and an energy absorbing portion respectively disposed at two ends of the collision preventing portion for buffering an impact force; the collision preventing portion includes a collision preventing core and a plurality of layers laid on the surface of the collision preventing core The energy absorbing portion includes an energy absorbing core and a plurality of energy absorbing reinforcing layers disposed on the surface of the energy absorbing core, and the collision absorbing layer is integrated with the two energy absorbing layers structure.
  • At least one first reinforcing spacer is embedded in the interior of the energy absorbing core; at least one second reinforcing spacer is embedded in the interior of the collision preventing core.
  • two of the first reinforcing partitions are embedded in the interior of the energy absorbing core, and the two first reinforcings are The two layers of the anti-collision core are embedded with each other, and two of the second reinforcing partitions are disposed perpendicularly to each other.
  • the two energy absorbing cores are respectively disposed at two ends of the collision preventing core, and a connection reinforcing layer is embedded in the joint of the energy absorbing core and the collision preventing core.
  • the energy absorbing portion is tapered from the middle to the both ends.
  • the energy absorbing core and the collision absorbing core are both made of a foam material.
  • the first reinforcing barrier layer, the second reinforcing barrier layer and the connecting reinforcing layer are all made of a fiber material, and the anti-collision reinforcing layer and the energy absorption reinforcing layer are both made of fiber.
  • the present invention also provides a manufacturing process of an automobile anti-collision energy absorbing structure, comprising the following steps:
  • S2 a first reinforcing spacer and a second reinforcing spacer made of a fiber material are respectively embedded in the interior of the collision preventing core and the energy absorbing core, and the anti-collision core and the The joint of the energy absorbing core is embedded with a connection reinforcing layer made of a fiber material;
  • S3 combining the anti-collision core and the energy absorbing core and laying a multi-layer fiber material on the surface to form a surface reinforcing layer;
  • S4 performing an epoxy injection molding process on the surface reinforcing layer, performing demolding and post-treatment after being cured, thereby preparing an automobile anti-collision energy absorbing structure.
  • step S2 first, the anti-collision core and the energy absorbing core are separately cut.
  • cutting lines are perpendicular to each other, and then the first reinforcing spacer and the second reinforcing spacer are embedded in the cut.
  • the anti-collision core and the energy-absorbing core are integrally formed with a surface reinforcing layer made of 12 layers of fiber material, wherein the first fiber direction is laid. 4 layers, 4 layers are laid in a second fiber direction perpendicular to the first fiber direction, and 2 layers are laid in a third fiber direction at +45° to the first fiber direction, in the first layer The second fiber direction of the fiber direction was -45°, and two layers were laid.
  • the beneficial effects of the automobile anti-collision energy absorbing structure provided by the present invention are: Compared with the prior art, the present invention
  • the automobile anti-collision and energy absorbing structure adopts the anti-collision part by the anti-collision core and the multi-layer anti-collision reinforcement layer laid on the surface of the anti-collision core, and the energy absorption part is composed of the energy absorption core and the surface of the energy absorption core.
  • the multi-layered energy absorbing reinforcing layer is composed, and the anti-collision reinforcing layer and the energy absorbing reinforcing layer are connected into an integrated structure, so that not only the surface strength of the anti-collision part and the energy absorbing part is stronger, but also the anti-collision part and the suction
  • the surface strength of the energy part can be better transmitted to each other, and the impact force is better dispersed, so that the anti-collision energy absorption capability of the automobile anti-collision energy-absorbing structure is stronger.
  • the automobile anti-collision and energy absorbing structure process of the present invention is formed by inserting a first reinforcing layer and a second reinforcing partition made of a fiber material in the foam-made anti-collision core and the energy-absorbing core, in the anti-collision clip.
  • the connection between the core and the energy absorbing core is embedded with a connection reinforcing layer made of a fiber material, and the fiber reinforced resin-based composite layer is formed on the surface, so that the automobile collision avoidance made by the manufacturing process of the automobile anti-collision energy absorbing structure is made.
  • the energy absorbing structure has better anti-collision energy absorption and better adaptability.
  • FIG. 1 is a perspective view of a collision avoidance energy absorbing structure according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a collision avoidance energy absorbing structure according to an embodiment of the present invention
  • FIG 3 is a longitudinal cross-sectional view of an energy absorbing portion according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the anti-collision structure of the automobile is mounted on the anti-collision beam of the automobile for collision prevention of the automobile, and comprises an anti-collision part 1 and two energy absorbing parts 2, and the anti-collision part 1 is arranged at the front part of the automobile, and the anti-collision part 1 is used.
  • the two energy absorbing portions 2 are respectively disposed at two ends of the collision preventing portion 1 for buffering the impact force, and the energy absorbing portion 2 is used for
  • the front side rail of the automobile is connected;
  • the anti-collision part 1 comprises an anti-collision core 11 and a multi-layer anti-collision reinforcement layer 12 laid on the surface of the anti-collision core 11,
  • the energy absorption part 2 comprises an energy absorption core 21 and is laid on the suction
  • the multi-layered energy absorbing reinforcing layer 22 capable of sandwiching the surface of the core 21 and the collision absorbing reinforcing layer 12 and the two energy absorbing reinforcing layers 22 are integrally connected.
  • the anti-collision and energy absorbing structure of the automobile provided by the present invention is compared with the prior art, and the anti-collision structure of the automobile of the present invention is provided by the anti-collision core 11 and the anti-collision core 11 a multi-layer anti-collision reinforcing layer 12 on the surface, the energy absorbing portion 2 is composed of an energy absorbing core 21 and a multi-layered energy absorbing reinforcing layer 22 laid on the surface of the energy absorbing core 21, and the anti-collision reinforcing layer 12 and the two energy absorbing layers
  • the reinforcing layer 22 is connected in an integrated structure, so that not only the surface strength of the collision preventing portion 1 and the energy absorbing portion 2 is stronger, but also the surface strength of the collision preventing portion 1 and the energy absorbing portion 2 can be better transmitted to each other.
  • the impact force is better dispersed, so that the anti-collision energy absorption capability of the automobile anti-collision energy-absorbing structure is stronger.
  • the energy absorbing core 21 and the collision absorbing core 11 are preferably made of a foam material, wherein the foam can be PS.
  • Foam, PU foam, phenolic foam, PET foam or PVC foam, etc., foam is light, sound-absorbing, shock-proof, absolutely
  • the use of the foam material to form the energy absorbing core 21 and the collision core 11 can make the entire automobile anti-collision energy absorbing structure light in weight, and the buffering energy absorption effect is good.
  • the energy absorbing core 21 and the crash core 11 may be made of other materials according to actual conditions and specific requirements, which are not limited herein.
  • the anti-collision reinforcement layer 12 and the energy absorption reinforcement layer 22 are preferably made of a fiber-reinforced resin-based composite material, wherein
  • the fiber may preferably be glass fiber, carbon fiber or aramid fiber.
  • the resin may preferably be an epoxy resin, an unsaturated resin, a vinyl resin or a phenol resin, and the fiber-reinforced resin-based composite material has light weight, high strength, high tensile strength and resistance.
  • the advantages of high temperature, corrosion resistance and excellent thermodynamic performance make the anti-collision and energy absorbing structure of the automobile not only light in weight, but also high in strength and strong in tensile strength, so that the ability of buffering energy absorption is strong, and the high temperature resistance of the automobile makes the automobile anti-collision and suction.
  • the structure can be damaged without damage under high-speed impact.
  • the energy absorbing reinforcing layer 22 and the collision absorbing layer 12 may be made of other materials according to actual conditions and specific requirements, and are not limited herein.
  • At least one first reinforcing spacer 23 is embedded in the interior of the energy absorbing core 21,
  • the energy absorbing core 21 is first cut along the extending direction of the length thereof, and then the first reinforcing barrier layer 23 is embedded in the slit of the cutting, so that the interior of the energy absorbing core 21 is embedded with the first reinforcing partition.
  • at least one second reinforcing barrier layer 13 is embedded in the interior of the collision preventing core 11, and the collision preventing core 11 is also embedded in the same manner.
  • the reinforcing layer 13 is reinforced, so that the strength of the crash core 11 is enhanced.
  • two first reinforcing partitions 23 are embedded in the interior of the energy absorbing core 21. And the two first reinforcing spacers 2 3 are disposed to cross each other. Specifically, referring to FIG. 2, the two first reinforcing spacers 23 are vertically disposed to each other and divide the energy absorbing core 21 into equal quarters, through two mutual The vertical first reinforcing barrier 23 is designed such that the energy absorbing core 21 is stronger.
  • two anti-collar interlayers 13 are embedded in the interior of the anti-collision core 11 , and the second reinforcing interlayers 13 are disposed to cross each other.
  • the two second reinforcing interlayers 13 are perpendicular to each other and the anti-collision clips are disposed.
  • the core 11 is divided into equal quarters, which in turn enhances the strength of the crash core 11.
  • the first reinforcing interlayer 23 and the second reinforcing interlayer 13 are preferably made of a fiber material, wherein the fiber is preferably For inorganic fibers, such as glass fiber, carbon fiber and aramid fiber, the fiber has the advantages of high axial tensile strength, no creep and good fatigue resistance, and the first reinforcing interlayer 23 and the second reinforcement are made by using the fiber material.
  • the barrier layer 13 makes the anti-collision and energy-absorbing structure of the automobile have higher tensile strength and better anti-collision and energy absorption effects.
  • a connection reinforcing layer is embedded in the joint of the energy absorbing core 21 and the crash core 11 3.
  • the two energy absorbing cores 21 are respectively disposed at the two ends of the collision preventing core 11 at the manufacturing ridges, and the connection reinforcing layer 3 is embedded at the joint of each of the energy absorbing cores 21 and the collision absorbing core 11.
  • connection reinforcing layer 3 is preferably made of a fiber material, wherein the fiber is preferably an inorganic fiber such as glass fiber or carbon fiber. Aramid fiber, etc., the fiber has the advantages of high axial tensile strength, no creep, good fatigue resistance, etc.
  • the connection reinforcement layer 3 is made by using a fiber material, so that the anti-collision structure of the automobile has higher tensile strength. Anti-collision energy absorption is better.
  • the energy absorbing portion 2 is tapered from the middle to the ends, that is, the energy absorbing portion 2 is The direction of the axial force is gradually tapered from the middle to the both ends, and the energy absorbing portion 2 is designed to have a cross-sectional change, so that when the entire automobile anti-collision energy absorbing structure is subjected to the impact force, the two ends of the energy absorbing portion 2 can be smoothly Compressed in the middle, so that the impact force is buffered, thereby improving the energy absorption effect of the anti-collision energy absorbing structure of the automobile.
  • the end of the energy absorbing portion 2 connected to the front side member is further provided with a mounting plate. 24, the mounting plate 24 is provided with a threaded hole, and the mounting plate 24 is bolted to the front longitudinal beam, thereby mounting the entire automobile anti-collision and energy absorbing structure on the front longitudinal beam of the automobile.
  • the present invention also provides a manufacturing process of an automobile anti-collision energy absorbing structure, comprising the following steps:
  • S1 the anti-collision core 11 and the two energy-absorbing cores 21 are respectively processed by foam;
  • the foam may be a PS foam, a PU foam, a phenol foam, a PET foam or a PVC foam.
  • the anti-collision core 11 and the two energy-absorbing cores 21 are processed by the machine according to the drawings.
  • S2 a first reinforcing barrier layer and a second reinforcing barrier layer 13 made of a fiber material are respectively embedded in the interior of the collision preventing core 11 and the energy absorbing core 21, and the collision preventing core 11 and the energy absorbing clip are respectively
  • the joint of the core 21 is embedded with a connection reinforcing layer 3 made of a fibrous material.
  • the collision-proof core 11 is required, and the cutting lines are perpendicular to each other, and then the first reinforcing interlayer is embedded in the cutting portion, wherein the fibers are preferably made of glass fiber, carbon fiber, aramid fiber, etc.;
  • the energy absorbing core 21 is required, and the cutting lines are perpendicular to each other, and then the second reinforcing spacer 13 is embedded in the cutting portion, wherein the fibers are preferably made of glass fiber, carbon fiber, aramid fiber or the like.
  • S3 integrating the anti-collision core 11 and the energy absorbing core 21 and laying a surface reinforcing layer made of a plurality of layers of fiber material on the surface, wherein the surface reinforcing layer is protected by the surface of the anti-collision core 11
  • the integrated structure of the reinforced reinforcing layer 12 and the energy absorbing reinforcing layer 22 laid on the surface of the energy absorbing core 21 is connected.
  • the surface reinforcing layer is provided with 12 layers, wherein 4 layers are laid in the first fiber direction, and 4 layers are laid in the second fiber direction perpendicular to the first fiber direction, and are in the direction of the first fiber. 2 layers are placed in the third fiber direction of +45°, and 2 layers are laid in the fourth fiber direction of -45° with the first fiber direction.
  • the first fiber direction is the same as the energy absorbing core 21
  • the cross section is parallel to the direction.
  • the first fiber direction may be other directions according to actual conditions and specific requirements, and is not limited herein.
  • S4 performing an epoxy injection molding process on the surface reinforcing layer, and performing demolding and post-treatment after being cured, thereby forming an automobile anti-collision energy absorbing structure.
  • the manufacturing process of the automobile anti-collision energy absorbing structure provided by the present invention compared with the prior art, the automobile anti-collision energy absorbing structure process of the present invention passes through the anti-collision core 11 and the energy absorbing core 21 made of foam.
  • the fiber reinforced resin-based composite layer is formed on the surface, so that the anti-collision energy absorption structure of the automobile anti-collision energy-absorbing structure produced by the manufacturing process of the automobile anti-collision energy-absorbing structure is better and the adaptability is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

一种汽车防撞吸能结构,包括防撞部(1)及分别设于防撞部(1)两端的吸能部(2);防撞部(1)包括防撞夹芯(11)及铺设于防撞夹芯(11)表面的多层防撞加强层(12),吸能部(2)包括吸能夹芯(21)及铺设于吸能夹芯(21)表面的多层吸能加强层(22),防撞加强层(12)与两吸能加强层(22)连接成一体结构。一种汽车防撞吸能结构的制作工艺,包括以下步骤:S1:用泡沫分别加工出防撞夹芯(11)及两吸能夹芯(21);S3:将防撞夹芯(11)及吸能夹芯(21)合成一体并在表面铺设多层纤维材料制成的表面加强层;S4:对表面加强层进行环氧注胶成型处理。本结构不仅重量轻,且防撞吸能效果好。

Description

汽车防撞吸能结构及其制作工艺 技术领域
[0001] 本发明属于汽车零部件结构技术领域, 更具体地说, 是涉及一种汽车防撞吸能 结构及其制作工艺。
背景技术
[0002] 随着汽车保有量的增长, 安全化出行受到人们广泛关注。 为了提高汽车碰撞安 全性能, 一般会在汽车前部的前纵梁上安装防撞梁及吸能盒, 这样, 在汽车碰 撞过程中, 防撞梁及吸能盒能够提高汽车的吸能效应, 从而减缓撞击。 目前, 市场上的防撞梁和吸能盒一般通过螺栓连接, 且防撞梁整体采用钢、 铁等金属 材料制成, 如此, 不仅使得防撞梁的结构笨重, 而且也使得防撞梁及吸能盒的 吸能效果不好。
技术问题
[0003] 本发明的目的在于提供一种汽车防撞吸能结构及其制作工艺, 以解决现有技术 中存在的防撞梁与吸能盒通过螺栓连接且防撞梁采用金属材料制成, 导致防撞 梁结构笨重及防撞梁与吸能盒的吸能效果不好的技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明采用的技术方案是: 提供了一种汽车防撞吸能结构, 安装于汽车的前纵梁上, 所述汽车防撞吸能结构包括用于承受撞击的防撞部, 及分别设于所述防撞部两端并用于对撞击力进行缓冲的吸能部; 所述防撞部包 括防撞夹芯及铺设于所述防撞夹芯表面的多层防撞加强层, 所述吸能部包括吸 能夹芯及铺设于所述吸能夹芯表面的多层吸能加强层, 所述防撞加强层与两所 述吸能加强层连接成一体结构。
[0005] 进一步地, 所述吸能夹芯的内部嵌设有至少一第一加强隔层; 所述防撞夹芯的 内部嵌设有至少一第二加强隔层。
[0006] 优选地, 所述吸能夹芯的内部嵌设有两所述第一加强隔层, 且两所述第一加强 隔层相互交叉垂直设置; 所述防撞夹芯的内部嵌设有两所述第二加强隔层, 且 两所述第二加强隔层相互交叉垂直设置。
[0007] 进一步地, 两所述吸能夹芯分别设于所述防撞夹芯的两端, 所述吸能夹芯与所 述防撞夹芯的接合处嵌设有连接加强层。
[0008] 进一步地, 所述吸能部由中间分别向两端逐渐变细。
[0009] 优选地, 所述吸能夹芯及所述防撞夹芯均采用泡沫材料制成。
[0010] 优选地, 所述第一加强隔层、 所述第二加强隔层及所述连接加强层均采用纤维 材料制成, 所述防撞加强层与所述吸能加强层均采用纤维增强树脂基复合材料 制成。
[0011] 本发明还提出一种汽车防撞吸能结构的制作工艺, 包括以下步骤:
[0012] S1 : 用泡沫分别加工出防撞夹芯及两吸能夹芯;
[0013] S2: 在所述防撞夹芯及所述吸能夹芯的内部分别嵌入纤维材料制成的第一加强 隔层及第二加强隔层, 且在所述防撞夹芯及所述吸能夹芯的接合处嵌入纤维材 料制成的连接加强层;
[0014] S3: 将所述防撞夹芯及所述吸能夹芯合成一体并在表面铺设多层纤维材料制成 表面加强层;
[0015] S4: 对所述表面加强层进行环氧注胶成型处理, 待固化后进行脱模及后处理, 由此, 制成汽车防撞吸能结构。
[0016] 优选地, 在步骤 S2中, 首先需要将所述防撞夹芯及所述吸能夹芯分别进行切割
, 且切割线相互交叉垂直, 然后在切割处嵌入所述第一加强隔层及所述第二加 强隔层。
[0017] 优选地, 在步骤 S3中, 所述防撞夹芯及所述吸能夹芯合成一体的表面铺设有 12 层纤维材料制成的表面加强层, 其中, 在第一纤维方向铺放 4层, 在与所述第一 纤维方向垂直的第二纤维方向铺放 4层, 在与所述第一纤维方向呈 +45°的第三纤 维方向铺放 2层, 在与所述第一纤维方向呈 -45°的第四纤维方向铺放 2层。
发明的有益效果
有益效果
[0018] 本发明提供的汽车防撞吸能结构的有益效果在于: 与现有技术相比, 本发明的 汽车防撞吸能结构通过将防撞部由防撞夹芯及铺设于防撞夹芯表面的多层防撞 加强层, 将吸能部由吸能夹芯及铺设于吸能夹芯表面的多层吸能加强层组成, 且防撞加强层与吸能加强层连接成一体结构的设计, 这样, 不仅使得防撞部及 吸能部的表面强度更强, 而且也使得防撞部与吸能部的表面强度能够更好相互 传递, 撞击力得到更好的分散效果, 从而使得该汽车防撞吸能结构的防撞吸能 能力更强。 此外, 本发明的汽车防撞吸能结构工艺通过在泡沫制作的防撞夹芯 及吸能夹芯的内部嵌入纤维材料制成的第一加强隔层及第二加强隔层, 在防撞 夹芯及吸能夹芯的连接处嵌入纤维材料制成的连接加强层, 同吋在表面制作纤 维增强树脂基复合层, 从而使得通过该汽车防撞吸能结构的制作工艺制作出的 汽车防撞吸能结构的防撞吸能效果更好, 适应性更佳。
对附图的简要说明
附图说明
[0019] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0020] 图 1为本发明实施例提供的防撞吸能结构的立体示意图
[0021] 图 2为本发明实施例提供的防撞吸能结构的剖视示意图;
[0022] 图 3为本发明实施例提供的吸能部的纵向剖视示意图。
[0023] 其中, 图中各附图标记:
[0024] 1-防撞部; 11-防撞夹芯; 12-防撞加强层; 13-第二加强隔层; 2-吸能部; 21-吸 能夹芯; 22-吸能加强层; 23-第一加强隔层; 24-安装板; 3-连接加强层。
本发明的实施方式
[0025] 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下 结合附图及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明, 并不用于限定本发明。
[0026] 需要说明的是, 当元件被称为 "固定于"或"设置于"另一个元件, 它可以直接在 另一个元件上或者间接在该另一个元件上。 当一个元件被称为是 "连接于"另一个 元件, 它可以是直接连接到另一个元件或间接连接至该另一个元件上。
[0027] 需要理解的是, 术语"长度"、 "宽度"、 "前"、 "后"、 "左"、 "右"、 "内"、 "外" 等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描 述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方 位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。
[0028] 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个" 的含义是两个或两个以上, 除非另有明确具体的限定。
[0029] 请一并参阅图 1及图 2, 现对本发明提供的汽车防撞吸能结构进行说明。 该汽车 防撞吸能结构安装于汽车的防撞梁上用于汽车防撞, 其包括防撞部 1及两吸能部 2, 防撞部 1设于汽车的前部, 防撞部 1用于承受汽车撞击吋的撞击力并将撞击力 分散至汽车的全身, 两吸能部 2分别设于防撞部 1两端并用于对撞击力进行缓冲 , 同吋, 吸能部 2用于与汽车的前纵梁进行连接; 防撞部 1包括防撞夹芯 11及铺 设于防撞夹芯 11表面的多层防撞加强层 12, 吸能部 2包括吸能夹芯 21及铺设于吸 能夹芯 21表面的多层吸能加强层 22, 防撞加强层 12与两吸能加强层 22连接成一 体结构。
[0030] 本发明提供的汽车防撞吸能结构, 与现有技术相比, 本发明的汽车防撞吸能结 构通过将防撞部 1由防撞夹芯 11及铺设于防撞夹芯 11表面的多层防撞加强层 12, 将吸能部 2由吸能夹芯 21及铺设于吸能夹芯 21表面的多层吸能加强层 22组成, 且 防撞加强层 12与两吸能加强层 22连接成一体结构的设计, 这样, 不仅使得防撞 部 1及吸能部 2的表面强度更强, 而且也使得防撞部 1与吸能部 2的表面强度能够 更好相互传递, 撞击力得到更好的分散效果, 从而使得该汽车防撞吸能结构的 防撞吸能能力更强。
[0031] 优选地, 作为本发明提供的汽车防撞吸能结构的一种具体实施方式, 上述吸能 夹芯 21及防撞夹芯 11均优选采用泡沫材料制成, 其中, 泡沫可以采用 PS泡沫、 P U泡沫、 酚醛泡沫、 PET泡沫或者 PVC泡沫等, 泡沫具有质轻、 吸音、 防震、 绝 热及耐腐蚀等优点, 通过采用泡沫材料制成吸能夹芯 21及防撞夹芯 11可以使得 整个汽车防撞吸能结构的重量轻, 且缓冲吸能效果好。 当然, 在本发明的其他 实施例中, 根据实际情况及具体要求, 上述吸能夹芯 21及防撞夹芯 11也可以采 用其他材料制成, 此处不做唯一限定。
[0032] 优选地, 作为本发明提供的汽车防撞吸能结构的一种具体实施方式, 上述防撞 加强层 12与吸能加强层 22均优选采用纤维增强树脂基复合材料制成, 其中, 纤 维可以优选为玻璃纤维、 碳纤维及芳纶纤维等, 树脂可以优选为环氧树脂、 不 饱和树脂、 乙烯树脂及酚醛树脂等, 纤维增强树脂基复合材料具有轻质高强、 抗拉性强、 耐高温、 耐腐蚀及热力学性能优良等优点, 从而使得该汽车防撞吸 能结构不仅重量轻, 而且强度高及抗拉性强, 从而缓冲吸能的能力强, 同吋耐 高温使得汽车防撞吸能结构在高速撞击下其结构不会损坏。 当然, 在本发明的 其他实施例中, 根据实际情况及具体要求, 上述吸能加强层 22及防撞加强层 12 也可以采用其他材料制成, 此处不做唯一限定。
[0033] 进一步地, 请参阅图 2, 作为本发明提供的汽车防撞吸能结构的一种具体实施 方式, 上述吸能夹芯 21的内部嵌设有至少一第一加强隔层 23, 在本实施例中, 首先将吸能夹芯 21沿其长度延伸方向进行切割, 然后将第一加强隔层 23嵌入到 切割的缝隙中, 从而使得吸能夹芯 21的内部嵌入有第一加强隔层 23, 进而使得 吸能夹芯 21的强度得到增强; 此外, 上述防撞夹芯 11的内部嵌设有至少一第二 加强隔层 13, 且防撞夹芯 11也是通过同样的方式嵌入第二加强隔层 13, 从而使 得防撞夹芯 11的强度得到增强。
[0034] 优选地, 请参阅图 2及图 3, 作为本发明提供的汽车防撞吸能结构的一种具体实 施方式, 上述吸能夹芯 21的内部嵌设有两第一加强隔层 23, 且两第一加强隔层 2 3相互交叉设置, 具体的, 请参阅图 2, 两第一加强隔层 23相互垂直设置并将吸 能夹芯 21分割成相等的四等分, 通过两相互垂直的第一加强隔层 23的设计, 从 而使得吸能夹芯 21的强度更强。 此外, 上述防撞夹芯 11的内部嵌设有两第二加 强隔层 13, 且第二加强隔层 13相互交叉设置, 同样的, 两第二加强隔层 13相互 垂直设置并将防撞夹芯 11分割成相等的四等分, 进而使得防撞夹芯 11的强度得 到增强。 [0035] 优选地, 作为本发明提供的汽车防撞吸能结构的一种具体实施方式, 上述第一 加强隔层 23及第二加强隔层 13均优选采用纤维材料制成, 其中, 纤维优选为无 机纤维, 如玻璃纤维、 碳纤维及芳纶纤维等, 纤维具有轴向拉伸强度高、 无蠕 变及耐疲劳性好等优点, 通过采用纤维材料制作第一加强隔层 23及第二加强隔 层 13, 使得该汽车防撞吸能结构的抗拉强度更高, 防撞吸能效果更好。
[0036] 进一步地, 请参阅图 3, 作为本发明提供的汽车防撞吸能结构的一种具体实施 方式, 上述吸能夹芯 21与防撞夹芯 11的接合处嵌设有连接加强层 3。 具体的, 两 吸能夹芯 21在制作吋分别设于防撞夹芯 11的两端, 且在每个吸能夹芯 21与防撞 夹芯 11的接合处都嵌设有连接加强层 3, 通过连接加强层 3的设计, 使得防撞部 1 与吸能部 2在连接处的连接强度更强。
[0037] 优选地, 作为本发明提供的汽车防撞吸能结构的一种具体实施方式, 上述连接 加强层 3优选采用纤维材料制成, 其中, 纤维优选为无机纤维, 如玻璃纤维、 碳 纤维及芳纶纤维等, 纤维具有轴向拉伸强度高, 无蠕变, 耐疲劳性好等优点, 通过采用纤维材料制作连接加强层 3, 使得该汽车防撞吸能结构的抗拉强度更高 , 防撞吸能效果更好。
[0038] 进一步地, 请参阅图 2, 作为本发明提供的汽车防撞吸能结构的一种具体实施 方式, 上述吸能部 2由中间分别向两端逐渐变细, 即吸能部 2由其轴向受力方向 由中间向两端逐渐变细, 吸能部 2通过横截面变化的设计, 使得当整个汽车防撞 吸能结构受到撞击力吋, 吸能部 2的两端可以顺利的向中间压缩, 从而使得撞击 力得到缓冲, 进而提高该汽车防撞吸能结构的吸能效果。
[0039] 进一步地, 请参阅图 1及图 2, 作为本发明提供的汽车防撞吸能结构的一种具体 实施方式, 上述吸能部 2的与前纵梁连接的一端还设有安装板 24, 安装板 24上设 有螺纹孔, 安装板 24与前纵梁通过螺栓连接, 从而将整个汽车防撞吸能结构安 装于汽车的前纵梁上。
[0040] 本发明还提供了一种汽车防撞吸能结构的制作工艺, 包括以下步骤:
[0041] S1 : 用泡沫分别加工出防撞夹芯 11及两吸能夹芯 21 ;
[0042] 具体的, 泡沫可以采用 PS泡沫、 PU泡沫、 酚醛泡沫、 PET泡沫或者 PVC泡沫等
, 将泡沫按照图纸通过机床加工出防撞夹芯 11及两吸能夹芯 21。 [0043] S2: 在防撞夹芯 11及吸能夹芯 21的内部分别嵌入纤维材料制成的第一加强隔层 及第二加强隔层 13, 且在防撞夹芯 11及吸能夹芯 21的接合处嵌入纤维材料制成 的连接加强层 3。
[0044] 具体的, 首先需要将防撞夹芯 11, 且切割线相互交叉垂直, 然后在切割处嵌入 第一加强隔层, 其中纤维优选采用玻璃纤维、 碳纤维及芳纶纤维等; 同样的, 首先需要将吸能夹芯 21, 且切割线相互交叉垂直, 然后在切割处嵌入第二加强 隔层 13, 其中纤维优选采用玻璃纤维、 碳纤维及芳纶纤维等。
[0045] S3: 将防撞夹芯 11及吸能夹芯 21合成一体并在表面铺设多层纤维材料制成的表 面加强层, 其中, 表面加强层由铺设于防撞夹芯 11表面的防撞加强层 12及铺设 于吸能夹芯 21表面的吸能加强层 22连接的一体结构。
[0046] 具体的, 表面加强层铺设有 12层, 其中, 在第一纤维方向铺放 4层, 在与第一 纤维方向垂直的第二纤维方向铺放 4层, 在与第一纤维方向呈 +45°的第三纤维方 向铺放 2层, 在与第一纤维方向呈 -45°的第四纤维方向铺放 2层, 在本实施例中, 第一纤维方向为与吸能夹芯 21的横截面平行的方向。 当然, 在本发明的其他实 施例中, 根据实际情况及具体要求, 上述第一纤维方向还可以是其他方向, 此 处不做唯一限定。
[0047] S4: 对表面加强层进行环氧注胶成型处理, 待固化后进行脱模及后处理, 由此 , 制成汽车防撞吸能结构。
[0048] 本发明提供的汽车防撞吸能结构的制作工艺, 与现有技术相比, 本发明的汽车 防撞吸能结构工艺通过在泡沫制作的防撞夹芯 11及吸能夹芯 21的内部嵌入纤维 材料制成的第一加强隔层 23及第二加强隔层 13, 在防撞夹芯 11及吸能夹芯 21的 连接处嵌入纤维材料制成的连接加强层 3, 同吋在表面制作纤维增强树脂基复合 层, 从而使得通过该汽车防撞吸能结构的制作工艺制作出的汽车防撞吸能结构 的防撞吸能效果更好, 适应性更佳。
[0049] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
汽车防撞吸能结构, 安装于汽车的前纵梁上, 所述汽车防撞吸能结构 包括用于承受撞击的防撞部, 及分别设于所述防撞部两端并用于对撞 击力进行缓冲的吸能部, 其特征在于, 所述防撞部包括防撞夹芯及铺 设于所述防撞夹芯表面的多层防撞加强层, 所述吸能部包括吸能夹芯 及铺设于所述吸能夹芯表面的多层吸能加强层, 所述防撞加强层与两 所述吸能加强层连接成一体结构。
如权利要求 1所述的汽车防撞吸能结构, 其特征在于, 所述吸能夹芯 的内部嵌设有至少一第一加强隔层; 所述防撞夹芯的内部嵌设有至少 一第二加强隔层。
如权利要求 2所述的汽车防撞吸能结构, 其特征在于, 所述吸能夹芯 的内部嵌设有两所述第一加强隔层, 且两所述第一加强隔层相互交叉 垂直设置; 所述防撞夹芯的内部嵌设有两所述第二加强隔层, 且两所 述第二加强隔层相互交叉垂直设置。
如权利要求 3所述的汽车防撞吸能结构, 其特征在于, 两所述吸能夹 芯分别设于所述防撞夹芯的两端, 所述吸能夹芯与所述防撞夹芯的接 合处嵌设有连接加强层。
如权利要求 4所述的汽车防撞吸能结构, 其特征在于, 所述吸能部由 中间分别向两端逐渐变细。
如权利要求 1-5任一项所述的汽车防撞吸能结构, 其特征在于, 所述 吸能夹芯及所述防撞夹芯均采用泡沫材料制成。
如权利要求 1-5任一项所述的汽车防撞吸能结构, 其特征在于, 所述 第一加强隔层、 所述第二加强隔层及所述连接加强层均采用纤维材料 制成, 所述防撞加强层与所述吸能加强层均采用纤维增强树脂基复合 材料制成。
汽车防撞吸能结构的制作工艺, 其特征在于, 包括以下步骤: S1 : 用泡沫分别加工出防撞夹芯及两吸能夹芯;
S2: 在所述防撞夹芯及所述吸能夹芯的内部分别嵌入纤维材料制成的 第一加强隔层及第二加强隔层, 且在所述防撞夹芯及所述吸能夹芯的 接合处嵌入纤维材料制成的连接加强层;
S3: 将所述防撞夹芯及所述吸能夹芯合成一体并在表面铺设多层纤维 材料制成表面加强层;
S4: 对所述表面加强层进行环氧注胶成型处理, 待固化后进行脱模及 后处理, 由此, 制成汽车防撞吸能结构。
[权利要求 9] 如权利要求 8所述的汽车防撞吸能结构的制作工艺, 其特征在于, 在 步骤 S2中, 首先需要将所述防撞夹芯及所述吸能夹芯分别进行切割, 且切割线相互交叉垂直, 然后在切割处嵌入所述第一加强隔层及所述 第二加强隔层。
[权利要求 10] 如权利要求 9所述的汽车防撞吸能结构的制作工艺, 其特征在于, 在 步骤 S3中, 所述防撞夹芯及所述吸能夹芯合成一体的表面铺设有 12层 纤维材料制成的表面加强层, 其中, 在第一纤维方向铺放 4层, 在与 所述第一纤维方向垂直的第二纤维方向铺放 4层, 在与所述第一纤维 方向呈 +45°的第三纤维方向铺放 2层, 在与所述第一纤维方向呈 -45° 的第四纤维方向铺放 2层。
PCT/CN2017/083247 2017-04-28 2017-05-05 汽车防撞吸能结构及其制作工艺 WO2018196027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710297526.4 2017-04-28
CN201710297526.4A CN107097742B (zh) 2017-04-28 2017-04-28 汽车防撞吸能结构及其制作工艺

Publications (1)

Publication Number Publication Date
WO2018196027A1 true WO2018196027A1 (zh) 2018-11-01

Family

ID=59657412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083247 WO2018196027A1 (zh) 2017-04-28 2017-05-05 汽车防撞吸能结构及其制作工艺

Country Status (2)

Country Link
CN (1) CN107097742B (zh)
WO (1) WO2018196027A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866720A (zh) * 2019-03-22 2019-06-11 安徽彤上智能科技有限公司 一种减小刚性冲击转换冲击力的防撞梁

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112849066A (zh) * 2020-12-28 2021-05-28 山东格瑞德集团有限公司 一种新型复合防撞梁及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068591A1 (en) * 2008-03-26 2011-03-24 Hendrickson USA Molded Thermoplastic Articles
CN102159442A (zh) * 2008-09-19 2011-08-17 Sika技术股份公司 车辆的加强结构
CN102765361A (zh) * 2012-08-03 2012-11-07 南通南京大学材料工程技术研究院 一种碳纤维/芳纶增强复合材料制备的汽车前防撞梁
CN205168395U (zh) * 2015-11-23 2016-04-20 天津华夏联盛汽车部件有限公司 一种复合结构汽车保险杠
CN105835952A (zh) * 2016-04-29 2016-08-10 奇瑞汽车股份有限公司 一种汽车防撞横梁总成及其制作方法
CN105966336A (zh) * 2015-03-13 2016-09-28 通用汽车环球科技运作有限责任公司 用于车辆冲击***的轻质能量吸收组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829083B1 (fr) * 2001-08-28 2005-01-14 Peguform France Poutre de pare-chocs de vehicule automobile a voile intermediaire
CN202528940U (zh) * 2012-03-01 2012-11-14 刘小娟 一种碰撞吸能及抗弯曲装置
US8668247B2 (en) * 2012-04-23 2014-03-11 GM Global Technology Operations LLC Magnesium-composite structures with enhanced design
US9815424B2 (en) * 2013-03-07 2017-11-14 Toray Carbon Magic Co., Ltd. Bumper device for automobile
CN103496400B (zh) * 2013-09-27 2016-05-18 奇瑞汽车股份有限公司 碳纤维复合材料汽车水箱上横梁总成及其制作方法
CN105034999A (zh) * 2015-06-18 2015-11-11 上海耀华大中新材料有限公司 一种碳纤维汽车缓冲梁及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110068591A1 (en) * 2008-03-26 2011-03-24 Hendrickson USA Molded Thermoplastic Articles
CN102159442A (zh) * 2008-09-19 2011-08-17 Sika技术股份公司 车辆的加强结构
CN102765361A (zh) * 2012-08-03 2012-11-07 南通南京大学材料工程技术研究院 一种碳纤维/芳纶增强复合材料制备的汽车前防撞梁
CN105966336A (zh) * 2015-03-13 2016-09-28 通用汽车环球科技运作有限责任公司 用于车辆冲击***的轻质能量吸收组件
CN205168395U (zh) * 2015-11-23 2016-04-20 天津华夏联盛汽车部件有限公司 一种复合结构汽车保险杠
CN105835952A (zh) * 2016-04-29 2016-08-10 奇瑞汽车股份有限公司 一种汽车防撞横梁总成及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109866720A (zh) * 2019-03-22 2019-06-11 安徽彤上智能科技有限公司 一种减小刚性冲击转换冲击力的防撞梁

Also Published As

Publication number Publication date
CN107097742A (zh) 2017-08-29
CN107097742B (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
KR101962837B1 (ko) 차량 측면 도어 구조물 및 이의 제조 방법과 사용 방법
US4933131A (en) Method of fabricating composite structures
KR20200033776A (ko) 전기자동차용 배터리 케이스
US8530027B2 (en) Fibers with interlocking shapes
EP2243701B1 (en) Impact-absorbing structure and method for producing the same
EP3538423B1 (en) Chassis for a vehicle
WO2018196027A1 (zh) 汽车防撞吸能结构及其制作工艺
CN108183181A (zh) 一种电动汽车电池包的制作方法及电池包
CN109436099B (zh) 一种应用于复合材料汽车门槛的正多边形等截面防撞结构
KR101923381B1 (ko) 보강 복합재 및 이를 포함하는 물품
KR20030082840A (ko) 자동차 프레임의 사이드 멤버 및 그의 제조 방법
JP6732626B2 (ja) コーナーテンションフィッティング
US20150233126A1 (en) Flooring Assembly with Heat Dissipation Layer
CN109131593B (zh) 地板及包括该地板的汽车
CN107009855A (zh) 一种车门防撞梁及车辆
KR102217436B1 (ko) 적층체 및 이를 포함하는 성형품
JP6112686B2 (ja) 自動車の車体構造
CN210653326U (zh) 一种吸能标准件及前纵梁
CN219821362U (zh) 防撞梁和车辆
JP7429535B2 (ja) 構造体及びその製造方法
JP2019156165A (ja) 車体のセンターピラー
CN209600318U (zh) 一种前排座椅横梁及车辆
Ali et al. Effects of Fiber Volume Fraction, Fiber Length and Fillers on Fracture Toughness, Impact Toughness and Fracture Energy of Glass Fiber Composite Panels
US9517614B1 (en) Delamination and crack prevention layer for structural sandwich panels
JP2022054690A (ja) 車両部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908044

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17908044

Country of ref document: EP

Kind code of ref document: A1