WO2018194048A1 - Photodetector and photometric analysis device provided with same - Google Patents

Photodetector and photometric analysis device provided with same Download PDF

Info

Publication number
WO2018194048A1
WO2018194048A1 PCT/JP2018/015820 JP2018015820W WO2018194048A1 WO 2018194048 A1 WO2018194048 A1 WO 2018194048A1 JP 2018015820 W JP2018015820 W JP 2018015820W WO 2018194048 A1 WO2018194048 A1 WO 2018194048A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance value
light
signal
temperature
mct
Prior art date
Application number
PCT/JP2018/015820
Other languages
French (fr)
Japanese (ja)
Inventor
佳澄 横田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019513645A priority Critical patent/JP6743971B2/en
Publication of WO2018194048A1 publication Critical patent/WO2018194048A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry

Definitions

  • the present invention relates to a photodetector, and more particularly, to a photodetector having a function of cooling a detection element with a refrigerant such as liquid nitrogen and a spectroscopic analysis apparatus including the photodetector.
  • an MCT (Mercury cadmium telluride, HgCdTe, cadmium mercury telluride) detector is commonly used in a Fourier transform infrared spectrophotometer (FT-IR) (for example, see Patent Document 1). reference).
  • FT-IR Fourier transform infrared spectrophotometer
  • MCT detectors There are two types of MCT detectors: a photovoltaic type and a photoconductive type.
  • the FT-IR is inexpensive and has a fingerprint region on the longer wavelength side (a large number of absorptions inherent to molecules 1300
  • a photoconductive MCT detector having a spectral sensitivity region extending in a range of about ⁇ 650 cm ⁇ 1 ) is used.
  • the photoconductive MCT detector can achieve high sensitivity and low noise by cooling, and liquid nitrogen is often used as the cooling means.
  • a photoconductive MCT detector accommodates a photoconductive MCT element (hereinafter simply referred to as an MCT element) made of an MCT semiconductor in a cylindrical metal container called a dewar having a window that transmits infrared rays.
  • the MCT detector unit is mounted on an FT-IR or the like, and the MCT element is cooled by introducing liquid nitrogen into the dewar.
  • FIG. 6 shows an outline of a circuit connected to the MCT element in the MCT detector unit.
  • the MCT element is connected to a constant current source for supplying a bias current to the element, and MCT detection is performed based on the amount of decrease in the resistance value of the element due to light incident on the MCT element.
  • the amount of infrared light incident on the instrument unit is required.
  • the resistance signal obtained from the MCT detection element is first cut off a component below a predetermined frequency by a high-pass filter, and then the amplification circuit. It is amplified by.
  • the amplified signal is sent as a photometric signal to a data processing unit (not shown) including a computer such as a personal computer.
  • a data processing unit including a computer such as a personal computer.
  • the amount of incident light on the MCT detector unit is derived based on the photometric signal, and an interference waveform called an interferogram is generated by plotting the temporal change of the amount of incident light.
  • a temperature measuring element such as a platinum resistance temperature detector is disposed in the dewar.
  • a temperature measuring element such as a platinum resistance temperature detector
  • the MCT detector unit equipped with such a temperature measuring element is mounted on the FT-IR, when the MCT element becomes a predetermined temperature or higher due to evaporation of liquid nitrogen or the like, the user is notified to replenish liquid nitrogen. Or a function of protecting the MCT element by blocking the bias current supplied to the MCT element.
  • the MCT element temperature is set to the predetermined value when the resistance value of the temperature measuring element exceeds a predetermined threshold value. It was judged that the temperature was over. However, there is often a slight difference between the temperature measured by the temperature measuring element and the actual temperature of the MCT element. Usually, the threshold value is set low, so that liquid nitrogen remains. Regardless, a misjudgment that notifies the user of a decrease in the remaining amount is caused.
  • the threshold value is set relatively high in order to avoid this erroneous determination, when it is determined that the MCT element temperature has become equal to or higher than the predetermined threshold value, a considerable temperature increase has already occurred, and accordingly the MCT element temperature is increased. There was a case where the photometric performance was lowered due to sensitivity reduction or noise increase. As a result, when the user recognizes a notification of a decrease in the amount of remaining liquid nitrogen, it may be after multiple measurements that have already been reduced in photometric performance, especially when multiple samples are continuously analyzed by automatic analysis. It becomes a problem when measuring.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a photodetector capable of detecting a decrease in the remaining amount of refrigerant such as liquid nitrogen at an appropriate timing, and the photodetector.
  • the object is to provide a spectroscopic analyzer.
  • the photodetector according to the present invention which has been made to solve the above problems, a) a container containing the refrigerant; b) a photoconductive detection element disposed in the container; c) a temperature measuring element disposed in the container for measuring the temperature of the photoconductive detection element; d) a photometric signal acquisition means for acquiring, as a photometric signal, a component having a predetermined frequency or higher among the resistance value of the photoconductive detection element; e) element resistance value acquisition means for acquiring the total resistance value of the photoconductive detection element as an element resistance value signal; f) determination means for determining whether or not the remaining amount of refrigerant in the container is reduced based on the time change of the temperature measured by the temperature measuring element and the time change of the element resistance value signal; It is characterized by having.
  • the photodetector in the present invention detects electromagnetic energy such as infrared, ultraviolet, or visible light
  • the photoconductive detection element is typically the above-described photoconductive MCT element.
  • Other elements such as a photoconductive PbS (lead sulfide) element may be used as long as they are used under cooling with a refrigerant such as liquid nitrogen.
  • the photodetector according to the present invention includes not only a component having a predetermined frequency or higher, which has been conventionally acquired as a photometric signal, among the resistance value of the photoconductive detection element, but also being less than the predetermined frequency.
  • element resistance value acquisition means for acquiring all resistance values including components as an element resistance value signal, and is this causing a decrease in sensitivity or a decrease in photometric performance due to increased noise in the photoconductive detection element? You can know whether or not. Therefore, the determination means monitors the time change of the measured temperature by the temperature measuring element and the time change of the total resistance value of the photoconductive detection element, so that the photoconductive type starts after the measurement temperature starts to rise.
  • the remaining amount of refrigerant is decreasing at an arbitrary timing until the sensitivity of the detection element decreases and the photometric performance decreases.
  • the spectroscopic analyzer is: a) a light source; b) an irradiation optical system for irradiating the sample with light from the light source; c) a detector for detecting the light obtained from the interaction between the light from the light source and the sample; Have The detector is the photodetector.
  • the spectroscopic analyzer according to the present invention may be any device such as an ultraviolet-visible spectrophotometer, an ultraviolet-visible near-infrared spectrophotometer, a spectrofluorophotometer, a Fourier transform infrared spectrophotometer, a Raman spectrophotometer, or the like.
  • the present invention can be suitably applied particularly to a Fourier transform infrared spectrophotometer.
  • an interferometer is used as the light source, and the sample is irradiated with interference light generated by the interferometer.
  • the spectroscopic analysis apparatus further includes a light shielding unit that blocks a light beam incident on the photoconductive detection element when the element resistance value signal is acquired by the element resistance value acquisition unit.
  • the element resistance value signal can be always acquired by the element resistance value acquiring means in a state where no light beam is incident on the photoconductive detection element. Therefore, the determination unit can determine the temporal change of the resistance value (dark resistance) independent of the amount of incident light on the photoconductive detection element, that is, the temporal change of the resistance value due to the temperature change of the element.
  • the light shielding means may be provided at any position on the optical path from the light source of the spectroscopic analyzer to the photodetector.
  • a light source for example, Fourier transform infrared spectroscopy
  • an interferometer for example, an interferometer
  • the spectroscopic analyzer is replaced with the light shielding means, d) a light-derived waveform generating means for generating a waveform indicating a time change of the element resistance signal accompanying the introduction of light into the detector; e) DC component extraction means for extracting a DC component from the waveform generated by the light-derived waveform generation means;
  • the determination unit may use a time change in the intensity of the direct current component as a time change in the element resistance value signal.
  • the direct current component extracted by the direct current component extraction means indicates a change in resistance value that does not depend on increase or decrease in the amount of light incident on the photoconductive detection element, that is, a change in resistance value with time due to a temperature change of the element. . Therefore, according to the spectroscopic analysis apparatus having the above-described configuration, the element resistance value can be obtained in a state in which the introduction of light into the photodetector is continued without providing the light shielding means as described above (for example, during sample measurement). Signal acquisition can be performed.
  • the photodetector according to the present invention and the spectroscopic analysis apparatus including the same, it is possible to detect a decrease in the remaining amount of refrigerant such as liquid nitrogen at an appropriate timing.
  • FIG. 1 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to a first embodiment of the present invention.
  • the graph which shows the time change of the resistance value of a Pt temperature sensor and an MCT element.
  • the schematic block diagram of the Fourier-transform type infrared spectrophotometer which concerns on the 2nd Example of this invention. An example of actual measurement of an MCT element resistance value signal.
  • FIG. 1 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to the present embodiment.
  • the infrared light from the infrared light source 111 disposed in the hermetic chamber 110 is incident on the collimator mirror 113 through the first condenser mirror 112, and the collimator mirror. After being collimated by 113, it is divided into two by the beam splitter 114, one of which is reflected by the fixed mirror 115 and the other by the movable mirror 116, and is again guided to the same path to become interference light.
  • the interference light is introduced into the sample chamber 118 via the second condenser mirror 117 disposed outside the hermetic chamber 110 and irradiated on the sample S, and then the interaction between the interference light and the sample S is performed.
  • the emitted light is detected by the infrared detector unit 120 via the third condenser mirror 119.
  • a signal detected by the infrared detector unit 120 is sent to the data processing unit 130 via the incident light measurement unit 122, and an interferogram is created by the incident light calculation unit 132.
  • the data processing unit 130 calculates the current position of the movable mirror 116 based on data from a control interferometer (not shown). Information on the current position is sent to the control unit 140 and used for driving control of the movable mirror 116 and the like.
  • the infrared detector unit 120 includes an MCT element 120a that detects the interference light (corresponding to a photoconductive detection element in the present invention), and a dewar 120b (container in the present invention) that contains a refrigerant for cooling the MCT element 120a. And a platinum resistance thermometer 120c (corresponding to the temperature measuring element in the present invention) provided in the dewar 120b.
  • the MCT element 120a is connected to the circuit shown in FIG.
  • a constant current source for supplying a bias current is connected to the MCT element 120a.
  • the resistance value of the element 120a changes, and a voltage corresponding to the change in the resistance value is input to the incident light measurement unit 122 (corresponding to the photometric signal acquisition means in the present invention).
  • the signal input to the incident light measuring unit 122 passes through the high-pass filter 122a and the amplifier circuit 122b shown in FIG. 2, so that only an AC component having a certain frequency or higher is amplified and output as a photometric signal.
  • the amount of change in the resistance value of the MCT element 120a varies depending on the temperature of the element. However, if the remaining amount of the refrigerant in the dewar 120b is sufficient, the MCT element 120a is cooled to a constant temperature. The interference light can be detected with sensitivity.
  • the same signal as that of the incident light measurement unit 122 is input to the detection element resistance measurement unit 121 (corresponding to the element resistance value acquisition unit in the present invention), but the signal is input to the amplifier circuit without passing through the high-pass filter. Accordingly, the input signal is amplified as an element resistance value signal including a direct current component and sent to the data processing unit 130.
  • a detection element resistance calculation unit 131 in the data processing unit 130 calculates an element resistance value (total resistance value) of the MCT element 120a based on the element resistance value signal.
  • the temperature measuring element resistance measuring unit 123 measures the temperature measuring resistance value signal of the platinum temperature measuring resistor 120 c and sends the temperature measuring resistance value signal to the data processing unit 130.
  • a temperature measuring element resistance calculation unit 133 in the data processing unit 130 calculates the resistance value of the platinum resistance temperature detector 120c based on the temperature measurement resistance value signal.
  • the control unit 140 operates the blocking mechanism driving unit 150 to move the light beam blocking mechanism 151 composed of a light shielding plate or the like in front of the MCT element 120a (the blocking mechanism driving unit 150 and the beam blocking mechanism 151 are the same in the present invention). Corresponds to light shielding means).
  • the element resistance value (dark resistance) becomes a constant value. Since the dark resistance changes depending on the element temperature, a change in the element temperature can be estimated by measuring the dark resistance.
  • the element resistance value (dark resistance) and the resistance value of the platinum resistance temperature detector are measured automatically or periodically according to a user instruction between sample measurements, and are stored in the data processing unit 130.
  • FIG. 3 is a graph of the resistance value (dark resistance) of the MCT element 120a and the measured value of the resistance value of the platinum resistance thermometer 120c, with the vertical axis representing the resistance value and the horizontal axis representing the liquid nitrogen retention time.
  • the resistance value of the MCT element 120a gradually increases from around 9.92 hours, reaches a peak around 10.04 to 10.06 hours, and then gradually decreases. This increase in resistance value is due to the physical properties of the MCT element, and has a peak of the element resistance value at a temperature slightly higher than the temperature of liquid nitrogen (77 K).
  • the MCT element 120a detects the interference signal with high sensitivity in the holding time range of 9.94 to 10.24 hours.
  • the holding time exceeds 10.24 hours, the element resistance value becomes lower than that in a state where the remaining amount of liquid nitrogen is sufficient (time before 9.94 hours), and the sensitivity of the MCT element 120a also decreases.
  • the resistance value of the platinum resistance thermometer 120c has gradually increased from around 9.96 hours, but the time to start increasing is slightly slower than the measurement result of the element resistance value. This is because the temperature measuring position of the platinum resistance thermometer 120c is inside the dewar 120b and the temperature is not measured in contact with the MCT element 120a. Because of this time delay, it is difficult to use this resistance value for accurate temperature measurement, but since it continues to rise over time, the temperature of the element decreases due to a decrease in the remaining amount of liquid nitrogen. It can be used to determine whether or not it is rising.
  • a refrigerant remaining amount determination unit 134 (corresponding to a determination unit in the present invention) in the data processing unit 130 determines whether or not there is a possibility that the refrigerant remaining amount is lowered based on these two resistance value changes. In the example of FIG. 3, when both the element resistance value and the resistance value of the platinum resistance temperature detector exceed respective threshold values set in advance, it is determined that the remaining amount of refrigerant is reduced. When the remaining refrigerant amount determining unit 134 determines that the remaining refrigerant amount is decreasing, the data processing unit 130 notifies the control unit 140 that the remaining refrigerant amount has decreased, and the control unit 140 displays a replenishment timing signal on a display or the like.
  • the MCT element 120a when the temperature starts to rise, the element resistance value temporarily rises, and the detection sensitivity of the interference signal of the MCT element 120a also increases. Therefore, in the determination of the refrigerant remaining amount decrease by the element resistance value, the determination is not performed while the element resistance value is increasing, and the fact that the remaining amount of refrigerant has decreased when the element resistance value decreases and falls below the threshold value. You may make it notify.
  • the resistance value of the MCT element 120a it is possible to accurately grasp the change in the element temperature of the MCT element 120a. Furthermore, by measuring the resistance value of the platinum resistance thermometer 120c, it can be confirmed whether the change in the element resistance value is due to an increase in the element temperature or due to other factors. As a result, a decrease in the remaining amount of liquid nitrogen can be detected without causing an erroneous determination, so the user is notified of a decrease in the remaining amount of refrigerant at an appropriate timing or supplied to the MCT element 120a as necessary.
  • the device can be protected by cutting off the bias current.
  • the light beam blocking mechanism 151 is installed immediately before the MCT element 120a. However, if the light beam incident on the MCT element 120a from the infrared light source 111 can be blocked, the light beam blocking mechanism 151 is placed in front of and behind the sample chamber 180 or in the airtight chamber 110. It may be arranged in such a manner. In addition, if the amount of light incident on the MCT element is constant, the element resistance value is measured without blocking the light beam by the light beam blocking mechanism, and a decrease in the refrigerant is determined based on the change over time based on the change over time. Can also be determined.
  • FIG. 4 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to the present embodiment.
  • the light beam blocking mechanism is not provided, and the light-derived waveform generation unit 236 and the DC component extraction unit 235 are provided in the data processing unit 230. Since other configurations are the same as those of the first embodiment, description thereof will be omitted as appropriate.
  • the element resistance value of the MCT element 220a is measured simultaneously with the analysis of the sample S.
  • the incident light measurement unit 222 obtains a photometry signal of the sample S
  • the detection element resistance measurement unit 221 obtains an element resistance value signal.
  • the light-derived waveform generation unit 236 of the data processing unit 230 generates a waveform indicating a time change of the element resistance value signal from the data.
  • FIG. 5 is an example of a waveform generated by the light-derived waveform generation unit 236, which is an actual measurement value of the element resistance value signal.
  • the vertical axis represents the voltage value of the element resistance value signal
  • the horizontal axis represents the optical path difference between the movable mirror 216 and the fixed mirror 215.
  • the optical path difference becomes zero (the reflected light of the movable mirror 216 and the reflected light of the fixed mirror 215 have the same phase), and the incident light is the strongest (the element resistance value is the highest).
  • the optical path difference is 1 ⁇ 2 of the wavelength ⁇ of the infrared light source (the reflected light of the movable mirror 216 and the reflected light of the fixed mirror 215 have opposite phases), which is equivalent to the case where the incident light is blocked. Therefore, the element resistance value signal at the position where the optical path difference is ⁇ / 2 is substantially equal to the dark resistance in the first embodiment.
  • the data processing unit 230 receives the position data of the movable mirror 216 from a control interferometer (not shown), and sends the position data to the DC component extraction unit 235. Based on the position data, the DC component extraction unit 235 extracts the element resistance value when the optical path difference is ⁇ / 2 from the waveform indicating the time change of the element resistance value signal, and stores it in the data processing unit 230.
  • the measurement data of the element resistance value is accumulated in the data processing unit 230, and a graph of the resistance change with time similar to FIG. 3 described in the first embodiment is obtained. Can do.
  • the refrigerant remaining amount determining unit 234 of the data processing unit 230 determines whether or not the remaining amount of refrigerant is decreasing based on the element resistance value and the resistance value of the platinum resistance temperature detector 220c. If it is determined that the remaining amount of refrigerant is decreasing, the data processing unit 230 notifies the control unit 240 of a decrease in the remaining amount of refrigerant, and the control unit 240 outputs a replenishment timing signal to a display device (not shown) such as a display. Then, the user is notified of a decrease in the remaining refrigerant amount.
  • the moving range of the moving mirror includes the position where the optical path difference between the moving mirror and the fixed mirror is ⁇ / 2, so that the MCT element 220a can be measured simultaneously with the measurement of the sample.
  • An element resistance value dark resistance
  • a decrease in the remaining refrigerant amount can be determined without erroneous determination based on the element resistance value and the resistance value of the temperature measuring element.
  • the element resistance value can be measured simultaneously with the measurement of the spectral characteristics of the sample, it is not necessary for the user to perform an additional measurement for confirming the remaining amount of the refrigerant, and there is no burden. Furthermore, it is possible to determine a decrease in the remaining refrigerant amount without interrupting the measurement.
  • the MCT element is used for the photodetector, but a PbS element may be used as the detection element.
  • the wavelength range in which the element has sensitivity, the operating temperature, the type of refrigerant used, the change in resistance value, and the like are different from those of the MCT element, but the element resistance value and temperature measurement are the same as in the first and second embodiments.
  • Each element resistance value can be measured to determine a decrease in the remaining refrigerant amount.
  • the RC circuit was used as a high pass filter of an incident light measurement part, as shown to FIG. 2, 6, another high pass filter may be used.
  • the non-inverting amplifier circuit is used in the incident light measurement unit and the detection element resistance measurement unit.
  • any other amplification circuit can be used as long as it can amplify the DC component. May be used.
  • the photodetector according to the present invention can be applied to a dispersive spectrophotometer in addition to the Fourier transform spectrophotometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

This photodetector is provided with: a container 120b containing a refrigerant; a photoconduction type detecting element 120a disposed in the container; a temperature measuring element 120c disposed in the container to measure the temperature of the photoconduction type detecting element; a photometric signal acquiring means 122 for acquiring, as a photometric signal, a component of a resistance value of the photoconduction type detecting element having a frequency at least equal to a prescribed frequency; an element resistance value acquiring means 121 for acquiring, as an element resistance value signal, the total resistance value of the photoconduction type detecting element; and a determining means 134 for determining whether the residual quantity of the refrigerant in the container has decreased, on the basis of a variation over time in the temperature measured by the temperature measuring element and a variation over time in the element resistance value signal. By this means it is possible to detect a decrease in the residual quantity of a refrigerant such as liquid nitrogen with an appropriate timing.

Description

光検出器及びそれを備えた分光分析装置Photodetector and spectroscopic analyzer provided with the same
 本発明は、光検出器に関し、特に検出素子を液体窒素などの冷媒によって冷却する機能を備えた光検出器及びそれを備えた分光分析装置に関する。 The present invention relates to a photodetector, and more particularly, to a photodetector having a function of cooling a detection element with a refrigerant such as liquid nitrogen and a spectroscopic analysis apparatus including the photodetector.
 光検出器のうち、フーリエ変換型赤外分光光度計(FT-IR)において一般的に用いられるものとしてMCT(Mercury cadmium telluride、HgCdTe、テルル化カドミウム水銀)検出器がある(例えば特許文献1を参照)。MCT検出器には光起電力型のものと光導電型のものがあるが、FT-IRにおいては、安価であって、より長波長側の指紋領域(分子に固有の吸収が多数見られる1300~650 cm-1前後の領域 )に分光感度領域が広がっている光導電型のMCT検出器が使用されることが多い。 Among the photodetectors, an MCT (Mercury cadmium telluride, HgCdTe, cadmium mercury telluride) detector is commonly used in a Fourier transform infrared spectrophotometer (FT-IR) (for example, see Patent Document 1). reference). There are two types of MCT detectors: a photovoltaic type and a photoconductive type. However, the FT-IR is inexpensive and has a fingerprint region on the longer wavelength side (a large number of absorptions inherent to molecules 1300 In many cases, a photoconductive MCT detector having a spectral sensitivity region extending in a range of about ˜650 cm −1 ) is used.
 光導電型MCT検出器は冷却することで高感度化と低ノイズ化を実現可能であり、そのための冷却手段としては液体窒素が用いられることが多い。一般的に、光導電型MCT検出器は、赤外線を透過する窓を備えたデューワとよばれる円筒形の金属容器にMCT半導体から成る光導電型MCT素子(以下、単にMCT素子とよぶ)を収容したMCT検出器ユニットとしてFT-IR等に搭載され、該デューワに液体窒素を導入することで前記MCT素子が冷却される。 The photoconductive MCT detector can achieve high sensitivity and low noise by cooling, and liquid nitrogen is often used as the cooling means. Generally, a photoconductive MCT detector accommodates a photoconductive MCT element (hereinafter simply referred to as an MCT element) made of an MCT semiconductor in a cylindrical metal container called a dewar having a window that transmits infrared rays. The MCT detector unit is mounted on an FT-IR or the like, and the MCT element is cooled by introducing liquid nitrogen into the dewar.
 上記MCT検出器ユニットにおいて、MCT素子に接続される回路の概略を図6に示す。同図に示すようにMCT素子には、該素子にバイアス電流を供給するための定電流源が接続されており、MCT素子への光入射による該素子の抵抗値の低下量に基づいてMCT検出器ユニットに入射した赤外光の光量が求められる。FT-IRでは赤外光の比較的速い光量変化を測定する必要があるため、MCT検出素子から得られた抵抗信号は、まずハイパスフィルタによって所定の周波数以下の成分をカットされ、その後、増幅回路で増幅される。増幅された信号は、測光信号としてパーソナルコンピュータ等のコンピュータから成るデータ処理部(図示略)に送出される。データ処理部では、該測光信号に基づいて前記MCT検出器ユニットへの入射光量が導出され、該入射光量の時間変化をプロットすることによりインターフェログラムとよばれる干渉波形が生成される。 FIG. 6 shows an outline of a circuit connected to the MCT element in the MCT detector unit. As shown in the figure, the MCT element is connected to a constant current source for supplying a bias current to the element, and MCT detection is performed based on the amount of decrease in the resistance value of the element due to light incident on the MCT element. The amount of infrared light incident on the instrument unit is required. In FT-IR, since it is necessary to measure a relatively fast change in the amount of infrared light, the resistance signal obtained from the MCT detection element is first cut off a component below a predetermined frequency by a high-pass filter, and then the amplification circuit. It is amplified by. The amplified signal is sent as a photometric signal to a data processing unit (not shown) including a computer such as a personal computer. In the data processing unit, the amount of incident light on the MCT detector unit is derived based on the photometric signal, and an interference waveform called an interferogram is generated by plotting the temporal change of the amount of incident light.
 上記のようなMCT検出器ユニットでは、例えば白金測温抵抗体等の測温素子をデューワ内に配置したものがある。こうした測温素子を備えたMCT検出器ユニットをFT-IRに搭載することにより、液体窒素の蒸発などによってMCT素子が所定の温度以上になった場合に、液体窒素を補充するようユーザに通知したり、MCT素子に供給するバイアス電流を遮断してMCT素子を保護したりする機能を実現することができる。 In the MCT detector unit as described above, for example, a temperature measuring element such as a platinum resistance temperature detector is disposed in the dewar. By mounting the MCT detector unit equipped with such a temperature measuring element on the FT-IR, when the MCT element becomes a predetermined temperature or higher due to evaporation of liquid nitrogen or the like, the user is notified to replenish liquid nitrogen. Or a function of protecting the MCT element by blocking the bias current supplied to the MCT element.
実開平6-56734号公報Japanese Utility Model Publication No. 6-56734
 前記白金測温抵抗体等の測温素子では、温度の上昇に伴って電気抵抗が増大する。そこで、上記のような液体窒素残量低下の通知機能やMCT素子の保護機能を実現する際には、該測温素子の抵抗値が所定の閾値を超えた時点で、MCT素子温度が前記所定の温度以上になったと判定していた。しかし、前記測温素子によって測定される温度と実際のMCT素子の温度には多少のずれが存在することが多く、通常、前記閾値は低めに設定されるため、液体窒素が残っているにもかかわらずユーザに残量低下を通知する誤判定を起こす。また、この誤判定を避けるために前記閾値を比較的高めに設定すると、MCT素子温度が前記所定の閾値以上になったと判定された時点では、すでに相当の温度上昇が生じ、それに伴いMCT素子の感度低下やノイズ増による測光性能の低下が発生した状態となっていることがあった。その結果、ユーザが液体窒素残量低下の通知を認識したときには、すでに測光性能が低下した測定を複数回実施した後となっていることがあり、これは特に自動分析によって複数の試料を連続的に測定する場合に問題となる。 In the temperature measuring element such as the platinum resistance temperature detector, the electrical resistance increases as the temperature rises. Therefore, when realizing the notification function of the liquid nitrogen remaining amount reduction and the protection function of the MCT element as described above, the MCT element temperature is set to the predetermined value when the resistance value of the temperature measuring element exceeds a predetermined threshold value. It was judged that the temperature was over. However, there is often a slight difference between the temperature measured by the temperature measuring element and the actual temperature of the MCT element. Usually, the threshold value is set low, so that liquid nitrogen remains. Regardless, a misjudgment that notifies the user of a decrease in the remaining amount is caused. Further, if the threshold value is set relatively high in order to avoid this erroneous determination, when it is determined that the MCT element temperature has become equal to or higher than the predetermined threshold value, a considerable temperature increase has already occurred, and accordingly the MCT element temperature is increased. There was a case where the photometric performance was lowered due to sensitivity reduction or noise increase. As a result, when the user recognizes a notification of a decrease in the amount of remaining liquid nitrogen, it may be after multiple measurements that have already been reduced in photometric performance, especially when multiple samples are continuously analyzed by automatic analysis. It becomes a problem when measuring.
 本発明は上記の点に鑑みて成されたものであり、その目的とするところは、液体窒素などの冷媒の残量低下を適切なタイミングで検知することのできる光検出器及びそれを備えた分光分析装置を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a photodetector capable of detecting a decrease in the remaining amount of refrigerant such as liquid nitrogen at an appropriate timing, and the photodetector. The object is to provide a spectroscopic analyzer.
 上記課題を解決するために成された本発明に係る光検出器は、
 a)冷媒を収容する容器と、
 b)前記容器内に配置された光導電型検出素子と、
 c)前記容器内に配置され、前記光導電型検出素子の温度を測定する測温素子と、
 d)前記光導電型検出素子の抵抗値のうち所定の周波数以上の成分を測光信号として取得する測光信号取得手段と、
 e)前記光導電型検出素子の全抵抗値を素子抵抗値信号として取得する素子抵抗値取得手段と、
 f)前記測温素子によって測定された温度の時間変化と、前記素子抵抗値信号の時間変化とに基づいて前記容器内の冷媒残量が低下しているか否かを判定する判定手段と、
 を有することを特徴としている。
The photodetector according to the present invention, which has been made to solve the above problems,
a) a container containing the refrigerant;
b) a photoconductive detection element disposed in the container;
c) a temperature measuring element disposed in the container for measuring the temperature of the photoconductive detection element;
d) a photometric signal acquisition means for acquiring, as a photometric signal, a component having a predetermined frequency or higher among the resistance value of the photoconductive detection element;
e) element resistance value acquisition means for acquiring the total resistance value of the photoconductive detection element as an element resistance value signal;
f) determination means for determining whether or not the remaining amount of refrigerant in the container is reduced based on the time change of the temperature measured by the temperature measuring element and the time change of the element resistance value signal;
It is characterized by having.
 本発明における光検出器は、赤外線、紫外線、又は可視光などの電磁気的エネルギーを検出するものであって、前記光導電型検出素子は、典型的には上述の光導電型MCT素子であるが、液体窒素等の冷媒による冷却下で使用されるものであれば、その他の素子、例えば光導電型PbS(硫化鉛)素子を用いることもできる。 The photodetector in the present invention detects electromagnetic energy such as infrared, ultraviolet, or visible light, and the photoconductive detection element is typically the above-described photoconductive MCT element. Other elements such as a photoconductive PbS (lead sulfide) element may be used as long as they are used under cooling with a refrigerant such as liquid nitrogen.
 上記の通り、本発明に係る光検出器は、前記光導電型検出素子の抵抗値のうち、従来、測光信号として取得されていた所定の周波数以上の成分のみならず、該所定の周波数未満の成分をも含めた全抵抗値を素子抵抗値信号として取得する素子抵抗値取得手段を備えており、これにより、該光導電型検出素子において感度低下やノイズ増による測光性能の低下が生じているか否かを知ることができる。そのため、前記判定手段により、前記測温素子による測定温度の時間変化と前記光導電型検出素子の全抵抗値の時間変化を監視することにより、前記測定温度が上昇し始めてから、前記光導電型検出素子の感度低下や測光性能の低下が生じるまでの間の任意のタイミングで冷媒残量が低下していると判定することができる。その結果、誤判定を生じることなく冷媒残量の低下を速やかに検知することができるため、適切なタイミングでユーザに冷媒残量の低下を通知したり、光導電型検出素子に供給するバイアス電流を遮断して該素子の保護を図ったりすることが可能となる。 As described above, the photodetector according to the present invention includes not only a component having a predetermined frequency or higher, which has been conventionally acquired as a photometric signal, among the resistance value of the photoconductive detection element, but also being less than the predetermined frequency. Is it provided with element resistance value acquisition means for acquiring all resistance values including components as an element resistance value signal, and is this causing a decrease in sensitivity or a decrease in photometric performance due to increased noise in the photoconductive detection element? You can know whether or not. Therefore, the determination means monitors the time change of the measured temperature by the temperature measuring element and the time change of the total resistance value of the photoconductive detection element, so that the photoconductive type starts after the measurement temperature starts to rise. It can be determined that the remaining amount of refrigerant is decreasing at an arbitrary timing until the sensitivity of the detection element decreases and the photometric performance decreases. As a result, it is possible to quickly detect a decrease in the remaining amount of the refrigerant without causing an erroneous determination, so that the user can be notified of the decrease in the remaining amount of the refrigerant at an appropriate timing, or the bias current supplied to the photoconductive detection element It is possible to protect the element by shutting off.
 また、本発明に係る分光分析装置は、
 a)光源と、
 b)前記光源からの光を試料に照射する照射光学系と、
 c)前記光源からの光と前記試料との相互作用により得られた光を検出する検出器と、
 を有し、
 前記検出器が前記光検出器であることを特徴とするものである。
Moreover, the spectroscopic analyzer according to the present invention is:
a) a light source;
b) an irradiation optical system for irradiating the sample with light from the light source;
c) a detector for detecting the light obtained from the interaction between the light from the light source and the sample;
Have
The detector is the photodetector.
 上記本発明に係る分光分析装置は、紫外可視分光光度計、紫外可視近赤外分光光度計、分光蛍光光度計、フーリエ変換型赤外分光光度計、ラマン分光装置などいかなるものであってもよいが、本発明は、特にフーリエ変換型赤外分光光度計に好適に適用することができる。この場合、前記光源としては干渉計が使用され、該干渉計で発生した干渉光が試料に照射される。 The spectroscopic analyzer according to the present invention may be any device such as an ultraviolet-visible spectrophotometer, an ultraviolet-visible near-infrared spectrophotometer, a spectrofluorophotometer, a Fourier transform infrared spectrophotometer, a Raman spectrophotometer, or the like. However, the present invention can be suitably applied particularly to a Fourier transform infrared spectrophotometer. In this case, an interferometer is used as the light source, and the sample is irradiated with interference light generated by the interferometer.
 前記分光分析装置は、更に、前記素子抵抗値取得手段によって前記素子抵抗値信号を取得する際に、前記光導電型検出素子に入射する光束を遮断する遮光手段を有するものとすることが望ましい。 It is desirable that the spectroscopic analysis apparatus further includes a light shielding unit that blocks a light beam incident on the photoconductive detection element when the element resistance value signal is acquired by the element resistance value acquisition unit.
 このような構成によれば、前記素子抵抗値取得手段による前記素子抵抗値信号の取得を、常に、前記光導電型検出素子に光束が入射しない状態で行うことができる。そのため、前記判定部において、前記光導電型検出素子への入射光量に依存しない抵抗値(暗抵抗)の時間変化、すなわち該素子の温度変化に起因する抵抗値の時間変化を求めることができる。 According to such a configuration, the element resistance value signal can be always acquired by the element resistance value acquiring means in a state where no light beam is incident on the photoconductive detection element. Therefore, the determination unit can determine the temporal change of the resistance value (dark resistance) independent of the amount of incident light on the photoconductive detection element, that is, the temporal change of the resistance value due to the temperature change of the element.
 前記遮光手段は、分光分析装置の光源から前記光検出器に至る光路上のいずれの位置に設けてもよく、例えば、光検出器の直前に設けるほか、光源(例えば、フーリエ変換型赤外分光光度計の場合は干渉計)や試料室に設けるようにしてもよい。 The light shielding means may be provided at any position on the optical path from the light source of the spectroscopic analyzer to the photodetector. For example, in addition to being provided immediately before the photodetector, a light source (for example, Fourier transform infrared spectroscopy) In the case of a photometer, an interferometer) or a sample chamber may be provided.
 また、前記分光分析装置は、前記遮光手段に代えて、
 d)前記検出器への光の導入に伴う前記素子抵抗値信号の時間変化を示す波形を生成する光由来波形生成手段と、
 e)前記光由来波形生成手段によって生成された波形から直流成分を抽出する直流成分抽出手段と、
 を有し、
 前記判定手段が、前記直流成分の強度の時間変化を、前記素子抵抗値信号の時間変化として用いるものとしてもよい。
In addition, the spectroscopic analyzer is replaced with the light shielding means,
d) a light-derived waveform generating means for generating a waveform indicating a time change of the element resistance signal accompanying the introduction of light into the detector;
e) DC component extraction means for extracting a DC component from the waveform generated by the light-derived waveform generation means;
Have
The determination unit may use a time change in the intensity of the direct current component as a time change in the element resistance value signal.
 前記直流成分抽出手段によって抽出される直流成分は、光導電型検出素子への入射光量の増減によらない抵抗値の変化、すなわち該素子の温度変化に起因する抵抗値の時間変化を示している。従って、上記構成から成る分光分析装置によれば、上述のような遮光手段を設けることなく、光検出器への光の導入を継続した状態(例えば試料測定の実行中)において、前記素子抵抗値信号の取得を行うことができる。 The direct current component extracted by the direct current component extraction means indicates a change in resistance value that does not depend on increase or decrease in the amount of light incident on the photoconductive detection element, that is, a change in resistance value with time due to a temperature change of the element. . Therefore, according to the spectroscopic analysis apparatus having the above-described configuration, the element resistance value can be obtained in a state in which the introduction of light into the photodetector is continued without providing the light shielding means as described above (for example, during sample measurement). Signal acquisition can be performed.
 以上の通り、本発明に係る光検出器及びそれを備えた分光分析装置によれば、液体窒素などの冷媒の残量低下を適切なタイミングで検知することが可能となる。 As described above, according to the photodetector according to the present invention and the spectroscopic analysis apparatus including the same, it is possible to detect a decrease in the remaining amount of refrigerant such as liquid nitrogen at an appropriate timing.
本発明の第1の実施例に係るフーリエ変換型赤外分光光度計の概略構成図。1 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to a first embodiment of the present invention. 同実施形態においてMCT素子と接続される回路の模式図。The schematic diagram of the circuit connected with an MCT element in the embodiment. Pt温度センサとMCT素子の抵抗値の時間変化を示すグラフ。The graph which shows the time change of the resistance value of a Pt temperature sensor and an MCT element. 本発明の第2の実施例に係るフーリエ変換型赤外分光光度計の概略構成図。The schematic block diagram of the Fourier-transform type infrared spectrophotometer which concerns on the 2nd Example of this invention. MCT素子抵抗値信号の実測例。An example of actual measurement of an MCT element resistance value signal. 従来の光検出器におけるMCT素子と接続される回路の模式図。The schematic diagram of the circuit connected with the MCT element in the conventional photodetector.
 以下、本発明の実施例について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本実施例に係るフーリエ変換型赤外分光光度計の概略構成図である。本実施例のフーリエ変換型赤外分光光度計では、気密室110内に配置された赤外光源111からの赤外光は第1集光鏡112を経てコリメータ鏡113に入射され、該コリメータ鏡113により平行光となったあと、ビームスプリッタ114により2つに分割され、一方が固定鏡115、他方が移動鏡116に反射され、再び同一経路に導かれることで干渉光となる。そして、該干渉光は気密室110の外部に配置された第2集光鏡117を介して試料室118に導入され、試料Sに照射された後、前記干渉光と該試料Sの相互作用により発せられた光が第3集光鏡119を介して赤外線検出器ユニット120で検出される。赤外線検出器ユニット120で検出された信号は入射光計測部122を経由してデータ処理部130へ送られ、入射光算出部132によりインターフェログラムが作成される。また、データ処理部130は図示しないコントロール干渉計からのデータを基に移動鏡116の現在位置を算出する。現在位置の情報は制御部140へ送られ、移動鏡116の駆動制御等に利用される。 FIG. 1 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to the present embodiment. In the Fourier transform infrared spectrophotometer of the present embodiment, the infrared light from the infrared light source 111 disposed in the hermetic chamber 110 is incident on the collimator mirror 113 through the first condenser mirror 112, and the collimator mirror. After being collimated by 113, it is divided into two by the beam splitter 114, one of which is reflected by the fixed mirror 115 and the other by the movable mirror 116, and is again guided to the same path to become interference light. Then, the interference light is introduced into the sample chamber 118 via the second condenser mirror 117 disposed outside the hermetic chamber 110 and irradiated on the sample S, and then the interaction between the interference light and the sample S is performed. The emitted light is detected by the infrared detector unit 120 via the third condenser mirror 119. A signal detected by the infrared detector unit 120 is sent to the data processing unit 130 via the incident light measurement unit 122, and an interferogram is created by the incident light calculation unit 132. Further, the data processing unit 130 calculates the current position of the movable mirror 116 based on data from a control interferometer (not shown). Information on the current position is sent to the control unit 140 and used for driving control of the movable mirror 116 and the like.
 赤外線検出器ユニット120は、前記干渉光を検出するMCT素子120a(本発明における光導電型検出素子に相当)と、該MCT素子120aを冷却するための冷媒を収容するデューワ120b(本発明における容器に相当)と、該デューワ120b内に設けられた白金測温抵抗体120c(本発明における測温素子に相当)からなる。MCT素子120aは図2に示す回路に接続される。MCT素子120aにはバイアス電流を供給するための定電流源が接続されている。MCT素子120aへ赤外光が入射すると、該素子の抵抗値が変化し、この抵抗値の変化に応じた電圧が入射光計測部122(本発明における測光信号取得手段に相当)へ入力される。入射光計測部122に入力された信号は、図2に示すハイパスフィルタ122a及び増幅回路122bを通ることで一定周波数以上の交流成分のみが増幅され、測光信号として出力される。このとき、MCT素子120aの抵抗値の変化量は該素子温度によって変化するが、前記デューワ120b内の冷媒残量が十分であれば、前記MCT素子120aが一定温度に冷却されるため、所望の感度で前記干渉光を検出することができる。 The infrared detector unit 120 includes an MCT element 120a that detects the interference light (corresponding to a photoconductive detection element in the present invention), and a dewar 120b (container in the present invention) that contains a refrigerant for cooling the MCT element 120a. And a platinum resistance thermometer 120c (corresponding to the temperature measuring element in the present invention) provided in the dewar 120b. The MCT element 120a is connected to the circuit shown in FIG. A constant current source for supplying a bias current is connected to the MCT element 120a. When infrared light enters the MCT element 120a, the resistance value of the element changes, and a voltage corresponding to the change in the resistance value is input to the incident light measurement unit 122 (corresponding to the photometric signal acquisition means in the present invention). . The signal input to the incident light measuring unit 122 passes through the high-pass filter 122a and the amplifier circuit 122b shown in FIG. 2, so that only an AC component having a certain frequency or higher is amplified and output as a photometric signal. At this time, the amount of change in the resistance value of the MCT element 120a varies depending on the temperature of the element. However, if the remaining amount of the refrigerant in the dewar 120b is sufficient, the MCT element 120a is cooled to a constant temperature. The interference light can be detected with sensitivity.
 検出素子抵抗計測部121(本発明における素子抵抗値取得手段に相当)には入射光計測部122と同じ信号が入力されるが、ハイパスフィルタを通さずに増幅回路へ信号が入力される。従って、入力された信号は直流成分を含む素子抵抗値信号として増幅され、データ処理部130に送られる。データ処理部130内の検出素子抵抗算出部131では前記素子抵抗値信号に基づいてMCT素子120aの素子抵抗値(全抵抗値)が算出される。 The same signal as that of the incident light measurement unit 122 is input to the detection element resistance measurement unit 121 (corresponding to the element resistance value acquisition unit in the present invention), but the signal is input to the amplifier circuit without passing through the high-pass filter. Accordingly, the input signal is amplified as an element resistance value signal including a direct current component and sent to the data processing unit 130. A detection element resistance calculation unit 131 in the data processing unit 130 calculates an element resistance value (total resistance value) of the MCT element 120a based on the element resistance value signal.
 測温素子抵抗計測部123は前記白金測温抵抗体120cの測温抵抗値信号を測定し、該測温抵抗値信号をデータ処理部130に送る。データ処理部130内の測温素子抵抗算出部133では、測温抵抗値信号を基に白金測温抵抗体120cの抵抗値を算出する。 The temperature measuring element resistance measuring unit 123 measures the temperature measuring resistance value signal of the platinum temperature measuring resistor 120 c and sends the temperature measuring resistance value signal to the data processing unit 130. A temperature measuring element resistance calculation unit 133 in the data processing unit 130 calculates the resistance value of the platinum resistance temperature detector 120c based on the temperature measurement resistance value signal.
 本実施例における冷媒残量の低下を判定する手順を説明する。まず、制御部140は遮断機構駆動部150を操作し、遮光板などから成る光束遮断機構151をMCT素子120aの前に移動させる(これら遮断機構駆動部150及び光束遮断機構151が、本発明における遮光手段に相当する)。これによりMCT素子120aには赤外光源111等から発せられる赤外光が入射しなくなり、素子抵抗値(暗抵抗)は一定値となる。暗抵抗は素子温度に依存して変化するため、該暗抵抗を測定することにより素子温度の変化を推定することができる。この素子抵抗値(暗抵抗)と白金測温抵抗体の抵抗値は試料の測定の合間に自動で又はユーザの指示により定期的に測定され、データ処理部130に蓄積される。 A procedure for determining a decrease in the remaining refrigerant amount in this embodiment will be described. First, the control unit 140 operates the blocking mechanism driving unit 150 to move the light beam blocking mechanism 151 composed of a light shielding plate or the like in front of the MCT element 120a (the blocking mechanism driving unit 150 and the beam blocking mechanism 151 are the same in the present invention). Corresponds to light shielding means). Thereby, infrared light emitted from the infrared light source 111 or the like does not enter the MCT element 120a, and the element resistance value (dark resistance) becomes a constant value. Since the dark resistance changes depending on the element temperature, a change in the element temperature can be estimated by measuring the dark resistance. The element resistance value (dark resistance) and the resistance value of the platinum resistance temperature detector are measured automatically or periodically according to a user instruction between sample measurements, and are stored in the data processing unit 130.
 図3はMCT素子120aの抵抗値(暗抵抗)と白金測温抵抗体120cの抵抗値の実測値について、縦軸を抵抗値、横軸を液体窒素の保持時間としたグラフである。図3から分かるように、保持時間が9.5時間からしばらくの間は、温度が安定しているため素子抵抗値が安定している。そして、9.92時間付近からMCT素子120aの抵抗値は徐々に上昇し、10.04~10.06時間付近でピークとなり、その後は徐々に下降している。この抵抗値の上昇はMCT素子の物性によるものであり、液体窒素の温度(77K)よりもやや高い温度で素子抵抗値のピークを有する。つまり、保持時間が9.94~10.24時間の時間帯で、MCT素子120aは高い感度で干渉信号を検出する。そして保持時間が10.24時間を越えると、液体窒素の残量が十分な状態(9.94時間よりも前の時間)よりも素子抵抗値が低くなり、MCT素子120aの感度も低下する。 FIG. 3 is a graph of the resistance value (dark resistance) of the MCT element 120a and the measured value of the resistance value of the platinum resistance thermometer 120c, with the vertical axis representing the resistance value and the horizontal axis representing the liquid nitrogen retention time. As can be seen from FIG. 3, since the temperature is stable for a while from 9.5 hours, the element resistance value is stable. The resistance value of the MCT element 120a gradually increases from around 9.92 hours, reaches a peak around 10.04 to 10.06 hours, and then gradually decreases. This increase in resistance value is due to the physical properties of the MCT element, and has a peak of the element resistance value at a temperature slightly higher than the temperature of liquid nitrogen (77 K). In other words, the MCT element 120a detects the interference signal with high sensitivity in the holding time range of 9.94 to 10.24 hours. When the holding time exceeds 10.24 hours, the element resistance value becomes lower than that in a state where the remaining amount of liquid nitrogen is sufficient (time before 9.94 hours), and the sensitivity of the MCT element 120a also decreases.
 一方、白金測温抵抗体120cの抵抗値は、9.96時間付近から徐々に上昇しているが、素子抵抗値の測定結果と比較して上昇を始める時間がわずかに遅い。これは白金測温抵抗体120cの測温位置がデューワ120b内部であり、MCT素子120aに接触して測温していないことが原因である。このような時間的な遅れがあるため正確な温度測定にこの抵抗値を利用することは難しいが、時間経過に応じて上昇し続けていることから、液体窒素残量の低下により素子の温度が上昇しているか否かの判定に使用することは可能である。 On the other hand, the resistance value of the platinum resistance thermometer 120c has gradually increased from around 9.96 hours, but the time to start increasing is slightly slower than the measurement result of the element resistance value. This is because the temperature measuring position of the platinum resistance thermometer 120c is inside the dewar 120b and the temperature is not measured in contact with the MCT element 120a. Because of this time delay, it is difficult to use this resistance value for accurate temperature measurement, but since it continues to rise over time, the temperature of the element decreases due to a decrease in the remaining amount of liquid nitrogen. It can be used to determine whether or not it is rising.
 データ処理部130内の冷媒残量判定部134(本発明における判定手段に相当)はこれら2つの抵抗値変化を基に冷媒残量が低下している可能性があるかを判定する。図3の例では素子抵抗値と白金測温抵抗体の抵抗値の両方について、事前にそれぞれ設定された閾値を越えると冷媒残量が低下していると判定する。冷媒残量判定部134により冷媒残量が低下していると判定されると、データ処理部130は制御部140に冷媒残量低下を通知し、制御部140は補充タイミング信号をディスプレイなどの表示装置(図示略)へ出力し、ユーザに冷媒残量の低下を通知する。
 なお、MCT素子120aの場合は温度が上昇し始めると一時的に素子抵抗値が上昇し、MCT素子120aの干渉信号の検出感度も増加する。従って、素子抵抗値による冷媒残量低下の判定においては素子抵抗値が増加している間は判定を行わず、素子抵抗値が減少して閾値を下回った場合に冷媒残量が低下したことを通知するようにしてもよい。
A refrigerant remaining amount determination unit 134 (corresponding to a determination unit in the present invention) in the data processing unit 130 determines whether or not there is a possibility that the refrigerant remaining amount is lowered based on these two resistance value changes. In the example of FIG. 3, when both the element resistance value and the resistance value of the platinum resistance temperature detector exceed respective threshold values set in advance, it is determined that the remaining amount of refrigerant is reduced. When the remaining refrigerant amount determining unit 134 determines that the remaining refrigerant amount is decreasing, the data processing unit 130 notifies the control unit 140 that the remaining refrigerant amount has decreased, and the control unit 140 displays a replenishment timing signal on a display or the like. It outputs to a device (not shown) and notifies the user of a decrease in the remaining refrigerant amount.
In the case of the MCT element 120a, when the temperature starts to rise, the element resistance value temporarily rises, and the detection sensitivity of the interference signal of the MCT element 120a also increases. Therefore, in the determination of the refrigerant remaining amount decrease by the element resistance value, the determination is not performed while the element resistance value is increasing, and the fact that the remaining amount of refrigerant has decreased when the element resistance value decreases and falls below the threshold value. You may make it notify.
 このようにMCT素子120aの抵抗値を測定することで、MCT素子120aの素子温度の変化を正確に把握することが可能となる。さらに、白金測温抵抗体120cの抵抗値を測定することで、前記素子抵抗値の変化が素子温度の上昇によるものであるか、その他の要因によるものかを確認できる。その結果、液体窒素の残量の低下を、誤判定を生じることなく検知することができるため、適切なタイミングでユーザに冷媒残量の低下を通知したり、必要に応じてMCT素子120aに供給するバイアス電流を遮断して、該素子の保護を図ることができる。 Thus, by measuring the resistance value of the MCT element 120a, it is possible to accurately grasp the change in the element temperature of the MCT element 120a. Furthermore, by measuring the resistance value of the platinum resistance thermometer 120c, it can be confirmed whether the change in the element resistance value is due to an increase in the element temperature or due to other factors. As a result, a decrease in the remaining amount of liquid nitrogen can be detected without causing an erroneous determination, so the user is notified of a decrease in the remaining amount of refrigerant at an appropriate timing or supplied to the MCT element 120a as necessary. The device can be protected by cutting off the bias current.
 また、MCT素子120aの暗抵抗を長期的に測定し、本来一定であるはずの暗抵抗の変化をみることで、MCT素子120aの感度低下を推定することも可能である。また、赤外光源111から一定光量の光を照射した場合のMCT素子120aの素子抵抗を定期的に計測することにより、光路中にあるビームスプリッタ114や集光ミラーといった光学系の光軸ズレや光学素子の劣化に伴う光量低下を推定することも可能となる。 It is also possible to estimate a decrease in sensitivity of the MCT element 120a by measuring the dark resistance of the MCT element 120a over a long period of time and observing the change in dark resistance that should be constant. Further, by periodically measuring the element resistance of the MCT element 120a when a certain amount of light is irradiated from the infrared light source 111, the optical axis deviation of the optical system such as the beam splitter 114 or the condensing mirror in the optical path can be reduced. It is also possible to estimate a decrease in the amount of light accompanying the deterioration of the optical element.
 本実施例では光束遮断機構151をMCT素子120aの直前に設置したが、赤外光源111からMCT素子120aに入射する光束を遮断できる位置であれば、試料室180の前後や気密室110の中などに配置してもよい。また、MCT素子への入射光量が一定であれば光束遮断機構で光束を遮断せずに素子抵抗値を計測し、その経時変化を基に冷媒の低下を判定することで、冷媒残量の低下を判定することも可能である。 In the present embodiment, the light beam blocking mechanism 151 is installed immediately before the MCT element 120a. However, if the light beam incident on the MCT element 120a from the infrared light source 111 can be blocked, the light beam blocking mechanism 151 is placed in front of and behind the sample chamber 180 or in the airtight chamber 110. It may be arranged in such a manner. In addition, if the amount of light incident on the MCT element is constant, the element resistance value is measured without blocking the light beam by the light beam blocking mechanism, and a decrease in the refrigerant is determined based on the change over time based on the change over time. Can also be determined.
 本発明の第2の実施例に係るフーリエ変換型赤外分光光度計について図4、5を参照しつつ説明する。図4は本実施例に係るフーリエ変換型赤外分光光度計の概略構成図である。本実施例では光束遮断機構を設けておらず、データ処理部230に光由来波形生成部236及び直流成分抽出部235が設けられている。その他の構成については第1の実施例と同じであるため、説明を適宜省略する。 A Fourier transform infrared spectrophotometer according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a schematic configuration diagram of a Fourier transform infrared spectrophotometer according to the present embodiment. In this embodiment, the light beam blocking mechanism is not provided, and the light-derived waveform generation unit 236 and the DC component extraction unit 235 are provided in the data processing unit 230. Since other configurations are the same as those of the first embodiment, description thereof will be omitted as appropriate.
 本実施例では、試料Sの分析と同時にMCT素子220aの素子抵抗値を測定する。まず、フーリエ変換型赤外分光光度計で試料Sの分析を行うと、入射光計測部222では試料Sの測光信号が得られ、検出素子抵抗計測部221では素子抵抗値信号が得られ、これらのデータはデータ処理部230へ送られる。データ処理部230の光由来波形生成部236では、前記データから前記素子抵抗値信号の時間変化を示す波形が生成される。図5は、光由来波形生成部236で生成される波形の一例であり、前記素子抵抗値信号の実測値である。同図の縦軸は素子抵抗値信号の電圧値、横軸は移動鏡216と固定鏡215の光路差である。図5の中央では光路差がゼロとなり(移動鏡216の反射光と固定鏡215の反射光が同位相となり)入射光が最も強い(素子抵抗値が最も高い)状態であり、同図の両端では光路差が赤外光源の波長λの1/2(移動鏡216の反射光と固定鏡215の反射光が逆位相となり)となり入射光が遮断されている場合と同等な状態となる。従って、光路差がλ/2の位置における素子抵抗値信号は第1の実施例における暗抵抗とほぼ同等な値となる。 In this embodiment, the element resistance value of the MCT element 220a is measured simultaneously with the analysis of the sample S. First, when the sample S is analyzed with a Fourier transform infrared spectrophotometer, the incident light measurement unit 222 obtains a photometry signal of the sample S, and the detection element resistance measurement unit 221 obtains an element resistance value signal. Is sent to the data processing unit 230. The light-derived waveform generation unit 236 of the data processing unit 230 generates a waveform indicating a time change of the element resistance value signal from the data. FIG. 5 is an example of a waveform generated by the light-derived waveform generation unit 236, which is an actual measurement value of the element resistance value signal. In the figure, the vertical axis represents the voltage value of the element resistance value signal, and the horizontal axis represents the optical path difference between the movable mirror 216 and the fixed mirror 215. In the center of FIG. 5, the optical path difference becomes zero (the reflected light of the movable mirror 216 and the reflected light of the fixed mirror 215 have the same phase), and the incident light is the strongest (the element resistance value is the highest). Then, the optical path difference is ½ of the wavelength λ of the infrared light source (the reflected light of the movable mirror 216 and the reflected light of the fixed mirror 215 have opposite phases), which is equivalent to the case where the incident light is blocked. Therefore, the element resistance value signal at the position where the optical path difference is λ / 2 is substantially equal to the dark resistance in the first embodiment.
 データ処理部230は図示しないコントロール干渉計から移動鏡216の位置データを受信し、該位置データを直流成分抽出部235へ送る。直流成分抽出部235では前記位置データに基づき、前記素子抵抗値信号の時間変化を示す波形から光路差がλ/2のときの素子抵抗値を抽出し、データ処理部230に保存する。 The data processing unit 230 receives the position data of the movable mirror 216 from a control interferometer (not shown), and sends the position data to the DC component extraction unit 235. Based on the position data, the DC component extraction unit 235 extracts the element resistance value when the optical path difference is λ / 2 from the waveform indicating the time change of the element resistance value signal, and stores it in the data processing unit 230.
 このように試料の分析を実施する毎に、データ処理部230に素子抵抗値の測定データが蓄積され、第1の実施例で説明した図3と同様な抵抗値の時間変化のグラフを得ることができる。データ処理部230の冷媒残量判定部234は前記素子抵抗値及び白金測温抵抗体220cの抵抗値を基に冷媒残量が低下しているか否かを判定する。冷媒残量が低下していると判定されると、データ処理部230は制御部240に冷媒残量低下を通知し、制御部240は補充タイミング信号をディスプレイなどの表示装置(図示略)へ出力し、ユーザに冷媒残量の低下を通知する。 As described above, each time the sample is analyzed, the measurement data of the element resistance value is accumulated in the data processing unit 230, and a graph of the resistance change with time similar to FIG. 3 described in the first embodiment is obtained. Can do. The refrigerant remaining amount determining unit 234 of the data processing unit 230 determines whether or not the remaining amount of refrigerant is decreasing based on the element resistance value and the resistance value of the platinum resistance temperature detector 220c. If it is determined that the remaining amount of refrigerant is decreasing, the data processing unit 230 notifies the control unit 240 of a decrease in the remaining amount of refrigerant, and the control unit 240 outputs a replenishment timing signal to a display device (not shown) such as a display. Then, the user is notified of a decrease in the remaining refrigerant amount.
 このように、試料Sの測定の際に、移動鏡の移動範囲に移動鏡と固定鏡の光路差がλ/2となる位置を含む構成にすることで、試料の測定と同時にMCT素子220aの素子抵抗値(暗抵抗)が得られ、この素子抵抗値と測温素子の抵抗値を基に冷媒残量の低下を誤判定することなく判定することができる。また、素子抵抗値の測定は試料の分光特性の測定と同時に行うことができるため、ユーザが冷媒残量を確認するための測定を追加で行う必要がなく、負担をかけることがない。さらに、測定を中断することなく冷媒残量の低下を判定することができる。 As described above, when the sample S is measured, the moving range of the moving mirror includes the position where the optical path difference between the moving mirror and the fixed mirror is λ / 2, so that the MCT element 220a can be measured simultaneously with the measurement of the sample. An element resistance value (dark resistance) is obtained, and a decrease in the remaining refrigerant amount can be determined without erroneous determination based on the element resistance value and the resistance value of the temperature measuring element. In addition, since the element resistance value can be measured simultaneously with the measurement of the spectral characteristics of the sample, it is not necessary for the user to perform an additional measurement for confirming the remaining amount of the refrigerant, and there is no burden. Furthermore, it is possible to determine a decrease in the remaining refrigerant amount without interrupting the measurement.
 上記実施例1、2では光検出器にMCT素子を用いたが、検出素子としてPbS素子を用いてもよい。この場合、素子が感度を持つ波長範囲や動作温度、使用する冷媒の種類、抵抗値の変化等はMCT素子とは異なるが、上記実施例1、2と同様な構成で素子抵抗値と測温素子の抵抗値をそれぞれ測定して、冷媒残量の低下を判定することができる。また、上記実施例1、2では、図2、6に示すように、入射光計測部のハイパスフィルタとしてRC回路を用いたが、その他のハイパスフィルタを用いてもよい。また、同図に示すように、上記実施例1、2では、入射光計測部及び検出素子抵抗計測部において非反転増幅回路を用いたが、直流成分を増幅できるものであればその他の増幅回路を用いてもよい。また、本発明に係る光検出器はフーリエ変換型分光光度計以外に、分散型分光光度計にも適用することもできる。 In the first and second embodiments, the MCT element is used for the photodetector, but a PbS element may be used as the detection element. In this case, the wavelength range in which the element has sensitivity, the operating temperature, the type of refrigerant used, the change in resistance value, and the like are different from those of the MCT element, but the element resistance value and temperature measurement are the same as in the first and second embodiments. Each element resistance value can be measured to determine a decrease in the remaining refrigerant amount. Moreover, in the said Example 1, 2, although the RC circuit was used as a high pass filter of an incident light measurement part, as shown to FIG. 2, 6, another high pass filter may be used. As shown in the figure, in the first and second embodiments, the non-inverting amplifier circuit is used in the incident light measurement unit and the detection element resistance measurement unit. However, any other amplification circuit can be used as long as it can amplify the DC component. May be used. Further, the photodetector according to the present invention can be applied to a dispersive spectrophotometer in addition to the Fourier transform spectrophotometer.
110、210…気密室
111、211…赤外光源
112、117、119、212、217、219…集光鏡
113、213…コリメータ鏡
114、214…ビームスプリッタ
115、215…固定鏡
116、216…移動鏡
118、218…試料室
120、220…赤外線検出器ユニット
120a、220a…MCT素子
120b、220b…デューワ
120c、220c…白金測温抵抗体
121、221…検出素子抵抗計測部
122、222…入射光計測部
122a…ハイパスフィルタ
122b…増幅回路
123、223…測温素子抵抗計測部
130、230…データ処理部
131、231…検出素子抵抗算出部
132、232…入射光算出部
133、233…測温素子抵抗算出部
134、234…冷媒残量判定部
140、240…制御部
150…遮光機構駆動部
151…光束遮断機構
235…直流成分抽出部
236…光由来波形生成部
110, 210 ... hermetic chambers 111, 211 ... infrared light sources 112, 117, 119, 212, 217, 219 ... condensing mirrors 113, 213 ... collimator mirrors 114, 214 ... beam splitters 115, 215 ... fixed mirrors 116, 216 ... Moving mirror 118, 218 ... Sample chamber 120, 220 ... Infrared detector unit 120a, 220a ... MCT element 120b, 220b ... Dewar 120c, 220c ... Platinum resistance thermometer 121, 221 ... Detection element resistance measuring unit 122, 222 ... Incident Optical measurement unit 122a ... High-pass filter 122b ... Amplifier circuit 123, 223 ... Temperature measuring element resistance measurement unit 130,230 ... Data processing unit 131,231 ... Detection element resistance calculation unit 132,232 ... Incoming light calculation unit 133,233 ... Measurement Temperature element resistance calculation unit 134, 234 ... Refrigerant remaining amount determination unit 140, 240 ... control Part 150 ... blocking mechanism driving unit 151 ... light flux blocking mechanism 235 ... DC component extractor 236 ... light from the waveform generator

Claims (6)

  1.  a)冷媒を収容する容器と、
     b)前記容器内に配置された光導電型検出素子と、
     c)前記容器内に配置され、前記光導電型検出素子の温度を測定する測温素子と、
     d)前記光導電型検出素子の抵抗値のうち所定の周波数以上の成分を測光信号として取得する測光信号取得手段と、
     e)前記光導電型検出素子の全抵抗値を素子抵抗値信号として取得する素子抵抗値取得手段と、
     f)前記測温素子によって測定された温度の時間変化と、前記素子抵抗値信号の時間変化とに基づいて前記容器内の冷媒残量が低下しているか否かを判定する判定手段と、
     を有することを特徴とする光検出器。
    a) a container containing the refrigerant;
    b) a photoconductive detection element disposed in the container;
    c) a temperature measuring element disposed in the container for measuring the temperature of the photoconductive detection element;
    d) a photometric signal acquisition means for acquiring, as a photometric signal, a component having a predetermined frequency or higher among the resistance value of the photoconductive detection element;
    e) element resistance value acquisition means for acquiring the total resistance value of the photoconductive detection element as an element resistance value signal;
    f) determination means for determining whether or not the remaining amount of refrigerant in the container is reduced based on the time change of the temperature measured by the temperature measuring element and the time change of the element resistance value signal;
    A photodetector comprising:
  2.  前記光導電型検出素子が赤外線を検出するものであることを特徴とする請求項1に記載の光検出器。 2. The photodetector according to claim 1, wherein the photoconductive detection element detects infrared rays.
  3.  a)光源と、
     b)前記光源からの光を試料に照射する照射光学系と、
     c)前記光源からの光と前記試料との相互作用により得られた光を検出する検出器と、
     を有し、
     前記検出器が請求項1に記載の光検出器であることを特徴とする分光分析装置。
    a) a light source;
    b) an irradiation optical system for irradiating the sample with light from the light source;
    c) a detector for detecting the light obtained from the interaction between the light from the light source and the sample;
    Have
    The spectroscopic analyzer, wherein the detector is the photodetector according to claim 1.
  4.  前記素子抵抗値取得手段によって前記素子抵抗値信号を取得する際に、前記光導電型検出素子に入射する光束を遮断する遮光手段を有することを特徴とする請求項3に記載の分光分析装置。 4. The spectroscopic analysis apparatus according to claim 3, further comprising a light blocking unit that blocks a light beam incident on the photoconductive detection element when the element resistance value signal is acquired by the element resistance value acquisition unit.
  5.  更に、
     d)前記検出器への光の導入に伴う前記素子抵抗値信号の時間変化を示す波形を生成する光由来波形生成手段と、
     e)前記光由来波形生成手段によって生成された波形から直流成分を抽出する直流成分抽出手段と、
     を有し、
     前記判定手段が、前記直流成分の強度の時間変化を、前記素子抵抗値信号の時間変化として用いることを特徴とする請求項3に記載の分光分析装置。
    Furthermore,
    d) a light-derived waveform generating means for generating a waveform indicating a time change of the element resistance signal accompanying the introduction of light into the detector;
    e) DC component extraction means for extracting a DC component from the waveform generated by the light-derived waveform generation means;
    Have
    4. The spectroscopic analyzer according to claim 3, wherein the determination unit uses a time change of the intensity of the direct current component as a time change of the element resistance value signal.
  6.  前記分光分析装置がフーリエ変換型赤外分光光度計であることを特徴とする請求項3に記載の分光分析装置。 The spectroscopic analyzer according to claim 3, wherein the spectroscopic analyzer is a Fourier transform infrared spectrophotometer.
PCT/JP2018/015820 2017-04-18 2018-04-17 Photodetector and photometric analysis device provided with same WO2018194048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513645A JP6743971B2 (en) 2017-04-18 2018-04-17 Photodetector and spectroscopic analyzer including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017081793 2017-04-18
JP2017-081793 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018194048A1 true WO2018194048A1 (en) 2018-10-25

Family

ID=63856637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015820 WO2018194048A1 (en) 2017-04-18 2018-04-17 Photodetector and photometric analysis device provided with same

Country Status (2)

Country Link
JP (1) JP6743971B2 (en)
WO (1) WO2018194048A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125275U (en) * 1982-02-19 1983-08-25 ソニー株式会社 disc playback device
JPS6338121A (en) * 1986-08-04 1988-02-18 Jeol Ltd Detection system for abnormality of infrared detection part in thermography device
JPS6353426A (en) * 1986-08-25 1988-03-07 Fujitsu Ltd Residue detector for liquid nitrogen
JPH05203489A (en) * 1992-01-29 1993-08-10 Nec Corp Light conduction type infrared detector
US20110043638A1 (en) * 2008-04-25 2011-02-24 Thales Optronic Infrared System with Predictive Maintenance Following a Sudden Drift
JP3206138U (en) * 2016-06-21 2016-09-01 株式会社島津製作所 Detector system and infrared microscope using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125275U (en) * 1982-02-19 1983-08-25 ソニー株式会社 disc playback device
JPS6338121A (en) * 1986-08-04 1988-02-18 Jeol Ltd Detection system for abnormality of infrared detection part in thermography device
JPS6353426A (en) * 1986-08-25 1988-03-07 Fujitsu Ltd Residue detector for liquid nitrogen
JPH05203489A (en) * 1992-01-29 1993-08-10 Nec Corp Light conduction type infrared detector
US20110043638A1 (en) * 2008-04-25 2011-02-24 Thales Optronic Infrared System with Predictive Maintenance Following a Sudden Drift
JP3206138U (en) * 2016-06-21 2016-09-01 株式会社島津製作所 Detector system and infrared microscope using the same

Also Published As

Publication number Publication date
JP6743971B2 (en) 2020-08-19
JPWO2018194048A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US20210018432A1 (en) Reference Switch Architectures for Noncontact Sensing of Substances
US6741348B2 (en) Ultrasensitive spectrophotometer
US7903252B2 (en) Noise cancellation in fourier transform spectrophotometry
JP2014510291A (en) Spectroscopic analyzer
KR20150037977A (en) Dual spectrometer
US10670518B2 (en) Fourier transform infrared spectrophotometer
JP6201547B2 (en) Spectrometer wavelength calibration method
Wiesent et al. Limits of IR-spectrometers based on linear variable filters and detector arrays
WO2018194048A1 (en) Photodetector and photometric analysis device provided with same
WO2017048497A1 (en) Measurement time distribution in referencing schemes
US20120307240A1 (en) Spectrophotometer and method for determining performance thereof
CN114062286B (en) Gas analysis system and gas analysis method
JP2020513216A (en) ATR spectrometer and method for analyzing the chemical composition of a sample
US11933675B2 (en) System and method for multi-channel pyrometer allowing non-contact temperature measurements down to 800 K on the microsecond scale
JP5790596B2 (en) Photodiode array detector
JP3755997B2 (en) Liquid chromatograph
CN106353262B (en) Atomic absorption measurement method and measuring device
JP5949613B2 (en) Spectrophotometer
JP2015087108A (en) Fourier transformation spectrophotometer and light quantity control method
Liu et al. UV focal plane array device relative spectral response measurement technology research
JP5924166B2 (en) Tunable monochromatic light source
RU2580896C1 (en) Dispersion spectrometer
Lee Miniature PbS sensor for NIR spectroscopy
AU2015100564A4 (en) Spectrometer
CN112567216A (en) Integrated sensor module for detecting chemical substances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788215

Country of ref document: EP

Kind code of ref document: A1