WO2018193982A1 - Spray coating, laminated pipe, and method for manufacturing spray coating - Google Patents

Spray coating, laminated pipe, and method for manufacturing spray coating Download PDF

Info

Publication number
WO2018193982A1
WO2018193982A1 PCT/JP2018/015514 JP2018015514W WO2018193982A1 WO 2018193982 A1 WO2018193982 A1 WO 2018193982A1 JP 2018015514 W JP2018015514 W JP 2018015514W WO 2018193982 A1 WO2018193982 A1 WO 2018193982A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray coating
thermal spray
thermal
spraying
layer
Prior art date
Application number
PCT/JP2018/015514
Other languages
French (fr)
Japanese (ja)
Inventor
田代 博文
稲沢 弘志
浩郎 平田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to JP2019513604A priority Critical patent/JPWO2018193982A1/en
Publication of WO2018193982A1 publication Critical patent/WO2018193982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes

Definitions

  • the present invention relates to a thermal spray coating, a laminated tube, and a method for manufacturing the thermal spray coating.
  • an apparatus (die casting machine) used in a die casting method is mainly composed of parts such as a plunger, a sleeve, and a molding die, and is in direct contact with a molten metal (for example, aluminum, zinc, magnesium, etc.). Used in state. Therefore, the properties required for such parts are as follows. Corrosion resistance to high-temperature metals such as molten metal, that is, it may be melted by the high-temperature metal or a reaction layer on the surface by contact with the high-temperature metal. The characteristic which can prevent forming is mentioned.
  • tool steel and hot tool steel such as SKD61
  • SKD61 hot tool steel
  • a method of forming a nitrided layer by nitriding the hot tool steel for the purpose of improving the corrosion resistance is also known, but the nitrided layer formed by the nitriding process has a thickness of about 20 to 30 ⁇ m. Even if this material is used, it is difficult to maintain sufficient corrosion resistance over a long period of time.
  • ceramic materials such as sialon (SiAlON), etc.
  • SiAlON sialon
  • such a ceramic material has a high manufacturing cost and a low workability, and is harder than necessary.
  • SiAlON sialon
  • it is like a plunger tip.
  • Patent Document 1 discloses that an inner layer is formed of a first layer containing tungsten, and an outer layer of the first layer is ferrite.
  • a laminated tube formed by forming a second layer made of a stainless steel material or the like and a third layer made of a martensite stainless steel material or the like is disclosed.
  • the first layer containing tungsten is excellent in corrosion resistance in a portion in direct contact with a high-temperature metal, but is in contact with the atmosphere when in contact with the atmosphere in a high-temperature environment. There was a problem in that the portion that was oxidized corroded as the oxidation progressed.
  • An object of the present invention is to provide a thermal spray coating excellent in corrosion resistance against high temperature metals and corrosion resistance against air in a high temperature environment.
  • the present inventors have found that the above object can be achieved by containing a tungsten phase and a ternary boride phase in a specific ratio in the spray coating, and have completed the present invention.
  • the thermal spray coating contains a tungsten phase and a ternary boride phase, and is derived from the tungsten phase when the surface of the thermal spray coating is measured by an X-ray diffraction method.
  • the ratio (I max / I w ) of the peak intensity I max of the peak having the highest intensity among the peaks derived from the ternary boride phase to the peak intensity I w of the (110) plane is 1/100 or more.
  • the ternary boride phase mainly contains Mo 2 NiB 2 , and the peak intensity I max is a peak intensity of the (211) plane derived from the Mo 2 NiB 2.
  • the thermal spray coating of the present invention it is preferable that the ternary boride phase mainly contains WFeB, and the peak intensity I max is a peak intensity of the (112) plane derived from the WFeB.
  • the thermal spray coating of the present invention preferably further contains a binary boride phase.
  • the binary boride phase preferably contains W 2 B.
  • the Vickers hardness (HV) measured in the range of 300 to 700 ° C. is preferably 400 or more.
  • the laminated pipe provided with either of the said thermal spray coatings on an inner surface is provided.
  • the ratio (L / D) of the length L of the laminated tube to the inner diameter D of the sprayed coating provided on the inner surface is preferably 2 or more.
  • any one of the above-described methods for producing a thermal spray coating comprising preparing a thermal spraying powder containing tungsten and a ternary boride and having an average granule strength of 10 MPa or more.
  • a method for manufacturing a thermal spray coating comprising a step and a step of spraying the thermal spraying powder on a metal base material by a high-speed flame spraying method.
  • thermo spray coating excellent in corrosion resistance against high temperature metals and corrosion resistance against air in a high temperature environment.
  • FIG. 1 It is sectional drawing which shows one Embodiment of the die-casting apparatus using the sleeve to which the laminated tube which concerns on this invention is applied. It is a perspective view which shows one Embodiment of the laminated tube which concerns on this invention. It is sectional drawing which shows the layer structure of the laminated tube shown in FIG. It is a figure for demonstrating an example of the method of producing the laminated tube which concerns on this invention. It is the photograph obtained by measuring the cross section of the sprayed coating of a comparative example by SEM. It is a graph which shows the result obtained by carrying out X-ray diffraction measurement of the surface of the thermal spray coating of an Example and a comparative example.
  • the thermal spray coating according to the present invention can be formed on a component that requires corrosion resistance in a high temperature environment and high hardness.
  • it can be formed on the inner surface of the sleeve 11 of the die casting apparatus 1 as shown in FIG.
  • the present invention will be described in an embodiment using a laminated tube in which a thermal spray coating according to the present invention is formed on the inner surface as the sleeve 11 of the die casting apparatus 1.
  • FIG. 1 is a cross-sectional view showing an embodiment of a die casting apparatus 1 using a sleeve 11 to which a laminated tube in which a thermal spray coating according to the present invention is formed is applied.
  • the die casting apparatus 1 in this example is a die casting apparatus for forming a molten metal such as aluminum.
  • the die casting apparatus 1 includes a sleeve 11, a plunger 12, a flow path 13, a die cavity 14, a first mold 15, and a second mold 16.
  • the die casting apparatus 1 shown in FIG. The sleeve 11 forms a passage for the plunger 12 to move, and the passage formed by the sleeve 11 is connected to the flow path 13 and the die cavity 14.
  • the plunger 12 reciprocates back and forth in the passage formed by the sleeve 11, and injects the molten metal poured into the sleeve 11 from the sleeve 11 into the die cavity 14 through the flow path 13.
  • the sleeve 11 of the present embodiment is formed using the laminated tube 2 shown in FIG.
  • FIG. 2 is a perspective view showing an embodiment of a laminated tube in which a thermal spray coating according to the present invention is formed on the inner surface.
  • the inner diameter of the laminated tube 2 is indicated by D and the length is indicated by L.
  • the laminated tube 2 of the present embodiment includes a thermal spray coating 21 constituting an inner layer, a second layer 22 formed on the outer peripheral surface of the thermal spray coating 21, and a second layer 22. It has a three-layer structure including a third layer 23 formed on the outer peripheral surface.
  • the laminated tube 2 of the present embodiment is formed by spraying a core material 3 made of an inexpensive and easy-to-process material such as iron, copper, and aluminum by thermal spraying. After the 22 and the third layer 23 are formed in this order, the core material can be removed by machining.
  • the thermal spray coating 21 constituting the inner layer contains a tungsten phase mainly made of tungsten and a ternary boride phase mainly made of ternary boride.
  • the thermal spray coating 21 can be formed by spraying a specific thermal spraying powder containing tungsten and a ternary boride.
  • the tungsten phase constitutes the main phase
  • the ternary boride phase constitutes the binder phase.
  • Thermal spray coating 21 of the present embodiment in the case of measuring the surface by X-ray diffraction method, to the peak intensity I w of from tungsten phase (110) plane, in the peak derived from the ternary boride
  • the ratio (I max / I w ) of the peak intensity I max of the peak with the highest intensity is 1/100 or more.
  • the thermal spray coating 21 by controlling the peak intensity ratio I max / I w derived from the tungsten phase and the ternary boride phase to the above range, the thermal spray coating 21 has corrosion resistance to high-temperature metals. And the corrosion resistance with respect to the air
  • this ternary boride phase acts as a bonding phase for bonding the tungsten phases and the thermal spray coating 21 is densified
  • the thermal spray coating 21 is brought into direct contact with a high-temperature metal such as a molten metal. Corrosion resistance can be significantly improved.
  • the fact that the ternary boride itself is excellent in corrosion resistance can also improve the corrosion resistance in direct contact with the high-temperature metal in the thermal spray coating 21.
  • the thermal spray coating 21 is densified by the ternary boride phase, so that the gas permeability of the thermal spray coating 21 can be lowered. Even in contact with the atmosphere, the corrosion resistance of the thermal spray coating 21 to the atmosphere can be significantly improved.
  • the thermal spray coating of Comparative Example 1 described later (a thermal spray coating formed by spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a plasma spraying method) was measured by SEM. The photograph obtained in this way is shown. Similarly, even when the thermal spray coating formed by such a plasma spraying method was measured by the X-ray diffraction method, no peak derived from the ternary boride was observed as shown in FIG.
  • FIG. 6 shows a thermal spray coating of Example 1 described later (a thermal spray coating formed by thermal spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a high-speed flame spraying method), and the above-described example.
  • the result of measuring the thermal spray coating of Comparative Example 1 by the X-ray diffraction method shows a ternary boride (in the example shown in FIG. 6, Mo 2 FeB 2 , Mo 2 NiB 2 , or W 2).
  • a black circle represents a peak derived from tungsten (W)
  • a black triangle represents a peak derived from a binary boride (in the example shown in FIG. 6, W 2 B).
  • a ternary system by spraying is used.
  • the thermal spray is applied to the metal base material during the thermal spraying. The powder is scattered, the adhesion efficiency of the thermal spraying powder to the metal base material is reduced, and the thickness of the thermal spray coating formed varies, and the total thickness of the thermal spray coating is reduced. There was a problem.
  • the present inventors have employed a high-speed flame spraying method by using a powder for spraying containing tungsten and a ternary boride having an average granule strength of a predetermined value or more as described later. It has been found that a thermal spray coating can be formed with high adhesion efficiency even when thermal spraying is carried out using a coating. And based on such knowledge, the present inventors can enable thermal spraying of a powder for thermal spraying containing tungsten and a ternary boride by a high-speed flame spraying method. It has been found that the thermal spray coating to be formed can contain a tungsten phase and a ternary boride phase.
  • a thermal spray coating formed by thermal spraying a thermal spraying powder containing tungsten and a ternary boride by a high-speed flame spraying method is shown in the figure when a cross section is observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a ternary boride Mo 2 FeB 2 , Mo 2 NiB 2 , or W 2 FeB 2 in the example shown in FIG. 7
  • W tungsten
  • FIG. 7 shows a thermal spray coating of Example 1 described later (a thermal spray coating formed by spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a high-speed flame spraying method) using an SEM. The photograph obtained by doing is shown.
  • the thermal spray coating formed by such a high-speed flame spraying method even when measured by the X-ray diffraction method, a peak derived from the ternary boride is observed as shown in FIG. .
  • the thermal spray coating is remarkably improved in corrosion resistance to high-temperature metals and to air in a high-temperature environment. It can be improved.
  • the above-described peak intensity ratio I max / I w when the surface of the sprayed coating 21 is measured by the X-ray diffraction method may be 1/100 or more, preferably 1/100 50 or more, more preferably 1/25 or more, still more preferably 1/20 or more, and particularly preferably 1/18 or more. If the intensity ratio I max / I w is too low, the effect of including a ternary boride phase in the sprayed coating 21, that is, the effect of improving the corrosion resistance to high-temperature metals and the corrosion resistance to the atmosphere in a high-temperature environment. It can no longer be obtained.
  • the upper limit of the peak intensity ratio I max / I w is not particularly limited, but is usually 1 (1/1) or less.
  • the ternary boride constituting the ternary boride phase are not limited to, Mo 2 FeB 2, Mo 2 CoB 2, Mo 2 NiB 2, W 2 FeB 2, W 2 CoB 2, W 2 NiB 2 , MoCoB, WFeB, WCoB and the like.
  • Mo 2 NiB 2 and WFeB are preferable from the viewpoint of further improving the corrosion resistance against high-temperature metals and the corrosion resistance against the atmosphere in a high-temperature environment.
  • These ternary borides can be used singly or as a mixture of two or more.
  • the peak having the highest intensity among the peaks derived from the ternary boride phase is usually (211) plane peak derived from Mo 2 NiB 2 . Therefore, in this case, as the peak intensity I max described above, the peak intensity of the (211) plane derived from Mo 2 NiB 2 can be used, and this can be set as the peak intensity I max .
  • the ternary boride constituting the ternary boride phase mainly contains any of Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2
  • the peak having the highest intensity among the peaks derived from the ternary boride phase is usually Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , or W 2 CoB 2 . It becomes a peak of (211) plane derived from either.
  • the above-described peak intensity I max is derived from any one of Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2 (211) plane.
  • This peak intensity I max can be used.
  • the ternary boride constituting the ternary boride phase is selected from Mo 2 FeB 2 , W 2 FeB 2 , Mo 2 NiB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2.
  • ternary borides When a plurality of ternary borides are contained (for example, when the ternary boride phase is composed of Mo 2 FeB 2 , Mo 2 NiB 2, W 2 FeB 2, etc.)
  • the sum of the peak intensities of the (211) plane derived from the ternary boride is used as the peak intensity I max .
  • the peak intensity used as it is, or may be the peak intensity I max.
  • the peak having the highest intensity among the peaks derived from the ternary boride phase is usually in WFeB.
  • the peak of the (112) plane is derived. Therefore, in this case, the peak intensity of (112) plane derived from WFeB is used as the peak intensity I max described above.
  • the peak intensity of (112) plane derived from WFeB is used as the peak intensity I max described above.
  • the peak intensity of (112) plane derived from WFeB is used as the peak intensity I max described above.
  • the ternary boride constituting the ternary boride phase mainly contains either MoCoB or WCoB
  • the peak having the highest intensity among the peaks derived from the ternary boride phase is Usually has a (112) plane peak derived from either MoCoB or WCoB.
  • the peak intensity of the (112) plane derived from either MoCoB or WCoB can be used, and this can be used as the peak intensity I max .
  • the ternary boride constituting the ternary boride phase includes a plurality of ternary borides selected from WFeB, MoCoB, and WCoB, the plurality of ternary borides are included.
  • the sum of the peak intensities of the (112) plane derived from can be used as the peak intensity I max .
  • the peak intensity may be used as it is to obtain the peak intensity I max .
  • the thermal spray coating 21 contains tungsten and a ternary boride, and an average value of the granule strength P (average of granule strength) is 10 MPa or more. It can be formed by flame spraying by flame spraying.
  • a ternary boride contained in the thermal spraying powder a ternary boride having a composition corresponding to the composition of the ternary boride phase contained in the sprayed coating 21 to be formed may be used.
  • the volume content of the ternary boride in the thermal spraying powder for forming the thermal spray coating 21 is preferably 1 to 30% by volume, more preferably 3 to 20% by volume.
  • the volume content of tungsten in the thermal spraying powder for forming the thermal spray coating 21 is preferably 70 to 99% by volume, more preferably 80 to 97% by volume.
  • the thermal spraying powder for forming the thermal spray coating 21 may also contain a binary boride in addition to tungsten and ternary boride, in order to form the thermal spray coating 21.
  • the volume content of the binary boride in the thermal spraying powder is preferably 0 to 20% by volume, more preferably 5 to 15% by volume.
  • the thermal spray coating 21 has higher hardness in normal temperature environment and high temperature environment without impairing corrosion resistance, and further improves wear resistance. be able to.
  • the binary boride to be contained in the thermal spraying powder one having a composition corresponding to the composition of the binary boride phase contained in the thermal spray coating 21 to be formed may be used.
  • the weight ratio of the ternary boride in the thermal spray coating 21 calculated from the thermal spraying powder composition and X-ray diffraction is preferably 0.5 to 16.0% by weight, more preferably 1.5 to 10.0% by weight. is there.
  • the thermal spray coating 21 can be further improved in corrosion resistance to the high temperature metal and to the atmosphere in the high temperature environment.
  • the weight ratio of tungsten in the thermal spray coating 21 calculated from the thermal spray powder composition and X-ray diffraction is preferably 84.0 to 99.5% by weight, more preferably 90.0 to 98.5% by weight.
  • the thermal spray coating 21 has a binary boron content from the viewpoint of further improving the hardness of the thermal spray coating 21 in a normal temperature environment and a high temperature environment. It is preferable that a binary boride phase composed of a fluoride is included.
  • the thermal spray coating 21 can have higher hardness in a normal temperature environment and a high temperature environment, and the wear resistance can be further improved. From the viewpoint, W 2 B is preferable.
  • These binary borides can be used singly or as a mixture of two or more.
  • the weight ratio of the binary boride in the thermal spray coating 21 calculated from the powder composition for thermal spraying and X-ray diffraction is preferably 0 to 18.0% by weight, more preferably 5.0 to 14.0% by weight.
  • the total weight ratio of the ternary boride and the binary boride in the thermal spray coating 21 calculated from the thermal spray powder composition and X-ray diffraction is preferably 0.5 to 34.0% by weight, more preferably 6.5 to 24.0% by weight.
  • the thermal spray coating 21 can be used in a normal temperature environment and a high temperature environment without impairing the excellent corrosion resistance and toughness of tungsten. As the hardness increases, the wear resistance, adhesion resistance, thermal shock resistance and workability can be further improved.
  • the weight ratio of W in the thermal spray coating 21 calculated from the thermal spraying powder composition and X-ray diffraction is determined as the total weight ratio of components other than the ternary boride and the binary boride, and the ratio is preferably It is 66.0 to 99.5% by weight, more preferably 76.0 to 93.5% by weight.
  • the thermal spray coating 21 is further improved in corrosion resistance to high-temperature metals and to air in a high-temperature environment. Can do.
  • the thickness of the sprayed coating 21 is not particularly limited, but is preferably 0.1 to 2 mm, more preferably 0.3 to 1.5 mm.
  • the obtained laminated tube 2 can be made more excellent in corrosion resistance against molten metal, and further, the amount of expensive tungsten used is suppressed and required for thermal spraying of tungsten. From the viewpoint that the amount of energy used can be reduced, this is advantageous in terms of cost.
  • the sprayed coating 21 has a Vickers hardness (HV) measured in a range of 300 to 700 ° C. (that is, a Vickers hardness when measured at any temperature within a range of 300 to 700 ° C.).
  • HV Vickers hardness
  • it is 400 or more, More preferably, it is 450 or more, More preferably, it is 500 or more.
  • the second layer 22 can be formed by spraying a metal material such as a steel material on the sprayed coating 21.
  • the metal material composing the second layer 22 is not particularly limited, and examples thereof include ferritic steel materials such as SUS430 and SUS429, and martensitic steel materials such as SUS420 and SUS403.
  • ferritic steel materials such as SUS430 and SUS429
  • martensitic steel materials such as SUS420 and SUS403.
  • a ferritic steel material is preferable.
  • the thickness of the second layer 22 is not particularly limited, but is preferably 0.1 to 0.9 mm. By setting the thickness of the second layer 22 within the above range, it is possible to more effectively prevent cracks in the second layer 22 caused by cooling and shrinking after thermal spraying.
  • the third layer 23 can be formed by spraying a metal material such as a steel material on the second layer 22.
  • the metal material constituting the third layer 23 is not particularly limited, and examples thereof include ferritic steel materials such as SUS430 and SUS429, and martensitic steel materials such as SUS420 and SUS403.
  • ferritic steel materials such as SUS430 and SUS429
  • martensitic steel materials such as SUS420 and SUS403.
  • martensitic steel is preferable from the viewpoint that the generation of cracks in the third layer 23 can be more effectively prevented in the process in which the third layer 23 is cooled after spraying.
  • the thickness of the third layer 23 is not particularly limited, but is preferably 1.0 to 5.0 mm. By setting the thickness of the third layer 23 within the above range, the strength of the laminated tube 2 can be further increased.
  • the laminated tube 2 of the present embodiment is configured.
  • the laminated tube 2 of the present embodiment may further include a steel material layer formed by shrink fitting on the outer peripheral surface of the third layer 23.
  • the steel material layer that is shrink-fitted on the outer peripheral surface of the third layer 23 include a tubular member made of a chromium molybdenum steel material equivalent to SCM440 defined in Japanese Industrial Standard (JIS G 4053).
  • the steel material layer may be fixed to the outer peripheral surface of the third layer 23 by bolt fastening, pins, or the like. Since the laminated tube 2 has a steel material layer, the strength of the laminated tube 2 can be increased.
  • the laminated tube 2 of this embodiment showed the example provided with two layers of the 2nd layer 22 and the 3rd layer 23 in the outer surface side of the sprayed coating 21, the outer surface of the sprayed coating 21 was shown.
  • the layer formed on the side may be a single layer or three or more layers.
  • a core material 3 (see FIG. 4) and a thermal spraying powder for forming the thermal spray coating 21 are prepared.
  • the thermal spraying powder can be formed, for example, as follows. First, a tungsten powder for forming a tungsten phase is mixed with a powder of elements constituting these boride phases for forming a ternary boride phase or a binary boride phase, and a binder and After adding the organic solvent, the mixture is pulverized using a pulverizer such as a ball mill. Subsequently, the powder (primary particles of several ⁇ m) obtained by mixing and pulverizing is granulated with a spray dryer or the like to form secondary particles of several tens of ⁇ m.
  • a pulverizer such as a ball mill
  • the secondary particles are sintered by heat treatment, and classified as necessary to obtain thermal spraying powder having an average value of granule strength P (average of granule strength) of 10 MPa or more.
  • the granule strength P is determined by measuring the particle diameter ⁇ (unit: ⁇ m) of the particles constituting the thermal spraying powder and the load (destructive load N B (unit: (N)) at which the particles are broken. machine (manufactured by Shimadzu Corporation, MCT-510) was measured using a on the basis of the breaking load N B and the particle diameter ⁇ measured, can be determined by the following equation (1).
  • the average particle strength is The average value of the results obtained by measuring such a granule strength P a plurality of times, and preferably the average value obtained by measuring 5 times or more.
  • P (2.48 ⁇ N B ) / ( ⁇ ⁇ ⁇ 2 ) (1)
  • a thermal treatment in obtaining the thermal spraying powder for example, a thermal treatment in obtaining the thermal spraying powder.
  • the heat treatment temperature is preferably 1,100 to 1,500 ° C., more preferably 1,300 to 1,500 ° C., further preferably 1,300 to 1,400 ° C.
  • Particularly preferred is a method in which the temperature is 1,350 to 1,400 ° C. and the heat treatment time is preferably 60 to 120 minutes.
  • the bonding between the particles constituting the thermal spraying powder becomes weak, and the thermal spraying powder tends to collapse at the time of thermal spraying, and is not sufficiently accelerated in the thermal spraying frame, so that the adhesion efficiency may be reduced.
  • the heat treatment temperature is too high, the sintering proceeds and the bonding between the powders becomes too strong, and it becomes difficult to disintegrate the sintered body and it becomes difficult to take it out as a thermal spraying powder.
  • the average granule strength of the thermal spraying powder may be 10 MPa or more, but is preferably 50 MPa or more. However, since the bond between the powders tends to be too strong when greatly exceeding 400 MPa, and the adhesion efficiency is remarkably lowered due to being repelled from the base material at the time of thermal spraying, the upper limit of the average granular strength is preferably 400 MPa or less. . By setting the average granule strength of the thermal spraying powder within the above range, when spraying the thermal spraying powder, the adhesion efficiency of the thermal spraying powder to the metal base material is further improved, and the thermal spray coating to be formed Variations in thickness can be reduced.
  • the thermal spray coating 21 is formed by spraying the thermal spraying powder prepared as described above onto the core material 3 (see FIG. 4).
  • the gas used for thermal spraying is relatively low temperature (specifically, 3000 ° C. or lower), and ternary boron by thermal spraying is used. It is preferable to use a high-speed flame spraying method from the viewpoint that the change in the composition of the fluoride is suppressed and the thermal spray coating to be formed can contain a ternary boride.
  • a metal material for forming the second layer 22 is prepared, and the second layer 22 is formed by spraying the prepared metal material on the sprayed coating 21 (see FIG. 4). Further, a metal material for forming the third layer 23 is prepared, and the prepared metal material is sprayed onto the second layer 22 to form the third layer 23 (see FIG. 4). As a result, as shown in FIG. 4, the thermal spray coating 21, the second layer 22, and the third layer 23 are formed in this order on the core material 3.
  • a thermal spraying method for forming the 2nd layer 22 and the 3rd layer 23 when using the steel material mentioned above as a metal material which comprises the 2nd layer 22 and the 3rd layer 23 Is preferably wire arc spraying.
  • a steel material layer may be formed by shrink fitting a tubular steel material on the outer peripheral surface of the third layer 23.
  • the core material 3 is cut using a drilling machine, a BTA (Boring and Trepanning Association) deep hole processing machine, or the like.
  • a BTA Biting and Trepanning Association
  • the core material 3 shown in FIG. 4 is removed, the laminated tube 2 as shown in FIG. 2, specifically, the inner surface becomes the thermal spray coating 21, and the second layer 22 and the third layer 23 on the thermal spray coating 21.
  • a laminated tube 2 is formed.
  • the laminated tube 2 of the present embodiment is manufactured as described above.
  • the ratio (L / D) of the length L of the laminated tube 2 to the inner diameter D of the thermal spray coating 21 is preferably 2 or more.
  • the inner diameter D of the thermal spray coating 21 is preferably 40 to 160 mm, more preferably 40 to 120 mm.
  • the ratio of the inner diameter D to the length L (L / D) is in the above range, and the laminated tube 2 is excellent even when the shape of the laminated tube 2 is relatively elongated. Can be manufactured.
  • a method of spraying a material containing tungsten on the inner surface of a tubular member prepared in advance can be considered.
  • the thermal spraying torch does not enter the inside of the member and thermal spraying cannot be performed.
  • a spraying distance of 100 to 150 mm is appropriate, and even when an inner diameter torch is used, spraying cannot be performed on an inner diameter of 100 mm or less.
  • the inner diameter is 100 mm or less, it must be sprayed at an angle from both ends of the laminated tube.
  • the coating properties are drastically reduced when the spray angle is smaller than 45 °, so that the inner surface of the tube is sprayed.
  • the L / D is 2 or more.
  • the laminated tube 2 of the present embodiment has the thermal spray coating 21 as an inner layer and the second layer 22 and the third layer 23 on the inner layer, and therefore has excellent corrosion resistance against molten metal.
  • This is advantageous in terms of cost. That is, if the entire laminated tube 2 is made of a material containing tungsten (such as a boride-based tungsten-based alloy), the corrosion resistance against the molten metal is improved, but the material containing tungsten is expensive, and the molding process is costly. There is a problem that it takes.
  • the laminated tube 2 of the present embodiment only the inner layer is constituted by a layer containing tungsten (thermal spray coating 21), and the exterior of the thermal spray coating 21 is the second layer 22 and the third layer made of steel or the like. 23, the corrosion resistance against molten metal can be improved, while it can be manufactured at a relatively low cost.
  • the total thickness of the laminated tube 2 of the present embodiment can be increased by the second layer 22 and the third layer 23, the strength of the laminated tube 2 can be improved.
  • by increasing the total thickness of the second layer 22 and the third layer 23 it becomes possible to form a steel material layer on the outer peripheral surface of the third layer 23 by shrink fitting as described above. The strength can be further improved.
  • the thermal spray coating 21 is the inner layer and two layers of the second layer 22 and the third layer 23 are formed thereon is shown.
  • the layer formed on the thermal spray coating 21 is a single layer. A layer may be sufficient and three or more layers may be sufficient.
  • the thermal spray coating of the present invention is applied to a sleeve (laminate tube) of a die casting apparatus, but the application of the thermal spray coating of the present invention is not limited to this.
  • the thermal spray coating of the present invention is in direct contact with a high-temperature metal such as a molten metal, such as a low-pressure casting method, a gravity mold casting method, or a device part used for hot stamping, in addition to a die-casting device part. It can be suitably used as a component used as a part.
  • Example 1 First, B: 0.8% by weight, Mo: 3.5% by weight, Ni: 1.1% by weight, Ti: 0.9% by weight, W: 100 parts by weight of the raw material mixed at the ratio of the balance Then, 5 parts by weight of paraffin was added, and this was wet pulverized in acetone with a vibration ball mill for 25 hours to prepare a pulverized powder. Next, primary particles were obtained by drying the prepared pulverized powder at 150 ° C. for 18 hours in a nitrogen atmosphere. And after mixing the obtained primary particle with acetone in the weight ratio of 1: 1, the secondary particle was obtained by granulating with a spray dryer. Next, the obtained secondary particles were sintered by holding them at 1,350 ° C. for 1 hour in a vacuum for heat treatment, and classifying them to prepare thermal spraying powders.
  • the photograph obtained by observing a cross section with SEM about the produced test piece is shown in FIG. From the result of FIG. 7, the cross section of the test piece shows W 2 constituting the tungsten phase, Mo 2 FeB 2 , Mo 2 NiB 2 and W 2 FeB 2 constituting the ternary boride phase, and the binary boride phase. W 2 B constituting each was observed.
  • the X-ray-diffraction measurement was performed by the X-ray-diffraction method using the X-ray-diffraction apparatus (Rigaku company make, model number: RINT-2500).
  • a graph obtained by X-ray diffraction measurement is shown in FIG.
  • the results are shown in Table 1.
  • the Vickers hardness (HV) of the prepared test piece was measured at a load of 200 g using a Vickers hardness meter (manufactured by Akashi Seisakusho, product number: MVK-G2) in an environment of 20 ° C. did.
  • a Vickers hardness meter manufactured by Akashi Seisakusho, product number: MVK-G2
  • the Vickers hardness (HV) of the test piece is measured with a high-temperature hardness meter (manufactured by Nikon Corporation, model number). : QM-2). The results are shown in FIG.
  • Example 2 Except that the spraying distance was changed from 250 mm to 300 mm when performing high-speed flame spraying, a sprayed coating was formed on the substrate in the same manner as in Example 1, and a test piece having a block shape of 10 mm ⁇ 10 mm ⁇ 5 mm was formed. Obtained. In addition, when the cross section of the prepared test piece was observed by SEM in the same manner as in Example 1, the cross section of the test piece showed W constituting the tungsten phase and Mo 2 FeB constituting the ternary boride phase. 2 , Mo 2 NiB 2 and W 2 FeB 2 , and W 2 B constituting the binary boride phase were observed, respectively.
  • Example 2 In the same manner as in Example 1, for to prepare a test piece was subjected to X-ray diffraction measurement, in Example 2, to the peak intensity I w of from tungsten phase (110) plane, ternary the boron The ratio (I max / I w ) of peak intensity I max (peak intensity of (211) plane derived from Mo 2 NiB 2 ) of the peak having the highest intensity among the peaks derived from the chemical phase is 1/9. It was 5. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 When producing the thermal spraying powder, the composition was as follows: B: 0.4% by weight, Mo: 3.2% by weight, Ni: 1.0% by weight, W: balance (Ti is substantially 0).
  • the powder for thermal spraying was prepared in the same manner as in Example 1 except that the heat treatment temperature of the secondary particles was changed from 1,350 ° C. to 1,150 ° C. And except having used the obtained thermal spraying powder, it carried out similarly to Example 1, and formed the thermal spray coating on the base material, and obtained the test piece of the block shape of 10 mm x 10 mm x 5 mm.
  • Example 3 to the peak intensity I w of from tungsten phase (110) plane, ternary the boron The ratio (I max / I w ) of peak intensity I max (peak intensity of (211) plane derived from Mo 2 NiB 2 ) of the peak having the highest intensity among the peaks derived from the chemical phase is 1/16. It was 9. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
  • a thermal spraying powder was produced in the same manner as in Example 1.
  • 55 ⁇ 60 ⁇ 13 mm SKD61 steel was prepared as a base material for thermal spraying.
  • a thermal spray coating is formed on the base material by spraying the thermal spraying powder from a distance of 250 mm on the base material with a plasma spraying machine (product number: EUTRONIC PLASMA SYSTEM 5000, manufactured by Nihon Utec Co., Ltd.). did.
  • the test piece was produced by processing this into the shape of 55x12x13 mm.
  • the photograph obtained by observing with an optical microscope (100 times magnification) is shown in FIG.
  • FIG. 12 (A) the photograph obtained by observing with a scanning electron microscope (SEM) is shown in FIG. 12 (B). Respectively. From the results of FIGS. 12A and 12B, it was confirmed that a sprayed coating was formed on the surface of the test piece.
  • Example 1 the surface of the prepared test piece was subjected to X-ray diffraction measurement in the same manner as in Example 1.
  • the results are shown in FIG. From the results of FIG. 6, in Comparative Example 1, no peak derived from the ternary boride phase could be observed. Therefore, the peak intensity ratio I max / I w of Comparative Example 1 was 1/247.
  • the results are shown in Table 1.
  • the peak derived from the binary boride in Comparative Example 1 was confirmed partially, to the peak intensity I w of from tungsten phase (110) plane, a peak derived from binary borides Among them, the peak intensity I max-2 ratio (I max-2 / I w ) of the peak having the highest intensity was 1 / 29.7.
  • Example 1 the corrosion resistance (part 1) in high-temperature air was evaluated and the Vickers hardness was measured.
  • Table 1 the corrosion resistance (part 1) in high-temperature air was evaluated and the Vickers hardness was measured.
  • FIG. 9 (B) the results are shown in Table 1, FIG. 9 (B) and FIG.
  • Comparative Example 1 the measurement of Vickers hardness is performed only in an environment of 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., and 800 ° C. as shown in FIG. It was.
  • ⁇ Comparative example 2> Except for changing the spraying distance from 250 mm to 300 mm when performing plasma spraying, a sprayed coating is formed on the substrate in the same manner as in Comparative Example 1 to obtain a 10 mm ⁇ 10 mm ⁇ 5 mm block-shaped test piece. It was. Incidentally, in the same manner as in Example 1, was subjected to X-ray diffraction measurement, in Comparative Example 2, to the peak intensity I w of from tungsten phase (110) plane, a peak derived from the ternary boride The ratio (I max / I w ) of the peak intensity I max (peak intensity of the (211) plane derived from Mo 2 NiB 2 ) of the peak with the highest intensity was 1/148. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 First, primary particles were produced in the same manner as in Example 1. Next, the produced primary particles are subjected to pressure sintering with an SPS (discharge plasma sintering apparatus) and sintered at a temperature of 1300 to 1500 ° C. for 10 minutes to obtain a sintered body made of a hard sintered alloy. It was. The heating rate during sintering was 100 ° C./min. Subsequently, the obtained sintered body was processed into a block shape of 15 mm ⁇ 15 mm ⁇ 5 mm to prepare a test piece. And using the produced test piece, it carried out similarly to Example 1, and evaluated corrosion resistance (the 2) in high temperature air
  • Example 2 A test piece was prepared by processing SKD61 steel (SKD61 nitride material) having a nitrided layer formed on the surface thereof into a 10 mm ⁇ 5 mm ⁇ 5 mm block shape. And the Vickers hardness was measured like Example 1 using the produced test piece. The results are shown in FIG.
  • the thermal spray coating having a peak intensity ratio I max / I w of 1/100 or more when the surface is measured by the X-ray diffraction method is Similar to Reference Example 1 (sintered specimen), it was excellent in corrosion resistance in high-temperature air (Examples 1 to 3).
  • a ternary boride phase is present in the thermal spray coating as shown in FIG. 7, and this ternary boride phase serves as a binding phase to bond the tungsten phases together.
  • the sprayed coating becomes dense, and gas permeation can be suppressed. Therefore, it is considered that the corrosion resistance in high-temperature air is excellent.
  • Example 1 the hardness is higher than that of Comparative Example 1 (sprayed coating formed by plasma spraying method), and the environment is higher than that of Reference Example 2 (SKD61 nitride material).
  • the lowering of the hardness is suppressed, so that even when in direct contact with a high-temperature metal such as molten metal (particularly in direct contact with molten aluminum at about 600 to 700 ° C.), it is resistant to wear. It was confirmed that it was excellent in property.
  • the hardness is higher than that in Comparative Example 1, and further, the decrease in hardness under a high temperature environment is suppressed as compared with Reference Example 2. there were.
  • the thermal spray coating in which the peak intensity ratio I max / I w is less than 1/100 when the surface is measured by the X-ray diffraction method is The corrosion resistance was inferior (Comparative Examples 1 and 2).
  • Comparative Examples 1 and 2 as shown in FIG. 5, there is no ternary boride phase acting as a binder phase in the thermal spray coating, and as a result, the thermal spray coating is sparse as shown in FIG. Thus, it is considered that the gas easily permeates, and the corrosion resistance in the high-temperature atmosphere is inferior.
  • Example 3 A thermal spraying powder was prepared in the same manner as in Example 1 except that the heat treatment conditions for the secondary particles were changed to a condition of holding at 1,100 ° C. for 1 hour in a vacuum.
  • the particle diameter ⁇ (unit: ⁇ m) of the particles constituting the thermal spraying powder at normal temperature (20 ° C.) and the load (destructive load N (unit: (N)) was measured using a micro compression tester (manufactured by Shimadzu Corporation, product number: MCT-510), and based on the measured particle diameter ⁇ and breaking load N, The granule strength P of the thermal spraying powder was obtained, and the granule strength P of the thermal spraying powder was obtained 5 times in this way, and the average value of the obtained 5 granule strengths P was obtained as the average of the granule strength.
  • the results are shown in Table 2.
  • P (2.48 ⁇ N) / ( ⁇ ⁇ ⁇ 2 ) (1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Provided is a spray coating containing a tungsten phase and a three-element boride phase, wherein when the surface of the spray coating is measured by x-ray diffraction, the ratio (Imax/Iw) of the peak intensity Imax for the peak with the greatest intensity among peaks originating from the three-element boride phase to the peak intensity Iw on the (110) surface originating from the tungsten phase is 1/100 or greater.

Description

溶射皮膜、積層管および溶射皮膜の製造方法Thermal spray coating, laminated tube, and method of manufacturing thermal spray coating
 本発明は、溶射皮膜、積層管および溶射皮膜の製造方法に関する。 The present invention relates to a thermal spray coating, a laminated tube, and a method for manufacturing the thermal spray coating.
 溶融金属等の高温金属と直接接触して用いられる部品として、ダイカスト鋳造法、低圧鋳造法、重力金型鋳造法、またはホットスタンプに用いられる装置の部品などが知られている。たとえば、ダイカスト鋳造法に用いる装置(ダイカストマシン)は、主にプランジャー、スリーブ、成形金型などの部品で構成され、溶融状態にある金属(たとえば、アルミニウム、亜鉛、マグネシウム等)と直接接触した状態で使用される。そのため、このような部品に共通して要求される特性としては、溶融金属等の高温金属に対する耐食性、すなわち、高温金属により溶損してしまうことや、高温金属と接触することで表面に反応層が形成されてしまうことを防止することができる特性が挙げられる。 As parts used in direct contact with a high temperature metal such as molten metal, die casting, low pressure casting, gravity mold casting, or parts of equipment used for hot stamping are known. For example, an apparatus (die casting machine) used in a die casting method is mainly composed of parts such as a plunger, a sleeve, and a molding die, and is in direct contact with a molten metal (for example, aluminum, zinc, magnesium, etc.). Used in state. Therefore, the properties required for such parts are as follows. Corrosion resistance to high-temperature metals such as molten metal, that is, it may be melted by the high-temperature metal or a reaction layer on the surface by contact with the high-temperature metal. The characteristic which can prevent forming is mentioned.
 従来、溶融金属と直接接触する部品用の部材として、機械部品に広く用いられている工具鋼や熱間工具鋼(SKD61等)を使用することも考えられるが、これらの部材は溶融金属に対する耐食性が十分ではないという問題がある。また、熱間工具鋼に対して、耐食性を向上させる目的で窒化処理を施して窒化層を形成する方法も知られているが、窒化処理により形成される窒化層は、厚みが20~30μm程度と薄く、この材料を用いたとしても、長期間にわたって十分な耐食性を維持することは困難である。このように、耐食性が十分ではない部材を、ダイカストマシンの部品に適用した場合には、溶融金属によって劣化し易く、このような部品を頻繁に取り替えなくてはならず、ダイカストマシンのランニングコストが上昇することに加えて、連続生産性が著しく低下してしまうという問題がある。 Conventionally, it is possible to use tool steel and hot tool steel (such as SKD61) widely used for machine parts as members for parts that are in direct contact with the molten metal, but these members are resistant to corrosion against molten metal. There is a problem that is not enough. A method of forming a nitrided layer by nitriding the hot tool steel for the purpose of improving the corrosion resistance is also known, but the nitrided layer formed by the nitriding process has a thickness of about 20 to 30 μm. Even if this material is used, it is difficult to maintain sufficient corrosion resistance over a long period of time. As described above, when a member having insufficient corrosion resistance is applied to a die casting machine part, it is likely to be deteriorated by molten metal, and such a part must be frequently replaced, and the running cost of the die casting machine is reduced. In addition to the increase, there is a problem that the continuous productivity is significantly decreased.
 一方、このような部品用の部材として、耐食性に優れ、常温および高温において高い硬度を有するセラミックス材料(たとえば、サイアロン(SiAlON)等。)も知られている。しかしながら、このようなセラミックス材料は製造コストが高いことに加えて被加工性に乏しく、また、必要以上に高硬度であるために、たとえばダイカストマシンのスリーブとして用いた場合に、プランジャーチップのような低硬度の材料に対して摺動すると、その低硬度の材料を摩耗させてしまうという問題がある。 On the other hand, ceramic materials (such as sialon (SiAlON), etc.) having excellent corrosion resistance and high hardness at normal temperature and high temperature are also known as members for such parts. However, such a ceramic material has a high manufacturing cost and a low workability, and is harder than necessary. For example, when used as a sleeve of a die casting machine, it is like a plunger tip. When sliding with respect to such a low hardness material, there is a problem that the low hardness material is worn.
 これに対し、このような高温金属と直接接触して用いられる部品用の部材として、たとえば、特許文献1には、内層をタングステンを含む第1層により構成し、第1層の外層として、フェライト系ステンレス鋼材等からなる第2層と、マルテンサイト系ステンレス鋼材等からなる第3層とを形成してなる積層管が開示されている。 On the other hand, as a component member used in direct contact with such a high-temperature metal, for example, Patent Document 1 discloses that an inner layer is formed of a first layer containing tungsten, and an outer layer of the first layer is ferrite. A laminated tube formed by forming a second layer made of a stainless steel material or the like and a third layer made of a martensite stainless steel material or the like is disclosed.
特開2017-014565号公報JP 2017-014565 A
 しかしながら、上記特許文献1に記載の積層管では、タングステンを含む第1層は、高温金属と直接接触する部分における耐食性には優れるものの、高温環境において大気に接触した場合に、大気と接触している部分は酸化が進行して腐食してしまうという問題があった。 However, in the laminated tube described in Patent Document 1, the first layer containing tungsten is excellent in corrosion resistance in a portion in direct contact with a high-temperature metal, but is in contact with the atmosphere when in contact with the atmosphere in a high-temperature environment. There was a problem in that the portion that was oxidized corroded as the oxidation progressed.
 本発明の目的は、高温金属に対する耐食性、および高温環境における大気に対する耐食性に優れる溶射皮膜を提供することである。 An object of the present invention is to provide a thermal spray coating excellent in corrosion resistance against high temperature metals and corrosion resistance against air in a high temperature environment.
 本発明者等は、溶射皮膜について、タングステン相と、3元系硼化物相とを特定の割合で含有させることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 The present inventors have found that the above object can be achieved by containing a tungsten phase and a ternary boride phase in a specific ratio in the spray coating, and have completed the present invention.
 すなわち、本発明によれば、タングステン相と、3元系硼化物相とを含有する溶射皮膜であって、X線回折法により前記溶射皮膜の表面を測定した場合における、前記タングステン相に由来する(110)面のピーク強度Iに対する、前記3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imaxの比(Imax/I)が、1/100以上である溶射皮膜が提供される。 That is, according to the present invention, the thermal spray coating contains a tungsten phase and a ternary boride phase, and is derived from the tungsten phase when the surface of the thermal spray coating is measured by an X-ray diffraction method. The ratio (I max / I w ) of the peak intensity I max of the peak having the highest intensity among the peaks derived from the ternary boride phase to the peak intensity I w of the (110) plane is 1/100 or more. A thermal spray coating is provided.
 本発明の溶射皮膜において、前記3元系硼化物相が、主としてMoNiBを含み、前記ピーク強度Imaxが、前記MoNiBに由来する(211)面のピーク強度であることが好ましい。
 本発明の溶射皮膜において、前記3元系硼化物相が、主としてWFeBを含み、前記ピーク強度Imaxが、前記WFeBに由来する(112)面のピーク強度であることが好ましい。
 本発明の溶射皮膜において、2元系硼化物相をさらに含有することが好ましい。
 本発明の溶射皮膜において、前記2元系硼化物相が、WBを含むことが好ましい。
 本発明の溶射皮膜において、300~700℃の範囲で測定されるビッカース硬さ(HV)が、400以上であることが好ましい。
In the thermal spray coating of the present invention, the ternary boride phase mainly contains Mo 2 NiB 2 , and the peak intensity I max is a peak intensity of the (211) plane derived from the Mo 2 NiB 2. preferable.
In the thermal spray coating of the present invention, it is preferable that the ternary boride phase mainly contains WFeB, and the peak intensity I max is a peak intensity of the (112) plane derived from the WFeB.
The thermal spray coating of the present invention preferably further contains a binary boride phase.
In the thermal spray coating of the present invention, the binary boride phase preferably contains W 2 B.
In the thermal spray coating of the present invention, the Vickers hardness (HV) measured in the range of 300 to 700 ° C. is preferably 400 or more.
 また、本発明によれば、上記いずれかの溶射皮膜を内面に備える積層管が提供される。
 本発明の積層管において、前記内面に備えられた前記溶射皮膜の内径Dに対する、前記積層管の長さLの比(L/D)が、2以上であることが好ましい。
Moreover, according to this invention, the laminated pipe provided with either of the said thermal spray coatings on an inner surface is provided.
In the laminated tube of the present invention, the ratio (L / D) of the length L of the laminated tube to the inner diameter D of the sprayed coating provided on the inner surface is preferably 2 or more.
 さらに、本発明によれば、上記いずれかの溶射皮膜の製造方法であって、タングステンと3元系硼化物とを含有し、かつ、顆粒強度の平均が10MPa以上である溶射用粉末を準備する工程と、前記溶射用粉末を、高速フレーム溶射法により、金属母材上に溶射する工程と、を備える溶射皮膜の製造方法が提供される。 Furthermore, according to the present invention, any one of the above-described methods for producing a thermal spray coating, comprising preparing a thermal spraying powder containing tungsten and a ternary boride and having an average granule strength of 10 MPa or more. There is provided a method for manufacturing a thermal spray coating comprising a step and a step of spraying the thermal spraying powder on a metal base material by a high-speed flame spraying method.
 本発明では、高温金属に対する耐食性、および高温環境における大気に対する耐食性に優れる溶射皮膜を提供することができる。 In the present invention, it is possible to provide a thermal spray coating excellent in corrosion resistance against high temperature metals and corrosion resistance against air in a high temperature environment.
本発明に係る積層管を適用したスリーブを用いたダイカスト装置の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the die-casting apparatus using the sleeve to which the laminated tube which concerns on this invention is applied. 本発明に係る積層管の一実施の形態を示す斜視図である。It is a perspective view which shows one Embodiment of the laminated tube which concerns on this invention. 図2に示す積層管の層構成を示す断面図である。It is sectional drawing which shows the layer structure of the laminated tube shown in FIG. 本発明に係る積層管を作製する方法の一例を説明するための図である。It is a figure for demonstrating an example of the method of producing the laminated tube which concerns on this invention. 比較例の溶射皮膜の断面を、SEMにより測定して得た写真である。It is the photograph obtained by measuring the cross section of the sprayed coating of a comparative example by SEM. 実施例および比較例の溶射皮膜の表面を、X線回折測定して得られた結果を示すグラフである。It is a graph which shows the result obtained by carrying out X-ray diffraction measurement of the surface of the thermal spray coating of an Example and a comparative example. 実施例の溶射皮膜の断面を、SEMにより測定して得た写真である。It is the photograph obtained by measuring the cross section of the thermal spray coating of an Example by SEM. 実施例の溶射皮膜の断面を、光学顕微鏡およびSEMにより測定して得た写真である。It is the photograph obtained by measuring the cross section of the thermal spray coating of an Example with an optical microscope and SEM. 実施例および比較例の溶射皮膜について、高温大気中での耐食性を評価した結果を示す写真である。It is a photograph which shows the result of having evaluated the corrosion resistance in high temperature air | atmosphere about the thermal spray coating of an Example and a comparative example. 実施例の溶射皮膜および参考例の焼結体について、高温大気中での耐食性を評価した結果を示す写真である。It is a photograph which shows the result of having evaluated the corrosion resistance in the high temperature air | atmosphere about the thermal spray coating of an Example, and the sintered compact of a reference example. 実施例および比較例の溶射皮膜、ならびに参考例の鋼材について、各温度環境におけるビッカース硬さを測定した結果を示すグラフである。It is a graph which shows the result of having measured the Vickers hardness in each temperature environment about the thermal spray coating of an Example and a comparative example, and the steel material of a reference example. 比較例の溶射皮膜の断面を、光学顕微鏡およびSEMにより測定して得た写真である。It is the photograph obtained by measuring the cross section of the sprayed coating of a comparative example with an optical microscope and SEM.
 以下、図面に基づいて本発明の一実施の形態について説明する。本発明に係る溶射皮膜は、高温環境における耐食性や、高い硬度が求められる部品に形成することができる。たとえば、図1に示すようなダイカスト装置1のスリーブ11の内面に形成することができる。以下においては、ダイカスト装置1のスリーブ11として、本発明に係る溶射皮膜を内面に形成した積層管を用いた実施形態にて、本発明を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The thermal spray coating according to the present invention can be formed on a component that requires corrosion resistance in a high temperature environment and high hardness. For example, it can be formed on the inner surface of the sleeve 11 of the die casting apparatus 1 as shown in FIG. In the following, the present invention will be described in an embodiment using a laminated tube in which a thermal spray coating according to the present invention is formed on the inner surface as the sleeve 11 of the die casting apparatus 1.
 図1は、本発明に係る溶射皮膜を内面に形成した積層管を適用したスリーブ11を用いたダイカスト装置1の一実施の形態を示す断面図である。本例におけるダイカスト装置1は、アルミニウムなどの溶融金属を成形するためのダイカスト装置である。 FIG. 1 is a cross-sectional view showing an embodiment of a die casting apparatus 1 using a sleeve 11 to which a laminated tube in which a thermal spray coating according to the present invention is formed is applied. The die casting apparatus 1 in this example is a die casting apparatus for forming a molten metal such as aluminum.
 図1に示すダイカスト装置1は、スリーブ11と、プランジャー12と、流路13と、ダイキャビティ14と、第1金型15と、第2金型16とを備えている。スリーブ11は、プランジャー12が移動するための通路を形成するものであり、スリーブ11が形成する通路は、流路13およびダイキャビティ14と連結されている。プランジャー12は、スリーブ11が形成する通路を前後に往復運動し、スリーブ11内に流し込まれた溶融金属を、スリーブ11から、流路13を通じて、ダイキャビティ14内に射出するものである。 1 includes a sleeve 11, a plunger 12, a flow path 13, a die cavity 14, a first mold 15, and a second mold 16. The die casting apparatus 1 shown in FIG. The sleeve 11 forms a passage for the plunger 12 to move, and the passage formed by the sleeve 11 is connected to the flow path 13 and the die cavity 14. The plunger 12 reciprocates back and forth in the passage formed by the sleeve 11, and injects the molten metal poured into the sleeve 11 from the sleeve 11 into the die cavity 14 through the flow path 13.
 本実施形態のスリーブ11は、図2に示す積層管2を用いて形成される。図2は、本発明に係る溶射皮膜を内面に形成した積層管の一実施の形態を示す斜視図である。図2においては、積層管2の内径をD、長さをLで示している。本実施形態の積層管2は、図3の断面図で示すように、内層を構成する溶射皮膜21と、溶射皮膜21の外周面に形成された第2層22と、さらに第2層22の外周面に形成された第3層23とからなる三層構造を有している。 The sleeve 11 of the present embodiment is formed using the laminated tube 2 shown in FIG. FIG. 2 is a perspective view showing an embodiment of a laminated tube in which a thermal spray coating according to the present invention is formed on the inner surface. In FIG. 2, the inner diameter of the laminated tube 2 is indicated by D and the length is indicated by L. As shown in the cross-sectional view of FIG. 3, the laminated tube 2 of the present embodiment includes a thermal spray coating 21 constituting an inner layer, a second layer 22 formed on the outer peripheral surface of the thermal spray coating 21, and a second layer 22. It has a three-layer structure including a third layer 23 formed on the outer peripheral surface.
 本実施形態の積層管2は、たとえば、図4に示すように、鉄、銅、アルミニウムといった安価で加工が容易な材料からなる芯材3に対して、溶射により、溶射皮膜21、第2層22および第3層23をこの順で形成した後、芯材を機械加工で除去することにより得ることができる。 As shown in FIG. 4, for example, the laminated tube 2 of the present embodiment is formed by spraying a core material 3 made of an inexpensive and easy-to-process material such as iron, copper, and aluminum by thermal spraying. After the 22 and the third layer 23 are formed in this order, the core material can be removed by machining.
<溶射皮膜21>
 内層を構成する溶射皮膜21は、主としてタングステンからなるタングステン相と、主として3元系硼化物からなる3元系硼化物相とを含有する。溶射皮膜21は、後述するように、タングステンと3元系硼化物とを含有する特定の溶射用粉末を溶射することによって、形成することができる。本実施形態の溶射皮膜21においては、タングステン相が主相を構成し、3元系硼化物相が結合相を構成する。
<Sprayed coating 21>
The thermal spray coating 21 constituting the inner layer contains a tungsten phase mainly made of tungsten and a ternary boride phase mainly made of ternary boride. As will be described later, the thermal spray coating 21 can be formed by spraying a specific thermal spraying powder containing tungsten and a ternary boride. In the thermal spray coating 21 of the present embodiment, the tungsten phase constitutes the main phase, and the ternary boride phase constitutes the binder phase.
 本実施形態の溶射皮膜21は、X線回折法により表面を測定した場合における、タングステン相に由来する(110)面のピーク強度Iに対する、3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imaxの比(Imax/I)が、1/100以上である。 Thermal spray coating 21 of the present embodiment, in the case of measuring the surface by X-ray diffraction method, to the peak intensity I w of from tungsten phase (110) plane, in the peak derived from the ternary boride The ratio (I max / I w ) of the peak intensity I max of the peak with the highest intensity is 1/100 or more.
 本実施形態においては、溶射皮膜21について、タングステン相および3元系硼化物相に由来するピークの強度比Imax/Iを上記範囲に制御することにより、溶射皮膜21について、高温金属に対する耐食性、および高温環境における大気に対する耐食性を、顕著に向上させることができる。すなわち、溶射皮膜21において、上述したピークの強度比Imax/Iが上記範囲となるように制御することにより、溶射皮膜21中に適切に3元系硼化物相を含有させることができるようになり、この3元系硼化物相が、タングステン相同士を結合する結合相として作用し、溶射皮膜21が緻密化することにより、溶射皮膜21について、溶融金属等の高温金属と直接接触する際における耐食性を、顕著に向上させることができるようになる。また、3元系硼化物自体が耐食性に優れていることによっても、溶射皮膜21における高温金属と直接接触する際の耐食性を向上させることができる。さらに、本実施形態においては、3元系硼化物相によって溶射皮膜21が緻密化することにより、溶射皮膜21について、ガスの透過性を低下させることができるようになり、これにより、高温環境で大気と接触する際においても、溶射皮膜21の大気に対する耐食性を、顕著に向上させることができるようになる。 In the present embodiment, for the thermal spray coating 21, by controlling the peak intensity ratio I max / I w derived from the tungsten phase and the ternary boride phase to the above range, the thermal spray coating 21 has corrosion resistance to high-temperature metals. And the corrosion resistance with respect to the air | atmosphere in a high temperature environment can be improved notably. That is, in the thermal spray coating 21, the ternary boride phase can be appropriately contained in the thermal spray coating 21 by controlling the above-described peak intensity ratio I max / I w to be in the above range. When this ternary boride phase acts as a bonding phase for bonding the tungsten phases and the thermal spray coating 21 is densified, the thermal spray coating 21 is brought into direct contact with a high-temperature metal such as a molten metal. Corrosion resistance can be significantly improved. In addition, the fact that the ternary boride itself is excellent in corrosion resistance can also improve the corrosion resistance in direct contact with the high-temperature metal in the thermal spray coating 21. Further, in the present embodiment, the thermal spray coating 21 is densified by the ternary boride phase, so that the gas permeability of the thermal spray coating 21 can be lowered. Even in contact with the atmosphere, the corrosion resistance of the thermal spray coating 21 to the atmosphere can be significantly improved.
 ここで、従来においては、溶射皮膜21に、3元系硼化物相を含有させることが困難であり、上述したような耐食性、特に、高温環境における大気に対する耐食性を向上させることができないという問題があった。 Here, conventionally, it is difficult to contain the ternary boride phase in the thermal spray coating 21, and there is a problem that the corrosion resistance as described above, particularly, the corrosion resistance against the atmosphere in a high temperature environment cannot be improved. there were.
 すなわち、従来、タングステンおよび3元系硼化物を含有する溶射用粉末を、プラズマ溶射法により、金属母材に溶射することで、溶射皮膜を形成する方法が知られている。しかしながら、プラズマ溶射法を用いた溶射では、溶射に使用するガスが高温であるため、溶射を行う際の熱により、溶射用粉末に含まれる3元系硼化物の組成が変化してしまうと考えられ、実際に形成される溶射皮膜は、走査型電子顕微鏡(SEM)により断面を観察した場合に、図5に示すように、タングステン(W)中に一部WBが観察され、実質的に3元系硼化物が観察されないものとなっていた。なお、図5は、後述する比較例1の溶射皮膜(B、Mo、Ni、Ti、およびWを含む溶射用粉末をプラズマ溶射法により溶射することで形成された溶射皮膜)をSEMにより測定して得られた写真を示すものである。同様に、このようなプラズマ溶射法によって形成された溶射皮膜について、X線回折法により測定した場合においても、図6に示すように、3元系硼化物に由来するピークは観測されなかった。なお、図6は、後述する実施例1の溶射皮膜(B、Mo、Ni、Ti、およびWを含む溶射用粉末を高速フレーム溶射法により溶射することで形成された溶射皮膜)、および上述した比較例1の溶射皮膜を、X線回折法により測定した結果を示すものであり、白丸が3元系硼化物(図6に示す例では、MoFeB、MoNiB、またはWFeB)に由来するピーク、黒丸がタングステン(W)に由来するピーク、黒三角が2元系硼化物(図6に示す例では、WB)に由来するピークを、それぞれ示す。 That is, conventionally, a method of forming a sprayed coating by spraying a thermal spraying powder containing tungsten and a ternary boride onto a metal base material by a plasma spraying method is known. However, in the thermal spraying using the plasma spraying method, since the gas used for the thermal spraying is high temperature, it is considered that the composition of the ternary boride contained in the thermal spraying powder changes due to the heat during the thermal spraying. When the cross section is observed with a scanning electron microscope (SEM), a part of W 2 B is observed in tungsten (W) as shown in FIG. In addition, ternary borides were not observed. In FIG. 5, the thermal spray coating of Comparative Example 1 described later (a thermal spray coating formed by spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a plasma spraying method) was measured by SEM. The photograph obtained in this way is shown. Similarly, even when the thermal spray coating formed by such a plasma spraying method was measured by the X-ray diffraction method, no peak derived from the ternary boride was observed as shown in FIG. FIG. 6 shows a thermal spray coating of Example 1 described later (a thermal spray coating formed by thermal spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a high-speed flame spraying method), and the above-described example. The result of measuring the thermal spray coating of Comparative Example 1 by the X-ray diffraction method shows a ternary boride (in the example shown in FIG. 6, Mo 2 FeB 2 , Mo 2 NiB 2 , or W 2). A peak derived from FeB 2 ), a black circle represents a peak derived from tungsten (W), and a black triangle represents a peak derived from a binary boride (in the example shown in FIG. 6, W 2 B).
 また、上述したプラズマ溶射法に代えて、溶射に使用するガスがより低温である溶射法(たとえば、高速フレーム溶射法)を用いて金属母材に対して溶射を行うと、溶射による3元系硼化物の組成の変化が抑制され、形成される溶射皮膜に3元系硼化物を含有させることができるようになるものの、溶射を行っている間に、金属母材に対して溶射する溶射用粉末が飛散してしまい、溶射用粉末の金属母材への付着効率が低下し、形成される溶射皮膜の厚みのばらつきが生じてしまうとともに、溶射皮膜の総厚が薄いものとなってしまうという問題があった。 Further, in place of the above-described plasma spraying method, when a metal base material is sprayed using a spraying method (for example, high-speed flame spraying method) in which a gas used for spraying is lower temperature, a ternary system by spraying is used. Although the change in the composition of the boride is suppressed and the formed thermal spray coating can contain a ternary boride, the thermal spray is applied to the metal base material during the thermal spraying. The powder is scattered, the adhesion efficiency of the thermal spraying powder to the metal base material is reduced, and the thickness of the thermal spray coating formed varies, and the total thickness of the thermal spray coating is reduced. There was a problem.
 これに対して、本発明者等は、タングステンおよび3元系硼化物を含有する溶射用粉末として、後述するように顆粒強度の平均が所定値以上であるものを用いることにより、高速フレーム溶射法を用いて溶射する場合でも、高い付着効率で、溶射皮膜を形成することができることを見出した。そして、本発明者等は、このような知見に基づいて、タングステンおよび3元系硼化物を含有する溶射用粉末を、高速フレーム溶射法により溶射することを可能とすることができること、これにより、形成される溶射皮膜について、タングステン相および3元系硼化物相を含有させることができることを見出したものである。実際に、タングステンおよび3元系硼化物を含有する溶射用粉末を、高速フレーム溶射法により溶射することで形成される溶射皮膜は、走査型電子顕微鏡(SEM)により断面を観察した場合に、図7に示すように、タングステン(W)の単相とともに、3元系硼化物(図7に示す例では、MoFeB、MoNiB、またはWFeB)が観察される。なお、図7は、後述する実施例1の溶射皮膜(B、Mo、Ni、Ti、およびWを含む溶射用粉末を高速フレーム溶射法により溶射することで形成された溶射皮膜)をSEMにより測定して得られた写真を示すものである。同様に、このような高速フレーム溶射法によって形成された溶射皮膜については、X線回折法により測定した場合においても、図6に示すように、3元系硼化物に由来するピークが観測される。本発明によれば、溶射皮膜に、タングステン相および3元系硼化物相を含有させることにより、上述したように、溶射皮膜について、高温金属に対する耐食性、および高温環境における大気に対する耐食性を、顕著に向上させることができるものである。 On the other hand, the present inventors have employed a high-speed flame spraying method by using a powder for spraying containing tungsten and a ternary boride having an average granule strength of a predetermined value or more as described later. It has been found that a thermal spray coating can be formed with high adhesion efficiency even when thermal spraying is carried out using a coating. And based on such knowledge, the present inventors can enable thermal spraying of a powder for thermal spraying containing tungsten and a ternary boride by a high-speed flame spraying method. It has been found that the thermal spray coating to be formed can contain a tungsten phase and a ternary boride phase. Actually, a thermal spray coating formed by thermal spraying a thermal spraying powder containing tungsten and a ternary boride by a high-speed flame spraying method is shown in the figure when a cross section is observed with a scanning electron microscope (SEM). As shown in FIG. 7, a ternary boride (Mo 2 FeB 2 , Mo 2 NiB 2 , or W 2 FeB 2 in the example shown in FIG. 7) is observed together with a single phase of tungsten (W). FIG. 7 shows a thermal spray coating of Example 1 described later (a thermal spray coating formed by spraying a thermal spraying powder containing B, Mo, Ni, Ti, and W by a high-speed flame spraying method) using an SEM. The photograph obtained by doing is shown. Similarly, with respect to the thermal spray coating formed by such a high-speed flame spraying method, even when measured by the X-ray diffraction method, a peak derived from the ternary boride is observed as shown in FIG. . According to the present invention, by adding a tungsten phase and a ternary boride phase to the thermal spray coating, as described above, the thermal spray coating is remarkably improved in corrosion resistance to high-temperature metals and to air in a high-temperature environment. It can be improved.
 なお、本実施形態においては、溶射皮膜21の表面をX線回折法により測定した場合における、上述したピーク強度比Imax/Iは、1/100以上であればよいが、好ましくは1/50以上、より好ましくは1/25以上、さらに好ましくは1/20以上、特に好ましくは1/18以上である。強度比Imax/Iが低すぎると、溶射皮膜21中に3元系硼化物相が含まれることによる効果、すなわち、高温金属に対する耐食性、および高温環境における大気に対する耐食性を向上させるという効果が得られなくなってしまう。なお、ピーク強度比Imax/Iの上限は、特に限定されないが、通常、1(1/1)以下である。 In the present embodiment, the above-described peak intensity ratio I max / I w when the surface of the sprayed coating 21 is measured by the X-ray diffraction method may be 1/100 or more, preferably 1/100 50 or more, more preferably 1/25 or more, still more preferably 1/20 or more, and particularly preferably 1/18 or more. If the intensity ratio I max / I w is too low, the effect of including a ternary boride phase in the sprayed coating 21, that is, the effect of improving the corrosion resistance to high-temperature metals and the corrosion resistance to the atmosphere in a high-temperature environment. It can no longer be obtained. The upper limit of the peak intensity ratio I max / I w is not particularly limited, but is usually 1 (1/1) or less.
 3元系硼化物相を構成する3元系硼化物としては、特に限定されないが、MoFeB、MoCoB、MoNiB、WFeB、WCoB、WNiB、MoCoB、WFeB、WCoBなどが挙げられ、これらのなかでも、高温金属に対する耐食性、および高温環境における大気に対する耐食性がより向上するという観点より、MoNiB、WFeBが好ましい。これらの3元系硼化物は、1種単独、または2種以上を混合したものを用いることができる。 The ternary boride constituting the ternary boride phase, but are not limited to, Mo 2 FeB 2, Mo 2 CoB 2, Mo 2 NiB 2, W 2 FeB 2, W 2 CoB 2, W 2 NiB 2 , MoCoB, WFeB, WCoB and the like. Among these, Mo 2 NiB 2 and WFeB are preferable from the viewpoint of further improving the corrosion resistance against high-temperature metals and the corrosion resistance against the atmosphere in a high-temperature environment. These ternary borides can be used singly or as a mixture of two or more.
 なお、3元系硼化物相を構成する3元系硼化物が、主としてMoNiBを含む場合には、3元系硼化物相に由来するピークの中で最も強度が大きいピークは、通常、MoNiBに由来する(211)面のピークとなる。そのため、この場合には、上述したピーク強度Imaxとしては、MoNiBに由来する(211)面のピーク強度を用い、これをピーク強度Imaxとすることができる。
 同様に、3元系硼化物相を構成する3元系硼化物が、主としてMoFeB,WFeB,WNiB,MoCoB,WCoBのいずれかを含む場合には、3元系硼化物相に由来するピークの中で最も強度が大きいピークは、通常、MoFeB,WFeB,WNiB,MoCoB,WCoBのいずれかに由来する(211)面のピークとなる。そのため、この場合には、上述したピーク強度Imaxとしては、MoFeB,WFeB,WNiB,MoCoB,WCoBのいずれかに由来する(211)面のピーク強度を用い、これをピーク強度Imaxとすることができる。なお、3元系硼化物相を構成する3元系硼化物として、MoFeB,WFeB,MoNiB,WNiB,MoCoB,およびWCoBから選択される複数の3元系硼化物を含有する場合(たとえば、3元系硼化物相が、MoFeB,MoNiBおよびWFeBなどで構成される場合)には、これら複数の3元系硼化物に由来する(211)面のピーク強度の合計を用い、これをピーク強度Imaxとすればよい。また、この際に、複数の3元系硼化物に由来する(211)面のピークが同じ場所に現れる場合には、そのピーク強度をそのまま用いて、ピーク強度Imaxとすればよい。
When the ternary boride constituting the ternary boride phase mainly contains Mo 2 NiB 2 , the peak having the highest intensity among the peaks derived from the ternary boride phase is usually (211) plane peak derived from Mo 2 NiB 2 . Therefore, in this case, as the peak intensity I max described above, the peak intensity of the (211) plane derived from Mo 2 NiB 2 can be used, and this can be set as the peak intensity I max .
Similarly, when the ternary boride constituting the ternary boride phase mainly contains any of Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2 The peak having the highest intensity among the peaks derived from the ternary boride phase is usually Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , or W 2 CoB 2 . It becomes a peak of (211) plane derived from either. Therefore, in this case, the above-described peak intensity I max is derived from any one of Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2 (211) plane. This peak intensity I max can be used. The ternary boride constituting the ternary boride phase is selected from Mo 2 FeB 2 , W 2 FeB 2 , Mo 2 NiB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2. When a plurality of ternary borides are contained (for example, when the ternary boride phase is composed of Mo 2 FeB 2 , Mo 2 NiB 2, W 2 FeB 2, etc.) The sum of the peak intensities of the (211) plane derived from the ternary boride is used as the peak intensity I max . Further, in this case, when the peak of from multiple ternary borides (211) plane appears in the same location, the peak intensity used as it is, or may be the peak intensity I max.
 一方、3元系硼化物相を構成する3元系硼化物が、主としてWFeBを含む場合には、3元系硼化物相に由来するピークの中で最も強度が大きいピークは、通常、WFeBに由来する(112)面のピークとなる。そのため、この場合には、上述したピーク強度Imaxとしては、WFeBに由来する(112)面のピーク強度を用いる。
 同様に、3元系硼化物相を構成する3元系硼化物が、主としてMoCoB,WCoBのいずれかを含む場合には、3元系硼化物相に由来するピークの中で最も強度が大きいピークは、通常、MoCoB,WCoBのいずれかに由来する(112)面のピークとなる。そのため、この場合には、上述したピーク強度Imaxとしては、MoCoB,WCoBのいずれかに由来する(112)面のピーク強度を用い、これをピーク強度Imaxとすることができる。なお、3元系硼化物相を構成する3元系硼化物として、WFeB,MoCoB,およびWCoBから選択される複数の3元系硼化物を含有する場合には、これら複数の3元系硼化物に由来する(112)面のピーク強度の合計を用い、これをピーク強度Imaxとすればよい。また、この際に、複数の3元系硼化物に由来する(112)面のピークが同じ場所に現れる場合には、そのピーク強度をそのまま用いて、ピーク強度Imaxとすればよい。
On the other hand, when the ternary boride constituting the ternary boride phase mainly contains WFeB, the peak having the highest intensity among the peaks derived from the ternary boride phase is usually in WFeB. The peak of the (112) plane is derived. Therefore, in this case, the peak intensity of (112) plane derived from WFeB is used as the peak intensity I max described above.
Similarly, when the ternary boride constituting the ternary boride phase mainly contains either MoCoB or WCoB, the peak having the highest intensity among the peaks derived from the ternary boride phase. Usually has a (112) plane peak derived from either MoCoB or WCoB. Therefore, in this case, as the peak intensity I max described above, the peak intensity of the (112) plane derived from either MoCoB or WCoB can be used, and this can be used as the peak intensity I max . When the ternary boride constituting the ternary boride phase includes a plurality of ternary borides selected from WFeB, MoCoB, and WCoB, the plurality of ternary borides are included. The sum of the peak intensities of the (112) plane derived from can be used as the peak intensity I max . At this time, if the (112) plane peak derived from a plurality of ternary borides appears at the same place, the peak intensity may be used as it is to obtain the peak intensity I max .
 本実施形態において、溶射皮膜21は、後述するように、タングステンと3元系硼化物とを含有し、顆粒強度Pの平均値(顆粒強度の平均)が10MPa以上である溶射用粉末を、高速フレーム溶射法により溶射することにより形成することができる。ここで、溶射用粉末に含有させる3元系硼化物としては、形成する溶射皮膜21に含まれる3元系硼化物相の組成に対応する組成を有するものを用いればよい。 In this embodiment, as will be described later, the thermal spray coating 21 contains tungsten and a ternary boride, and an average value of the granule strength P (average of granule strength) is 10 MPa or more. It can be formed by flame spraying by flame spraying. Here, as the ternary boride contained in the thermal spraying powder, a ternary boride having a composition corresponding to the composition of the ternary boride phase contained in the sprayed coating 21 to be formed may be used.
 溶射皮膜21を形成するための溶射用粉末における3元系硼化物の体積含有割合は、好ましくは1~30体積%、より好ましくは3~20体積%である。溶射用粉末に上記割合で3元系硼化物を含有させることにより、溶射皮膜21について、高温金属に対する耐食性、および高温環境における大気に対する耐食性を、より向上させることができる。 The volume content of the ternary boride in the thermal spraying powder for forming the thermal spray coating 21 is preferably 1 to 30% by volume, more preferably 3 to 20% by volume. By including the ternary boride in the above-mentioned proportion in the thermal spraying powder, it is possible to further improve the corrosion resistance to the high temperature metal and the atmospheric corrosion resistance in the high temperature environment.
 溶射皮膜21を形成するための溶射用粉末におけるタングステンの体積含有割合は、好ましくは70~99体積%、より好ましくは80~97体積%である。溶射用粉末に上記割合でタングステンを含有させることにより、溶射皮膜21について、高温金属に対する耐食性を、より向上させることができる。 The volume content of tungsten in the thermal spraying powder for forming the thermal spray coating 21 is preferably 70 to 99% by volume, more preferably 80 to 97% by volume. By including tungsten in the above-mentioned proportion in the thermal spraying powder, the corrosion resistance of the thermal spray coating 21 against the high temperature metal can be further improved.
 また、溶射皮膜21を形成するための溶射用粉末は、タングステンと3元系硼化物とに加えて、2元系硼化物をも含有するものであってもよく、溶射皮膜21を形成するための溶射用粉末における2元系硼化物の体積含有割合は、好ましくは0~20体積%、より好ましくは5~15体積%である。溶射用粉末に上記割合で2元系硼化物を含有させることにより、溶射皮膜21について、耐食性を損なうことなく、常温環境下および高温環境下での硬度が高くなり、耐摩耗性をより向上させることができる。溶射用粉末に含有させる2元系硼化物としては、形成する溶射皮膜21に含まれる2元系硼化物相の組成に対応する組成を有するものを用いればよい。 Further, the thermal spraying powder for forming the thermal spray coating 21 may also contain a binary boride in addition to tungsten and ternary boride, in order to form the thermal spray coating 21. The volume content of the binary boride in the thermal spraying powder is preferably 0 to 20% by volume, more preferably 5 to 15% by volume. By including the binary boride in the above-mentioned proportion in the powder for thermal spraying, the thermal spray coating 21 has higher hardness in normal temperature environment and high temperature environment without impairing corrosion resistance, and further improves wear resistance. be able to. As the binary boride to be contained in the thermal spraying powder, one having a composition corresponding to the composition of the binary boride phase contained in the thermal spray coating 21 to be formed may be used.
 溶射用粉末組成およびX線回折より算出した溶射皮膜21における3元系硼化物の重量割合は、好ましくは0.5~16.0重量%、より好ましくは1.5~10.0重量%である。溶射皮膜21に上記割合で3元系硼化物を含有させることにより、溶射皮膜21について、高温金属に対する耐食性、および高温環境における大気に対する耐食性を、より向上させることができる。 The weight ratio of the ternary boride in the thermal spray coating 21 calculated from the thermal spraying powder composition and X-ray diffraction is preferably 0.5 to 16.0% by weight, more preferably 1.5 to 10.0% by weight. is there. By making the thermal spray coating 21 contain the ternary boride in the above ratio, the thermal spray coating 21 can be further improved in corrosion resistance to the high temperature metal and to the atmosphere in the high temperature environment.
 溶射用粉末組成およびX線回折より算出した溶射皮膜21におけるタングステンの重量割合は、好ましくは84.0~99.5重量%、より好ましくは90.0~98.5重量%である。溶射皮膜21に上記割合でタングステンを含有させることにより、溶射皮膜21について、高温金属に対する耐食性を、より向上させることができる。 The weight ratio of tungsten in the thermal spray coating 21 calculated from the thermal spray powder composition and X-ray diffraction is preferably 84.0 to 99.5% by weight, more preferably 90.0 to 98.5% by weight. By containing tungsten in the said ratio in the sprayed coating 21, the corrosion resistance with respect to a high temperature metal can be improved more about the sprayed coating 21. FIG.
 また、溶射皮膜21には、常温環境下および高温環境下での溶射皮膜21の硬度をより向上させることができるという観点より、タングステン相および3元系硼化物相に加えて、2元系硼化物からなる2元系硼化物相が含まれていることが好ましい。2元系硼化物としては、たとえば、Mで表される硼化物(Mは、たとえば、W、Ti、Zr、Ta、Nb、Cr、Vのいずれかであり、x=1~2、y=1~4である。)が挙げられ、これらのなかでも、溶射皮膜21について、常温環境下および高温環境下での硬度をより高いものとし、耐摩耗性をより向上させることができるという観点より、WBが好ましい。これらの2元系硼化物は、1種単独、または2種以上を混合したものを用いることができる。 In addition to the tungsten phase and the ternary boride phase, the thermal spray coating 21 has a binary boron content from the viewpoint of further improving the hardness of the thermal spray coating 21 in a normal temperature environment and a high temperature environment. It is preferable that a binary boride phase composed of a fluoride is included. As the binary boride, for example, a boride represented by M x B y (M is, for example, any one of W, Ti, Zr, Ta, Nb, Cr, V, and x = 1 to 2 Among these, the thermal spray coating 21 can have higher hardness in a normal temperature environment and a high temperature environment, and the wear resistance can be further improved. From the viewpoint, W 2 B is preferable. These binary borides can be used singly or as a mixture of two or more.
 溶射用粉末組成およびX線回折より算出した溶射皮膜21における2元系硼化物の重量割合は、好ましくは0~18.0重量%、より好ましくは5.0~14.0重量%である。溶射皮膜21に上記割合で2元系硼化物を含有させることにより、溶射皮膜21について、耐食性を損なうことなく、常温環境下および高温環境下での硬度が高くなり、耐摩耗性をより向上させることができる。 The weight ratio of the binary boride in the thermal spray coating 21 calculated from the powder composition for thermal spraying and X-ray diffraction is preferably 0 to 18.0% by weight, more preferably 5.0 to 14.0% by weight. By including the binary boride in the above-mentioned ratio in the sprayed coating 21, the hardness of the sprayed coating 21 in a normal temperature environment and a high temperature environment is increased without impairing the corrosion resistance, and the wear resistance is further improved. be able to.
 さらに、溶射用粉末組成およびX線回折より算出した溶射皮膜21における3元系硼化物および2元系硼化物の合計の重量割合は、好ましくは0.5~34.0重量%、より好ましくは6.5~24.0重量%である。3元系硼化物および2元系硼化物の合計の含有割合を上記割合とすることにより、溶射皮膜21について、タングステンの持つ優れた耐食性および靭性を損なうことなく、常温環境下および高温環境下での硬度がより高くなるとともに、耐摩耗性、耐凝着性、熱衝撃抵抗および被加工性をより向上させることができる。 Further, the total weight ratio of the ternary boride and the binary boride in the thermal spray coating 21 calculated from the thermal spray powder composition and X-ray diffraction is preferably 0.5 to 34.0% by weight, more preferably 6.5 to 24.0% by weight. By setting the total content of the ternary boride and the binary boride to the above ratio, the thermal spray coating 21 can be used in a normal temperature environment and a high temperature environment without impairing the excellent corrosion resistance and toughness of tungsten. As the hardness increases, the wear resistance, adhesion resistance, thermal shock resistance and workability can be further improved.
 また、溶射用粉末組成およびX線回折より算出した溶射皮膜21における、Wの重量割合は3元系硼化物および2元系硼化物以外の成分の合計の重量割合として求められ割合は、好ましくは66.0~99.5重量%、より好ましくは76.0~93.5重量%である。3元系硼化物および2元系硼化物以外の成分の合計の含有割合を上記割合とすることにより、溶射皮膜21について、高温金属に対する耐食性、および高温環境における大気に対する耐食性を、より向上させることができる。 The weight ratio of W in the thermal spray coating 21 calculated from the thermal spraying powder composition and X-ray diffraction is determined as the total weight ratio of components other than the ternary boride and the binary boride, and the ratio is preferably It is 66.0 to 99.5% by weight, more preferably 76.0 to 93.5% by weight. By improving the total content of components other than the ternary boride and the binary boride to the above ratio, the thermal spray coating 21 is further improved in corrosion resistance to high-temperature metals and to air in a high-temperature environment. Can do.
 溶射皮膜21の厚みは、特に限定されないが、好ましくは0.1~2mm、より好ましくは0.3~1.5mmである。溶射皮膜21の厚みを上記範囲とすることにより、得られる積層管2について、溶融金属に対する耐食性により優れたものとすることができ、さらに、高価なタングステンの使用量を抑え、タングステンの溶射に要するエネルギーの使用量を低減できるという観点より、コスト的に有利となる。 The thickness of the sprayed coating 21 is not particularly limited, but is preferably 0.1 to 2 mm, more preferably 0.3 to 1.5 mm. By setting the thickness of the thermal spray coating 21 within the above range, the obtained laminated tube 2 can be made more excellent in corrosion resistance against molten metal, and further, the amount of expensive tungsten used is suppressed and required for thermal spraying of tungsten. From the viewpoint that the amount of energy used can be reduced, this is advantageous in terms of cost.
 また、溶射皮膜21は、300~700℃の範囲で測定されるビッカース硬さ(HV)(すなわち、300~700℃の範囲のうち、いずれかの温度で測定した場合のビッカース硬さ)が、好ましくは400以上、より好ましくは450以上、さらに好ましくは500以上である。300~700℃の範囲で測定されるビッカース硬さを上記範囲とすることにより、溶射皮膜21の耐摩耗性をより向上させることができる。 Further, the sprayed coating 21 has a Vickers hardness (HV) measured in a range of 300 to 700 ° C. (that is, a Vickers hardness when measured at any temperature within a range of 300 to 700 ° C.). Preferably it is 400 or more, More preferably, it is 450 or more, More preferably, it is 500 or more. By setting the Vickers hardness measured in the range of 300 to 700 ° C. within the above range, the abrasion resistance of the thermal spray coating 21 can be further improved.
<第2層22>
 第2層22は、鋼材などの金属材料を、溶射皮膜21上に溶射することにより形成することができる。
<Second layer 22>
The second layer 22 can be formed by spraying a metal material such as a steel material on the sprayed coating 21.
 本実施形態では、このような第2層22と、後述する第3層23とを積層することにより、積層管2における、第2層22および第3層23の総厚を厚くすることが可能となり、これにより、得られる積層管2の強度を向上させることができる。 In this embodiment, it is possible to increase the total thickness of the second layer 22 and the third layer 23 in the laminated tube 2 by laminating the second layer 22 and a third layer 23 described later. Thus, the strength of the obtained laminated tube 2 can be improved.
 第2層22を構成する金属材料としては、特に限定されないが、SUS430、SUS429などのフェライト系の鋼材、SUS420、SUS403などのマルテンサイト系の鋼材が挙げられ、これらのなかでも、溶射によって第2層22を形成する際に、溶射後に第2層22が冷却される過程で、溶射皮膜21と第2層22との界面における剥離や、第2層22におけるクラックの発生をより有効に防止することができるという観点より、フェライト系の鋼材が好ましい。 The metal material composing the second layer 22 is not particularly limited, and examples thereof include ferritic steel materials such as SUS430 and SUS429, and martensitic steel materials such as SUS420 and SUS403. When forming the layer 22, in the process in which the second layer 22 is cooled after thermal spraying, it is possible to more effectively prevent peeling at the interface between the thermal spray coating 21 and the second layer 22 and occurrence of cracks in the second layer 22. From the viewpoint of being able to do this, a ferritic steel material is preferable.
 第2層22の厚みは、特に限定されないが、好ましくは0.1~0.9mmである。第2層22の厚みを上記範囲とすることにより、溶射後に冷却されて収縮することによる第2層22のクラックをより有効に防止することができる。 The thickness of the second layer 22 is not particularly limited, but is preferably 0.1 to 0.9 mm. By setting the thickness of the second layer 22 within the above range, it is possible to more effectively prevent cracks in the second layer 22 caused by cooling and shrinking after thermal spraying.
<第3層23>
 第3層23は、鋼材などの金属材料を、第2層22上に溶射することにより形成することができる。
<Third layer 23>
The third layer 23 can be formed by spraying a metal material such as a steel material on the second layer 22.
 第3層23を構成する金属材料としては、特に限定されないが、SUS430、SUS429などのフェライト系の鋼材、SUS420、SUS403などのマルテンサイト系の鋼材が挙げられ、これらのなかでも、溶射によって第3層23を形成する際に、溶射後に第3層23が冷却される過程で、第3層23におけるクラックの発生をより有効に防止することができるという観点より、マルテンサイト系の鋼材が好ましい。 The metal material constituting the third layer 23 is not particularly limited, and examples thereof include ferritic steel materials such as SUS430 and SUS429, and martensitic steel materials such as SUS420 and SUS403. In forming the layer 23, martensitic steel is preferable from the viewpoint that the generation of cracks in the third layer 23 can be more effectively prevented in the process in which the third layer 23 is cooled after spraying.
 第3層23の厚みは、特に限定されないが、好ましくは1.0~5.0mmである。第3層23の厚みを上記範囲とすることにより、積層管2の強度をより高めることができる。 The thickness of the third layer 23 is not particularly limited, but is preferably 1.0 to 5.0 mm. By setting the thickness of the third layer 23 within the above range, the strength of the laminated tube 2 can be further increased.
 以上のようにして、本実施形態の積層管2は構成される。 As described above, the laminated tube 2 of the present embodiment is configured.
 なお、本実施形態の積層管2は、第3層23の外周面に、焼嵌めにより形成された鋼材層をさらに備えるものであってもよい。第3層23の外周面に焼嵌めする鋼材層としては、たとえば、日本工業規格(JIS G 4053)に規定されるSCM440相当のクロムモリブデン鋼鋼材からなる管状の部材が挙げられる。鋼材層は、ボルト締結やピン等によって、第3層23の外周面に固着されていてもよい。積層管2が鋼材層を有することで、積層管2の強度を高めることができる。 Note that the laminated tube 2 of the present embodiment may further include a steel material layer formed by shrink fitting on the outer peripheral surface of the third layer 23. Examples of the steel material layer that is shrink-fitted on the outer peripheral surface of the third layer 23 include a tubular member made of a chromium molybdenum steel material equivalent to SCM440 defined in Japanese Industrial Standard (JIS G 4053). The steel material layer may be fixed to the outer peripheral surface of the third layer 23 by bolt fastening, pins, or the like. Since the laminated tube 2 has a steel material layer, the strength of the laminated tube 2 can be increased.
 また、上述した例においては、本実施形態の積層管2が、溶射皮膜21の外面側に、第2層22および第3層23の2層を備える例を示したが、溶射皮膜21の外面側に形成する層は、単層であってもよいし、3層以上であってもよい。 Moreover, in the example mentioned above, although the laminated tube 2 of this embodiment showed the example provided with two layers of the 2nd layer 22 and the 3rd layer 23 in the outer surface side of the sprayed coating 21, the outer surface of the sprayed coating 21 was shown. The layer formed on the side may be a single layer or three or more layers.
<積層管2の製造方法>
 次いで、本実施形態の積層管2の製造方法について、説明する。
<Method for producing laminated tube 2>
Next, a method for manufacturing the laminated tube 2 of the present embodiment will be described.
 まず、芯材3(図4参照)と、溶射皮膜21を形成するための溶射用粉末を準備する。溶射用粉末は、たとえば次のようにして形成することができる。まず、タングステン相を形成するためのタングステン粉末と、3元系硼化物相又は2元系硼化物相を形成するためのこれらの硼化物相を構成する元素の粉末を混合し、これにバインダーおよび有機溶剤を添加した後、ボールミル等の粉砕装置を用いて混合粉砕する。次いで、混合粉砕して得た粉末(数μmの1次粒子)をスプレードライヤーなどにより造粒して数十μmの2次粒子を形成する。次いで、この2次粒子を熱処理することで焼結させ、必要に応じて分級することで、顆粒強度Pの平均値(顆粒強度の平均)が10MPa以上である溶射用粉末を得る。
 なお、顆粒強度Pは、溶射用粉末を構成する粒子の粒子径φ(単位はμm)と、該粒子が破壊される荷重(破壊荷重N(単位は(N))とを、微小圧縮試験機(島津製作所社製、MCT-510)を用いて測定し、測定した粒子径φと破壊荷重Nとに基づいて、下記式(1)により求めることができる。そして、顆粒強度の平均は、このような顆粒強度Pを複数回測定した結果の平均値であり、5回以上測定した結果の平均値とすることが好ましい。
  P=(2.48×N)/(π×φ)   ・・・(1)
First, a core material 3 (see FIG. 4) and a thermal spraying powder for forming the thermal spray coating 21 are prepared. The thermal spraying powder can be formed, for example, as follows. First, a tungsten powder for forming a tungsten phase is mixed with a powder of elements constituting these boride phases for forming a ternary boride phase or a binary boride phase, and a binder and After adding the organic solvent, the mixture is pulverized using a pulverizer such as a ball mill. Subsequently, the powder (primary particles of several μm) obtained by mixing and pulverizing is granulated with a spray dryer or the like to form secondary particles of several tens of μm. Next, the secondary particles are sintered by heat treatment, and classified as necessary to obtain thermal spraying powder having an average value of granule strength P (average of granule strength) of 10 MPa or more.
Note that the granule strength P is determined by measuring the particle diameter φ (unit: μm) of the particles constituting the thermal spraying powder and the load (destructive load N B (unit: (N)) at which the particles are broken. machine (manufactured by Shimadzu Corporation, MCT-510) was measured using a on the basis of the breaking load N B and the particle diameter φ measured, can be determined by the following equation (1). then, the average particle strength is The average value of the results obtained by measuring such a granule strength P a plurality of times, and preferably the average value obtained by measuring 5 times or more.
P = (2.48 × N B ) / (π × φ 2 ) (1)
 なお、2次粒子を熱処理して焼結させて、顆粒強度Pの平均値(顆粒強度の平均)が10MPa以上である溶射用粉末を得る方法としては、たとえば、溶射用粉末を得る際における熱処理の条件を以下のように制御する方法が挙げられる。すなわち、溶射用粉末の原料組成にもよるが、熱処理温度を好ましくは1,100~1,500℃、より好ましくは1,300~1,500℃、さらに好ましくは1,300~1,400℃、特に好ましくは1,350~1,400℃とし、熱処理時間を好ましくは60~120分間とする方法が挙げられる。熱処理温度が低すぎると、溶射用粉末を構成する粒子同士の結合が弱くなり、溶射用粉末は溶射時に崩壊し易くなり、溶射フレーム中で十分に加速されず、付着効率が低下するおそれがある。熱処理温度が高すぎると、焼結が進行して粉末間の結合が強固になり過ぎてしまい、焼結体を解砕し難くなり、溶射用粉末として取り出すことが困難となる。 In addition, as a method for obtaining a thermal spraying powder having an average value of granule strength P (average of granule strength) of 10 MPa or more by heat treating and sintering the secondary particles, for example, a thermal treatment in obtaining the thermal spraying powder. There is a method of controlling the above conditions as follows. That is, although depending on the raw material composition of the thermal spraying powder, the heat treatment temperature is preferably 1,100 to 1,500 ° C., more preferably 1,300 to 1,500 ° C., further preferably 1,300 to 1,400 ° C. Particularly preferred is a method in which the temperature is 1,350 to 1,400 ° C. and the heat treatment time is preferably 60 to 120 minutes. If the heat treatment temperature is too low, the bonding between the particles constituting the thermal spraying powder becomes weak, and the thermal spraying powder tends to collapse at the time of thermal spraying, and is not sufficiently accelerated in the thermal spraying frame, so that the adhesion efficiency may be reduced. . If the heat treatment temperature is too high, the sintering proceeds and the bonding between the powders becomes too strong, and it becomes difficult to disintegrate the sintered body and it becomes difficult to take it out as a thermal spraying powder.
 溶射用粉末の顆粒強度の平均は、10MPa以上であればよいが、好ましくは50MPa以上である。ただし、400MPaを大きく超えると、粉末間の結合が強くなり過ぎる傾向が現れ、溶射時に基材から弾かれて付着効率が著しく低下するため、顆粒強度の平均の上限は、好ましくは400MPa以下である。溶射用粉末の顆粒強度の平均を上記範囲とすることにより、溶射用粉末の溶射を行う際に、溶射用粉末の金属母材への付着効率がより向上し、しかも、形成される溶射皮膜の厚みのばらつきを低減させることができる。 The average granule strength of the thermal spraying powder may be 10 MPa or more, but is preferably 50 MPa or more. However, since the bond between the powders tends to be too strong when greatly exceeding 400 MPa, and the adhesion efficiency is remarkably lowered due to being repelled from the base material at the time of thermal spraying, the upper limit of the average granular strength is preferably 400 MPa or less. . By setting the average granule strength of the thermal spraying powder within the above range, when spraying the thermal spraying powder, the adhesion efficiency of the thermal spraying powder to the metal base material is further improved, and the thermal spray coating to be formed Variations in thickness can be reduced.
 次いで、以上のようにして準備した溶射用粉末を、芯材3に対して溶射することにより溶射皮膜21を形成する(図4参照)。本実施形態においては、溶射皮膜21を形成するための溶射の方法としては、溶射に使用するガスが比較的低温であり(具体的には、3000℃以下であり)、溶射による3元系硼化物の組成の変化が抑制され、形成される溶射皮膜に3元系硼化物を含有させることができるようになるという観点より、高速フレーム溶射法を用いることが好ましい。 Next, the thermal spray coating 21 is formed by spraying the thermal spraying powder prepared as described above onto the core material 3 (see FIG. 4). In this embodiment, as a thermal spraying method for forming the thermal spray coating 21, the gas used for thermal spraying is relatively low temperature (specifically, 3000 ° C. or lower), and ternary boron by thermal spraying is used. It is preferable to use a high-speed flame spraying method from the viewpoint that the change in the composition of the fluoride is suppressed and the thermal spray coating to be formed can contain a ternary boride.
 続いて、第2層22を形成するための金属材料を準備し、準備した金属材料を溶射皮膜21上に溶射することにより第2層22を形成する(図4参照)。さらに、第3層23を形成するための金属材料を準備し、準備した金属材料を第2層22上に溶射することにより第3層23を形成する(図4参照)。これにより、図4に示すように、芯材3上に、溶射皮膜21、第2層22および第3層23がこの順で形成される。なお、第2層22および第3層23を形成するための溶射の方法としては、特に限定されないが、第2層22や第3層23を構成する金属材料として、上述した鋼材を用いる場合には、ワイヤアーク溶射が好ましい。 Subsequently, a metal material for forming the second layer 22 is prepared, and the second layer 22 is formed by spraying the prepared metal material on the sprayed coating 21 (see FIG. 4). Further, a metal material for forming the third layer 23 is prepared, and the prepared metal material is sprayed onto the second layer 22 to form the third layer 23 (see FIG. 4). As a result, as shown in FIG. 4, the thermal spray coating 21, the second layer 22, and the third layer 23 are formed in this order on the core material 3. In addition, although it does not specifically limit as a thermal spraying method for forming the 2nd layer 22 and the 3rd layer 23, when using the steel material mentioned above as a metal material which comprises the 2nd layer 22 and the 3rd layer 23 Is preferably wire arc spraying.
 本実施形態では、さらに、第3層23の外周面に、管状の鋼材を焼嵌めして鋼材層を形成してもよい。これにより、積層管2を補強し、積層管2の強度を向上させることができる。 In this embodiment, a steel material layer may be formed by shrink fitting a tubular steel material on the outer peripheral surface of the third layer 23. Thereby, the laminated tube 2 can be reinforced and the strength of the laminated tube 2 can be improved.
 続いて、芯材3を、ボール盤やBTA(Boring and Trepanning Association)深孔加工機等を用いて切削する。これにより、図4に示す芯材3が除去され、図2に示すような積層管2、具体的には、内面が溶射皮膜21となり、溶射皮膜21上に第2層22および第3層23が形成されてなる積層管2が得られる。 Subsequently, the core material 3 is cut using a drilling machine, a BTA (Boring and Trepanning Association) deep hole processing machine, or the like. As a result, the core material 3 shown in FIG. 4 is removed, the laminated tube 2 as shown in FIG. 2, specifically, the inner surface becomes the thermal spray coating 21, and the second layer 22 and the third layer 23 on the thermal spray coating 21. As a result, a laminated tube 2 is formed.
 本実施形態の積層管2は、以上のようにして製造される。 The laminated tube 2 of the present embodiment is manufactured as described above.
 なお、本実施形態の積層管2は、溶射皮膜21の内径Dに対する、積層管2の長さLの比(L/D)が、好ましくは2以上である。この際には、特に、溶射皮膜21の内径Dは、好ましくは40~160mm、より好ましくは40~120mmである。本実施形態の製造方法によれば、内径Dと長さLとの比(L/D)が上記範囲にあり、積層管2の形状が比較的細長いものであっても、積層管2を良好に製造することができる。 In the laminated tube 2 of this embodiment, the ratio (L / D) of the length L of the laminated tube 2 to the inner diameter D of the thermal spray coating 21 is preferably 2 or more. In this case, in particular, the inner diameter D of the thermal spray coating 21 is preferably 40 to 160 mm, more preferably 40 to 120 mm. According to the manufacturing method of the present embodiment, the ratio of the inner diameter D to the length L (L / D) is in the above range, and the laminated tube 2 is excellent even when the shape of the laminated tube 2 is relatively elongated. Can be manufactured.
 すなわち、内層のみを、タングステンを含む材料からなる積層管を製造する方法としては、予め準備した管状の部材の内面に、タングステンを含む材料を溶射する方法が考えられる。しかしながら、内径Dが小径であったり、長さLが長かったりすることで、内径Dと長さLとの比(L/D)が上記範囲となる積層管を製造する場合には、上記管状の部材の内部に、溶射用のトーチが入らず、溶射を行うことができないという問題がある。
 溶射距離は100~150mmが適切で、内径トーチを使用した場合でも100mm以下の内径には溶射を行うことができない。そのため、100mm以下の内径では積層管の両端側から角度をつけて溶射しなければならないが、一般的に溶射角度が45°よりも小さくなると皮膜特性は急激に低下するので、管材の内面に溶射する方法で積層管を製造する場合には、L/Dが2以上のものでは良質な溶射皮膜を得ることができないという問題がある。
That is, as a method of manufacturing a laminated tube made of a material containing tungsten only for the inner layer, a method of spraying a material containing tungsten on the inner surface of a tubular member prepared in advance can be considered. However, when manufacturing a laminated tube in which the ratio (L / D) of the inner diameter D to the length L is within the above range because the inner diameter D is a small diameter or the length L is long, the tubular There is a problem that the thermal spraying torch does not enter the inside of the member and thermal spraying cannot be performed.
A spraying distance of 100 to 150 mm is appropriate, and even when an inner diameter torch is used, spraying cannot be performed on an inner diameter of 100 mm or less. For this reason, if the inner diameter is 100 mm or less, it must be sprayed at an angle from both ends of the laminated tube. Generally, however, the coating properties are drastically reduced when the spray angle is smaller than 45 °, so that the inner surface of the tube is sprayed. In the case of producing a laminated tube by this method, there is a problem that a high quality sprayed coating cannot be obtained if the L / D is 2 or more.
 これに対し、本実施形態では、図4に示すように、芯材3上に溶射皮膜21、第2層22および第3層23を形成した後、芯材3を除去するため、内径Dと長さLとの比(L/D)が上記範囲にある細長い形状の積層管を、良好に製造することができる。 On the other hand, in this embodiment, as shown in FIG. 4, after forming the thermal spray coating 21, the second layer 22, and the third layer 23 on the core material 3, An elongated laminated tube having a ratio (L / D) to the length L in the above range can be manufactured satisfactorily.
 本実施形態の積層管2は、上述したように、溶射皮膜21を内層とし、その上に第2層22および第3層23を備えるため、溶融金属に対する耐食性に優れたものであることに加えて、コスト的に有利である。すなわち、積層管2の全体を、タングステンを含む材料(硼化物系タングステン基合金など)により形成すれば、溶融金属に対する耐食性が向上するものの、タングステンを含む材料は高価であり、成形加工にコストがかかるという問題がある。これに対し、本実施形態の積層管2は、内層のみを、タングステンを含む層(溶射皮膜21)で構成し、その溶射皮膜21の外装を、鋼材などからなる第2層22および第3層23で形成するため、溶融金属に対する耐食性を向上させることができる一方で、比較的安価に製造することができるものである。加えて、本実施形態の積層管2は、第2層22および第3層23によって、その総厚を厚くすることができるため、積層管2の強度を向上させることができる。さらに、第2層22および第3層23の総厚を厚くすることで、第3層23の外周面に、上述したように焼嵌めにより鋼材層を形成することが可能となり、積層管2の強度をより向上させることもできる。 As described above, the laminated tube 2 of the present embodiment has the thermal spray coating 21 as an inner layer and the second layer 22 and the third layer 23 on the inner layer, and therefore has excellent corrosion resistance against molten metal. This is advantageous in terms of cost. That is, if the entire laminated tube 2 is made of a material containing tungsten (such as a boride-based tungsten-based alloy), the corrosion resistance against the molten metal is improved, but the material containing tungsten is expensive, and the molding process is costly. There is a problem that it takes. On the other hand, in the laminated tube 2 of the present embodiment, only the inner layer is constituted by a layer containing tungsten (thermal spray coating 21), and the exterior of the thermal spray coating 21 is the second layer 22 and the third layer made of steel or the like. 23, the corrosion resistance against molten metal can be improved, while it can be manufactured at a relatively low cost. In addition, since the total thickness of the laminated tube 2 of the present embodiment can be increased by the second layer 22 and the third layer 23, the strength of the laminated tube 2 can be improved. Furthermore, by increasing the total thickness of the second layer 22 and the third layer 23, it becomes possible to form a steel material layer on the outer peripheral surface of the third layer 23 by shrink fitting as described above. The strength can be further improved.
 なお、上述した例においては、溶射皮膜21を内層とし、その上に第2層22および第3層23の2層を形成する例を示したが、溶射皮膜21上に形成する層は、単層であってもよいし、3層以上であってもよい。 In the example described above, the example in which the thermal spray coating 21 is the inner layer and two layers of the second layer 22 and the third layer 23 are formed thereon is shown. However, the layer formed on the thermal spray coating 21 is a single layer. A layer may be sufficient and three or more layers may be sufficient.
 また、上述した例においては、本発明の溶射皮膜を、ダイカスト装置のスリーブ(積層管)に適用する例を示したが、本発明の溶射皮膜の用途は、これに限定されない。たとえば、本発明の溶射皮膜は、ダイカスト装置の部品以外にも、低圧鋳造法、重力金型鋳造法、またはホットスタンプに用いられる装置の部品などのように、溶融金属等の高温金属と直接接触して用いられる部品として、好適に用いることができる。 In the above-described example, an example in which the thermal spray coating of the present invention is applied to a sleeve (laminate tube) of a die casting apparatus is shown, but the application of the thermal spray coating of the present invention is not limited to this. For example, the thermal spray coating of the present invention is in direct contact with a high-temperature metal such as a molten metal, such as a low-pressure casting method, a gravity mold casting method, or a device part used for hot stamping, in addition to a die-casting device part. It can be suitably used as a component used as a part.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
<実施例1>
 まず、B:0.8重量%、Mo:3.5重量%、Ni:1.1重量%、Ti:0.9重量%、W:残部の比率で混合してなる原料100重量部に対して、5重量部のパラフィンを加え、これをアセトン中で、振動ボールミルにより25時間湿式粉砕を行うことで粉砕粉を作製した。次いで、作製した粉砕粉を、窒素雰囲気下において150℃で18時間乾燥することで1次粒子を得た。そして、得られた1次粒子を、アセトンと1:1の重量割合で混合した後に、スプレードライヤーによって造粒することで2次粒子を得た。次いで、得られた2次粒子を、真空中にて1,350℃で1時間保持して熱処理することにより焼結し、これを分級することにより、溶射用粉末を作製した。
<Example 1>
First, B: 0.8% by weight, Mo: 3.5% by weight, Ni: 1.1% by weight, Ti: 0.9% by weight, W: 100 parts by weight of the raw material mixed at the ratio of the balance Then, 5 parts by weight of paraffin was added, and this was wet pulverized in acetone with a vibration ball mill for 25 hours to prepare a pulverized powder. Next, primary particles were obtained by drying the prepared pulverized powder at 150 ° C. for 18 hours in a nitrogen atmosphere. And after mixing the obtained primary particle with acetone in the weight ratio of 1: 1, the secondary particle was obtained by granulating with a spray dryer. Next, the obtained secondary particles were sintered by holding them at 1,350 ° C. for 1 hour in a vacuum for heat treatment, and classifying them to prepare thermal spraying powders.
 次いで、溶射を行うための基材として、50×50×10mmのSKD61鋼を準備した。そして、高速フレーム溶射機(TAFA社製、型番:JP5000))により、基材に対して上記溶射用粉末を250mmの距離から高速フレーム溶射により溶射することにより、基材上に溶射皮膜を形成した。続いて、これを10mm×10mm×5mmのブロック形状に加工することで試験片を作製した。作製した試験片の断面について、光学顕微鏡(倍率100倍)により観察して得た写真を図8(A)に、走査型電子顕微鏡(SEM)により観察して得た写真を図8(B)に、それぞれ示す。図8(A)、図8(B)の結果から、試験片の表面には、緻密な溶射皮膜が形成されていることが確認された。 Next, 50 × 50 × 10 mm SKD61 steel was prepared as a base material for spraying. And the thermal spray coating was formed on the base material by spraying the said powder for thermal spraying with respect to the base material from the distance of 250 mm by high speed flame spraying with the high-speed flame spraying machine (TAFA company make, model number: JP5000). . Then, the test piece was produced by processing this into a block shape of 10 mm × 10 mm × 5 mm. About the cross section of the produced test piece, the photograph obtained by observing with an optical microscope (magnification 100 times) is shown in FIG. 8 (A), and the photograph obtained by observing with a scanning electron microscope (SEM) is shown in FIG. 8 (B). Respectively. From the results of FIGS. 8A and 8B, it was confirmed that a dense thermal spray coating was formed on the surface of the test piece.
 また、作製した試験片について、断面をSEMにより観察して得た写真を、図7に示す。図7の結果から、試験片の断面には、タングステン相を構成するW、3元系硼化物相を構成するMoFeB、MoNiBおよびWFeB、2元系硼化物相を構成するWBが、それぞれ観察された。 Moreover, the photograph obtained by observing a cross section with SEM about the produced test piece is shown in FIG. From the result of FIG. 7, the cross section of the test piece shows W 2 constituting the tungsten phase, Mo 2 FeB 2 , Mo 2 NiB 2 and W 2 FeB 2 constituting the ternary boride phase, and the binary boride phase. W 2 B constituting each was observed.
 さらに、作製した試験片の表面について、X線回折装置(リガク社製、型番:RINT-2500)を用いてX線回折法によりX線回折測定を行った。X線回折測定により得られたグラフを図6に示す。測定結果から、実施例1における、タングステン相に由来する(110)面のピーク強度I(図6における2θ=40.25°のピーク強度)に対する、3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imax(図6では、MoNiBに由来する(211)面のピーク強度であり、2θ=42.95°のピーク強度)の比(Imax/I)が、1/5.4であった。結果を表1に示す。 Furthermore, about the surface of the produced test piece, the X-ray-diffraction measurement was performed by the X-ray-diffraction method using the X-ray-diffraction apparatus (Rigaku company make, model number: RINT-2500). A graph obtained by X-ray diffraction measurement is shown in FIG. From the measurement results, the peak derived from the ternary boride phase with respect to the peak intensity I w (2θ = 40.25 ° peak intensity in FIG. 6) of the (110) plane derived from the tungsten phase in Example 1 is shown. The peak intensity I max of the peak having the highest intensity (in FIG. 6, the peak intensity of the (211) plane derived from Mo 2 NiB 2 and the peak intensity of 2θ = 42.95 °) (I max / I w ) was 1 / 5.4. The results are shown in Table 1.
高温大気中での耐食性(その1)
 続いて、作製した試験片を、大気炉にて、680℃、80分間の条件で保管した後、腐食の様子を目視で確認し、以下の基準で評価した。結果を表1に示す。また、評価後の試験片の写真を図9(A)に示す。
  1:極表層部のみ酸化
  2:皮膜内部に至る腐食が確認された
Corrosion resistance in high temperature atmosphere (Part 1)
Subsequently, after the prepared test piece was stored in an atmospheric furnace at 680 ° C. for 80 minutes, the state of corrosion was visually confirmed and evaluated according to the following criteria. The results are shown in Table 1. Moreover, the photograph of the test piece after evaluation is shown to FIG. 9 (A).
1: Oxidation of the extreme surface layer only 2: Corrosion reaching the inside of the film was confirmed
高温大気中での耐食性(その2)
 また、作製した試験片を、大気炉にて、680℃、8時間の条件で保管した後、腐食の様子を目視で確認し、以下の基準で評価した。結果を表1に示す。また、評価後の試験片の写真を図10(A)に示す。
  1:極表層部のみ酸化
  2:皮膜内部に至る腐食が確認された
Corrosion resistance in high temperature atmosphere (Part 2)
Moreover, after storing the produced test piece on 680 degreeC and the conditions for 8 hours in an atmospheric furnace, the mode of corrosion was confirmed visually and the following references | standards evaluated. The results are shown in Table 1. Moreover, the photograph of the test piece after evaluation is shown to FIG. 10 (A).
1: Oxidation of the extreme surface layer only 2: Corrosion reaching the inside of the film was confirmed
ビッカース硬さ
 続いて、作製した試験片について、20℃の環境にて、ビッカース硬度計(明石製作所社製、品番:MVK-G2)を用いて、荷重200gにてビッカース硬さ(HV)を測定した。同様に、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃の環境でも、試験片のビッカース硬さ(HV)を、高温硬度計(ニコン社製、型番:QM-2)を用いて測定した。結果を図11に示す。
Vickers hardness Subsequently, the Vickers hardness (HV) of the prepared test piece was measured at a load of 200 g using a Vickers hardness meter (manufactured by Akashi Seisakusho, product number: MVK-G2) in an environment of 20 ° C. did. Similarly, in an environment of 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., and 800 ° C., the Vickers hardness (HV) of the test piece is measured with a high-temperature hardness meter (manufactured by Nikon Corporation, model number). : QM-2). The results are shown in FIG.
<実施例2>
 高速フレーム溶射を行う際における、溶射距離を250mmから300mmに変更した以外は、実施例1と同様にして、基材上に溶射皮膜を形成し、10mm×10mm×5mmのブロック形状の試験片を得た。なお、実施例1と同様にして、作製した試験片について、断面をSEMにより観察したところ、試験片の断面には、タングステン相を構成するW、3元系硼化物相を構成するMoFeB、MoNiBおよびWFeB、2元系硼化物相を構成するWBが、それぞれ観察された。さらに、実施例1と同様にして、作製した試験片について、X線回折測定を行ったところ、実施例2における、タングステン相に由来する(110)面のピーク強度Iに対する、3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imax(MoNiBに由来する(211)面のピーク強度)の比(Imax/I)は、1/9.5であった。また、得られた試験片について、実施例1と同様にして、高温大気中での耐食性の評価を行った。結果を表1に示す。
<Example 2>
Except that the spraying distance was changed from 250 mm to 300 mm when performing high-speed flame spraying, a sprayed coating was formed on the substrate in the same manner as in Example 1, and a test piece having a block shape of 10 mm × 10 mm × 5 mm was formed. Obtained. In addition, when the cross section of the prepared test piece was observed by SEM in the same manner as in Example 1, the cross section of the test piece showed W constituting the tungsten phase and Mo 2 FeB constituting the ternary boride phase. 2 , Mo 2 NiB 2 and W 2 FeB 2 , and W 2 B constituting the binary boride phase were observed, respectively. Further, in the same manner as in Example 1, for to prepare a test piece was subjected to X-ray diffraction measurement, in Example 2, to the peak intensity I w of from tungsten phase (110) plane, ternary the boron The ratio (I max / I w ) of peak intensity I max (peak intensity of (211) plane derived from Mo 2 NiB 2 ) of the peak having the highest intensity among the peaks derived from the chemical phase is 1/9. It was 5. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
<実施例3>
 溶射用粉末を作製する際に、原料として、その組成が、B:0.4重量%、Mo:3.2重量%、Ni:1.0重量%、W:残部(Tiは実質的に0重量%)としたものを使用し、かつ、2次粒子の熱処理温度を1,350℃から1,150℃に変更した以外は、実施例1と同様にして、溶射用粉末を作製した。そして、得られた溶射用粉末を使用した以外は、実施例1と同様にして、基材上に溶射皮膜を形成し、10mm×10mm×5mmのブロック形状の試験片を得た。なお、実施例1と同様にして、作製した試験片について、断面をSEMにより観察したところ、試験片の断面には、タングステン相を構成するW、3元系硼化物相を構成するMoFeB、MoNiBおよびWFeB、2元系硼化物相を構成するWBが、それぞれ観察された。さらに、実施例1と同様にして、作製した試験片について、X線回折測定を行ったところ、実施例3における、タングステン相に由来する(110)面のピーク強度Iに対する、3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imax(MoNiBに由来する(211)面のピーク強度)の比(Imax/I)は、1/16.9であった。また、得られた試験片について、実施例1と同様にして、高温大気中での耐食性の評価を行った。結果を表1に示す。
<Example 3>
When producing the thermal spraying powder, the composition was as follows: B: 0.4% by weight, Mo: 3.2% by weight, Ni: 1.0% by weight, W: balance (Ti is substantially 0 The powder for thermal spraying was prepared in the same manner as in Example 1 except that the heat treatment temperature of the secondary particles was changed from 1,350 ° C. to 1,150 ° C. And except having used the obtained thermal spraying powder, it carried out similarly to Example 1, and formed the thermal spray coating on the base material, and obtained the test piece of the block shape of 10 mm x 10 mm x 5 mm. In addition, when the cross section of the prepared test piece was observed by SEM in the same manner as in Example 1, the cross section of the test piece showed W constituting the tungsten phase and Mo 2 FeB constituting the ternary boride phase. 2 , Mo 2 NiB 2 and W 2 FeB 2 , and W 2 B constituting the binary boride phase were observed, respectively. Further, in the same manner as in Example 1, for to prepare a test piece was subjected to X-ray diffraction measurement, in Example 3, to the peak intensity I w of from tungsten phase (110) plane, ternary the boron The ratio (I max / I w ) of peak intensity I max (peak intensity of (211) plane derived from Mo 2 NiB 2 ) of the peak having the highest intensity among the peaks derived from the chemical phase is 1/16. It was 9. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
<比較例1>
 まず、実施例1と同様にして溶射用粉末を作製した。次いで、溶射を行うための基材として、55×60×13mmのSKD61鋼を準備した。そして、プラズマ溶射機(日本ユテク社製、品番:EUTRONIC PLASMA SYSTEM 5000)により、基材に対して上記溶射用粉末を250mmの距離からプラズマ溶射により溶射することにより、基材上に溶射皮膜を形成した。続いて、これを55×12×13mmの形状に加工することで試験片を作製した。作製した試験片の断面について、光学顕微鏡(倍率100倍)により観察して得た写真を図12(A)に、走査型電子顕微鏡(SEM)により観察して得た写真を図12(B)に、それぞれ示す。図12(A)、図12(B)の結果から、試験片の表面には、溶射皮膜が形成されていることが確認された。
<Comparative Example 1>
First, a thermal spraying powder was produced in the same manner as in Example 1. Next, 55 × 60 × 13 mm SKD61 steel was prepared as a base material for thermal spraying. Then, a thermal spray coating is formed on the base material by spraying the thermal spraying powder from a distance of 250 mm on the base material with a plasma spraying machine (product number: EUTRONIC PLASMA SYSTEM 5000, manufactured by Nihon Utec Co., Ltd.). did. Then, the test piece was produced by processing this into the shape of 55x12x13 mm. About the cross section of the produced test piece, the photograph obtained by observing with an optical microscope (100 times magnification) is shown in FIG. 12 (A), and the photograph obtained by observing with a scanning electron microscope (SEM) is shown in FIG. 12 (B). Respectively. From the results of FIGS. 12A and 12B, it was confirmed that a sprayed coating was formed on the surface of the test piece.
 また、作製した試験片の断面について、SEMにより観察して得た写真を、図5に示す。図5の結果から、試験片の断面には、タングステン相を構成するWが観察されたものの、3元系硼化物相は観察されなかったが、2元系硼化物相は一部観察された。 Moreover, the photograph obtained by observing the cross section of the produced test piece with SEM is shown in FIG. From the result of FIG. 5, in the cross section of the test piece, although W constituting the tungsten phase was observed, the ternary boride phase was not observed, but a part of the binary boride phase was observed. .
 さらに、作製した試験片の表面について、実施例1と同様にして、X線回折測定を行った。結果を図6に示す。図6の結果から、比較例1においては、3元系硼化物相に由来するピークは観察できなかった。そのため、比較例1のピーク強度比Imax/Iは、1/247であった。結果を表1に示す。尚、比較例1において2元系硼化物に由来するピークは部分的に確認されたが、タングステン相に由来する(110)面のピーク強度Iに対する、2元系硼化物に由来するピークの中で最も強度が大きいピークのピーク強度Imax-2の比(Imax-2/I)は1/29.7であった。 Further, the surface of the prepared test piece was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. From the results of FIG. 6, in Comparative Example 1, no peak derived from the ternary boride phase could be observed. Therefore, the peak intensity ratio I max / I w of Comparative Example 1 was 1/247. The results are shown in Table 1. The peak derived from the binary boride in Comparative Example 1 was confirmed partially, to the peak intensity I w of from tungsten phase (110) plane, a peak derived from binary borides Among them, the peak intensity I max-2 ratio (I max-2 / I w ) of the peak having the highest intensity was 1 / 29.7.
 続いて、作製した試験片を用いて、実施例1と同様にして、高温大気中での耐食性(その1)の評価、およびビッカース硬さの測定を行った。結果を表1、図9(B)および図11に示す。なお、比較例1については、ビッカース硬さの測定は、図11に示すように、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃の環境でのみ行った。 Subsequently, using the prepared test piece, in the same manner as in Example 1, the corrosion resistance (part 1) in high-temperature air was evaluated and the Vickers hardness was measured. The results are shown in Table 1, FIG. 9 (B) and FIG. As for Comparative Example 1, the measurement of Vickers hardness is performed only in an environment of 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., and 800 ° C. as shown in FIG. It was.
<比較例2>
 プラズマ溶射を行う際における、溶射距離を250mmから300mmに変更した以外は、比較例1と同様にして、基材上に溶射皮膜を形成し、10mm×10mm×5mmのブロック形状の試験片を得た。なお、実施例1と同様にして、X線回折測定を行ったところ、比較例2における、タングステン相に由来する(110)面のピーク強度Iに対する、3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imax(MoNiBに由来する(211)面のピーク強度)の比(Imax/I)は、1/148であった。また、得られた試験片について、実施例1と同様にして、高温大気中での耐食性の評価を行った。結果を表1に示す。
<Comparative example 2>
Except for changing the spraying distance from 250 mm to 300 mm when performing plasma spraying, a sprayed coating is formed on the substrate in the same manner as in Comparative Example 1 to obtain a 10 mm × 10 mm × 5 mm block-shaped test piece. It was. Incidentally, in the same manner as in Example 1, was subjected to X-ray diffraction measurement, in Comparative Example 2, to the peak intensity I w of from tungsten phase (110) plane, a peak derived from the ternary boride The ratio (I max / I w ) of the peak intensity I max (peak intensity of the (211) plane derived from Mo 2 NiB 2 ) of the peak with the highest intensity was 1/148. Further, the obtained test piece was evaluated for corrosion resistance in a high-temperature atmosphere in the same manner as in Example 1. The results are shown in Table 1.
<参考例1>
 まず、実施例1と同様にして、1次粒子を作製した。次いで、作製した1次粒子を、SPS(放電プラズマ焼結装置)で加圧焼結を行い1300~1500℃の温度で10分間焼結することにより、硬質焼結合金からなる焼結体を得た。なお、焼結時の昇温速度は100℃/分とした。続いて、得られた焼結体について、15mm×15mm×5mmのブロック形状に加工することで試験片を作製した。そして、作製した試験片を用いて、実施例1と同様にして、高温大気中での耐食性(その2)の評価を行った。結果を表1、図10に示す。
<Reference Example 1>
First, primary particles were produced in the same manner as in Example 1. Next, the produced primary particles are subjected to pressure sintering with an SPS (discharge plasma sintering apparatus) and sintered at a temperature of 1300 to 1500 ° C. for 10 minutes to obtain a sintered body made of a hard sintered alloy. It was. The heating rate during sintering was 100 ° C./min. Subsequently, the obtained sintered body was processed into a block shape of 15 mm × 15 mm × 5 mm to prepare a test piece. And using the produced test piece, it carried out similarly to Example 1, and evaluated corrosion resistance (the 2) in high temperature air | atmosphere. The results are shown in Table 1 and FIG.
<参考例2>
 表面に窒化処理を施して窒化層を形成したSKD61鋼(SKD61窒化材)を、10mm×5mm×5mmのブロック形状に加工することで試験片を作製した。そして、作製した試験片を用いて、実施例1と同様にして、ビッカース硬さの測定を行った。結果を図11に示す。
<Reference Example 2>
A test piece was prepared by processing SKD61 steel (SKD61 nitride material) having a nitrided layer formed on the surface thereof into a 10 mm × 5 mm × 5 mm block shape. And the Vickers hardness was measured like Example 1 using the produced test piece. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1、図9(A)、図10(A)に示すように、X線回折法により表面を測定した場合におけるピーク強度比Imax/Iが、1/100以上である溶射皮膜は、参考例1(焼結体の試験片)と同等に、高温大気中での耐食性に優れるものであった(実施例1~3)。これは、実施例1~3では、図7に示すように溶射皮膜中に3元系硼化物相が存在し、この3元系硼化物相が結合相となってタングステン相同士を結合することにより、結果として、図8に示すように溶射皮膜が緻密なものとなり、これによりガスの透過を抑制できることから、高温大気中での耐食性に優れるものとなったと考えられる。さらに、実施例1においては、図11に示すように、比較例1(プラズマ溶射法により形成した溶射皮膜)よりも硬度が高く、しかも、参考例2(SKD61窒化材)と比較して高温環境下での硬度の低下が抑制されており、これにより、溶融金属等の高温金属と直接接触した場合においても(特に、600~700℃程度のアルミニウム溶湯と直接接触した場合においても)、耐摩耗性に優れるものであることが確認された。なお、実施例2,3についても、実施例1と同様に、比較例1よりも硬度が高く、さらには、参考例2と比較して高温環境下での硬度の低下が抑制されたものであった。 As shown in Table 1, FIG. 9 (A), and FIG. 10 (A), the thermal spray coating having a peak intensity ratio I max / I w of 1/100 or more when the surface is measured by the X-ray diffraction method is Similar to Reference Example 1 (sintered specimen), it was excellent in corrosion resistance in high-temperature air (Examples 1 to 3). In Examples 1 to 3, a ternary boride phase is present in the thermal spray coating as shown in FIG. 7, and this ternary boride phase serves as a binding phase to bond the tungsten phases together. As a result, as shown in FIG. 8, the sprayed coating becomes dense, and gas permeation can be suppressed. Therefore, it is considered that the corrosion resistance in high-temperature air is excellent. Furthermore, in Example 1, as shown in FIG. 11, the hardness is higher than that of Comparative Example 1 (sprayed coating formed by plasma spraying method), and the environment is higher than that of Reference Example 2 (SKD61 nitride material). The lowering of the hardness is suppressed, so that even when in direct contact with a high-temperature metal such as molten metal (particularly in direct contact with molten aluminum at about 600 to 700 ° C.), it is resistant to wear. It was confirmed that it was excellent in property. In Examples 2 and 3, as in Example 1, the hardness is higher than that in Comparative Example 1, and further, the decrease in hardness under a high temperature environment is suppressed as compared with Reference Example 2. there were.
 一方、表1、図9(B)に示すように、X線回折法により表面を測定した場合におけるピーク強度比Imax/Iが、1/100未満である溶射皮膜は、高温大気中での耐食性に劣るものであった(比較例1,2)。これは、比較例1,2では、図5に示すように、溶射皮膜中において結合相として作用する3元系硼化物相が存在せず、その結果、図12に示すように溶射皮膜が疎なものとなり、これによりガスが透過しやすくなってしまい、高温大気中での耐食性に劣るものとなったと考えられる。 On the other hand, as shown in Table 1 and FIG. 9 (B), the thermal spray coating in which the peak intensity ratio I max / I w is less than 1/100 when the surface is measured by the X-ray diffraction method is The corrosion resistance was inferior (Comparative Examples 1 and 2). In Comparative Examples 1 and 2, as shown in FIG. 5, there is no ternary boride phase acting as a binder phase in the thermal spray coating, and as a result, the thermal spray coating is sparse as shown in FIG. Thus, it is considered that the gas easily permeates, and the corrosion resistance in the high-temperature atmosphere is inferior.
<参考例3>
 2次粒子に対する熱処理の条件を、真空中にて1,100℃で1時間保持する条件に変更した以外は、実施例1と同様にして、溶射用粉末を作製した。
<Reference Example 3>
A thermal spraying powder was prepared in the same manner as in Example 1 except that the heat treatment conditions for the secondary particles were changed to a condition of holding at 1,100 ° C. for 1 hour in a vacuum.
顆粒強度の平均
 作製した溶射用粉末について、常温(20℃)における、溶射用粉末を構成する粒子の粒子径φ(単位はμm)と、該粒子が破壊される荷重(破壊荷重N(単位は(N))とを、微小圧縮試験機(島津製作所社製、品番:MCT-510)を用いて測定し、測定した粒子径φと破壊荷重Nとに基づいて、下記式(1)により、溶射用粉末の顆粒強度Pを求めた。そして、このようにして溶射用粉末の顆粒強度Pを5回求めて、得られた5回の顆粒強度Pの平均値を、顆粒強度の平均として求めた。結果を表2に示す。
  P=(2.48×N)/(π×φ)   ・・・(1)
With respect to the thermal spraying powder having an average granule strength, the particle diameter φ (unit: μm) of the particles constituting the thermal spraying powder at normal temperature (20 ° C.) and the load (destructive load N (unit: (N)) was measured using a micro compression tester (manufactured by Shimadzu Corporation, product number: MCT-510), and based on the measured particle diameter φ and breaking load N, The granule strength P of the thermal spraying powder was obtained, and the granule strength P of the thermal spraying powder was obtained 5 times in this way, and the average value of the obtained 5 granule strengths P was obtained as the average of the granule strength. The results are shown in Table 2.
P = (2.48 × N) / (π × φ 2 ) (1)
 次いで、溶射を行うための基材として、55mm×25mm×5mmのSKD61鋼を準備した。そして、高速フレーム溶射機(TAFA社製、型番:JP5000)により、基材に対して上記溶射用粉末を高速フレーム溶射することにより、基材上に溶射皮膜を形成した。そして、基材上に形成された溶射皮膜の重量W(単位はg)を測定し、実際に溶射した溶射用粉末の重量W(単位はg)に基づいて、溶射用粉末の基材への付着効率を、(溶射皮膜の重量W/溶射した溶射用粉末の重量W)×100を計算することで求めた。結果を表2に示す。 Next, 55 mm × 25 mm × 5 mm SKD61 steel was prepared as a base material for thermal spraying. And the thermal spray coating was formed on the base material by carrying out the high-speed flame spraying of the said powder for thermal spraying with respect to a base material with a high-speed flame spraying machine (TAFA company make, model number: JP5000). Then, the weight W 2 (unit: g) of the thermal spray coating formed on the substrate is measured, and based on the weight W 1 (unit: g) of the thermal spray powder actually sprayed, the base of the thermal spray powder The adhesion efficiency to the film was determined by calculating (weight W 2 of the sprayed coating / weight W 1 of the sprayed powder for spraying) × 100. The results are shown in Table 2.
 一方で、上記基材に対して、プラズマ溶射機(日本ユテク社製、品番:EUTRONIC PLASMA SYSTEM 5000)により、上記溶射用粉末をプラズマ溶射することにより、基材上に溶射皮膜を形成した試料も作成した。そして、このようにプラズマ溶射により溶射皮膜を形成した試料についても、上述した方法にしたがい、溶射用粉末の基材への付着効率を求めた。結果を表2に示す。 On the other hand, a sample in which a thermal spray coating is formed on the base material by plasma spraying the thermal spraying powder on the base material with a plasma spraying machine (product number: EUTRONIC PLASMA SYSTEM 5000, manufactured by Nihon Utec Co., Ltd.) Created. And also about the sample which formed the thermal spray coating by plasma spraying in this way, according to the method mentioned above, the adhesion efficiency to the base material of the powder for thermal spraying was calculated | required. The results are shown in Table 2.
<参考例4>
 2次粒子に対する熱処理の条件を、真空中にて1,250℃で1時間保持する条件に変更した以外は、参考例3と同様にして、プラズマ溶射による溶射皮膜を形成し、同様に評価を行った。結果を表2に示す。
<Reference Example 4>
A thermal spray coating by plasma spraying was formed in the same manner as in Reference Example 3 except that the heat treatment conditions for the secondary particles were changed to a condition of holding at 1,250 ° C. for 1 hour in a vacuum, and evaluation was performed in the same manner. went. The results are shown in Table 2.
<参考例5>
 2次粒子に対する熱処理の条件を、真空中にて1,350℃で1時間保持する条件に変更した以外は、参考例3と同様にして、高速フレーム溶射による溶射皮膜、およびプラズマ溶射による溶射皮膜を形成し、同様に評価を行った。結果を表2に示す。
<Reference Example 5>
The thermal spray coating by high-speed flame spraying and the thermal spray coating by plasma spraying were performed in the same manner as in Reference Example 3 except that the heat treatment conditions for the secondary particles were changed to the conditions for holding at 1,350 ° C. for 1 hour in vacuum. Were evaluated in the same manner. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、高速フレーム溶射法により溶射皮膜を形成した場合においても、溶射用粉末の顆粒強度の平均が高いほど、溶射用粉末の基材への付着効率が向上することが確認された。特に、顆粒強度の平均が10MPa以上である溶射用粉末を用いることにより、高速フレーム溶射法により溶射皮膜を形成した場合においても、付着効率が十分なものとなることが確認された(参考例5)。なお、実施例3で使用した溶射用粉末についても、上記と同様にして、顆粒強度の平均を測定したところ、顆粒強度の平均が10MPa以上であり、同様に、高速フレーム溶射法により溶射皮膜を形成した場合においても、付着効率が十分なものであった。 As shown in Table 2, even when the thermal spray coating was formed by the high-speed flame spraying method, it was confirmed that the higher the average granular strength of the thermal spraying powder, the better the adhesion efficiency of the thermal spraying powder to the base material. It was. In particular, by using a thermal spraying powder having an average granule strength of 10 MPa or more, even when a thermal spray coating was formed by a high-speed flame spraying method, it was confirmed that the adhesion efficiency was sufficient (Reference Example 5). ). As for the thermal spraying powder used in Example 3, when the average granule strength was measured in the same manner as described above, the average granule strength was 10 MPa or more. Similarly, a thermal spray coating was formed by a high-speed flame spraying method. Even when formed, the adhesion efficiency was sufficient.
1…ダイカスト装置
 11…スリーブ
 12…プランジャー
 13…流路
 14…ダイキャビティ
 15…第1金型
 16…第2金型
2…積層管
 21…溶射皮膜
 22…第2層
 23…第3層
3…芯材
DESCRIPTION OF SYMBOLS 1 ... Die casting apparatus 11 ... Sleeve 12 ... Plunger 13 ... Flow path 14 ... Die cavity 15 ... 1st metal mold 16 ... 2nd metal mold 2 ... Laminated pipe 21 ... Thermal spray coating 22 ... 2nd layer 23 ... 3rd layer 3 ... core material

Claims (9)

  1.  タングステン相と、3元系硼化物相とを含有する溶射皮膜であって、
     X線回折法により前記溶射皮膜の表面を測定した場合における、前記タングステン相に由来する(110)面のピーク強度Iに対する、前記3元系硼化物相に由来するピークの中で最も強度が大きいピークのピーク強度Imaxの比(Imax/I)が、1/100以上である溶射皮膜。
    A thermal spray coating containing a tungsten phase and a ternary boride phase,
    In the case of measuring the surface of the thermal spray coating by X-ray diffraction method, to the peak intensity I w of the derived tungsten phase (110) plane, the most strength in the peaks derived from the ternary boride phase is A sprayed coating in which the ratio (I max / I w ) of the peak intensity I max of the large peak is 1/100 or more.
  2.  前記3元系硼化物相が、主としてMoNiB,MoFeB,WFeB,WNiB,MoCoB,WCoBのいずれかを含み、
     前記ピーク強度Imaxが、前記MoNiB,MoFeB,WFeB,WNiB,MoCoB,WCoBのいずれかに由来する(211)面のピーク強度である請求項1に記載の溶射皮膜。
    The ternary boride phase mainly contains any of Mo 2 NiB 2 , Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2 ,
    The peak intensity I max is derived from any of the Mo 2 NiB 2 , Mo 2 FeB 2 , W 2 FeB 2 , W 2 NiB 2 , Mo 2 CoB 2 , and W 2 CoB 2 (211) peak intensity. The thermal spray coating according to claim 1.
  3.  前記3元系硼化物相が、主としてWFeB,MoCoB,WCoBのいずれかを含み、
     前記ピーク強度Imaxが、前記WFeB,MoCoB,WCoBのいずれかに由来する(112)面のピーク強度である請求項1に記載の溶射皮膜。
    The ternary boride phase mainly contains any of WFeB, MoCoB, WCoB,
    2. The thermal spray coating according to claim 1, wherein the peak intensity I max is a peak intensity of a (112) plane derived from any one of the WFeB, MoCoB, and WCoB.
  4.  2元系硼化物相をさらに含有する請求項1~3のいずれかに記載の溶射皮膜。 The thermal spray coating according to any one of claims 1 to 3, further comprising a binary boride phase.
  5.  前記2元系硼化物相が、WBを含む請求項4に記載の溶射皮膜。 The thermal spray coating according to claim 4, wherein the binary boride phase contains W 2 B.
  6.  300~700℃の範囲で測定されるビッカース硬さ(HV)が、400以上である請求項1~5のいずれかに記載の溶射皮膜。 The thermal spray coating according to any one of claims 1 to 5, wherein the Vickers hardness (HV) measured in the range of 300 to 700 ° C is 400 or more.
  7.  請求項1~6のいずれかに記載の溶射皮膜を内面に備える積層管。 A laminated tube comprising the sprayed coating according to any one of claims 1 to 6 on an inner surface.
  8.  前記内面に備えられた前記溶射皮膜の内径Dに対する、前記積層管の長さLの比(L/D)が、2以上である請求項7に記載の積層管。 The laminated tube according to claim 7, wherein a ratio (L / D) of a length L of the laminated tube to an inner diameter D of the thermal spray coating provided on the inner surface is 2 or more.
  9.  請求項1~6のいずれかに記載の溶射皮膜の製造方法であって、
     タングステンと3元系硼化物とを含有し、かつ、顆粒強度の平均が10MPa以上である溶射用粉末を準備する工程と、
     前記溶射用粉末を、高速フレーム溶射法により、金属母材上に溶射する工程と、を備える溶射皮膜の製造方法。
    A method for producing a thermal spray coating according to any one of claims 1 to 6,
    Preparing a thermal spraying powder containing tungsten and a ternary boride and having an average granule strength of 10 MPa or more;
    Spraying the powder for thermal spraying onto a metal base material by a high-speed flame spraying method.
PCT/JP2018/015514 2017-04-21 2018-04-13 Spray coating, laminated pipe, and method for manufacturing spray coating WO2018193982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019513604A JPWO2018193982A1 (en) 2017-04-21 2018-04-13 Thermal spray coating, laminated tube, and method of manufacturing thermal spray coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017084582 2017-04-21
JP2017-084582 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193982A1 true WO2018193982A1 (en) 2018-10-25

Family

ID=63857000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015514 WO2018193982A1 (en) 2017-04-21 2018-04-13 Spray coating, laminated pipe, and method for manufacturing spray coating

Country Status (2)

Country Link
JP (1) JPWO2018193982A1 (en)
WO (1) WO2018193982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921264A (en) * 2021-01-25 2021-06-08 浙江师范大学 Preparation method of high-pressure plunger of amorphous self-lubricating coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005764A1 (en) * 2011-07-05 2013-01-10 日産自動車株式会社 Rolling body, method for producing rolling body, and dynamic force transmission device
JP2016089207A (en) * 2014-10-31 2016-05-23 トーカロ株式会社 Powder for thermal spraying, thermal spray coating, coating, and roll in molten metal bath
JP2017014565A (en) * 2015-06-30 2017-01-19 東洋鋼鈑株式会社 Laminate tube and manufacturing method therefor
JP2017066465A (en) * 2015-09-29 2017-04-06 株式会社フジミインコーポレーテッド Thermal spray powder and method for forming thermal spray coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005764A1 (en) * 2011-07-05 2013-01-10 日産自動車株式会社 Rolling body, method for producing rolling body, and dynamic force transmission device
JP2016089207A (en) * 2014-10-31 2016-05-23 トーカロ株式会社 Powder for thermal spraying, thermal spray coating, coating, and roll in molten metal bath
JP2017014565A (en) * 2015-06-30 2017-01-19 東洋鋼鈑株式会社 Laminate tube and manufacturing method therefor
JP2017066465A (en) * 2015-09-29 2017-04-06 株式会社フジミインコーポレーテッド Thermal spray powder and method for forming thermal spray coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BURKOV A. A. ET AL.: "Development and study of FeWMoCrBC metallic glass coatings synthesized by electrospark deposition", LETTERS ON MATERIALS, vol. 6, no. 3, September 2016 (2016-09-01), pages 163 - 167, XP055613386 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921264A (en) * 2021-01-25 2021-06-08 浙江师范大学 Preparation method of high-pressure plunger of amorphous self-lubricating coating

Also Published As

Publication number Publication date
JPWO2018193982A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US10272497B2 (en) Cladded articles and methods of making the same
CA2853870C (en) Friction stir welding tool makde of cemented tungsten carbide with nickel and with a al203 surface coating
JP5989930B1 (en) Cermet and cutting tools
JP7018603B2 (en) Manufacturing method of clad layer
Aramian et al. A review on the microstructure and properties of TiC and Ti (C, N) based cermets
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
WO2018193982A1 (en) Spray coating, laminated pipe, and method for manufacturing spray coating
US11000921B2 (en) Composite welding rods and associated cladded articles
JP2009108338A (en) Cermet and manufacturing method thereof
JP6560549B2 (en) Laminated tube and manufacturing method thereof
KR101807629B1 (en) Cermet tool
AU2010229319B2 (en) Chrome-free coating for substrate
JPWO2015182497A1 (en) Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method
JP2011132057A (en) Sintered compact
JP2010037598A (en) Method for manufacturing member having wear resistant inner peripheral surface
Kumari et al. International Journal of Refractory Metals & Hard Materials
JP2009041106A (en) Sputtering target
JP2006247722A (en) Casting mold for continuous casting
JP2018090459A (en) Joint, its using method, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787994

Country of ref document: EP

Kind code of ref document: A1