WO2018193724A1 - 出力回路 - Google Patents

出力回路 Download PDF

Info

Publication number
WO2018193724A1
WO2018193724A1 PCT/JP2018/007794 JP2018007794W WO2018193724A1 WO 2018193724 A1 WO2018193724 A1 WO 2018193724A1 JP 2018007794 W JP2018007794 W JP 2018007794W WO 2018193724 A1 WO2018193724 A1 WO 2018193724A1
Authority
WO
WIPO (PCT)
Prior art keywords
type transistor
input signal
node
gate
output
Prior art date
Application number
PCT/JP2018/007794
Other languages
English (en)
French (fr)
Inventor
鏡太 清水
俊也 鈴木
友彦 古藤
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to CN201880025402.3A priority Critical patent/CN110521124B/zh
Priority to JP2019513252A priority patent/JP7082295B2/ja
Publication of WO2018193724A1 publication Critical patent/WO2018193724A1/ja
Priority to US16/600,123 priority patent/US10983544B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/618Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series and in parallel with the load as final control devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1057Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00361Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/26Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback
    • H03K3/28Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback
    • H03K3/281Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of bipolar transistors with internal or external positive feedback using means other than a transformer for feedback using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • H03K3/356104Bistable circuits using complementary field-effect transistors
    • H03K3/356113Bistable circuits using complementary field-effect transistors using additional transistors in the input circuit

Definitions

  • the present disclosure relates to an output circuit used in a semiconductor integrated circuit device.
  • the withstand voltage of transistors has been reduced.
  • a transistor having a withstand voltage of 1.8 V is used as an IO transistor used in an interface circuit that performs signal input / output with the outside.
  • the interface circuit may have to be configured so that a high voltage signal such as 3.3V can be input / output according to the specifications of the standard.
  • Patent Document 1 discloses a technique in which an output circuit that outputs a high-voltage signal to the outside is configured using a transistor that operates at a low voltage.
  • the P-type transistors 1 and 2 cascaded between the high voltage power supply and the output terminal are arranged, and the N-type cascaded between the ground power supply and the output terminal.
  • Transistors 3 and 4 are arranged.
  • a capacitor CP is provided between the gates of the P-type transistors 1 and 2
  • a capacitor CN is provided between the gates of the N-type transistors 3 and 4.
  • This disclosure is intended to provide a configuration that can prevent deterioration and breakage of a transistor in an output circuit that outputs an output signal having a larger amplitude according to a data input signal.
  • an output circuit that receives a data input signal and outputs an output signal that transitions between a ground potential and a first potential according to the data input signal, an output terminal that outputs the output signal;
  • An input node that changes in accordance with the data input signal and receives an input signal having an amplitude smaller than that of the output signal, and a source connected to a first power source that supplies the first potential, and the gate receives the input signal.
  • a second P-type transistor having a source connected to the drain of the first P-type transistor, a drain connected to the output terminal, and a gate connected to the first node; The input signal is applied, the other end is connected to the first node, and the source is connected to a second power source that applies a second potential lower than the first potential.
  • a first N-type transistor having a drain connected to the first node, a source and a gate connected to the second power supply, and a drain connected to the first node; The first N-type transistor is turned on when a signal corresponding to the input signal is applied to the gate and the input signal is at a high level, and the first transition is a transition from a high level to a low level. When the operation is performed, control is performed so as to be in an off state for at least a predetermined period.
  • the first and second P-type transistors are connected in series between the first power supply and the output terminal.
  • An input signal is given to the gate of the first P-type transistor.
  • the first node connected to the gate of the second P-type transistor is connected to the other end of the capacitor to which an input signal is given at one end, and the first and second N-type transistors are connected to the second power source. It is connected.
  • a signal corresponding to the input signal is given to the gate of the first N-type transistor, and the gate of the second N-type transistor is connected to the second power supply.
  • the first N-type transistor When the input signal transitions from the high level to the low level, the first N-type transistor is turned off for at least a predetermined period. Therefore, the potential of the first node decreases with the transition of the input signal due to coupling by the capacitor. As a result, the rise of the output signal is accelerated. Thereafter, the potential of the first node quickly returns due to the clamping action of the second N-type transistor. As a result, the gate-source voltage of the second P-type transistor is suppressed from abrupt changes and does not exceed the allowable breakdown voltage. Further, the rise of the drain-source voltage of the second P-type transistor is suppressed and does not exceed the allowable withstand voltage. In addition, the drain-source current of the second P-type transistor can be kept small. Therefore, it is possible to prevent deterioration and breakage of the second P-type transistor.
  • an output circuit that receives a data input signal and outputs an output signal that transitions between a ground potential and a first potential according to the data input signal is an output terminal that outputs the output signal
  • An input node that receives an input signal that changes according to the data input signal and has an amplitude smaller than that of the output signal; a first N-type transistor that has a source connected to a ground power supply and receives the input signal at a gate;
  • a second N-type transistor having a source connected to the drain of the first N-type transistor, a drain connected to the output terminal, and a gate connected to the first node;
  • the other end of the capacitor is connected to the first node, and the source is connected to a second power source that applies a second potential lower than the first potential.
  • the transistor is turned on when a signal corresponding to the input signal is given to the gate, and the input signal is at a low level, and when the input signal performs a first transition that is a transition from a low level to a high level And is controlled to be in the off state for at least a predetermined period.
  • the first and second N-type transistors are connected in series between the ground power supply and the output terminal.
  • An input signal is given to the gate of the first N-type transistor.
  • the first node connected to the gate of the second N-type transistor has one end connected to the other end of the capacitor to which an input signal is applied, and the first and second P-type transistors are connected to the second power source. It is connected.
  • a signal corresponding to the input signal is given to the gate of the first P-type transistor, and the gate of the second P-type transistor is connected to the second power supply.
  • the first P-type transistor When the input signal transitions from the low level to the high level, the first P-type transistor is turned off for at least a predetermined period. Therefore, the potential of the first node rises with the transition of the input signal due to coupling by the capacitor. Thereby, the fall of the output signal is accelerated. Thereafter, the potential of the first node quickly returns due to the clamping action of the second P-type transistor. As a result, the rapid change of the gate-source voltage of the second N-type transistor is suppressed and the allowable breakdown voltage is not exceeded. Also, the rise of the drain-source voltage of the second N-type transistor is suppressed and does not exceed the allowable breakdown voltage. In addition, the drain-source current of the second N-type transistor can be kept small. Therefore, it is possible to prevent deterioration and breakage of the second N-type transistor.
  • the circuit block diagram of the output circuit which concerns on 1st Embodiment Waveform diagram showing the operation of the output circuit of FIG. Waveform diagram showing the operation of the output circuit of FIG.
  • the circuit block diagram of the output circuit which concerns on 2nd Embodiment (A), (b) is a waveform diagram showing the operation of the output circuit of FIG.
  • the circuit block diagram of the output circuit which concerns on 3rd Embodiment (A), (b) is a waveform diagram showing the operation of the output circuit of FIG. Circuit configuration diagram of output circuit combining second and third embodiments
  • the circuit block diagram of the output circuit which concerns on 4th Embodiment The circuit block diagram of the output circuit which concerns on 5th Embodiment
  • FIG. 1 is a circuit configuration diagram of an output circuit according to the first embodiment.
  • the output circuit 100 in FIG. 1 receives the data input signal DIN and outputs an output signal PAD that changes in accordance with the data input signal DIN.
  • the output signal PAD is output from the output terminal 1.
  • the output circuit 100 is provided, for example, in an LSI signal output unit. In this case, the output pad of the LSI corresponds to the output terminal 1.
  • the output circuit 100 is connected to the first power supply VDDH and the second power supply VDDL.
  • VDDH voltage difference
  • VDDL voltage difference
  • VDDL voltage difference
  • VDDL voltage difference between the first potential VDDH
  • VDDL voltage difference between the second potential VDDL
  • the data input signal DIN is a low-amplitude signal and transits between, for example, the ground potential VSS to 0.9V.
  • the output signal PAD changes between the ground potential VSS and the first potential VDDH.
  • nodeX (X is an integer) represents a node in a circuit configuration, and may be used as a code representing the potential of the node.
  • the output circuit 100 includes a level shift circuit 10, first and second buffer circuits 11, 12, P-type transistors P1, P2, P3, P4, N-type transistors N1, N2, N3, N4, capacitors C1, C2. Each transistor is assumed to be a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the level shift circuit 10 receives a low-amplitude data input signal DIN at the input IN, converts it to a signal SI1 that transitions between the second potential VDDL and the first potential VDDH, outputs the signal SI1 from the output OUTP, and outputs the ground potential VSS to It converts into signal SI2 which changes between 2nd electric potential VDDL, and outputs it from output OUTN.
  • the signal SI1 is given as an input of the first buffer circuit 11, and the signal SI2 is given as an input of the second buffer circuit 12.
  • the output circuit 100 includes an H-side drive circuit 101 that is a circuit part that drives the output signal PAD to a high level, and an L-side drive circuit 102 that is a circuit part that drives the output signal PAD to a low level.
  • the node nI1 to which the input of the first buffer circuit 11 is connected corresponds to an input node in the H side drive circuit 101.
  • the node nI2 to which the input of the second buffer circuit 12 is connected corresponds to an input node in the L-side drive circuit 102. That is, the input signal SI1 is applied to the input node nI1 of the H-side drive circuit 101, and the input signal SI2 is applied to the input node nI2 of the L-side drive circuit 102.
  • the H-side drive circuit 101 includes P-type transistors P1 and P2 connected in series between the first power supply VDDH and the output terminal 1.
  • the P-type transistor P1 has a source connected to the first power supply VDDH and a gate connected to the node1.
  • node1 is connected to the input node nI1 through the first buffer circuit 11, and is supplied with the input signal SI1.
  • the P-type transistor P2 has a source connected to the drain of the P-type transistor P1 (node2), a drain connected to the output terminal 1, and a gate connected to the node3.
  • a resistance element may be connected between the drain of the P-type transistor P2 and the output terminal 1.
  • the H-side drive circuit 101 further includes a coupling capacitor C1, an N-type transistor N3 for switching, and an N-type transistor N4 for clamping.
  • the capacitor C1 is connected between the node1 and the node3. That is, the capacitor C1 has one end supplied with the input signal SI1, and the other end connected to the gate of the P-type transistor P2.
  • the N-type transistor N3 has a source connected to the second power supply VDDL, a drain connected to the node 3, and a gate connected to the node 1.
  • the N-type transistor N4 has a source and a gate connected to the second power supply VDDL, and a drain connected to the node 3.
  • the L-side drive circuit 102 includes N-type transistors N1 and N2 connected in series between the ground power supply VSS and the output terminal 1.
  • the N-type transistor N1 has a source connected to the ground power supply VSS and a gate connected to the node 11.
  • the node 11 is connected to the input node nI2 through the second buffer circuit 12, and is supplied with the input signal SI2.
  • the N-type transistor N2 has a source connected to the drain of the N-type transistor N1 (node 12), a drain connected to the output terminal 1, and a gate connected to the node 13.
  • a resistance element may be connected between the drain of the N-type transistor N2 and the output terminal 1.
  • the L-side drive circuit 101 further includes a coupling capacitor C2, a switching P-type transistor P3, and a clamping P-type transistor P4.
  • the capacitor C2 is connected between the node 11 and the node 13. That is, the capacitor C2 has one end supplied with the input signal SI2, and the other end connected to the gate of the N-type transistor N2.
  • the P-type transistor P3 has a source connected to the second power supply VDDL, a drain connected to the node 13, and a gate connected to the node 11.
  • the P-type transistor P4 has a source and a gate connected to the second power supply VDDL, and a drain connected to the node 13.
  • FIG. 1 shows a case where the output signal PAD transitions from a low level to a high level
  • FIG. 3 shows a case where the output signal PAD transitions from a high level to a low level
  • the solid line indicates the potential change in the present embodiment
  • the broken line indicates the potential change in the conventional circuit configuration (Patent Document 1).
  • the potential of the node 1 is at a high level (VDDH) (that is, the input signal SI1 is at a high level), and the P-type transistor P1 is in an off state (non-state) Conductive state).
  • VDDH high level
  • the N-type transistor N3 is in an on state (conductive state)
  • the potential of the node 3 is VDDL.
  • the potential of node2 is (VDDL + Vthp).
  • Vthp is a threshold voltage of the P-type transistor.
  • the signal of node1 changes from high level to low level (VDDL).
  • VDDL high level to low level
  • the P-type transistor P1 is turned on, the potential of the node 2 transits to VDDH, and the output signal PAD starts to transit from the low level (VSS) to the high level (VDDH).
  • the N-type transistor N3 is turned off, the potential of the node 3 drops due to the signal change of the node 1 due to the coupling by the capacitor C1. As a result, the rise of the output signal PAD is accelerated.
  • the potential of node3 quickly returns to (VDDL ⁇ Vthn) by the clamping action of the N-type transistor N4.
  • Vthn is a threshold voltage of the N-type transistor. Therefore, the potential drop of the node 3 is smaller than the conventional one.
  • the gate-source voltage Vgs of the P-type transistor P2 is suppressed from abrupt changes and does not exceed the allowable withstand voltage.
  • the rise of the drain-source voltage Vds of the P-type transistor P2 is also suppressed and does not exceed the allowable withstand voltage.
  • the drain-source current Ids of the P-type transistor P2 is also smaller than in the prior art.
  • the node 11 is at a low level (VSS) (that is, the input signal SI2 is at a low level), and the N-type transistor N1 is in an off state. .
  • the P-type transistor P3 is in the on state, the potential of the node 13 is VDDL.
  • the potential of the node 12 is (VDDL ⁇ Vthn).
  • the signal of the node 11 changes from the low level to the high level (VDDL).
  • the N-type transistor N1 is turned on, the potential of the node 12 changes to VSS, and the output signal PAD starts to change from the high level (VDDH) to the low level (VSS).
  • the P-type transistor P3 is turned off, the potential of the node 13 rises due to the signal change of the node 11 due to the coupling by the capacitor C2. Thereby, the fall of the output signal PAD is accelerated.
  • the potential of the node 13 quickly returns to (VDDL + Vthp) by the clamping action of the P-type transistor P4. Therefore, the potential increase of the node 13 is smaller than that in the conventional case.
  • the gate-source voltage Vgs of the N-type transistor N2 is suppressed from changing suddenly and does not exceed the allowable breakdown voltage.
  • the rise of the drain-source voltage Vds of the N-type transistor N2 is also suppressed and does not exceed the allowable withstand voltage.
  • the drain-source current Ids of the N-type transistor N2 is also smaller than that of the conventional one.
  • the rise and fall of the output signal PAD can be accelerated by the capacitors C1 and C2, and deterioration and breakage of the P-type transistor P2 and the N-type transistor N2 can be prevented. it can.
  • the capacitor C1 and the N-type transistors N3 and N4 are connected to the gate of the P-type transistor P2.
  • the gate of the N-type transistor N2 is connected. It is assumed that the capacitor C2 and the P-type transistors P3 and P4 are connected.
  • these configurations may be applied to only one of the H-side drive circuit 101 and the L-side drive circuit 102.
  • the H-side drive circuit 101 is configured as shown in FIG. 1, while the L-side drive circuit 102 is not provided with the capacitor C2 and the P-type transistors P3 and P4, and the gate of the N-type transistor N2 is connected to the second power supply VDDL.
  • the L-side drive circuit 102 is configured as shown in FIG. 1, while the H-side drive circuit 101 is not provided with the capacitor C1 and the N-type transistors N3 and N4, but the gate of the P-type transistor P2 is connected to the second power supply VDDL. You may make it connect to.
  • FIG. 4 is a circuit configuration diagram of an output circuit according to the second embodiment.
  • the output circuit 100A in FIG. 4 has substantially the same configuration as the output circuit 100 in FIG. 1, and detailed description of the configuration already described is omitted here.
  • the configuration of the level shift circuit 10 and the preceding stage is omitted. The same applies to the following circuit configuration diagrams.
  • the gate of the N-type transistor N3 is connected to the gate of the P-type transistor P1, and the input signal SI1 is given to the gate.
  • the gate of the P-type transistor P3 is connected to the gate of the N-type transistor N1, and the input signal SI2 is applied to the gate.
  • the N-type transistor N3 is supplied with a signal corresponding to the input signal SI1 at the gate, and the P-type transistor P3 is supplied with a signal according to the input signal SI2 at the gate.
  • the H-side drive circuit 101 ⁇ / b> A includes a pulse generation circuit 21, and the L-side drive circuit 102 ⁇ / b> A includes a pulse generation circuit 22.
  • the pulse generation circuit 21 receives the input signal SI1, and generates and outputs a pulse signal that becomes low level for a predetermined period from the timing when the input signal SI1 changes from high level to low level.
  • the pulse generation circuit 21 includes, for example, a delay unit 211 that delays the input signal SI1, an inverter 212 that inverts the output of the delay unit 211, and an OR gate 213 that receives the output of the inverter 212 (node4) and the signal of node1. Prepare.
  • the output (node5) of the OR gate 213 becomes the output of the pulse generation circuit 21.
  • the pulse generation circuit 22 receives the input signal SI2, and generates and outputs a pulse signal that becomes high level for a predetermined period from the timing when the input signal SI2 changes from low level to high level.
  • the pulse generation circuit 22 includes, for example, a delay unit 221 that delays the input signal SI2, an inverter 222 that inverts the output of the delay unit 221, and an AND gate 223 that receives the output of the inverter 222 (node14) and the signal of node11. Prepare. The output (node 15) of the AND gate 223 becomes the output of the pulse generation circuit 22.
  • the configurations of the pulse generation circuits 21 and 22 are not limited to those shown here.
  • the N-type transistor N3 receives the output of the pulse generation circuit 21 at its gate. That is, in the present embodiment, the pulse signal output from the pulse generation circuit 21 corresponds to a signal corresponding to the input signal SI1. The N-type transistor N3 is turned off only when the pulse signal output from the pulse generation circuit 21 is at a low level.
  • the P-type transistor P3 receives the output of the pulse generation circuit 22 at its gate. That is, in this embodiment, the pulse signal output from the pulse generation circuit 22 corresponds to a signal corresponding to the input signal SI2. The P-type transistor P3 is turned off only when the pulse signal output from the pulse generation circuit 22 is at a high level.
  • FIG. 5A and 5B are waveform diagrams showing the characteristics of the operation of the output circuit 100A of FIG. 4, in which FIG. 5A shows a case where the output signal PAD transitions from a low level to a high level, and FIG. 5B shows a case where the output signal PAD changes from a high level to a low level. This is the case when transitioning to a level.
  • FIG. 5A when the output signal PAD is changed from the low level to the high level, the input signal SI1 changes from the high level to the low level, and the potential of the node1 also changes from the high level to the low level. To do.
  • the potential of the node 4 in the pulse generation circuit 21 transitions from the low level to the high level with a delay from the transition of the node 1.
  • the output (node5) of the pulse generation circuit 21 is at a low level for a predetermined period, and then is at a high level.
  • the N-type transistor N3 is turned off for a predetermined period and then turned on. The potential of node3 returns to VDDL and stabilizes.
  • the output signal PAD when the output signal PAD is changed from the high level to the low level, the input signal SI2 is changed from the low level to the high level, and the potential of the node 11 is also changed from the low level to the high level. Transition to level. Further, the potential of the node 14 in the pulse generation circuit 22 transitions from the high level to the low level with a delay from the transition of the node 11. As a result, the output (node 15) of the pulse generation circuit 22 becomes high level for a predetermined period, and then becomes low level. For this reason, the P-type transistor P3 is turned off for a predetermined period and then turned on. The potential of the node 13 returns to VDDL and becomes stable.
  • the N-type transistor N3 is turned off only during a period when the potential change of the node 3 due to the coupling of the capacitor C1 is expected.
  • the P-type transistor P3 is turned off only during a period in which the potential change of the node 13 is expected due to the coupling of the capacitor C2. Therefore, according to the present embodiment, in addition to the operational effects of the first embodiment, the operational effect that the stationary state of the output signal PAD can be stabilized can be obtained.
  • FIG. 6 is a circuit configuration diagram of an output circuit according to the third embodiment.
  • the output circuit 100B in FIG. 6 has substantially the same configuration as the output circuit 100 in FIG. 1, and detailed description of the configuration already described is omitted here.
  • one end of the capacitor C1 is connected to the gate of the P-type transistor P1, and one end of the capacitor C2 is connected to the gate of the N-type transistor N1.
  • the capacitor C1 is provided at one end with an input signal SI1 via a path not connected to the gate of the P-type transistor P1, and the capacitor C2 is connected at one end to the gate of the N-type transistor N1. It is assumed that the input signal SI2 is given through a path that is not.
  • the H drive circuit 101B includes a buffer circuit 31 that receives the input signal SI1 separately from the first buffer circuit 11, and the L side drive circuit 102B is different from the second buffer circuit 12.
  • a buffer circuit 32 that receives the input signal SI2 is provided.
  • the buffer circuit 31 propagates the input signal SI1 to a signal path (node6) different from node1 connected to the gate of the P-type transistor P1.
  • the buffer circuit 32 propagates the input signal SI2 to a signal path (node 16) different from the node 11 connected to the gate of the N-type transistor N1.
  • the capacitor C1 is connected between the node 6 and the node 3. That is, one end of the capacitor C1 is connected not to the node 1 connected to the gate of the P-type transistor P1, but to the node 6 not connected to the gate of the P-type transistor P1.
  • the capacitor C2 is connected between the node 16 and the node 13. That is, one end of the capacitor C2 is connected not to the node 11 connected to the gate of the N-type transistor N1, but to the node 16 not connected to the gate of the N-type transistor N1.
  • FIG. 7 is a waveform diagram showing the characteristics of the operation of the output circuit 100B of FIG. 6, where (a) shows the case where the output signal PAD transitions from low level to high level, and (b) shows the output signal PAD changing from high level to low level. This is the case when transitioning to a level.
  • a solid line indicates a potential change in the present embodiment, and a broken line indicates a potential change in the first embodiment.
  • the input signal SI1 changes from high level to low level, and the signal of node1 also changes from high level to low level.
  • the signal of node1 may cause a delay in timing or a dull waveform due to, for example, an increase in the number of buffer stages or a wiring load.
  • the input signal SI1 is quickly propagated to the node 6. For this reason, by connecting one end of the capacitor C1 to the node 6, the generation timing of the coupling by the capacitor C1 can be advanced.
  • the input signal SI2 is changed from the low level to the high level, and the signal of the node 11 is also changed from the low level to the high level. Transition to level.
  • the signal of node 11 may be delayed in timing or dull in waveform due to, for example, an increase in the number of buffer stages or wiring load.
  • the input signal SI2 is quickly propagated to the node 16. For this reason, by connecting one end of the capacitor C2 to the node 16, the timing of occurrence of coupling by the capacitor C2 can be advanced.
  • the transition of the output signal PAD can be further accelerated.
  • FIG. 8 is a circuit configuration diagram of an output circuit realized by combining the second embodiment and the third embodiment.
  • the H-side drive circuit 101 ⁇ / b> C includes a pulse generation circuit 21 and a buffer circuit 31.
  • N-type transistor N3 receives the output of pulse generation circuit 21 at its gate.
  • One end of the capacitor C1 is connected to the node 6.
  • the L-side drive circuit 102 ⁇ / b> C includes a pulse generation circuit 22 and a buffer circuit 32.
  • the P-type transistor P3 receives the output of the pulse generation circuit 22 at its gate.
  • One end of the capacitor C2 is connected to the node 16.
  • the operational effects according to the second and third embodiments described above can be obtained.
  • FIG. 9 is a circuit configuration diagram of an output circuit according to the fourth embodiment.
  • the output circuit 100D of FIG. 9 has substantially the same configuration as the output circuit 100C of FIG. 8, and detailed description of the configuration already described is omitted here.
  • the output circuit 100D in FIG. 9 is configured such that the operating voltage can be switched by the control signal CTRL.
  • the output circuit 100D operates at VDDH when the control signal CTRL is “0” (low level), and operates at VDDL when the control signal CTRL is “1” (high level).
  • the H-side drive circuit 101D includes a pulse generation circuit 21A instead of the pulse generation circuit 21.
  • the pulse generation circuit 21A includes a three-input OR gate 215 instead of the OR gate 213.
  • the 3-input OR gate 215 receives the control signal CTRL in addition to the output of the inverter 212 (node4) and the signal of node1.
  • the H-side drive circuit 101D includes an AND gate 35 instead of the buffer circuit 31.
  • the AND gate 35 receives an input signal SI1 and an inverted signal of the control signal CTRL.
  • the L-side drive circuit 102D includes a pulse generation circuit 22A instead of the pulse generation circuit 22.
  • the pulse generation circuit 22A includes a three-input AND gate 225 instead of the AND gate 223.
  • the 3-input AND gate 225 receives an inverted signal of the control signal CTRL in addition to the output of the inverter 222 (node14) and the signal of node11.
  • the L-side drive circuit 102D includes an OR gate 36 instead of the buffer circuit 32.
  • the OR gate 36 receives the input signal SI2 and the control signal CTRL.
  • the output circuit 100D is provided with a NAND gate 41.
  • the NAND gate 41 receives the control signals CTRL and VDDL as inputs, and the output is connected to the drains of the N-type transistors N3 and N4.
  • the control signal CTRL When the control signal CTRL is “0”, the operating voltage is VDDH.
  • the output circuit 100D operates in the same manner as the circuit of FIG. That is, the pulse generation circuit 21A operates in the same manner as the pulse generation circuit 21 in FIG. 8, and the pulse generation circuit 22A operates in the same manner as the pulse generation circuit 22 in FIG. Further, the input signal SI1 is propagated to the node 6, and the input signal SI2 is propagated to the node 16.
  • the control signal CTRL is “1”
  • the operating voltage is VDDL.
  • the output of the pulse generation circuit 21A that is, the potential of the node 5
  • the N-type transistor N3 is kept on
  • the output of the pulse generation circuit 22A that is, the potential of the node 15
  • the potential of the node 6 is fixed at a low level
  • the coupling by the capacitor C1 does not function
  • the potential of the node 16 is fixed at a high level, so that the coupling by the capacitor C2 does not function.
  • the potential of node3 is fixed to VSS
  • the potential of node13 is fixed to VDDL.
  • the operating voltage of the output circuit 100D can be switched between VDDL and VDDH by the control signal CTRL.
  • VDDH an operation similar to that of the configuration of FIG. 8 can be performed.
  • FIG. 10 is a circuit configuration diagram of an output circuit according to the fifth embodiment.
  • the output circuit 100E in FIG. 10 has substantially the same configuration as the output circuit 100 in FIG. 1, and detailed description of the configuration already described is omitted here.
  • the H-side drive circuit 101E includes a P-type transistor P5
  • the L-side drive circuit 102E includes an N-type transistor N5.
  • the P-type transistor P5 has a source connected to the node 2, a drain connected to the second power supply VDDL, and a gate connected to the output terminal 1.
  • the N-type transistor N5 has a source connected to the node 12, a drain connected to the second power supply VDDL, and a gate connected to the output terminal 1.
  • the P-type transistor P5 When the output signal PAD is at a low level, the P-type transistor P5 is turned on, and the potential of node2 is fixed to VDDL. For this reason, even when the voltage of the output signal PAD fluctuates unexpectedly, an increase in the source-drain voltage Vds of the P-type transistor P2 can be prevented.
  • the output signal PAD When the output signal PAD is at a high level, the N-type transistor N5 is turned on, and the potential of the node 12 is fixed to VDDL. For this reason, even when the voltage of the output signal PAD fluctuates unexpectedly, the source-drain voltage Vds of the N-type transistor N2 can be prevented from rising. Therefore, it is possible to prevent the P-type transistor P2 and the N-type transistor N2 from being deteriorated or damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)

Abstract

出力回路(100)は、ソースがVDDHと接続され、ゲートに信号(SI1)が与えられるトランジスタP1と、ソースがトランジスタP1のドレインと接続され、ドレインが出力端子(1)と接続され、ゲートがnode3と接続されたトランジスタP2とを備える。キャパシタ(C1)は一端に信号(SI1)が与えられ、他端がnode3と接続される。トランジスタN3はソースがVDDLと接続され、ドレインがnode3と接続され、ゲートに信号(SI1)に応じた信号が与えられる。トランジスタN4はソースおよびゲートがVDDLと接続され、ドレインがnode3と接続される。

Description

出力回路
 本開示は、半導体集積回路装置に用いられる出力回路に関する。
 半導体集積回路装置では、微細化にともない、トランジスタの低耐圧化が進んでおり、外部と信号入出力を行うインターフェース回路において使用されるIOトランジスタとしては、例えば耐圧が1.8Vのトランジスタが用いられる。一方で、インターフェース回路は、その規格の仕様などにより高電圧例えば3.3Vの信号が入出力可能なように構成しなければならない場合がある。
 特許文献1では、高電圧の信号を外部に出力する出力回路を、低電圧で動作するトランジスタを用いて構成する技術が開示されている。例えば、図1の回路構成では、高電圧電源と出力端子との間にカスケード接続されたP型トランジスタ1,2を配置し、また、接地電源と出力端子との間にカスケード接続されたN型トランジスタ3,4を配置している。そして、P型トランジスタ1,2のゲート同士の間にキャパシタCPを設けるとともに、N型トランジスタ3,4のゲート同士の間にキャパシタCNを設けている。
 このような回路構成により、出力信号Doutがハイレベルに遷移するとき、キャパシタCPによるカップリングにより、P型トランジスタ2のゲート電位RPの上昇が抑えられ、出力信号Doutの立ち上がりが早くなる。これにより、P型トランジスタ2のドレイン-ソース間電圧の上昇が抑えられる。また、出力信号Doutがローレベルに遷移するとき、キャパシタCNによるカップリングにより、N型トランジスタ2のゲート電位RNの低下が抑えられ、出力信号Doutの立ち下がりが早くなる。これにより、N型トランジスタ3のドレイン-ソース間電圧の上昇が抑えられる。
特開2002-9608号公報(図1、図2)
 ところが、特許文献1の回路構成では、P型トランジスタ2およびN型トランジスタ3のゲートに微小電流電源から電位が供給されている。このため、P型トランジスタ2のゲート電位RPの低下は大きく、一旦低下したゲート電位RPの回復は緩やかである。また、N型トランジスタ3のゲート電位RNの上昇は大きく、一旦上昇したゲート電位RNの回復は緩やかである。したがって、P型トランジスタ2およびN型トランジスタ3のゲート-ソース間電圧が、その耐圧を長時間超えてしまう可能性がある。また、P型トランジスタ2およびN型トランジスタ3のドレイン電流が大きくなってしまう。この結果、P型トランジスタ2およびN型トランジスタ3の劣化や破損を招きやすくなる。
 本開示は、データ入力信号に応じて振幅がより大きな出力信号を出力する出力回路について、トランジスタの劣化や破損を未然に防止可能となる構成を提供することを目的とする。
 本開示の態様では、データ入力信号を受け、前記データ入力信号に応じて接地電位と第1電位との間で遷移する出力信号を出力する出力回路は、前記出力信号を出力する出力端子と、前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい入力信号を受ける入力ノードと、ソースが前記第1電位を与える第1電源と接続されており、ゲートに前記入力信号が与えられる第1P型トランジスタと、ソースが前記第1P型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第1ノードと接続された第2P型トランジスタと、一端に前記入力信号が与えられ、他端が前記第1ノードと接続されたキャパシタと、ソースが、前記第1電位よりも低い第2電位を与える第2電源と接続されており、ドレインが前記第1ノードと接続された第1N型トランジスタと、ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第1ノードと接続された第2N型トランジスタとを備え、前記第1N型トランジスタは、ゲートに前記入力信号に応じた信号が与えられ、前記入力信号がハイレベルのときオン状態であり、前記入力信号がハイレベルからローレベルへの遷移である第1遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御される。
 この態様によると、第1電源と出力端子との間に第1および第2P型トランジスタが直列に接続されている。第1P型トランジスタのゲートには入力信号が与えられる。第2P型トランジスタのゲートと接続された第1ノードは、一端に入力信号が与えられるキャパシタの他端が接続されており、また、第2電源との間に、第1および第2N型トランジスタが接続されている。第1N型トランジスタのゲートには入力信号に応じた信号が与えられ、第2N型トランジスタのゲートは第2電源に接続されている。入力信号がハイレベルのとき、第1N型トランジスタがオン状態であるため、第2P型トランジスタのゲートには第2電位が与えられる。入力信号がハイレベルからローレベルへ遷移したとき、第1N型トランジスタが少なくとも所定期間オフ状態になるため、第1ノードの電位は、キャパシタによるカップリングにより、入力信号の遷移に伴って下降する。これにより、出力信号の立ち上がりが早くなる。その後、第2N型トランジスタのクランプ作用によって、第1ノードの電位は速やかに戻る。この結果、第2P型トランジスタのゲート-ソース間電圧は、急激な変化が抑制され、許容耐圧を超えることはない。また、第2P型トランジスタのドレイン-ソース間電圧も上昇が抑制され、許容耐圧を超えない。また、第2P型トランジスタのドレイン-ソース間電流も小さく抑えられる。したがって、第2P型トランジスタの劣化や破損を未然に防止可能となる。
 本開示の別の態様では、データ入力信号を受け、前記データ入力信号に応じて接地電位と第1電位との間で遷移する出力信号を出力する出力回路は、前記出力信号を出力する出力端子と、前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい入力信号を受ける入力ノードと、ソースが接地電源と接続されており、ゲートに前記入力信号が与えられる第1N型トランジスタと、ソースが前記第1N型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第1ノードと接続された第2N型トランジスタと、一端に前記入力信号が与えられ、他端が前記第1ノードと接続されたキャパシタと、ソースが、前記第1電位よりも低い第2電位を与える第2電源と接続されており、ドレインが前記第1ノードと接続された第1P型トランジスタと、ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第1ノードと接続された第2P型トランジスタとを備え、前記第1P型トランジスタは、ゲートに前記入力信号に応じた信号が与えられ、前記入力信号がローレベルのときオン状態であり、前記入力信号がローレベルからハイレベルへの遷移である第1遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御される。
 この態様によると、接地電源と出力端子との間に第1および第2N型トランジスタが直列に接続されている。第1N型トランジスタのゲートには入力信号が与えられる。第2N型トランジスタのゲートと接続された第1ノードは、一端に入力信号が与えられるキャパシタの他端が接続されており、また、第2電源との間に、第1および第2P型トランジスタが接続されている。第1P型トランジスタのゲートには入力信号に応じた信号が与えられ、第2P型トランジスタのゲートは第2電源に接続されている。入力信号がローレベルのとき、第1P型トランジスタがオン状態であるため、第2N型トランジスタのゲートには第2電位が与えられる。入力信号がローレベルからハイレベルへ遷移したとき、第1P型トランジスタが少なくとも所定期間オフ状態になるため、第1ノードの電位は、キャパシタによるカップリングにより、入力信号の遷移に伴って上昇する。これにより、出力信号の立ち下がりが早くなる。その後、第2P型トランジスタのクランプ作用によって、第1ノードの電位は速やかに戻る。この結果、第2N型トランジスタのゲート-ソース間電圧は、急激な変化が抑制され、許容耐圧を超えることはない。また、第2N型トランジスタのドレイン-ソース間電圧も上昇が抑制され、許容耐圧を超えない。また、第2N型トランジスタのドレイン-ソース間電流も小さく抑えられる。したがって、第2N型トランジスタの劣化や破損を未然に防止可能となる。
 本開示によると、データ入力信号に応じて振幅がより大きな出力信号を出力する出力回路について、トランジスタの劣化や破損を未然に防止可能となる。
第1実施形態に係る出力回路の回路構成図 図1の出力回路の動作を示す波形図 図1の出力回路の動作を示す波形図 第2実施形態に係る出力回路の回路構成図 (a),(b)は図4の出力回路の動作を示す波形図 第3実施形態に係る出力回路の回路構成図 (a),(b)は図6の出力回路の動作を示す波形図 第2および第3実施形態を組み合わせた出力回路の回路構成図 第4実施形態に係る出力回路の回路構成図 第5実施形態に係る出力回路の回路構成図
 以下、実施の形態について、図面を参照して説明する。なお、以下に示す回路構成図では、本開示に関わる構成要素を中心にして簡略化して図示を行っている。このため例えば、直接的に接続されているように図示された構成要素が、実際の回路構成では、その間に他の構成要素が配置されており、間接的に接続されている場合がある。
 (第1実施形態)
 図1は第1実施形態に係る出力回路の回路構成図である。図1の出力回路100は、データ入力信号DINを受け、このデータ入力信号DINに応じて変化する出力信号PADを出力する。出力信号PADは出力端子1から出力される。この出力回路100は例えば、LSIの信号出力部に設けられる。この場合、LSIの出力パッドが出力端子1に相当する。
 出力回路100は、第1電源VDDHと、第2電源VDDLとに接続されている。なお、本願明細書では、「VDDH」「VDDL」「VSS」は、電源自体と、その電源が与える電位との両方を表す符号として用いる。第1電位VDDHは例えば3.3Vであり、第2電位VDDLは第1電位VDDHよりも低く、例えば1.8Vである。データ入力信号DINは低振幅の信号であり、例えば接地電位VSS~0.9Vの間で遷移する。出力信号PADは、接地電位VSS~第1電位VDDHの間で遷移する。また本願明細書では、「nodeX」(Xは整数)は、回路構成におけるノードを表しており、また、そのノードの電位を表す符号として用いる場合がある。
 出力回路100は、レベルシフト回路10と、第1および第2バッファ回路11,12と、P型トランジスタP1,P2,P3,P4と、N型トランジスタN1,N2,N3,N4と、キャパシタC1,C2とを備える。各トランジスタは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であるものとする。レベルシフト回路10は、低振幅のデータ入力信号DINを入力INに受け、第2電位VDDL~第1電位VDDHの間で遷移する信号SI1に変換し、出力OUTPから出力するとともに、接地電位VSS~第2電位VDDLの間で遷移する信号SI2に変換し、出力OUTNから出力する。信号SI1は第1バッファ回路11の入力として与えられ、信号SI2は第2バッファ回路12の入力として与えられる。
 ここで、出力回路100は、出力信号PADをハイレベルに駆動する回路部分であるH側ドライブ回路101と、出力信号PADをローレベルに駆動する回路部分であるL側ドライブ回路102とを含む。第1バッファ回路11の入力が接続されたノードnI1は、H側ドライブ回路101における入力ノードに相当する。また、第2バッファ回路12の入力が接続されたノードnI2は、L側ドライブ回路102における入力ノードに相当する。すなわち、H側ドライブ回路101の入力ノードnI1に入力信号SI1が与えられるとともに、L側ドライブ回路102の入力ノードnI2に入力信号SI2が与えられる。
 H側ドライブ回路101は、第1電源VDDHと出力端子1との間に直列に接続されたP型トランジスタP1,P2を備えている。P型トランジスタP1は、ソースが第1電源VDDHと接続されており、ゲートがnode1と接続されている。node1は第1バッファ回路11を介して入力ノードnI1と接続されており、入力信号SI1が与えられる。P型トランジスタP2は、ソースがP型トランジスタP1のドレインと接続されており(node2)、ドレインが出力端子1と接続されており、ゲートがnode3と接続されている。なお、P型トランジスタP2のドレインと出力端子1との間に抵抗素子が接続されていてもよい。
 H側ドライブ回路101はさらに、カップリング用のキャパシタC1と、スイッチ用のN型トランジスタN3と、クランプ用のN型トランジスタN4とを備えている。キャパシタC1は、node1とnode3との間に接続されている。すなわち、キャパシタC1は、一端に入力信号SI1が与えられ、他端がP型トランジスタP2のゲートと接続されている。N型トランジスタN3は、ソースが第2電源VDDLと接続されており、ドレインがnode3と接続されており、ゲートがnode1と接続されている。N型トランジスタN4は、ソースおよびゲートが第2電源VDDLと接続されており、ドレインがnode3と接続されている。
 また、L側ドライブ回路102は、接地電源VSSと出力端子1との間に直列に接続されたN型トランジスタN1,N2を備えている。N型トランジスタN1は、ソースが接地電源VSSと接続されており、ゲートがnode11と接続されている。node11は第2バッファ回路12を介して入力ノードnI2と接続されており、入力信号SI2が与えられる。N型トランジスタN2は、ソースがN型トランジスタN1のドレインと接続されており(node12)、ドレインが出力端子1と接続されており、ゲートがnode13と接続されている。なお、N型トランジスタN2のドレインと出力端子1との間に抵抗素子が接続されていてもよい。
 L側ドライブ回路101はさらに、カップリング用のキャパシタC2と、スイッチ用のP型トランジスタP3と、クランプ用のP型トランジスタP4とを備えている。キャパシタC2は、node11とnode13との間に接続されている。すなわち、キャパシタC2は、一端に入力信号SI2が与えられ、他端がN型トランジスタN2のゲートと接続されている。P型トランジスタP3は、ソースが第2電源VDDLと接続されており、ドレインがnode13と接続されており、ゲートがnode11と接続されている。P型トランジスタP4は、ソースおよびゲートが第2電源VDDLと接続されており、ドレインがnode13と接続されている。
 図1の出力回路の動作について、図2および図3の波形図を用いて説明する。図2は出力信号PADがローレベルからハイレベルに遷移する場合、図3は出力信号PADがハイレベルからローレベルに遷移する場合をそれぞれ示している。なお、図2および図3において、実線は本実施形態における電位変化を示し、破線は従来(特許文献1)の回路構成における電位変化を示す。
 図2に示すように、出力信号PADがローレベル(VSS)のとき、node1の電位はハイレベル(VDDH)(すなわち、入力信号SI1がハイレベル)であり、P型トランジスタP1はオフ状態(非導通状態)である。このとき、N型トランジスタN3はオン状態(導通状態)であるため、node3の電位はVDDLである。また、node2の電位は(VDDL+Vthp)である。VthpはP型トランジスタの閾値電圧である。
 入力信号SI1がハイレベルからローレベルに遷移したとき、node1の信号はハイレベルからローレベル(VDDL)に遷移する。このとき、P型トランジスタP1はオン状態になり、node2の電位はVDDHに遷移し、出力信号PADはローレベル(VSS)からハイレベル(VDDH)への遷移を始める。一方、N型トランジスタN3はオフ状態になるため、node3の電位は、キャパシタC1によるカップリングにより、node1の信号変化に引っ張られて下降する。これにより、出力信号PADの立ち上がりが早くなる。
 その後、N型トランジスタN4のクランプ作用によって、node3の電位は(VDDL-Vthn)まで速やかに戻る。VthnはN型トランジスタの閾値電圧である。したがって、node3の電位下降は、従来と比べて小さくなる。この結果、P型トランジスタP2のゲート-ソース間電圧Vgsは急激な変化が抑制され、許容耐圧を超えることはない。また、P型トランジスタP2のドレイン-ソース間電圧Vdsも上昇が抑制され、許容耐圧を超えない。また、P型トランジスタP2のドレイン-ソース間電流Idsも、従来よりも小さくなる。
 また、図3に示すように、出力信号PADがハイレベル(VDDH)のとき、node11はローレベル(VSS)(すなわち、入力信号SI2がローレベル)であり、N型トランジスタN1はオフ状態である。このとき、P型トランジスタP3はオン状態であるため、node13の電位はVDDLである。またnode12の電位は(VDDL-Vthn)である。
 入力信号SI2がローレベルからハイレベルに遷移したとき、node11の信号はローレベルからハイレベル(VDDL)に遷移する。このとき、N型トランジスタN1はオン状態になり、node12の電位はVSSに遷移し、出力信号PADはハイレベル(VDDH)からローレベル(VSS)への遷移を始める。一方、P型トランジスタP3はオフ状態になるため、node13の電位は、キャパシタC2によるカップリングにより、node11の信号変化に引っ張られて上昇する。これにより、出力信号PADの立ち下がりが早くなる。
 その後、P型トランジスタP4のクランプ作用によって、node13の電位は(VDDL+Vthp)まで速やかに戻る。したがって、node13の電位上昇は、従来と比べて小さくなる。この結果、N型トランジスタN2のゲート-ソース間電圧Vgsは急激な変化が抑制され、許容耐圧を超えることはない。また、N型トランジスタN2のドレイン-ソース間電圧Vdsも上昇が抑制され、許容耐圧を超えない。また、N型トランジスタN2のドレイン-ソース間電流Idsも、従来よりも小さくなる。
 このように本実施形態によると、キャパシタC1,C2により、出力信号PADの立ち上がりおよび立ち上がりを早めることができ、かつ、P型トランジスタP2およびN型トランジスタN2の劣化や破損を未然に防止することができる。
 なお、本実施形態では、H側ドライブ回路101において、P型トランジスタP2のゲートにキャパシタC1およびN型トランジスタN3,N4が接続されており、L側ドライブ回路102において、N型トランジスタN2のゲートにキャパシタC2およびP型トランジスタP3,P4が接続されているものとした。ただし、H側ドライブ回路101またはL側ドライブ回路102のいずれか一方のみに、これらの構成を適用してもよい。例えば、H側ドライブ回路101は図1のように構成する一方、L側ドライブ回路102には、キャパシタC2およびP型トランジスタP3,P4を設けずに、N型トランジスタN2のゲートを第2電源VDDLに接続するようにしてもよい。あるいは、L側ドライブ回路102は図1のように構成する一方、H側ドライブ回路101には、キャパシタC1およびN型トランジスタN3,N4を設けずに、P型トランジスタP2のゲートを第2電源VDDLに接続するようにしてもよい。
 (第2実施形態)
 図4は第2実施形態に係る出力回路の回路構成図である。図4の出力回路100Aは、図1の出力回路100とほぼ同様の構成を備えており、ここでは、すでに説明した構成についてはその詳細な説明を省略する。なお、図4では、レベルシフト回路10およびその前段の構成を省略している。以下の回路構成図においても同様である。
 第1実施形態では、N型トランジスタN3のゲートは、P型トランジスタP1のゲートと接続されており、ゲートに入力信号SI1が与えられるものとした。また、P型トランジスタP3のゲートは、N型トランジスタN1のゲートと接続されており、ゲートに入力信号SI2が与えられるものとした。本実施形態では、N型トランジスタN3は、ゲートに入力信号SI1に応じた信号が与えられ、P型トランジスタP3は、ゲートに入力信号SI2に応じた信号が与えられるものとする。
 図4の出力回路100Aは、H側ドライブ回路101Aがパルス生成回路21を備え、L側ドライブ回路102Aがパルス生成回路22を備えている。パルス生成回路21は、入力信号SI1を受け、入力信号SI1がハイレベルからローレベルに遷移したタイミングから所定期間、ローレベルになるパルス信号を生成し、出力する。パルス生成回路21は例えば、入力信号SI1を遅延させる遅延部211と、遅延部211の出力を反転させるインバータ212と、インバータ212の出力(node4)およびnode1の信号を入力とするORゲート213とを備える。ORゲート213の出力(node5)が、パルス生成回路21の出力となる。また、パルス生成回路22は、入力信号SI2を受け、入力信号SI2がローレベルからハイレベルに遷移したタイミングから所定期間、ハイレベルになるパルス信号を生成し、出力する。パルス生成回路22は例えば、入力信号SI2を遅延させる遅延部221と、遅延部221の出力を反転させるインバータ222と、インバータ222の出力(node14)およびnode11の信号を入力とするANDゲート223とを備える。ANDゲート223の出力(node15)が、パルス生成回路22の出力となる。なお、パルス生成回路21,22の構成はここで示したものに限られるものではない。
 そして、N型トランジスタN3は、ゲートにパルス生成回路21の出力を受ける。すなわち本実施形態では、パルス生成回路21から出力されるパルス信号が、入力信号SI1に応じた信号に相当する。N型トランジスタN3は、パルス生成回路21から出力されたパルス信号がローレベルの期間のみ、オフ状態になる。また、P型トランジスタP3は、ゲートにパルス生成回路22の出力を受ける。すなわち本実施形態では、パルス生成回路22から出力されるパルス信号が、入力信号SI2に応じた信号に相当する。P型トランジスタP3は、パルス生成回路22から出力されたパルス信号がハイレベルの期間のみ、オフ状態になる。
 図5は図4の出力回路100Aの動作の特徴を示す波形図であり、(a)は出力信号PADがローレベルからハイレベルに遷移する場合、(b)は出力信号PADがハイレベルからローレベルに遷移する場合である。図5(a)に示すように、出力信号PADをローレベルからハイレベルに遷移させる場合には、入力信号SI1がハイレベルからローレベルに遷移し、node1の電位もハイレベルからローレベルに遷移する。また、パルス生成回路21内のnode4の電位は、node1の遷移から遅れて、ローレベルからハイレベルに遷移する。これにより、パルス生成回路21の出力(node5)は所定期間だけローレベルになり、その後ハイレベルになる。このため、N型トランジスタN3は所定期間だけオフ状態になり、その後オン状態になる。node3の電位はVDDLに戻り、安定する。
 同様に、図5(b)に示すように、出力信号PADをハイレベルからローレベルに遷移させる場合には、入力信号SI2がローレベルからハイレベルに遷移し、node11の電位もローレベルからハイレベルに遷移する。また、パルス生成回路22内のnode14の電位は、node11の遷移から遅れて、ハイレベルからローレベルに遷移する。これにより、パルス生成回路22の出力(node15)は所定期間だけハイレベルになり、その後ローレベルになる。このため、P型トランジスタP3は所定期間だけオフ状態になり、その後オン状態になる。node13の電位はVDDLに戻り、安定する。
 すなわち、H側ドライブ回路101Aでは、キャパシタC1のカップリングによるnode3の電位変化を期待する期間のみ、N型トランジスタN3をオフ状態になる。また、L側ドライブ回路102Aでは、キャパシタC2のカップリングによるnode13の電位変化を期待する期間のみ、P型トランジスタP3をオフ状態になる。したがって本実施形態によると、第1実施形態による作用効果に加えて、出力信号PADの静止状態を安定させることができる、という作用効果が得られる。
 (第3実施形態)
 図6は第3実施形態に係る出力回路の回路構成図である。図6の出力回路100Bは、図1の出力回路100とほぼ同様の構成を備えており、ここでは、すでに説明した構成についてはその詳細な説明を省略する。
 第1実施形態では、キャパシタC1の一端は、P型トランジスタP1のゲートと接続されており、キャパシタC2の一端は、N型トランジスタN1のゲートと接続されているものとした。本実施形態では、キャパシタC1は、一端に、P型トランジスタP1のゲートと接続されていない経路を介して入力信号SI1が与えられ、キャパシタC2は、一端に、N型トランジスタN1のゲートと接続されていない経路を介して入力信号SI2が与えられるものとする。
 図6の出力回路100Bは、Hドライブ回路101Bが、第1バッファ回路11とは別に、入力信号SI1を受けるバッファ回路31を備えており、L側ドライブ回路102Bが、第2バッファ回路12とは別に、入力信号SI2を受けるバッファ回路32を備えている。バッファ回路31は、P型トランジスタP1のゲートに接続されたnode1とは別の信号経路(node6)に、入力信号SI1を伝搬させる。また、バッファ回路32は、N型トランジスタN1のゲートに接続されたnode11とは別の信号経路(node16)に、入力信号SI2を伝搬させる。
 そして、キャパシタC1は、node6とnode3との間に接続されている。すなわち、キャパシタC1の一端は、P型トランジスタP1のゲートに接続されたnode1ではなく、P型トランジスタP1のゲートに接続されていないnode6に接続されている。また、キャパシタC2は、node16とnode13との間に接続されている。すなわち、キャパシタC2の一端は、N型トランジスタN1のゲートに接続されたnode11ではなく、N型トランジスタN1のゲートに接続されていないnode16に接続されている。
 図7は図6の出力回路100Bの動作の特徴を示す波形図であり、(a)は出力信号PADがローレベルからハイレベルに遷移する場合、(b)は出力信号PADがハイレベルからローレベルに遷移する場合である。なお、図7において、実線は本実施形態における電位変化を示し、破線は実施形態1における電位変化を示す。
 図7(a)に示すように、出力信号PADをローレベルからハイレベルに遷移させる場合には、入力信号SI1がハイレベルからローレベルに遷移し、node1の信号もハイレベルからローレベルに遷移する。ところが、node1の信号は、例えばバッファ段数や配線負荷の増加に起因して、タイミングの遅れや波形の鈍りが生じる可能性がある。これに対して、node6には入力信号SI1が速やかに伝搬される。このため、キャパシタC1の一端をnode6と接続することによって、キャパシタC1によるカップリングの発生タイミングを早めることができる。
 同様に、図7(b)に示すように、出力信号PADをハイレベルからローレベルに遷移させる場合には、入力信号SI2がローレベルからハイレベルに遷移し、node11の信号もローレベルからハイレベルに遷移する。ところが、node11の信号は、例えばバッファ段数や配線負荷の増加に起因して、タイミングの遅れや波形の鈍りが生じる可能性がある。これに対して、node16には入力信号SI2が速やかに伝搬される。このため、キャパシタC2の一端をnode16と接続することによって、キャパシタC2によるカップリングの発生タイミングを早めることができる。
 したがって本実施形態によると、第1実施形態による作用効果が得られるのに加えて、出力信号PADの遷移をより速めることができる。
 また、第2実施形態と第3実施形態とを組み合わせて実現してもよい。図8は第2実施形態と第3実施形態とを組み合わせて実現した出力回路の回路構成図である。図8の出力回路100Cにおいて、H側ドライブ回路101Cは、パルス生成回路21と、バッファ回路31とを備えている。そして、N型トランジスタN3は、ゲートにパルス生成回路21の出力を受ける。また、キャパシタC1の一端はnode6と接続されている。また、L側ドライブ回路102Cは、パルス生成回路22と、バッファ回路32とを備えている。そして、P型トランジスタP3は、ゲートにパルス生成回路22の出力を受ける。また、キャパシタC2の一端はnode16と接続されている。図8の出力回路100Cでは、上述の第2および第3実施形態による作用効果を得ることができる。
 (第4実施形態)
 図9は第4実施形態に係る出力回路の回路構成図である。図9の出力回路100Dは、図8の出力回路100Cとほぼ同様の構成を備えており、ここでは、すでに説明した構成についてはその詳細な説明を省略する。
 図9の出力回路100Dは、制御信号CTRLによって、動作電圧が切替可能なように構成されている。ここでは、出力回路100Dは、制御信号CTRLが「0」(ローレベル)のとき、VDDHで動作し、制御信号CTRLが「1」(ハイレベル)のとき、VDDLで動作するものとする。
 H側ドライブ回路101Dは、パルス生成回路21に代えて、パルス生成回路21Aを備えている。パルス生成回路21Aは、ORゲート213に代えて、3入力ORゲート215を備えている。3入力ORゲート215は、インバータ212の出力(node4)およびnode1の信号に加えて、制御信号CTRLを入力としている。また、H側ドライブ回路101Dは、バッファ回路31に代えて、ANDゲート35を備えている。ANDゲート35は、入力信号SI1と、制御信号CTRLの反転信号とを入力としている。
 また、L側ドライブ回路102Dは、パルス生成回路22に代えて、パルス生成回路22Aを備えている。パルス生成回路22Aは、ANDゲート223に代えて、3入力ANDゲート225を備えている。3入力ANDゲート225は、インバータ222の出力(node14)およびnode11の信号に加えて、制御信号CTRLの反転信号を入力としている。また、L側ドライブ回路102Dは、バッファ回路32に代えて、ORゲート36を備えている。ORゲート36は、入力信号SI2と、制御信号CTRLとを入力としている。
 また、出力回路100Dには、NANDゲート41が設けられている。NANDゲート41は、入力として制御信号CTRLとVDDLを受け、出力がN型トランジスタN3,N4のドレインに接続されている。
 制御信号CTRLが「0」のとき、動作電圧はVDDHとなる。このとき出力回路100Dは、図8の回路と同様に動作する。すなわち、パルス生成回路21Aは、図8のパルス生成回路21と同様に動作し、パルス生成回路22Aは、図8のパルス生成回路22と同様に動作する。また、node6には入力信号SI1が伝搬され、node16には入力信号SI2が伝搬される。
 一方、制御信号CTRLが「1」のとき、動作電圧はVDDLとなる。このとき、パルス生成回路21Aの出力すなわちnode5の電位はハイレベルに固定され、N型トランジスタN3はオン状態を保つ。また、パルス生成回路22Aの出力すなわちnode15の電位はローレベルに固定され、P型トランジスタP3はオン状態を保つ。また、node6の電位はローレベルに固定されるので、キャパシタC1によるカップリングは機能せず、node16の電位はハイレベルに固定されるので、キャパシタC2によるカップリングは機能しない。この結果、node3の電位はVSSに固定され、node13の電位はVDDLに固定される。
 以上のように本実施形態によると、制御信号CTRLによって、出力回路100Dの動作電圧を、VDDLとVDDHとに切り替えることができる。そして、VDDHで動作する場合には、図8の構成と同様の動作を行うことができる。
 (第5実施形態)
 図10は第5実施形態に係る出力回路の回路構成図である。図10の出力回路100Eは、図1の出力回路100とほぼ同様の構成を備えており、ここでは、すでに説明した構成についてはその詳細な説明を省略する。
 図10の出力回路100Eは、H側ドライブ回路101EがP型トランジスタP5を備え、L側ドライブ回路102EがN型トランジスタN5を備えている。P型トランジスタP5はソースがnode2に接続され、ドレインが第2電源VDDLに接続され、ゲートが出力端子1と接続されている。N型トランジスタN5はソースがnode12に接続され、ドレインが第2電源VDDLに接続され、ゲートが出力端子1と接続されている。
 出力信号PADがローレベルのとき、P型トランジスタP5はオン状態になり、node2の電位はVDDLに固定される。このため、出力信号PADの電圧が不意に変動した場合でも、P型トランジスタP2のソース-ドレイン間電圧Vdsの上昇を防ぐことができる。また、出力信号PADがハイレベルのとき、N型トランジスタN5はオン状態になり、node12の電位はVDDLに固定される。このため、出力信号PADの電圧が不意に変動した場合でも、N型トランジスタN2のソース-ドレイン間電圧Vdsの上昇を防ぐことができる。したがって、P型トランジスタP2およびN型トランジスタN2の劣化や破損を防止することができる。
 なお、本実施形態は、第1実施形態で示した回路構成以外の回路構成にも、適用してもよい。
 なお、本開示は、上述の各実施形態で示した構成に限定されるものではなく、多くの変形が、本開示の技術的思想内で当該技術分野において通常の知識を有する者により可能である。また、本開示の趣旨を逸脱しない範囲で、複数の実施形態における各構成要素を任意に組み合わせてもよい。
 本開示では、出力回路について、トランジスタの劣化や破損を未然に防止可能となるので、例えばLSIの耐久性向上等に有用である。
1 出力端子
21,21A,22,22A パルス生成回路
100,100A,100B,100C,100D,100E 出力回路
P1,P2,P3,P4,P5 P型トランジスタ
N1,N2,N3,N4,N5 N型トランジスタ
C1,C2 キャパシタ
VDDH 第1電源、第1電位
VDDL 第2電源、第2電位
VSS 接地電源、接地電位
SI1,SI2 入力信号
nI1,nI2 入力ノード
PAD 出力信号

Claims (11)

  1.  データ入力信号を受け、前記データ入力信号に応じて接地電位と第1電位との間で遷移する出力信号を出力する出力回路であって、
     前記出力信号を出力する出力端子と、
     前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい入力信号を受ける入力ノードと、
     ソースが前記第1電位を与える第1電源と接続されており、ゲートに前記入力信号が与えられる第1P型トランジスタと、
     ソースが前記第1P型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第1ノードと接続された第2P型トランジスタと、
     一端に前記入力信号が与えられ、他端が前記第1ノードと接続されたキャパシタと、
     ソースが、前記第1電位よりも低い第2電位を与える第2電源と接続されており、ドレインが前記第1ノードと接続された第1N型トランジスタと、
     ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第1ノードと接続された第2N型トランジスタとを備え、
     前記第1N型トランジスタは、ゲートに前記入力信号に応じた信号が与えられ、前記入力信号がハイレベルのときオン状態であり、前記入力信号がハイレベルからローレベルへの遷移である第1遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御される
    ことを特徴とする出力回路。
  2.  請求項1記載の出力回路において、
     前記第1N型トランジスタのゲートは、前記第1P型トランジスタのゲートと接続されている
    ことを特徴とする出力回路。
  3.  請求項1記載の出力回路において、
     前記キャパシタは、一端が、前記第1P型トランジスタのゲートと接続されている
    ことを特徴とする出力回路。
  4.  請求項1記載の出力回路において、
     前記入力信号を受け、前記入力信号が前記第1遷移を行ったタイミングから所定期間、ローレベルになるパルス信号を生成出力するパルス生成回路を備え、
     前記第1N型トランジスタのゲートは、前記パルス生成回路の出力と接続されている
    ことを特徴とする出力回路。
  5.  請求項1記載の出力回路において、
     前記キャパシタは、前記入力ノードと接続されており、かつ、前記第1P型トランジスタのゲートとは接続されていない第2ノードと、一端が接続されている
    ことを特徴とする出力回路。
  6.  データ入力信号を受け、前記データ入力信号に応じて接地電位と第1電位との間で遷移する出力信号を出力する出力回路であって、
     前記出力信号を出力する出力端子と、
     前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい入力信号を受ける入力ノードと、
     ソースが接地電源と接続されており、ゲートに前記入力信号が与えられる第1N型トランジスタと、
     ソースが前記第1N型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第1ノードと接続された第2N型トランジスタと、
     一端に前記入力信号が与えられ、他端が前記第1ノードと接続されたキャパシタと、
     ソースが、前記第1電位よりも低い第2電位を与える第2電源と接続されており、ドレインが前記第1ノードと接続された第1P型トランジスタと、
     ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第1ノードと接続された第2P型トランジスタとを備え、
     前記第1P型トランジスタは、ゲートに前記入力信号に応じた信号が与えられ、前記入力信号がローレベルのときオン状態であり、前記入力信号がローレベルからハイレベルへの遷移である第1遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御される
    ことを特徴とする出力回路。
  7.  請求項6記載の出力回路において、
     前記第1P型トランジスタのゲートは、前記第1N型トランジスタのゲートと接続されている
    ことを特徴とする出力回路。
  8.  請求項6記載の出力回路において、
     前記キャパシタは、一端が、前記第1N型トランジスタのゲートと接続されている
    ことを特徴とする出力回路。
  9.  請求項6記載の出力回路において、
     前記入力信号を受け、前記入力信号が前記第1遷移を行ったタイミングから所定期間、ハイレベルになるパルス信号を生成出力するパルス生成回路を備え、
     前記第1P型トランジスタのゲートは、前記パルス生成回路の出力と接続されている
    ことを特徴とする出力回路。
  10.  請求項6記載の出力回路において、
     前記キャパシタは、前記入力ノードと接続されており、かつ、前記第1N型トランジスタのゲートとは接続されていない第2ノードと、一端が接続されている
    ことを特徴とする出力回路。
  11.  データ入力信号を受け、前記データ入力信号に応じて接地電位と第1電位との間で遷移する出力信号を出力する出力回路であって、
     前記出力信号を出力する出力端子と、
     前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい第1入力信号を受ける第1入力ノードと、
     前記データ入力信号に応じて変化し、前記出力信号よりも振幅が小さい第2入力信号を受ける第2入力ノードと、
     ソースが前記第1電位を与える第1電源と接続されており、ゲートに前記第1入力信号が与えられる第1P型トランジスタと、
     ソースが前記第1P型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第1ノードと接続された第2P型トランジスタと、
     ソースが接地電源と接続されており、ゲートに前記第2入力信号が与えられる第1N型トランジスタと、
     ソースが前記第1N型トランジスタのドレインと接続されており、ドレインが前記出力端子と接続されており、ゲートが第2ノードと接続された第2N型トランジスタと、
     一端に前記第1入力信号が与えられ、他端が前記第1ノードと接続された第1キャパシタと、
     ソースが、前記第1電位よりも低い第2電位を与える第2電源と接続されており、ドレインが前記第1ノードと接続された第3N型トランジスタと、
     ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第1ノードと接続された第4N型トランジスタと、
     一端に前記第2入力信号が与えられ、他端が前記第2ノードと接続された第2キャパシタと、
     ソースが前記第2電源と接続されており、ドレインが前記第2ノードと接続された第3P型トランジスタと、
     ソースおよびゲートが前記第2電源と接続されており、ドレインが前記第2ノードと接続された第4P型トランジスタとを備え、
     前記第3N型トランジスタは、ゲートに前記第1入力信号に応じた信号が与えられ、前記第1入力信号がハイレベルのときオン状態であり、前記第1入力信号がハイレベルからローレベルへの遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御されるものであり、
     前記第3P型トランジスタは、ゲートに前記第2入力信号に応じた信号が与えられ、前記第2入力信号がローレベルのときオン状態であり、前記第2入力信号がローレベルからハイレベルへの遷移を行ったとき、少なくとも所定期間、オフ状態になるよう、制御される
    ことを特徴とする出力回路。
PCT/JP2018/007794 2017-04-18 2018-03-01 出力回路 WO2018193724A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880025402.3A CN110521124B (zh) 2017-04-18 2018-03-01 输出电路
JP2019513252A JP7082295B2 (ja) 2017-04-18 2018-03-01 出力回路
US16/600,123 US10983544B2 (en) 2017-04-18 2019-10-11 Output circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-081981 2017-04-18
JP2017081981 2017-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/600,123 Continuation US10983544B2 (en) 2017-04-18 2019-10-11 Output circuit

Publications (1)

Publication Number Publication Date
WO2018193724A1 true WO2018193724A1 (ja) 2018-10-25

Family

ID=63857003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007794 WO2018193724A1 (ja) 2017-04-18 2018-03-01 出力回路

Country Status (4)

Country Link
US (1) US10983544B2 (ja)
JP (1) JP7082295B2 (ja)
CN (1) CN110521124B (ja)
WO (1) WO2018193724A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643640B (zh) 2021-08-03 2023-06-02 武汉华星光电技术有限公司 栅极驱动电路及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287682A (ja) * 1995-04-07 1996-11-01 Nec Corp 半導体記憶装置
JP2002009608A (ja) * 2000-06-23 2002-01-11 Nec Corp 出力回路及び入力回路並びに半導体集積回路装置
US20130141140A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pvt Ltd. Stress reduced cascoded cmos output driver circuit
JP2014209715A (ja) * 2013-03-29 2014-11-06 富士通セミコンダクター株式会社 出力回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114897A (en) * 1998-10-22 2000-09-05 Cisco Technology, Inc. Low distortion compensated field effect transistor (FET) switch
JP2003324343A (ja) 2002-04-30 2003-11-14 Lucent Technol Inc 集積回路
JP4060282B2 (ja) 2004-03-22 2008-03-12 三菱電機株式会社 レベル変換回路、およびレベル変換機能付シリアル/パラレル変換回路
US8718223B2 (en) * 2007-12-28 2014-05-06 Sharp Kabushiki Kaisha Semiconductor device and display device
CN101494450B (zh) * 2009-02-25 2011-04-20 苏州瀚瑞微电子有限公司 电平转移电路
JP5987619B2 (ja) 2012-10-04 2016-09-07 株式会社ソシオネクスト 出力回路
JP2015164248A (ja) 2014-02-28 2015-09-10 株式会社ソシオネクスト 入出力回路
JP6524374B2 (ja) * 2014-07-16 2019-06-05 鈴木 利康 多値用数値判別回路、フージ代数の原則に基づく多値or論理判別回路、及び、フージ代数の原則に基づく多値and論理判別回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287682A (ja) * 1995-04-07 1996-11-01 Nec Corp 半導体記憶装置
JP2002009608A (ja) * 2000-06-23 2002-01-11 Nec Corp 出力回路及び入力回路並びに半導体集積回路装置
US20130141140A1 (en) * 2011-12-02 2013-06-06 Stmicroelectronics Pvt Ltd. Stress reduced cascoded cmos output driver circuit
JP2014209715A (ja) * 2013-03-29 2014-11-06 富士通セミコンダクター株式会社 出力回路

Also Published As

Publication number Publication date
JPWO2018193724A1 (ja) 2020-02-27
US10983544B2 (en) 2021-04-20
CN110521124A (zh) 2019-11-29
US20200042029A1 (en) 2020-02-06
CN110521124B (zh) 2023-03-28
JP7082295B2 (ja) 2022-06-08

Similar Documents

Publication Publication Date Title
US8643426B2 (en) Voltage level shifter
US20070164789A1 (en) High Speed Level Shift Circuit with Reduced Skew and Method for Level Shifting
JP6820480B2 (ja) 出力回路
EP3217552B1 (en) Input-output receiver
KR20010049227A (ko) 레벨조정회로 및 이를 포함하는 데이터 출력회로
KR20100104124A (ko) 레벨 쉬프팅이 가능한 로직 회로
US11632101B1 (en) Voltage level shifter applicable to very-low voltages
CN113691249B (zh) 工作周期校正电路及其方法
KR20040002722A (ko) 레벨 시프터, 반도체 집적 회로 및 정보 처리 시스템
JP4027936B2 (ja) 半導体装置
JP5421075B2 (ja) 入力回路
WO2018193724A1 (ja) 出力回路
KR20060006443A (ko) 레벨 쉬프터 및 레벨 쉬프팅 방법
JP4386918B2 (ja) レベルシフト回路及びこれを備えた半導体集積回路
CN107070446B (zh) 电平转换器件、半导体器件及其操作方法
US9935636B1 (en) CMOS input buffer with low supply current and voltage down shifting
US8653879B2 (en) Level shifter and semiconductor integrated circuit including the shifter
CN113014246B (zh) 电压电平移位器和电子设备
KR20100133610A (ko) 전압 레벨 시프터
WO2019171418A1 (ja) 出力回路
US8502559B2 (en) Level translator
TWI804248B (zh) 具有低傳輸延遲的位準轉換器
US11621705B2 (en) Semiconductor integrated circuit device and level shifter circuit
JP2017153095A (ja) 半導体回路及び半導体装置
CN114640340A (zh) 具有低传输延迟的电平转换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787320

Country of ref document: EP

Kind code of ref document: A1