WO2018193713A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2018193713A1
WO2018193713A1 PCT/JP2018/006555 JP2018006555W WO2018193713A1 WO 2018193713 A1 WO2018193713 A1 WO 2018193713A1 JP 2018006555 W JP2018006555 W JP 2018006555W WO 2018193713 A1 WO2018193713 A1 WO 2018193713A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
front lens
imaging apparatus
regular
polyhedron
Prior art date
Application number
PCT/JP2018/006555
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 巨成
吉川 功一
高橋 正宏
寛明 横山
知嗣 南川
紀之 山下
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2018193713A1 publication Critical patent/WO2018193713A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present disclosure relates to an imaging apparatus.
  • An imaging apparatus has been developed that can accommodate a plurality of cameras (imaging units) in one housing and simultaneously capture a wider range than the range that can be captured by one camera.
  • Patent Document 1 discloses an imaging apparatus that suppresses the influence of parallax (parallax) by making the non-parallax points (NP points) of the cameras substantially coincide with each other.
  • a plurality of imaging units having a front lens and an imaging device are provided, and the outer shape of each front lens when viewed from the optical axis direction is substantially similar to a polygon that can form a convex polyhedron.
  • an imaging apparatus in which the front lens is disposed so as to correspond to a surface constituting the convex polyhedron, and NP points of the plurality of imaging units substantially coincide.
  • FIG. 2 is an explanatory diagram illustrating an appearance of an imaging apparatus 1 according to a first embodiment of the present disclosure.
  • FIG. It is an explanatory view for explaining the composition of imaging device 1 concerning the embodiment. It is the bottom view which looked at the imaging device 1 concerning the embodiment from the bottom. It is the top view which looked at the imaging device 1 concerning the embodiment from the top.
  • It is explanatory drawing which shows typically the heat dissipation effect by the inlet port 123 and the exhaust port 124 which concern on the embodiment.
  • FIG. It is a top view which shows the modification by which the microphone was provided in the frame part 122.
  • FIG. It is a bottom view which shows the modification by which the microphone was provided in the frame part 122.
  • FIG. It is explanatory drawing for demonstrating the modification provided with the composite frame part which the main-body part 12 consists of a some frame part. It is explanatory drawing for demonstrating the example in which an indicator is provided in the frame part. It is a table
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration only the same reference numerals are given.
  • a composite process for example, stitching process
  • a small camera having a wide-angle lens fixed to a plurality of rigs (camera fixing bases) is used, and images acquired by each camera are joined to one omnidirectional image.
  • Omnidirectional photography can be realized. It is also possible to perform omnidirectional photography by storing a plurality of cameras in one housing.
  • NP point non-parallax point
  • NPP non-parallax point
  • nodal point nodal point
  • an NP point selects a chief ray located in a Gaussian region from chief rays passing through the center of an aperture stop of an optical system included in a camera (imaging unit), and in the object space of the selected chief ray. It may be a point where the linear component is extended to intersect the optical axis.
  • FIGS. 1 and 2 are explanatory diagrams for explaining parallax generated between cameras.
  • FIG. 1 shows an example in which the camera C11 is rotated to the position of the camera C12 with the point P10 as the rotation center.
  • Point P10 is a rotation axis of a tripod, for example. Since the rotation center is different from the NP point, as shown in FIG. 1, the NP point NP11 of the camera C11 and the NP point NP12 of the camera C12 are different in position.
  • the image G11 shown in FIG. 1 is an image obtained by the camera C11 shooting with the angle of view A11.
  • An image G12 shown in FIG. 1 is an image obtained by the camera C12 taking an image with an angle of view A12.
  • FIG. 1 when the image G11 and the image G12 are compared, a parallax is generated between the object B11 and the object B12 arranged at different distances in the depth direction.
  • combining processing is performed using the image G11 and the image G12, it is difficult to join the images with high quality due to the influence of the parallax.
  • FIG. 2 shows an example in which the camera C21 is rotated to the position of the camera C22 around the point P20, which is the NP point NP21 of the camera C21. Since the NP point is rotated about the rotation center, the NP point NP21 of the camera C21 and the NP point NP22 of the camera C22 coincide with each other.
  • the image G21 shown in FIG. 2 is an image obtained by the camera C21 shooting with the angle of view A21.
  • An image G22 shown in FIG. 2 is an image obtained by the camera C22 taking an image with an angle of view A22.
  • the parallax is suppressed between the object B21 and the object B22 arranged at different distances in the depth direction.
  • the embodiment of the present disclosure has been created with the above circumstances in mind. According to the embodiment of the present disclosure, it is possible to suppress the influence of parallax even in an imaging apparatus including a larger number of lenses.
  • a configuration example of the imaging device according to the embodiment of the present disclosure will be described.
  • FIG. 3 is an explanatory diagram illustrating an appearance of the imaging device 1 according to the first embodiment of the present disclosure.
  • the imaging apparatus 1 is an imaging apparatus that includes a truncated icosahedron-shaped main body 12 and an external housing 14 and performs omnidirectional imaging.
  • FIG. 4 is an explanatory diagram for explaining a configuration of the imaging apparatus 1 according to the present embodiment.
  • the main body unit 12 includes a plurality of imaging units 120 and a frame unit 122.
  • the imaging unit 120 includes a front lens 121 that is fixed to the frame unit 122 and an imaging element 125 that is positioned inside the frame unit 122.
  • the image sensor 125 may be a solid-state image sensor such as a CCD image sensor or a CMOS image sensor, and detects light that has passed through the front lens 121.
  • the imaging unit 120 may include another lens between the front lens 121 and the imaging element 125.
  • the main body 12 has a truncated icosahedron shape, and the front lens 121 is disposed so as to correspond to a surface constituting a truncated icosahedron (an example of a convex polyhedron).
  • the external casing 14 is connected to a position corresponding to the regular pentagonal surface of the bottom of the main body 12, and therefore the bottom pentagonal shape of the 32 surfaces of the truncated icosahedron is included.
  • the front lens 121 of the imaging unit 120 is arranged so as to correspond to 31 surfaces excluding the surface. That is, the main body 12 includes 31 imaging units 120.
  • the NP points NP1 of all the imaging units 120 included in the imaging device 1 are substantially the same.
  • the fact that a plurality of NP points substantially coincides means, for example, that the plurality of NP points gather within a sphere having a predetermined radius.
  • the predetermined radius may be 20 mm, for example.
  • each front lens 121 when viewed from the optical axis direction is substantially similar to a regular hexagon or regular pentagon that is a polygon that can form a truncated icosahedron.
  • the outer shape of the front lens 121 viewed from the optical axis direction may be simply referred to as the outer shape of the front lens 121.
  • the front lens 121a included in the imaging unit 120a has a substantially similar shape to a regular hexagon
  • the front lens 121b included in the imaging unit 120b has a substantially similar shape to a regular pentagon.
  • the imaging element 125a included in the imaging unit 120a and the imaging element 125b included in the imaging unit 120b may have the same shape or size, or may have different shapes or sizes depending on the outer shape of the front lens 121. May be.
  • the imaging unit 120 included in the main body unit 12 includes 20 imaging units 120 in which the front lens 121 is substantially similar to a regular hexagon, and an imaging unit 120 in which the front lens 121 is approximately similar to a regular pentagon. 11 are included.
  • the frame unit 122 fixes the front lens 121 of the imaging unit 120.
  • a slit-like intake port 123 may be provided in the lower portion of the frame portion 122, and a slit-like exhaust port 124 may be provided in the upper portion of the frame portion 122.
  • the intake port 123 and the exhaust port 124 will be described in more detail with reference to FIGS.
  • FIG. 5 is a bottom view of the imaging device 1 as viewed from below. As shown in FIG. 5, five intake ports 123a to 123e are provided in the lower portion of the frame portion 122.
  • FIG. 6 is a plan view of the imaging device 1 as viewed from above. As shown in FIG. 6, five exhaust ports 124a to 124e are provided in the upper portion of the frame portion 122. 5 and 6 are merely examples, and the number of intake ports 123 and exhaust ports 124 provided in the frame portion 122 is not limited to such examples.
  • FIG. 7 is an explanatory view schematically showing the heat radiation effect by the air inlet 123 and the air outlet 124. As shown in FIG. 7, outside air is sucked from the air inlet 123, an air flow is generated inside the main body 12 due to the heat of the imaging element 125, and the heated air is exhausted from the air outlet 124. With such a configuration, heat generated by the image sensor 125 is dissipated.
  • the frame portion 122 may be provided with a convex portion for protecting the front lens 121.
  • FIG. 8 is an explanatory diagram for explaining a convex portion provided in the frame portion 122.
  • the frame portion 122 is provided with a convex portion 129 that protrudes outward with respect to the front lens 121. With such a configuration, the front lens 121 is protected, and even when the imaging apparatus 1 is used in a narrow place or the like, the front lens 121 is not easily damaged.
  • the external housing 14 illustrated in FIG. 4 is located outside the frame portion 122.
  • the external casing 14 is a component that may generate heat other than the imaging element 125, such as an image processing unit (not shown) that processes an image acquired by the imaging unit 120, a power terminal connector board (not shown), and the like. May be stored.
  • an image processing unit (not shown) that processes an image acquired by the imaging unit 120
  • a power terminal connector board (not shown), and the like. May be stored.
  • the image processing unit may perform, for example, a combining process for joining the images acquired by the imaging unit 120, or may perform other processes.
  • the frame unit 122 may be provided with a microphone for acquiring (sound collection) sound. Since the imaging apparatus 1 according to the present embodiment is an imaging apparatus for performing omnidirectional imaging, it is desirable to acquire sound from all directions.
  • FIG. 9 is a plan view showing a modified example in which a microphone is provided in the frame part 122
  • FIG. 10 is a bottom view showing a modified example in which a microphone is provided in the frame part 122.
  • six microphones 126a to 126f may be provided in the upper part of the frame part 122, and six microphones 126g to 126l may be provided in the lower part of the frame part 122 as shown in FIG.
  • five intake ports 123 are provided in the frame unit 122, but when the microphone is provided in the frame unit 122 as illustrated in FIG. 10, the frame unit 122.
  • the number of the air inlets 123 provided in may be four.
  • the microphones 126a to 126l shown in FIG. 9 and FIG. 10 are arranged in a position that is perpendicular to each surface of the regular dodecahedron VP that is virtually arranged outside the frame portion 122. With this configuration, the imaging apparatus 1 can collect sound from all directions more efficiently.
  • the main body 12 of the imaging device 1 may include a composite frame unit including a plurality of frame units.
  • FIG. 11 is an explanatory diagram for explaining a modified example in which the main body 12 includes a composite frame portion including a plurality of frame portions.
  • the main body portion 12 includes a composite frame portion 130 including a plurality of frame portions 132.
  • each frame portion 132 fixes one front lens 121.
  • the frame part 132a fixes the front lens 121a
  • the frame part 132b fixes the front lens 121b. Therefore, each front lens 121 can be detached separately by removing the mounting screw 134 related to the frame portion 132, and the maintainability can be improved.
  • the frame unit 132 may be provided with an indicator that indicates the state of the imaging unit 120.
  • the state of the imaging unit 120 indicated by the indicator may include, for example, a state such as normal, shooting, and shooting stopped.
  • FIG. 12 is an explanatory diagram for explaining an example in which an indicator is provided in the frame unit 132.
  • the frame part 132 is provided with an indicator 136.
  • the indicator 136 may be a light emitting unit such as an LED (light emitting diode). In such a case, the indicator 136 may indicate the state of the imaging unit 120 by, for example, a color or a blinking pattern.
  • each indicator 136 may correspond to one imaging unit 120, and may indicate the state of the corresponding imaging unit 120.
  • the indicator 136 may correspond to the imaging unit 120 having the front lens 121 fixed to the frame unit 132 provided with the indicator 136.
  • the indicator 136a corresponds to the imaging unit 120a having the front lens 121a fixed to the frame unit 132a provided with the indicator 136a.
  • the indicator 136b corresponds to the imaging unit 120b having the front lens 121b fixed to the frame portion 132b provided with the indicator 136b.
  • the first embodiment of the present disclosure has been described. According to the present embodiment, it is possible to suppress the influence of parallax by making the NP points of the imaging unit substantially coincide. Furthermore, the outer shape of the front lens that the imaging unit has is substantially similar to the polygon that can constitute the truncated icosahedron, and the front lens is arranged so as to correspond to the surface of the truncated icosahedron, It becomes possible to join images with higher quality.
  • the front lens is disposed so as to correspond to the surface of the truncated icosahedron so that the front lenses of the adjacent imaging units are more closely arranged.
  • An example was explained.
  • the present technology is not limited to such an example, and the front lens may be arranged so as to correspond to the surface of another convex polyhedron. Below, after examining the front lens arranged so as to correspond to the surface of the convex polyhedron, some other embodiments will be described.
  • FIG. 13 is a table showing a list of regular polyhedra.
  • the regular polyhedron includes a regular tetrahedron, a regular hexahedron regular octahedron, a regular dodecahedron, and a regular icosahedron.
  • FIG. 14 is an explanatory diagram for explaining a development view of a regular polyhedron.
  • a developed view T11 is a developed view of a regular tetrahedron. The regular tetrahedron is composed of the same regular triangle as the regular triangle T11a on all surfaces.
  • a developed view T12 is a developed view of a regular hexahedron. The regular hexahedron is composed of the same square as the square T12a on all surfaces.
  • a developed view T13 is a developed view of a regular octahedron. The regular octahedron is composed of equilateral triangles whose faces are identical to the equilateral triangle T13a.
  • a developed view T14 is a developed view of a regular dodecahedron.
  • the regular dodecahedron has a regular pentagon that is the same as the regular pentagon T14a.
  • a developed view T15 is a developed view of an icosahedron.
  • the regular icosahedron is composed of the same equilateral triangle as the equilateral triangle T15a on all faces.
  • the outer shape of the front lens can constitute a regular polyhedron, as in the example described in the first embodiment. It is desirable that the shape is substantially similar to a polygon.
  • the outer shape of the front lens is nearly circular considering the manufacturing cost. Therefore, a regular dodecahedron or square composed of regular pentagons rather than an imaging device in which a front lens is arranged to correspond to a regular tetrahedron, regular octahedron, or regular icosahedron composed of regular triangles.
  • the imaging device in which the front lens is arranged so as to correspond to the surface of the regular hexahedron formed by is advantageous in terms of manufacturing cost.
  • the front lens is arranged so as to correspond to the surface of the regular dodecahedron
  • a convex polyhedron other than a regular polyhedron is also known among convex uniform polyhedrons.
  • the uniform polyhedron all the faces are regular polygons, and the vertex shapes are congruent (the type and order of regular polygons gathered at the vertices are the same). Since the regular polyhedron is excluded from the semi-regular polyhedron, the surface of the semi-regular polyhedron is composed of two or more kinds of regular polygons.
  • FIG. 15 is a table showing a list of semi-regular polyhedra. As shown in FIG. 15, there are 13 types of semi-regular polyhedrons. In addition, although the example in which the front lens is arranged so as to correspond to the truncated icosahedron in the semi-polyhedron shown in FIG. 15 has already been described as the first embodiment, other semi-polyhedra An imaging device in which the front lens is disposed so as to correspond to the surface of the lens can be similarly realized.
  • the imaging device in which the front lens is disposed so as to correspond to the surface of the semi-polyhedron requires two or more types of front lens
  • the front lens is required to correspond to the surface of the regular polyhedron from the viewpoint of manufacturing cost. It can be disadvantageous than an imaging device in which a lens is arranged.
  • the semi-regular polyhedron has a larger number of faces than the regular icosahedron having the largest number of faces among the regular polyhedrons, and thus it can be provided with a larger number of imaging units and is acquired. It may be possible to improve the resolution of the omnidirectional image obtained by joining the images.
  • FIG. 16 is a development view of a truncated icosahedron in the semi-regular polyhedron shown in FIG. As shown in a developed view T20 of FIG. 16, the truncated icosahedron is composed of 12 regular pentagons identical to the regular pentagon T20a and 20 regular hexagons identical to the regular hexagon T20b.
  • FIG. 17 is an explanatory diagram for explaining a regular pentagon and a regular hexagon that form a truncated icosahedron.
  • the diameter H21 of the circle circumscribing the regular pentagon T20a constituting the truncated icosahedron is smaller than the diameter H22 of the circle circumscribing the regular hexagon T20b. Therefore, the diameter of the circle circumscribing the front lens included in the imaging device in which the front lens is arranged so as to correspond to the face of the truncated icosahedron described in the first embodiment can be two types.
  • FIG. 18 is an explanatory diagram for describing a configuration of the imaging apparatus 2 according to the second embodiment of the present disclosure.
  • the imaging device 2 according to the second embodiment of the present disclosure has the same configuration in part as the imaging device 1 according to the first embodiment described above, and therefore is the same as the first embodiment below. This point is omitted as appropriate, and differences from the first embodiment will be mainly described.
  • FIG. 18 shows a plan view F21, a side view F22, a front view F23, and a bottom view F24 related to the imaging apparatus 2.
  • the imaging device 2 is an imaging device that includes a regular dodecahedron-shaped main body 22 and an external housing 24 and performs omnidirectional imaging.
  • the main body unit 22 includes an imaging unit 220 and a frame unit 222.
  • the imaging unit 220 includes a front lens 221 that is fixed to the frame unit 222 and an imaging element 225 that is positioned inside the frame unit 222 and detects light that has passed through the front lens 221. Note that the imaging unit 220 may have another lens between the front lens 221 and the imaging element 225.
  • the main body 22 has a regular dodecahedron shape, and the front lens 221 is disposed so as to correspond to a surface constituting a regular dodecahedron (an example of a regular polyhedron).
  • a regular dodecahedron an example of a regular polyhedron.
  • the front of the imaging unit 220 is accommodated so as to correspond to all 12 surfaces of the regular dodecahedron.
  • a ball lens 221 may be disposed. That is, the main body unit 22 according to the present embodiment includes twelve imaging units 220 that are the same number as the number of faces of the regular dodecahedron.
  • the imaging element 225 according to the present embodiment is the imaging device according to the first embodiment. It may have a resolution higher than 125. With such a configuration, even if the number of image capturing units is smaller than that in the first embodiment, it is possible to maintain the resolution of an image obtained by joining the images acquired by the image capturing unit 220.
  • the NP points NP2 of all the imaging units 220 included in the imaging device 2 are substantially the same. With this configuration, it is possible to join images acquired by the plurality of imaging units 220 included in the imaging device 2 with high quality.
  • each front lens 221 when viewed from the optical axis direction is substantially similar to a regular pentagon that is a polygon that can form a regular dodecahedron. With such a configuration, adjacent front lens 221 is more closely arranged, there is a sufficient overlap area between images acquired by adjacent imaging units 220, and it is possible to join images with higher quality. Become.
  • the regular dodecahedron is a regular polyhedron
  • the outer shapes of all the front lens 221 provided in the imaging device 2 according to the present embodiment are the same shape. With such a configuration, manufacturing costs can be suppressed.
  • the frame unit 222 fixes the front lens 221 of the imaging unit 220.
  • the frame portion 222 may be provided with an intake port and an exhaust port in the same manner as the frame portion 122 described with reference to FIGS.
  • the frame portion 222 may be provided with a convex portion for protecting the front lens 221. As shown in FIG. 18, the frame portion 222 is provided with a convex portion 229 that protrudes outward with respect to the front lens 221. With this configuration, the front lens 221 is protected.
  • the configuration of the external casing 24 is the same as that of the external casing 14 described with reference to FIG.
  • the second embodiment of the present disclosure has been described. According to this embodiment, the manufacturing cost can be suppressed. Note that the modification described in the first embodiment can also be applied to this embodiment.
  • FIG. 19 is an explanatory diagram for describing a configuration of an imaging apparatus 3 according to the third embodiment of the present disclosure. Note that the imaging device 3 according to the third embodiment of the present disclosure partially has the same configuration as the imaging device 1 according to the first embodiment or the imaging device 3 according to the second embodiment described above. In the following description, the same points as those in the first embodiment or the second embodiment will be omitted as appropriate.
  • FIG. 19 shows a plan view F31, a side view F32, a front view F33, and a bottom view F34 related to the imaging apparatus 3.
  • the imaging device 3 is a regular hexahedral imaging device that performs omnidirectional imaging.
  • the imaging device 3 includes an imaging unit 320 and a frame unit 322.
  • the imaging unit 320 includes a front lens 321 that is fixed to the frame unit 322 and an imaging element 325 that is positioned inside the frame unit 322 and detects light that has passed through the front lens 321.
  • the imaging unit 320 may have another lens between the front lens 321 and the imaging element 325.
  • the imaging device 3 has a regular hexahedron shape, and the front lens 321 is disposed so as to correspond to a surface constituting a regular hexahedron (an example of a regular polyhedron). As shown in FIG. 19, the front lens 321 of the imaging unit 320 can be arranged so as to correspond to all six surfaces of the regular hexahedron. That is, the imaging device 3 according to the present embodiment includes six imaging units 320 that are the same number as the number of faces of the regular hexahedron.
  • the NP points NP3 of all the imaging units 320 included in the imaging device 3 are substantially the same. With this configuration, it is possible to join images acquired by the plurality of imaging units 320 included in the imaging device 3 with high quality.
  • the regular hexahedron is a regular polyhedron
  • the outer shapes of all the front lens 321 included in the imaging device 3 according to the present embodiment are the same shape. With such a configuration, manufacturing costs can be suppressed.
  • the number of imaging units 320 according to the present embodiment is smaller than the number of imaging units 120 according to the first embodiment and the number of imaging units 220 according to the second embodiment. Therefore, the imaging device 3 according to this embodiment can be made smaller than the imaging device 1 according to the first embodiment and the imaging device 2 according to the second embodiment.
  • the imaging device 3 according to this embodiment may not include an external housing.
  • components such as an image processing unit and a power terminal connector board may be housed in the frame unit 322.
  • the frame unit 322 fixes the front lens 321 of the imaging unit 320.
  • the frame portion 322 may be provided with an intake port and an exhaust port in the same manner as the frame portion 122 described with reference to FIGS.
  • the frame part 322 may be provided with a convex part for protecting the front lens 321. As shown in FIG. 19, the frame portion 322 is provided with a convex portion 329 protruding outward with respect to the front lens 321. With this configuration, the front lens 321 is protected.
  • the third embodiment of the present disclosure has been described. According to this embodiment, the manufacturing cost can be suppressed and the size can be reduced. Note that the modification described in the first embodiment can also be applied to this embodiment.
  • the diameter of the circle circumscribing the front lens of the imaging apparatus according to the first embodiment can be two types.
  • a circular lens of a type corresponding to the type of diameter of a circle circumscribing the front lens of the imaging device is required. It is desirable that the diameter of the circumscribed circle is small. Accordingly, in the following, as a fourth embodiment of the present disclosure, an example in which the diameters of the circles circumscribing all the front lens lenses provided are the same without reducing the number of surfaces of the convex polyhedron will be described.
  • the imaging device according to the present embodiment has the same configuration as the imaging device 1 according to the first embodiment except that the outer shape of the front lens is different.
  • the outer shape of the ball lens will be described.
  • the front lens is arranged so as to correspond to the surface of the truncated icosahedron.
  • the truncated icosahedron is a solid formed by cutting off 20 vertices of a regular icosahedron that is a regular polyhedron.
  • FIG. 20 is an explanatory diagram for explaining a method of forming a truncated icosahedron.
  • the length of the side (the length from the point P1 to the point P2) is k, it is k / 3 from the point P1 toward the point adjacent to the point P1.
  • the convex polyhedron M2 having a regular pentagonal surface is obtained by cutting off the region R10 indicated by the position.
  • a truncated icosahedron M3 composed of a regular pentagon and a regular hexagon is formed.
  • the size of the region to be cut off it is possible to adjust the shape and size of the pentagon and hexagon that form the convex polyhedron to be finally formed. For example, by adjusting the length from each vertex to the position where each vertex is cut off, it is possible to make the diameters of the pentagon and the circle circumscribed by the hexagon that form the convex polyhedron finally formed equal It is.
  • a convex polyhedron is referred to as a convex polyhedron according to the present embodiment.
  • the front lens which the imaging device which concerns on this embodiment has is arrange
  • the outer shape of the front lens included in the imaging apparatus according to the present embodiment when viewed from the optical axis direction is substantially similar to the polygon that can form the convex polyhedron according to the present embodiment, and the present embodiment.
  • the diameters of the circles circumscribing all the front lens elements of the image pickup apparatus according to the above are the same.
  • FIG. 21 is a development view of the convex polyhedron according to the present embodiment.
  • the convex polyhedron is composed of 12 regular pentagons identical to the regular pentagon T30a and 20 hexagons identical to the hexagon T30b. Note that the hexagon T30b is not a regular polygon.
  • FIG. 22 is an explanatory diagram for explaining in more detail a polygon that can form the convex polyhedron according to the present embodiment.
  • the regular pentagon T30a and the hexagon T30b are in contact with each other. Therefore, as shown in FIG. .
  • the diameters of the circles circumscribed by the regular pentagon T30a and the hexagon T30b shown in FIG. 22 are the same. Therefore, when the front lens is formed so as to be substantially similar to the regular pentagon T30a and the hexagon T30b, the diameters of the circles circumscribing all the front lenses included in the imaging apparatus according to the present embodiment are the same. Thus, the front lens can be formed.
  • the circular lenses for cutting out the front lens have the same shape, and it is not necessary to manufacture a plurality of types of circular lenses. Therefore, the manufacturing cost is suppressed.
  • the circular lens for cutting out the front lens becomes the same shape, so that the configuration of the lens existing between the front lens and the image sensor and the configuration of the image sensor are independent of the outer shape of the front lens. It is possible to unify, and the manufacturing cost is further suppressed.
  • FIG. 23 is an explanatory diagram for explaining the size of the image sensor according to the present embodiment.
  • FIG. 23 shows a region Q1 having an aspect ratio of 1: 1.20 circumscribing the regular pentagon T30a, and a region Q2 circumscribing the hexagon T30b having an aspect ratio of 1: 1.20.
  • the region Q1 circumscribing the regular pentagon T30a is larger than the region Q2 circumscribing the hexagon T30b.
  • an image sensor having a size corresponding to the region Q1 may be used as an image sensor included in the image pickup apparatus according to the present embodiment. Note that when the image sensors having the size corresponding to the region Q1 are used in a unified manner, in the example shown in FIG. 23, there are extra regions above and below the regular pentagon T30a, and extra regions above and below and right and left of the hexagon T30b. Exists.
  • the fourth embodiment of the present disclosure has been described. According to the present embodiment, it is possible to suppress the manufacturing cost without reducing the number of imaging units as compared with the first embodiment. Note that the modification described in the first embodiment can also be applied to this embodiment.
  • a plurality of imaging units having a front lens and an imaging element are provided,
  • the outer shape of each front lens when viewed from the optical axis direction is substantially similar to a polygon that can form a convex polyhedron,
  • the front lens is disposed so as to correspond to a surface constituting the convex polyhedron,
  • the imaging apparatus according to (1) further including a frame unit that fixes the front lens.
  • the imaging apparatus includes a composite frame unit including a plurality of frame units, Each said frame part is an imaging device as described in said (1) which fixes one said front lens.
  • the imaging device includes an external housing located outside the frame portion, The imaging apparatus according to any one of (2) to (10), wherein the external casing houses an image processing unit that processes an image acquired by the imaging unit.
  • the imaging device according to (12), wherein the convex polyhedron is a regular polyhedron.
  • the imaging device according to (13), wherein the convex polyhedron is a regular dodecahedron.
  • the imaging device according to (13), wherein the convex polyhedron is a regular hexahedron.
  • the convex polyhedron is a semi-regular polyhedron.
  • the imaging device according to (16), wherein the convex polyhedron is a truncated icosahedron.
  • the imaging apparatus according to any one of (1) to (15), wherein a diameter of a circle circumscribing the plurality of front lens elements included in the imaging apparatus is the same.
  • the imaging apparatus according to any one of (1) to (18), wherein the imaging apparatus includes the same number of imaging units as the number of surfaces of the convex polyhedron.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

[Problem] To provide an imaging device. [Solution] An imaging device has a plurality of imaging units with each imaging unit including a front lens and an imaging element. The contour of each front lens is substantially similar to a polygon capable of constituting a convex polyhedron when the front lens is viewed along the optical axis direction. The front lens is arranged corresponding to a surface constituting the convex polyhedron. The non-parallax points of the plurality of imaging units substantially match each other.

Description

撮像装置Imaging device
 本開示は、撮像装置に関する。 The present disclosure relates to an imaging apparatus.
 複数のカメラ(撮像部)を1の筐体に収納して、1のカメラで撮像可能な範囲よりも広い範囲を同時に撮像することが可能な撮像装置が開発されている。このような撮像装置では、取得された画像を繋ぎ合わせた際の繋ぎ目における違和感を抑えるため、カメラ間のパララックス(視差)を抑制することが望ましい。 An imaging apparatus has been developed that can accommodate a plurality of cameras (imaging units) in one housing and simultaneously capture a wider range than the range that can be captured by one camera. In such an imaging apparatus, it is desirable to suppress parallax (parallax) between the cameras in order to suppress a sense of discomfort at the joint when the acquired images are joined.
 例えば特許文献1には、各カメラのノンパララックス点(NP点)を略一致させることで、パララックス(視差)の影響を抑制した、撮像装置が開示されている。 For example, Patent Document 1 discloses an imaging apparatus that suppresses the influence of parallax (parallax) by making the non-parallax points (NP points) of the cameras substantially coincide with each other.
特開2007-110228号公報JP 2007-110228 A
 しかし、例えば上下左右360度の全天球画像を取得することを目的とした、より多数のレンズを備えた撮像装置において、パララックスの影響を抑制するための構成については十分な検討がなされていなかった。 However, for example, in an imaging apparatus including a larger number of lenses for the purpose of acquiring 360-degree omnidirectional images, the configuration for suppressing the effect of parallax has been sufficiently studied. There wasn't.
 本開示によれば、前玉レンズと撮像素子を有する撮像部を複数備え、各前記前玉レンズを光軸方向から見たときの外形は、凸多面体を構成し得る多角形と略相似形状であり、前記前玉レンズは、前記凸多面体を構成する面に対応するように配置され、前記複数の前記撮像部のNP点は略一致する、撮像装置が提供される。 According to the present disclosure, a plurality of imaging units having a front lens and an imaging device are provided, and the outer shape of each front lens when viewed from the optical axis direction is substantially similar to a polygon that can form a convex polyhedron. There is provided an imaging apparatus in which the front lens is disposed so as to correspond to a surface constituting the convex polyhedron, and NP points of the plurality of imaging units substantially coincide.
 以上説明したように本開示によれば、より多数のレンズを備えた撮像装置であってもパララックスの影響を抑制することが可能である。 As described above, according to the present disclosure, it is possible to suppress the influence of parallax even in an imaging apparatus including a larger number of lenses.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
カメラ間で生じるパララックスについて説明するための説明図である。It is explanatory drawing for demonstrating the parallax which arises between cameras. カメラ間で生じるパララックスについて説明するための説明図である。It is explanatory drawing for demonstrating the parallax which arises between cameras. 本開示の第1の実施形態に係る撮像装置1の外観を示す説明図である。2 is an explanatory diagram illustrating an appearance of an imaging apparatus 1 according to a first embodiment of the present disclosure. FIG. 同実施形態に係る撮像装置1の構成を説明するための説明図である。It is an explanatory view for explaining the composition of imaging device 1 concerning the embodiment. 同実施形態に係る撮像装置1を下から見た底面図である。It is the bottom view which looked at the imaging device 1 concerning the embodiment from the bottom. 同実施形態に係る撮像装置1を上から見た平面図である。It is the top view which looked at the imaging device 1 concerning the embodiment from the top. 同実施形態に係る吸気口123、及び排気口124による放熱効果を模式的に示す説明図である。It is explanatory drawing which shows typically the heat dissipation effect by the inlet port 123 and the exhaust port 124 which concern on the embodiment. 同実施形態に係るフレーム部122に設けられる凸部を説明するための説明図である。It is explanatory drawing for demonstrating the convex part provided in the frame part 122 which concerns on the embodiment. フレーム部122にマイクロフォンが設けられた変形例を示す平面図である。It is a top view which shows the modification by which the microphone was provided in the frame part 122. FIG. フレーム部122にマイクロフォンが設けられた変形例を示す底面図である。It is a bottom view which shows the modification by which the microphone was provided in the frame part 122. FIG. 本体部12が複数のフレーム部からなる複合フレーム部を備える変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification provided with the composite frame part which the main-body part 12 consists of a some frame part. フレーム部132にインジケータが設けられる例を説明するための説明図である。It is explanatory drawing for demonstrating the example in which an indicator is provided in the frame part. 正多面体の一覧を示す表である。It is a table | surface which shows the list of regular polyhedra. 正多面体の展開図について説明するための説明図である。It is explanatory drawing for demonstrating the expanded view of a regular polyhedron. 半正多面体の一覧を示す表である。It is a table | surface which shows the list of a semi-regular polyhedron. 切頭二十面体の展開図である。It is an expanded view of a truncated icosahedron. 切頭二十面体を構成する正五角形と正六角形について説明するための説明図である。It is explanatory drawing for demonstrating the regular pentagon and regular hexagon which comprise a truncated icosahedron. 本開示の第2の実施形態に係る撮像装置2の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the imaging device 2 which concerns on 2nd Embodiment of this indication. 本開示の第3の実施形態に係る撮像装置3の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the imaging device 3 which concerns on 3rd Embodiment of this indication. 切頭二十面体の形成方法を説明するための説明図である。It is explanatory drawing for demonstrating the formation method of a truncated icosahedron. 本開示の第4の実施形態に係る凸多面体の展開図である。It is an expanded view of the convex polyhedron which concerns on 4th Embodiment of this indication. 同実施形態に係る凸多面体を構成し得る多角形について、より詳細に説明するための説明図である。It is explanatory drawing for demonstrating in detail about the polygon which can comprise the convex polyhedron which concerns on the embodiment. 同実施形態に係る撮像素子の大きさについて説明するための説明図である。It is explanatory drawing for demonstrating the magnitude | size of the image pick-up element which concerns on the same embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。 In the present specification and drawings, a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral. However, when it is not necessary to particularly distinguish each of a plurality of constituent elements having substantially the same functional configuration, only the same reference numerals are given.
 なお、説明は以下の順序で行うものとする。
 <<1.背景>>
 <<2.第1の実施形態>>
  <2-1.構成例>
  <2-2.変形例>
  <2-3.効果>
 <<3.他の実施形態>>
  <3-1.前玉レンズに関する検討>
  <3-2.第2の実施形態>
  <3-3.第3の実施形態>
  <3-4.第4の実施形態>
 <<4.むすび>>
The description will be made in the following order.
<< 1. Background >>
<< 2. First Embodiment >>
<2-1. Configuration example>
<2-2. Modification>
<2-3. Effect>
<< 3. Other embodiments >>
<3-1. Study on front lens>
<3-2. Second Embodiment>
<3-3. Third Embodiment>
<3-4. Fourth Embodiment>
<< 4. Conclusion >>
 <<1.背景>>
 本開示の実施形態に係る撮像装置について説明する前に、本開示の実施形態に係る撮像装置の創作に至った背景を説明する。
<< 1. Background >>
Before describing the imaging device according to the embodiment of the present disclosure, the background that led to the creation of the imaging device according to the embodiment of the present disclosure will be described.
 近年、複数のカメラ(撮像部)を組み合わせ、上下左右の全方位を撮影する装置やシステムが知られている。なお、以下では上下左右の全方位を撮影することを、全天球撮影を行う、と呼ぶ場合がある。 In recent years, there have been known devices and systems that combine a plurality of cameras (imaging units) and photograph all directions in the vertical and horizontal directions. In the following description, shooting in all directions of up, down, left, and right may be referred to as performing omnidirectional shooting.
 例えばリグ(カメラ固定台)に複数台固定された広角レンズを有する小型のカメラで撮影を行い、さらに各カメラにより取得された画像を1の全天球画像に繋ぎ合わせる合成処理(例えばステッチング処理)により、全天球撮影が実現可能である。また、複数のカメラを1の筐体に収納して、全天球撮影を行うことも可能である。 For example, a composite process (for example, stitching process) is performed in which a small camera having a wide-angle lens fixed to a plurality of rigs (camera fixing bases) is used, and images acquired by each camera are joined to one omnidirectional image. ), Omnidirectional photography can be realized. It is also possible to perform omnidirectional photography by storing a plurality of cameras in one housing.
 しかし、このように、複数のカメラにより取得された画像を1の画像に繋ぎ合わせる場合、カメラ間でNP点が異なることにより、パララックス(視差)が生じ、高品質に複数の画像を繋ぎ合わせることができない。なお、NP点(ノンパララックス点)は、ノンパララックスポイント(NPP)、ノーダルポイント等とも呼ばれ、カメラが有する光学系の焦点中心である。本明細書において、NP点は、カメラ(撮像部)が有する光学系の開口絞りの中心を通る主光線中、ガウス領域に位置する主光線を選択し、当該選択された主光線の物空間における直線成分を延長して光軸と交わる点であってもよい。 However, when images acquired by a plurality of cameras are connected to one image in this way, parallax (parallax) occurs due to the difference in the NP point between the cameras, and the plurality of images are connected with high quality. I can't. Note that the NP point (non-parallax point) is also called a non-parallax point (NPP), nodal point, or the like, and is the focal center of the optical system of the camera. In this specification, an NP point selects a chief ray located in a Gaussian region from chief rays passing through the center of an aperture stop of an optical system included in a camera (imaging unit), and in the object space of the selected chief ray. It may be a point where the linear component is extended to intersect the optical axis.
 以下に図1、図2を参照してカメラ間で生じるパララックスについて説明を行う。図1、図2は、カメラ間で生じるパララックスについて説明するための説明図である。 The parallax generated between the cameras will be described below with reference to FIGS. 1 and 2 are explanatory diagrams for explaining parallax generated between cameras.
 図1には、点P10を回転中心としてカメラC11をカメラC12の位置に回転させた例を示している。点P10は、例えば三脚の回転軸である。回転中心がNP点と異なるため、図1に示すように、カメラC11のNP点NP11と、カメラC12のNP点NP12とは、位置が異なる。 FIG. 1 shows an example in which the camera C11 is rotated to the position of the camera C12 with the point P10 as the rotation center. Point P10 is a rotation axis of a tripod, for example. Since the rotation center is different from the NP point, as shown in FIG. 1, the NP point NP11 of the camera C11 and the NP point NP12 of the camera C12 are different in position.
 図1に示す画像G11は、カメラC11が画角A11で撮影することで得られた画像である。また、図1に示す画像G12は、カメラC12が画角A12で撮影することで得られた画像である。図1に示すように、画像G11と画像G12とを比較すると、奥行き方向に異なる距離に配置された物体B11と物体B12との間で、パララックスが生じている。画像G11と画像G12を用いて合成処理を行った場合、係るパララックスの影響により、高品質に画像を繋ぎ合わせることが困難である。 The image G11 shown in FIG. 1 is an image obtained by the camera C11 shooting with the angle of view A11. An image G12 shown in FIG. 1 is an image obtained by the camera C12 taking an image with an angle of view A12. As shown in FIG. 1, when the image G11 and the image G12 are compared, a parallax is generated between the object B11 and the object B12 arranged at different distances in the depth direction. When combining processing is performed using the image G11 and the image G12, it is difficult to join the images with high quality due to the influence of the parallax.
 一方、図2に示す例では、カメラC21のNP点NP21である点P20を回転中心としてカメラC21をカメラC22の位置に回転させた例を示している。NP点を回転中心として回転させているため、カメラC21のNP点NP21と、カメラC22のNP点NP22とは一致している。 On the other hand, the example shown in FIG. 2 shows an example in which the camera C21 is rotated to the position of the camera C22 around the point P20, which is the NP point NP21 of the camera C21. Since the NP point is rotated about the rotation center, the NP point NP21 of the camera C21 and the NP point NP22 of the camera C22 coincide with each other.
 図2に示す画像G21は、カメラC21が画角A21で撮影することで得られた画像である。また、図2に示す画像G22は、カメラC22が画角A22で撮影することで得られた画像である。図2に示すように、画像G21と画像G22とを比較すると、奥行き方向に異なる距離に配置された物体B21と物体B22との間で、パララックスが抑制されている。その結果、画像G21と画像G22を用いて合成処理を行った場合、高品質に画像を繋ぎ合わせることが可能となる。 The image G21 shown in FIG. 2 is an image obtained by the camera C21 shooting with the angle of view A21. An image G22 shown in FIG. 2 is an image obtained by the camera C22 taking an image with an angle of view A22. As shown in FIG. 2, when the image G21 and the image G22 are compared, the parallax is suppressed between the object B21 and the object B22 arranged at different distances in the depth direction. As a result, when combining processing is performed using the image G21 and the image G22, it is possible to join the images with high quality.
 上記では、図1、図2を参照して、カメラを回転させて撮影した場合の例を説明したが、複数のカメラ(撮像部)で取得された画像を合成する場合であっても、同様の考察が可能である。つまり、複数のカメラで取得された画像を合成する場合であっても、パララックスの影響を抑制するためには、当該複数のカメラのNP点を一致させることが望ましい。 In the above, an example in which the camera is rotated and photographed has been described with reference to FIGS. 1 and 2, but the same is true even when images acquired by a plurality of cameras (imaging units) are combined. Is possible. That is, even when images acquired by a plurality of cameras are combined, it is desirable to match the NP points of the plurality of cameras in order to suppress the influence of parallax.
 そこで、例えば、NP点が撮像素子よりも後方に存在するような光学系を有する撮像部を複数備え、全ての撮像部のNP点が略一致するように撮像部を配置することで、パララックスの影響を抑制することが考えられる。しかし、全天球撮影を行う撮像装置のように、多数の撮像部を備え、さらに垂直方向、及び水平方向の両方に撮像部が配置されるような撮像装置において、パララックスの影響を抑制するための構成については十分な検討がなされていなかった。例えば、各撮像部が有するレンズのうち、最も被写体側に位置する前玉レンズの形状によっては、隣接する撮像部により取得される画像間で重なり合う領域が不足し、高品質に合成することが困難となる場合があった。 Therefore, for example, by providing a plurality of imaging units having an optical system in which the NP point exists behind the imaging device, and arranging the imaging units so that the NP points of all the imaging units substantially coincide, It is conceivable to suppress the influence of. However, in an imaging apparatus that includes a large number of imaging units and in which imaging units are arranged both in the vertical direction and in the horizontal direction, such as an imaging apparatus that performs omnidirectional imaging, the influence of parallax is suppressed. However, the structure for this has not been fully studied. For example, depending on the shape of the front lens located closest to the subject among the lenses included in each imaging unit, there is a lack of overlapping areas between images acquired by adjacent imaging units, making it difficult to synthesize with high quality There was a case.
 そこで、上記事情を一着眼点にして本開示の実施形態を創作するに至った。本開示の実施形態によれば、より多数のレンズを備えた撮像装置であってもパララックスの影響を抑制することが可能である。以下、本開示の実施形態に係る撮像装置の構成例について説明する。 Therefore, the embodiment of the present disclosure has been created with the above circumstances in mind. According to the embodiment of the present disclosure, it is possible to suppress the influence of parallax even in an imaging apparatus including a larger number of lenses. Hereinafter, a configuration example of the imaging device according to the embodiment of the present disclosure will be described.
 <<2.第1の実施形態>>
  <2-1.構成例>
 まず、図3~図8を参照して、本開示の第1の実施形態に係る撮像装置の構成例について説明する。図3は、本開示の第1の実施形態に係る撮像装置1の外観を示す説明図である。図3には、撮像装置1に関する平面図F11、側面図F12、正面図F13、及び底面図F14を示している。図3に示すように、撮像装置1は、切頭二十面体状の本体部12と、外部筐体14とを備え、全天球撮影を行う撮像装置である。
<< 2. First Embodiment >>
<2-1. Configuration example>
First, a configuration example of the imaging device according to the first embodiment of the present disclosure will be described with reference to FIGS. FIG. 3 is an explanatory diagram illustrating an appearance of the imaging device 1 according to the first embodiment of the present disclosure. In FIG. 3, the top view F11 regarding the imaging device 1, the side view F12, the front view F13, and the bottom view F14 are shown. As shown in FIG. 3, the imaging apparatus 1 is an imaging apparatus that includes a truncated icosahedron-shaped main body 12 and an external housing 14 and performs omnidirectional imaging.
 図4は、本実施形態に係る撮像装置1の構成を説明するための説明図である。図4に示すように、本体部12は、複数の撮像部120と、フレーム部122とを備える。また、撮像部120は、それぞれフレーム部122に固定される前玉レンズ121と、フレーム部122の内側に位置する撮像素子125とを有する。撮像素子125は、例えばCCDイメージセンサや、CMOSイメージセンサ等の固体撮像素子であってよく、前玉レンズ121を通過した光を検出する。なお、撮像部120は、前玉レンズ121と撮像素子125との間に他のレンズを有してもよい。 FIG. 4 is an explanatory diagram for explaining a configuration of the imaging apparatus 1 according to the present embodiment. As shown in FIG. 4, the main body unit 12 includes a plurality of imaging units 120 and a frame unit 122. The imaging unit 120 includes a front lens 121 that is fixed to the frame unit 122 and an imaging element 125 that is positioned inside the frame unit 122. The image sensor 125 may be a solid-state image sensor such as a CCD image sensor or a CMOS image sensor, and detects light that has passed through the front lens 121. Note that the imaging unit 120 may include another lens between the front lens 121 and the imaging element 125.
 本体部12は、切頭二十面体状であり、前玉レンズ121は、切頭二十面体(凸多面体の一例)を構成する面に対応するように配置される。図4に示すように、本体部12の底部の正五角形の面に相当する位置に外部筐体14が接続されているため、切頭二十面体が有する32面のうち、底部の正五角形の面を除いた31面に対応するように撮像部120の前玉レンズ121が配置される。つまり、本体部12は、31の撮像部120を備える。 The main body 12 has a truncated icosahedron shape, and the front lens 121 is disposed so as to correspond to a surface constituting a truncated icosahedron (an example of a convex polyhedron). As shown in FIG. 4, the external casing 14 is connected to a position corresponding to the regular pentagonal surface of the bottom of the main body 12, and therefore the bottom pentagonal shape of the 32 surfaces of the truncated icosahedron is included. The front lens 121 of the imaging unit 120 is arranged so as to correspond to 31 surfaces excluding the surface. That is, the main body 12 includes 31 imaging units 120.
 また、撮像装置1が備える全ての撮像部120のNP点NP1は略一致している。なお、本明細書において、複数のNP点が略一致するとは、例えば所定半径の球内に当該複数のNP点が集合することを意味する。なお、当該所定半径は、例えば20mmであってもよい。係る構成により、撮像装置1が備える複数の撮像部120により取得された画像を高品質に繋ぎあわせることが可能となる。 In addition, the NP points NP1 of all the imaging units 120 included in the imaging device 1 are substantially the same. In the present specification, the fact that a plurality of NP points substantially coincides means, for example, that the plurality of NP points gather within a sphere having a predetermined radius. The predetermined radius may be 20 mm, for example. With such a configuration, it is possible to connect images acquired by the plurality of imaging units 120 included in the imaging apparatus 1 with high quality.
 各前玉レンズ121を光軸方向から見たときの外形は、切頭二十面体を構成し得る多角形である正六角形または正五角形と略相似形状である。なお、以下では、前玉レンズ121を光軸方向から見たときの外形を、単に前玉レンズ121の外形と呼称する場合がある。 The outer shape of each front lens 121 when viewed from the optical axis direction is substantially similar to a regular hexagon or regular pentagon that is a polygon that can form a truncated icosahedron. In the following description, the outer shape of the front lens 121 viewed from the optical axis direction may be simply referred to as the outer shape of the front lens 121.
 図4に示す例では、撮像部120aが有する前玉レンズ121aは正六角形と略相似形状であり、撮像部120bが有する前玉レンズ121bは正五角形と略相似形状である。係る構成により、隣接する前玉レンズ121同士がより密接に配置され、隣接する撮像部120により取得される画像間で重なり合う領域が十分に存在し、より高品質に画像を繋ぎ合わせることが可能となる。 In the example shown in FIG. 4, the front lens 121a included in the imaging unit 120a has a substantially similar shape to a regular hexagon, and the front lens 121b included in the imaging unit 120b has a substantially similar shape to a regular pentagon. With such a configuration, the adjacent front lens 121 is arranged more closely, there is a sufficient overlap area between images acquired by the adjacent imaging unit 120, and it is possible to join images with higher quality. Become.
 なお、撮像部120aが有する撮像素子125aと、撮像部120bが有する撮像素子125bとは、同一の形状やサイズであってもよいし、前玉レンズ121の外形に応じて異なる形状やサイズであってもよい。また、本体部12が備える撮像部120には、前玉レンズ121が正六角形と略相似形状である撮像部120が20個、前玉レンズ121が正五角形と略相似形状である撮像部120が11個含まれる。 The imaging element 125a included in the imaging unit 120a and the imaging element 125b included in the imaging unit 120b may have the same shape or size, or may have different shapes or sizes depending on the outer shape of the front lens 121. May be. In addition, the imaging unit 120 included in the main body unit 12 includes 20 imaging units 120 in which the front lens 121 is substantially similar to a regular hexagon, and an imaging unit 120 in which the front lens 121 is approximately similar to a regular pentagon. 11 are included.
 フレーム部122は、撮像部120の前玉レンズ121を固定する。図4に示すように、フレーム部122の下部にはスリット状の吸気口123が設けられ、フレーム部122の上部にはスリット状の排気口124が設けられてもよい。図5~図7を参照して吸気口123、及び排気口124についてより詳細に説明する。 The frame unit 122 fixes the front lens 121 of the imaging unit 120. As shown in FIG. 4, a slit-like intake port 123 may be provided in the lower portion of the frame portion 122, and a slit-like exhaust port 124 may be provided in the upper portion of the frame portion 122. The intake port 123 and the exhaust port 124 will be described in more detail with reference to FIGS.
 図5は、撮像装置1を下から見た底面図である。図5に示すように、フレーム部122の下部には5つの吸気口123a~123eが設けられる。図6は、撮像装置1を上から見た平面図である。図6に示すように、フレーム部122の上部には5つの排気口124a~124eが設けられる。なお、図5、図6に示したのは一例であって、フレーム部122に設けられる吸気口123、及び排気口124の数は係る例に限定されない。 FIG. 5 is a bottom view of the imaging device 1 as viewed from below. As shown in FIG. 5, five intake ports 123a to 123e are provided in the lower portion of the frame portion 122. FIG. 6 is a plan view of the imaging device 1 as viewed from above. As shown in FIG. 6, five exhaust ports 124a to 124e are provided in the upper portion of the frame portion 122. 5 and 6 are merely examples, and the number of intake ports 123 and exhaust ports 124 provided in the frame portion 122 is not limited to such examples.
 図7は、吸気口123、及び排気口124による放熱効果を模式的に示す説明図である。図7に示すように、吸気口123から外気が吸気され、撮像素子125の熱により本体部12の内部で空気の流れが発生し、熱せられた空気が排気口124から排気される。係る構成により、撮像素子125により発生する熱が放熱される。 FIG. 7 is an explanatory view schematically showing the heat radiation effect by the air inlet 123 and the air outlet 124. As shown in FIG. 7, outside air is sucked from the air inlet 123, an air flow is generated inside the main body 12 due to the heat of the imaging element 125, and the heated air is exhausted from the air outlet 124. With such a configuration, heat generated by the image sensor 125 is dissipated.
 また、フレーム部122には、前玉レンズ121を保護するための凸部が設けられてもよい。図8は、フレーム部122に設けられる凸部を説明するための説明図である。図8に示すように、フレーム部122には、前玉レンズ121に対して外側に突出した凸部129が設けられる。係る構成により、前玉レンズ121が保護され、例えば狭い場所等で撮像装置1を用いた場合であっても、前玉レンズ121に傷がつきにくくなる。 Further, the frame portion 122 may be provided with a convex portion for protecting the front lens 121. FIG. 8 is an explanatory diagram for explaining a convex portion provided in the frame portion 122. As shown in FIG. 8, the frame portion 122 is provided with a convex portion 129 that protrudes outward with respect to the front lens 121. With such a configuration, the front lens 121 is protected, and even when the imaging apparatus 1 is used in a narrow place or the like, the front lens 121 is not easily damaged.
 図4に戻って説明を続ける。図4に示す外部筐体14は、フレーム部122の外側に位置する。外部筐体14は、例えば撮像部120により取得される画像を処理する画像処理部(不図示)、電源端子コネクタ基板(不図示)等、撮像素子125以外で熱を発生させる可能性がある部品を収納してもよい。係る構成により、フレーム部122の内側に位置する撮像素子125、及び外部筐体14に収納される部品(画像処理部、電源端子コネクタ基板等)のそれぞれが発生させる熱の影響を分散させることが可能となる。なお、画像処理部は、例えば撮像部120により取得された画像を繋ぎ合わせる合成処理を行ってもよいし、他の処理を行ってもよい。 Referring back to FIG. The external housing 14 illustrated in FIG. 4 is located outside the frame portion 122. The external casing 14 is a component that may generate heat other than the imaging element 125, such as an image processing unit (not shown) that processes an image acquired by the imaging unit 120, a power terminal connector board (not shown), and the like. May be stored. With such a configuration, it is possible to disperse the influence of heat generated by each of the imaging element 125 positioned inside the frame unit 122 and the components (image processing unit, power terminal connector board, etc.) housed in the external housing 14. It becomes possible. Note that the image processing unit may perform, for example, a combining process for joining the images acquired by the imaging unit 120, or may perform other processes.
  <2-2.変形例>
 以上、図4~図8を参照して、本実施形態に係る撮像装置1の構成例を説明した。なお、図4~図8に示したのは一例であって、本実施形態は係る例に限定されない。以下では、本実施形態の変形例を説明する。なお、以下に説明する変形例は、単独で本実施形態に適用されてもよいし、組み合わせで本実施形態に適用されてもよい。また、本変形例は、本実施形態で説明した構成に代えて適用されてもよいし、本実施形態で説明した構成に対して追加的に適用されてもよい。
<2-2. Modification>
The configuration example of the imaging device 1 according to the present embodiment has been described above with reference to FIGS. 4 to 8 are merely examples, and the present embodiment is not limited to such examples. Below, the modification of this embodiment is demonstrated. In addition, the modification demonstrated below may be applied to this embodiment independently, and may be applied to this embodiment in combination. In addition, this modification may be applied instead of the configuration described in the present embodiment, or may be additionally applied to the configuration described in the present embodiment.
 (マイクロフォンが設けられる変形例)
 例えば、フレーム部122には、音響を取得(収音)するためのマイクロフォンが設けられてもよい。本実施形態に係る撮像装置1は全天球撮影を行うための撮像装置であるため、音響も全方位から取得することが望ましい。以下、図8、図9を参照して、フレーム部122にマイクロフォンが設けられた場合の、マイクロフォンの配置例について説明する。図9はフレーム部122にマイクロフォンが設けられた変形例を示す平面図であり、図10はフレーム部122にマイクロフォンが設けられた変形例を示す底面図である。
(Modification in which a microphone is provided)
For example, the frame unit 122 may be provided with a microphone for acquiring (sound collection) sound. Since the imaging apparatus 1 according to the present embodiment is an imaging apparatus for performing omnidirectional imaging, it is desirable to acquire sound from all directions. Hereinafter, with reference to FIG. 8 and FIG. 9, an example of the arrangement of microphones when the microphone is provided in the frame unit 122 will be described. FIG. 9 is a plan view showing a modified example in which a microphone is provided in the frame part 122, and FIG. 10 is a bottom view showing a modified example in which a microphone is provided in the frame part 122.
 図9に示すようにフレーム部122の上部に6つのマイクロフォン126a~126fが設けられ、図10に示すようにフレーム部122の下部に6つのマイクロフォン126g~126lが設けられてもよい。なお、図5を参照して説明した例では、フレーム部122には吸気口123が5つ設けられていたが、図10に示すように、フレーム部122にマイクロフォンが設けられる場合、フレーム部122に設けられる吸気口123の数は4つであってもよい。 As shown in FIG. 9, six microphones 126a to 126f may be provided in the upper part of the frame part 122, and six microphones 126g to 126l may be provided in the lower part of the frame part 122 as shown in FIG. In the example described with reference to FIG. 5, five intake ports 123 are provided in the frame unit 122, but when the microphone is provided in the frame unit 122 as illustrated in FIG. 10, the frame unit 122. The number of the air inlets 123 provided in may be four.
 全方位からの収音に関し、正十二面体の各面にマイクロフォンを配置することで、より効率的に全方位から音響を収音可能であることが知られている。そこで、図9、図10に示すマイクロフォン126a~126lは、フレーム部122の外側に仮想的に配置された正十二面体VPの各面に面直な位置に配置されている。係る構成により、撮像装置1は、より効率的に全方位から音響を収音可能である。 Regarding sound collection from all directions, it is known that sound can be collected from all directions more efficiently by arranging microphones on each surface of the regular dodecahedron. Therefore, the microphones 126a to 126l shown in FIG. 9 and FIG. 10 are arranged in a position that is perpendicular to each surface of the regular dodecahedron VP that is virtually arranged outside the frame portion 122. With this configuration, the imaging apparatus 1 can collect sound from all directions more efficiently.
 (複数のフレーム部からなる複合フレーム部を備える変形例)
 また、撮像装置1の本体部12は、複数のフレーム部からなる複合フレーム部を備えてもよい。図11は、本体部12が複数のフレーム部からなる複合フレーム部を備える変形例を説明するための説明図である。
(Modification example including a composite frame part composed of a plurality of frame parts)
In addition, the main body 12 of the imaging device 1 may include a composite frame unit including a plurality of frame units. FIG. 11 is an explanatory diagram for explaining a modified example in which the main body 12 includes a composite frame portion including a plurality of frame portions.
 図11に示すように、本体部12は、複数のフレーム部132からなる複合フレーム部130を備える。また、各フレーム部132は、1の前玉レンズ121を固定している。図11に示す例では、フレーム部132aは前玉レンズ121aを固定し、フレーム部132bは前玉レンズ121bを固定している。したがって、フレーム部132に係る取り付けビス134を外すことで、各前玉レンズ121を別々に取り外し可能であり、メンテナンス性を向上させることが可能である。 As shown in FIG. 11, the main body portion 12 includes a composite frame portion 130 including a plurality of frame portions 132. In addition, each frame portion 132 fixes one front lens 121. In the example shown in FIG. 11, the frame part 132a fixes the front lens 121a, and the frame part 132b fixes the front lens 121b. Therefore, each front lens 121 can be detached separately by removing the mounting screw 134 related to the frame portion 132, and the maintainability can be improved.
 (インジケータが設けられる変形例)
 また、フレーム部132には、撮像部120の状態を示すインジケータが設けられてもよい。インジケータにより示される撮像部120の状態は、例えば正常、撮影中、撮影停止中等の状態を含んでもよい。
(Modification in which an indicator is provided)
The frame unit 132 may be provided with an indicator that indicates the state of the imaging unit 120. The state of the imaging unit 120 indicated by the indicator may include, for example, a state such as normal, shooting, and shooting stopped.
 図12は、フレーム部132にインジケータが設けられる例を説明するための説明図である。図12に示すように、フレーム部132には、インジケータ136が設けられる。インジケータ136は、例えばLED(light emitting diode)等の発光部であってもよい。また、係る場合、インジケータ136は、例えば色や点滅パターン等で撮像部120の状態を示してもよい。 FIG. 12 is an explanatory diagram for explaining an example in which an indicator is provided in the frame unit 132. As shown in FIG. 12, the frame part 132 is provided with an indicator 136. The indicator 136 may be a light emitting unit such as an LED (light emitting diode). In such a case, the indicator 136 may indicate the state of the imaging unit 120 by, for example, a color or a blinking pattern.
 また、インジケータ136は、それぞれ1の撮像部120に対応し、対応する撮像部120の状態を示してもよい。例えば、インジケータ136と、当該インジケータ136が設けられたフレーム部132が固定する前玉レンズ121を有する撮像部120とが対応してもよい。図12に示す例では、インジケータ136aは、インジケータ136aが設けられたフレーム部132aが固定する前玉レンズ121aを有する撮像部120aと対応する。また、インジケータ136bは、インジケータ136bが設けられたフレーム部132bが固定する前玉レンズ121bを有する撮像部120bと対応する。 In addition, each indicator 136 may correspond to one imaging unit 120, and may indicate the state of the corresponding imaging unit 120. For example, the indicator 136 may correspond to the imaging unit 120 having the front lens 121 fixed to the frame unit 132 provided with the indicator 136. In the example shown in FIG. 12, the indicator 136a corresponds to the imaging unit 120a having the front lens 121a fixed to the frame unit 132a provided with the indicator 136a. The indicator 136b corresponds to the imaging unit 120b having the front lens 121b fixed to the frame portion 132b provided with the indicator 136b.
 係る構成により、各撮像部120の状態を容易に把握することが可能となる。 With this configuration, the state of each imaging unit 120 can be easily grasped.
  <2-3.効果>
 以上、本開示の第1の実施形態について説明した。本実施形態によれば、撮像部のNP点を略一致させることで、パララックスの影響を抑えることが可能である。さらに、撮像部が有する前玉レンズの外形を切頭二十面体を構成し得る多角形と略相似形状とし、前玉レンズを切頭二十面体の面に対応するように配置させることで、より高品質に画像を繋ぎ合わせることが可能となる。
<2-3. Effect>
Heretofore, the first embodiment of the present disclosure has been described. According to the present embodiment, it is possible to suppress the influence of parallax by making the NP points of the imaging unit substantially coincide. Furthermore, the outer shape of the front lens that the imaging unit has is substantially similar to the polygon that can constitute the truncated icosahedron, and the front lens is arranged so as to correspond to the surface of the truncated icosahedron, It becomes possible to join images with higher quality.
 <<3.他の実施形態>>
 上記第1の実施形態では、隣接する撮像部が有する前玉レンズ同士がより密接に配置されるようにするため、切頭二十面体が有する面に対応するように前玉レンズが配置される例を説明した。しかし、本技術は係る例に限定されず、他の凸多面体の面に対応するように前玉レンズが配置されてもよい。以下では、凸多面体の面に対応するように配置される前玉レンズについて検討を行った後、いくつかの他の実施形態について説明を行う。
<< 3. Other embodiments >>
In the first embodiment, the front lens is disposed so as to correspond to the surface of the truncated icosahedron so that the front lenses of the adjacent imaging units are more closely arranged. An example was explained. However, the present technology is not limited to such an example, and the front lens may be arranged so as to correspond to the surface of another convex polyhedron. Below, after examining the front lens arranged so as to correspond to the surface of the convex polyhedron, some other embodiments will be described.
  <3-1.前玉レンズに関する検討>
 正多面体(別名:プラトンの立体)と呼ばれる、すべての面が同一の正多角形で構成されてあり、かつすべての頂点において接する面の数が等しい凸多面体が知られている。図13は正多面体の一覧を示す表である。図13に示すように、正多面体には正四面体、正六面体正八面体、正十二面体、正二十面体が存在する。
<3-1. Study on front lens>
There is known a convex polyhedron called a regular polyhedron (also known as a Plato solid), in which all the faces are composed of the same regular polygon and the number of faces in contact at all vertices is equal. FIG. 13 is a table showing a list of regular polyhedra. As shown in FIG. 13, the regular polyhedron includes a regular tetrahedron, a regular hexahedron regular octahedron, a regular dodecahedron, and a regular icosahedron.
 図14は正多面体の展開図について説明するための説明図である。展開図T11は、正四面体の展開図である。正四面体は、全ての面が正三角形T11aと同一の正三角形で構成される。展開図T12は、正六面体の展開図である。正六面体は、全ての面が正方形T12aと同一の正方形で構成される。展開図T13は、正八面体の展開図である。正八面体は、全ての面が正三角形T13aと同一の正三角形で構成される。展開図T14は、正十二面体の展開図である。正十二面体は、全ての面が正五角形T14aと同一の正五角形で構成される。展開図T15は、正二十面体の展開図である。正二十面体は、全ての面が正三角形T15aと同一の正三角形で構成される。 FIG. 14 is an explanatory diagram for explaining a development view of a regular polyhedron. A developed view T11 is a developed view of a regular tetrahedron. The regular tetrahedron is composed of the same regular triangle as the regular triangle T11a on all surfaces. A developed view T12 is a developed view of a regular hexahedron. The regular hexahedron is composed of the same square as the square T12a on all surfaces. A developed view T13 is a developed view of a regular octahedron. The regular octahedron is composed of equilateral triangles whose faces are identical to the equilateral triangle T13a. A developed view T14 is a developed view of a regular dodecahedron. The regular dodecahedron has a regular pentagon that is the same as the regular pentagon T14a. A developed view T15 is a developed view of an icosahedron. The regular icosahedron is composed of the same equilateral triangle as the equilateral triangle T15a on all faces.
 ここで、正多面体の面に対応するように前玉レンズが配置される撮像装置を考えると、第1の実施形態で説明した例と同様に、前玉レンズの外形は正多面体を構成し得る多角形と略相似形状となることが望ましい。 Here, considering an imaging device in which a front lens is arranged so as to correspond to the surface of a regular polyhedron, the outer shape of the front lens can constitute a regular polyhedron, as in the example described in the first embodiment. It is desirable that the shape is substantially similar to a polygon.
 ところで、円形レンズから切り出すことで前玉レンズを製造する場合、製造コストを勘案すると前玉レンズの外形は円形に近い形状であることが望ましい。したがって、正三角形で構成される正四面体、正八面体、正二十面体の面に対応するように前玉レンズが配置される撮像装置よりも、正五角形で構成される正十二面体や正方形で構成される正六面体の面に対応するように前玉レンズが配置される撮像装置の方が製造コストの点で有利である。そこで、正十二面体の面に対応するように前玉レンズが配置される例を第2の実施形態として、正六面体の面に対応するように前玉レンズが配置される例を第3の実施形態として後述する。 By the way, when the front lens is manufactured by cutting out from the circular lens, it is desirable that the outer shape of the front lens is nearly circular considering the manufacturing cost. Therefore, a regular dodecahedron or square composed of regular pentagons rather than an imaging device in which a front lens is arranged to correspond to a regular tetrahedron, regular octahedron, or regular icosahedron composed of regular triangles. The imaging device in which the front lens is arranged so as to correspond to the surface of the regular hexahedron formed by is advantageous in terms of manufacturing cost. Therefore, as an example in which the front lens is arranged so as to correspond to the surface of the regular dodecahedron, a third example in which the front lens is arranged so as to correspond to the surface of the regular hexahedron. This will be described later as an embodiment.
 また、半正多面体(別名:アルキメデスの立体)と呼ばれ、凸な一様多面体のうち、正多面体以外のものである凸多面体も知られている。一様多面体は、全ての面が正多角形で、頂点形状が合同(頂点に集まる正多角形の種類と順序が同じ)である。半正多面体には、正多面体が除外されるため、半正多面体の面は2種類以上の正多角形で構成される。 Also known as a semi-regular polyhedron (also known as Archimedes solid), a convex polyhedron other than a regular polyhedron is also known among convex uniform polyhedrons. In the uniform polyhedron, all the faces are regular polygons, and the vertex shapes are congruent (the type and order of regular polygons gathered at the vertices are the same). Since the regular polyhedron is excluded from the semi-regular polyhedron, the surface of the semi-regular polyhedron is composed of two or more kinds of regular polygons.
 図15は半正多面体の一覧を示す表である。図15に示すように、半正多面体は13種類存在する。なお、図15に示す半正多面体のうち、切頭二十面体の面に対応するように前玉レンズが配置される例については既に第1の実施形態として説明したが、他の半正多面体の面に対応するように前玉レンズが配置される撮像装置も同様に実現可能である。 FIG. 15 is a table showing a list of semi-regular polyhedra. As shown in FIG. 15, there are 13 types of semi-regular polyhedrons. In addition, although the example in which the front lens is arranged so as to correspond to the truncated icosahedron in the semi-polyhedron shown in FIG. 15 has already been described as the first embodiment, other semi-polyhedra An imaging device in which the front lens is disposed so as to correspond to the surface of the lens can be similarly realized.
 半正多面体の面に対応するように前玉レンズが配置される撮像装置は、2種類以上の外形の前玉レンズを要するため、製造コストの観点では正多面体の面に対応するように前玉レンズが配置される撮像装置よりも不利になり得る。ただし、半正多面体には、正多面体の中で最も面数の多い正二十面体よりも面数の多いものが存在するため、より多数の撮像部を備えることが可能であり、取得される画像を繋ぎ合わせて得られる全天球画像の解像度を向上させることも可能であり得る。 Since the imaging device in which the front lens is disposed so as to correspond to the surface of the semi-polyhedron requires two or more types of front lens, the front lens is required to correspond to the surface of the regular polyhedron from the viewpoint of manufacturing cost. It can be disadvantageous than an imaging device in which a lens is arranged. However, the semi-regular polyhedron has a larger number of faces than the regular icosahedron having the largest number of faces among the regular polyhedrons, and thus it can be provided with a larger number of imaging units and is acquired. It may be possible to improve the resolution of the omnidirectional image obtained by joining the images.
 図16は、図15に示す半正多面体のうち、切頭二十面体の展開図である。図16の展開図T20に示すように、切頭二十面体は、正五角形T20aと同一の正五角形12枚と、正六角形T20bと同一の正六角形20枚と、で構成される。 FIG. 16 is a development view of a truncated icosahedron in the semi-regular polyhedron shown in FIG. As shown in a developed view T20 of FIG. 16, the truncated icosahedron is composed of 12 regular pentagons identical to the regular pentagon T20a and 20 regular hexagons identical to the regular hexagon T20b.
 図17は、切頭二十面体を構成する正五角形と正六角形について説明するための説明図である。図17に示すように、切頭二十面体を構成する正五角形T20aに外接する円の直径H21は、正六角形T20bに外接する円の直径H22よりも小さい。したがって、第1の実施形態で説明した切頭二十面体の面に対応するように前玉レンズが配置される撮像装置が有する前玉レンズに外接する円の直径は2種類となり得る。 FIG. 17 is an explanatory diagram for explaining a regular pentagon and a regular hexagon that form a truncated icosahedron. As shown in FIG. 17, the diameter H21 of the circle circumscribing the regular pentagon T20a constituting the truncated icosahedron is smaller than the diameter H22 of the circle circumscribing the regular hexagon T20b. Therefore, the diameter of the circle circumscribing the front lens included in the imaging device in which the front lens is arranged so as to correspond to the face of the truncated icosahedron described in the first embodiment can be two types.
 ところで、円形レンズから切り出すことで前玉レンズを製造する場合、撮像装置が有する前玉レンズに外接する円の直径の種類に応じた種類の円形レンズが必要となるため、撮像装置が有する前玉レンズに外接する円の直径の種類は少ないことが望ましい。そこで、備える撮像部を減少させることなく、備える全ての前玉レンズに外接する円の直径を同一とした例を第4の実施形態として後述する。 By the way, when a front lens is manufactured by cutting out from a circular lens, a round lens of a type corresponding to the type of diameter of a circle circumscribing the front lens of the imaging device is required. It is desirable that the number of diameters of the circle circumscribing the lens is small. Therefore, an example in which the diameters of the circles circumscribing all the front lens lenses provided are made the same without reducing the number of imaging units provided will be described later as a fourth embodiment.
  <3-2.第2の実施形態>
 図18は、本開示の第2の実施形態に係る撮像装置2の構成を説明するための説明図である。なお、本開示の第2の実施形態に係る撮像装置2は、上述した第1の実施形態に係る撮像装置1と一部において同一の構成を有するため、以下では、第1の実施形態と同一の点に関しては適宜省略し、主に第1の実施形態と異なる点について説明を行う。
<3-2. Second Embodiment>
FIG. 18 is an explanatory diagram for describing a configuration of the imaging apparatus 2 according to the second embodiment of the present disclosure. Note that the imaging device 2 according to the second embodiment of the present disclosure has the same configuration in part as the imaging device 1 according to the first embodiment described above, and therefore is the same as the first embodiment below. This point is omitted as appropriate, and differences from the first embodiment will be mainly described.
 図18には、撮像装置2に関する平面図F21、側面図F22、正面図F23、及び底面図F24を示している。図18に示すように、撮像装置2は、正十二面体状の本体部22と、外部筐体24とを備え、全天球撮影を行う撮像装置である。 FIG. 18 shows a plan view F21, a side view F22, a front view F23, and a bottom view F24 related to the imaging apparatus 2. As illustrated in FIG. 18, the imaging device 2 is an imaging device that includes a regular dodecahedron-shaped main body 22 and an external housing 24 and performs omnidirectional imaging.
 図18に示すように、本体部22は、撮像部220と、フレーム部222とを備える。また、撮像部220は、それぞれフレーム部222に固定される前玉レンズ221と、フレーム部222の内側に位置し、前玉レンズ221を通過した光を検出する撮像素子225とを有する。なお、撮像部220は、前玉レンズ221と撮像素子225との間に他のレンズを有してもよい。 As shown in FIG. 18, the main body unit 22 includes an imaging unit 220 and a frame unit 222. The imaging unit 220 includes a front lens 221 that is fixed to the frame unit 222 and an imaging element 225 that is positioned inside the frame unit 222 and detects light that has passed through the front lens 221. Note that the imaging unit 220 may have another lens between the front lens 221 and the imaging element 225.
 本体部22は、正十二面体状であり、前玉レンズ221は、正十二面体(正多面体の一例)を構成する面に対応するように配置される。図18に示すように、本体部22の底部の頂点に相当する位置に外部筐体24が接続されているため、正十二面体が有する12面の全てに対応するように撮像部220の前玉レンズ221が配置され得る。つまり、本実施形態に係る本体部22は、正十二面体が有する面の数と同数である12の撮像部220を備える。 The main body 22 has a regular dodecahedron shape, and the front lens 221 is disposed so as to correspond to a surface constituting a regular dodecahedron (an example of a regular polyhedron). As shown in FIG. 18, since the external housing 24 is connected to a position corresponding to the top of the bottom of the main body 22, the front of the imaging unit 220 is accommodated so as to correspond to all 12 surfaces of the regular dodecahedron. A ball lens 221 may be disposed. That is, the main body unit 22 according to the present embodiment includes twelve imaging units 220 that are the same number as the number of faces of the regular dodecahedron.
 なお、本実施形態に係る撮像部220の数は、第1の実施形態に係る撮像部120の数よりも少ないため、本実施形態に係る撮像素子225は、第1の実施形態に係る撮像素子125よりも高い解像度を有してもよい。係る構成により、撮像部の数が第1の実施形態よりも少なくても、撮像部220により取得された画像を繋ぎ合わせた画像の解像度を保つことが可能である。 Note that since the number of the imaging units 220 according to the present embodiment is smaller than the number of the imaging units 120 according to the first embodiment, the imaging element 225 according to the present embodiment is the imaging device according to the first embodiment. It may have a resolution higher than 125. With such a configuration, even if the number of image capturing units is smaller than that in the first embodiment, it is possible to maintain the resolution of an image obtained by joining the images acquired by the image capturing unit 220.
 また、撮像装置2が備える全ての撮像部220のNP点NP2は略一致している。係る構成により、撮像装置2が備える複数の撮像部220により取得された画像を高品質に繋ぎあわせることが可能となる。 Further, the NP points NP2 of all the imaging units 220 included in the imaging device 2 are substantially the same. With this configuration, it is possible to join images acquired by the plurality of imaging units 220 included in the imaging device 2 with high quality.
 各前玉レンズ221を光軸方向から見たときの外形は、正十二面体を構成し得る多角形である正五角形と略相似形状である。係る構成により、隣接する前玉レンズ221同士がより密接に配置され、隣接する撮像部220により取得される画像間で重なり合う領域が十分に存在し、より高品質に画像を繋ぎ合わせることが可能となる。 The outer shape of each front lens 221 when viewed from the optical axis direction is substantially similar to a regular pentagon that is a polygon that can form a regular dodecahedron. With such a configuration, adjacent front lens 221 is more closely arranged, there is a sufficient overlap area between images acquired by adjacent imaging units 220, and it is possible to join images with higher quality. Become.
 また、正十二面体は正多面体であるため、本実施形態に係る撮像装置2が備える全ての前玉レンズ221の外形は同一形状である。係る構成により、製造コストを抑制することが可能である。 Further, since the regular dodecahedron is a regular polyhedron, the outer shapes of all the front lens 221 provided in the imaging device 2 according to the present embodiment are the same shape. With such a configuration, manufacturing costs can be suppressed.
 フレーム部222は、撮像部220の前玉レンズ221を固定する。なお、図18には図示されていないが、フレーム部222には、図4~図7を参照して説明したフレーム部122と同様に吸気口、及び排気口が設けられてもよい。 The frame unit 222 fixes the front lens 221 of the imaging unit 220. Although not shown in FIG. 18, the frame portion 222 may be provided with an intake port and an exhaust port in the same manner as the frame portion 122 described with reference to FIGS.
 また、フレーム部222には、前玉レンズ221を保護するための凸部が設けられてもよい。図18に示すように、フレーム部222には、前玉レンズ221に対して外側に突出した凸部229が設けられる。係る構成により、前玉レンズ221が保護される。 Further, the frame portion 222 may be provided with a convex portion for protecting the front lens 221. As shown in FIG. 18, the frame portion 222 is provided with a convex portion 229 that protrudes outward with respect to the front lens 221. With this configuration, the front lens 221 is protected.
 外部筐体24の構成は、図4を参照して説明した外部筐体14と同様であるため、説明を省略する。 The configuration of the external casing 24 is the same as that of the external casing 14 described with reference to FIG.
 以上、本開示の第2の実施形態について説明した。本実施形態によれば、製造コストを抑制することが可能である。なお、第1の実施形態で説明した変形例を本実施形態に適用することも可能である。 Heretofore, the second embodiment of the present disclosure has been described. According to this embodiment, the manufacturing cost can be suppressed. Note that the modification described in the first embodiment can also be applied to this embodiment.
  <3-3.第3の実施形態>
 図19は、本開示の第3の実施形態に係る撮像装置3の構成を説明するための説明図である。なお、本開示の第3の実施形態に係る撮像装置3は、上述した第1の実施形態に係る撮像装置1または第2の実施形態に係る撮像装置3と一部において同一の構成を有するため、以下では、第1の実施形態または第2の実施形態と同一の点に関しては適宜省略しながら説明を行う。
<3-3. Third Embodiment>
FIG. 19 is an explanatory diagram for describing a configuration of an imaging apparatus 3 according to the third embodiment of the present disclosure. Note that the imaging device 3 according to the third embodiment of the present disclosure partially has the same configuration as the imaging device 1 according to the first embodiment or the imaging device 3 according to the second embodiment described above. In the following description, the same points as those in the first embodiment or the second embodiment will be omitted as appropriate.
 図19には、撮像装置3に関する平面図F31、側面図F32、正面図F33、及び底面図F34を示している。図19に示すように、撮像装置3は、全天球撮影を行う正六面体状の撮像装置である。 FIG. 19 shows a plan view F31, a side view F32, a front view F33, and a bottom view F34 related to the imaging apparatus 3. As shown in FIG. 19, the imaging device 3 is a regular hexahedral imaging device that performs omnidirectional imaging.
 図19に示すように、撮像装置3は、撮像部320と、フレーム部322とを備える。また、撮像部320は、それぞれフレーム部322に固定される前玉レンズ321と、フレーム部322の内側に位置し、前玉レンズ321を通過した光を検出する撮像素子325とを有する。なお、撮像部320は、前玉レンズ321と撮像素子325との間に他のレンズを有してもよい。 As shown in FIG. 19, the imaging device 3 includes an imaging unit 320 and a frame unit 322. The imaging unit 320 includes a front lens 321 that is fixed to the frame unit 322 and an imaging element 325 that is positioned inside the frame unit 322 and detects light that has passed through the front lens 321. The imaging unit 320 may have another lens between the front lens 321 and the imaging element 325.
 撮像装置3は正六面体状であり、前玉レンズ321は、正六面体(正多面体の一例)を構成する面に対応するように配置される。図19に示すように、正六面体が有する6面の全てに対応するように撮像部320の前玉レンズ321が配置され得る。つまり、本実施形態に係る撮像装置3は、正六面体が有する面の数と同数である6の撮像部320を備える。 The imaging device 3 has a regular hexahedron shape, and the front lens 321 is disposed so as to correspond to a surface constituting a regular hexahedron (an example of a regular polyhedron). As shown in FIG. 19, the front lens 321 of the imaging unit 320 can be arranged so as to correspond to all six surfaces of the regular hexahedron. That is, the imaging device 3 according to the present embodiment includes six imaging units 320 that are the same number as the number of faces of the regular hexahedron.
 また、撮像装置3が備える全ての撮像部320のNP点NP3は略一致している。係る構成により、撮像装置3が備える複数の撮像部320により取得された画像を高品質に繋ぎあわせることが可能となる。 In addition, the NP points NP3 of all the imaging units 320 included in the imaging device 3 are substantially the same. With this configuration, it is possible to join images acquired by the plurality of imaging units 320 included in the imaging device 3 with high quality.
 また、正六面体は正多面体であるため、本実施形態に係る撮像装置3が備える全ての前玉レンズ321の外形は同一形状である。係る構成により、製造コストを抑制することが可能である。 Further, since the regular hexahedron is a regular polyhedron, the outer shapes of all the front lens 321 included in the imaging device 3 according to the present embodiment are the same shape. With such a configuration, manufacturing costs can be suppressed.
 なお、本実施形態に係る撮像部320の数は、第1の実施形態に係る撮像部120の数や第2の実施形態に係る撮像部220の数よりも少ない。そのため、本実施形態に係る撮像装置3は、第1の実施形態に係る撮像装置1や、第2の実施形態に係る撮像装置2よりも小型化することが可能である。 Note that the number of imaging units 320 according to the present embodiment is smaller than the number of imaging units 120 according to the first embodiment and the number of imaging units 220 according to the second embodiment. Therefore, the imaging device 3 according to this embodiment can be made smaller than the imaging device 1 according to the first embodiment and the imaging device 2 according to the second embodiment.
 また、撮像部320の数が少ないため、撮像素子325、及び、画像処理部(不図示)、電源端子コネクタ基板(不図示)等の部品により発生する熱が小さい。そのため、第1の実施形態に係る撮像装置1、及び第2の実施形態に係る撮像装置2とは異なり、本実施形態に係る撮像装置3は外部筐体を備えなくてもよい。図19には図示していないが、画像処理部、電源端子コネクタ基板等の部品もフレーム部322の内部に収納されてよい。係る構成により、本実施形態に係る撮像装置3は、第1の実施形態に係る撮像装置1や、第2の実施形態に係る撮像装置2よりもさらに小型化することが可能である。 In addition, since the number of the imaging units 320 is small, heat generated by components such as the imaging device 325, the image processing unit (not shown), the power terminal connector board (not shown), and the like is small. Therefore, unlike the imaging device 1 according to the first embodiment and the imaging device 2 according to the second embodiment, the imaging device 3 according to this embodiment may not include an external housing. Although not shown in FIG. 19, components such as an image processing unit and a power terminal connector board may be housed in the frame unit 322. With this configuration, the imaging device 3 according to this embodiment can be further downsized than the imaging device 1 according to the first embodiment and the imaging device 2 according to the second embodiment.
 フレーム部322は、撮像部320の前玉レンズ321を固定する。なお、図19には図示されていないが、フレーム部322には、図4~図7を参照して説明したフレーム部122と同様に吸気口、及び排気口が設けられてもよい。 The frame unit 322 fixes the front lens 321 of the imaging unit 320. Although not shown in FIG. 19, the frame portion 322 may be provided with an intake port and an exhaust port in the same manner as the frame portion 122 described with reference to FIGS.
 また、フレーム部322には、前玉レンズ321を保護するための凸部が設けられてもよい。図19に示すように、フレーム部322には、前玉レンズ321に対して外側に突出した凸部329が設けられる。係る構成により、前玉レンズ321が保護される。 Further, the frame part 322 may be provided with a convex part for protecting the front lens 321. As shown in FIG. 19, the frame portion 322 is provided with a convex portion 329 protruding outward with respect to the front lens 321. With this configuration, the front lens 321 is protected.
 以上、本開示の第3の実施形態について説明した。本実施形態によれば、製造コストを抑制することが可能であると共に、小型化することが可能である。なお、第1の実施形態で説明した変形例を本実施形態に適用することも可能である。 Heretofore, the third embodiment of the present disclosure has been described. According to this embodiment, the manufacturing cost can be suppressed and the size can be reduced. Note that the modification described in the first embodiment can also be applied to this embodiment.
  <3-4.第4の実施形態>
 上述したように、第1の実施形態に係る撮像装置が有する前玉レンズに外接する円の直径は2種類となり得る。円形レンズから切り出すことで前玉レンズを製造する場合、撮像装置が有する前玉レンズに外接する円の直径の種類に応じた種類の円形レンズが必要となるため、撮像装置が有する前玉レンズに外接する円の直径の種類は少ないことが望ましい。そこで、以下では、本開示の第4の実施形態として、凸多面体の面の数を減少させることなく、備える全ての前玉レンズに外接する円の直径を同一とした例を説明する。
<3-4. Fourth Embodiment>
As described above, the diameter of the circle circumscribing the front lens of the imaging apparatus according to the first embodiment can be two types. When manufacturing a front lens by cutting out from a circular lens, a circular lens of a type corresponding to the type of diameter of a circle circumscribing the front lens of the imaging device is required. It is desirable that the diameter of the circumscribed circle is small. Accordingly, in the following, as a fourth embodiment of the present disclosure, an example in which the diameters of the circles circumscribing all the front lens lenses provided are the same without reducing the number of surfaces of the convex polyhedron will be described.
 なお、本実施形態に係る撮像装置は、前玉レンズの外形が異なる点を除いて、第1の実施形態に係る撮像装置1と同様の構成を有するため、以下では、本実施形態に係る前玉レンズの外形について説明する。 The imaging device according to the present embodiment has the same configuration as the imaging device 1 according to the first embodiment except that the outer shape of the front lens is different. The outer shape of the ball lens will be described.
 上述した第1の実施形態に係る撮像装置1では、切頭二十面体が有する面に対応するように前玉レンズが配置されていた。切頭二十面体は、正多面体である正二十面体が有する20個の頂点を切り落として形成される立体である。図20は、切頭二十面体の形成方法を説明するための説明図である。 In the imaging apparatus 1 according to the first embodiment described above, the front lens is arranged so as to correspond to the surface of the truncated icosahedron. The truncated icosahedron is a solid formed by cutting off 20 vertices of a regular icosahedron that is a regular polyhedron. FIG. 20 is an explanatory diagram for explaining a method of forming a truncated icosahedron.
 図20に示す正二十面体M1において、辺の長さ(点P1から点P2までの長さ)をkとすると、点P1を中心に、点P1と隣接する点に向かってk/3の位置で示される領域R10を切り落とすことで、正五角形の面を有する凸多面体M2が得られる。他の頂点についても同様に頂点を中心に辺の3分の1の位置で切り落とすことで、正五角形と正六角形とで構成される切頭二十面体M3が形成される。 In the icosahedron M1 shown in FIG. 20, if the length of the side (the length from the point P1 to the point P2) is k, it is k / 3 from the point P1 toward the point adjacent to the point P1. The convex polyhedron M2 having a regular pentagonal surface is obtained by cutting off the region R10 indicated by the position. Similarly, by cutting off the other vertices at the position of one third of the side centering on the vertices, a truncated icosahedron M3 composed of a regular pentagon and a regular hexagon is formed.
 ここで、上記の切り落とされる領域の大きさを調整することで、最終的に形成される凸多面体を構成する五角形、及び六角形の形状や大きさを調整することが可能である。例えば、各頂点から、各頂点を切り落とす位置までの長さを調整することで、最終的に形成される凸多面体を構成する五角形、及び六角形が外接する円の直径を同一とすることが可能である。 Here, by adjusting the size of the region to be cut off, it is possible to adjust the shape and size of the pentagon and hexagon that form the convex polyhedron to be finally formed. For example, by adjusting the length from each vertex to the position where each vertex is cut off, it is possible to make the diameters of the pentagon and the circle circumscribed by the hexagon that form the convex polyhedron finally formed equal It is.
 以下では、係る凸多面体を本実施形態に係る凸多面体と呼ぶ。なお、本実施形態に係る撮像装置が有する前玉レンズは、本実施形態に係る凸多面体を構成する面に対応するように配置される。また、本実施形態に係る撮像装置が有する前玉レンズを光軸方向から見たときの外形は、本実施形態に係る凸多面体を構成し得る多角形と略相似形状であり、かつ本実施形態に係る撮像装置が有する全ての前玉レンズに外接する円の直径は同一である。 Hereinafter, such a convex polyhedron is referred to as a convex polyhedron according to the present embodiment. In addition, the front lens which the imaging device which concerns on this embodiment has is arrange | positioned so as to correspond to the surface which comprises the convex polyhedron which concerns on this embodiment. Further, the outer shape of the front lens included in the imaging apparatus according to the present embodiment when viewed from the optical axis direction is substantially similar to the polygon that can form the convex polyhedron according to the present embodiment, and the present embodiment. The diameters of the circles circumscribing all the front lens elements of the image pickup apparatus according to the above are the same.
 図21は、本実施形態に係る凸多面体の展開図である。図21の展開図T30に示すように、係る凸多面体は、正五角形T30aと同一の正五角形12枚と、六角形T30bと同一の六角形20枚と、で構成される。なお、六角形T30bは正多角形ではない。 FIG. 21 is a development view of the convex polyhedron according to the present embodiment. As shown in the developed view T30 of FIG. 21, the convex polyhedron is composed of 12 regular pentagons identical to the regular pentagon T30a and 20 hexagons identical to the hexagon T30b. Note that the hexagon T30b is not a regular polygon.
 図22は、本実施形態に係る凸多面体を構成し得る多角形について、より詳細に説明するための説明図である。図22には半径1の球の中心を原点とし、x=1の平面に交わる点がy-z平面にプロットされている。 FIG. 22 is an explanatory diagram for explaining in more detail a polygon that can form the convex polyhedron according to the present embodiment. In FIG. 22, the point where the center of a sphere with a radius of 1 is the origin and intersects the plane of x = 1 is plotted on the yz plane.
 本実施形態に係る凸多面体において、正五角形T30aと六角形T30bは接するため、図22に示すように、正五角形T30aの各辺の長さは六角形T30bの一部の辺の長さと一致する。 In the convex polyhedron according to the present embodiment, the regular pentagon T30a and the hexagon T30b are in contact with each other. Therefore, as shown in FIG. .
 図22に示した正五角形T30a、及び六角形T30bが外接する円の直径は同一である。したがって、正五角形T30a、及び六角形T30bと略相似形状となるように前玉レンズを形成する場合、本実施形態に係る撮像装置が有する全ての前玉レンズに外接する円の直径が同一となるように前玉レンズを形成し得る。 The diameters of the circles circumscribed by the regular pentagon T30a and the hexagon T30b shown in FIG. 22 are the same. Therefore, when the front lens is formed so as to be substantially similar to the regular pentagon T30a and the hexagon T30b, the diameters of the circles circumscribing all the front lenses included in the imaging apparatus according to the present embodiment are the same. Thus, the front lens can be formed.
 係る構成により、撮像装置が備える前玉レンズの外形の種類が複数の場合であっても、前玉レンズを切り出すための円形レンズが同一形状となり、複数種類の円形レンズを製造しなくてもよいため、製造コストが抑制される。また、前玉レンズを切り出すための円形レンズが同一形状となることで、前玉レンズの外形に関わらず、前玉レンズと撮像素子との間に存在するレンズの構成や、撮像素子の構成を統一することが可能であり、さらに製造コストが抑制される。 With such a configuration, even when there are a plurality of types of outer shapes of the front lens provided in the imaging apparatus, the circular lenses for cutting out the front lens have the same shape, and it is not necessary to manufacture a plurality of types of circular lenses. Therefore, the manufacturing cost is suppressed. In addition, the circular lens for cutting out the front lens becomes the same shape, so that the configuration of the lens existing between the front lens and the image sensor and the configuration of the image sensor are independent of the outer shape of the front lens. It is possible to unify, and the manufacturing cost is further suppressed.
 図23は、本実施形態に係る撮像素子の大きさについて説明するための説明図である。図23には、正五角形T30aに外接したアスペクト比1:1.20の領域Q1と、六角形T30bに外接したアスペクト比1:1.20の領域Q2とが示されている。図23に示されるように、正五角形T30aに外接した領域Q1の方が、六角形T30bに外接した領域Q2より大きい。 FIG. 23 is an explanatory diagram for explaining the size of the image sensor according to the present embodiment. FIG. 23 shows a region Q1 having an aspect ratio of 1: 1.20 circumscribing the regular pentagon T30a, and a region Q2 circumscribing the hexagon T30b having an aspect ratio of 1: 1.20. As shown in FIG. 23, the region Q1 circumscribing the regular pentagon T30a is larger than the region Q2 circumscribing the hexagon T30b.
 そこで、領域Q1に応じた大きさの撮像素子が、本実施形態に係る撮像装置が備える撮像素子として統一的に用いられてもよい。なお、領域Q1に応じた大きさの撮像素子が統一的に用いられる場合、図23に示す例では、正五角形T30aの上下に余分な領域が存在し、六角形T30bの上下左右に余分な領域が存在する。 Therefore, an image sensor having a size corresponding to the region Q1 may be used as an image sensor included in the image pickup apparatus according to the present embodiment. Note that when the image sensors having the size corresponding to the region Q1 are used in a unified manner, in the example shown in FIG. 23, there are extra regions above and below the regular pentagon T30a, and extra regions above and below and right and left of the hexagon T30b. Exists.
 以上、本開示の第4の実施形態について説明した。本実施形態によれば、第1の実施形態と比較して、撮像部の数を減らすことなく、製造コストを抑制することが可能である。なお、第1の実施形態で説明した変形例を本実施形態に適用することも可能である。 Heretofore, the fourth embodiment of the present disclosure has been described. According to the present embodiment, it is possible to suppress the manufacturing cost without reducing the number of imaging units as compared with the first embodiment. Note that the modification described in the first embodiment can also be applied to this embodiment.
 <<4.むすび>>
 以上説明したように、本開示の各実施形態によれば、より多数のレンズを備えた撮像装置であってもパララックスの影響を抑制することが可能である。
<< 4. Conclusion >>
As described above, according to each embodiment of the present disclosure, it is possible to suppress the influence of parallax even in an imaging apparatus including a larger number of lenses.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 前玉レンズと撮像素子を有する撮像部を複数備え、
 各前記前玉レンズを光軸方向から見たときの外形は、凸多面体を構成し得る多角形と略相似形状であり、
 前記前玉レンズは、前記凸多面体を構成する面に対応するように配置され、
 前記複数の前記撮像部のNP点は略一致する、撮像装置。
(2)
 前記撮像装置は、前記前玉レンズを固定するフレーム部をさらに備える、前記(1)に記載の撮像装置。
(3)
 前記撮像素子は、前記フレーム部の内側に位置する、前記(2)に記載の撮像装置。
(4)
 前記フレーム部の下部に吸気口が設けられ、前記フレーム部の上部に排気口が設けられる、前記(3)に記載の撮像装置。
(5)
 前記フレーム部には、前記前玉レンズに対して外側に突出した凸部が設けられる、前記(4)に記載の撮像装置。
(6)
 前記フレーム部には、マイクロフォンが設けられる、前記(2)~(5)のいずれか一項に記載の撮像装置。
(7)
 前記マイクロフォンは、前記フレーム部の外側に仮想的に配置された正十二面体の各面に面直な位置に配置される、前記(6)に記載の撮像装置。
(8)
 前記撮像装置は、複数のフレーム部からなる複合フレーム部を備え、
 各前記フレーム部は1の前記前玉レンズを固定する、前記(1)に記載の撮像装置。
(9)
 前記フレーム部には、前記撮像部の状態を示すインジケータが設けられる、前記(2)~(8)のいずれか一項に記載の撮像装置。
(10)
 前記インジケータは、1の前記撮像部に対応する、前記(9)に記載の撮像装置。
(11)
 前記撮像装置は、前記フレーム部の外側に位置する外部筐体を備え、
 前記外部筐体は、前記撮像部により取得される画像を処理する画像処理部を収納する、前記(2)~(10)のいずれか一項に記載の撮像装置。
(12)
 前記凸多面体は、一様多面体である、前記(1)~(11)のいずれか一項に記載の撮像装置。
(13)
 前記凸多面体は、正多面体である、前記(12)に記載の撮像装置。
(14)
 前記凸多面体は、正十二面体である、前記(13)に記載の撮像装置。
(15)
 前記凸多面体は、正六面体である、前記(13)に記載の撮像装置。
(16)
 前記凸多面体は、半正多面体である、前記(12)に記載の撮像装置。
(17)
 前記凸多面体は、切頭二十面体である、前記(16)に記載の撮像装置。
(18)
 前記撮像装置が備える前記複数の前記前玉レンズに外接する円の直径は同一である、前記(1)~(15)のいずれか一項に記載の撮像装置。
(19)
 前記撮像装置は、前記凸多面体が有する面の数と同数の前記撮像部を備える、前記(1)~(18)のいずれか一項に記載の撮像装置。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A plurality of imaging units having a front lens and an imaging element are provided,
The outer shape of each front lens when viewed from the optical axis direction is substantially similar to a polygon that can form a convex polyhedron,
The front lens is disposed so as to correspond to a surface constituting the convex polyhedron,
An imaging apparatus in which NP points of the plurality of imaging units substantially coincide.
(2)
The imaging apparatus according to (1), further including a frame unit that fixes the front lens.
(3)
The imaging device according to (2), wherein the imaging element is located inside the frame unit.
(4)
The imaging device according to (3), wherein an intake port is provided at a lower portion of the frame portion, and an exhaust port is provided at an upper portion of the frame portion.
(5)
The imaging device according to (4), wherein the frame portion is provided with a convex portion protruding outward with respect to the front lens.
(6)
The imaging apparatus according to any one of (2) to (5), wherein the frame unit is provided with a microphone.
(7)
The imaging device according to (6), wherein the microphone is disposed at a position that is perpendicular to each surface of a regular dodecahedron that is virtually disposed outside the frame portion.
(8)
The imaging apparatus includes a composite frame unit including a plurality of frame units,
Each said frame part is an imaging device as described in said (1) which fixes one said front lens.
(9)
The imaging apparatus according to any one of (2) to (8), wherein an indicator that indicates a state of the imaging unit is provided in the frame unit.
(10)
The imaging device according to (9), wherein the indicator corresponds to one imaging unit.
(11)
The imaging device includes an external housing located outside the frame portion,
The imaging apparatus according to any one of (2) to (10), wherein the external casing houses an image processing unit that processes an image acquired by the imaging unit.
(12)
The imaging apparatus according to any one of (1) to (11), wherein the convex polyhedron is a uniform polyhedron.
(13)
The imaging device according to (12), wherein the convex polyhedron is a regular polyhedron.
(14)
The imaging device according to (13), wherein the convex polyhedron is a regular dodecahedron.
(15)
The imaging device according to (13), wherein the convex polyhedron is a regular hexahedron.
(16)
The imaging device according to (12), wherein the convex polyhedron is a semi-regular polyhedron.
(17)
The imaging device according to (16), wherein the convex polyhedron is a truncated icosahedron.
(18)
The imaging apparatus according to any one of (1) to (15), wherein a diameter of a circle circumscribing the plurality of front lens elements included in the imaging apparatus is the same.
(19)
The imaging apparatus according to any one of (1) to (18), wherein the imaging apparatus includes the same number of imaging units as the number of surfaces of the convex polyhedron.
 1、2、3 撮像装置
 12、22 本体部
 14、24 外部筐体
 120、220、320 撮像部
 121、221、321 前玉レンズ
 122、132、222、322 フレーム部
 123 吸気口
 124 排気口
 125、225、325 撮像素子
 126 マイクロフォン
 129、229、329 凸部
 130 複合フレーム部
 134 ビス
 136 インジケータ
1, 2, 3 Imaging device 12, 22 Main unit 14, 24 External housing 120, 220, 320 Imaging unit 121, 221, 321 Front lens 122, 132, 222, 322 Frame 123 Inlet 124 Outlet 125, 225, 325 Image sensor 126 Microphone 129, 229, 329 Convex part 130 Composite frame part 134 Screw 136 Indicator

Claims (19)

  1.  前玉レンズと撮像素子を有する撮像部を複数備え、
     各前記前玉レンズを光軸方向から見たときの外形は、凸多面体を構成し得る多角形と略相似形状であり、
     前記前玉レンズは、前記凸多面体を構成する面に対応するように配置され、
     前記複数の前記撮像部のNP点は略一致する、撮像装置。
    A plurality of imaging units having a front lens and an imaging element are provided,
    The outer shape of each front lens when viewed from the optical axis direction is substantially similar to a polygon that can form a convex polyhedron,
    The front lens is disposed so as to correspond to a surface constituting the convex polyhedron,
    An imaging apparatus in which NP points of the plurality of imaging units substantially coincide.
  2.  前記撮像装置は、前記前玉レンズを固定するフレーム部をさらに備える、請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, further comprising a frame portion that fixes the front lens.
  3.  前記撮像素子は、前記フレーム部の内側に位置する、請求項2に記載の撮像装置。 The image pickup device according to claim 2, wherein the image pickup element is located inside the frame portion.
  4.  前記フレーム部の下部に吸気口が設けられ、前記フレーム部の上部に排気口が設けられる、請求項3に記載の撮像装置。 The imaging apparatus according to claim 3, wherein an intake port is provided at a lower portion of the frame portion, and an exhaust port is provided at an upper portion of the frame portion.
  5.  前記フレーム部には、前記前玉レンズに対して外側に突出した凸部が設けられる、請求項4に記載の撮像装置。 The imaging device according to claim 4, wherein the frame portion is provided with a convex portion protruding outward with respect to the front lens.
  6.  前記フレーム部には、マイクロフォンが設けられる、請求項2に記載の撮像装置。 The imaging apparatus according to claim 2, wherein the frame unit is provided with a microphone.
  7.  前記マイクロフォンは、前記フレーム部の外側に仮想的に配置された正十二面体の各面に面直な位置に配置される、請求項6に記載の撮像装置。 The imaging apparatus according to claim 6, wherein the microphone is disposed at a position that is straight on each surface of a regular dodecahedron that is virtually disposed outside the frame portion.
  8.  前記撮像装置は、複数のフレーム部からなる複合フレーム部を備え、
     各前記フレーム部は1の前記前玉レンズを固定する、請求項1に記載の撮像装置。
    The imaging apparatus includes a composite frame unit including a plurality of frame units,
    The imaging device according to claim 1, wherein each frame unit fixes one front lens.
  9.  前記フレーム部には、前記撮像部の状態を示すインジケータが設けられる、請求項2に記載の撮像装置。 The imaging apparatus according to claim 2, wherein the frame unit is provided with an indicator that indicates a state of the imaging unit.
  10.  前記インジケータは、1の前記撮像部に対応する、請求項9に記載の撮像装置。 The imaging apparatus according to claim 9, wherein the indicator corresponds to one imaging unit.
  11.  前記撮像装置は、前記フレーム部の外側に位置する外部筐体を備え、
     前記外部筐体は、前記撮像部により取得される画像を処理する画像処理部を収納する、請求項2に記載の撮像装置。
    The imaging device includes an external housing located outside the frame portion,
    The imaging apparatus according to claim 2, wherein the external housing houses an image processing unit that processes an image acquired by the imaging unit.
  12.  前記凸多面体は、一様多面体である、請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the convex polyhedron is a uniform polyhedron.
  13.  前記凸多面体は、正多面体である、請求項12に記載の撮像装置。 The imaging apparatus according to claim 12, wherein the convex polyhedron is a regular polyhedron.
  14.  前記凸多面体は、正十二面体である、請求項13に記載の撮像装置。 The imaging apparatus according to claim 13, wherein the convex polyhedron is a regular dodecahedron.
  15.  前記凸多面体は、正六面体である、請求項13に記載の撮像装置。 The imaging apparatus according to claim 13, wherein the convex polyhedron is a regular hexahedron.
  16.  前記凸多面体は、半正多面体である、請求項12に記載の撮像装置。 The imaging apparatus according to claim 12, wherein the convex polyhedron is a semi-regular polyhedron.
  17.  前記凸多面体は、切頭二十面体である、請求項16に記載の撮像装置。 The imaging device according to claim 16, wherein the convex polyhedron is a truncated icosahedron.
  18.  前記撮像装置が備える前記複数の前記前玉レンズに外接する円の直径は同一である、請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the circles circumscribing the plurality of front lens elements included in the imaging apparatus have the same diameter.
  19.  前記撮像装置は、前記凸多面体が有する面の数と同数の前記撮像部を備える、請求項1に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the imaging apparatus includes the same number of imaging units as the number of surfaces of the convex polyhedron.
PCT/JP2018/006555 2017-04-21 2018-02-22 Imaging device WO2018193713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-084649 2017-04-21
JP2017084649 2017-04-21

Publications (1)

Publication Number Publication Date
WO2018193713A1 true WO2018193713A1 (en) 2018-10-25

Family

ID=63857132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006555 WO2018193713A1 (en) 2017-04-21 2018-02-22 Imaging device

Country Status (1)

Country Link
WO (1) WO2018193713A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263867A1 (en) * 2019-06-24 2020-12-30 Circle Optics, Inc. Multi-camera panoramic image capture devices with a faceted dome

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094857A (en) * 1999-08-09 2001-04-06 Fuji Xerox Co Ltd Method for controlling virtual camera, camera array and method for aligning camera array
JP2003162018A (en) * 2001-08-17 2003-06-06 Sony Corp Imaging device
WO2004051365A1 (en) * 2002-12-05 2004-06-17 Sony Corporation Imaging device
JP2007110228A (en) * 2005-10-11 2007-04-26 Sony Corp Imaging apparatus
JP2007517264A (en) * 2003-12-26 2007-06-28 マイコイ・コーポレーション Multidimensional imaging apparatus, system and method
JP2016538790A (en) * 2013-08-21 2016-12-08 ジョーント・インコーポレイテッドJaunt Inc. Camera array including camera module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094857A (en) * 1999-08-09 2001-04-06 Fuji Xerox Co Ltd Method for controlling virtual camera, camera array and method for aligning camera array
JP2003162018A (en) * 2001-08-17 2003-06-06 Sony Corp Imaging device
WO2004051365A1 (en) * 2002-12-05 2004-06-17 Sony Corporation Imaging device
JP2007517264A (en) * 2003-12-26 2007-06-28 マイコイ・コーポレーション Multidimensional imaging apparatus, system and method
JP2007110228A (en) * 2005-10-11 2007-04-26 Sony Corp Imaging apparatus
JP2016538790A (en) * 2013-08-21 2016-12-08 ジョーント・インコーポレイテッドJaunt Inc. Camera array including camera module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263867A1 (en) * 2019-06-24 2020-12-30 Circle Optics, Inc. Multi-camera panoramic image capture devices with a faceted dome

Similar Documents

Publication Publication Date Title
JP4945578B2 (en) Information processing method
US7119961B2 (en) Image pickup device
JP2022116089A (en) Imaging system, method, and application
CN103780817B (en) Camera shooting assembly
JP2008294819A (en) Image pick-up device
JP7173236B2 (en) Speech acquisition device and system
JP2001285692A (en) Omnidirectional stereo image pickup device and stereo image pickup device
JP2006279538A (en) Imaging apparatus
JP4386021B2 (en) Imaging device
CN107623804A (en) A kind of method of terminal device and photographing panorama picture
WO2018193713A1 (en) Imaging device
JP2002320124A (en) Imaging device
JP4051945B2 (en) Imaging device
JP4211319B2 (en) Imaging device
CN206002839U (en) A kind of panorama camera
CN205594302U (en) Panorama imaging system&#39;s camera lens arrangement and panoramic camera , projecting apparatus
CN110251077A (en) A kind of ophthalmology camera arrangement and ophthalmology photographic method
JP2002229138A (en) Image pickup device
JP2004080088A (en) Imaging apparatus
JP4122717B2 (en) Image input device
JP2018182518A (en) All-sky camera device
CN210351422U (en) Panorama splicing system of binocular network camera
KR101895731B1 (en) Apparatus and Method for photographing stereoscopic image
JP2004070002A (en) Imaging device
TWM589941U (en) Panoramic camera lens assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP