WO2018193596A1 - 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置 - Google Patents

衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置 Download PDF

Info

Publication number
WO2018193596A1
WO2018193596A1 PCT/JP2017/015950 JP2017015950W WO2018193596A1 WO 2018193596 A1 WO2018193596 A1 WO 2018193596A1 JP 2017015950 W JP2017015950 W JP 2017015950W WO 2018193596 A1 WO2018193596 A1 WO 2018193596A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
risk
risk value
information
collision
Prior art date
Application number
PCT/JP2017/015950
Other languages
English (en)
French (fr)
Inventor
浩子 鈴木
孝広 齊藤
渡部 勇
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/015950 priority Critical patent/WO2018193596A1/ja
Priority to JP2019513175A priority patent/JP6806242B2/ja
Priority to EP17906218.7A priority patent/EP3614364B1/en
Publication of WO2018193596A1 publication Critical patent/WO2018193596A1/ja
Priority to US16/590,662 priority patent/US11417219B2/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/18Buoys having means to control attitude or position, e.g. reaction surfaces or tether
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B45/00Arrangements or adaptations of signalling or lighting devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information

Definitions

  • the present invention relates to a collision risk calculation program, a collision risk calculation method, and a collision risk calculation device.
  • the collision risks calculated by the various methods described above are useful in intuitively recognizing collision risks in ship navigation.
  • the degree cannot be quantitatively grasped.
  • the collision risk expressed as a geometric area can be intuitively understood from the viewpoint of the ship maneuvering side as to how to maneuver to avoid collision.
  • the collision risk expressed as a geometric area cannot be quantitatively grasped from the viewpoint of navigation control, even if the existence of the sea area where the collision risk exists can be grasped.
  • An object of the present invention is to provide a collision risk calculation program, a collision risk calculation method, and a collision risk calculation device that can quantitatively grasp a collision risk expressed as a geometric area.
  • the collision risk calculation program causes the computer to acquire progress information regarding the positions and speeds of the first ship and the second ship. And a collision risk calculation program makes a computer calculate the area
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a support system according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of the collision risk calculation apparatus according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of a data configuration of grid information according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of a data configuration of past track information according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of an approach angle and an exit angle for each grid according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of data indicating an example of a data configuration of the dangerous area information indicating the OZT according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of OZT display according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a support system according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of the collision risk calculation apparatus according to
  • FIG. 15 is a diagram illustrating a subroutine illustrating an example of numerical risk value calculation processing according to the embodiment.
  • FIG. 16 is a diagram illustrating a subroutine illustrating an example of the area-type risk value calculation process according to the embodiment.
  • FIG. 17 is a diagram illustrating a method for converting a region risk value in the CDL according to the embodiment.
  • FIG. 18 is a diagram illustrating an example of a CDL display according to the embodiment.
  • FIG. 19 is a diagram illustrating a computer that executes a collision risk calculation program.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a support system.
  • the support system 10 is a marine traffic control system that supports navigation of a ship.
  • FIG. 1 shows two ships 11 (ship 1 (own ship) and ship 2 (partner ship)) and land facility 13.
  • the ship 1 (own ship) and the ship 2 (other ship) only show a relative relationship, and when the ship 1 (own ship) is seen from the ship 2 (other ship), the ship 2 is The ship is the ship, and the ship 1 is the other ship.
  • the land facility 13 is a facility that performs navigation control of each ship 11 such as a maritime traffic center and a harbor traffic control room, which have a role of monitoring and providing information on marine ships.
  • the land facility 13 grasps the position of each ship 11 based on the AIS information received from each ship 11, information detected by the radar, and the like, and provides each ship 11 with various information regarding marine traffic. .
  • FIG. 2 is a diagram illustrating an example of a schematic configuration of the collision risk calculation apparatus.
  • the collision risk calculation device 20 is a device that is provided in the land facility 13 and supports the navigation of the ship.
  • the collision risk calculation device 20 is mounted on a computer device such as a server arranged in the land facility 13.
  • the collision risk calculation device 20 includes an external I / F (interface) unit 21, an input unit 22, a display unit 23, a storage unit 30, and a control unit 40.
  • the display unit 23 is a display device that displays various types of information. Examples of the display unit 23 include display devices such as LCD (Liquid Crystal Display) and CRT (Cathode Ray Tube). The display unit 23 displays various information. For example, the display unit 23 displays various screens such as an operation screen.
  • LCD Liquid Crystal Display
  • CRT Cathode Ray Tube
  • the storage unit 30 is an external storage device such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), an optical or magneto-optical disk.
  • the storage unit 30 may be a semiconductor memory capable of rewriting data such as RAM (Random Access Memory), flash memory, NVSRAM (Non Volatile Static Random Access Memory).
  • the storage unit 30 stores an OS (Operating System) executed by the control unit 40 and various programs.
  • the storage unit 30 stores a program that executes past track information aggregation processing and collision risk calculation processing described later.
  • the storage unit 30 stores various data used in programs executed by the control unit 40.
  • the storage unit 30 stores AIS accumulated data 31, grid information 32, past track information 33, dangerous area information 34, and risk calculation result information 35.
  • Each of the AIS accumulated data 31, grid information 32, past track information 33, dangerous area information 34, and risk calculation result information 35 is, for example, a table data format.
  • each of the AIS accumulated data 31, grid information 32, past track information 33, dangerous area information 34, and risk calculation result information 35 is in other data formats such as CSV (Comma Separated Values) format. May be.
  • CSV Common Separated Values
  • the AIS accumulation data 31 is data in which AIS information received from each ship 11 is accumulated.
  • the grid information 32 is data in which various information related to a grid obtained by dividing the target sea area of the navigation control into grids of a predetermined size by the land facility 13 is stored. For example, the grid information 32 stores identification information for identifying the grid and information on the position of the boundary of the grid area.
  • FIG. 3 is a diagram illustrating an example of a data configuration of grid information according to the embodiment.
  • the grid information 32 includes items such as “grid ID” and “grid range”.
  • Each item of the grid information 32 illustrated in FIG. 3 is an example, and may include other items.
  • Grid ID is an area for storing identification information for identifying a grid.
  • a grid ID (IDentifier) is assigned to each grid as identification information for identifying each.
  • Grid ID the grid ID assigned to the grid is stored.
  • the “grid range” is an area that stores the latitude and longitude of the position of each vertex of the grid area.
  • the grid size will be described.
  • an avoidance action for avoiding a collision appears as a turn of at least about 30 seconds.
  • a collision risk to be described later is evaluated in 10 seconds with a high possibility of reading a change in risk.
  • a general navigation speed of a ship is about 10 to 12 [kn (knots)]
  • a navigation distance in 10 seconds is about 50 to 60 [m].
  • the size of the grid is determined so that the ship is avoided from being positioned on a grid that is not adjacent to the ship when the position of the ship is obtained at a cycle for evaluating the collision risk. .
  • the grid is a rectangular region having a minimum width of 100 [m] on one side.
  • the grid may have a side width of 100 to 200 [m].
  • the shape of the grid is not limited to a rectangle.
  • it may be a polygon such as a triangle or a hexagon.
  • the target range may be divided into grids by combining a plurality of polygons.
  • FIG. 4 is a diagram illustrating an example of a data configuration of past track information according to the embodiment.
  • the past wake information 33 is data storing various types of information related to the ship that has passed through each grid. As shown in FIG. 4, the past wake information 33 includes items such as “grid ID”, “entrance angle”, “exit angle”, “speed difference”, and “vessel ID”.
  • each item of the past track information 33 shown in FIG. 4 is an example, and may have other items.
  • Grid ID is an area for storing the grid ID of the grid.
  • the “approach angle” is an area for storing an approach angle to the grid of a ship that has passed through the grid.
  • the “exit angle” is an area for storing an exit angle from the grid of the ship that has passed through the grid.
  • Speed difference is the difference between the speed of the ship when the ship enters each grid and the speed of the ship when the ship leaves the grid.
  • Enter angle and “exit angle” are angles with a predetermined direction as a reference (0 degree). For example, “entrance angle” and “exit angle” are clockwise angles with respect to the north direction. The “exit angle” may be an angle withdrawn from the grid, or an angle difference between the angle withdrawn from the grid with respect to the “entrance angle” may be used.
  • Chip ID is an area for storing identification information for identifying a ship. The “ship ID” stores the MMSI of the ship that has passed through the grid at the “entrance angle”, “exit angle”, and “speed difference”.
  • FIG. 6 is a diagram illustrating an example of data indicating an example of a data configuration of the dangerous area information indicating the OZT according to the embodiment.
  • OZT is an abbreviation for Obstacle Zone by Target, and is an index that geometrically indicates the danger area of a ship collision with a circle.
  • the dangerous area information 34 includes “time”, “MMSI1”, “MMSI2”, “circle center point (latitude)”, “circle center point (longitude)”, and “circle radius (m)”. It has items such as.
  • Each item of the dangerous area information 34 illustrated in FIG. 6 is an example, and may include other items.
  • the “time” indicates that the dangerous areas corresponding to the ship 1 (own ship) specified by “MMSI1” and the ship 2 (partner ship) specified by “MMSI2” are “circle center (latitude)”, “circle center” It is the time when “point (longitude)” and “circular radius (m)”.
  • the dangerous area information 34 shown in FIG. 6 includes the positions of the ship 1 of the MMSI 1 and the ship 2 of the MMSI 2 at each time included in the AIS information received from each ship 11 in which the land facility 13 navigates in the target sea area for navigation control. .
  • the dangerous area information 34 indicates an area where the possibility that two ships collide after a predetermined time is higher than a predetermined value when the ship 1 and the ship 2 continue to follow the course and speed at each time.
  • each time is, for example, information supplemented at intervals of one second.
  • “each time” may be information updated every second, for example.
  • “after a predetermined time from each time” means, for example, after 5 minutes.
  • FIG. 7 is a diagram illustrating an example of OZT display according to the embodiment.
  • FIG. 7 is a visual display of the dangerous area information 34 shown in FIG.
  • a region where the possibility that the two ships will collide after 5 minutes is equal to or greater than a threshold is a circular danger region DZ1.
  • DZ1 a region where the possibility that the two ships will collide after 5 minutes is equal to or greater than a threshold. It is represented by In FIG. 7, only one danger zone DZ1 is shown, but the number is not limited to this, and there are a plurality of danger zones DZ1 according to the number of ships navigating the target sea area for navigation control.
  • the “information about the ship 1” and the “information about the ship 2” are based on the AIS information received from the ship 1 and the ship 2, respectively.
  • “information about the ship 1” includes information about the ship 1 such as “MMSI”, “latitude”, “longitude”, “SOG”, “COG”, “captain”, “ship width”, and the like.
  • MMSI MMSI of the ship 1 at “time” associated with the risk calculation result information 35.
  • “Latitude” and “longitude” regarding the ship 1 are latitude information and longitude information indicating the position of the ship 1 at “time” associated with the risk calculation result information 35.
  • “SOG” regarding the ship 1 is the speed over ground (Speed Over Ground) of the ship 1 at the “time” associated with the risk calculation result information 35.
  • “COG” regarding the ship 1 is a course over ground (Course Over Ground) of the ship 1 at “time” associated with the risk calculation result information 35.
  • the “captain” regarding the ship 1 is the maximum length of the ship 1.
  • the “ship width” regarding the ship 1 is the maximum width of the ship 1. In FIG. 8, “information about the ship 2” is the same as “information about the ship 1”.
  • risk value 2 in the risk calculation result information 35 is a region-type risk value that represents the collision risk of the ship 1 and the ship 2 in a geometric form.
  • Area-type risk values include OZT (Obstacle Zone by Target) and CDL (Collision Danger Line).
  • OZT is a method of calculating a dangerous area of a circle based on the probability of simultaneous existence of two ships.
  • it is assumed that “risk value 2” is OZT.
  • the “risk value 2” corresponding to the “time” “2013/1/10” row in the first row is “r012”.
  • “Risk value 2” is an example of a first risk value.
  • risk value 2 is originally a risk value expressed in a geometric form, but is a risk value converted into a numerical form.
  • conversion methods 1 to 3 for converting the risk value expressed in the geometric format into the risk value expressed in the numerical format. In this embodiment, it is assumed that any one of conversion methods 1 to 3 or a result obtained by weighting two or more is used. The conversion methods 1 to 3 will be described later.
  • risk value 1 and “risk value 2” vary in the range of values that can be taken, the range of values that can be taken (for example, a lower limit value and an upper limit value such as 0 or more and 1 or less) is obtained by normalization. Prepare in advance.
  • the “total risk value” in the risk calculation result information 35 is a risk value obtained by weighting one or more “risk value 1” and one or more “risk value 2”. For example, in FIG. 8, the “total risk value” corresponding to the row of “time” “2013/1/10” in the first row is “R011”.
  • the “total risk value” is an example of a third risk value.
  • the first method is a simple average with uniform weights.
  • the second method is ensemble learning that gives weights that match the correct answer using techniques such as multivariate analysis (such as multiple regression analysis) or machine learning when there is correct answer data of subjective risk values by humans. It is.
  • the third method is an unsupervised machine learning method (clustering or the like) when there is no correct answer data.
  • the area type risk value expressed in the form of a geometric area (for example, a dangerous area where there is a risk of collision) is converted into a risk value expressed in a numerical format, and then expressed in a numerical format.
  • the “total risk value” weighted together with the numerical risk value is the collision risk value of the ship.
  • FIG. 9 is a diagram illustrating a first conversion method of region-type risk values in OZT according to the embodiment.
  • the risk calculation unit 44 generates a future predicted route of the ship 1 (own ship) at each time, as indicated by the velocity vector A11 in FIG.
  • the risk calculation unit 44 creates a future predicted route of the ship 2 (the partner ship) as indicated by the velocity vector A12 in FIG.
  • the risk calculation part 44 calculates a dangerous area
  • the risk calculation part 44 calculates the minimum turning angle (theta) 1 with respect to the present course which the ship 1 (own ship) takes in order to avoid these danger areas DZ11, DZ12, and DZ13.
  • the minimum turning angle ⁇ 1 is the risk value after conversion.
  • the minimum turning angle ⁇ 1 is normalized as a maximum of 180 °.
  • the minimum turning angle ⁇ 1 is higher because the angle of the ship 2 (the partner ship) that crosses the ship 1 (the own ship) is closer than the ship 2 (the partner ship) that crosses the ship 1 (the own ship) at a distance. It has the feature of being judged as a risk.
  • the minimum turning angle ⁇ 1 is an example of a ship maneuvering amount. In FIG. 9, the minimum turning angle ⁇ 1 is the right turning angle, but may be any one of the left turning angle or the minimum turning angle among the right turning angle and the left turning angle.
  • FIG. 10 is a diagram illustrating a second conversion method of the regional risk value in the OZT according to the embodiment.
  • the risk calculation unit 44 creates a future predicted route of the ship 1 (own ship) at each time, as indicated by the velocity vector A21 in FIG.
  • the risk calculation unit 44 creates a future predicted route of the ship 2 (the partner ship) as indicated by the velocity vector A22 in FIG.
  • the risk calculation part 44 calculates a dangerous area
  • the risk value ⁇ 2 / T2 is a turning operation of the ship 1 (own ship) by taking into account the time T2 to reach the dangerous areas DZ21, DZ22, DZ23 when the geometric area is converted into the risk value. In addition to the quantity, the time to collision avoidance can be reflected in the risk value.
  • the minimum turning angle ⁇ 2 is normalized as a maximum of 180 °. Thereby, for example, even if the positional relationship between the ship 1 (own ship) and the dangerous area is the same, the higher speed is determined to be a high risk.
  • the minimum turning angle ⁇ 2 and the speed at each time of the ship 1 (own ship) are examples of the amount of maneuvering. In FIG. 10, the minimum turning angle ⁇ ⁇ b> 2 is a right turning angle, but may be any one of a left turning angle or a minimum angle among a right turning angle and a left turning angle.
  • the risk calculation unit 44 calculates the longitudinal distance L31 and the turning area (2 ⁇ L32) in the maximum steering angle turning test, and turns L32, which is the radius of the turning area (2 ⁇ L32), to turn the ship 1 (own ship).
  • radius Rmin the longitudinal distance L31 is, for example, 4.5 times or less the length of the ship 1 (own ship).
  • the turning zone (2 ⁇ L32) is, for example, 4.5 times or less the length of the ship 1 (own ship).
  • the turning radius Rmin is based on, for example, an IMO (International Maritime Organization) standard (2002).
  • the risk value Rreq / Rmin obtained by dividing the minimum turning radius Rreq of the ship 1 (own ship) by the turning radius Rmin is the risk value after conversion.
  • the risk value Rreq / Rmin is normalized to be the maximum value when the minimum turning radius Rreq is equal to or greater than the turning radius Rmin.
  • the minimum turning angle ⁇ 2 and the speed at each time of the ship 1 (own ship) are examples of the amount of maneuvering.
  • the minimum turning radius Rreq is the right turning angle, but may be any left turning angle or any turning angle that takes the minimum turning radius among the right turning angle and the left turning angle. .
  • the control unit 40 is a device that controls the collision risk calculation device 20.
  • a processing device such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array) can be employed.
  • the control unit 40 has an internal memory for storing programs defining various processing procedures and control data, and executes various processes using these.
  • the control unit 40 functions as various processing units by operating various programs.
  • the control unit 40 includes an acquisition unit 41, a past track information calculation unit 42, a dangerous area information calculation unit 43, a risk calculation unit 44, and an output unit 45.
  • the acquisition unit 41 acquires various types of information. For example, the acquisition unit 41 acquires progress information regarding the position and speed of each ship. For example, the acquisition unit 41 acquires AIS information from each ship 11 via the wireless communication device 13A as the progress information of each ship. The acquisition unit 41 stores the acquired AIS information in the AIS accumulated data 31. In addition, the speed memorize
  • the past track information calculation unit 42 may obtain the position and speed at each time by interpolation from the position and speed of the AIS information for each ship. For example, the past wake information calculation unit 42 calculates the position and speed of each time supplemented at intervals of 1 second (or updated every second) for each ship. And the past wake information calculation part 42 matches the calculated position and speed of each time of each ship 11 with ID (for example, MMSI etc.) of each ship, and stores it in the past wake information 33 shown in FIG.
  • ID for example, MMSI etc.
  • the risk calculation unit 44 acquires “information about the ship 1” and “information about the ship 2” from the AIS accumulated data 31.
  • the risk calculating unit 44 calculates one or more “risk value 1” expressed numerically and “risk value 2” obtained by converting one or more geometrically expressed risk values into numerical values. To do. Then, the risk calculation unit 44 calculates “total risk value” by weighting “risk value 1” and “risk value 2”.
  • FIG. 13 is a flowchart illustrating an example of past wake information aggregation processing according to the embodiment.
  • the past wake information totaling process is executed at a predetermined timing, for example, a timing before a collision risk calculation process, which will be described later, or a timing when a predetermined operation instructing the start of the process is received.
  • step S ⁇ b> 11 the past wake information calculation unit 42 calculates the position and speed at each time from the AIS accumulated data 31 for each ship by interpolation or the like.
  • step S ⁇ b> 12 the past wake information calculation unit 42 divides the target sea area where the land facility 13 is subject to navigation control into areas (for example, grids) according to latitude and longitude.
  • step S13 the past wake information calculation unit 42 searches for all ships that have navigated in a certain area.
  • step S14 the past wake information calculation unit 42 calculates the approach angle, each exit, and speed of each ship that has passed through the region.
  • step S ⁇ b> 15 the past wake information calculation unit 42 stores the approach angle, the exit and the speed of each ship for each region in the past wake information 33.
  • step S16 the past track information calculation unit 42 determines whether or not the processing in steps S13 to S15 has been completed for all regions. The past track information calculation unit 42 ends the past track information totaling process when the processes in steps S13 to S15 are completed for all the regions (Yes in step S16). On the other hand, the past track information calculation unit 42 moves the process to step S13 when the processes of steps S13 to S15 are not completed for all the regions (No in step S16).
  • FIG. 14 is a flowchart illustrating an example of a collision risk calculation process according to the embodiment.
  • the collision risk calculation process is executed at a predetermined timing, for example, a timing at which a predetermined cycle or a predetermined operation instructing the start of the process is received.
  • step S21 the risk calculation unit 44 calculates the position and speed at each time from the AIS accumulated data 31 for each ship by interpolation or the like for each ship.
  • step S22 the risk calculation unit 44 performs risk calculation on the data that has been complemented by the process in step S22.
  • step S23A the risk calculation unit 44 calls a numerical risk value calculation module for calculating a numerical risk value that can be expressed in a continuous or discrete numerical format, and the numerical risk value Execute the calculation process.
  • step S23B the risk calculation unit 44 calls an area-type risk value calculation module that calculates an area-type risk value that can be expressed in a geometric format, and executes an area-type risk value calculation process.
  • step S23A there is only one step of calling the numerical risk value calculation module for calculating the numerical risk value in step S23A.
  • the case where the numerical risk value of is calculated is shown.
  • step S23B there is only one step S23B of calling the regional risk calculation module for calculating the regional risk value, and one type of regional risk value is calculated. Indicates when to do.
  • the region-type risk calculation module for each region-type risk value is called and executed in parallel.
  • step S23A the risk calculation unit 44 calls a numerical risk value calculation module for calculating a numerical risk value to be calculated as a subroutine, and calculates a numerical risk value to be calculated. Details of step S23A will be described later with reference to FIG.
  • step S23B the risk calculation unit 44 calls a regional risk value calculation module for calculating the regional risk value to be calculated as a subroutine, and calculates the regional risk value to be calculated. Details of step S23B will be described later with reference to FIG.
  • step S24 the risk calculation unit 44 sets the numerical risk value calculation result in step S23A to “risk value 1”, and sets the area format risk value calculation result in step S23B to “risk value 2”. And And the risk calculation part 44 stores in the risk calculation result information 35 with the "information about the ship 1" and the "information about the ship 2" which became the basis of calculation.
  • “risk value 1” is calculated for each numerical risk value.
  • regional risk is calculated.
  • “Risk value 2” for each value is calculated and stored in the risk calculation result information 35.
  • FIG. 15 is a diagram illustrating a subroutine illustrating an example of numerical risk value calculation processing according to the embodiment. 15, in the process of step S ⁇ b> 23 ⁇ / b> A of the collision risk calculation process shown in FIG. 14, the risk calculation unit 44 calls and executes a numerical risk value calculation module corresponding to the numerical risk value to be calculated. 1 "is calculated.
  • step S23A-1 the risk calculating unit 44, for example, as shown in FIG. 1, the ship 2 within a certain distance (for example, a predetermined nearby grid) with respect to the ship 1 (own ship). (Other ship) is extracted.
  • step S23A-2 the risk calculation unit 44 uses the information accumulated in the past wake information 33 for the predicted future routes of the ship 1 (own ship) and the ship 2 (partner ship) extracted in step S23A-1. Calculated by the prediction method. For example, when predicting the course and speed of a ship, a plurality of future predicted courses can be considered. For courses that can be taken by a ship, each course and each speed are weighted with the probability that each will occur. And the future speed route that the ship can take.
  • step S23A-3 the risk calculation unit 44 calculates the numerical risk value to be calculated from the predicted future route calculated in step S23A-2 based on the defined numerical risk value calculation formula. Specifically, when the numerical risk value to be calculated is, for example, DCPA indicating a risk value between the ship 1 (own ship) and the ship 2 (opposite ship), the risk calculation unit 44 sets the ship 1 The DCPA is calculated based on a calculation formula that defines the DCPA of the ship 2 (the partner ship) with respect to the (own ship). In step S23A-4, the risk calculation unit 44 obtains the numerical risk value calculated in step S23A-3 as “risk value 1” of the ship 2 (partner ship) with respect to the ship 1 (own ship).
  • step S23A-6 the risk calculation unit 44 outputs “risk value 1” calculated by repeating the series of processing in steps S23A-1 to 23A-4 to the processing in the next step S24.
  • step S23A-6 ends, the risk calculation unit 44 ends the numerical risk value calculation process.
  • the risk calculation unit 44 calculates “risk value 1” using a future predicted route calculated by weighting a plurality of future predicted routes with probability. It is not limited. That is, the risk calculation unit 44 may calculate “risk value 1” for each of the plurality of future predicted routes, and calculate “risk value 1” by weighting each probability of the plurality of future predicted routes. This makes it possible to calculate a more flexible risk value.
  • the risk calculation unit 44 stores the predicted future routes of the ship 1 (own ship) and the ship 2 (partner ship) extracted in step S23A-1 in the past track information 33. You may calculate by the prediction method which is not based on information. In this case, the past track information calculation unit 42 shown in FIG. 2, the past track information 33 shown in FIG. 4, and the past track information totaling process shown in FIG. 13 can be omitted.
  • FIG. 16 is a diagram illustrating a subroutine illustrating an example of the area-type risk value calculation process according to the embodiment.
  • FIG. 16 shows the risk risk calculation unit 44 in the process of step S23B of the collision risk calculation process shown in FIG. 14, and calls and executes the area type risk value calculation module corresponding to the area type risk value to be calculated. 2 "is calculated.
  • step S23B-3 the risk calculation unit 44 uses the risk area information calculation unit 43 to calculate the risk area information from the predicted future route calculated in step S23B-2 based on the formula for the risk area (OZT) defined. 34 (see FIG. 6) is generated. Specifically, the risk calculation unit 44 uses the risk region information calculation unit 43 to calculate the ship 1 (self-owner) based on the definition of OZT when the region type risk value to be calculated is a region type risk value (OZT). The OZT of the ship) and the ship 2 (the partner ship) is calculated. In step S23B-4, the risk calculation unit 44 obtains the risk area (“risk value 2”) of the ship 1 (own ship) and the ship 2 (counter ship) from the OZT calculated in step S23B-3.
  • risk value 2 the risk area
  • step S23B-5 for example, the minimum turning angle ⁇ 1 according to the “first conversion method” described above is calculated in order to convert the dangerous area, which is the area risk value, into the numerical risk value.
  • step S23B-6 the risk calculation unit 44 determines whether or not the processing in steps S23B-1 to 23B-5 has been completed for all times of the target period for calculating “risk value 2”.
  • step S23B-6 Yes the risk calculation unit 44 proceeds to step S23B-7. Transfer.
  • step S23B-6 the risk calculation unit 44 performs step S23B- Move processing to 1.
  • step S23B-7 the risk calculation unit 44 outputs “risk value 2” calculated by repeating the series of processes in steps S23B-1 to 23B-5 to the process in the next step S24.
  • step S23B-7 ends, the risk calculation unit 44 ends the region-type risk value calculation process.
  • the risk calculation unit 44 calculates “risk value 2” using the future predicted route calculated by weighting a plurality of future predicted routes with probability. It is not limited. That is, the risk calculation unit 44 may calculate “risk value 2” for each of the plurality of future predicted routes, and calculate “risk value 2” by weighting each probability of the plurality of future predicted routes. This makes it possible to calculate a more flexible risk value.
  • the risk calculation unit 44 stores the future predicted routes of the ship 1 (own ship) and the ship 2 (partner ship) extracted in step S23B-1 in the past track information 33. You may calculate by the prediction method which is not based on information. In this case, similarly to the numerical risk value calculation process, the past track information calculation unit 42 shown in FIG. 2, the past track information 33 shown in FIG. 4, and the past track information aggregation process shown in FIG. 13 can be omitted.
  • the collision risks are expressed in numerical format, while the collision risk expressed in numerical format and the geometric area (for example, the risk of collision is It is difficult between the risk of collision expressed in the form of a certain dangerous area. As described above, there is a problem that it is difficult to calculate a collision risk including a collision risk having a different format.
  • the collision risk calculation device 20 in the above-described embodiment converts the area type risk value into a numerical format.
  • the collision risk calculation device 20 in the above-described embodiment calculates a total risk value obtained by weighting the numerical risk value and the risk value obtained by converting the area type risk value into the numerical format, and the ships are calculated based on the total risk value. Represents collision risk. Therefore, according to the above-described embodiment, it is possible to quantitatively grasp the collision risk expressed as a geometric area.
  • the property that the collision risk value of “the risk is maximized immediately before the collision” should be provided by the comprehensive risk value having the characteristics of each of various numerical risk values and area-type risk values. The ship collision risk can be expressed with higher accuracy while satisfying.
  • a plurality of future paths for each of the ship 1 and the ship 2 are calculated, and the future paths of the ship 1 and the ship 2 are calculated by weighting the plurality of future paths with their respective occurrence probabilities. Therefore, the prediction accuracy of the future course of each of the ship 1 and the ship 2 can be improved, and thus the accuracy of the numerical risk value, the regional risk value, and the overall risk value can be improved.
  • the area type risk value is converted into a value based on the turning angle taken by the ship 1 or the ship 2 in order to avoid the dangerous area. Therefore, as the other ship approaches the ship, the value based on the turning angle increases, that is, the value after conversion of the regional risk value increases. Can be represented.
  • the collision risk calculation device 20 in the above-described embodiment displays the real-time position of the ship on the map and can be taken by each ship when the ship collision risk visualization result is used in the marine traffic control system or the like.
  • the future predicted route and the graph of collision risk of each ship are displayed. Therefore, according to the above-described embodiment, when a ship with an increased risk of collision occurs, an alarm is issued, the relevant ship is highlighted on the screen, and the operator is allowed to confirm with the display unit 23 or the like. If necessary, the ship 11 can be notified of the collision risk.
  • FIG. 17 is a diagram illustrating a method for converting a region risk value in the CDL according to the embodiment.
  • FIG. 18 is a diagram illustrating an example of a CDL display according to the embodiment.
  • the area DZ41 and the area DZ42 in which the distance between the ship 1 (own ship) and the ship 2 (partner ship) is less than the threshold within N minutes and the safety of navigation is not maintained are changed to those of the ship 1 (own ship).
  • the dangerous area DZ4 is configured by a circle and two tangent lines that are in contact with the circle.
  • the ship 1 (own ship) and the ship 2 (other ship) continue to take the current course and speed
  • the ship 1 (own ship) and the ship 2 The area where the distance of the opponent ship) is equal to or less than the threshold is the danger area DZ4.
  • the disclosed technology is not limited to OZT and CDL, and any collision risk value may be used as long as it is a collision risk value expressed in the form of a geometric area (for example, a danger area with a risk of collision). Can be applied.
  • the time indicating the dangerous area is a predetermined time after the current time, for example, 5 minutes later.
  • the present invention is not limited to this, and the time indicating the dangerous area may be the current time.
  • the collision risk calculation device 20 is mounted on a computer device such as a server arranged in the land facility 13.
  • the present invention is not limited to this, and the collision risk calculation device 20 may be mounted on the ship 11 itself as a device for preventing the collision of the ship 11.
  • each component of each illustrated apparatus is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the specific state of distribution / integration of each device is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions.
  • the dangerous area information calculation unit 43 and the risk calculation unit 44 may be integrated.
  • the dangerous area information calculation unit 43 includes a future expected course calculation unit that calculates a future expected course of the ship 1 (own ship) and the ship 2 (an opponent ship), and a burglar area information calculation unit that calculates the burglar area information. And may be distributed.
  • the risk calculation unit 44 may be distributed to a future course calculation unit and a risk calculation unit.
  • FIG. 19 is a diagram illustrating a computer that executes a collision risk calculation program.
  • the computer 300 includes a CPU 310, an HDD (Hard Disk Drive) 320, and a RAM (Random Access Memory) 340. These units 310 to 340 are connected via a bus 400.
  • the HDD 320 stores in advance a collision risk calculation program 320a that performs the same function as each processing unit of the above-described embodiment.
  • the collision risk calculation program 320a that performs the same functions as the acquisition unit 41, the past track information calculation unit 42, the dangerous area information calculation unit 43, the risk calculation unit 44, and the output unit 45 of the above-described embodiment is stored.
  • each function of the collision risk calculation program 320a may be appropriately divided into modules.
  • the HDD 320 stores various data.
  • the HDD 320 stores the OS and various data.
  • the CPU 310 reads out and executes the collision risk calculation program 320a from the HDD 320, thereby executing the same operation as each processing unit of the embodiment. That is, the collision risk calculation program 320a performs the same operations as the acquisition unit 41, past track information calculation unit 42, dangerous area information calculation unit 43, risk calculation unit 44, and output unit 45 of the embodiment.
  • collision risk calculation program 320a is not necessarily stored in the HDD 320 from the beginning.
  • a program is stored in a “portable physical medium” such as a flexible disk (FD), Compact Disk Read Only Memory (CD-ROM), Digital Versatile Disk (DVD), magneto-optical disk, or IC card inserted into the computer 300.
  • FD flexible disk
  • CD-ROM Compact Disk Read Only Memory
  • DVD Digital Versatile Disk
  • IC card magneto-optical disk
  • the computer 300 may read and execute the program from these.
  • the program is stored in “another computer (or server)” connected to the computer 300 via a public line, the Internet, a LAN, a WAN, or the like. Then, the computer 300 may read and execute the program from these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

衝突リスク算出プログラムは、コンピュータに、第1の船舶および第2の船舶それぞれの位置および速度に関する進行情報を取得させる。そして、衝突リスク算出プログラムは、コンピュータに、第1の船舶および第2の船舶それぞれの進行情報から、第1の船舶および第2の船舶が将来衝突する可能性がある領域を算出させる。そして、衝突リスク算出プログラムは、コンピュータに、領域を回避するために第1の船舶または第2の船舶が取る操船量に基づく第1のリスク値を算出させる。

Description

衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
 本発明は、衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置に関する。
 従来より、船舶に搭載されるAIS(Automatic Identification System:船舶自動識別装置)から発信されたAISデータを用いて、船舶の航行における衝突リスクを算出する種々の手法がある。そして、種々の手法によって算出された衝突リスクをグラフなどで可視化して表示することで、船舶の航行における衝突リスクを直感的に認識させる技術がある。
特開平11-272999号公報
 しかしながら、上述の種々の手法により算出された衝突リスクのうち、幾何学的な領域として表されるものは、船舶の航行における衝突リスクを直感的に認識させる点では有用であるが、衝突リスクの度合いを定量的に把握させることができないという問題点がある。例えば、幾何学的な領域として表される衝突リスクは、船舶の操船側の視点からすると、衝突回避のためにどのように操船すればよいか直感的に把握できる。その一方、幾何学的な領域として表される衝突リスクは、航行管制側の視点からすると、衝突リスクが存在する海域の存在を把握できても、衝突リスクを定量的に把握できるものではない。
 一つの側面では、幾何学的な領域として表される衝突リスクを定量的に把握できる衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置を提供することを目的とする。
 第1の案では、衝突リスク算出プログラムは、コンピュータに、第1の船舶および第2の船舶それぞれの位置および速度に関する進行情報を取得させる。そして、衝突リスク算出プログラムは、コンピュータに、第1の船舶および第2の船舶それぞれの進行情報から、第1の船舶および第2の船舶が将来衝突する可能性がある領域を算出させる。そして、衝突リスク算出プログラムは、コンピュータに、領域を回避するために第1の船舶または第2の船舶が取る操船量に基づく第1のリスク値を算出させる。
 本発明の一の実施態様によれば、幾何学的な領域として表される衝突リスクを定量的に把握できるという効果を奏する。
図1は、実施例にかかる支援システムの概略的な構成の一例を示す図である。 図2は、実施例にかかる衝突リスク算出装置の概略的な構成の一例を示す図である。 図3は、実施例にかかるグリッド情報のデータ構成の一例を示す図である。 図4は、実施例にかかる過去航跡情報のデータ構成の一例を示す図である。 図5は、実施例にかかるグリッドごとの進入角および退出角の一例を示す図である。 図6は、実施例にかかるOZTを示す危険領域情報のデータ構成の一例を示すデータの一例を示す図である。 図7は、実施例にかかるOZTの表示の一例を示す図である。 図8は、実施例にかかるリスク算出結果情報の一例を示す図である。 図9は、実施例にかかるOZTにおける領域型リスク値の第1の変換方法を示す図である。 図10は、実施例にかかるOZTにおける領域型リスク値の第2の変換方法を示す図である。 図11は、実施例にかかるOZTにおける領域型リスク値の第3の変換方法を示す図である。 図12は、実施例にかかるOZTにおける領域型リスク値の第3の変換方法を示す図である。 図13は、実施例にかかる過去航跡情報集計処理の一例を示すフローチャートである。 図14は、実施例にかかる衝突リスク算出処理の一例を示すフローチャートである。 図15は、実施例にかかる数値型リスク値算出処理の一例を示すサブルーチンを示す図である。 図16は、実施例にかかる領域型リスク値算出処理の一例を示すサブルーチンを示す図である。 図17は、実施例にかかるCDLにおける領域型リスク値の変換方法を示す図である。 図18は、実施例にかかるCDLの表示の一例を示す図である。 図19は、衝突リスク算出プログラムを実行するコンピュータを示す図である。
 以下に、開示の技術にかかる衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本発明が限定されるものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。以下の実施例では、開示の技術を、船舶の航行を支援する支援システムに適用した場合を例に説明する。なお、以下の実施例において、「リスク」、「リスク値」、「衝突リスク」、「衝突リスク値」は、航行管制の対象海域を航行する船舶同士が、当該時刻における進路および速度を取り続けた場合に、所定時間後に衝突する可能性の度合いを示す。「時刻」とは、日付情報および時刻情報を含む。
(支援システムの構成)
 最初に、実施例にかかる支援システム10の一例を説明する。図1は、支援システムの概略的な構成の一例を示す図である。支援システム10は、船舶の航行を支援する海上交通管制システムである。
 図1には、2隻の船舶11(船舶1(自船)および船舶2(相手船))、陸上施設13が示されている。なお、船舶1(自船)および船舶2(相手船)は、相対的な関係を示すに過ぎず、船舶2(相手船)から船舶1(自船)を見た場合には、船舶2が自船であり、船舶1が相手船となる。
 各船舶11には、AIS(Automatic Identification System)装置12が搭載されている。例えば、特定の船舶は、法令などにより、AIS装置12の搭載が義務付けられている。特定の船舶は、国際航海に従事する300総トン以上の全ての船舶、国際航海に従事する全ての旅客船、および、国際航海に従事しない500総トン以上の全ての船舶が該当する。なお、特定の船舶以外の船舶も、AIS装置12を搭載してもよい。
 AIS装置12は、搭載された船舶11に関する各種の情報を含んだAIS情報を無線通信で周期的に送信する。AIS情報には、例えば、緯度および経度による位置、速度、船名、時刻、船首方向、MMSI(Maritime Mobile Service Identity)、船長、船幅などの情報が含まれている。AIS情報は、他の船舶11や陸上施設13により受信される。他の船舶11や陸上施設13は、受信したAIS情報の発信元の船舶11の位置、速度、船名、時刻、船首方向、MMSI、船長、船幅などの各種の情報を把握できる。
 陸上施設13は、例えば、海上の船舶について監視および情報提供する役割を有する海上交通センタや港内交通管制室など、各船舶11の航行管制を行う施設である。陸上施設13は、各船舶11から受信したAIS情報やレーダで検出された情報などをもとに、各船舶11の位置を把握し、各船舶11に対し、海上交通に関する各種の情報を提供する。
(衝突リスク算出装置の構成)
 次に、実施例にかかる衝突リスク算出装置20の構成について説明する。図2は、衝突リスク算出装置の概略的な構成の一例を示す図である。衝突リスク算出装置20は、陸上施設13に設けられ、船舶の航行を支援する装置である。例えば、衝突リスク算出装置20は、陸上施設13内に配置されたサーバなどのコンピュータ装置に実装される。
 衝突リスク算出装置20は、外部I/F(インタフェース)部21、入力部22、表示部23、記憶部30、制御部40を有する。
 外部I/F部21は、例えば、他の装置と各種の情報を送受信するインタフェースである。外部I/F部21は、陸上施設13に設けられたアンテナなどの無線通信装置13Aを介して、各船舶11と無線通信が可能とされており、各船舶11と各種の情報を送受信する。例えば、外部I/F部21は、無線通信装置13Aを介して、各船舶11からAIS情報を受信する。
 入力部22は、各種の情報を入力する入力デバイスである。入力部22としては、マウスやキーボードなどの操作の入力を受け付ける入力デバイスが挙げられる。入力部22は、各種の情報の入力を受け付ける。例えば、入力部22は、各種の処理の開始を指示する操作入力を受け付ける。入力部22は、受け付けた操作内容を示す操作情報を制御部40に入力する。
 表示部23は、各種情報を表示する表示デバイスである。表示部23としては、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)などの表示デバイスが挙げられる。表示部23は、各種情報を表示する。例えば、表示部23は、操作画面など各種の画面を表示する。
 記憶部30は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、光もしくは光磁気ディスクなどの外部記憶装置である。なお、記憶部30は、RAM(Random Access Memory)、フラッシュメモリ、NVSRAM(Non Volatile Static Random Access Memory)などのデータを書き換え可能な半導体メモリであってもよい。
 記憶部30は、制御部40で実行されるOS(Operating System)や各種プログラムを記憶する。例えば、記憶部30は、後述する過去航跡情報集計処理や衝突リスク算出処理を実行するプログラムを記憶する。さらに、記憶部30は、制御部40で実行されるプログラムで用いられる各種データを記憶する。例えば、記憶部30は、AIS蓄積データ31、グリッド情報32、過去航跡情報33、危険領域情報34、リスク算出結果情報35を記憶する。AIS蓄積データ31、グリッド情報32、過去航跡情報33、危険領域情報34、リスク算出結果情報35のそれぞれは、一例としてテーブルのデータ形式である。しかし、これに限られず、AIS蓄積データ31、グリッド情報32、過去航跡情報33、危険領域情報34、リスク算出結果情報35のそれぞれは、CSV(Comma Separated Values)形式など、その他のデータ形式であってもよい。
 AIS蓄積データ31は、各船舶11から受信されたAIS情報を蓄積したデータである。グリッド情報32は、陸上施設13が航行管制の対象海域を所定サイズごとのグリッドに分割したグリッドに関する各種の情報を記憶したデータである。例えば、グリッド情報32には、グリッドを識別する識別情報と、グリッドの領域の境界の位置の情報が記憶されている。
 図3は、実施例にかかるグリッド情報のデータ構成の一例を示す図である。図3に示すように、グリッド情報32は、「グリッドID」、「グリッド範囲」などの項目を有する。なお、図3に示したグリッド情報32の各項目は、一例であり、その他の項目を有してもよい。
 「グリッドID」は、グリッドを識別する識別情報を記憶する領域である。グリッドには、それぞれを識別する識別情報としてグリッドID(IDentifier)が付与される。「グリッドID」には、グリッドに付与されたグリッドIDが格納される。「グリッド範囲」は、グリッドの領域の各頂点の位置の緯度および経度を記憶する領域である。
 ここで、グリッドのサイズについて説明する。船舶の場合、衝突を避けるための回避行動は、少なくとも約30秒以上の回頭として顕れるとする。例えば、後述する衝突リスクについて、リスクの変化が読み取れる可能性が高い10秒で評価するものとする。船舶の一般的な航行速度を約10~12[kn(ノット)]とすると、10秒間での航行距離が約50~60[m]となる。本実施例では、衝突リスクを安定して評価するため、衝突リスクを評価する周期で船舶の位置を求めた場合、船舶が隣接していないグリッドに位置することが避けられるようグリッドのサイズを定める。例えば、グリッドは、最小で一辺の幅が100[m]の矩形領域とする。なお、グリッドは、一辺の幅を100~200[m]としてもよい。また、グリッドの形状は、矩形に限られない。例えば、3角形や6角形などの多角形であってもよい。また、対象範囲を、複数の多角形の組合せによりグリッドに分割してもよい。
(過去航跡情報)
 図4は、実施例にかかる過去航跡情報のデータ構成の一例を示す図である。過去航跡情報33は、各グリッドを通過した船舶に関する各種の情報を記憶したデータである。図4に示すように、過去航跡情報33は、「グリッドID」、「進入角」、「退出角」、「速度差分」、「船舶ID」などの項目を有する。なお、図4に示した過去航跡情報33の各項目は、一例であり、その他の項目を有してもよい。
 「グリッドID」は、グリッドのグリッドIDを記憶する領域である。「進入角」は、グリッドを通過した船舶のグリッドへの進入角を記憶する領域である。「退出角」は、グリッドを通過した船舶のグリッドからの退出角を記憶する領域である。「速度差分」は、船舶が各グリッドに進入した際の船舶の速度と、船舶が各グリッドから退出した際の船舶の速度との差分である。
 「進入角」および「退出角」は、所定の方向を基準(0度)とした角度とする。例えば、「進入角」および「退出角」は、北の方向を基準として右回りの角度とする。なお、「退出角」は、グリッドから退出した角度であってもよく、「進入角」に対するグリッドから退出した角度の角度差を用いてもよい。「船舶ID」は、船舶を識別する識別情報を記憶する領域である。「船舶ID」には、グリッドを「進入角」、「退出角」、「速度差分」で通過した船舶のMMSIが記憶される。
(危険領域情報)
 図6は、実施例にかかるOZTを示す危険領域情報のデータ構成の一例を示すデータの一例を示す図である。OZTとは、Obstacle Zone by Targetの略であり、船舶衝突の危険領域を円で幾何的に示す1つの指標である。図6に示すように、危険領域情報34は、「時刻」、「MMSI1」、「MMSI2」、「円中心点(緯度)」、「円中心点(経度)」、「円半径(m)」などの項目を有する。なお、図6に示した危険領域情報34の各項目は、一例であり、その他の項目を有してもよい。
 「時刻」は、「MMSI1」で特定される船舶1(自船)および「MMSI2」で特定される船舶2(相手船)に対応する危険領域が「円中心点(緯度)」、「円中心点(経度)」、「円半径(m)」となる時刻である。
 図6に示す危険領域情報34は、陸上施設13が航行管制の対象海域内を航行する各船舶11から受信したAIS情報に含まれるMMSI1の船舶1およびMMSI2の船舶2の各時刻における位置を含む。そして、危険領域情報34は、船舶1および船舶2が各時刻における針路および速度を取り続けた場合に、所定時間後に2船が衝突する可能性が所定値より高い領域を「円中心点(緯度)」および「円中心点(経度)」を中心とする「円半径(m)」の円で表す。ここで、「各時刻」とは、例えば、1秒間隔で補完された情報である。あるいは、「各時刻」とは、例えば、1秒ごとに更新された情報であってもよい。また、「各時刻から所定時間後」とは、例えば5分後である。
(OZTの表示)
 図7は、実施例にかかるOZTの表示の一例を示す図である。図7は、図6に示す危険領域情報34を視覚的に表示したものである。例えば、図7に示すように、船舶1および船舶2が、現在における針路および速度を取り続けた場合に、例えば5分後に2船が衝突する可能性が閾値以上となる領域が円の危険領域DZ1で表される。図7では、危険領域DZ1は、1つのみを示すが、これに限られず、航行管制の対象海域を航行する船舶の数に応じて、複数となる。
(リスク算出結果情報)
 図8は、実施例にかかるリスク算出結果情報の一例を示す図である。図8に示すように、リスク算出結果情報35は、「時刻」、「船舶1についての情報」「船舶2についての情報」「リスク値1」「リスク値2」「総合リスク値」などの項目を有する。なお、図8に示したリスク算出結果情報35の各項目は、一例であり、その他の項目を有してもよい。
 「船舶1についての情報」および「船舶2についての情報」は、船舶1および船舶2それぞれから受信したAIS情報に基づく。例えば「船舶1についての情報」は、船舶1に関する「MMSI」、「緯度」、「経度」、「SOG」、「COG」、「船長」、「船幅」などの情報を含む。
 船舶1に関する「MMSI」は、リスク算出結果情報35において対応付けられている「時刻」における船舶1のMMSIである。船舶1に関する「緯度」「経度」は、リスク算出結果情報35において対応付けられている「時刻」における船舶1の位置を示す緯度情報および経度情報である。船舶1に関する「SOG」は、リスク算出結果情報35において対応付けられている「時刻」における船舶1の対地速力(Speed Over Ground)である。船舶1に関する「COG」は、リスク算出結果情報35において対応付けられている「時刻」における船舶1の対地針路(Course Over Ground)である。船舶1に関する「船長」は、船舶1の最大長である。船舶1に関する「船幅」は、船舶1の最大幅である。なお、図8において、「船舶2についての情報」も「船舶1についての情報」と同様である。
 また、リスク算出結果情報35における「リスク値1」は、船舶1および船舶2の衝突リスクを数値形式で表す数値型リスク値である。連続的な数値形式で表現できる数値型リスク値には、例えば、DCPA(Distance to Closest Point of Approach)、TCPA(Time to Closest Point of Approach)などがある。また、連続的もしくは離散的な数値形式で表現できる数値型リスク値には、例えば、RiskLevelなどがある。リスク算出結果情報35における「リスク値1」は、船舶1および船舶2の衝突リスクを数値形式で表す数値型リスク値のうちの1つまたは複数のリスク値を含む。例えば、図8において、1行目の「時刻」“2013/1/10”の行に対応する「リスク値1」は、“r011”である。「リスク値1」は、第2のリスク値の一例である。
 また、リスク算出結果情報35における「リスク値2」は、船舶1および船舶2の衝突リスクを、幾何学的な形式で表す領域型リスク値である。領域型リスク値には、OZT(Obstacle Zone by Target)、CDL(Collision Danger Line)などがある。OZTは、2つの船舶の同時存在確率に基いて円の危険領域を算出する手法である。本実施例では、「リスク値2」は、OZTであるとする。例えば、図8において、1行目の「時刻」“2013/1/10”の行に対応する「リスク値2」は、“r012”である。「リスク値2」は、第1のリスク値の一例である。
 ここで、「リスク値2」は、元来は幾何学的な形式で表されたリスク値であるが、数値形式へ変換されたリスク値となっている。幾何学的な形式で表されたリスク値から数値形式で表されたリスク値へ変換する変換方法は、例えば、次の変換方法1~3がある。本実施例では、変換方法1~3のいずれか1、あるいは2つ以上を重み付けした結果を用いるものとする。変換方法1~3については後述する。
 なお、「リスク値1」および「リスク値2」は、取りうる値の幅が様々であるため、正規化により、値が取り得る範囲(例えば0以上1以下などの下限値および上限値)を予め揃えておく。また、リスク算出結果情報35における「総合リスク値」は、1または複数の「リスク値1」と、1または複数の「リスク値2」とを重み付けしたリスク値である。例えば、図8において、1行目の「時刻」“2013/1/10”の行に対応する「総合リスク値」は、“R011”である。「総合リスク値」は、第3のリスク値の一例である。
 なお、「リスク値1」、「リスク値2」、「総合リスク値」を算出する際の重み付けは、次の各手法を用いることができる。第1の手法は、重みを均一とする単純平均である。第2の手法は、人による主観的なリスク値の正解データがある場合における多変量解析(重回帰分析など)あるいは機械学習等の手法を用いて正解に合致させるような重みを付与するアンサンブル学習である。第3の手法は、正解データがない場合における教師なし機械学習手法(クラスタリングなど)である。
 このように、幾何学的な領域(例えば衝突の危険性がある危険領域)の形式で表される領域型リスク値を数値形式で表されるリスク値へ変換した上で、数値形式で表される数値型リスク値とともに重み付けされた「総合リスク値」を、船舶の衝突リスク値とする。これにより、数値型リスク値および領域型リスク値の各特長を有する、より精度が高いリスク値を得ることができる。
(第1の変換方法)
 図9は、実施例にかかるOZTにおける領域型リスク値の第1の変換方法を示す図である。リスク算出部44は、図9の速度ベクトルA11で示されるように、各時刻における船舶1(自船)の将来予想航路を生成する。同様に、リスク算出部44は、図9の速度ベクトルA12で示されるように、船舶2(相手船)の将来予想航路を作成する。そして、リスク算出部44は、船舶1(自船)および船舶2(相手船)の組合せに対して危険領域を算出する。図9に示す例では、危険領域は、危険領域DZ11、DZ12、DZ13の3つ算出される。そして、リスク算出部44は、これらの危険領域DZ11、DZ12、DZ13を回避するために船舶1(自船)が取る、現在の針路に対する最小旋回角θ1を算出する。第1の変換方法では、最小旋回角θ1が、変換後のリスク値である。最小旋回角θ1は、最大180°として正規化されている。最小旋回角θ1は、遠方で船舶1(自船)を横切る船舶2(相手船)よりも、間近で船舶1(自船)を横切る船舶2(相手船)の方が、角度が大きくなり高リスクと判定されるという特長を有する。最小旋回角θ1は、操船量の一例である。なお、図9では、最小旋回角θ1は、右旋回角度であるが、左旋回角度、または、右旋回角度および左旋回角度のうち最小角となるいずれかであってもよい。
(第2の変換方法)
 図10は、実施例にかかるOZTにおける領域型リスク値の第2の変換方法を示す図である。第1の変換方法同様に、リスク算出部44は、図10の速度ベクトルA21で示されるように、各時刻における船舶1(自船)の将来予想航路を作成する。同様に、リスク算出部44は、図10の速度ベクトルA22で示されるように、船舶2(相手船)の将来予想航路を作成する。そして、リスク算出部44は、船舶1(自船)および船舶2(相手船)の組合せに対して危険領域を算出する。図10に示す例では、危険領域は、危険領域DZ21、DZ22、DZ23の3つ算出される。そして、リスク算出部44は、これらの危険領域DZ21、DZ22、DZ23を回避するために船舶1(自船)が取る、現在の針路に対する最小旋回角θ2を算出する。そして、危険領域DZ21、DZ22、DZ23までの距離を、船舶1(自船)と危険領域DZ21を結ぶ接線の接点と、船舶1(自船)までの距離D2とする。そして、船舶1(自船)の各時刻における速度で距離D2を航行するためにかかる時間T2を算出する。第2の変換方法では、最小旋回角θ2を時間T2で除算したリスク値θ2/T2が、変換後のリスク値である。リスク値θ2/T2は、幾何学的な領域をリスク値に変換する際に、危険領域DZ21、DZ22、DZ23に到達するまでの時間T2を考慮することで、船舶1(自船)の旋回操作量だけでなく、衝突回避までの時間をリスク値に反映することができる。最小旋回角θ2は、最大180°として正規化されている。これにより、例えば、船舶1(自船)と危険領域との位置関係が同一であっても、速度が高い方が高リスクと判定されるという特長を有する。最小旋回角θ2および船舶1(自船)の各時刻における速度は、操船量の一例である。なお、図10では、最小旋回角θ2は、右旋回角度であるが、左旋回角度、または、右旋回角度および左旋回角度のうち最小角となるいずれかであってもよい。
(第3の変換方法)
 図11および図12は、実施例にかかるOZTにおける領域型リスク値の第3の変換方法を示す図である。リスク算出部44は、図11の速度ベクトルA31で示されるように、各時刻における船舶1(自船)の将来予想航路を作成する。同様に、リスク算出部44は、図11の速度ベクトルA32で示されるように、船舶2(相手船)の将来予想航路を作成する。そして、リスク算出部44は、図11の速度ベクトルA31出で示される船舶1(自船)の針路の直線と、危険領域の両方に接する円C3の半径を船舶1(自船)が危険領域DZ31~DZ33を回避するために操舵する際に旋回する最小旋回半径Rreqとして算出する。また、リスク算出部44は、最大舵角旋回試験における縦距L31、旋回圏(2×L32)を算出し、旋回圏(2×L32)の半径であるL32を船舶1(自船)の旋回半径Rminとする。ここで、縦距L31は、例えば船舶1(自船)の船長の4.5倍以下である。また、旋回圏(2×L32)は、例えば船舶1(自船)の船長の4.5倍以下である。旋回半径Rminは、例えばIMO(International Maritime Organization)基準(2002年)に準拠する。第3の変換方法では、船舶1(自船)の最小旋回半径Rreqを旋回半径Rminで除算したリスク値Rreq/Rminが、変換後のリスク値である。なお、リスク値Rreq/Rminは、最小旋回半径Rreqが旋回半径Rmin以上となる場合に、リスク値が最大値であると正規化されている。最小旋回角θ2および船舶1(自船)の各時刻における速度は、操船量の一例である。なお、図11では、最小旋回半径Rreqは、右旋回角度であるが、左旋回角度、または、右旋回角度および左旋回角度のうち最小旋回半径をとるいずれの旋回角度であってもよい。
 制御部40は、衝突リスク算出装置20を制御するデバイスである。制御部40としては、CPU(Central Processing Unit)、MPU(Micro Processing Unit)などの処理装置や、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などの集積回路を採用できる。制御部40は、各種の処理手順を規定したプログラムや制御データを格納するための内部メモリを有し、これらによって種々の処理を実行する。制御部40は、各種のプログラムが動作することにより各種の処理部として機能する。例えば、制御部40は、取得部41、過去航跡情報算出部42、危険領域情報算出部43、リスク算出部44、出力部45を有する。
 取得部41は、各種の情報を取得する。例えば、取得部41は、各船舶の位置および速度に関する進行情報をそれぞれ取得する。例えば、取得部41は、各船舶の進行情報として、無線通信装置13Aを介して、各船舶11からAIS情報を取得する。取得部41は、取得したAIS情報をAIS蓄積データ31に格納する。なお、各船舶の速度は、AIS情報に記憶された速度を用いてもよく、各船舶の時刻ごとの位置の変化から算出してもよい。本実施例では、衝突リスク算出装置20でAIS情報を受信する場合を説明するが、AIS情報は、ストレージ装置など外部の記憶装置に記憶されていてもよい。この場合、取得部41は、外部の記憶装置から、各船舶11のAIS情報を取得する。
 過去航跡情報算出部42は、グリッドごとに、当該グリッドを通過した船舶の航行の特徴を示す情報を算出する。例えば、過去航跡情報算出部42は、AIS蓄積データ31から、グリッドごとに、当該グリッドを通過した各船舶の進行方向を求める。図5は、実施例にかかるグリッドごとの進入角および退出角の一例を示す図である。例えば、過去航跡情報算出部42は、AIS蓄積データ31を参照して、図5に示すように、グリッドごとに、当該グリッドを通過した各船舶の時刻ごとの位置を求め、進行方向として、各船舶のグリッドへの進入角を算出する。また、過去航跡情報算出部42は、AIS蓄積データ31を参照して、グリッドごとに、当該グリッドを通過した各船舶の速度を求める。速度は、グリッドを通過した際の平均速度であってもよく、グリッドへ進入した際の速度であってもよい。
 なお、各船舶からAIS情報が送信される周期が異なる場合、過去航跡情報算出部42は、船舶ごとにAIS情報の位置や速度から補間により各時刻の位置や速度を求めてもよい。例えば、過去航跡情報算出部42は、船舶ごとに、1秒間隔で補完された(あるいは1秒ごとに更新された)各時刻の位置や速度を算出する。そして、過去航跡情報算出部42は、算出した各船舶11の各時刻の位置や速度を、各船舶のID(例えばMMSIなど)に対応付けて、図4に示す過去航跡情報33に格納する。
 危険領域情報算出部43は、航行管制の対象海域内を航行する例えば船舶1および船舶2の各時刻における位置を含み、船舶1および船舶2が各時刻における針路および速度を取り続けた場合に、所定時間後に2船が衝突する可能性が所定値より高い領域を算出する。危険領域情報算出部43は、所定時間後に2船が衝突する可能性が所定値より高い領域を「円中心点(緯度)」「円中心点(経度)」を中心とする「円半径(m)」の円で表す。危険領域情報算出部43は、AIS蓄積データ31をもとに、図6に示すOZTに基づく危険領域情報34を生成する。また、危険領域情報算出部43は、危険領域情報34に基づいて、表示部23を介して、図7に示すようにOZTを視覚的に表示する。
 リスク算出部44は、AIS蓄積データ31から、「船舶1についての情報」と、「船舶2についての情報」とを取得する。そして、リスク算出部44は、数値的に表される1または複数の「リスク値1」と、幾何的に表される1または複数のリスク値を数値へ変換した「リスク値2」とを算出する。そして、リスク算出部44は、「リスク値1」および「リスク値2」を重み付けすることにより、「総合リスク値」を算出する。
 出力部45は、各種の出力を行う。例えば、出力部45は、リスク算出部44により算出された衝突リスクが閾値以上高い場合、警告を出力する。例えば、出力部45は、衝突の危険性が高い旨を画面、衝突の危険性が高い船舶11のAIS装置12、外部装置に出力する。これにより、出力部45は、衝突の危険性が高いことを通知できる。
(過去航跡情報集計処理)
 図13は、実施例にかかる過去航跡情報集計処理の一例を示すフローチャートである。過去航跡情報集計処理は、所定のタイミング、例えば、後述する衝突リスク算出処理の前のタイミングや、処理開始を指示する所定操作を受け付けたタイミングで実行される。
 図13に示すように、ステップS11では、過去航跡情報算出部42は、AIS蓄積データ31から、船舶ごとに、補間などにより1秒ごとに各時刻の位置や速度を算出する。ステップS12では、過去航跡情報算出部42は、陸上施設13が航行管制の対象海域を緯度および経度に応じた領域(例えばグリッド)に分割する。
 ステップS13では、過去航跡情報算出部42は、ある1つの領域について、航行した全ての船舶を探索する。ステップS14では、過去航跡情報算出部42は、当該領域を通過した各船舶の進入角、退出各、速度を算出する。ステップS15では、過去航跡情報算出部42は、領域ごとの各船舶の進入角、退出各、速度を、過去航跡情報33に格納する。ステップS16では、過去航跡情報算出部42は、全ての領域について、ステップS13~ステップS15の処理が完了したか否かを判定する。過去航跡情報算出部42は、全ての領域について、ステップS13~ステップS15の処理が完了した場合(ステップS16Yes)、過去航跡情報集計処理を終了する。一方、過去航跡情報算出部42は、全ての領域について、ステップS13~ステップS15の処理が完了していない場合(ステップS16No)、ステップS13へ処理を移す。
(衝突リスク算出処理)
 図14は、実施例にかかる衝突リスク算出処理の一例を示すフローチャートである。衝突リスク算出処理は、所定のタイミング、例えば、所定周期もしくは処理開始を指示する所定操作を受け付けたタイミングで実行される。
 図14に示すように、ステップS21では、リスク算出部44は、AIS蓄積データ31から、船舶ごとに、補間などにより1秒ごとに各時刻の位置や速度を算出する。ステップS22では、リスク算出部44は、ステップS22の処理による補完済みのデータを対象に、リスク算出を実行する。具体的には、ステップS22に続くステップS23Aにおいて、リスク算出部44は、連続的もしくは離散的な数値形式で表現できる数値型リスク値を算出する数値型リスク値算出モジュールを呼び出し、数値型リスク値算出処理を実行する。また、ステップS22に続くステップS23Bにおいて、リスク算出部44は、幾何的形式で表現できる領域型リスク値を算出する領域型リスク値算出モジュールを呼び出し、領域型リスク値算出処理を実行する。
 なお、図14に示す衝突リスク算出処理のフローチャートでは、説明の簡略化のため、数値型リスク値を算出する数値型リスク値算出モジュールの呼び出しステップは、ステップS23Aの1つのみであり、1種類の数値型リスク値を算出する場合を示す。複数種類の数値型リスク値が算出される場合には、数値型リスク値ごとの数値型リスク値算出モジュールが並列に呼び出されて実行される。同様に、図14に示す衝突リスク算出処理のフローチャートでは、領域型リスク値を算出する領域型リスク算出モジュールの呼び出しステップは、ステップS23Bの1つのみであり、1種類の領域型リスク値を算出する場合を示す。複数種類の領域型リスク値が算出される場合には、領域型リスク値ごとの領域型リスク算出モジュールが並列に呼び出されて実行される。
 ステップS23Aでは、リスク算出部44は、算出対象の数値型リスク値を算出するための数値型リスク値算出モジュールをサブルーチンとして呼び出して、算出対象の数値型リスク値を算出する。ステップS23Aの詳細は、図15を参照して後述する。
 他方、ステップS23Bでは、リスク算出部44は、算出対象の領域型リスク値を算出するための領域型リスク値算出モジュールをサブルーチンとして呼び出して、算出対象の領域型リスク値を算出する。ステップS23Bの詳細は、図16を参照して後述する。
 ステップS23AおよびステップS23Bに続き、ステップS24では、リスク算出部44は、ステップS23Aによる数値型リスク値算出結果を「リスク値1」とし、ステップS23Bによる領域形式リスク値算出結果を「リスク値2」とする。そして、リスク算出部44は、算出の基礎となった「船舶1についての情報」および「船舶2についての情報」とともに、リスク算出結果情報35に格納する。なお、複数種類の数値型リスク値が算出される場合には、数値型リスク値ごとの「リスク値1」が算出され、複数種類の領域型リスク値が算出される場合には、領域型リスク値ごとの「リスク値2」が算出され、リスク算出結果情報35に格納される。
 ステップS25では、リスク算出部44は、ステップS24でリスク算出結果情報35に格納した「リスク値1」および「リスク値2」に対し正規化を行い、重み算出方法に従って「リスク値1」および「リスク値2」から「総合リスク値」を算出する。例えば、リスク算出部44は、「リスク値1」および「リスク値2」それぞれを0以上1以下の値の範囲となるように正規化し、「リスク値1」および「リスク値2」の平均を「総合リスク値」として算出する。
 ステップS26では、リスク算出部44は、ステップS25により算出した「総合リスク値」をリスク算出結果情報35に格納する。ステップS26が終了すると、リスク算出部44は、衝突リスク算出処理を終了する。
(数値型リスク値算出処理)
 図15は、実施例にかかる数値型リスク値算出処理の一例を示すサブルーチンを示す図である。図15は、図14に示す衝突リスク算出処理のステップS23Aの処理において、リスク算出部44が、算出対象の数値型リスク値に対応する数値型リスク値算出モジュールを呼び出して実行し、「リスク値1」を算出する処理である。
 図15に示すように、ステップS23A-1では、リスク算出部44は、例えば図1に示すように船舶1(自船)に対して、一定距離以内(例えば所定の近傍のグリッド)の船舶2(相手船)を抽出する。ステップS23A-2では、リスク算出部44は、ステップS23A-1で抽出した船舶1(自船)および船舶2(相手船)の将来予想航路を、過去航跡情報33に蓄積された情報をもとにした予測方法により算出する。例えば、船舶の針路および速度の予測を行う際には、複数の将来予測航路が考えられるが、船舶が取り得る針路について、各針路および各速度を、それぞれが生起する確率で重み付けした和の針路および速度を、船舶が取り得る将来予測航路とする。
 ステップS23A-3では、リスク算出部44は、定義された数値型リスク値の計算式に基づいて、ステップS23A-2で算出した将来予測航路から、算出対象の数値型リスク値を算出する。具体的には、リスク算出部44は、算出対象の数値型リスク値が、例えば船舶1(自船)と船舶2(相手船)の間のリスク値を示すDCPAである場合には、船舶1(自船)に対する船舶2(相手船)のDCPAを定義する計算式に基づいて、DCPAを算出する。ステップS23A-4では、リスク算出部44は、ステップS23A-3で算出した数値型リスク値を、船舶1(自船)に対する船舶2(相手船)の「リスク値1」として得る。
 ステップS23A-5では、リスク算出部44は、ステップS23A-1~23A-4の処理が、「リスク値1」を算出する対象期間の全ての時刻について完了したか否かを判定する。リスク算出部44は、ステップS23A-1~23A-4の処理が、「リスク値1」を算出する対象期間の全ての時刻について完了した場合(ステップS23A-5Yes)、ステップS23A-6へ処理を移す。一方、リスク算出部44は、ステップS23A-1~23A-4の処理が、「リスク値1」を算出する対象期間の全ての時刻について完了していない場合(ステップS23A-5No)、ステップS23A-1へ処理を移す。
 ステップS23A-6では、リスク算出部44は、ステップS23A-1~23A-4の一連の処理を繰り返すことにより算出された「リスク値1」を、次のステップS24の処理へ出力する。ステップS23A-6が終了すると、リスク算出部44は、数値型リスク値算出処理を終了する。
 なお、上述の数値型リスク値算出処理では、リスク算出部44は、複数の将来予測航路を確率で重み付けして算出した将来予測航路を用いて「リスク値1」を算出するとするが、これに限られるものではない。すなわち、リスク算出部44は、複数の将来予測航路ごとに「リスク値1」を算出し、複数の将来予測航路の各確率で重み付けして「リスク値1」を算出してもよい。これにより、より柔軟性があるリスク値を算出することが可能となる。
 また、リスク算出部44は、ステップS23A-2の処理において、ステップS23A-1で抽出した船舶1(自船)および船舶2(相手船)の将来予想航路を、過去航跡情報33に蓄積された情報に基づかない予測方法により算出してもよい。この場合、図2に示す過去航跡情報算出部42、図4に示す過去航跡情報33、図13に示す過去航跡情報集計処理は、省略できる。
(領域型リスク値算出処理)
 図16は、実施例にかかる領域型リスク値算出処理の一例を示すサブルーチンを示す図である。図16は、図14に示す衝突リスク算出処理のステップS23Bの処理において、リスク算出部44が、算出対象の領域型リスク値に対応する領域型リスク値算出モジュールを呼び出して実行し、「リスク値2」を算出する処理である。
 図16に示すように、ステップS23B-1では、リスク算出部44は、例えば図1に示すように船舶1(自船)に対して、一定距離以内(例えば所定の近傍のグリッド)の船舶2(相手船)を抽出する。ステップS23B-2では、リスク算出部44は、ステップS23B-1で抽出した船舶1(自船)および船舶2(相手船)の将来予想航路を、過去航跡情報33に蓄積された情報をもとにした予測方法により算出する。将来予想航路の算出方法は、図15に示す数値型リスク値算出処理と同様である。
 ステップS23B-3では、リスク算出部44は、危険領域情報算出部43により、定義された危険領域(OZT)の計算式に基づいて、ステップS23B-2で算出した将来予測航路から、危険領域情報34(図6参照)を生成する。具体的には、リスク算出部44は、危険領域情報算出部43によって、算出対象の領域型リスク値が領域型リスク値(OZT)である場合に、OZTの定義に基づいて、船舶1(自船)と船舶2(相手船)のOZTを算出する。ステップS23B-4では、リスク算出部44は、ステップS23B-3で算出したOZTを、船舶1(自船)と船舶2(相手船)の危険領域(「リスク値2」)を得る。
 ステップS23B-5では、領域型リスク値である危険領域を、数値型リスク値に変換するために、例えば、上述の「第1の変換方法」による最小旋回角θ1を算出する。
 ステップS23B-6では、リスク算出部44は、ステップS23B-1~23B-5の処理が、「リスク値2」を算出する対象期間の全ての時刻について完了したか否かを判定する。リスク算出部44は、ステップS23B-1~23B-5の処理が、「リスク値2」を算出する対象期間の全ての時刻について完了した場合(ステップS23B-6Yes)、ステップS23B-7へ処理を移す。一方、リスク算出部44は、ステップS23B-1~23B-5の処理が、「リスク値2」を算出する対象期間の全ての時刻について完了していない場合(ステップS23B-6No)、ステップS23B-1へ処理を移す。
 ステップS23B-7では、リスク算出部44は、ステップS23B-1~23B-5の一連の処理を繰り返すことにより算出された「リスク値2」を、次のステップS24の処理へ出力する。ステップS23B-7が終了すると、リスク算出部44は、領域型リスク値算出処理を終了する。
 なお、上述の領域型リスク値算出処理では、リスク算出部44は、複数の将来予測航路を確率で重み付けして算出した将来予測航路を用いて「リスク値2」を算出するとするが、これに限られるものではない。すなわち、リスク算出部44は、複数の将来予測航路ごとに「リスク値2」を算出し、複数の将来予測航路の各確率で重み付けして「リスク値2」を算出してもよい。これにより、より柔軟性があるリスク値を算出することが可能となる。
 また、リスク算出部44は、ステップS23B-2の処理において、ステップS23B-1で抽出した船舶1(自船)および船舶2(相手船)の将来予想航路を、過去航跡情報33に蓄積された情報に基づかない予測方法により算出してもよい。この場合、数値型リスク値算出処理と同様に、図2に示す過去航跡情報算出部42、図4に示す過去航跡情報33、図13に示す過去航跡情報集計処理は、省略できる。
 種々の衝突リスク値は、衝突リスクごとに定義が異なることから、同一のAISデータに基づいたとしても、ある衝突リスク値では高い衝突リスクを示す一方、他の衝突リスク値では低い衝突リスクを示すといった場合が生じる。そこで、種々の複数の衝突リスクを適切に重み付けし、単一の手法に基づく単一の衝突リスクよりもより精度が高い新たな衝突リスクを算出する方法が考えられる。
 しかし、複数の衝突リスクを重み付けすることは、数値形式で表される衝突リスク同士であれば可能である一方、数値形式で表される衝突リスクと幾何学的な領域(例えば衝突の危険性がある危険領域)の形式で表される衝突リスクとの間では難しい。このように、形式が異なる衝突リスクを含む衝突リスクの算出が困難であるという問題がある。
 そこで、上述の実施例における衝突リスク算出装置20は、領域型リスク値を数値形式へ変換する。また、上述の実施例における衝突リスク算出装置20は、数値型リスク値と、領域型リスク値を数値形式へ変換したリスク値とを重み付けした総合リスク値を算出し、総合リスク値により船舶同士の衝突リスクを表す。よって、上述の実施例によれば、幾何学的な領域として表される衝突リスクを定量的に把握できる。また、上述の実施例によれば、種々の数値型リスク値および領域型リスク値それぞれの特長を併せ持った総合リスク値により、「衝突直前にリスクが最大になる」という衝突リスク値が備えるべき性質を満たしつつ、船舶衝突危険性をより高い精度で表すことができる。
 また、上述の実施例では、船舶1および船舶2それぞれの将来進路を複数算出し、それぞれの生起確率で複数の将来進路を重み付けして、船舶1および船舶2それぞれの将来進路を算出する。よって、船舶1および船舶2それぞれの将来進路の予測精度を向上させ、延いては、数値型リスク値、領域型リスク値、総合リスク値の精度を向上させることができる。
 また、上述の実施例では、領域型リスク値を、危険領域を回避するために船舶1または船舶2が取る旋回角に基づく値に変換する。よって、自船に他船が接近するほど旋回角に基づく値が大きくなる、すなわち、領域型リスク値の変換後の値が大きくなることから、領域型リスク値のリスクの度合いを、より適切に表すことができる。
 また、上述の実施例における衝突リスク算出装置20は、海上交通管制システムなどで船舶の衝突リスクの可視化結果を用いる際に、船舶のリアルタイムな位置を地図上に表示するとともに、各船舶が取りうる将来予測航路、各船舶の衝突リスクのグラフを表示する。よって、上述の実施例によれば、衝突リスクが高まっている船舶が発生した場合には、警報を発したり、画面上で該当の船舶をハイライト表示し、オペレータに表示部23などで確認させ、必要に応じて船舶11へ衝突危険性の連絡を実施させることができる。
[他の実施例]
 さて、これまで開示の技術に関する実施例について説明したが、開示の技術は上述した実施例以外にも、種々の異なる形態にて実施されてよい。そこで、以下では、開示の技術に含まれる他の実施例を説明する。
(1)危険領域について
 上述の実施例では、危険領域は、OZTであるが、これに限られず、CDL(Collision Danger Line)であってもよい。図17は、実施例にかかるCDLにおける領域型リスク値の変換方法を示す図である。図18は、実施例にかかるCDLの表示の一例を示す図である。
 N分以内に船舶2が速度ベクトルA42の針路により領域DZ42に至る場合、船舶1が速度ベクトルA42と平行かつ同じ大きさの速度ベクトルA41(船舶1の針路から左旋回角度θ41)から速度ベクトルA41’(船舶1の針路から右旋回角度θ41’)迄の針路を取る。このことにより、船舶1(自船)が危険領域DZ4に進入せず、船舶1(自船)と船舶2(相手船)がN分以内は距離が閾値より大となり、航行の安全が保たれると見なされる。この危険領域DZ4が、CDLである。そして、CDLは、船舶1(自船)と船舶2(相手船)がN分以内に距離が閾値以下となり、航行の安全が保たれない領域DZ41および領域DZ42を、船舶1(自船)の速度ベクトルA41の先端が入らないようにするべき危険領域DZ4とする手法である。なお、図17に示すように、危険領域DZ4は、円および円に接する2本の接線により構成される。
 例えば、図18に示すように、船舶1(自船)および船舶2(相手船)が、現在における針路および速度を取り続けた場合に、例えばN分以内に船舶1(自船)および船舶2(相手船)の距離が閾値以下になる領域が危険領域DZ4である。
 なお、OZT、CDLに限られず、幾何学的な領域(例えば衝突の危険性がある危険領域)の形式で表される衝突リスク値であれば、いずれの衝突リスク値であっても開示の技術を適用することができる。
(2)時刻について
 上述の実施例では、危険領域を示す時刻は、現在時刻から所定時間後、例えば5分後である。しかし、これに限らず、危険領域を示す時刻は、現在時刻であってもよい。
(3)衝突リスク算出装置20の配置について
 上述の実施例では、衝突リスク算出装置20は、陸上施設13内に配置されたサーバなどのコンピュータ装置に実装される。しかし、これに限られず、衝突リスク算出装置20は、船舶11の衝突防止を目的とした装置として、船舶11自体へ搭載されてもよい。
(4)過去の事例解析
 上述の実施例では、衝突リスク算出装置20は、現在時刻から所定時間後の船舶同士の衝突リスク値を算出して表示などする。しかし、これに限られず、衝突リスク算出装置20は、過去データから、事故には至らなかったが危険な事例を抽出してもよい。これにより、衝突リスク算出装置20は、過去の事例解析や危険箇所マップ作成の支援を行い、船舶衝突の事故防止に資することができる。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的状態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、危険領域情報算出部43と、リスク算出部44は、統合されてもよい。あるいは、例えば、危険領域情報算出部43は、船舶1(自船)および船舶2(相手船)の将来予想進路を算出する将来予想進路算出部と、険領域情報を算出する険領域情報算出部とに分散されてもよい。また、リスク算出部44は、将来進路算出部、リスク算出部とに分散されてもよい。
 また、各処理部にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
(衝突リスク算出プログラム)
 また、上述の実施例で説明した各種の処理は、予め用意されたプログラムをパーソナルコンピュータやワークステーションなどのコンピュータシステムで実行することによって実現することもできる。そこで、以下では、上述の実施例と同様の機能を有するプログラムを実行するコンピュータシステムの一例を説明する。図19は、衝突リスク算出プログラムを実行するコンピュータを示す図である。
 図19に示すように、コンピュータ300は、CPU310、HDD(Hard Disk Drive)320、RAM(Random Access Memory)340を有する。これら310~340の各部は、バス400を介して接続される。
 HDD320には上述の実施例の各処理部と同様の機能を発揮する衝突リスク算出プログラム320aが予め記憶される。例えば、上述の実施例の取得部41、過去航跡情報算出部42、危険領域情報算出部43、リスク算出部44、出力部45と同様の機能を発揮する衝突リスク算出プログラム320aを記憶させる。なお、衝突リスク算出プログラム320aについては、各機能を適宜モジュール分割してもよい。
 また、HDD320は、各種データを記憶する。例えば、HDD320は、OSや各種データを記憶する。
 そして、CPU310が、衝突リスク算出プログラム320aをHDD320から読み出して実行することで、実施例の各処理部と同様の動作を実行する。すなわち、衝突リスク算出プログラム320aは、実施例の取得部41、過去航跡情報算出部42、危険領域情報算出部43、リスク算出部44、出力部45と同様の動作を実行する。
 なお、上述した衝突リスク算出プログラム320aについては、必ずしも最初からHDD320に記憶させることを要しない。例えば、コンピュータ300に挿入されるフレキシブルディスク(FD)、Compact Disk Read Only Memory(CD-ROM)、Digital Versatile Disk(DVD)、光磁気ディスク、ICカードなどの「可搬用の物理媒体」にプログラムを記憶させておく。そして、コンピュータ300がこれらからプログラムを読み出して実行するようにしてもよい。
 さらには、公衆回線、インターネット、LAN、WANなどを介してコンピュータ300に接続される「他のコンピュータ(もしくはサーバ)」などにプログラムを記憶させておく。そして、コンピュータ300がこれらからプログラムを読み出して実行するようにしてもよい。
1 船舶(自船)
2 船舶(相手船)
10 支援システム
11 船舶
12 AIS装置
13 陸上施設
13A 無線通信装置
20 衝突リスク算出装置
21 外部I/F部
22 入力部
23 表示部
30 記憶部
31 AIS蓄積データ
32 グリッド情報
33 過去航跡情報
34 危険領域情報
35 リスク算出結果情報
40 制御部
41 取得部
42 過去航跡情報算出部
43 危険領域情報算出部
44 リスク算出部
45 出力部

Claims (8)

  1.  コンピュータに、
     第1の船舶および第2の船舶それぞれの位置および速度に関する進行情報を取得し、
     前記第1の船舶および前記第2の船舶それぞれの前記進行情報から、前記第1の船舶および前記第2の船舶が将来衝突する可能性がある領域を算出し、
     前記領域を回避するために前記第1の船舶または前記第2の船舶が取る操船量に基づく第1のリスク値を算出する
     処理を実行させることを特徴とする衝突リスク算出プログラム。
  2.  さらに、前記コンピュータに、
     前記第1の船舶および前記第2の船舶が将来衝突する可能性を数値的に示す第2のリスク値を算出し、
     前記第1のリスク値および前記第2のリスク値を重み付けして前記第1の船舶および前記第2の船舶が将来衝突する可能性を示す第3のリスク値を算出する
     処理を実行させることを特徴とする請求項1に記載の衝突リスク算出プログラム。
  3.  さらに、前記コンピュータに、
     過去に航行した船舶の進行情報から、前記第1の船舶および前記第2の船舶それぞれの複数の将来進路を算出し、それぞれの生起確率で前記複数の将来進路を重み付けして、前記第1の船舶および前記第2の船舶それぞれの将来進路を算出し、
     前記将来進路をもとに、前記第1のリスク値または前記第2のリスク値を算出する
     処理を実行させることを特徴とする請求項2に記載の衝突リスク算出プログラム。
  4.  前記第1のリスク値は、前記領域を回避するために前記第1の船舶または前記第2の船舶が取る最小旋回角である
     ことを特徴とする請求項1~3のいずれか1項に記載の衝突リスク算出プログラム。
  5.  前記第1のリスク値は、前記領域を回避するために前記第1の船舶または前記第2の船舶が取る最小旋回角を、前記最小旋回角を取る前記第1の船舶または前記第2の船舶が前記領域に至るまでにかかる時間で除算した値である
     ことを特徴とする請求項1~3のいずれか1項に記載の衝突リスク算出プログラム。
  6.  前記第1のリスク値は、前記領域を回避するために前記第1の船舶または前記第2の船舶が行う操舵の際の最小旋回半径を、前記操舵を行う前記第1の船舶または前記第2の船舶の旋回半径で除算した値である
     ことを特徴とする請求項1~3のいずれか1項に記載の衝突リスク算出プログラム。
  7.  コンピュータが、
     第1の船舶および第2の船舶それぞれの位置および速度に関する進行情報を取得し、
     前記第1の船舶および前記第2の船舶それぞれの前記進行情報から、前記第1の船舶および前記第2の船舶それぞれの将来進路を算出し、
     前記将来進路から、前記第1の船舶および前記第2の船舶が将来衝突する可能性がある領域を算出し、
     前記領域を回避するために前記第1の船舶または前記第2の船舶が取る操船量に基づく第1のリスク値を算出する
     処理を実行することを特徴とする衝突リスク算出方法。
  8.  第1の船舶および第2の船舶それぞれの位置および速度に関する進行情報を取得する取得部と、
     前記第1の船舶および前記第2の船舶それぞれの前記進行情報から、前記第1の船舶および前記第2の船舶それぞれの将来進路を算出する将来進路算出部と、
     前記将来進路から、前記第1の船舶および前記第2の船舶が将来衝突する可能性がある領域を算出する領域情報算出部と、
     前記領域を回避するために前記第1の船舶または前記第2の船舶が取る操船量に基づく第1のリスク値を算出するリスク算出部と
     を有することを特徴とする衝突リスク算出装置。
PCT/JP2017/015950 2017-04-20 2017-04-20 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置 WO2018193596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/015950 WO2018193596A1 (ja) 2017-04-20 2017-04-20 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
JP2019513175A JP6806242B2 (ja) 2017-04-20 2017-04-20 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
EP17906218.7A EP3614364B1 (en) 2017-04-20 2017-04-20 Collision risk calculation program, collision risk calculation method, and collision risk calculation device
US16/590,662 US11417219B2 (en) 2017-04-20 2019-10-02 Non-transitory computer-readable storage medium for storing collision risk calculation program, collision risk calculation method, and collision risk calculation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015950 WO2018193596A1 (ja) 2017-04-20 2017-04-20 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/590,662 Continuation US11417219B2 (en) 2017-04-20 2019-10-02 Non-transitory computer-readable storage medium for storing collision risk calculation program, collision risk calculation method, and collision risk calculation apparatus

Publications (1)

Publication Number Publication Date
WO2018193596A1 true WO2018193596A1 (ja) 2018-10-25

Family

ID=63856573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015950 WO2018193596A1 (ja) 2017-04-20 2017-04-20 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置

Country Status (4)

Country Link
US (1) US11417219B2 (ja)
EP (1) EP3614364B1 (ja)
JP (1) JP6806242B2 (ja)
WO (1) WO2018193596A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166083A1 (ja) 2019-02-15 2020-08-20 富士通株式会社 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
WO2021149448A1 (ja) * 2020-01-20 2021-07-29 古野電気株式会社 船舶監視装置
JP2022073731A (ja) * 2020-11-02 2022-05-17 東京計器株式会社 追尾制御装置
US11417219B2 (en) * 2017-04-20 2022-08-16 Fujitsu Limited Non-transitory computer-readable storage medium for storing collision risk calculation program, collision risk calculation method, and collision risk calculation apparatus
WO2022234712A1 (ja) * 2021-05-06 2022-11-10 古野電気株式会社 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2023286825A1 (ja) * 2021-07-15 2023-01-19 日本無線株式会社 航行支援装置、航行支援方法、プログラム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844694B2 (ja) * 2017-04-20 2021-03-17 富士通株式会社 危険箇所算出プログラム、危険箇所算出方法および危険箇所算出装置
US11794865B1 (en) * 2018-11-21 2023-10-24 Brunswick Corporation Proximity sensing system and method for a marine vessel
WO2021089131A1 (en) * 2019-11-05 2021-05-14 Telefonaktiebolaget Lm Ericsson (Publ) Managing conflicting interactions between a movable device and potential obstacles
JP2023060775A (ja) * 2021-10-18 2023-04-28 富士通株式会社 航行監視プログラム、航行監視方法および航行監視装置
CN114333423B (zh) * 2021-12-24 2022-11-18 宁波大学 一种狭水道航行碰撞风险评估方法
CN114464015B (zh) * 2022-02-08 2023-05-02 北京百度网讯科技有限公司 数据处理方法、装置、电子设备以及存储介质
CN115410420B (zh) * 2022-10-31 2023-01-20 河北东来工程技术服务有限公司 一种船舶安全航行管理方法和***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304495A (ja) * 1994-05-12 1995-11-21 Tokimec Inc 避航支援装置
JPH11272999A (ja) 1998-03-24 1999-10-08 Tokimec Inc 船舶衝突予防援助装置及び船舶衝突予防援助方法
JP2013028296A (ja) * 2011-07-29 2013-02-07 Ship & Ocean Foundation 船舶用航行支援装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9406141A (pt) * 1993-01-23 1995-12-12 Helmut Schiwek Recipiente de segurança para substâncias com risco de explosão ou para o meio ambiente
JP2786809B2 (ja) * 1994-03-08 1998-08-13 株式会社トキメック 船舶用航行支援装置
WO2001072588A1 (en) * 2000-03-28 2001-10-04 Friedrich Grimm Guidable airship with a nozzle-shaped hollow body
DE10115793A1 (de) * 2001-03-30 2002-10-24 Hans-Hermann Gudehus Automatische Überwachung der Bewegungsbahn nichtspurgebundener Fahrzeuge
SE528297C2 (sv) * 2005-02-21 2006-10-10 Dennis Jansson Anordning som navigationshjälpmedel för indikering av kurs
DE102008035992A1 (de) * 2007-08-29 2009-03-05 Continental Teves Ag & Co. Ohg Ampelphasenassistent unterstützt durch Umfeldsensoren
MA30830B1 (fr) * 2008-04-04 2009-11-02 Said Kamal Les montres et les horloges a nouveau sens de rotation des aiguilles qui est le sens trigonometrique positif et arabe
EP2349086B1 (en) * 2008-10-16 2017-03-22 Medtronic Vascular, Inc. Devices and systems for endovascular staple and/or prosthesis delivery and implantation
US9014677B2 (en) * 2009-02-03 2015-04-21 Continental Teves Ag & Co. Ohg Voice connection to an intrastructure facility after an event
KR101314308B1 (ko) * 2010-02-26 2013-10-02 한국전자통신연구원 운항체의 운항 상황별 운항경로정보를 이용한 교통관제장치 및 그 방법
JP5656732B2 (ja) 2011-05-02 2015-01-21 株式会社デンソー 衝突確率演算装置、および衝突確率演算プログラム
JP5408240B2 (ja) * 2011-12-12 2014-02-05 株式会社デンソー 警告システム、車両装置、及びサーバ
KR101333572B1 (ko) * 2011-12-28 2013-12-02 컴레이저 (주) 교량 보호를 위한 선박 접근 경보 시스템 및 경보 방법
KR101956386B1 (ko) * 2012-12-26 2019-03-08 현대자동차주식회사 개선된 충돌 확률 산정 방법을 이용한 후방 충돌 경보 시스템
US10431099B2 (en) * 2014-02-21 2019-10-01 FLIR Belgium BVBA Collision avoidance systems and methods
CN106164998B (zh) 2014-04-10 2019-03-15 三菱电机株式会社 路径预测装置
CA2893470C (en) * 2014-07-30 2017-09-05 Shigeru OHSUGI Transporter vehicle, dump truck, and transporter vehicle control method
WO2015025984A1 (ja) * 2014-09-01 2015-02-26 株式会社小松製作所 運搬車両及び運搬車両の制御方法
US9886856B2 (en) * 2014-12-04 2018-02-06 Here Global B.V. Near miss system
AU2015361297B2 (en) * 2014-12-08 2019-02-14 HiLoad LNG AS Method and system for cargo fluid transfer at open sea
JP6491531B2 (ja) * 2015-05-08 2019-03-27 古野電気株式会社 船舶用表示装置
JP6953108B2 (ja) * 2015-09-08 2021-10-27 古野電気株式会社 情報表示装置及び情報表示方法
US9969329B2 (en) * 2015-09-16 2018-05-15 Sony Corporation System and method for generation of a preventive alert
US10019903B2 (en) * 2015-12-03 2018-07-10 Institute For Information Industry System and method for informing nearby vehicle to avoid a moving vehicle which is malfunctioning
US9704403B2 (en) * 2015-12-03 2017-07-11 Institute For Information Industry System and method for collision avoidance for vehicle
US10351129B2 (en) * 2017-01-13 2019-07-16 Ford Global Technologies, Llc Collision mitigation and avoidance
US10421436B2 (en) * 2017-03-24 2019-09-24 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for surveillance of a vehicle using camera images
JP6806242B2 (ja) * 2017-04-20 2021-01-06 富士通株式会社 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
JP7102685B2 (ja) * 2017-04-26 2022-07-20 富士通株式会社 波形推定装置、波形推定方法および波形推定プログラム
JP6722132B2 (ja) * 2017-04-27 2020-07-15 クラリオン株式会社 推奨運転出力装置、推奨運転出力方法、及び推奨運転出力システム
US10386856B2 (en) * 2017-06-29 2019-08-20 Uber Technologies, Inc. Autonomous vehicle collision mitigation systems and methods
US10065638B1 (en) * 2017-08-03 2018-09-04 Uber Technologies, Inc. Multi-model switching on a collision mitigation system
JP6954039B2 (ja) * 2017-11-20 2021-10-27 富士通株式会社 波形推定装置、波形推定方法および波形推定プログラム
US11214270B2 (en) * 2019-06-28 2022-01-04 Woven Planet North America, Inc. Systems and methods for navigating vehicles with redundant navigation systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304495A (ja) * 1994-05-12 1995-11-21 Tokimec Inc 避航支援装置
JPH11272999A (ja) 1998-03-24 1999-10-08 Tokimec Inc 船舶衝突予防援助装置及び船舶衝突予防援助方法
JP2013028296A (ja) * 2011-07-29 2013-02-07 Ship & Ocean Foundation 船舶用航行支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614364A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417219B2 (en) * 2017-04-20 2022-08-16 Fujitsu Limited Non-transitory computer-readable storage medium for storing collision risk calculation program, collision risk calculation method, and collision risk calculation apparatus
WO2020166083A1 (ja) 2019-02-15 2020-08-20 富士通株式会社 衝突リスク算出方法、衝突リスク算出装置および衝突リスク算出プログラム
WO2021149448A1 (ja) * 2020-01-20 2021-07-29 古野電気株式会社 船舶監視装置
JP2022073731A (ja) * 2020-11-02 2022-05-17 東京計器株式会社 追尾制御装置
JP7170019B2 (ja) 2020-11-02 2022-11-11 東京計器株式会社 追尾制御装置
WO2022234712A1 (ja) * 2021-05-06 2022-11-10 古野電気株式会社 船舶監視システム、船舶監視方法、情報処理装置、及びプログラム
WO2023286825A1 (ja) * 2021-07-15 2023-01-19 日本無線株式会社 航行支援装置、航行支援方法、プログラム

Also Published As

Publication number Publication date
EP3614364A1 (en) 2020-02-26
US11417219B2 (en) 2022-08-16
EP3614364A4 (en) 2020-05-27
EP3614364B1 (en) 2023-07-05
US20200035106A1 (en) 2020-01-30
JPWO2018193596A1 (ja) 2019-12-12
JP6806242B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2018193596A1 (ja) 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
US10145688B2 (en) Avoidance-behavior determining method and avoidance-behavior determining device
Rong et al. Ship collision avoidance behaviour recognition and analysis based on AIS data
JP7270812B2 (ja) 衝突警報装置及び衝突警報方法
Du et al. Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data
Im et al. Potential risk ship domain as a danger criterion for real-time ship collision risk evaluation
Tsou Multi-target collision avoidance route planning under an ECDIS framework
JP6759673B2 (ja) 衝突リスク算出プログラム、衝突リスク算出方法および衝突リスク算出装置
Bukhari et al. An intelligent real-time multi-vessel collision risk assessment system from VTS view point based on fuzzy inference system
JP6627615B2 (ja) 評価プログラム、評価方法および評価装置
Ożoga et al. Towards a decision support system for maritime navigation on heavily trafficked basins
JP6998576B2 (ja) 航路上のリスクに適応した航行支援方法及び航行支援システム
US11195419B2 (en) Non-transitory computer-readable storage medium for storing dangerous spot calculation program, dangerous spot calculation method, and dangerous spot calculation apparatus
JP7250462B2 (ja) 船舶用航行支援装置
Zhao et al. A novel index for real-time ship collision risk assessment based on velocity obstacle considering dimension data from AIS
Zhang et al. Big data–based estimation for ship safety distance distribution in port waters
Steidel et al. MTCAS–an assistance system for collision avoidance at sea
KR101134676B1 (ko) 항행안전정보융합서버 및 항행안전정보융합 방법
JP2017182711A (ja) 海域情報生成プログラム、海域情報生成方法および海域情報生成装置
KR20160128044A (ko) 선박 대표 궤적 추출을 통한 이상궤적 판별 방법
RU2395122C2 (ru) Способ управления движением подвижных объектов
Gaonkar et al. A new method for maritime traffic safety index appraisal
EP4372717A1 (en) Navigation assistance device, navigation assistance method, and program
EP4166904A1 (en) Navigation monitoring program, navigation monitoring method, and navigation monitoring device
JP3576444B2 (ja) 警戒領域進入監視目標探知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017906218

Country of ref document: EP

Effective date: 20191120