WO2018193508A1 - Failure diagnostic device and failure diagnostic method - Google Patents

Failure diagnostic device and failure diagnostic method Download PDF

Info

Publication number
WO2018193508A1
WO2018193508A1 PCT/JP2017/015497 JP2017015497W WO2018193508A1 WO 2018193508 A1 WO2018193508 A1 WO 2018193508A1 JP 2017015497 W JP2017015497 W JP 2017015497W WO 2018193508 A1 WO2018193508 A1 WO 2018193508A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor data
data
motor
failure diagnosis
command
Prior art date
Application number
PCT/JP2017/015497
Other languages
French (fr)
Japanese (ja)
Inventor
万平 鍛治
淳 岡嶋
悟史 溝上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/015497 priority Critical patent/WO2018193508A1/en
Priority to CN201780052859.9A priority patent/CN109643113B/en
Priority to JP2018506361A priority patent/JP6381850B1/en
Publication of WO2018193508A1 publication Critical patent/WO2018193508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a failure diagnosis device and a failure diagnosis method for diagnosing device failure.
  • a plurality of vibration sensors measure vibrations of a motor, and correlation between output values obtained from a model indicating a correlation between output values of the vibration sensors, and a plurality of vibration sensors. The correlation between the obtained measurement data is compared. Then, the abnormality detection system detects an abnormality of the motor based on the correlation collapse amount.
  • Patent Document 1 since the sensor data from each sensor changes when the device configuration or the device characteristics are changed, in Patent Document 1 as the conventional technology, a threshold value for determining whether or not the device is abnormal, There has been a problem that it must be set for each device configuration or device characteristic. For this reason, in Patent Document 1, when the device configuration or the device characteristics are changed, it is not possible to easily diagnose the failure of the device.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a failure diagnosis device that can easily diagnose a failure of a device even when the device configuration or device characteristics are changed.
  • the present invention provides a device that is detected when a device to which a first drive source and a second drive source are connected is operated in a failure diagnosis device.
  • An estimation data calculation unit that estimates second detection data indicating the state of the device caused by the first drive source by removing a data component caused by the second drive source from the first detection data indicating the state of It has.
  • the failure diagnosis apparatus of the present invention includes a failure diagnosis unit that diagnoses a failure of the apparatus by comparing the second detection data with a threshold value.
  • the fault diagnosis apparatus has an effect that it is possible to easily diagnose a fault of the apparatus even when the apparatus configuration or the apparatus characteristics are changed.
  • the figure which shows the structure of the failure diagnosis system provided with the failure diagnosis apparatus concerning embodiment of this invention The figure which shows the structure of the machine apparatus concerning embodiment Block diagram showing the configuration of the master station according to the embodiment
  • the figure which shows the internal structure of the 1st command data storage part concerning embodiment The figure which shows the internal structure of the sensor data storage part concerning embodiment
  • the figure which shows the internal structure of the 2nd command data storage part concerning embodiment The flowchart which shows the operation
  • generating the sensor data calculation model concerning embodiment The figure which shows the relationship between 1st command data, 2nd command data, and sensor data when the failure diagnosis concerning embodiment is performed
  • FIG. 1 is a diagram illustrating a configuration of a failure diagnosis system including a failure diagnosis apparatus according to an embodiment of the present invention.
  • the failure diagnosis system 100 drives a master station 1 that is a failure diagnosis device, a mechanical device 2 that is an example of a device that is a target of failure diagnosis, a first motor 4 that drives the mechanical device 2, and a mechanical device 2.
  • One or a plurality of second motors 7 are provided.
  • the failure diagnosis system 100 is disposed in the machine device 2 in the first slave station 3 that outputs a torque command to the first motor 4, the second slave station 6 that outputs a torque command to the second motor 7, and the machine device 2.
  • a sensor 5 for detecting the state of the apparatus 2.
  • the master station 1 is connected to the first slave station 3, the sensor 5 and the second slave station 6 via a communication network.
  • the first slave station 3 is connected to the first motor 4, and the second slave station 6 is connected to the second motor 7.
  • the first motor 4 and the second motor 7 are connected to the mechanical device 2.
  • the master station 1 outputs the first command data 11 that is data for driving the first motor 4 to the first slave station 3 and the second command data 13 that is data for driving the second motor 7. Is output to the second slave station 6.
  • the first slave station 3 generates a torque command corresponding to the first command data 11 and outputs it to the first motor 4.
  • the second slave station 6 generates a torque command corresponding to the second command data 13 and outputs it to the second motor 7.
  • the first motor 4 that is the first drive source executes an operation corresponding to the torque command from the first slave station 3, and the second motor 7 that is the second drive source is sent from the second slave station 6.
  • the operation corresponding to the torque command is executed.
  • the mechanical device 2 is operated by the first motor 4 and the second motor 7.
  • the sensor 5 When the sensor 5 detects the state of the mechanical device 2, the sensor 5 outputs sensor data 12 as a detection result to the master station 1. Thereby, the master station 1 acquires the sensor data 12 output from the sensor 5.
  • the master station 1 is a computer that controls the mechanical device 2. Further, the master station 1 diagnoses whether or not a mechanical component included in the mechanical device 2 has failed based on the first command data 11, the second command data 13, and the sensor data 12. The master station 1 according to the embodiment removes a data component caused by the second motor 7 from the sensor data 12 detected when the mechanical device 2 to which the first motor 4 and the second motor 7 are connected is operated. Thus, the sensor data 12 caused by the first motor 4 is estimated. Then, the master station 1 has a failure diagnosis threshold, which will be described later, set based on the sensor data 12 caused by the first motor 4 and the sensor data 12 detected when the first motor 4 is operated, By comparing these, the failure of the mechanical device 2 is diagnosed.
  • a failure diagnosis threshold which will be described later
  • FIG. 2 is a diagram illustrating a configuration of the mechanical device according to the embodiment. Although FIG. 2 demonstrates the case where the machine apparatus 2 is a roll-to-roll apparatus, the machine apparatus 2 may be any apparatus.
  • the machine apparatus 2 includes rollers 41 and 42 that are examples of machine parts, and processes a workpiece 40 that is a processing target.
  • the first motor 4 is driven in response to a torque command output from the first slave station 3 to operate the mechanical parts of the mechanical device 2.
  • the first motor 4 rotates a roller 41 connected to the first motor 4.
  • the second motor 7 is driven in response to a torque command output from the second slave station 6 to operate the mechanical parts of the mechanical device 2.
  • the second motor 7 rotates the roller 42 connected to the second motor 7.
  • the first motor 4 and the second motor 7 may be any mechanical component as long as it can drive the mechanical device 2.
  • Examples of the first motor 4 and the second motor 7 are devices such as a rotary servo motor and an inverter.
  • the sensor 5 is attached to the outside of the mechanical device 2 and detects the state of the mechanical device 2 resulting from the operations of the first motor 4 and the second motor 7. Therefore, when the first motor 4 is driven without driving the second motor 7 in a state where the first motor 4 is not connected to the mechanical device 2, the sensor 5 is in a state of the mechanical device 2 caused by the first motor 4. Is detected.
  • the sensor 5 When the second motor 7 is driven without driving the first motor 4 in a state where the second motor 7 is not connected to the mechanical device 2, the sensor 5 is in a state of the mechanical device 2 caused by the second motor 7. Is detected.
  • An example of the sensor 5 is a vibration detection sensor or a temperature sensor.
  • the state of the mechanical device 2 detected by the sensor 5 may be a state of a mechanical component included in the mechanical device 2, a state of a member connected to the mechanical device 2 and the first motor 4, or a state of the mechanical device 2 and the first state.
  • the state of the member connected with 2 motors 7 may be sufficient.
  • FIG. 3 is a block diagram illustrating a configuration of the master station according to the embodiment.
  • the master station 1 includes a first command data generation unit 21 that generates the first command data 11 and a first command data storage unit 23 that stores the first command data 11.
  • the master station 1 includes a second command data generation unit 22 that generates the second command data 13 and a second command data storage unit 25 that stores the second command data 13.
  • the master station 1 also includes a sensor data storage unit 24 that stores the sensor data 12 and a threshold value generation unit that generates a failure diagnosis threshold value that serves as a reference when diagnosing whether or not the mechanical device 2 has failed. 26 and a threshold storage unit 27 that stores a failure diagnosis threshold.
  • the master station 1 includes a model generation unit 28 that generates a sensor data calculation model indicating the correspondence between the second command data 13 and the sensor data 12, and a model storage unit 29 that stores the sensor data calculation model. I have.
  • the sensor data calculation model is a model for calculating the sensor data 12 corresponding to the second command data 13.
  • the sensor data calculation model is represented by a mathematical formula.
  • the master station 1 also includes an estimated sensor data calculation unit 30 that generates estimated sensor data, which will be described later, and a failure diagnosis unit 31 that diagnoses the presence or absence of a failure in the mechanical device 2.
  • the first command data generation unit 21 generates the first command data 11 and outputs the first command data 11 to the first slave station 3 and the first command data storage unit 23.
  • An example of the first command data 11 is a command for controlling the position or rotational speed of the first motor 4.
  • the first command data storage unit 23 is a storage unit such as a memory that stores the first command data 11 generated by the first command data generation unit 21.
  • the second command data generation unit 22 generates the second command data 13 and outputs the second command data 13 to the second slave station 6 and the second command data storage unit 25.
  • An example of the second command data 13 is a command for controlling the position or rotational speed of the second motor 7.
  • the second command data storage unit 25 is a storage unit such as a memory that stores the second command data 13 generated by the second command data generation unit 22.
  • the sensor data storage unit 24 is a storage unit such as a memory that stores the sensor data 12.
  • An example of the sensor data 12 is vibration data indicating a vibration state or temperature data indicating a temperature state.
  • the threshold generation unit 26 reads the first command data 11 from the first command data storage unit 23 and reads the sensor data 12 from the sensor data storage unit 24.
  • the threshold generation unit 26 generates a failure diagnosis threshold based on the first command data 11 and the sensor data 12.
  • the failure diagnosis threshold is a threshold serving as a reference when diagnosing whether or not there is a failure.
  • the threshold generation unit 26 sends the generated failure diagnosis threshold to the threshold storage unit 27.
  • the threshold storage unit 27 is a storage unit such as a memory that stores the failure diagnosis threshold generated by the threshold generation unit 26.
  • the model generation unit 28 reads the sensor data 12 when the second command data 13 is output from the sensor data storage unit 24, and outputs the second command data 13 corresponding to the read sensor data 12 to the second command data storage unit 25. Read from. Based on the read sensor data 12 and second command data 13, the model generation unit 28 indicates sensor data indicating the correspondence between the sensor data 12 and the second command data 13 when the second command data 13 is output. Generate a calculation model. The model generation unit 28 sends the generated sensor data calculation model to the model storage unit 29.
  • the model storage unit 29 is a storage unit such as a memory that stores the sensor data calculation model generated by the model generation unit 28.
  • the estimated sensor data calculation unit 30 that is an estimated data calculation unit reads the sensor data calculation model from the model storage unit 29. In addition, the estimated sensor data calculation unit 30 reads the sensor data 12 when the first command data 11 and the second command data 13 are output from the sensor data storage unit 24 and the second command corresponding to the read sensor data 12. Data 13 is read from the second command data storage unit 25. The estimated sensor data calculation unit 30 calculates estimated sensor data based on the read sensor data calculation model, sensor data 12 and second command data 13. The estimated sensor data is an estimated value of the sensor data 12 output from the sensor 5 when the master station 1 outputs the first command data 11.
  • the first command data generation unit 21 of the master station 1 outputs various first command data 11 to the first slave station 3, and outputs various second command data 13 to the second slave station 6.
  • the mechanical device 2 executes operations corresponding to the first command data 11 and the second command data 13.
  • the sensor 5 detects sensor data 12 corresponding to the operation of the mechanical device 2 and sends it to the master station 1.
  • the estimated sensor data calculation unit 30 calculates a data component resulting from the output of the first command data 11 among the data components of the sensor data 12.
  • the estimated sensor data calculation unit 30 sends the calculated estimated sensor data to the failure diagnosis unit 31.
  • the failure diagnosis unit 31 reads the failure diagnosis threshold value from the threshold storage unit 27.
  • the failure diagnosis unit 31 diagnoses whether there is a failure in the mechanical device 2 based on the estimated sensor data calculated by the estimated sensor data calculation unit 30 and the failure diagnosis threshold value read from the threshold storage unit 27.
  • the threshold generation unit 26 generates the failure diagnosis threshold based on the sensor data 12 detected when the first motor 4 is operated.
  • the model generation unit 28 generates a sensor data calculation model based on the sensor data 12 detected when the second motor 7 is operated.
  • the estimated sensor data calculation unit 30 calculates the sensor data 12 caused by the second motor 7 using the sensor data calculation model. This sensor data 12 corresponds to a data component caused by the second motor 7.
  • the estimated sensor data calculation unit 30 removes data components attributed to the second motor 7 from the sensor data 12 detected when the mechanical device 2 to which the first motor 4 and the second motor 7 are connected is operated. Thus, the sensor data 12 resulting from the first motor 4 is calculated.
  • the failure diagnosis unit 31 diagnoses a failure of the mechanical device 2 by comparing the sensor data 12 caused by the first motor 4 with a failure diagnosis threshold value.
  • the failure diagnosis threshold value is a constant value, and the failure diagnosis unit 31 diagnoses a failure when the value of the sensor data 12 exceeds a failure diagnosis threshold value that is a fixed value.
  • FIG. 4 is a diagram illustrating an internal configuration of the first command data storage unit according to the embodiment.
  • the first command data storage unit 23 includes a first command data storage area 230.
  • the first command data storage area 230 is an area for storing the first command data 11 used for generating the failure diagnosis threshold value.
  • FIG. 5 is a diagram illustrating an internal configuration of the sensor data storage unit according to the embodiment.
  • the sensor data storage unit 24 includes sensor data storage areas 240A, 240B, and 240C.
  • the sensor data storage area 240A is an area for storing sensor data 12 used for generating a failure diagnosis threshold value.
  • the sensor data storage area 240B is an area for storing the sensor data 12 used when the sensor data calculation model is generated.
  • the sensor data storage area 240C is an area for storing sensor data 12 used when estimated sensor data is generated.
  • the sensor data 12 stored in the sensor data storage area 240A is detected by the sensor 5 when the second command data 13 is not output and the first command data 11 is output.
  • the sensor data 12 stored in the sensor data storage area 240B is detected by the sensor 5 when the first command data 11 is not output and the second command data 13 is output.
  • the sensor data 12 stored in the sensor data storage area 240C is the first detection data detected by the sensor 5 when the first command data 11 and the second command data 13 are output.
  • the sensor data storage areas 240A, 240B, and 240C are not necessarily fixed areas, and may be areas that can be arbitrarily changed.
  • FIG. 6 is a diagram illustrating an internal configuration of the second command data storage unit according to the embodiment.
  • the second command data storage unit 25 includes second command data storage areas 250A and 250B.
  • the second command data storage area 250A is an area for storing the second command data 13 used when the sensor data calculation model is generated.
  • the second command data storage area 250B is an area for storing the second command data 13 used when the estimated sensor data is generated.
  • the second command data storage areas 250A and 250B do not have to be fixed areas, and may be areas that can be arbitrarily changed.
  • FIG. 7 is a flowchart showing an operation processing procedure of the failure diagnosis system according to the embodiment.
  • the failure diagnosis system 100 executes the apparatus operation after executing the pre-operation preparation.
  • the pre-operation preparation is a process at a preparation stage before operating the mechanical device 2, and the device operation is a process of operating the mechanical device 2. Therefore, the failure diagnosis system 100 collects the sensor data 12 at the preparation stage by causing the mechanical device 2 to perform the operation at the preparation stage at the time of preparation before operation. Further, the failure diagnosis system 100 collects actual sensor data 12 by causing the mechanical device 2 to perform an actual operation when the device is in operation.
  • the failure diagnosis system 100 diagnoses a failure of the mechanical device 2 when the device is operating.
  • step S ⁇ b> 10 the sensor data 12 when the master station 1 drives the first motor 4 in a state where the mechanical device 2 is not connected to the first motor 4. To collect.
  • the first command data generation unit 21 of the master station 1 generates the first command data 11 that is the same as when the machine device 2 is actually operated, and the first slave station 3 and the first command data The data is output to the storage unit 23.
  • the second command data generation unit 22 does not output the second command data 13.
  • save part 23 preserve
  • the first slave station 3 generates a torque command corresponding to the first command data 11 and outputs the torque command to the first motor 4 to drive the first motor 4.
  • the sensor 5 detects the state of the mechanical device 2 when the first motor 4 is driven, and outputs sensor data 12 as a detection result to the master station 1.
  • the sensor data storage unit 24 stores the sensor data 12 when the first motor 4 is driven in the sensor data storage area 240A.
  • the sensor data 12 stored in the sensor data storage area 240A by the sensor data storage unit 24 is sensor data when the master station 1 drives the first motor 4 without driving the second motor 7. 12.
  • the threshold generation unit 26 generates a failure diagnosis threshold. Specifically, the threshold generation unit 26 reads the first command data 11 that is the first drive command from the first command data storage unit 23, and performs the third detection from the sensor data storage area 240 ⁇ / b> A of the sensor data storage unit 24. Sensor data 12 which is data is read. Then, the threshold value generator 26 generates a failure diagnosis threshold value based on the first command data 11 and the sensor data 12. The threshold generation unit 26 may generate the failure diagnosis threshold by any method.
  • the threshold storage unit 27 stores the failure diagnosis threshold generated by the threshold generation unit 26.
  • the threshold generation unit 26 may generate a failure diagnosis threshold using the sensor data 12 without using the first command data 11. In this case, the master station 1 may not include the first command data storage unit 23.
  • the threshold generation unit 26 generates a failure diagnosis threshold using, for example, the following methods (1) to (3).
  • the method (1) is a method for generating a failure diagnosis threshold value using the sensor data 12 during normal operation, and the methods (2) and (3) are those in which a mechanical component of the mechanical device 2 has failed since normal operation. This is a method for generating a failure diagnosis threshold value using the sensor data 12 until this time.
  • the threshold value generator 26 sets a value obtained by multiplying the maximum value and the minimum value of the sensor data 12 during normal operation by a specific magnification as the failure diagnosis threshold value.
  • the threshold value generator 26 sets the value of the sensor data 12 that is a specific time before the failure timing of the mechanical component as the failure diagnosis threshold value. (3) The threshold value generator 26 sets, as the failure diagnosis threshold value, the value of the timing at which the value of the sensor data 12 that has been stable in normal operation shows an upward trend or a downward trend until the mechanical component fails.
  • FIG. 8 is a diagram illustrating a relationship between the first command data and the sensor data when generating the failure diagnosis threshold according to the embodiment.
  • FIG. 8 shows the first command data 11 and the sensor data 12 when the failure diagnosis system 100 drives the first motor 4 in step S10.
  • the horizontal axis of the graph shown in FIG. 8 is time.
  • the vertical axis of the upper graph shown in FIG. 8 is the first command data 11, and the vertical axis of the lower graph is the sensor data 12.
  • the threshold value generator 26 generates a failure diagnosis threshold value based on the first command data 11 and the sensor data 12 as shown in FIG.
  • step S30 the master station 1 collects sensor data 12 when the second motor 7 is driven in a state where the mechanical device 2 is connected to the second motor 7.
  • the second command data generation unit 22 of the master station 1 generates the second command data 13 and outputs it to the second slave station 6 and the second command data storage unit 25.
  • the first command data generation unit 21 does not output the first command data 11.
  • the second command data storage unit 25 stores the second command data 13 that is the second drive command in the second command data storage area 250A.
  • the second slave station 6 generates a torque command corresponding to the second command data 13 and outputs the torque command to the second motor 7 to drive the second motor 7.
  • the sensor 5 detects the state of the mechanical device 2 when the second motor 7 is driven, and outputs sensor data 12 as a detection result to the master station 1.
  • the sensor data storage unit 24 stores the sensor data 12 when the second motor 7 is driven in the sensor data storage area 240B.
  • the second command data 13 for driving the second motor 7 may be different from the command data for actually operating the mechanical device 2.
  • the sensor data 12 stored in the sensor data storage area 240B by the sensor data storage unit 24 is sensor data when the master station 1 drives the second motor 7 without driving the first motor 4. 12.
  • step S40 the model generation unit 28 generates a sensor data calculation model. Specifically, the model generation unit 28 reads the sensor data 12 as the fourth detection data from the sensor data storage region 240B of the sensor data storage unit 24, and the second command data storage region of the second command data storage unit 25. The second command data 13 as the second drive command is read from 250A. Then, the model generation unit 28 generates a sensor data calculation model based on the sensor data 12 and the second command data 13. The model generation unit 28 may generate the sensor data calculation model by any method.
  • the model storage unit 29 stores the sensor data calculation model generated by the model generation unit 28.
  • the model generation unit 28 generates a sensor data calculation model using, for example, a system identification method. Examples of this system identification method are a frequency response method, a transient response method, or a least square method.
  • the model generation unit 28 When generating a sensor data calculation model using the system identification method, the model generation unit 28 generates sensor data based on the second command data 13 that is actual input data and the sensor data 12 that is actual output data. Estimate the calculation model. Specifically, when the second command data 13 is input, the model generation unit 28 estimates a sensor data calculation model from which sensor data 12 corresponding to the second command data 13 is output. In other words, the model generation unit 28 estimates a sensor data calculation model corresponding to processing between input and output based on the input second command data 13 and the output sensor data 12.
  • FIG. 9 is a diagram illustrating a relationship between the second command data and the sensor data when the sensor data calculation model according to the embodiment is generated.
  • FIG. 9 shows the second command data 13 and the sensor data 12 when the failure diagnosis system 100 drives the second motor 7 in step S30.
  • the horizontal axis of the graph shown in FIG. 9 is time.
  • the vertical axis of the upper graph shown in FIG. 9 is the second command data 13, and the vertical axis of the lower graph is the sensor data 12.
  • the model generation unit 28 generates a sensor data calculation model based on the sensor data 12 and the second command data 13 as shown in FIG.
  • the master station 1 executes the process of step S20 after the process of step S10, and executes the process of step S40 after the process of step S30. Note that the master station 1 may execute any of the processes of steps S10 and S20 and the processes of steps S30 and S40 first. When the master station 1 executes generation of a failure diagnosis threshold and generation of a sensor data calculation model, the pre-operation preparation is completed.
  • the failure diagnosis system 100 starts the operation of the apparatus in a state where the mechanical apparatus 2 is connected to the first motor 4 and the second motor 7.
  • the master station 1 collects sensor data 12 when the first motor 4 and the second motor 7 are driven.
  • the first command data generation unit 21 generates the first command data 11 and outputs it to the first slave station 3. Further, the second command data generation unit 22 generates the second command data 13 and outputs it to the second slave station 6 and the second command data storage unit 25.
  • the second command data storage unit 25 stores the second command data 13 as the third drive command in the second command data storage area 250B.
  • the first slave station 3 generates a torque command corresponding to the first command data 11 and outputs it to the first motor 4, and the second slave station 6 generates a torque command corresponding to the second command data 13. And output to the second motor 7. Accordingly, the first motor 4 and the second motor 7 are driven, and the mechanical device 2 is operated by the first motor 4 and the second motor 7.
  • the sensor 5 detects the state of the mechanical device 2 when the first motor 4 and the second motor 7 are driven, and outputs sensor data 12 as a detection result to the master station 1.
  • the sensor data storage unit 24 stores the sensor data 12 that is the first detection data when the first motor 4 and the second motor 7 are driven in the sensor data storage area 240C.
  • the estimated sensor data calculation unit 30 reads the sensor data 12 from the sensor data storage area 240C of the sensor data storage unit 24 and reads the sensor data calculation model from the model storage unit 29 when executing the failure diagnosis of the mechanical device 2.
  • the second command data 13 is read from the second command data storage area 250B of the second command data storage unit 25.
  • FIG. 10 is a diagram illustrating a relationship among the first command data, the second command data, and the sensor data when the failure diagnosis according to the embodiment is executed.
  • FIG. 10 shows the first command data 11, the second command data 13, and the sensor data 12 when the failure diagnosis system 100 drives the first motor 4 and the second motor 7 in step S50.
  • the horizontal axis of the graph shown in FIG. 10 is time.
  • the vertical axis of the upper graph shown in FIG. 10 is the first command data 11, the vertical axis of the middle graph is the second command data 13, and the vertical axis of the lower graph is the sensor data 12.
  • step S60 the estimated sensor data calculation unit 30 calculates estimated sensor data when the second motor 7 is driven.
  • the estimated sensor data when driving the second motor 7 is estimated sensor data corresponding to the second command data 13.
  • the estimated sensor data calculation unit 30 calculates estimated sensor data corresponding to the second command data 13 in the second command data storage area 250B using the sensor data calculation model.
  • the estimated sensor data corresponding to the second command data 13 is an estimated value of the data component of the sensor data 12 corresponding to the second command data 13.
  • the estimated sensor data corresponding to the second command data 13 may be referred to as estimated sensor data X2.
  • the estimated sensor data X2, which is the fifth detection data, is an estimated value of the data component caused by the second motor 7 among the sensor data 12 detected when the first motor 4 and the second motor 7 are driven. is there.
  • FIG. 11 is a diagram illustrating a relationship between the second command data and the estimated sensor data according to the embodiment.
  • FIG. 11 shows the relationship between the second command data 13 collected by the master station 1 in step S50 and the estimated sensor data X2 calculated by the estimated sensor data calculation unit 30 in step S60.
  • the horizontal axis of the graph shown in FIG. 11 is time.
  • the vertical axis of the upper graph shown in FIG. 11 is the second command data 13, and the vertical axis of the lower graph is the estimated sensor data X2.
  • the estimated sensor data calculation unit 30 calculates estimated sensor data X2 and then calculates estimated sensor data when the first motor 4 is driven in step S70.
  • the estimated sensor data when driving the first motor 4 is estimated sensor data corresponding to the first command data 11.
  • the estimated sensor data calculation unit 30 calculates estimated sensor data corresponding to the first command data 11 by subtracting the estimated sensor data X2 from the sensor data 12 read from the sensor data storage area 240C.
  • the estimated sensor data corresponding to the first command data 11 is an estimated value of the data component corresponding to the first command data 11 in the sensor data 12.
  • the estimated sensor data corresponding to the first command data 11 may be referred to as estimated sensor data X1.
  • the estimated sensor data X1 that is the second detection data is an estimated value of the data component caused by the first motor 4 out of the sensor data 12 detected when the first motor 4 and the second motor 7 are driven. is there.
  • FIG. 12 is a diagram illustrating a relationship between the first command data and the estimated sensor data according to the embodiment.
  • FIG. 12 shows the relationship between the first command data 11 collected by the master station 1 in step S50 and the estimated sensor data X1 calculated by the estimated sensor data calculation unit 30 in step S70.
  • the horizontal axis of the graph shown in FIG. 12 is time.
  • the vertical axis of the upper graph shown in FIG. 12 is the first command data 11, and the vertical axis of the lower graph is the estimated sensor data X1.
  • the estimated sensor data calculation unit 30 outputs the calculated estimated sensor data X1 to the failure diagnosis unit 31.
  • the failure diagnosis unit 31 executes failure diagnosis that is a determination as to whether or not a failure has occurred in the mechanical device 2.
  • the failure diagnosis unit 31 determines that a failure has occurred when the estimated sensor data X1 exceeds the failure diagnosis threshold in the threshold storage unit 27.
  • the failure diagnosis unit 31 determines failure using, for example, the following methods (4) to (6). In the methods (4) to (6), whether or not the estimated sensor data X1 exceeds the failure diagnosis threshold is periodically checked, and a failure is determined by the number of times that the estimated sensor data X1 exceeds the failure diagnosis threshold. It is. The fault diagnosis unit 31 can prevent erroneous detection by using the method (5) or (6). (4) If the estimated sensor data X1 exceeds the failure diagnosis threshold, the failure diagnosis unit 31 determines that there is an immediate failure. In other words, the failure diagnosis unit 31 determines a failure when the estimated sensor data X1 exceeds the failure diagnosis threshold even once.
  • the failure diagnosis unit 31 determines that a failure has occurred when the estimated sensor data X1 continuously exceeds the failure diagnosis threshold for a specific number of times. For example, the failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 exceeds the failure diagnosis threshold value three times in succession. (6) The failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 exceeds the failure diagnosis threshold value a plurality of times within a specific number of times or a specific time. For example, the failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 out of 10 times exceeds the failure diagnosis threshold value three times.
  • a conventional failure diagnosis system creates a threshold value for determining a failure of a mechanical device using sensor data when a plurality of drive sources are operated after starting the operation of the device.
  • the sensor data when operating a plurality of drive sources is superimposed with data components resulting from the plurality of drive sources.
  • the data component of the sensor data resulting from the changed location is changed.
  • the sensor data is different before and after changing the configuration of the mechanical device.
  • the sensor data differs depending on the configuration or characteristics of the mechanical device.
  • the failure diagnosis system 100 diagnoses a failure of the mechanical device 2 only by executing the processes of steps S30 to S70 again even when the configuration or characteristics of the mechanical device 2 is changed. be able to. That is, the failure diagnosis system 100 according to the embodiment uses the set failure diagnosis threshold value without executing the processes of steps S10 and S20 when the configuration or characteristics of the machine device 2 is changed. Can be diagnosed.
  • the failure diagnosis system 100 can diagnose a failure of the mechanical device 2 by a processing procedure similar to the processing procedure described above.
  • FIG. 13 is a diagram illustrating a hardware configuration example of the master station according to the embodiment.
  • the master station 1 can be realized by the control circuit 300 shown in FIG. 13, that is, the processor 301 and the memory 302.
  • the processor 301 are a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, and a DSP) or a system LSI (Large Scale Integration).
  • Examples of the memory 302 are RAM (Random Access Memory), ROM (Read Only Memory), or flash memory.
  • the master station 1 is realized by the processor 301 reading and executing a program stored in the memory 302 for executing the operation of the master station 1. It can also be said that this program causes the computer to execute the procedure or method of the master station 1.
  • the memory 302 is also used as a temporary memory when the processor 301 executes various processes.
  • the program executed by the processor 301 is a computer program product having a computer-readable and non-transitory recording medium including a plurality of instructions for performing data processing, which can be executed by a computer. is there.
  • the program executed by the processor 301 causes the computer to execute data processing by a plurality of instructions.
  • the master station 1 may be realized with dedicated hardware. Further, part of the functions of the master station 1 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
  • the sensor data 12 attributed to the first motor 4 is estimated by removing the data component attributed to the second motor 7 from the data 12.
  • the failure diagnosis unit 31 diagnoses a failure of the mechanical device 2 by comparing the sensor data 12 caused by the first motor 4 with a failure diagnosis threshold value.
  • a single failure diagnosis threshold value for diagnosing whether or not the mechanical device 2 is in failure is applied. be able to. For this reason, when the device configuration or the device characteristics of the mechanical device 2 is changed, the trouble of generating a failure diagnosis threshold value for each mechanical device 2 can be saved, so that the number of preparation steps when performing failure diagnosis is reduced. be able to. Therefore, even when the device configuration or device characteristics of the mechanical device 2 are changed, it is possible to easily diagnose a failure of the mechanical device 2.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A master station (1), which is a failure diagnostic device, is provided with: an estimated sensor data calculation unit (30) which removes data components attributed to a second drive source from first detection data that indicates conditions of a device to which a first drive source and the second drive source are coupled, as detected when the device is in operation, thereby estimating second detection data that indicates conditions of the device that are attributed to the first drive source; and a failure diagnostic unit (31) which diagnoses the device for failures by comparing the second detection data with a threshold value.

Description

故障診断装置および故障診断方法Failure diagnosis apparatus and failure diagnosis method
 本発明は、装置の故障を診断する故障診断装置および故障診断方法に関する。 The present invention relates to a failure diagnosis device and a failure diagnosis method for diagnosing device failure.
 装置は、故障が発生すると所望の動作を実行できなくなるので、装置に故障が発生したか否かは適切に診断されることが望まれる。このため、従来から、装置の故障を診断する技術は、種々提案されている。 Since a device cannot execute a desired operation when a failure occurs, it is desired that whether or not a failure has occurred in the device be appropriately diagnosed. For this reason, conventionally, various techniques for diagnosing device failures have been proposed.
 特許文献1に記載の異常検知システムは、複数の振動センサがモータの振動を測定し、振動センサの出力値間にある相互関係を示すモデルから求まる出力値の相関関係と、複数の振動センサから得られた測定データ間の相関関係とを比較処理している。そして、異常検知システムは、相関関係の崩れ量に基づいてモータの異常を検知している。 In the abnormality detection system described in Patent Document 1, a plurality of vibration sensors measure vibrations of a motor, and correlation between output values obtained from a model indicating a correlation between output values of the vibration sensors, and a plurality of vibration sensors. The correlation between the obtained measurement data is compared. Then, the abnormality detection system detects an abnormality of the motor based on the correlation collapse amount.
特開2016-003875号公報JP 2016-003875 A
 しかしながら、装置構成または装置特性が変更されると各センサからのセンサデータが変化するので、上記従来の技術である特許文献1では、装置が異常であるか否かを判断するための閾値を、装置構成毎または装置特性毎に設定しなければならないという問題があった。このため、特許文献1では、装置構成または装置特性が変更された場合に、装置の故障の診断を容易に行うことができなかった。 However, since the sensor data from each sensor changes when the device configuration or the device characteristics are changed, in Patent Document 1 as the conventional technology, a threshold value for determining whether or not the device is abnormal, There has been a problem that it must be set for each device configuration or device characteristic. For this reason, in Patent Document 1, when the device configuration or the device characteristics are changed, it is not possible to easily diagnose the failure of the device.
 本発明は、上記に鑑みてなされたものであって、装置構成または装置特性が変更された場合であっても、装置の故障の診断を容易に行うことができる故障診断装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a failure diagnosis device that can easily diagnose a failure of a device even when the device configuration or device characteristics are changed. And
 上述した課題を解決し、目的を達成するために、本発明は、故障診断装置において、第1の駆動源および第2の駆動源が連結されている装置を動作させた際に検出される装置の状態を示す第1の検出データから第2の駆動源に起因するデータ成分を取り除くことによって、第1の駆動源に起因した装置の状態を示す第2の検出データを推定する推定データ算出部を備えている。また、本発明の故障診断装置は、第2の検出データと閾値とを比較することによって、装置の故障を診断する故障診断部を備えている。 In order to solve the above-described problems and achieve the object, the present invention provides a device that is detected when a device to which a first drive source and a second drive source are connected is operated in a failure diagnosis device. An estimation data calculation unit that estimates second detection data indicating the state of the device caused by the first drive source by removing a data component caused by the second drive source from the first detection data indicating the state of It has. The failure diagnosis apparatus of the present invention includes a failure diagnosis unit that diagnoses a failure of the apparatus by comparing the second detection data with a threshold value.
 本発明にかかる故障診断装置は、装置構成または装置特性が変更された場合であっても、装置の故障の診断を容易に行うことができるという効果を奏する。 The fault diagnosis apparatus according to the present invention has an effect that it is possible to easily diagnose a fault of the apparatus even when the apparatus configuration or the apparatus characteristics are changed.
本発明の実施の形態にかかる故障診断装置を備えた故障診断システムの構成を示す図The figure which shows the structure of the failure diagnosis system provided with the failure diagnosis apparatus concerning embodiment of this invention 実施の形態にかかる機械装置の構成を示す図The figure which shows the structure of the machine apparatus concerning embodiment 実施の形態にかかるマスタ局の構成を示すブロック図Block diagram showing the configuration of the master station according to the embodiment 実施の形態にかかる第1指令データ保存部の内部構成を示す図The figure which shows the internal structure of the 1st command data storage part concerning embodiment 実施の形態にかかるセンサデータ保存部の内部構成を示す図The figure which shows the internal structure of the sensor data storage part concerning embodiment 実施の形態にかかる第2指令データ保存部の内部構成を示す図The figure which shows the internal structure of the 2nd command data storage part concerning embodiment 実施の形態にかかる故障診断システムの動作処理手順を示すフローチャートThe flowchart which shows the operation | movement process procedure of the failure diagnosis system concerning embodiment 実施の形態にかかる故障診断閾値を生成する際の、第1指令データとセンサデータとの関係を示す図The figure which shows the relationship between 1st command data and sensor data at the time of producing | generating the failure diagnosis threshold value concerning embodiment 実施の形態にかかるセンサデータ算出モデルを生成する際の、第2指令データとセンサデータとの関係を示す図The figure which shows the relationship between 2nd command data and sensor data at the time of producing | generating the sensor data calculation model concerning embodiment 実施の形態にかかる故障診断が実行される際の、第1指令データと第2指令データとセンサデータとの関係を示す図The figure which shows the relationship between 1st command data, 2nd command data, and sensor data when the failure diagnosis concerning embodiment is performed 実施の形態にかかる第2指令データと推定センサデータとの関係を示す図The figure which shows the relationship between the 2nd command data and estimated sensor data concerning embodiment 実施の形態にかかる第1指令データと推定センサデータとの関係を示す図The figure which shows the relationship between the 1st command data and estimated sensor data concerning embodiment 実施の形態にかかるマスタ局のハードウェア構成例を示す図The figure which shows the hardware structural example of the master station concerning embodiment
 以下に、本発明の実施の形態にかかる故障診断装置および故障診断方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a failure diagnosis apparatus and a failure diagnosis method according to embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態
 図1は、本発明の実施の形態にかかる故障診断装置を備えた故障診断システムの構成を示す図である。故障診断システム100は、故障診断装置であるマスタ局1と、故障診断の対象となる装置の一例である機械装置2と、機械装置2を駆動させる第1モータ4と、機械装置2を駆動させる1つまたは複数の第2モータ7とを備えている。また、故障診断システム100は、第1モータ4にトルク指令を出力する第1スレーブ局3と、第2モータ7にトルク指令を出力する第2スレーブ局6と、機械装置2に配置されて機械装置2の状態を検出するセンサ5とを備えている。
Embodiment FIG. 1 is a diagram illustrating a configuration of a failure diagnosis system including a failure diagnosis apparatus according to an embodiment of the present invention. The failure diagnosis system 100 drives a master station 1 that is a failure diagnosis device, a mechanical device 2 that is an example of a device that is a target of failure diagnosis, a first motor 4 that drives the mechanical device 2, and a mechanical device 2. One or a plurality of second motors 7 are provided. In addition, the failure diagnosis system 100 is disposed in the machine device 2 in the first slave station 3 that outputs a torque command to the first motor 4, the second slave station 6 that outputs a torque command to the second motor 7, and the machine device 2. And a sensor 5 for detecting the state of the apparatus 2.
 マスタ局1は、第1スレーブ局3、センサ5および第2スレーブ局6に、通信ネットワークを介して接続されている。また、第1スレーブ局3は、第1モータ4に接続され、第2スレーブ局6は、第2モータ7に接続されている。そして、第1モータ4および第2モータ7が、機械装置2に連結されている。 The master station 1 is connected to the first slave station 3, the sensor 5 and the second slave station 6 via a communication network. The first slave station 3 is connected to the first motor 4, and the second slave station 6 is connected to the second motor 7. The first motor 4 and the second motor 7 are connected to the mechanical device 2.
 マスタ局1は、第1モータ4を駆動させるためのデータである第1指令データ11を第1スレーブ局3に出力するとともに、第2モータ7を駆動させるためのデータである第2指令データ13を第2スレーブ局6に出力する。 The master station 1 outputs the first command data 11 that is data for driving the first motor 4 to the first slave station 3 and the second command data 13 that is data for driving the second motor 7. Is output to the second slave station 6.
 第1スレーブ局3は、第1指令データ11に対応するトルク指令を生成して第1モータ4に出力する。第2スレーブ局6は、第2指令データ13に対応するトルク指令を生成して第2モータ7に出力する。 The first slave station 3 generates a torque command corresponding to the first command data 11 and outputs it to the first motor 4. The second slave station 6 generates a torque command corresponding to the second command data 13 and outputs it to the second motor 7.
 第1の駆動源である第1モータ4は、第1スレーブ局3からのトルク指令に対応する動作を実行し、第2の駆動源である第2モータ7は、第2スレーブ局6からのトルク指令に対応する動作を実行する。機械装置2は、第1モータ4および第2モータ7によって動作させられる。 The first motor 4 that is the first drive source executes an operation corresponding to the torque command from the first slave station 3, and the second motor 7 that is the second drive source is sent from the second slave station 6. The operation corresponding to the torque command is executed. The mechanical device 2 is operated by the first motor 4 and the second motor 7.
 センサ5は、機械装置2の状態を検出すると、検出結果であるセンサデータ12をマスタ局1に出力する。これにより、マスタ局1は、センサ5から出力されたセンサデータ12を取得する。 When the sensor 5 detects the state of the mechanical device 2, the sensor 5 outputs sensor data 12 as a detection result to the master station 1. Thereby, the master station 1 acquires the sensor data 12 output from the sensor 5.
 マスタ局1は、機械装置2を制御するコンピュータである。また、マスタ局1は、第1指令データ11、第2指令データ13およびセンサデータ12に基づいて、機械装置2が備える機械部品が故障しているか否かを診断する。実施の形態のマスタ局1は、第1モータ4および第2モータ7が連結されている機械装置2を動作させた際に検出されるセンサデータ12から第2モータ7に起因するデータ成分を取り除くことによって、第1モータ4に起因したセンサデータ12を推定する。そして、マスタ局1は、第1モータ4に起因したセンサデータ12と、第1モータ4を動作させた際に検出されるセンサデータ12に基づいて設定しておいた後述の故障診断閾値と、を比較することによって、機械装置2の故障を診断する。 The master station 1 is a computer that controls the mechanical device 2. Further, the master station 1 diagnoses whether or not a mechanical component included in the mechanical device 2 has failed based on the first command data 11, the second command data 13, and the sensor data 12. The master station 1 according to the embodiment removes a data component caused by the second motor 7 from the sensor data 12 detected when the mechanical device 2 to which the first motor 4 and the second motor 7 are connected is operated. Thus, the sensor data 12 caused by the first motor 4 is estimated. Then, the master station 1 has a failure diagnosis threshold, which will be described later, set based on the sensor data 12 caused by the first motor 4 and the sensor data 12 detected when the first motor 4 is operated, By comparing these, the failure of the mechanical device 2 is diagnosed.
 図2は、実施の形態にかかる機械装置の構成を示す図である。図2では、機械装置2が、ロールツーロール(Roll to Roll)方式の装置である場合について説明するが、機械装置2は何れの装置であってもよい。 FIG. 2 is a diagram illustrating a configuration of the mechanical device according to the embodiment. Although FIG. 2 demonstrates the case where the machine apparatus 2 is a roll-to-roll apparatus, the machine apparatus 2 may be any apparatus.
 機械装置2は、機械部品の例であるローラ41,42を備えており、加工対象物であるワーク40を加工する。第1モータ4は、第1スレーブ局3が出力するトルク指令を受けて駆動し、機械装置2の機械部品を動作させる。ここでの第1モータ4は、第1モータ4に接続されているローラ41を回転させる。また、第2モータ7は、第2スレーブ局6が出力するトルク指令を受けて駆動し、機械装置2の機械部品を動作させる。ここでの第2モータ7は、第2モータ7に接続されているローラ42を回転させる。 The machine apparatus 2 includes rollers 41 and 42 that are examples of machine parts, and processes a workpiece 40 that is a processing target. The first motor 4 is driven in response to a torque command output from the first slave station 3 to operate the mechanical parts of the mechanical device 2. Here, the first motor 4 rotates a roller 41 connected to the first motor 4. The second motor 7 is driven in response to a torque command output from the second slave station 6 to operate the mechanical parts of the mechanical device 2. Here, the second motor 7 rotates the roller 42 connected to the second motor 7.
 第1モータ4および第2モータ7は、機械装置2を駆動できるものであれば何れの機械部品であってもよい。第1モータ4および第2モータ7の例は、回転型サーボモータ、インバータといった機器である。第1モータ4がローラ41を回転させ、第2モータ7がローラ42を回転させると、ローラ41,42に載せられているワーク40が移動する。センサ5は、機械装置2の外部に取り付けられており、第1モータ4および第2モータ7の動作に起因する機械装置2の状態を検出する。したがって、第1モータ4が機械装置2に連結されていない状態で、第2モータ7が駆動せず第1モータ4が駆動すると、センサ5は、第1モータ4に起因する機械装置2の状態を検出する。また、第2モータ7が機械装置2に連結されていない状態で、第1モータ4が駆動せず第2モータ7が駆動すると、センサ5は、第2モータ7に起因する機械装置2の状態を検出する。センサ5の例は、振動検出センサまたは温度センサである。なお、センサ5が検出する機械装置2の状態は、機械装置2が備える機械部品の状態であってもよいし、機械装置2と第1モータ4と接続する部材の状態または機械装置2と第2モータ7と接続する部材の状態であってもよい。 The first motor 4 and the second motor 7 may be any mechanical component as long as it can drive the mechanical device 2. Examples of the first motor 4 and the second motor 7 are devices such as a rotary servo motor and an inverter. When the first motor 4 rotates the roller 41 and the second motor 7 rotates the roller 42, the workpiece 40 placed on the rollers 41 and 42 moves. The sensor 5 is attached to the outside of the mechanical device 2 and detects the state of the mechanical device 2 resulting from the operations of the first motor 4 and the second motor 7. Therefore, when the first motor 4 is driven without driving the second motor 7 in a state where the first motor 4 is not connected to the mechanical device 2, the sensor 5 is in a state of the mechanical device 2 caused by the first motor 4. Is detected. When the second motor 7 is driven without driving the first motor 4 in a state where the second motor 7 is not connected to the mechanical device 2, the sensor 5 is in a state of the mechanical device 2 caused by the second motor 7. Is detected. An example of the sensor 5 is a vibration detection sensor or a temperature sensor. Note that the state of the mechanical device 2 detected by the sensor 5 may be a state of a mechanical component included in the mechanical device 2, a state of a member connected to the mechanical device 2 and the first motor 4, or a state of the mechanical device 2 and the first state. The state of the member connected with 2 motors 7 may be sufficient.
 図3は、実施の形態にかかるマスタ局の構成を示すブロック図である。マスタ局1は、第1指令データ11を生成する第1指令データ生成部21と、第1指令データ11を保存する第1指令データ保存部23とを備えている。また、マスタ局1は、第2指令データ13を生成する第2指令データ生成部22と、第2指令データ13を保存する第2指令データ保存部25とを備えている。 FIG. 3 is a block diagram illustrating a configuration of the master station according to the embodiment. The master station 1 includes a first command data generation unit 21 that generates the first command data 11 and a first command data storage unit 23 that stores the first command data 11. In addition, the master station 1 includes a second command data generation unit 22 that generates the second command data 13 and a second command data storage unit 25 that stores the second command data 13.
 また、マスタ局1は、センサデータ12を保存するセンサデータ保存部24と、機械装置2が故障しているか否かを診断する際の基準となる閾値である故障診断閾値を生成する閾値生成部26と、故障診断閾値を保存する閾値保存部27とを備えている。また、マスタ局1は、第2指令データ13とセンサデータ12との間の対応関係を示すセンサデータ算出モデルを生成するモデル生成部28と、センサデータ算出モデルを保存するモデル保存部29とを備えている。センサデータ算出モデルは、第2指令データ13に対応するセンサデータ12を算出するためのモデルである。センサデータ算出モデルは、数式によって表される。また、マスタ局1は、後述する推定センサデータを生成する推定センサデータ算出部30と、機械装置2の故障の有無を診断する故障診断部31とを備えている。 The master station 1 also includes a sensor data storage unit 24 that stores the sensor data 12 and a threshold value generation unit that generates a failure diagnosis threshold value that serves as a reference when diagnosing whether or not the mechanical device 2 has failed. 26 and a threshold storage unit 27 that stores a failure diagnosis threshold. In addition, the master station 1 includes a model generation unit 28 that generates a sensor data calculation model indicating the correspondence between the second command data 13 and the sensor data 12, and a model storage unit 29 that stores the sensor data calculation model. I have. The sensor data calculation model is a model for calculating the sensor data 12 corresponding to the second command data 13. The sensor data calculation model is represented by a mathematical formula. The master station 1 also includes an estimated sensor data calculation unit 30 that generates estimated sensor data, which will be described later, and a failure diagnosis unit 31 that diagnoses the presence or absence of a failure in the mechanical device 2.
 第1指令データ生成部21は、第1指令データ11を生成し、第1指令データ11を第1スレーブ局3および第1指令データ保存部23に出力する。第1指令データ11の例は、第1モータ4の位置または回転速度を制御するための指令である。第1指令データ保存部23は、第1指令データ生成部21が生成した第1指令データ11を保存するメモリといった記憶手段である。 The first command data generation unit 21 generates the first command data 11 and outputs the first command data 11 to the first slave station 3 and the first command data storage unit 23. An example of the first command data 11 is a command for controlling the position or rotational speed of the first motor 4. The first command data storage unit 23 is a storage unit such as a memory that stores the first command data 11 generated by the first command data generation unit 21.
 第2指令データ生成部22は、第2指令データ13を生成し、第2指令データ13を第2スレーブ局6および第2指令データ保存部25に出力する。第2指令データ13の例は、第2モータ7の位置または回転速度を制御するための指令である。第2指令データ保存部25は、第2指令データ生成部22が生成した第2指令データ13を保存するメモリといった記憶手段である。 The second command data generation unit 22 generates the second command data 13 and outputs the second command data 13 to the second slave station 6 and the second command data storage unit 25. An example of the second command data 13 is a command for controlling the position or rotational speed of the second motor 7. The second command data storage unit 25 is a storage unit such as a memory that stores the second command data 13 generated by the second command data generation unit 22.
 センサデータ保存部24は、センサデータ12を保存するメモリといった記憶手段である。センサデータ12の例は、振動の状態を示す振動データまたは温度の状態を示す温度データである。 The sensor data storage unit 24 is a storage unit such as a memory that stores the sensor data 12. An example of the sensor data 12 is vibration data indicating a vibration state or temperature data indicating a temperature state.
 閾値生成部26は、第1指令データ保存部23から第1指令データ11を読み出し、センサデータ保存部24からセンサデータ12を読み出す。閾値生成部26は、第1指令データ11およびセンサデータ12に基づいて、故障診断閾値を生成する。故障診断閾値は、故障か否かを診断する際の基準となる閾値である。閾値生成部26は、生成した故障診断閾値を閾値保存部27に送る。閾値保存部27は、閾値生成部26が生成した故障診断閾値を保存するメモリといった記憶手段である。 The threshold generation unit 26 reads the first command data 11 from the first command data storage unit 23 and reads the sensor data 12 from the sensor data storage unit 24. The threshold generation unit 26 generates a failure diagnosis threshold based on the first command data 11 and the sensor data 12. The failure diagnosis threshold is a threshold serving as a reference when diagnosing whether or not there is a failure. The threshold generation unit 26 sends the generated failure diagnosis threshold to the threshold storage unit 27. The threshold storage unit 27 is a storage unit such as a memory that stores the failure diagnosis threshold generated by the threshold generation unit 26.
 モデル生成部28は、第2指令データ13が出力された際のセンサデータ12をセンサデータ保存部24から読み出し、読み出したセンサデータ12に対応する第2指令データ13を第2指令データ保存部25から読み出す。モデル生成部28は、読み出した、センサデータ12および第2指令データ13に基づいて、第2指令データ13が出力された際のセンサデータ12と第2指令データ13との対応関係を示すセンサデータ算出モデルを生成する。モデル生成部28は、生成したセンサデータ算出モデルをモデル保存部29に送る。モデル保存部29は、モデル生成部28が生成したセンサデータ算出モデルを保存するメモリといった記憶手段である。 The model generation unit 28 reads the sensor data 12 when the second command data 13 is output from the sensor data storage unit 24, and outputs the second command data 13 corresponding to the read sensor data 12 to the second command data storage unit 25. Read from. Based on the read sensor data 12 and second command data 13, the model generation unit 28 indicates sensor data indicating the correspondence between the sensor data 12 and the second command data 13 when the second command data 13 is output. Generate a calculation model. The model generation unit 28 sends the generated sensor data calculation model to the model storage unit 29. The model storage unit 29 is a storage unit such as a memory that stores the sensor data calculation model generated by the model generation unit 28.
 推定データ算出部である推定センサデータ算出部30は、モデル保存部29からセンサデータ算出モデルを読み出す。また、推定センサデータ算出部30は、第1指令データ11および第2指令データ13が出力された際のセンサデータ12をセンサデータ保存部24から読み出し、読み出したセンサデータ12に対応する第2指令データ13を第2指令データ保存部25から読み出す。推定センサデータ算出部30は、読み出した、センサデータ算出モデル、センサデータ12および第2指令データ13に基づいて、推定センサデータを算出する。推定センサデータは、マスタ局1が第1指令データ11を出力した場合に、センサ5から出力されるセンサデータ12の推定値である。 The estimated sensor data calculation unit 30 that is an estimated data calculation unit reads the sensor data calculation model from the model storage unit 29. In addition, the estimated sensor data calculation unit 30 reads the sensor data 12 when the first command data 11 and the second command data 13 are output from the sensor data storage unit 24 and the second command corresponding to the read sensor data 12. Data 13 is read from the second command data storage unit 25. The estimated sensor data calculation unit 30 calculates estimated sensor data based on the read sensor data calculation model, sensor data 12 and second command data 13. The estimated sensor data is an estimated value of the sensor data 12 output from the sensor 5 when the master station 1 outputs the first command data 11.
 マスタ局1の第1指令データ生成部21は、種々の第1指令データ11を第1スレーブ局3に出力し、種々の第2指令データ13を第2スレーブ局6に出力する。この場合において、機械装置2は、第1指令データ11および第2指令データ13に対応する動作を実行する。そして、センサ5は、機械装置2の動作に対応するセンサデータ12を検出して、マスタ局1に送る。推定センサデータ算出部30は、センサデータ12のデータ成分のうち第1指令データ11の出力に起因するデータ成分を算出する。推定センサデータ算出部30は、算出した推定センサデータを故障診断部31に送る。 The first command data generation unit 21 of the master station 1 outputs various first command data 11 to the first slave station 3, and outputs various second command data 13 to the second slave station 6. In this case, the mechanical device 2 executes operations corresponding to the first command data 11 and the second command data 13. The sensor 5 detects sensor data 12 corresponding to the operation of the mechanical device 2 and sends it to the master station 1. The estimated sensor data calculation unit 30 calculates a data component resulting from the output of the first command data 11 among the data components of the sensor data 12. The estimated sensor data calculation unit 30 sends the calculated estimated sensor data to the failure diagnosis unit 31.
 故障診断部31は、閾値保存部27から故障診断閾値を読み出す。故障診断部31は、推定センサデータ算出部30が算出した推定センサデータと、閾値保存部27から読み出した故障診断閾値とに基づいて、機械装置2の故障の有無を診断する。 The failure diagnosis unit 31 reads the failure diagnosis threshold value from the threshold storage unit 27. The failure diagnosis unit 31 diagnoses whether there is a failure in the mechanical device 2 based on the estimated sensor data calculated by the estimated sensor data calculation unit 30 and the failure diagnosis threshold value read from the threshold storage unit 27.
 このように、実施の形態のマスタ局1では、閾値生成部26が、第1モータ4を動作させた際に検出されるセンサデータ12に基づいて、故障診断閾値を生成する。また、モデル生成部28は、第2モータ7を動作させた際に検出されるセンサデータ12に基づいて、センサデータ算出モデルを生成する。また、推定センサデータ算出部30は、センサデータ算出モデルを用いて、第2モータ7に起因するセンサデータ12を算出する。このセンサデータ12は、第2モータ7に起因するデータ成分に対応している。推定センサデータ算出部30は、第1モータ4および第2モータ7が連結されている機械装置2を動作させた際に検出されるセンサデータ12から、第2モータ7に起因するデータ成分を取り除くことによって、第1モータ4に起因したセンサデータ12を算出する。そして、故障診断部31が、第1モータ4に起因したセンサデータ12と、故障診断閾値と、を比較することによって、機械装置2の故障を診断する。故障診断閾値は、一定値であり、故障診断部31は、センサデータ12の値が、一定値である故障診断閾値を超えた場合に、故障と診断する。 As described above, in the master station 1 according to the embodiment, the threshold generation unit 26 generates the failure diagnosis threshold based on the sensor data 12 detected when the first motor 4 is operated. The model generation unit 28 generates a sensor data calculation model based on the sensor data 12 detected when the second motor 7 is operated. Further, the estimated sensor data calculation unit 30 calculates the sensor data 12 caused by the second motor 7 using the sensor data calculation model. This sensor data 12 corresponds to a data component caused by the second motor 7. The estimated sensor data calculation unit 30 removes data components attributed to the second motor 7 from the sensor data 12 detected when the mechanical device 2 to which the first motor 4 and the second motor 7 are connected is operated. Thus, the sensor data 12 resulting from the first motor 4 is calculated. Then, the failure diagnosis unit 31 diagnoses a failure of the mechanical device 2 by comparing the sensor data 12 caused by the first motor 4 with a failure diagnosis threshold value. The failure diagnosis threshold value is a constant value, and the failure diagnosis unit 31 diagnoses a failure when the value of the sensor data 12 exceeds a failure diagnosis threshold value that is a fixed value.
 図4は、実施の形態にかかる第1指令データ保存部の内部構成を示す図である。第1指令データ保存部23は、第1指令データ保存領域230を備えている。第1指令データ保存領域230は、故障診断閾値の生成に用いられる第1指令データ11を保存する領域である。 FIG. 4 is a diagram illustrating an internal configuration of the first command data storage unit according to the embodiment. The first command data storage unit 23 includes a first command data storage area 230. The first command data storage area 230 is an area for storing the first command data 11 used for generating the failure diagnosis threshold value.
 図5は、実施の形態にかかるセンサデータ保存部の内部構成を示す図である。センサデータ保存部24は、センサデータ保存領域240A,240B,240Cを備えている。センサデータ保存領域240Aは、故障診断閾値の生成に用いられるセンサデータ12を保存する領域である。センサデータ保存領域240Bは、センサデータ算出モデルが生成される際に用いられるセンサデータ12を保存する領域である。センサデータ保存領域240Cは、推定センサデータが生成される際に用いられるセンサデータ12を保存する領域である。 FIG. 5 is a diagram illustrating an internal configuration of the sensor data storage unit according to the embodiment. The sensor data storage unit 24 includes sensor data storage areas 240A, 240B, and 240C. The sensor data storage area 240A is an area for storing sensor data 12 used for generating a failure diagnosis threshold value. The sensor data storage area 240B is an area for storing the sensor data 12 used when the sensor data calculation model is generated. The sensor data storage area 240C is an area for storing sensor data 12 used when estimated sensor data is generated.
 センサデータ保存領域240Aに保存されるセンサデータ12は、第2指令データ13が出力されず第1指令データ11が出力された際にセンサ5によって検出されたものである。センサデータ保存領域240Bに保存されるセンサデータ12は、第1指令データ11が出力されず第2指令データ13が出力された際にセンサ5によって検出されたものである。センサデータ保存領域240Cに保存されるセンサデータ12は、第1指令データ11および第2指令データ13が出力された際にセンサ5によって検出された第1の検出データである。なお、センサデータ保存領域240A,240B,240Cは、固定領域である必要はなく、任意に変更可能な領域であってもよい。 The sensor data 12 stored in the sensor data storage area 240A is detected by the sensor 5 when the second command data 13 is not output and the first command data 11 is output. The sensor data 12 stored in the sensor data storage area 240B is detected by the sensor 5 when the first command data 11 is not output and the second command data 13 is output. The sensor data 12 stored in the sensor data storage area 240C is the first detection data detected by the sensor 5 when the first command data 11 and the second command data 13 are output. The sensor data storage areas 240A, 240B, and 240C are not necessarily fixed areas, and may be areas that can be arbitrarily changed.
 図6は、実施の形態にかかる第2指令データ保存部の内部構成を示す図である。第2指令データ保存部25は、第2指令データ保存領域250A,250Bを備えている。第2指令データ保存領域250Aは、センサデータ算出モデルが生成される際に用いられる第2指令データ13を保存する領域である。第2指令データ保存領域250Bは、推定センサデータが生成される際に用いられる第2指令データ13を保存する領域である。なお、第2指令データ保存領域250A,250Bは、固定領域である必要はなく、任意に変更可能な領域であってもよい。 FIG. 6 is a diagram illustrating an internal configuration of the second command data storage unit according to the embodiment. The second command data storage unit 25 includes second command data storage areas 250A and 250B. The second command data storage area 250A is an area for storing the second command data 13 used when the sensor data calculation model is generated. The second command data storage area 250B is an area for storing the second command data 13 used when the estimated sensor data is generated. The second command data storage areas 250A and 250B do not have to be fixed areas, and may be areas that can be arbitrarily changed.
 図7は、実施の形態にかかる故障診断システムの動作処理手順を示すフローチャートである。故障診断システム100は、稼働前準備を実行した後に、装置稼働を実行する。稼働前準備は、機械装置2を稼働させる前の準備段階の処理であり、装置稼働は、機械装置2を稼働させる処理である。したがって、故障診断システム100は、稼働前準備の際には、機械装置2に準備段階の動作を実行させて準備段階のセンサデータ12を収集する。また、故障診断システム100は、装置稼働の際には、機械装置2に実際の動作を実行させて実際のセンサデータ12を収集する。そして、故障診断システム100は、装置稼働の際に、機械装置2の故障を診断する。 FIG. 7 is a flowchart showing an operation processing procedure of the failure diagnosis system according to the embodiment. The failure diagnosis system 100 executes the apparatus operation after executing the pre-operation preparation. The pre-operation preparation is a process at a preparation stage before operating the mechanical device 2, and the device operation is a process of operating the mechanical device 2. Therefore, the failure diagnosis system 100 collects the sensor data 12 at the preparation stage by causing the mechanical device 2 to perform the operation at the preparation stage at the time of preparation before operation. Further, the failure diagnosis system 100 collects actual sensor data 12 by causing the mechanical device 2 to perform an actual operation when the device is in operation. The failure diagnosis system 100 diagnoses a failure of the mechanical device 2 when the device is operating.
 故障診断システム100は、稼働前準備を開始すると、ステップS10において、マスタ局1が、機械装置2が第1モータ4に連結されていない状態で第1モータ4を駆動させた際のセンサデータ12を収集する。 When the failure diagnosis system 100 starts the pre-operation preparation, in step S <b> 10, the sensor data 12 when the master station 1 drives the first motor 4 in a state where the mechanical device 2 is not connected to the first motor 4. To collect.
 具体的には、マスタ局1の第1指令データ生成部21が、実際に機械装置2を稼働させる際と同様の第1指令データ11を生成して、第1スレーブ局3および第1指令データ保存部23に出力する。なお、この場合において、第2指令データ生成部22は、第2指令データ13を出力しない。そして、第1指令データ保存部23は、第1の駆動指令である第1指令データ11を保存する。また、第1スレーブ局3は、第1指令データ11に対応するトルク指令を生成して第1モータ4に出力し、第1モータ4を駆動する。 Specifically, the first command data generation unit 21 of the master station 1 generates the first command data 11 that is the same as when the machine device 2 is actually operated, and the first slave station 3 and the first command data The data is output to the storage unit 23. In this case, the second command data generation unit 22 does not output the second command data 13. And the 1st command data preservation | save part 23 preserve | saves the 1st command data 11 which is a 1st drive command. Further, the first slave station 3 generates a torque command corresponding to the first command data 11 and outputs the torque command to the first motor 4 to drive the first motor 4.
 そして、センサ5が、第1モータ4を駆動させた際の機械装置2の状態を検出し、検出結果であるセンサデータ12をマスタ局1に出力する。これにより、センサデータ保存部24は、第1モータ4を駆動させた際のセンサデータ12をセンサデータ保存領域240Aに保存する。このように、センサデータ保存部24が、センサデータ保存領域240Aに保存するセンサデータ12は、マスタ局1が、第2モータ7を駆動させず、第1モータ4を駆動させた際のセンサデータ12である。 Then, the sensor 5 detects the state of the mechanical device 2 when the first motor 4 is driven, and outputs sensor data 12 as a detection result to the master station 1. Thereby, the sensor data storage unit 24 stores the sensor data 12 when the first motor 4 is driven in the sensor data storage area 240A. Thus, the sensor data 12 stored in the sensor data storage area 240A by the sensor data storage unit 24 is sensor data when the master station 1 drives the first motor 4 without driving the second motor 7. 12.
 そして、ステップS20において、閾値生成部26が、故障診断閾値を生成する。具体的には、閾値生成部26が、第1指令データ保存部23から第1の駆動指令である第1指令データ11を読み出し、センサデータ保存部24のセンサデータ保存領域240Aから第3の検出データであるセンサデータ12を読み出す。そして、閾値生成部26は、第1指令データ11およびセンサデータ12に基づいて、故障診断閾値を生成する。閾値生成部26は、何れの方法で故障診断閾値を生成してもよい。閾値保存部27は、閾値生成部26が生成した故障診断閾値を保存する。 In step S20, the threshold generation unit 26 generates a failure diagnosis threshold. Specifically, the threshold generation unit 26 reads the first command data 11 that is the first drive command from the first command data storage unit 23, and performs the third detection from the sensor data storage area 240 </ b> A of the sensor data storage unit 24. Sensor data 12 which is data is read. Then, the threshold value generator 26 generates a failure diagnosis threshold value based on the first command data 11 and the sensor data 12. The threshold generation unit 26 may generate the failure diagnosis threshold by any method. The threshold storage unit 27 stores the failure diagnosis threshold generated by the threshold generation unit 26.
 なお、閾値生成部26は、第1指令データ11を用いることなく、センサデータ12を用いて故障診断閾値を生成してもよい。この場合、マスタ局1は、第1指令データ保存部23を備えていなくてもよい。 The threshold generation unit 26 may generate a failure diagnosis threshold using the sensor data 12 without using the first command data 11. In this case, the master station 1 may not include the first command data storage unit 23.
 ここでは、閾値生成部26が、第1指令データ11を用いることなく、センサデータ12を用いて故障診断閾値を生成する場合について説明する。閾値生成部26は、例えば、以下の(1)から(3)の方法を用いて、故障診断閾値を生成する。(1)の方法は、正常動作時のセンサデータ12を用いて故障診断閾値を生成する方法であり、(2)および(3)の方法は、正常動作時から機械装置2の機械部品が故障するまでの間のセンサデータ12を用いて故障診断閾値を生成する方法である。
 (1)閾値生成部26は、正常動作時のセンサデータ12の最大値および最小値に、特定の倍率を掛けた値を故障診断閾値に設定する。
 (2)閾値生成部26は、機械部品が故障したタイミングから、特定の時間分だけ前のセンサデータ12の値を故障診断閾値に設定する。
 (3)閾値生成部26は、正常動作では安定していたセンサデータ12の値が、機械部品が故障するまでに上昇傾向または下降傾向を示したタイミングの値を故障診断閾値に設定する。
Here, a case where the threshold value generation unit 26 generates a failure diagnosis threshold value using the sensor data 12 without using the first command data 11 will be described. The threshold generation unit 26 generates a failure diagnosis threshold using, for example, the following methods (1) to (3). The method (1) is a method for generating a failure diagnosis threshold value using the sensor data 12 during normal operation, and the methods (2) and (3) are those in which a mechanical component of the mechanical device 2 has failed since normal operation. This is a method for generating a failure diagnosis threshold value using the sensor data 12 until this time.
(1) The threshold value generator 26 sets a value obtained by multiplying the maximum value and the minimum value of the sensor data 12 during normal operation by a specific magnification as the failure diagnosis threshold value.
(2) The threshold value generator 26 sets the value of the sensor data 12 that is a specific time before the failure timing of the mechanical component as the failure diagnosis threshold value.
(3) The threshold value generator 26 sets, as the failure diagnosis threshold value, the value of the timing at which the value of the sensor data 12 that has been stable in normal operation shows an upward trend or a downward trend until the mechanical component fails.
 図8は、実施の形態にかかる故障診断閾値を生成する際の、第1指令データとセンサデータとの関係を示す図である。図8では、ステップS10で故障診断システム100が第1モータ4を駆動させた際の第1指令データ11およびセンサデータ12を示している。図8に示すグラフの横軸が時間である。図8に示す上段側のグラフの縦軸が、第1指令データ11であり、下段側のグラフの縦軸が、センサデータ12である。閾値生成部26は、図8に示したような、第1指令データ11およびセンサデータ12に基づいて、故障診断閾値を生成する。 FIG. 8 is a diagram illustrating a relationship between the first command data and the sensor data when generating the failure diagnosis threshold according to the embodiment. FIG. 8 shows the first command data 11 and the sensor data 12 when the failure diagnosis system 100 drives the first motor 4 in step S10. The horizontal axis of the graph shown in FIG. 8 is time. The vertical axis of the upper graph shown in FIG. 8 is the first command data 11, and the vertical axis of the lower graph is the sensor data 12. The threshold value generator 26 generates a failure diagnosis threshold value based on the first command data 11 and the sensor data 12 as shown in FIG.
 また、故障診断システム100では、ステップS30において、マスタ局1が、機械装置2が第2モータ7に連結された状態で第2モータ7を駆動させた際のセンサデータ12を収集する。 In the failure diagnosis system 100, in step S30, the master station 1 collects sensor data 12 when the second motor 7 is driven in a state where the mechanical device 2 is connected to the second motor 7.
 具体的には、マスタ局1の第2指令データ生成部22が、第2指令データ13を生成して、第2スレーブ局6および第2指令データ保存部25に出力する。なお、この場合において、第1指令データ生成部21は、第1指令データ11を出力しない。そして、第2指令データ保存部25は、第2指令データ保存領域250Aに第2の駆動指令である第2指令データ13を保存する。また、第2スレーブ局6は、第2指令データ13に対応するトルク指令を生成して第2モータ7に出力し、第2モータ7を駆動する。 Specifically, the second command data generation unit 22 of the master station 1 generates the second command data 13 and outputs it to the second slave station 6 and the second command data storage unit 25. In this case, the first command data generation unit 21 does not output the first command data 11. Then, the second command data storage unit 25 stores the second command data 13 that is the second drive command in the second command data storage area 250A. Further, the second slave station 6 generates a torque command corresponding to the second command data 13 and outputs the torque command to the second motor 7 to drive the second motor 7.
 そして、センサ5が、第2モータ7を駆動させた際の機械装置2の状態を検出し、検出結果であるセンサデータ12をマスタ局1に出力する。これにより、センサデータ保存部24は、第2モータ7を駆動させた際のセンサデータ12をセンサデータ保存領域240Bに保存する。なお、第2モータ7を駆動させるための第2指令データ13は、実際に機械装置2を稼働させる際の指令データとは異なるものであってもよい。このように、センサデータ保存部24が、センサデータ保存領域240Bに保存するセンサデータ12は、マスタ局1が、第1モータ4を駆動させず、第2モータ7を駆動させた際のセンサデータ12である。 The sensor 5 detects the state of the mechanical device 2 when the second motor 7 is driven, and outputs sensor data 12 as a detection result to the master station 1. Thereby, the sensor data storage unit 24 stores the sensor data 12 when the second motor 7 is driven in the sensor data storage area 240B. Note that the second command data 13 for driving the second motor 7 may be different from the command data for actually operating the mechanical device 2. Thus, the sensor data 12 stored in the sensor data storage area 240B by the sensor data storage unit 24 is sensor data when the master station 1 drives the second motor 7 without driving the first motor 4. 12.
 ステップS40において、モデル生成部28が、センサデータ算出モデルを生成する。具体的には、モデル生成部28は、センサデータ保存部24のセンサデータ保存領域240Bから第4の検出データであるセンサデータ12を読み出し、第2指令データ保存部25の第2指令データ保存領域250Aから第2の駆動指令である第2指令データ13を読み出す。そして、モデル生成部28は、センサデータ12および第2指令データ13に基づいて、センサデータ算出モデルを生成する。モデル生成部28は、何れの方法でセンサデータ算出モデルを生成してもよい。モデル保存部29は、モデル生成部28で生成されたセンサデータ算出モデルを保存する。 In step S40, the model generation unit 28 generates a sensor data calculation model. Specifically, the model generation unit 28 reads the sensor data 12 as the fourth detection data from the sensor data storage region 240B of the sensor data storage unit 24, and the second command data storage region of the second command data storage unit 25. The second command data 13 as the second drive command is read from 250A. Then, the model generation unit 28 generates a sensor data calculation model based on the sensor data 12 and the second command data 13. The model generation unit 28 may generate the sensor data calculation model by any method. The model storage unit 29 stores the sensor data calculation model generated by the model generation unit 28.
 モデル生成部28は、例えば、システム同定方法を用いてセンサデータ算出モデルを生成する。このシステム同定方法の例は、周波数応答法、過渡応答法または最小二乗法である。モデル生成部28は、システム同定方法を用いてセンサデータ算出モデルを生成する場合、実際の入力データである第2指令データ13と、実際の出力データであるセンサデータ12とに基づいて、センサデータ算出モデルを推定する。具体的には、モデル生成部28は、第2指令データ13が入力されると、これに対応するセンサデータ12が出力されるセンサデータ算出モデルを推定する。換言すると、モデル生成部28は、入力された第2指令データ13と出力されたセンサデータ12とに基づいて、入力と出力との間の処理に対応するセンサデータ算出モデルを推定する。 The model generation unit 28 generates a sensor data calculation model using, for example, a system identification method. Examples of this system identification method are a frequency response method, a transient response method, or a least square method. When generating a sensor data calculation model using the system identification method, the model generation unit 28 generates sensor data based on the second command data 13 that is actual input data and the sensor data 12 that is actual output data. Estimate the calculation model. Specifically, when the second command data 13 is input, the model generation unit 28 estimates a sensor data calculation model from which sensor data 12 corresponding to the second command data 13 is output. In other words, the model generation unit 28 estimates a sensor data calculation model corresponding to processing between input and output based on the input second command data 13 and the output sensor data 12.
 図9は、実施の形態にかかるセンサデータ算出モデルを生成する際の、第2指令データとセンサデータとの関係を示す図である。図9では、ステップS30で故障診断システム100が第2モータ7を駆動させた際の第2指令データ13およびセンサデータ12を示している。図9に示すグラフの横軸が時間である。図9に示す上段側のグラフの縦軸が、第2指令データ13であり、下段側のグラフの縦軸が、センサデータ12である。モデル生成部28は、図9に示したようなセンサデータ12および第2指令データ13に基づいて、センサデータ算出モデルを生成する。 FIG. 9 is a diagram illustrating a relationship between the second command data and the sensor data when the sensor data calculation model according to the embodiment is generated. FIG. 9 shows the second command data 13 and the sensor data 12 when the failure diagnosis system 100 drives the second motor 7 in step S30. The horizontal axis of the graph shown in FIG. 9 is time. The vertical axis of the upper graph shown in FIG. 9 is the second command data 13, and the vertical axis of the lower graph is the sensor data 12. The model generation unit 28 generates a sensor data calculation model based on the sensor data 12 and the second command data 13 as shown in FIG.
 マスタ局1は、ステップS10の処理の後にステップS20の処理を実行し、ステップS30の処理の後にステップS40の処理を実行する。なお、マスタ局1は、ステップS10,S20の処理と、ステップS30,S40の処理との何れを先に実行してもよい。マスタ局1が、故障診断閾値の生成と、センサデータ算出モデルの生成とを実行すると、稼働前準備は終了する。 The master station 1 executes the process of step S20 after the process of step S10, and executes the process of step S40 after the process of step S30. Note that the master station 1 may execute any of the processes of steps S10 and S20 and the processes of steps S30 and S40 first. When the master station 1 executes generation of a failure diagnosis threshold and generation of a sensor data calculation model, the pre-operation preparation is completed.
 故障診断システム100は、機械装置2が第1モータ4および第2モータ7に連結されている状態で装置稼働を開始する。ステップS50において、マスタ局1が、第1モータ4および第2モータ7を駆動させた際のセンサデータ12を収集する。 The failure diagnosis system 100 starts the operation of the apparatus in a state where the mechanical apparatus 2 is connected to the first motor 4 and the second motor 7. In step S50, the master station 1 collects sensor data 12 when the first motor 4 and the second motor 7 are driven.
 具体的には、第1指令データ生成部21が、第1指令データ11を生成して、第1スレーブ局3に出力する。また、第2指令データ生成部22が、第2指令データ13を生成して、第2スレーブ局6および第2指令データ保存部25に出力する。 Specifically, the first command data generation unit 21 generates the first command data 11 and outputs it to the first slave station 3. Further, the second command data generation unit 22 generates the second command data 13 and outputs it to the second slave station 6 and the second command data storage unit 25.
 これにより、第2指令データ保存部25は、第2指令データ保存領域250Bに第3の駆動指令である第2指令データ13を保存する。また、第1スレーブ局3は、第1指令データ11に対応するトルク指令を生成して第1モータ4に出力し、第2スレーブ局6は、第2指令データ13に対応するトルク指令を生成して第2モータ7に出力する。これにより、第1モータ4および第2モータ7が駆動し、機械装置2は、第1モータ4および第2モータ7によって動作させられる。 Thereby, the second command data storage unit 25 stores the second command data 13 as the third drive command in the second command data storage area 250B. The first slave station 3 generates a torque command corresponding to the first command data 11 and outputs it to the first motor 4, and the second slave station 6 generates a torque command corresponding to the second command data 13. And output to the second motor 7. Accordingly, the first motor 4 and the second motor 7 are driven, and the mechanical device 2 is operated by the first motor 4 and the second motor 7.
 そして、センサ5が、第1モータ4および第2モータ7を駆動させた際の機械装置2の状態を検出し、検出結果であるセンサデータ12をマスタ局1に出力する。これにより、センサデータ保存部24は、第1モータ4および第2モータ7を駆動させた際の第1の検出データであるセンサデータ12をセンサデータ保存領域240Cに保存する。 Then, the sensor 5 detects the state of the mechanical device 2 when the first motor 4 and the second motor 7 are driven, and outputs sensor data 12 as a detection result to the master station 1. Thereby, the sensor data storage unit 24 stores the sensor data 12 that is the first detection data when the first motor 4 and the second motor 7 are driven in the sensor data storage area 240C.
 推定センサデータ算出部30は、機械装置2の故障診断を実行する際に、センサデータ保存部24のセンサデータ保存領域240Cからセンサデータ12を読み出し、モデル保存部29からセンサデータ算出モデルを読み出し、第2指令データ保存部25の第2指令データ保存領域250Bから第2指令データ13を読み出す。 The estimated sensor data calculation unit 30 reads the sensor data 12 from the sensor data storage area 240C of the sensor data storage unit 24 and reads the sensor data calculation model from the model storage unit 29 when executing the failure diagnosis of the mechanical device 2. The second command data 13 is read from the second command data storage area 250B of the second command data storage unit 25.
 図10は、実施の形態にかかる故障診断が実行される際の、第1指令データと第2指令データとセンサデータとの関係を示す図である。図10では、ステップS50で故障診断システム100が第1モータ4および第2モータ7を駆動させた際の、第1指令データ11、第2指令データ13およびセンサデータ12を示している。図10に示すグラフの横軸が時間である。図10に示す上段のグラフの縦軸が、第1指令データ11であり、中段のグラフの縦軸が第2指令データ13であり、下段のグラフの縦軸が、センサデータ12である。 FIG. 10 is a diagram illustrating a relationship among the first command data, the second command data, and the sensor data when the failure diagnosis according to the embodiment is executed. FIG. 10 shows the first command data 11, the second command data 13, and the sensor data 12 when the failure diagnosis system 100 drives the first motor 4 and the second motor 7 in step S50. The horizontal axis of the graph shown in FIG. 10 is time. The vertical axis of the upper graph shown in FIG. 10 is the first command data 11, the vertical axis of the middle graph is the second command data 13, and the vertical axis of the lower graph is the sensor data 12.
 故障診断システム100では、ステップS60において、推定センサデータ算出部30が、第2モータ7を駆動させる場合の推定センサデータを算出する。第2モータ7を駆動させる場合の推定センサデータは、第2指令データ13に対応する推定センサデータである。このとき、推定センサデータ算出部30は、第2指令データ保存領域250Bの第2指令データ13に対応する推定センサデータを、センサデータ算出モデルを用いて算出する。 In the failure diagnosis system 100, in step S60, the estimated sensor data calculation unit 30 calculates estimated sensor data when the second motor 7 is driven. The estimated sensor data when driving the second motor 7 is estimated sensor data corresponding to the second command data 13. At this time, the estimated sensor data calculation unit 30 calculates estimated sensor data corresponding to the second command data 13 in the second command data storage area 250B using the sensor data calculation model.
 第2指令データ13に対応する推定センサデータは、センサデータ12のうち、第2指令データ13に対応するデータ成分の推定値である。以下の説明では、第2指令データ13に対応する推定センサデータを、推定センサデータX2という場合がある。第5の検出データである推定センサデータX2は、第1モータ4および第2モータ7を駆動させた場合に検出されるセンサデータ12のうち、第2モータ7に起因するデータ成分の推定値である。 The estimated sensor data corresponding to the second command data 13 is an estimated value of the data component of the sensor data 12 corresponding to the second command data 13. In the following description, the estimated sensor data corresponding to the second command data 13 may be referred to as estimated sensor data X2. The estimated sensor data X2, which is the fifth detection data, is an estimated value of the data component caused by the second motor 7 among the sensor data 12 detected when the first motor 4 and the second motor 7 are driven. is there.
 図11は、実施の形態にかかる第2指令データと推定センサデータとの関係を示す図である。図11では、ステップS50でマスタ局1が収集した第2指令データ13と、ステップS60で推定センサデータ算出部30が算出した推定センサデータX2との関係を示している。図11に示すグラフの横軸が時間である。図11に示す上段側のグラフの縦軸が、第2指令データ13であり、下段側のグラフの縦軸が、推定センサデータX2である。 FIG. 11 is a diagram illustrating a relationship between the second command data and the estimated sensor data according to the embodiment. FIG. 11 shows the relationship between the second command data 13 collected by the master station 1 in step S50 and the estimated sensor data X2 calculated by the estimated sensor data calculation unit 30 in step S60. The horizontal axis of the graph shown in FIG. 11 is time. The vertical axis of the upper graph shown in FIG. 11 is the second command data 13, and the vertical axis of the lower graph is the estimated sensor data X2.
 推定センサデータ算出部30は、推定センサデータX2を算出した後、ステップS70において、第1モータ4を駆動させる場合の推定センサデータを算出する。第1モータ4を駆動させる場合の推定センサデータは、第1指令データ11に対応する推定センサデータである。このとき、推定センサデータ算出部30は、センサデータ保存領域240Cから読み出したセンサデータ12から推定センサデータX2を減算することによって、第1指令データ11に対応する推定センサデータを算出する。 The estimated sensor data calculation unit 30 calculates estimated sensor data X2 and then calculates estimated sensor data when the first motor 4 is driven in step S70. The estimated sensor data when driving the first motor 4 is estimated sensor data corresponding to the first command data 11. At this time, the estimated sensor data calculation unit 30 calculates estimated sensor data corresponding to the first command data 11 by subtracting the estimated sensor data X2 from the sensor data 12 read from the sensor data storage area 240C.
 第1指令データ11に対応する推定センサデータは、センサデータ12のうち、第1指令データ11に対応するデータ成分の推定値である。以下の説明では、第1指令データ11に対応する推定センサデータを、推定センサデータX1という場合がある。第2の検出データである推定センサデータX1は、第1モータ4および第2モータ7を駆動させた場合に検出されるセンサデータ12のうち、第1モータ4に起因するデータ成分の推定値である。 The estimated sensor data corresponding to the first command data 11 is an estimated value of the data component corresponding to the first command data 11 in the sensor data 12. In the following description, the estimated sensor data corresponding to the first command data 11 may be referred to as estimated sensor data X1. The estimated sensor data X1 that is the second detection data is an estimated value of the data component caused by the first motor 4 out of the sensor data 12 detected when the first motor 4 and the second motor 7 are driven. is there.
 図12は、実施の形態にかかる第1指令データと推定センサデータとの関係を示す図である。図12では、ステップS50でマスタ局1が収集した第1指令データ11と、ステップS70で推定センサデータ算出部30が算出した推定センサデータX1との関係を示している。図12に示すグラフの横軸が時間である。図12に示す上段側のグラフの縦軸が、第1指令データ11であり、下段側のグラフの縦軸が、推定センサデータX1である。 FIG. 12 is a diagram illustrating a relationship between the first command data and the estimated sensor data according to the embodiment. FIG. 12 shows the relationship between the first command data 11 collected by the master station 1 in step S50 and the estimated sensor data X1 calculated by the estimated sensor data calculation unit 30 in step S70. The horizontal axis of the graph shown in FIG. 12 is time. The vertical axis of the upper graph shown in FIG. 12 is the first command data 11, and the vertical axis of the lower graph is the estimated sensor data X1.
 推定センサデータ算出部30は、算出した推定センサデータX1を故障診断部31に出力する。そして、ステップS80において、故障診断部31は、機械装置2に故障が発生しているか否かの判定である故障診断を実行する。故障診断部31は、推定センサデータX1が、閾値保存部27内の故障診断閾値を超過した場合に故障と判定する。 The estimated sensor data calculation unit 30 outputs the calculated estimated sensor data X1 to the failure diagnosis unit 31. In step S <b> 80, the failure diagnosis unit 31 executes failure diagnosis that is a determination as to whether or not a failure has occurred in the mechanical device 2. The failure diagnosis unit 31 determines that a failure has occurred when the estimated sensor data X1 exceeds the failure diagnosis threshold in the threshold storage unit 27.
 故障診断部31は、例えば、以下の(4)から(6)の方法を用いて、故障の判定を行う。(4)から(6)の方法は、推定センサデータX1が故障診断閾値を超過するか否かを周期的にチェックし、推定センサデータX1が故障診断閾値を超過する回数で故障を判定する方法である。故障診断部31は、(5)または(6)の方法を用いることによって、誤検出を防止することができる。
 (4)故障診断部31は、推定センサデータX1が故障診断閾値を超過すると、即時故障と判定する。換言すると、故障診断部31は、推定センサデータX1が1回でも故障診断閾値を超過すると、故障と判定する。
 (5)故障診断部31は、推定センサデータX1が特定の回数だけ連続して故障診断閾値を超過すると、故障と判定する。故障診断部31は、例えば、推定センサデータX1が3回連続して故障診断閾値を超過すると、故障と判定する。
 (6)故障診断部31は、推定センサデータX1が特定の回数または特定の時間のうち、故障診断閾値を複数回超過すると、故障と判定する。故障診断部31は、例えば、10回のうち推定センサデータX1が3回故障診断閾値を超過すると、故障と判定する。
The failure diagnosis unit 31 determines failure using, for example, the following methods (4) to (6). In the methods (4) to (6), whether or not the estimated sensor data X1 exceeds the failure diagnosis threshold is periodically checked, and a failure is determined by the number of times that the estimated sensor data X1 exceeds the failure diagnosis threshold. It is. The fault diagnosis unit 31 can prevent erroneous detection by using the method (5) or (6).
(4) If the estimated sensor data X1 exceeds the failure diagnosis threshold, the failure diagnosis unit 31 determines that there is an immediate failure. In other words, the failure diagnosis unit 31 determines a failure when the estimated sensor data X1 exceeds the failure diagnosis threshold even once.
(5) The failure diagnosis unit 31 determines that a failure has occurred when the estimated sensor data X1 continuously exceeds the failure diagnosis threshold for a specific number of times. For example, the failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 exceeds the failure diagnosis threshold value three times in succession.
(6) The failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 exceeds the failure diagnosis threshold value a plurality of times within a specific number of times or a specific time. For example, the failure diagnosis unit 31 determines that a failure occurs when the estimated sensor data X1 out of 10 times exceeds the failure diagnosis threshold value three times.
 従来の故障診断システムは、装置稼働を開始した後、複数の駆動源を動作させた時のセンサデータを用いて、機械装置の故障を判定するための閾値を作成する。この場合において、複数の駆動源を動作させた時のセンサデータは、複数の駆動源に起因するデータ成分が重畳している。このため、従来の故障診断システムは、機械装置の構成が変更されると、変更された箇所に起因するセンサデータのデータ成分が変化する。この結果、センサデータが、機械装置の構成を変更する前と変更した後とで異なってしまう。このため、機械装置の構成または特性によってセンサデータが異なることとなるので、従来は、機械装置の故障を判定するための閾値を、機械装置の構成毎および特性毎に設定する必要があった。 A conventional failure diagnosis system creates a threshold value for determining a failure of a mechanical device using sensor data when a plurality of drive sources are operated after starting the operation of the device. In this case, the sensor data when operating a plurality of drive sources is superimposed with data components resulting from the plurality of drive sources. For this reason, in the conventional failure diagnosis system, when the configuration of the mechanical device is changed, the data component of the sensor data resulting from the changed location is changed. As a result, the sensor data is different before and after changing the configuration of the mechanical device. For this reason, the sensor data differs depending on the configuration or characteristics of the mechanical device. Conventionally, it has been necessary to set a threshold value for determining a failure of the mechanical device for each configuration and characteristic of the mechanical device.
 一方、実施の形態の故障診断システム100は、機械装置2の構成または特性が変更された場合であっても、ステップS30からS70の処理を再度実行するだけで、機械装置2の故障を診断することができる。すなわち、実施の形態の故障診断システム100は、機械装置2の構成または特性が変更された場合に、ステップS10,S20の処理を実行することなく、設定済みの故障診断閾値を用いて機械装置2の故障を診断することができる。 On the other hand, the failure diagnosis system 100 according to the embodiment diagnoses a failure of the mechanical device 2 only by executing the processes of steps S30 to S70 again even when the configuration or characteristics of the mechanical device 2 is changed. be able to. That is, the failure diagnosis system 100 according to the embodiment uses the set failure diagnosis threshold value without executing the processes of steps S10 and S20 when the configuration or characteristics of the machine device 2 is changed. Can be diagnosed.
 なお、実施の形態では、機械装置2が、第1モータ4および第2モータ7によって動作させられる場合について説明したが、機械装置2を動作させる駆動源は、3つ以上であってもよい。この場合も、故障診断システム100は、上述した処理手順と同様の処理手順によって、機械装置2の故障を診断することができる。 In the embodiment, the case where the mechanical device 2 is operated by the first motor 4 and the second motor 7 has been described, but there may be three or more drive sources for operating the mechanical device 2. Also in this case, the failure diagnosis system 100 can diagnose a failure of the mechanical device 2 by a processing procedure similar to the processing procedure described above.
 ここで、マスタ局1のハードウェア構成について説明する。図13は、実施の形態にかかるマスタ局のハードウェア構成例を示す図である。マスタ局1は、図13に示した制御回路300、すなわちプロセッサ301およびメモリ302により実現することができる。プロセッサ301の例は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)またはシステムLSI(Large Scale Integration)である。メモリ302の例は、RAM(Random Access Memory)、ROM(Read Only Memory)またはフラッシュメモリである。 Here, the hardware configuration of the master station 1 will be described. FIG. 13 is a diagram illustrating a hardware configuration example of the master station according to the embodiment. The master station 1 can be realized by the control circuit 300 shown in FIG. 13, that is, the processor 301 and the memory 302. Examples of the processor 301 are a CPU (Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, and a DSP) or a system LSI (Large Scale Integration). Examples of the memory 302 are RAM (Random Access Memory), ROM (Read Only Memory), or flash memory.
 マスタ局1は、プロセッサ301が、メモリ302で記憶されている、マスタ局1の動作を実行するためのプログラムを読み出して実行することにより実現される。また、このプログラムは、マスタ局1の手順または方法をコンピュータに実行させるものであるともいえる。メモリ302は、プロセッサ301が各種処理を実行する際の一時メモリにも使用される。 The master station 1 is realized by the processor 301 reading and executing a program stored in the memory 302 for executing the operation of the master station 1. It can also be said that this program causes the computer to execute the procedure or method of the master station 1. The memory 302 is also used as a temporary memory when the processor 301 executes various processes.
 このように、プロセッサ301が実行するプログラムは、コンピュータで実行可能な、データ処理を行うための複数の命令を含むコンピュータ読取り可能かつ非遷移的な(non-transitory)記録媒体を有するコンピュータプログラムプロダクトである。プロセッサ301が実行するプログラムは、複数の命令がデータ処理を行うことをコンピュータに実行させる。 Thus, the program executed by the processor 301 is a computer program product having a computer-readable and non-transitory recording medium including a plurality of instructions for performing data processing, which can be executed by a computer. is there. The program executed by the processor 301 causes the computer to execute data processing by a plurality of instructions.
 また、マスタ局1を専用のハードウェアで実現してもよい。また、マスタ局1の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Also, the master station 1 may be realized with dedicated hardware. Further, part of the functions of the master station 1 may be realized by dedicated hardware, and part of it may be realized by software or firmware.
 以上のように、故障診断システム100では、マスタ局1の推定センサデータ算出部30が、第1モータ4および第2モータ7が連結されている機械装置2を動作させた際に検出されるセンサデータ12から第2モータ7に起因するデータ成分を取り取り除くことによって、第1モータ4に起因したセンサデータ12を推定している。そして、故障診断部31が、第1モータ4に起因したセンサデータ12と故障診断閾値とを比較することによって、機械装置2の故障を診断している。 As described above, in the failure diagnosis system 100, a sensor detected when the estimated sensor data calculation unit 30 of the master station 1 operates the mechanical device 2 to which the first motor 4 and the second motor 7 are connected. The sensor data 12 attributed to the first motor 4 is estimated by removing the data component attributed to the second motor 7 from the data 12. The failure diagnosis unit 31 diagnoses a failure of the mechanical device 2 by comparing the sensor data 12 caused by the first motor 4 with a failure diagnosis threshold value.
 このように、実施の形態によれば、第1モータ4に起因したセンサデータ12を推定しているので、機械装置2が故障か否かを診断するための単一の故障診断閾値を適用することができる。このため、機械装置2の装置構成または装置特性が変更された場合に、機械装置2毎に故障診断閾値を生成する手間を省くことができるので、故障診断を行う際の準備工程数を削減することができる。したがって、機械装置2の装置構成または装置特性が変更された場合であっても、機械装置2の故障の診断を容易に行うことが可能となる。 Thus, according to the embodiment, since the sensor data 12 caused by the first motor 4 is estimated, a single failure diagnosis threshold value for diagnosing whether or not the mechanical device 2 is in failure is applied. be able to. For this reason, when the device configuration or the device characteristics of the mechanical device 2 is changed, the trouble of generating a failure diagnosis threshold value for each mechanical device 2 can be saved, so that the number of preparation steps when performing failure diagnosis is reduced. be able to. Therefore, even when the device configuration or device characteristics of the mechanical device 2 are changed, it is possible to easily diagnose a failure of the mechanical device 2.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 マスタ局、2 機械装置、3 第1スレーブ局、4 第1モータ、5 センサ、6 第2スレーブ局、7 第2モータ、11 第1指令データ、12 センサデータ、13 第2指令データ、21 第1指令データ生成部、22 第2指令データ生成部、23 第1指令データ保存部、24 センサデータ保存部、25 第2指令データ保存部、26 閾値生成部、27 閾値保存部、28 モデル生成部、29 モデル保存部、30 推定センサデータ算出部、31 故障診断部、100 故障診断システム。 1 master station, 2 machinery, 3 first slave station, 4 first motor, 5 sensor, 6 second slave station, 7 second motor, 11 first command data, 12 sensor data, 13 second command data, 21 First command data generation unit, 22 Second command data generation unit, 23 First command data storage unit, 24 Sensor data storage unit, 25 Second command data storage unit, 26 Threshold generation unit, 27 Threshold storage unit, 28 Model generation Unit, 29 model storage unit, 30 estimated sensor data calculation unit, 31 fault diagnosis unit, 100 fault diagnosis system.

Claims (4)

  1.  第1の駆動源および第2の駆動源が連結されている装置を動作させた際に検出される前記装置の状態を示す第1の検出データから前記第2の駆動源に起因するデータ成分を取り除くことによって、前記第1の駆動源に起因した前記装置の状態を示す第2の検出データを推定する推定データ算出部と、
     前記第2の検出データと閾値とを比較することによって、前記装置の故障を診断する故障診断部と、
     を備えることを特徴とする故障診断装置。
    A data component caused by the second drive source is obtained from first detection data indicating a state of the device detected when the device to which the first drive source and the second drive source are connected is operated. An estimation data calculation unit that estimates second detection data indicating a state of the device caused by the first drive source by removing;
    A failure diagnosis unit that diagnoses a failure of the device by comparing the second detection data with a threshold;
    A failure diagnosis apparatus comprising:
  2.  前記装置が前記第1の駆動源に連結されていない状態で前記第1の駆動源側に出力される前記第1の駆動源を駆動するための第1の駆動指令と、前記第1の駆動指令が出力された際に検出される前記装置の状態を示す第3の検出データと、に基づいて、前記閾値を生成する閾値生成部をさらに備える、
     ことを特徴とする請求項1に記載の故障診断装置。
    A first drive command for driving the first drive source output to the first drive source side in a state where the device is not connected to the first drive source; and the first drive A threshold generation unit that generates the threshold based on the third detection data indicating the state of the device detected when the command is output;
    The fault diagnosis apparatus according to claim 1.
  3.  前記装置が前記第2の駆動源に連結されている状態で前記第2の駆動源側に出力される前記第2の駆動源を駆動するための第2の駆動指令と、前記第2の駆動指令が出力された際に検出される前記装置の状態を示す第4の検出データと、に基づいて、前記装置の状態を示し前記第2の駆動源に起因するデータ成分である第5の検出データを推定するためのモデルを生成するモデル生成部をさらに備え、
     前記推定データ算出部は、前記第1の検出データが検出された際に前記第2の駆動源に出力された前記第2の駆動源を駆動するための第3の駆動指令と前記モデルとに基づいて、前記第5の検出データを推定し、前記第1の検出データから前記第5の検出データを取り除くことによって前記第2の検出データを推定する、
     ことを特徴とする請求項1または2に記載の故障診断装置。
    A second drive command for driving the second drive source output to the second drive source in a state where the device is connected to the second drive source, and the second drive. Based on the fourth detection data indicating the state of the device detected when the command is output, the fifth detection is a data component indicating the state of the device and resulting from the second drive source A model generation unit that generates a model for estimating data;
    The estimated data calculation unit outputs a third drive command and a model for driving the second drive source output to the second drive source when the first detection data is detected. On the basis of estimating the fifth detection data and estimating the second detection data by removing the fifth detection data from the first detection data,
    The failure diagnosis apparatus according to claim 1, wherein the apparatus is a failure diagnosis apparatus.
  4.  第1の駆動源および第2の駆動源が連結されている装置を動作させた際の前記装置の状態を示す第1の検出データを検出する検出ステップと、
     前記第1の検出データから前記第2の駆動源に起因するデータ成分を取り除くことによって、前記第1の駆動源に起因した前記装置の状態を示す第2の検出データを推定する推定ステップと、
     前記第2の検出データと閾値とを比較することによって、前記装置の故障を診断する故障診断ステップと、
     を含むことを特徴とする故障診断方法。
    A detection step of detecting first detection data indicating a state of the device when the device to which the first drive source and the second drive source are connected is operated;
    An estimation step of estimating second detection data indicating a state of the device caused by the first drive source by removing a data component caused by the second drive source from the first detection data;
    A failure diagnosis step of diagnosing a failure of the device by comparing the second detection data with a threshold;
    A failure diagnosis method comprising:
PCT/JP2017/015497 2017-04-17 2017-04-17 Failure diagnostic device and failure diagnostic method WO2018193508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/015497 WO2018193508A1 (en) 2017-04-17 2017-04-17 Failure diagnostic device and failure diagnostic method
CN201780052859.9A CN109643113B (en) 2017-04-17 2017-04-17 Fault diagnosis device and fault diagnosis method
JP2018506361A JP6381850B1 (en) 2017-04-17 2017-04-17 Failure diagnosis apparatus and failure diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015497 WO2018193508A1 (en) 2017-04-17 2017-04-17 Failure diagnostic device and failure diagnostic method

Publications (1)

Publication Number Publication Date
WO2018193508A1 true WO2018193508A1 (en) 2018-10-25

Family

ID=63354858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015497 WO2018193508A1 (en) 2017-04-17 2017-04-17 Failure diagnostic device and failure diagnostic method

Country Status (3)

Country Link
JP (1) JP6381850B1 (en)
CN (1) CN109643113B (en)
WO (1) WO2018193508A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189211A1 (en) * 2019-03-19 2020-09-24 日本電気株式会社 Monitoring method, monitoring device, and program
JP2020177227A (en) * 2019-04-18 2020-10-29 株式会社日立製作所 Adaptive acoustic sensing method and system
CN112526964A (en) * 2020-11-05 2021-03-19 东风商用车有限公司 Method and system for diagnosing bottom layer driving fault of vehicle-mounted controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215605A (en) * 2010-03-18 2011-10-27 Ricoh Co Ltd Electronic device, malfunction determining method, and program
JP2016224938A (en) * 2015-05-29 2016-12-28 株式会社日立ハイテクノロジーズ Abnormality diagnosis system and abnormality diagnosis method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369895B2 (en) * 2014-06-13 2018-08-08 日本電気株式会社 Motor abnormality detection system, motor abnormality detection method, and motor abnormality detection program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215605A (en) * 2010-03-18 2011-10-27 Ricoh Co Ltd Electronic device, malfunction determining method, and program
JP2016224938A (en) * 2015-05-29 2016-12-28 株式会社日立ハイテクノロジーズ Abnormality diagnosis system and abnormality diagnosis method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189211A1 (en) * 2019-03-19 2020-09-24 日本電気株式会社 Monitoring method, monitoring device, and program
JPWO2020189211A1 (en) * 2019-03-19 2021-12-09 日本電気株式会社 Monitoring method, monitoring device, program
JP7264231B2 (en) 2019-03-19 2023-04-25 日本電気株式会社 MONITORING METHOD, MONITORING DEVICE, AND PROGRAM
JP2020177227A (en) * 2019-04-18 2020-10-29 株式会社日立製作所 Adaptive acoustic sensing method and system
CN112526964A (en) * 2020-11-05 2021-03-19 东风商用车有限公司 Method and system for diagnosing bottom layer driving fault of vehicle-mounted controller
CN112526964B (en) * 2020-11-05 2022-05-03 东风商用车有限公司 Method and system for diagnosing bottom layer driving fault of vehicle-mounted controller

Also Published As

Publication number Publication date
CN109643113B (en) 2020-03-31
JPWO2018193508A1 (en) 2019-04-25
JP6381850B1 (en) 2018-08-29
CN109643113A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6381850B1 (en) Failure diagnosis apparatus and failure diagnosis method
KR101889248B1 (en) Fault Diagnosis Device and Fault Diagnosis Method
US10571890B2 (en) Diagnostic data acquisition system, diagnostic system, and computer readable medium
JP6312517B2 (en) Motor control device
JP2006281421A (en) Robot and abnormality detection method of robot
US10254743B2 (en) Numerical control apparatus and logging method
US10286507B2 (en) Machine tool having function of diagnosing abnormality of speed reducer of tool changer
JP2021015573A (en) Abnormality determination device and abnormality determination system
CN111448752B (en) Power conversion device and air conditioner
US11951615B2 (en) Malfunction-type determination device and malfunction-type determination method
TW201946745A (en) Robot control apparatus, maintenance management method and maintenance management program
JP6793898B1 (en) Vibration analyzer and vibration analysis method
JP6708676B2 (en) Abnormality factor identification device
CN112955291A (en) Drive mechanism failure diagnosis device, failure diagnosis method, and machine device provided with the failure diagnosis device
US11550305B2 (en) Diagnostic apparatus for generating verification data including at least one piece of abnormal data based on normal data
JP7361573B2 (en) Abnormality diagnosis method and abnormality diagnosis device for feed shaft device
JP2006221308A (en) Abnormality detection method, control apparatus, and control system using the same
JP7110843B2 (en) Abnormality determination device and abnormality determination method
JP2018040456A (en) Rotary shaft device and abnormality diagnostic method of bearing on rotary shaft device
JP4328969B2 (en) Diagnosis method of control device
JP2006158031A (en) Motor controller and control method for the same
JP6556413B1 (en) Numerical control device, learning device, and learning method
JP2019185391A (en) State determination device
TWI843845B (en) Abnormal diagnosis system and abnormal diagnosis method
WO2022195998A1 (en) Abnormality detection device, abnormality detection method, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018506361

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906149

Country of ref document: EP

Kind code of ref document: A1