WO2018192421A1 - 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法 - Google Patents

基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法 Download PDF

Info

Publication number
WO2018192421A1
WO2018192421A1 PCT/CN2018/082960 CN2018082960W WO2018192421A1 WO 2018192421 A1 WO2018192421 A1 WO 2018192421A1 CN 2018082960 W CN2018082960 W CN 2018082960W WO 2018192421 A1 WO2018192421 A1 WO 2018192421A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
information
data
statistical
pesticide
Prior art date
Application number
PCT/CN2018/082960
Other languages
English (en)
French (fr)
Inventor
庞国芳
庞小平
邹小波
范春林
任福
常巧英
刘海燕
方冰
白若镔
Original Assignee
中国检验检疫科学研究院
武汉大学
北京合众恒星检测科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国检验检疫科学研究院, 武汉大学, 北京合众恒星检测科技有限公司 filed Critical 中国检验检疫科学研究院
Priority to US16/311,106 priority Critical patent/US10915548B2/en
Publication of WO2018192421A1 publication Critical patent/WO2018192421A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • G06Q30/0185Product, service or business identity fraud
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the invention relates to an online traceability warning method for pesticide residues of edible agricultural products, and particularly relates to a method for online traceability and early warning videoization of food pesticide residues based on high resolution mass spectrometry + internet + geographic information (GIS) three-dimensional cross-border fusion technology.
  • GIS geographic information
  • test data is mainly expressed by data tables and a few statistical charts.
  • these digital expressions of cold ice and ice do not reflect well the distribution of pesticide residues in time and space; on the other hand, people can't understand and understand, and they can't play a reference role in government decision-making; The guiding role of the guidance; it does not serve as a reference for the safety of people's consumption, and it does not have an enlightening effect on further research on food safety by scientific and technological researchers.
  • thematic maps have advantages over tables and statistical charts. It visually expresses complex, multidimensional, data with spatial attributes. By adopting the method of processing the detected data and making the corresponding thematic map, the food safety situation in different geographical markets can be more clearly and intuitively reflected.
  • the invention 1 surrounds the difficulty in solving the data of pesticide residue detection of edible agricultural products, has many data dimensions, complicated data relationship, high precision of analysis requirements, and independently develops high-resolution mass spectrometry + Internet + geographic information (GIS) three-dimensional cross-border fusion.
  • GIS geographic information
  • the method includes establishing a rapid detection method for pesticide residues in edible agricultural products based on high-resolution mass spectrometry, establishing an Internet-based national pesticide residue detection information sharing platform, and video analysis and presentation based on geographic information of various administrative regions in the country.
  • the first part is a rapid detection method based on high-resolution mass spectrometry for pesticide residues, first using liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF/MS) and gas chromatography-quadrupole-time of flight Mass spectrometry (GC-Q-TOF/MS) established the first-class accurate mass database and the second-level fragment ion spectrum library of thousands of pesticides commonly used in the world. Then, for one sample preparation, two high-resolution mass spectrometry techniques (GC-Q-TOFMS and LC-Q-TOFMS) were used to simultaneously detect more than 1,200 pesticides without non-targeting.
  • LC-Q-TOF/MS liquid chromatography-quadrupole-time-of-flight mass spectrometry
  • GC-Q-TOF/MS gas chromatography-quadrupole-time of flight Mass spectrometry
  • the second part is the construction of a national pesticide residue detection information sharing platform based on the Internet, including a large database of multidimensional data and data processing.
  • the large database including the multidimensional data includes the national pesticide residue detection result database and the four basic data sub-libraries.
  • the four basic data sub-libraries are multi-country MRL standard database, agricultural product category database, pesticide basic information database, and geographic information database.
  • the MRL standard database of many countries mainly includes China MRL, Hong Kong MRL, US MRL, EU MRL, Japan MRL, CAC MRL, and related MRL standards of 241,527, including pesticides, agricultural products, maximum allowable residue, standard-setting countries;
  • the database mainly includes Chinese classification, Hong Kong classification, US classification, EU classification, Japanese classification, and CAC classification standards, including the names of agricultural products, primary classification, secondary classification information, and tertiary classification.
  • the basic information database of pesticides contains basic information.
  • toxicity information toxicity information, functional information, chemical composition, banned information, derivative information, including the name of all detected pesticides, CAS accession number, toxicity intensity, whether metabolites and their metabolic precursors, whether it is a standard ban; geographic information database coverage
  • the required geographical scope includes detailed addresses such as provincial administrative divisions, prefecture-level administrative divisions, and county-level administrative divisions to which all sampling points belong.
  • the national pesticide residue detection result database is obtained by the following method:
  • the raw data of each pesticide residue needs to be correlated with the information in the four basic data fonts.
  • the specific treatment is as follows: 1 Replace all pesticide metabolites with the original pesticide name according to the information of the agricultural product category database; The name of the non-standardized agricultural product is uniformly replaced with the standard name, and the classification method of the agricultural product is unified; 3 the detection result of each detection item for different MRL standards is determined according to the information in the multi-country MRL standard database; 4 the pesticide is pressed according to the pesticide basic information database information Classification of properties; 5 Locating each sampling point according to the geographic information database information, determining their detailed geographical location and administrative region.
  • the agricultural product residue detection data includes three parts of information: sample identification information, sample collection geographic information, sample detection information, and dynamic addition and real-time updating of the national pesticide residue detection result database.
  • the sample identification information records the information such as the sample name, sample number, sampling time, etc.
  • the sample collection geographic information records the sampling location of the sample, the type of sampling location (supermarket, farmer's market, field), the province, city and county where the sampling location is located.
  • the sample detection information records information such as the name of the detection item, the CAS registration number of the detection item, the detection result, the detection method, the TOF qualitative score, and the Q-TOF qualitative score.
  • the sample name refers to the name of the agricultural product, including more than 150 kinds of fruits and vegetables such as tomato, cucumber and apple.
  • the test items refer to the tested pesticides, including more than 1000 pesticides such as carbendazim, dimethomorph, acetamiprid and metalaxyl. Commonly used pesticides.
  • the data processing is to establish a data fusion and processing model of “data acquisition-information supplement-derivative merger-ban drug treatment-pollution level determination”, and realize rapid online collection, fusion, and reference of pesticide multi-residue detection result data. Accurate determination of multi-country pesticide residue limit standard MRL.
  • the third part is based on the video analysis and presentation of geographic information in various administrative regions of the country, including statistical and transformation processing of the information in the national pesticide residue detection result database, and video processing of the map to form a thematic map.
  • the geographical information of the administrative regions in the country mainly includes base map data, residential areas, main water systems and realms.
  • the base map data adopts national administrative division maps, regional administrative division maps, municipal administrative division maps, and county-level administrative division maps.
  • the “China Political District Map Vector Edition” downloaded from the website of the State Bureau of Surveying and Mapping is obtained through the conversion format.
  • the “China: 14 million Standard Basemap JPG” downloaded from the website of the State Bureau of Surveying and Mapping was digitized in the residential area and water system.
  • the information in the national pesticide residue detection result database is statistically and transformed, and the statistical processing includes calculations of the maximum value, the minimum value, the average value, the median value, and the like, for example, the query of the N kinds of pesticides with the largest number of detected areas, The statistics of N kinds of vegetables with the highest average frequency of pesticides and N kinds of pesticides with the highest multiples exceeding the standard in China are included; the transformation processing includes statistical data selection, type selection of statistical charts, style modification, color matching, etc. Selection of classification methods, number of grades, graded color systems, and the like.
  • the specific statistical indicators and transformation treatment methods mainly include pesticide detection profile, pesticide analysis detection, and comparison of different MRL standards. The specific contents and representation methods are shown in Table 1.
  • the map video processing includes: standardization of a map graphic language, standardization of a map color language, chart interaction, and map interaction.
  • the standardized design of the map graphics language includes:
  • a thematic feature appears in the form of a series of diagrams at the same location in different groups of diagrams, using the same set of symbologies.
  • the standardized design of the map color language includes:
  • non-prohibited drugs and “banned drugs”: “non-banned drugs” are indicated by green, and “banned drugs” are indicated by red.
  • the chart interaction includes three parts: customization of statistical charts and hierarchical charts, selection and filtering of statistical indicators and hierarchical indicators, and display of details by mouse hovering.
  • the customization of the statistical chart and the hierarchical chart refers to selecting statistical symbols and hierarchical symbol style information according to user requirements, such as symbol type and color, size, transparency, thickness, round rate, ring rate, number of stages, model, color Department, etc., and then parse and draw to generate a new thematic map, showing the effect of the thematic map customization.
  • the selection and filtering of the statistical indicators and the grading indicators are based on the selection of the statistical topic categories and the chart names in Table 1 according to the user requirements, and the thematic maps are generated by the statistical indicators and the grading indicators.
  • the mouse hovering prompt detailed information includes an area and prompt information, and the prompt information is a drawing symbol, a drawing legend, and a returning part of the graph and its representative information.
  • the map interaction includes map basic interaction and inter-area interconnection.
  • the basic interaction of the map includes browsing, scaling, translation, restoration, etc. of the map;
  • the inter-regional interconnection refers to mutual switching between the thematic maps of different regions of the same content, firstly by zoning administrative coding plus thematic map content
  • the coding encodes the thematic map, secondly obtains the target area code, determines the target thematic map name, and finally generates the target thematic map.
  • the statistical user selects the content to be counted in the database.
  • the statistical content can be a two-dimensional statistical data table. There are many statistical indicators in the statistical content. For example, the pesticide residue table under different standards contains China, EU, and Japanese standards. 20 statistical indicators such as the number of over-standard samples, the number of undetected samples, the number of undetected samples, the over-standard rate, the pass rate, and the detection rate.
  • the administrative level of the statistical unit in the statistical table can be automatically obtained.
  • Required geographic basemap data
  • the online thematic map is suitable for the single-screen single-task information communication mode.
  • the user needs to select the data indicators used for the visual content of the map, including statistical data indicators and hierarchical data indicators, and selected statistical data indicators and After grading the data indicators, the system will perform query analysis to guide the user to select the most appropriate statistical chart and rating chart type;
  • the third step after the statistical chart and the type of the hierarchical chart are determined, through the map interaction, the statistical user can set the style after they are set, and then the thematic map outputted by the screen can be viewed, and the legend can be added to save the map;
  • the system supports immediate change.
  • the thematic map emphasizes the spatial distribution characteristics of the data, greatly improves the information transmission efficiency, and deeply explores the potential law of the distribution of agricultural pesticide residues in the market, thus achieving the following functions: First, from multi-space resolution, national-province Level-prefecture-level multi-scale expression of pesticide residue maps of crops; second, statistical analysis and mapping of various pesticide residues according to different types of agricultural products; third, reflecting various pesticide residues in space and crop types Distribution characteristics and quantitative indicators; Fourth, with reference to the MRL standards of different countries, the pesticide residues exceeded the standard according to the region and agricultural product categories.
  • the present invention proposes high-resolution mass spectrometry + Internet + geographic information ternary cross-border fusion technology. Pesticide residue big data online data collection, result determination, statistical analysis and report production process informationization, automation, greatly improving the depth of analysis , accuracy and efficiency.
  • Modern maps as the interface and communication between big data and users, should have the functions of self-adaptation, interaction, etc., with the situational awareness of users and usage, and the integration of cognitive and graphical needs.
  • the system establishes an online customization mode for statistical thematic maps, allowing users to independently select and filter statistical data to highlight interest data or key data; support users to customize thematic map symbol types and colors, and improve data display and big data analysis capabilities.
  • the series of thematic maps of pesticide residues in commercial edible agricultural products can scientifically and intuitively display the safety status of commercially available edible agricultural products, facilitate government supervision and guide the direction of mass consumption, and have extremely important scientific significance. A wide range of commercial applications.
  • Figure 1 shows the pesticide residue video technology route.
  • Figure 4 is a conceptual model of raw data.
  • Figure 5 shows the main drawing process.
  • Figure 6 shows the content structure of the thematic map that needs to be produced.
  • Figure 9 shows video source tracing and early warning examples, (a) traceability and early warning by origin, (b) traceability and early warning according to pesticides, and (c) traceability and early warning according to the type of agricultural products.
  • the high-resolution mass spectrometer + internet + geographic information (GIS) ternary cross-border fusion technology of the invention develops a multi-dimensional space pesticide residue video traceability software for target pesticide-food name-food origin.
  • GIS geographic information
  • the present invention associates geographic data with pesticide residue data, and realizes a new application of the Chinese map under the pesticide residue data driving mode.
  • the main technologies include: first, from multiple spaces. Resolution, national-provincial-prefecture-level multi-scale expression of pesticide residues in crops. Second, statistical analysis and mapping of various pesticide residues are carried out according to different types of agricultural products. Third, it reflects the distribution characteristics and quantitative indicators of various pesticide residues in space and crop types. Fourth, with reference to the MRL standards of many countries such as China, the European Union and Japan, the situation of agricultural residues exceeding the standard is shown by region and type of agricultural products.
  • LC-Q-TOF/MS liquid chromatography-quadrupole-time-of-flight mass spectrometry
  • GC-Q-TOF/MS gas chromatography-quadrupole-time-of-flight mass spectrometry
  • MRL multi-country pesticide residue limit
  • the proposed data fusion and processing model of “data acquisition-information supplement-derivative combination-ban drug treatment-polluting level determination” has realized rapid online collection and fusion of pesticide multi-residue test results data, and reference to multi-country pesticide residue limits.
  • the accurate determination of the standard (MRL) has enabled the dynamic addition and real-time updating of the database of pesticide residue detection results, providing a basis for scientific data for national food safety decisions.
  • the designed pesticide residue detection data acquisition system is shown in Figure 2.
  • the pesticide residue detection data acquisition system uses a browser/server-based three-tier architecture, using ASP.NET technology to achieve automatic uploading and pollution of detection results.
  • Grade determination established a national pesticide residue detection results database.
  • the working principle is as follows: 1 to obtain the raw data of the detection result; 2 to supplement the classification information of pesticides, regions and agricultural products; 3 to carry out the combination of derivatives and the classification of pesticide toxicity; 4 to determine the pollution level according to the MRL of each country or region; A result record is formed and stored in the detection result database.
  • the invention establishes an online customization mode of the statistical thematic map, and supports the user to select and filter the statistical data to highlight the interest data or key data; support the user to customize the special map symbol type and color, and improve the data display and big data analysis capability.
  • Table 2 20 very meaningful statistical indicators were found through analysis.
  • the image visually displays the current level of pesticide residues in China's major agricultural products, and achieves the integration of multi-dimensional statistical attributes and spatial location attributes of pesticide data.
  • the map production process is shown in Figure 5, and the map production effect is shown in Figures 9a, b, and c.
  • high-resolution mass spectrometry + Internet + geographic information design of pesticide residue online traceability and early warning video map is mainly used by four groups of people:
  • pesticide detection data from 46 cities in China and MRLs (maximum residue limit standards) from China, Japan, and the European Union were collected for thematic map design.
  • Thematic maps for each city include three dimensions: sampling status, pesticide detection status, and differences between different standards. Since the map contains a total of 552 maps, that is, 12 maps per city, and the number of maps is too large, the present invention uses only two maps as a case to display the map design process.
  • the data in this invention comes from China's “Twelfth Five-Year” National Science and Technology Support Program “Research and Demonstration of High-throughput Detection Technology for Chemical Contaminants in Foods”, which collected 22,508 agricultural products sold in 46 cities nationwide.
  • the sample (Fig. 1) was measured by liquid (gas) phase chromatography-quadrupole-time of flight mass spectrometry for the content of more than 1,200 pesticides remaining in the sample.
  • the five unified standard operations uniform sampling, unified sample preparation, unified detection method, unified format data upload, unified format statistical analysis report
  • a total of 20 categories of data including sampling points, agricultural products, pesticides, testing standards, etc.
  • the original test data structure contains the following five aspects:
  • Agricultural product attribute information including the name, primary classification, secondary classification and other information of all kinds of agricultural products.
  • Test standard information including pesticides, agricultural products, maximum allowable residues, and standards-setting countries.
  • Test result data including sample number, name, sample point name, administrative division of the sample point, type of agricultural product, detection method, residual pesticide type, residue amount and other information. Note that each piece of data here is for one type of residual pesticide in one sample. If there is multiple pesticide residues in one sample, multiple data will be generated. If there is no pesticide residue detected in one sample, there will be one expression. Is "undetected" data.
  • the structure and content of the series map is determined based on the results of the demand survey and data analysis.
  • the present invention takes into account the requirements of the client, and government officials and researchers find that there are three strong requirements for information: sampling conditions, pesticide testing information, and differences in monitoring results between different national or regional standards.
  • 12 maps and 13 statistical charts form a map group.
  • the content structure of the thematic map can be presented as shown in Figure 9.
  • Data analysis refers to the conversion of all raw data into comprehensive data that can be used for mapping.
  • the present invention uses functionally categorized data and employs different computational strategies to obtain highly integrated data and then further screens to develop specific cartographic data. Standardize the data and how to standardize it based on the processed data. Finally, the integrated design is based on map data and standards.
  • the thematic mapping in this study is mainly in the category of statistical mapping. Different statistical methods including counting, classification, grading, summation, expectation and percentage are used to describe a phenomenon from different angles and degrees. . Data features and map goals need to be incorporated into the translation of raw data into map design and development map data. A variety of statistical methods are integrated into the calculation to ensure that the final data is highly integrated.
  • the samples are divided into five groups: no pesticides detected, one detected, two to five pesticides, six to ten pesticides, and more than 10 pesticide samples. . After that, the number of samples in each group was calculated, and the percentage of each group of samples in the total number of samples was calculated. In this example, various statistical methods, such as counting, ranking, summation, and percentage, are used to describe the characteristics of the administrative region of each data set. The results allow the reader to have a simple and clear understanding of the type of pesticide used in agricultural products.
  • the development of a series of thematic maps requires rigor and consistency. Therefore, the design of map elements needs to be fully controlled.
  • the symbols and annotations on the map constitute the language system of the map, which can be divided into three map languages based on their introduction: graphic language, color language and text language.
  • the word language is relatively easy to understand and master, and the unification and coordination of the other two languages is a more complicated issue.
  • Standardized design is the most important step in the map because its style is directly related to the unification of the map symbol system.
  • the key to the standardized design of map language makes the design symbols meet the requirements of aesthetic theory and map language system theory. Therefore, the standardized design will be discussed in detail below.
  • This step has two tasks. First, design elements that do not require standardized design, such as statistical charts, regional background color, etc., followed by page layout design, which is necessary for atlas design.
  • map language standardization design is implemented:
  • the production of a series of thematic maps requires rigorous uniform coordination, so the overall design of the map's element design needs to be controlled.
  • the symbols, annotations and other elements in the map constitute the map language, and the language of the map is divided into the graphic language, color language and text language of the map according to the different expressions.
  • how to coordinate and standardize the other two map languages in the visual design of the map is a more complicated problem.
  • the analysis can be performed based on the selected cartographic data to find out the features of the elements that need to be standardized, so as to carry out the targeted design of the thematic maps in a targeted manner. Specific steps are as follows:
  • the map graphic language includes graphic variables such as shape, orientation, and arrangement of map symbols. According to the above-mentioned screened thematic map data, we can find that the following aspects need to be graphicly unified design and further form the drafting standard:
  • a thematic map representation method is used in the whole group of graphs, and the thematic map symbols are easy to leave a deep impression on the reader. For example, the sign of the sampling point in the sampling point distribution map, etc., as shown in FIG.
  • a thematic feature appears in the form of a series of diagrams at the same location in different groups of diagrams, requiring the same set of symbologies. For example, in the distribution maps of over-standard agricultural products in different counties and districts of different cities, the symbols of various agricultural products are realized by the same set of symbols.
  • the color of the thematic map is different from the color of the ordinary picture, in that the color of the thematic map often carries special information, such as quantity and attributes.
  • special information such as quantity and attributes.
  • the background color and the quality background color for example, the deeper the color used in the area where the pesticides detected in the three figures in Fig. 9 are used). Therefore, the color language of the thematic map is an integral part of the map language of the thematic map.
  • the color design of the thematic map is of course richer and more beautiful, but in the design of the thematic map, some important thematic symbols need to be unified color design and standardized, which not only facilitates the efficiency of information.
  • the communication also adds uniform coordination of the series of thematic maps. For example, uniform color is used in areas where the number of pesticides detected is equivalent.
  • the sense of color refers to the association that color can bring to people from specific things or specific feelings in life. For example: red can be pronounced of blood, the sun, etc., green can be pronounced of leaves, trees, etc., blue can be pronounced of the sky, the ocean and so on.
  • the sense of color can be further abstracted into the symbolic meaning of color. For example, the red, yellow and green colors of traffic lights, red is the color of blood, and the meaning is dangerous, prohibition, etc.; yellow is a common warning color in nature, which is extended as a warning; green is the color of the leaves, because there are pigeons in the Bible. With the olive branch in mind to show the world and the definition of peace, it is extended to the meaning of peace and security.
  • Figure 9(a) is a national-provincial-city (district) multi-space resolution agricultural product pesticide residue origin traceability and early warning video map, from Multi-spatial resolution—multi-dimensional representation of crop pesticide residues in national scales, provincial scales, and district-county scales.
  • Figure 9(b) is a video map of pesticide residues in agricultural products traced by pesticides nationwide. The top 10 pesticides (LC-Q-TOFMS) were detected nationwide: imidacloprid, difenoconazole, thiophanate-methyl, and frost.
  • LC-Q-TOFMS The top 10 pesticides
  • Figure 9(c) shows the video of pesticide residues in the country according to the type of agricultural products.
  • the top 10 vegetables in the country (LC-Q-TOFMS): celery, green pepper, tomato, cucumber, beans, lettuce, sage, spinach, Cabbage, leeks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Databases & Information Systems (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Finance (AREA)
  • General Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Primary Health Care (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Remote Sensing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Instructional Devices (AREA)

Abstract

本发明公开了基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,围绕食用农产品农药残留检测数据分析中目前难以解决的数据维度多、数据关系复杂、分析要求精准度高等难题,融合高分辨质谱+互联网+地理信息三元跨界融合技术,研发了食用农产品农药残留检测数据采集与智能分析***;建立全国农药残留侦测结果数据库和多国MRL标准等四大基础数据子库;提出面向农药残留检测数据的多维度交叉分析方法、农药残留污染综合评价与预警模型;构建基于互联网的全国农药残留侦测平台,将农药残留检测数据呈现在专题地图中,能够直观、简单地展示全国-省级-地市-区县五级行政区域的食用农产品农药残留安全状况。

Description

基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法 技术领域
本发明涉及一种食用农产品农药残留在线溯源预警方法,特指一种基于高分辨质谱+互联网+地理信息(GIS)三元跨界融合技术的食品农药残留在线溯源与预警视频化方法。
背景技术
随着社会经济的快速发展和人们的生活水平的提高,食品安全问题越来越受到关注。市售农产品的农药残留状况关系到每个消费者的健康安全。因此,政府部门除了不断提高对农产品残留农药检测的效率和水平,还应及时、有效地发布检测结果。
在由中国有关部门发布的农药残留情况检测报告中,检测数据主要由数据表格和少数统计图表来进行表达。这些冷冰冰的数字表现方式一方面不能很好地反映农药残留状况在时空范围内的分布;另一方面,民众无法看懂与理解,起不到对政府决策的参考作用;起不到对企业自律的指导作用;起不到对民众消费安全的参考作用,起不到对科学技术研究人员进一步做好食品安全深入研究的启迪作用。
另外,非靶标农药残留侦测技术的高度数字化、信息化和自动化的实现,产生了海量分析数据,向传统数据统计分析方法提出了挑战,急需建立新的大数据采集、传送、统计和智能分析***。
在数据视频化的主要方式中,相比表格和统计图表等方式,专题地图更有优势。它能够直观表达复杂、多维、带有空间属性的数据。采用将检测数据处理后制作成相应的专题地图的方式,能更加清晰直观地反应不同地域市场食品安全状况。
目前关于农药残留专题地图及其制图方法与规范鲜有报道,特别是有关农产品农药残留检测相关技术中关于融合高分辨质谱+互联网+地理信息***(GIS)的农药残留技术的在线视频化方法尚未见报道。本发明将着重研究农药残留状况检测数据在专题地图上的可视化方法与关键技术,以及地图语言的标准化,从而将检测数据的表达直观化,为政府相应职能部门提供决策的依据和参考,也为民众提供查询和预警服务。
发明内容
本发明①围绕食用农产品农药残留检测数据分析中目前难以解决的数据维度多、数据关系复杂、分析要求精准度高等难题,自主研发了高分辨质谱+互联网+地理信息(GIS)三元跨界融合技术,研发了食品中农药残留检测数据采集与智能分析***;②在深入分析 农药残留检测数据特征和分析需求的基础上,建立了全国农药残留侦测结果数据库和多国MRL标准等四大基础数据子库;③提出了面向农药残留检测数据的多维度交叉分析方法、农药残留污染综合评价与预警模型;④构建了基于互联网的全国农药残留侦测平台,将农药残留检测数据呈现在专题地图(地图集或网络电子地图)中。这样的专题地图能够直观、简单地展示全国-省级-地市-区县五级行政区域的食用农产品农药残留安全状况。实现本发明的技术方案如下:
基于高分辨质谱+互联网+地理信息(GIS)三元跨界融合技术的农药残留在线溯源与预警视频化方法,实现农药残留信息在地图上的直观显示与预警溯源。该方法包括建立基于高分辨质谱食用农产品中农药残留快速侦测方法、建立基于互联网的全国农药残留侦测信息共享平台、基于全国各行政区地理信息的视频化分析与呈现三部分。
所述的第一部分是基于高分辨质谱的农药残留快速侦测方法,首先采用液相色谱-四极杆-飞行时间质谱(LC-Q-TOF/MS)和气相色谱-四极杆-飞行时间质谱(GC-Q-TOF/MS)建立的世界常用千种农药的一级精确质量数据库和二级碎片离子谱图库。然后,一次样品制备,采用两种高分辨质谱检测技术(GC-Q-TOFMS和LC-Q-TOFMS)同时非靶向快速侦测1200多种农药。
所述的第二部分是基于互联网的全国农药残留侦测信息共享平台的构建,包含多维数据的大数据库和数据处理。
所述的构建包含多维数据的大数据库包括国家农药残留侦测结果数据库和四大基础数据子库。
所述的四大基础数据子库为多国MRL标准数据库、农产品种类数据库、农药基础信息数据库、地理信息数据库。其中多国MRL标准数据库主要有中国MRL、香港MRL、美国MRL、欧盟MRL、日本MRL、CAC MRL,相关MRL标准241527条,包括所针对的农药、农产品、允许最大残留量、标准制定国家;农产品种类数据库主要包含中国分类、香港分类、美国分类、欧盟分类、日本分类、CAC分类标准,具体包括农产品的名称、一级分类、二级分类信息、三级分类等信息;农药基础信息数据库包含基本信息、毒性信息、功能信息、化学成份、禁用信息、衍生物信息,具体包括所有检出农药的名称、CAS登录号、毒性强度、是否代谢产物及其代谢前身、是否为标准禁用;地理信息数据库覆盖所需的地域范围,包括所有采样点所属的省级行政区划、地级行政区划、县级行政区划等详细地址。
所述国家农药残留侦测结果数据库是通过如下方法获得:
首先,通过分布在全国各地的若干个联盟实验室,采用五统一规范操作(统一采样方法、统一制样方法、统一检测方法、统一格式数据上传,统一格式统计分析报告),用基于高分辨质谱的农药残留快速侦测方法对18类150种食用农产品实施一年四季的循环侦测,获得相关农药残留原始数据。
其次,对每一条获得农药残留原始数据需与四大基础数据字库中的信息进行关联,具体处理如下:①根据农产品种类数据库的信息将所有农药代谢物替换为原农药名称;②根据农产品种类数据库不规范的农产品名称统一替换为规范名称,并统一农产品的分类方法;③根据多国MRL标准数据库中的信息判定每一检测项对于不同MRL标准的检测结果;④根据农药基础信息数据库信息将农药按性质分类;⑤根据地理信息数据库信息对每个采样点定位,确定它们的详细地理位置、所属行政区域。
最后,农产品残留检测数据包括三部分信息:样品标识信息、样品采集地理信息、样品检测信息,实现国家农药残留侦测结果数据库的动态添加与实时更新。样品标识信息记录了样品名称、样品编号、采样时间等的信息;样品采集地理信息记录了样品的采样地点、采样地点类型(超市、农贸市场、田间)、采样地点所在省市和县等的信息;样品检测信息记录了检测项目名称、检测项目CAS登录号、检测结果、检测方法、TOF定性得分、Q-TOF定性得分等的信息。样品名称指的是农产品名称,包括番茄、黄瓜、苹果等150多种果蔬种类,检测项目指的是检测的农药,包括多菌灵、烯酰吗啉、啶虫脒、甲霜灵等1000余种常用农药。
所述的数据处理是建立“数据获取-信息补充-衍生物合并-禁药处理-污染等级判定”的数据融合与处理模型,实现对农药多残留检测结果数据进行快速在线采集、融合、以及参照多国农药残留限量标准MRL的精准判定。
所述的第三部分是基于全国各行政区地理信息的视频化分析与呈现,包含将国家农药残留侦测结果数据库中的信息进行统计和变换处理、地图视频化处理,形成专题地图。
所述的全国各行政区地理信息主要包括底图数据、居民地、主要水系、境界,底图数据采用全国行政区划图、省级行政区划图、市级行政区划图、县级行政区划图。政区境界由国家***网站下载的“中国政区图矢量版”经过转换格式得到。居民地、水系由国家***网站下载的“中国1:400万标准底图JPG”数字化得到。
所述将国家农药残留侦测结果数据库中的信息进行统计和变换处理,统计处理包括最大值、最小值、平均值、中值等的计算,例如检出地区数最多的N种农药的查询,检出农药平均频次数最多的N种蔬菜,中国标准下超标倍数最大的N种农药等的统计;变换处理 包括统计数据选择,统计图表的类型选择、样式修改、颜色搭配等和分级图中的分级方法、分级数量、分级色系等的选择。具体的统计指标和变换处理方法主要有农药侦测概况、检出农药分析、不同MRL标准比较三个方面,具体内容和表示方法如表1所示。
表1国家农药残留侦测结果数据库中的信息进行统计和变换处理
Figure PCTCN2018082960-appb-000001
Figure PCTCN2018082960-appb-000002
所述地图视频化处理包括:地图图形语言的标准化、地图色彩语言的标准化、图表交互和地图交互。
所述地图图形语言的标准化设计包括:
1)不同区域的地理底图;同一城市的不同专题地图采用同一地理底图;
2)在图表中按一定逻辑顺序进行排列要素;
3)在整个图组中较少使用某一专题地图表示方法;
4)某一专题要素在不同图组的相同位置以系列图的形式出现,使用同一套符号***。
所述地图色彩语言的标准化设计包括:
1)对“未检出农药”“检出但未超标”“检出且超标”样品的符号设色:按照色彩的通感及其象征意义,选用象征安全的绿色代表“未检出农药”;选用相对比较安全但有警示意义的黄色代表“检出但未超标”;选用表示危险的红色代表“检出且超标”;
2)对“低毒农药”“中毒农药”“高毒农药”“剧毒农药”的符号设色:对“低毒”“中毒”“高毒”依次按照黄色、橙色、红色进行设色,“剧毒农药”一项使用本身具有“有毒”象征意义的紫色进行标识;
3)“非禁药”“禁药”的符号设色:“非禁药”使用绿色表示,“禁药”使用红色表示。
4)关于国家和地区的代表设色:采用不同的色彩来表示不同国家和地区的对比。
所述的图表交互包括统计图表和分级图表的定制、统计指标和分级指标的选择和过滤、鼠标悬停显示详细信息三部分。
所述的统计图表和分级图表的定制是指根据用户需求对统计符号和分级符号样式信息进行选择,如符号类型和色彩、大小、透明度、厚度、圆率、环率、分级数量、模型、色系等,进而解析绘制生成新的专题地图,显示专题图定制后的效果。
所述的统计指标和分级指标的选择和过滤是根据用户需求对统计专题类别和表1中图表名的选择,将统计指标和分级指标生成专题地图。
所述的鼠标悬停提示详细信息包括区域和提示信息,提示信息为绘制符号、绘制图例和返回图表各部分区域及其代表信息。
所述的地图交互包括地图基本交互和区域间的互联互通。所述地图基本交互包括地图的浏览、放缩、平移、复原等;所述的区域间的互联互通是指实现同一内容不同区域的专题图间的相互切换,首先通过区划行政编码加专题图内容编码对专题图编码,其次获取目标区域编码,确定目标专题图图名,最后生成目标专题地图。
所述形成专题地图为根据客户需求设计,将农药残留数据简明直观地表现在地图上的实物地图或电子地图。包括如下步骤:
第一步,统计用户在数据库中选择需要统计的内容,统计内容可以是一张二维统计数据表,统计内容中有很多统计指标,例如不同标准下农药残留情况表中含有中国、欧盟、日本标准下的超标样品数、检出未超标样品数、未检出样品数、超标率、合格率、检出率等20项统计指标,统计内容确定后,通过统计表中统计单元的行政级别可自动获取需要的地理底图数据;
第二步,在线专题图适合单屏单任务的信息传达模式,通过图表交互,用户需要选择用于此次地图可视化内容的数据指标,包括统计数据指标和分级数据指标,选定统计数据指标和分级数据指标后,***会进行查询分析,引导用户选取最合适的统计图表和分级图类型;
第三步,统计图表和分级图类型确定后,通过地图交互,统计用户可以对它们进行样式设置后,即可观看屏幕输出的专题地图,并可以添加图例,保存出图;
第四步,如果统计内容选择不合适,或者需要进行统计图表或分级图类型样式的设置,该***支持即改即看。
专题地图强调了数据的空间分布特征,极大提高了信息传输效率,深度发掘了农产品农药残留情况在市场上分布的潜在规律,从而实现以下功能:第一,从多空间分辨率,全国—省级—地市级多尺度表达农作物农药残留特征地图视频化;第二,按照不同农产品类型对各类农药残留特征进行统计分析与制图;第三,反映各类农药残留在空间上和农作物类型上的分布特征与数量指标;第四,参照不同国家的MRL标准,按地区和农产品种类展现农药残留超标情况。
本发明的有益效果:
1、本发明提出了高分辨质谱+互联网+地理信息三元跨界融合技术农药残留大数据在线数据采集、结果判定、统计分析和报告制作的全过程信息化、自动化、大大提高了分析的深度、精准度和效率。
2、为常用1200多种农药的每一种都建立了一个自身独有的电子身份证(电子识别标 准),实现了农药残留的检测,以电子标准取代农药实物标准作参比的传统鉴定方法,实现了非靶标农药残留检测技术的跨跃式发展。
3、解决了“多国MRL标准—农产品分类—千余种农药特性”的关联存储与查询关键技术。
4、现代地图作为大数据与用户之间的交界面和交流方式,应具备自适应、交互反应等功能、具备用户及使用的情景感知能力、考虑制图与用图主客体一体化认知需求。本***建立了统计类专题地图的在线定制模式,支持用户自主选择和过滤统计数据以凸显兴趣数据或关键数据;支持用户定制专题地图符号类型和色彩,提高数据展示和大数据分析能力。
5、市售食用农产品农药残留情况系列专题图(实物地图、电子地图)能科学、直观地展示市售食用农产品的安全状况,方便政府部门监管,指导大众消费方向,具有极其重要的科学意义和广泛的商业应用价值。
附图说明
图1农药残留视频化技术路线。
图2农药残留侦测数据采集***。
图3我国农产品农药残留检测在线制图***。
图4原始数据的概念模型。
图5主要的制图流程。
图6需要制作的专题地图的内容结构。
图7地图语言的标准化设计。
图8农产品符号设计。
图9视频化溯源与预警实例,(a)按产地溯源与预警,(b)按农药溯源与预警,(c)按农产品类型溯源与预警。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
本发明高分辨质谱+互联网+地理信息(GIS)三元跨界融合技术,研发了目标农药-食品名称-食品产地等多维空间农药残留视频化溯源软件。
如图1-图5所示,本发明将地理数据与农药残留数据相关联,实现了农药残留数据驱动方式下中国地图新应用,图1所示,其主要技术包括:第一,从多空间分辨率,全国—省级—地市级多尺度表达农作物农药残留特征。第二,按照不同农产品类型对各类农药残 留特征进行统计分析与制图。第三,反映各类农药残留在空间上和农作物类型上的分布特征与数量指标。第四,参照中国、欧盟和日本等多国MRL标准,按地区和农产品种类展现农残超标情况。从而研发了高分辨质谱+互联网+GIS多元技术融合,设计编制了目标农药—食品名称—食品产地等多维空间特征的视频化***,现已形成两个产品,31省会/直辖市市售水果蔬菜农药残留水平地图集,如图3,我国农产品农药残留在线制图***,如图9,从而实现了农药残留检测、溯源和预警三个关键点的“智慧一张图”管理,这是一种我国农药残留风险溯源的有效工具。
用液相色谱-四极杆-飞行时间质谱(LC-Q-TOF/MS)和气相色谱-四极杆-飞行时间质谱(GC-Q-TOF/MS)实现了世界常用1200多种农药(具体农药种类如公开号为CN105738460A、CN105628839A两个专利中所列的农药)的一级精确质量数据库、二级碎片离子谱图库。在此基础上,为1200多种农药的每种都建立了一个自身独有的电子身份证(电子识别标准),实现了农药残留的检测,以电子标准取代农药实物标准作参比的传统鉴定方法,实现了非靶标农药残留检测技术的跨跃式发展。
构建了多国农药残留限量(MRL)标准、农产品分类、千余种农药特性、中国地理信息四大基础数据子库。提出的基于“多国MRL标准—农产品分类—千余种农药特性”的数据关联存储与查询模型,将四大基础数据子库建立关联,实现了农药残留基础数据的关联存取与调用,为农药残留侦测结果的判定提供了标准依据。
设计农药残留数据采集***,构建国家农药残留侦测结果数据库。提出的“数据获取-信息补充-衍生物合并-禁药处理-污染等级判定”的数据融合与处理模型,实现了对农药多残留检测结果数据进行快速在线采集、融合、以及参照多国农药残留限量标准(MRL)的精准判定,实现了农药残留侦测结果数据库的动态添加与实时更新,为国家食品安全决策提供了科学数据的依据。设计的农药残留侦测数据采集***如图2所示,所述农药残留侦测数据采集***采用基于浏览器/服务器的三层架构,采用ASP.NET技术,实现侦测结果的自动上传及污染等级判定,建立了国家农药残留侦测结果数据库。其工作原理如下:①获取侦测结果原始数据;②对农药、地域和农产品分类信息进行补充;③进行衍生物合并、农药毒性分类处理;④根据各国或地区组织的MRL进行污染等级判定;⑤形成结果记录并存入侦测结果数据库。
通过地理数据与农药检测数据的关联,完成了农药残留数据驱动方式下中国地图新应用—31省会/直辖市市售水果蔬菜农药残留水平地图集和农药残留在线制图***,实现了农药残留检测、溯源和预警三个关键点的“智慧一张图”管理,为产业自律、政府监管和 第三方监督,提供基于空间视频化的科学数据支撑,构建了面向“全国—省—市(区)”多尺度的开放式专题地图表达框架,既便于现有数据的汇聚,也实现未来数据的动态添加和实时更新。
现代地图作为大数据与用户之间的交界面和交流方式,应具备自适应、交互反应等功能、具备用户及使用的情景感知能力、考虑制图与用图主客体一体化认知需求。本发明建立了统计类专题地图的在线定制模式,支持用户自主选择和过滤统计数据以凸显兴趣数据或关键数据;支持用户定制专题地图符号类型和色彩,提高数据展示和大数据分析能力。如表2所示,通过分析发现了20项非常有意义的统计指标。形象直观地展示我国主要农产品农药残留现状水平,实现了农药数据多维统计属性和空间位置属性的融合。地图制作流程如图5所示,地图制作效果如图9a、b、c所示。
具体地,从原始的农药检测数据到最终的专题地图需经历四个阶段:需求调查、数据处理和变换,地图语言的标准化设计,地图综合设计。主要过程的细节如图4、5、6所示,后面的文字叙述详细介绍了各阶段。
表2 20项统计指标
Figure PCTCN2018082960-appb-000003
实施例
本发明中利用高分辨质谱+互联网+地理信息设计的农药残留在线溯源与预警视频化地图主要供四种人群使用:
(1)政府机构。这些地图的设计都是为了让政府机关(尤其是质量监督部门)快速、准确地掌握食品安全状况,使其监管更具针对性。
(2)企业自律。使企业了解到农药使用的科学性存在问题,以便及时改正,科学用药、施药。
(3)消费者。消费者通常对某些种类的食物的安全性给予更多的关注,实现第三方监督、社会共治。这种信息,可以引导公众安全购物,是强烈要求。
(4)研究人员。对研究人员来说,可以对不同国家和地区的食品安全标准进行比较分析,有助于确定这些国家在食品***中的薄弱环节,为标准的开发和更新提供投入。
本发明实施例中,收集了来自中国46个城市的农药检测数据和中国、日本和欧盟的MRL(最大残留限量标准)用于专题地图设计。每个城市的专题地图包括三方面内容:采样状况,农药检出状况和不同标准之间的差异。由于地图集中共包含552个地图,即每个城市12幅地图,地图数量过多,因此本发明只用两个地图作为案例来显示地图设计过程。
设计步骤如下:
1、检测数据采集来源
本发明中的数据来自中国“十二五”国家科技支撑计划项目“食品中农药化学污染物高通量侦测技术研究与示范”,共采集了全国46个城市1109个农产品售卖点出售的22508例样品(如图1),用液(气)相色谱-四极杆-飞行时间质谱检测法对样品中残留的1200多种农药的含量进行测定。按五统一规范操作(统一采样、统一制样、统一检测方法、统一格式数据上传,统一格式统计分析报告),共获得包括采样点、农产品、农药、检测标准等5大类20项指标数据,作为本发明的原始检测数据。
原始检测数据结构包含以下五方面的内容:
农产品属性信息:包括所有种类农产品的名称、一级分类、二级分类等信息。
农药属性信息:包括所有检出农药的名称、CAS码、毒性强度、是否代谢产物及其代谢前身、是否为中国标准禁用。
采样点地域信息:包括所有采样点所属的省级行政区划、地级行政区划、县级行政区划、详细地址。
检测标准信息:包括所针对的农药、农产品、允许最大残留量、标准制定国家。
检测结果数据:包括样品编号、名称、采样点名称、采样点所属行政区划、所属农产品种类、检测方法、残留农药种类、残留量等信息。注意,这里的每一条数据只针对一例样品中的一种残留农药,如果一例样品中有多种农药残留,则会产生多条数据;若一例样 品中没有检测出农药残留,则会有一条表达为“未检出”的数据。
其概念模型如图4。其中带*的变量为特征变量,灰色的变量因为数据问题尚未加入到本次研究中,待将来有合适数据时可以加入本研究。
2、地图可视化流程
从原始的农药检测数据到最终的专题地图,需经历四个阶段:需求调查、数据处理和变换,地图语言的标准化设计与地图综合设计。主要过程的细节如图5所示,并详细介绍了各阶段。
(1)需求调查
在这一步中,系列地图的结构和内容是根据需求调查和数据分析的结果确定的。本发明考虑到客户的要求,政府官员和研究人员,发现信息有三方面的强烈要求:采样情况、农药检测信息、监测结果在不同国家或地区标准之间的差异。在这种情况下,从一个城市的数据的基础上,12幅地图和13幅统计图表,形成一个地图组。专题地图的内容结构可以呈现如图9所示。
(2)数据处理与转换
数据分析是指所有将原始数据经过计算转化成可用于制图的综合性数据。在数据处理中,本发明通过功能分类的数据,并采用不同的计算策略,以获得高度集成的数据,然后进一步筛选,以制定具体的制图数据。对数据进行标准化设计,以及如何根据处理后的数据进行标准化处理。最后,综合设计是基于地图数据和标准进行。
在这项研究中的专题制图主要是属于统计制图的范畴,用常见的统计包括计数、分类、分级、求和、期望和百分比等不同的统计方法从不同的角度和不同的程度上描述一个现象。数据功能和地图目标需要纳入当翻译原始数据转化为地图设计和开发地图数据。在计算中集成了多种统计方法,以确保最终的数据是高度集成的。
例如,要知道在城市A中检测到的农药的种类数,样品分为五组:未检出农药,检出1种,2至5种农药,6至10种农药和超过10种农药检测样品。之后,计算各组的样品数量,并计算各组样品在总样品数中的百分比。在本例中,多种统计方法,如计数,分级,求和和百分比来描述每个数据集的行政区域的特点。结果可以让读者对于农产品中使用的农药的类型有一个简单明了地认知。
(3)地图语言的标准化设计
系列专题地图的开发需要严谨性和一致性。因此,地图元素的设计需要受到全面的控制。在地图的符号和注释构成地图的语言***,它可以分为基于他们的介绍3种地图语言: 图形语言、色彩语言和文字语言。文字语言是相对容易理解和掌握,而其他两种语言的统一和协调是一个比较复杂的问题。从筛选出的制图数据可以确定出需要进行统一的符号,从而进行有针对性的标准化设计。标准化设计是地图中最重要的一步,因为它的风格与地图符号***的统一直接相关。地图语言标准化设计的关键使得设计的符号同时符合美学理论和地图语言***理论的要求。因此,标准化设计将在下面详细讨论。
(4)综合设计
这一步有两个任务。首先,设计不需要标准化设计的元素,例如,统计图表,区域的等级底色等,其次是页面布局设计,这是地图集设计所必须的。
进一步,地图语言标准化设计实现:
系列专题地图的制作要求严谨的统一协调性,因此设计时需要对地图的要素设计进行总体把控。地图中的符号、注记等要素构成了地图语言,而地图的语言按照表达方式的不同分为地图的图形语言、色彩语言和文字语言。除了文字语言较易于理解和掌握之外,另外两种地图语言在地图可视化设计中如何进行统一协调和标准化是一个比较复杂的问题。可以根据筛选出的制图数据进行分析,找出需要进行标准化的要素所具有的特征,从而有针对性地进行专题地图标准化设计。具体步骤如下:
(1)地图图形语言的标准化
地图图形语言包括地图符号的形状、方向、排列等图形变量。根据上文筛选后的专题制图数据进行审查,可发现以下几方面内容需要进行图形上的统一设计,并进一步形成制图标准:
1)不同区域的地理底图。同一城市的不同专题地图须采用同一地理底图,以方便读者对不同专题要素之间的对比。例如图9的(a)(b)(c)地图中不同地区省份的底纹颜色不同,但同一地区的底纹必须相同。
2)在图表中需要按一定逻辑顺序进行排列的要素。例如:对于检测结果的排序,先后顺序应为未检出、检出但未超标、检出且超标(图7a所示);对于农药毒性和是否禁药的排序,应为:低毒农药、中毒农药、高毒农药、剧毒农药(图7b所示)以及非禁药、禁药(图7c所示);农药类别排序,应为杀虫剂、杀菌剂、除草剂、昆虫驱避剂、植物生长调节剂、增效剂等;各国标准的排序,应为中国标准、欧盟标准、日本标准等(图7d所示)。
3)某一专题地图表示方法在整个图组中使用较少,易于给读者留下较为深刻的印象的专题地图符号。例如采样点分布图中采样点的符号等,如图8所示。
4)某一专题要素在不同图组的相同位置以系列图的形式出现,需要使用同一套符号***。例如不同城市的各县区超标农产品分布图中,各种农产品的符号使用同一套符号实现。
(2)地图色彩语言的标准化
专题地图的色彩与普通图画的色彩作用不同,在于专题地图的色彩常带有特殊信息,如数量、属性等。例如级别底色和质别底色等(例如图9三幅图中检出的农药品种越多的地区使用的颜色越深)。因此,专题地图的色彩语言是专题地图的地图语言中不可或缺的一部分。
从艺术角度来说,专题地图的色彩设计当然是越丰富越美观越好,但在专题地图的设计中,一些重要的专题符号需要进行统一的色彩设计,并将其标准化,不仅便于信息的高效传达,还增加了系列专题地图的统一协调性。例如检出农药品种数相当的地区使用统一色彩。
这类专题符号用色,通常是有行业标准,或者有一些公认的色彩的通感或象征意义。
色彩的通感指的是色彩能够给人带来的来源于生活中的具体事物或具体感受的联想。比如:红色能令人联想到血液、太阳等,绿色能令人联想到叶片、树林等,蓝色能令人联想到天空、海洋等。由色彩的通感,可以进一步抽象为色彩的象征意义。例如交通灯的红黄绿三种色彩,红色是血液的颜色,引申为危险、禁止等意义;黄色是自然界常见的警示色,引申为警告;绿色是叶片的色彩,因《圣经》中有鸽子衔着橄榄枝以示世界和平安定的描述,故引申为和平、安全等意义。
按照上述定义,本发明涉及的系列专题地图中,有以下意义的符号在色彩应用时适宜进行统一设计并进一步形成制图标准:
1)“未检出农药”“检出但未超标”“检出且超标”样品的符号设色。按照色彩的通感及其象征意义,可选用象征安全的绿色代表“未检出农药”;选用相对比较安全但有警示意义的黄色代表“检出但未超标”;选用表示危险的红色代表“超标”。如图7a所示。
2)“低毒农药”“中毒农药”“高毒农药”“剧毒农药”的符号设色。农药毒性的分级依照的指标是农药对人类的致死量,致死量越低毒性越高。这是一种顺序量表,理应用同一色相的不同明度或饱和度来进行色彩的区分。但因食品安全事关重大,需要用更加突出的色相变量来进行区别表示。由于农药毒性的设色不能使用代表安全的绿色,“低毒”“中毒”“高毒”依次按照黄色、橙色(黄色和红色的中间色)、红色进行设色,剩下的“剧毒农药”一项使用本身具有“有毒”象征意义的紫色进行标识,如图7b所示
3)“非禁药”“禁药”的符号设色。农药按照是否被法律禁止使用分为“非禁药”“禁药”。按照通常的色彩象征意义,“非禁药”使用绿色表示,“禁药”使用红色表示,如图7c。
4)关于国家和地区的代表色。为了展现不同的国家和地区的农药残留标准的区别,需要用不同的色彩来表示不同国家和地区的对比。本文中可用于参照的标准有“中国标准”“欧盟标准”“日本标准”三个地区的标准。中国的吉祥色是红色,欧洲的森林覆盖率较高,日本是一个海洋国家,因此中、欧、日的色彩分别赋为红色、绿色、蓝色,如图7d。
据此设计出的中国农产品农药残留视频化实例如图9所示,图9(a)为“全国—省—市(区)”多空间分辨率农产品农药残留产地溯源与预警视频化地图,从多空间分辨率—国家尺度、省区尺度和区县尺度等多维度表达农作物农药残留特征。图9(b)为全国按农药溯源的农产品农药残留视频化地图,全国检出排前10的农药品种(LC-Q-TOFMS):吡虫啉、苯醚甲环唑、甲基硫菌灵、霜霉威、烯酰吗啉、甲霜灵、戊唑醇、啶虫脒、嘧霉胺。图9(c)为全国按农产品类型农药残留视频化地图,全国检出农药品种排前10的蔬菜(LC-Q-TOFMS):芹菜、青椒、番茄、黄瓜、豆角、生菜、茼蒿、菠菜、白菜、韭菜。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,包括:
    S1、建立基于高分辨质谱食用农产品中农药残留快速侦测方法;
    S2、建立基于互联网的全国农药残留侦测信息共享平台,构建多维数据的大数据库和数据处理;
    S3、基于全国各行政区地理信息的视频化分析与呈现,将多维数据的大数据库的国家农药残留侦测结果数据库中的信息进行统计和变换处理、地图视频化处理,形成专题地图;所述农药残留侦测信息在地图上能够直观显示与预警溯源;所述专题地图支持在线定制模式,支持用户自主选择和过滤统计数据以凸显兴趣数据或关键数据;支持用户定制专题地图符号类型和色彩,提高数据展示和大数据分析能力;
    所述S3中将国家农药残留侦测结果数据库中的信息进行统计和变换处理:
    所述统计处理包括最大值、最小值、平均值、中值的计算;具体包括:检出地区数最多的N种农药的查询,检出农药平均频次数最多的N种蔬菜,中国标准下超标倍数最大的N种农药的统计;
    所述变换处理包括统计数据选择,统计图表的类型选择、样式修改、颜色搭配和分级图中的分级方法、分级数量、分级色系的选择;
    所述S3中地图视频化处理包括:地图图形语言的标准化、地图色彩语言的标准化、图表交互和地图交互;
    所述地图图形语言的标准化设计包括:
    1)不同区域的地理底图;同一城市的不同专题地图采用同一地理底图;
    2)在图表中按逻辑顺序进行排列要素;
    3)在整个图组中少使用某一专题地图表示方法;
    4)某一专题要素在不同图组的相同位置以系列图的形式出现,使用同一套符号***;
    所述地图色彩语言的标准化设计包括:
    1)对“未检出农药”、“检出但未超标”、“检出且超标”样品的符号设色:按照色彩的通感及其象征意义,选用象征安全的绿色代表“未检出农药”;选用相对比较安全但有警示意义的黄色代表“检出但未超标”;选用表示危险的红色代表“检出且超标”;
    2)对“低毒农药”、“中毒农药”、“高毒农药”、“剧毒农药”的符号设色:对“低毒”、“中毒”、“高毒”依次按照黄色、橙色、红色进行设色,“剧毒农药”一项使用本身具有“有毒”象征意义的紫色进行标识;
    3)“非禁药”、“禁药”的符号设色:“非禁药”使用绿色表示,“禁药”使用红色表示;
    4)关于国家和地区的代表设色:采用不同的色彩来表示不同国家和地区的对比;
    所述图表交互包括统计图表和分级图表的定制、统计指标和分级指标的选择和过滤、鼠标悬停显示详细信息三部分;
    所述统计图表和分级图表的定制是指根据用户需求对统计符号和分级符号样式信息进行选择,包括符号类型和色彩、大小、透明度、厚度、圆率、环率、分级数量、模型、色系,进而解析绘制生成新的专题地图,显示专题图定制后的效果;
    所述的统计指标和分级指标的选择和过滤是根据用户需求对统计专题类别和说明书表1中左侧所列的图表名的选择,将统计指标和分级指标生成专题地图;
    所述鼠标悬停显示详细信息包括区域和提示信息,提示信息为绘制符号、绘制图例和返回图表各部分区域及其代表信息;
    所述地图交互包括地图基本交互和区域间的互联互通;
    所述地图基本交互包括地图的浏览、放缩、平移、复原;
    所述的区域间的互联互通:实现同一内容不同区域的专题图间的相互切换,首先通过区划行政编码加专题图内容编码对专题图编码,其次获取目标区域编码,确定目标专题图图名,最后生成目标专题地图;
    所述S3中形成专题地图:根据用户需求,将农药残留数据简明直观地表现在地图上的实物地图或电子地图;包括如下步骤:
    第一步,统计用户在数据库中选择需要统计的内容,统计内容为一张二维统计数据表,统计内容中包含有若干统计指标,统计内容确定后,通过统计表中统计单元的行政级别能够自动获取需要的地理底图数据;
    第二步,在线专题图适合单屏单任务的信息传达模式,通过图表交互,用户需要选择用于此次地图可视化内容的数据指标,包括统计数据指标和分级数据指标;选定统计数据指标和分级数据指标后,进行查询分析,引导用户选取最合适的统计图表和分级图类型;
    第三步,统计图表和分级图类型确定后,通过地图交互,统计用户对它们进行样式 设置,即可观看屏幕输出的专题地图,并能够添加图例,保存出图;
    第四步,上述过程中,如果统计内容选择不合适,或者需要进行统计图表或分级图类型样式的设置,用户能够即改即看。
  2. 根据权利要求1所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述S1的实现包括:
    首先采用液相色谱-四极杆-飞行时间质谱(LC-Q-TOF/MS)和气相色谱-四极杆-飞行时间质谱(GC-Q-TOF/MS)建立世界常用千种农药的一级精确质量数据库和二级碎片离子谱图库;
    然后,一次样品制备,采用两种高分辨质谱检测技术GC-Q-TOF/MS和LC-Q-TOF/MS同时非靶向快速侦测1200多种农药。
  3. 根据权利要求1所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述S2中构建多维数据的大数据库包括构建国家农药残留侦测结果数据库和四大基础数据子库。
  4. 根据权利要求3所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述国家农药残留侦测结果数据库通过如下方法获得:
    首先,通过分布在全国各地的若干个联盟实验室,采用五统一规范操作,所述五统一规范操作是指统一采样方法、统一制样方法、统一检测方法、统一格式数据上传、统一格式统计分析报告,使用S1中所述基于高分辨质谱的农药残留快速侦测方法对18类150种食用农产品实施一年四季的循环侦测,获得相关农药残留原始数据;
    其次,将每一条获得的农药残留原始数据与四大基础数据子库中的信息进行关联,具体处理如下:①根据农产品种类数据库的信息将所有农药代谢物替换为原农药名称;②根据农产品种类数据库将不规范的农产品名称统一替换为规范名称,并统一农产品的分类方法;③根据若干个国家或地区的MRL标准数据库中的信息判定每一检测项对于不同MRL标准的检测结果;④根据农药基础信息数据库信息将农药按性质分类;⑤根据地理信息数据库信息对每个采样点定位,确定它们的详细地理位置、所属行政区域;
    最后,农产品残留检测数据包含三部分信息:样品标识信息、样品采集地理信息、样品检测信息,实现国家农药残留侦测结果数据库的动态添加与实时更新。
  5. 根据权利要求4所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述样品标识信息用于记录样品名称、样品编号、采样时间的信息;所述样品采集地理信息用于记录样品的采样地点、采样地点类型、采样 地点所在省市和县;所述样品检测信息用于记录检测项目名称、检测项目CAS登录号、检测结果、检测方法、TOF定性得分、Q-TOF定性得分信息。
  6. 根据权利要求3所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述四大基础数据子库包括若干国MRL标准数据库、农产品种类数据库、农药基础信息数据库和地理信息数据库。
  7. 根据权利要求6所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述若干国MRL标准数据库包括中国MRL、香港MRL、美国MRL、欧盟MRL、日本MRL、CAC MRL。
  8. 根据权利要求6所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述农产品种类数据库包括中国分类、香港分类、美国分类、欧盟分类、日本分类、CAC分类标准,具体包括农产品的名称、一级分类、二级分类信息、三级分类信息。
  9. 根据权利要求6所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述农药基础信息数据库包括基本信息、毒性信息、功能信息、化学成份、禁用信息、衍生物信息,具体包括所有检出农药的名称、CAS登录号、毒性强度、是否代谢产物及其代谢前身、是否为标准禁用。
  10. 根据权利要求6所述的基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法,其特征在于,所述地理信息数据库覆盖所需的地域范围,包括所有采样点所属的省级行政区划、地级行政区划、县级行政区划详细地址。
PCT/CN2018/082960 2017-04-18 2018-04-13 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法 WO2018192421A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/311,106 US10915548B2 (en) 2017-04-18 2018-04-13 Method of online tracing pesticide residues and visualizing warning on basis of high resolution mass spectrum, internet and geographic information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710250785.1 2017-04-18
CN201710250785.1A CN107180076B (zh) 2017-04-18 2017-04-18 基于高分辨质谱+互联网+地理信息的农药残留可视方法

Publications (1)

Publication Number Publication Date
WO2018192421A1 true WO2018192421A1 (zh) 2018-10-25

Family

ID=59832064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082960 WO2018192421A1 (zh) 2017-04-18 2018-04-13 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法

Country Status (3)

Country Link
US (1) US10915548B2 (zh)
CN (1) CN107180076B (zh)
WO (1) WO2018192421A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111143716A (zh) * 2019-12-27 2020-05-12 中国人民解放军战略支援部队信息工程大学 一种基于湖泊对象的地图自适应显示方法及装置
CN113484314A (zh) * 2021-08-16 2021-10-08 智锐达仪器科技南通有限公司 用于农药残留检测仪的检测方法及农药残留检测仪
CN116343939A (zh) * 2023-05-24 2023-06-27 山东嘉源检测技术股份有限公司 一种基于物联网的数智地下水检测图谱***
CN118243827A (zh) * 2024-05-27 2024-06-25 云南云测质量检验有限公司 一种食品安全的自动化农残检测***

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180076B (zh) * 2017-04-18 2018-08-24 中国检验检疫科学研究院 基于高分辨质谱+互联网+地理信息的农药残留可视方法
CN107943758A (zh) * 2017-12-18 2018-04-20 广西出入境检验检疫局检验检疫技术中心 生丝品质百分位分级方法
GB201814644D0 (en) * 2018-09-10 2018-10-24 Hilton Eric Analysis and dispensing system
CN109522376B (zh) * 2018-09-30 2023-10-27 广州市西美信息科技有限公司 一种中国农业自然条件和资源地图可视化呈现方法及装置
CN109522377B (zh) * 2018-09-30 2023-10-31 广州市西美信息科技有限公司 一种中国农业生产分布和水平地图可视化呈现方法及装置
CN109522358B (zh) * 2018-09-30 2023-10-31 广州市西美信息科技有限公司 一种中国农业地图总图的可视化呈现***
CN109856230B (zh) * 2019-01-30 2021-09-21 山东博戎伝创信息科技有限公司 一种有机化合物残留分析方法、装置及其智能监测***
CN111143435B (zh) * 2019-12-27 2021-04-13 杭州泽达鑫药盟信息科技有限公司 基于统计生成模型的医药云平台大数据异常在线预警方法
CN111914144A (zh) * 2020-06-09 2020-11-10 广东省广袤科技有限公司 食品农药残留标准数据存储网站***
CN112034104A (zh) * 2020-09-04 2020-12-04 河北大学 一种农作物危害物残留检测平台
CN112200496A (zh) * 2020-11-12 2021-01-08 北京三维天地科技股份有限公司 一种基于区块链的实验室检测报告管理***
CN114506882A (zh) * 2020-11-14 2022-05-17 广东伟创科技开发有限公司 一种自动加药水质采样器及在线水质监测***
CN112924523A (zh) * 2021-01-28 2021-06-08 中国农业科学院农产品加工研究所 具快速萃取功能的农药残留检测用质谱检测***及方法
CN112926270B (zh) * 2021-03-18 2023-05-05 西安科技大学 瓦斯多因素耦合关系分析及预警模型构建方法
CN113035293B (zh) * 2021-04-23 2024-03-19 一泽信息科技(上海)有限公司 一种绿色农药库的建库方法
CN114487314A (zh) * 2021-12-16 2022-05-13 山东省食品药品检验研究院 一种现场快速检测海鲜产品残留违禁药物的装置及方法
CN115184534B (zh) * 2022-07-12 2024-05-10 江南大学 一种自动化农药多残留分析***
CN115858713B (zh) * 2023-02-23 2023-05-30 华东交通大学 一种农情地理信息的数据管理方法与数据管理***
CN116089501B (zh) * 2023-02-24 2023-08-22 萨科(深圳)科技有限公司 一种数字化共享平台订单数据统计查询方法
CN116402968B (zh) * 2023-06-08 2023-09-05 中国科学院地理科学与资源研究所 基于制图模板的多指标统计地图制图方法及装置
CN118052439A (zh) * 2024-03-25 2024-05-17 湖南供销电子商务股份有限公司 一种检测数据为基础的农产品质量安全管理及推广***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629271A (zh) * 2012-03-13 2012-08-08 北京工商大学 一种基于堆叠树图的复杂数据可视化方法及设备
CN105512218A (zh) * 2015-11-30 2016-04-20 北京工商大学 一种关联层次数据的可视化方法和应用
CN106354760A (zh) * 2016-08-18 2017-01-25 北京工商大学 基于变形统计地图的多视图时空数据可视化方法与应用
CN107180076A (zh) * 2017-04-18 2017-09-19 中国检验检疫科学研究院 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414371A (zh) * 2002-12-13 2003-04-30 江苏省农业科学院植物保护研究所 常规农药快速残留检测方法
CN1605864A (zh) * 2003-10-09 2005-04-13 王建清 利用特征峰值与农药浓度的关系检测农药残留量的方法
CN102455295B (zh) * 2010-10-28 2013-07-10 中国科学院上海生命科学研究院 用于有机磷和氨基甲酸酯类农药残留快速检测的显色方法
CN103049580B (zh) * 2013-01-17 2016-02-10 北京工商大学 一种层次数据的可视化方法和设备
CN103257126A (zh) * 2013-05-29 2013-08-21 江西农业大学 一种基于激光诱导击穿光谱技术的农药残留快速检测方法
CN103454435B (zh) * 2013-08-06 2014-06-25 北京农业质量标准与检测技术研究中心 一种农药残留检测方法
CN104280471A (zh) * 2014-09-30 2015-01-14 广西大学 一种果蔬中农药残留的快速检测方法
US11266056B2 (en) * 2015-10-23 2022-03-08 Deere & Company System and method for residue detection and implement control
CN105404643B (zh) * 2015-10-27 2018-06-12 北京工商大学 针对具有多维属性的层次结构数据的可视化方法和应用
CN205175996U (zh) * 2015-10-30 2016-04-20 苏荣束 一种农产品药物残留检测仪
CN105738460A (zh) 2015-12-28 2016-07-06 中国检验检疫科学研究院 一种叶菜类蔬菜中544种农药残留lc-q-tof/ms侦测技术
CN105628839A (zh) 2015-12-28 2016-06-01 中国检验检疫科学研究院 一种叶菜类蔬菜中708种农药残留gc-q-tof/ms侦测技术
CN105784900A (zh) * 2015-12-28 2016-07-20 中国检验检疫科学研究院 一种茄果类蔬菜中544种农药残留lc-q-tof/ms侦测技术
AU2017260725A1 (en) * 2016-05-03 2018-12-20 William Daniel Willey Systems, methods and apparatuses for managing plant quarantines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629271A (zh) * 2012-03-13 2012-08-08 北京工商大学 一种基于堆叠树图的复杂数据可视化方法及设备
CN105512218A (zh) * 2015-11-30 2016-04-20 北京工商大学 一种关联层次数据的可视化方法和应用
CN106354760A (zh) * 2016-08-18 2017-01-25 北京工商大学 基于变形统计地图的多视图时空数据可视化方法与应用
CN107180076A (zh) * 2017-04-18 2017-09-19 中国检验检疫科学研究院 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANG, GUOFANG ET AL.: "High Resolution MS + Internet + Geographic Information System (GIS) Constitutes World Common Pesticide Residue Large Databases and Improves Agricultural Product Quality Security Assurance capacity", CHINESE SCIENCE AND TECHNOLOGY ACHIEVEMENTS, 31 December 2016 (2016-12-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111143716A (zh) * 2019-12-27 2020-05-12 中国人民解放军战略支援部队信息工程大学 一种基于湖泊对象的地图自适应显示方法及装置
CN111143716B (zh) * 2019-12-27 2023-06-20 中国人民解放军战略支援部队信息工程大学 一种基于湖泊对象的地图自适应显示方法及装置
CN113484314A (zh) * 2021-08-16 2021-10-08 智锐达仪器科技南通有限公司 用于农药残留检测仪的检测方法及农药残留检测仪
CN116343939A (zh) * 2023-05-24 2023-06-27 山东嘉源检测技术股份有限公司 一种基于物联网的数智地下水检测图谱***
CN116343939B (zh) * 2023-05-24 2023-08-15 山东嘉源检测技术股份有限公司 一种基于物联网的数智地下水检测图谱***
CN118243827A (zh) * 2024-05-27 2024-06-25 云南云测质量检验有限公司 一种食品安全的自动化农残检测***

Also Published As

Publication number Publication date
CN107180076A (zh) 2017-09-19
US10915548B2 (en) 2021-02-09
CN107180076B (zh) 2018-08-24
US20200311099A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2018192421A1 (zh) 基于高分辨质谱+互联网+地理信息的农药残留在线溯源与预警视频化方法
Ran et al. Evaluation of four remote sensing based land cover products over China
WO2018192418A1 (zh) 基于高分辨质谱、互联网和数据科学的农药残留侦测数据平台及侦测报告自动生成方法
Netek et al. Implementation of heat maps in geographical information system–exploratory study on traffic accident data
Andrienko et al. Designing visual analytics methods for massive collections of movement data
Bornmann et al. Which cities produce more excellent papers than can be expected? A new mapping approach, using Google Maps, based on statistical significance testing
Boyack et al. Mapping the structure and evolution of chemistry research
Lo et al. Quantitative analysis of quality management literature published in total quality management and business excellence (1996–2010)
Bach et al. Accuracy and congruency of three different digital land-use maps
CN105512218B (zh) 一种关联层次数据的可视化方法和应用
Rozman et al. The Use of Multi Criteria Models for Decision Support System in Fruit Production.
CN112034104A (zh) 一种农作物危害物残留检测平台
CN105930461A (zh) 实现关联信息节点可视化追踪的数据处理方法
Lin et al. Poverty estimation at the county level by combining LuoJia1-01 nighttime light data and points of interest
Petr et al. Inconsistent recognition of uncertainty in studies of climate change impacts on forests
Vogiatzakis Mediterranean experience and practice in Landscape Character Assessment
Silva Junior et al. Object-based image analysis supported by data mining to discriminate large areas of soybean
Song et al. Height–diameter allometry for the management of city trees in the tropics
Persson A survey of methods for visualizing spatio-temporal data
Costa et al. Biodiversity and elevation gradients: Insights on sampling biases across worldwide mountains
Maier et al. Importance of the certified reference materials programmes for the european union
Narváez-Gómez et al. Unravelling distribution patterns of Neotropical lianas: an analysis of endemicity of tribe Bignonieae (Bignoniaceae)
Um Comparative evaluation of CO2 concentrations across administrative regions with temperate climates in Northeast Asia: Potentials and constraints
Qin et al. Visualization of pesticide residue data
Denzer et al. GIMMI: geographic information and mathematical models inter-operability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787813

Country of ref document: EP

Kind code of ref document: A1