WO2018192290A1 - 发光装置 - Google Patents

发光装置 Download PDF

Info

Publication number
WO2018192290A1
WO2018192290A1 PCT/CN2018/074747 CN2018074747W WO2018192290A1 WO 2018192290 A1 WO2018192290 A1 WO 2018192290A1 CN 2018074747 W CN2018074747 W CN 2018074747W WO 2018192290 A1 WO2018192290 A1 WO 2018192290A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
particles
light
emitting device
layer
Prior art date
Application number
PCT/CN2018/074747
Other languages
English (en)
French (fr)
Inventor
田梓峰
徐虎
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018192290A1 publication Critical patent/WO2018192290A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors

Definitions

  • the utility model relates to the field of optics, in particular to a light-emitting device under the laser display technology.
  • the light-emitting device in the prior art is composed of a reflective layer and a light-emitting layer, wherein the reflective layer is composed of scattering particles of alumina, titanium oxide and the like, and the thickness is generally about 60-70 um in order to improve the reflection efficiency. Sintered.
  • the laser power must be increased.
  • the increase of the laser power is bound to increase the heat generation of the light-emitting device, and More voids will affect the heat transfer.
  • the technical problem mainly solved by the utility model is to provide a light-emitting device, which solves the problem that the reflective layer of the prior product has a large thickness and a large number of voids, which may affect heat transfer.
  • one technical solution adopted by the present invention is to provide a base layer, a reflective layer and a light-emitting layer which are sequentially stacked, the reflective layer has a thickness of 0.02-0.05 mm, and the reflective layer includes sub-micron level. a first reflective particle, a second-order second reflective particle filled in the first reflective particle gap, and an adhesive for bonding the first reflective particle and the second reflective particle.
  • the first reflective particles have a particle size ranging from 0.1 um to 1 um, and the first reflective particles have a refractive index greater than 2.0.
  • the first reflective particles are any one or more of titanium oxide particles, cerium oxide particles and zirconia particles.
  • the second reflective particles are alumina particles and/or barium sulfate particles.
  • the second reflective particles have a particle size ranging from 0.1 nm to 100 nm.
  • the mass ratio x:y:1 of the first reflective particles, the second reflective particles and the binder satisfies the following conditions:
  • the binder is any one of glass powder, epoxy resin or silica gel.
  • the light emitting layer comprises a wavelength converting material
  • the wavelength converting material is at least one of a phosphor, a quantum dot, and a fluorescent dye.
  • the base layer is a ceramic substrate or a metal substrate.
  • the ceramic substrate is any one of an aluminum nitride ceramic, an alumina ceramic or an aluminum oxide single crystal.
  • the utility model has the beneficial effects that the present invention provides a light-emitting device, which comprises a base layer, a reflective layer and a light-emitting layer which are sequentially stacked, wherein the reflective layer comprises first reflective particles of submicron order. And nanometer-sized second reflective particles filled in the first reflective particle gap, so that the thickness of the reflective layer is reduced to 0.02-0.05 mm compared with the prior art, the internal void is reduced, the thermal resistance is reduced, and the heat transfer is improved.
  • the product has improved thermal stability and can withstand higher power excitation light, thereby increasing the brightness of the light-emitting device and having a good user experience.
  • FIG. 1 is a schematic structural view of a reflective layer of a light-emitting device in the prior art
  • FIG. 2 is a schematic structural view of a light-emitting device of the present invention.
  • FIG 3 is a schematic structural view of a reflective layer of the light-emitting device of the present invention.
  • the light-emitting device provided by the present invention includes a base layer S3, a reflective layer S2, and a light-emitting layer S1 which are stacked in this order from bottom to top.
  • the light-emitting layer S1 includes a wavelength conversion material for receiving the excitation light emitted by the external excitation light source and converting it into a laser light to form a center of light emission and heat generation.
  • the wavelength converting material includes, but is not limited to, a phosphor, a quantum dot, a fluorescent dye, as long as it is a material having a wavelength converting ability.
  • the reflective layer S2 is a diffuse reflection layer composed of white scattering particles for reflecting the excitation light and the laser light, and is capable of functioning to conduct heat generated by the light-emitting layer.
  • the reflective layer S2 includes first reflective particles 21 and second reflective particles 22 that respectively function as reflections, and an adhesive for bonding the first reflective particles 21 and the second reflective particles 22.
  • the mass ratio x:y:1 of the first reflective particles, the second reflective particles and the binder satisfies the following conditions:
  • the inventors have experimentally obtained that the reflection property and the mechanical property of the reflective layer S2 are high when the above conditions are satisfied. Since the first reflective particles 21 and the second reflective particles 22 are respectively used to reflect light of different frequencies, different first reflective particles and second reflective particles may be selected depending on the wavelength or frequency of the light.
  • the thickness of the reflective layer should be as thin as possible, thereby reducing the thermal resistance of the reflective layer S1 and improving the thermal conductivity.
  • the first reflective particles 21 have a submicron size, and the particle size ranges from 0.1 ⁇ m to 1 ⁇ m; the second reflective particles 22 have a nanometer size, and the particle size ranges from 0.1 nm to 100 nm; the second reflective particles 22 fill the first
  • the gap between the reflective particles 21 reduces the thickness of the reflective layer while satisfying the reflection effect, and since the gap between the first reflective particles 21 is filled, the thermal resistance is further reduced, and the thermal conductivity of the entire reflective layer S2 is improved.
  • the reflective layer is too thin and the reflection effect is not good; the reflective layer is too thick and the thermal conductivity is not good.
  • the inventors have experimentally verified that when the thickness of the reflective layer is 0.02-0.05 mm, the structure can take both reflection and thermal conduction effects into consideration.
  • the first reflective particles 21 are mainly for ensuring the reflection effect of the reflective layer S2, and it is ensured that the reflective effect of the reflective layer S2 can be maintained even when the thickness of the reflective layer S2 is relatively thin. Therefore, the first reflective particles 21 are preferably particles of high refractive index, that is, particles having a refractive index of more than 2.0. For example, titanium oxide (TiO2) particles, zinc oxide (ZnO) particles, yttria (Y 2 O 3 ) particles or zirconia (ZrO 2 ) particles.
  • the main function of the second reflective particles 22 is to fill the pores of the first reflective particles 21, reduce the thermal resistance, and improve the thermal conductivity, while the presence of the second reflective particles 22 also serves as an auxiliary reflection, and the absorption is not the first reflective particles. Reflect the light and reflect it out. Therefore, the second reflective particles mainly employ particles having a smaller particle diameter. For example, alumina (Al 2 O 3 ) particles or barium sulfate (BaSO 4 ) particles.
  • the first reflective particles 21 are submicron-sized titanium oxide particles
  • the second reflective particles 22 are nano-sized aluminum oxide particles.
  • the nano-sized alumina particles are filled in the gaps of the sub-micron-sized titanium oxide particles, and then formed into a dense structure by adhesion and sintering of the binder.
  • the adhesive is glass frit
  • the reflective layer is sintered by glass.
  • the mass ratio of titanium oxide, aluminum oxide and binder is 3:3:4.
  • the base layer S3 is a ceramic substrate, which may be an aluminum nitride ceramic, an alumina ceramic or an aluminum oxide single crystal.
  • the aluminum nitride ceramic has high thermal conductivity and low cost, which facilitates heat transfer of the product and provides product performance.
  • the structure of the reflective layer is made denser, and in the case of the same reflectance, the thickness of the reflective layer can be made smaller. Therefore, the thermal conductivity is high, which facilitates the dissipation of heat.
  • the light-emitting device includes a base layer S3, a reflective layer S2, and a light-emitting layer S1 which are laminated in this order from bottom to top.
  • the light-emitting layer S1 includes a wavelength conversion material for receiving the excitation light emitted by the external excitation light source and converting it into a laser light to form a center of light emission and heat generation. In order to increase the brightness of the light-emitting device, it is necessary to use excitation light of a larger laser power. At this time, the light-emitting layer S1 generates a large amount of heat.
  • the reflective layer S2 is a diffuse reflection layer composed of white scattering particles for reflecting the excitation light and the laser light, and is capable of functioning to conduct heat generated by the light-emitting layer.
  • the structure is the same as that of the first embodiment.
  • the base layer S3 is a metal substrate.
  • the adhesive is silica gel or epoxy resin.
  • the fixing of the reflective layer S2 and the base layer S3 can be better achieved by using silica gel or epoxy resin as a binder.
  • the metal substrate has better thermal conductivity than the first embodiment, and the heat of the light-emitting layer S1 is transmitted to the metal substrate through the reflective layer S2, and is then radiated through the metal substrate.
  • the utility model has the beneficial effects that the present invention provides a light-emitting device, which comprises a base layer, a reflective layer and a light-emitting layer which are sequentially stacked, wherein the reflective layer comprises sub-micron first reflective particles and Filling the nano-sized second reflective particles in the first reflective particle gap, so that the thickness of the reflective layer is reduced to 0.02-0.05 mm compared with the prior art, the internal void is reduced, the thermal resistance is reduced, the heat transfer is improved, and the product is thermally stable. The performance is improved, and the excitation light with higher power can be withstood, thereby increasing the brightness of the light-emitting device and having a good user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种发光装置,包括依次层叠设置的基层(S3)、反射层(S2)和发光层(S1),其中反射层(S2)的厚度为0.02-0.05mm,反射层(S2)包括亚微米级的第一反射颗粒(21)、充填在第一反射颗粒间隙的纳米级的第二反射颗粒(22)以及用于粘接第一反射颗粒和第二反射颗粒的粘接剂。该结构通过使得反射层的内部空隙减少,厚度减薄,热量传递提高,从而增加发光装置的亮度。

Description

发光装置 技术领域
本实用新型涉及光学领域,尤其是涉及一种激光显示技术下的发光装置。
 
背景技术
随着时代的发展,人们对发光亮度的要求越来越高,产品激光功率越来越大,进而使得发光装置的温度越来越高。现有技术中的发光装置都是由包括反射层和发光层,其中反射层是由散射粒子氧化铝,氧化钛等白色粒子组成,而且为了提高反射效率一般厚度都在60-70um左右,由玻璃烧结而成。
技术问题
如图1所述,氧化铝12和氧化钛11烧结后中间仍有很多间隙,要提高发光亮度,必须增大激光功率,然而激光功率提高势必会使得发光装置的发热量增大,而由于中间空隙较多,会影响热的传递。
因此,实有必要提供一种新的发光装置以解决上述问题。
技术解决方案
本实用新型主要解决的技术问题是提供一种发光装置,以解决现有产品的反射层厚度大,空隙较多,会影响热传递的问题。
为解决上述技术问题,本实用新型采用的一个技术方案是:提供包括依次层叠设置的基层、反射层和发光层,所述反射层的厚度为0.02-0.05mm,所述反射层包括亚微米级的第一反射颗粒、充填在所述第一反射颗粒间隙的纳米级的第二反射颗粒以及用于粘接第一反射颗粒和第二反射颗粒的粘接剂。
优选的,所述第一反射颗粒的粒径范围为0.1um-1um,所述第一反射颗粒的折射率大于2.0。
优选的,所述第一反射颗粒为氧化钛颗粒、氧化钇颗粒和氧化锆颗粒中的任意一种或多种。
优选的,所述第二反射颗粒为氧化铝颗粒和/或硫酸钡颗粒。
优选的,所述第二反射颗粒的粒径范围为0.1nm -100nm。
优选的,所述第一反射颗粒、第二反射颗粒与粘结剂的质量比x:y:1满足如下条件:
0.2<x<1.8
0.2<y<1.8
0.4<x+y<2。
优选的,所述粘结剂为玻璃粉、环氧树脂或硅胶中的任意一种。
优选的,所述发光层包括波长转换材料,所述波长转换材料为荧光粉、量子点、荧光染料中的至少一种。
优选的,所述基层为陶瓷衬底或金属基板。
优选的,所述陶瓷衬底为氮化铝陶瓷、氧化铝陶瓷或氧化铝单晶中的任意一种。
有益效果
本实用新型的有益效果是:区别于现有技术的情况,本实用新型提供一种发光装置,包括依次层叠设置的基层、反射层和发光层,其中反射层包括亚微米级的第一反射颗粒和充填在所述第一反射颗粒间隙的纳米级的第二反射颗粒,使得相较现有技术中的反射层厚度减小至0.02-0.05mm,内部空隙减少,热阻降低,热量传递提高,产品热稳定性提高,能够承受功率更高的激发光,从而增加发光装置的亮度,具有良好的用户体验。
附图说明
图1是现有技术中发光装置的反射层的结构示意图;
图2是本实用新型发光装置的结构示意图;
图3是本实用新型发光装置的反射层的结构示意图。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
 
实施例一
参照图2所示,本实用新型提供的发光装置包括自下而上依次层叠设置的基层S3、反射层S2和发光层S1。
发光层S1内包含波长转换材料,用于接收外界激发光源发出的激发光并转化为受激光,形成发光和发热的中心。波长转换材料包括但不限于荧光粉、量子点、荧光染料,只要是具有波长转换能力的材料均可。为了提高发热装置发光的亮度,需要采用较大激光功率的激发光,此时,发光层S1会产生大量热量。
反射层S2为由白色的散射粒子组成的漫反射层,用于反射激发光和受激光,并能够起到传导发光层产生的热量的作用。
反射层S2包括分别起到反射作用的第一反射颗粒21和第二反射颗粒22,以及用于粘接第一反射颗粒21和第二反射颗粒22的粘接剂。第一反射颗粒、第二反射颗粒与粘结剂的质量比x:y:1满足如下条件:
0.2<x<1.8
0.2<y<1.8
0.4<x+y<2。
发明人经过实验得出:当满足上述条件,反射层S2的反射性能和机械性能较高。由于第一反射颗粒21和第二反射颗粒22分别用于反射不同频率的光,因此可根据光的波长或频率选择不同的第一反射颗粒和第二反射颗粒。
由于反射层S2的作用不仅是反射激发光和受激光,还需要将发光层S1产生的热量传导至基层S3,进而保证整个发光装置的热稳定性。因此反射层的厚度要尽量薄,以此降低反射层S1的热阻,提高导热率。第一反射颗粒21粒径选用亚微米级,粒径范围优选0.1um-1um;第二反射颗粒22粒径选用纳米级,粒径范围优选用0.1nm -100nm;第二反射颗粒22填充第一反射颗粒21之间的间隙,在满足反射效果的前提下降低反射层的厚度,且由于第一反射颗粒21之间的间隙被填充,进一步降低了热阻,整个反射层S2的导热率得到提高。需要注意的是反射层过薄,反射效果不佳;反射层过厚,导热率不佳。发明人经过实验验证,当反射层厚度为0.02-0.05mm时,该结构可兼顾反射效果和导热效果。
进一步,第一反射颗粒21主要为了保证反射层S2的反射效果,保证在反射层S2厚度比较薄的情况下仍能保持反射层S2的反射效果。因此,第一反射颗粒21优选高折射率的颗粒,即折射率大于2.0的颗粒。比如氧化钛(TiO2)颗粒、氧化锌(ZnO)颗粒、氧化钇(Y 2O 3)颗粒或氧化锆(ZrO 2)颗粒。
第二反射颗粒22的主要作用是填充第一反射颗粒21的孔隙,降低热阻,提高热导率,同时第二反射颗粒22的存在也起到辅助反射的作用,吸收未被第一反射颗粒反射的光,并将其反射出去。因此第二反射颗粒主要采用粒径较小的颗粒。例如氧化铝(Al 2O 3)颗粒或硫酸钡(BaSO 4)颗粒。
具体在本实施方式中,第一反射颗粒21为亚微米级的氧化钛颗粒,第二反射颗粒22为纳米级的氧化铝颗粒。
纳米级的氧化铝颗粒充填在亚微米级的氧化钛颗粒的间隙中,进而通过粘接剂的黏合并烧结形成的致密的结构。具体在本实施方式中,粘接剂为玻璃粉,反射层通过玻璃烧结而成。优选的,氧化钛、氧化铝和粘结剂的质量比为3:3:4。
基层S3为陶瓷衬底,该陶瓷衬底可以为氮化铝陶瓷、氧化铝陶瓷或者氧化铝单晶。具体在本实施方式中,为氮化铝陶瓷,由于氮化铝陶瓷导热性较高且成本低,便于产品的热量传递,提供产品性能。
由于纳米级的第二反射颗粒22填充在亚微米级的第一反射颗粒21的颗粒间隙内,使得反射层的结构更致密,在同等反射率的情况下,可以使得反射层的厚度更小,因此导热率较高,便于热量的发散。
 
实施例二
本实施方式与上一种实施方式大致相同,发光装置包括自下而上依次层叠设置的基层S3、反射层S2和发光层S1。
发光层S1内包含波长转换材料,用于接收外界激发光源发出的激发光并转化为受激光,形成发光和发热的中心。为了提高发热装置发光的亮度,需要采用较大激光功率的激发光,此时,发光层S1会产生大量热量。
反射层S2为由白色的散射粒子组成的漫反射层,用于反射激发光和受激光,并能够起到传导发光层产生的热量的作用。其结构与第一种实施方式相同。
与上一种实施方式的区别在于,本实施方式中,基层S3为金属基板。对应的,在本实施方式中,粘接剂为硅胶或环氧树脂。通过硅胶或环氧树脂作为粘接剂,可以更好地实现反射层S2与基层S3的固定。且金属基板相较第一种实施方式具有更好的导热性,发光层S1的热量经反射层S2传递到金属基板,再经由金属基板进行散热。
 
本实用新型的有益效果是:区别于现有技术的情况,本实用新型提供一种发光装置,包括依次层叠设置的基层、反射层和发光层,其中反射层包括亚微米级第一反射颗粒和充填在第一反射颗粒间隙的纳米级的第二反射颗粒,使得相较现有技术中的反射层厚度减小至0.02-0.05mm,内部空隙减少,热阻降低,热量传递提高,产品热稳定性提高,能够承受功率更高的激发光,从而增加发光装置的亮度,具有良好的用户体验。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。
 

Claims (10)

1.一种发光装置,包括依次层叠设置的基层、反射层和发光层,其特征在于,所述反射层的厚度为0.02-0.05mm,所述反射层包括亚微米级的第一反射颗粒、充填在所述第一反射颗粒间隙的纳米级的第二反射颗粒以及用于粘接所述第一反射颗粒和所述第二反射颗粒的粘接剂。
2.根据权利要求1所述的发光装置,其特征在于,所述第一反射颗粒的粒径范围为0.1um-1um,所述第一反射颗粒的折射率大于2.0。
3.根据权利要求1或2所述的发光装置,其特征在于,所述第一反射颗粒为氧化钛颗粒、氧化锌颗粒、氧化钇颗粒和氧化锆颗粒中的任意一种或多种。
4.根据权利要求3所述的发光装置,其特征在于,所述第二反射颗粒为氧化铝颗粒和/或硫酸钡颗粒。
5.根据权利要求4所述的发光装置,其特征在于,所述第二反射颗粒的粒径范围为0.1nm -100nm。
6.根据权利要求1所述的发光装置,其特征在于,所述第一反射颗粒、第二反射颗粒与粘结剂的质量比x:y:1满足如下条件:
0.2<x<1.8
0.2<y<1.8
0.4<x+y<2。
7.根据权利要求6所述的发光装置,其特征在于,所述粘结剂为玻璃粉、环氧树脂或硅胶中的任意一种。
8.根据权利要求1所述的发光装置,其特征在于,所述发光层包括波长转换材料,所述波长转换材料为荧光粉、量子点、荧光染料中的至少一种。
9.根据权利要求1所述的发光装置,其特征在于,所述基层为陶瓷衬底或金属基板。
10.根据权利要求9所述的发光装置,其特征在于,所述陶瓷衬底为氮化铝陶瓷、氧化铝陶瓷或氧化铝单晶中的任意一种。
 
 
PCT/CN2018/074747 2017-04-20 2018-01-31 发光装置 WO2018192290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720417699.0U CN206671596U (zh) 2017-04-20 2017-04-20 发光装置
CN201720417699.0 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192290A1 true WO2018192290A1 (zh) 2018-10-25

Family

ID=60372161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074747 WO2018192290A1 (zh) 2017-04-20 2018-01-31 发光装置

Country Status (2)

Country Link
CN (1) CN206671596U (zh)
WO (1) WO2018192290A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置
CN110261942A (zh) * 2018-03-12 2019-09-20 深圳光峰科技股份有限公司 波长转换装置及其制备方法
CN110346859B (zh) * 2018-04-08 2023-05-16 京东方科技集团股份有限公司 光学谐振腔、显示面板
CN110927844B (zh) * 2018-09-20 2021-12-14 深圳光峰科技股份有限公司 一种漫反射装置及其制备方法、波长转换装置
CN113719805A (zh) * 2021-09-03 2021-11-30 厦门市米宫科技有限公司 一种量子点反光材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077662A1 (ja) * 2005-01-19 2006-07-27 Diatex Co., Ltd. 再帰反射粘着シート
US20100061083A1 (en) * 2008-09-09 2010-03-11 Hua-Te Feng Reflective sheet
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源***及投影***
CN105322433A (zh) * 2014-05-28 2016-02-10 深圳市绎立锐光科技开发有限公司 波长转换装置及其相关发光装置
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077662A1 (ja) * 2005-01-19 2006-07-27 Diatex Co., Ltd. 再帰反射粘着シート
US20100061083A1 (en) * 2008-09-09 2010-03-11 Hua-Te Feng Reflective sheet
CN104595852A (zh) * 2013-10-30 2015-05-06 深圳市绎立锐光科技开发有限公司 一种波长转换装置、漫反射层、光源***及投影***
CN105322433A (zh) * 2014-05-28 2016-02-10 深圳市绎立锐光科技开发有限公司 波长转换装置及其相关发光装置
CN206671596U (zh) * 2017-04-20 2017-11-24 深圳市光峰光电技术有限公司 发光装置

Also Published As

Publication number Publication date
CN206671596U (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018192290A1 (zh) 发光装置
JP6348189B2 (ja) 波長変換装置及びその関連発光装置
JP6786546B2 (ja) 波長変換装置、発光装置及び投影システム
CN106206904B (zh) 一种波长转换装置、荧光色轮及发光装置
CN105278225B (zh) 波长转换装置及其制备方法、相关发光装置和投影装置
TWI524130B (zh) 一種波長轉換裝置及其製作方法
CN203489181U (zh) 色轮及其光源***、投影***
CN106195925A (zh) 一种波长转换装置、发光装置及投影装置
CN105093776A (zh) 波长转换装置、光源***及投影***
CN205720746U (zh) 一种反射装置及相关波长转换装置、色轮和光源***
US11296263B2 (en) Wavelength conversion apparatus
TWI823976B (zh) 波長轉換元件、製造其之方法、光轉換裝置、及產生白光的方法
TWI617059B (zh) 光源系統及其波長轉換裝置
JP2013207049A (ja) 波長変換体を用いた発光装置
CN107689554B (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
CN113701125A (zh) 透射式波长转换装置及其发光装置
CN215264353U (zh) 波长转换装置以及光源***
WO2022052616A1 (zh) 透射式波长转换装置及其发光装置
CN113551203A (zh) 透射式波长转换装置及其发光装置
WO2019015221A1 (zh) 波长转换装置、包含其的光源及投影装置
CN220891987U (zh) 反射组件及发光设备
WO2021093564A1 (zh) 红光发光模块及其制备方法
CN104716130A (zh) 一种可混光的发光二极管
CN114221207A (zh) 一种荧光玻璃片及其制备方法和应用
JP2024066549A (ja) 蛍光体デバイス及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788095

Country of ref document: EP

Kind code of ref document: A1