WO2018190329A1 - シートモールディングコンパウンド、および繊維強化複合材料 - Google Patents

シートモールディングコンパウンド、および繊維強化複合材料 Download PDF

Info

Publication number
WO2018190329A1
WO2018190329A1 PCT/JP2018/015027 JP2018015027W WO2018190329A1 WO 2018190329 A1 WO2018190329 A1 WO 2018190329A1 JP 2018015027 W JP2018015027 W JP 2018015027W WO 2018190329 A1 WO2018190329 A1 WO 2018190329A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
component
resin composition
viscosity
molding compound
Prior art date
Application number
PCT/JP2018/015027
Other languages
English (en)
French (fr)
Inventor
智 太田
正洋 市野
拓也 寺西
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to ES18783748T priority Critical patent/ES2972887T3/es
Priority to EP18783748.9A priority patent/EP3611210B1/en
Priority to CN202310202953.5A priority patent/CN116333267A/zh
Priority to CN201880024018.1A priority patent/CN110536914B/zh
Priority to JP2018523820A priority patent/JP6708256B2/ja
Publication of WO2018190329A1 publication Critical patent/WO2018190329A1/ja
Priority to US16/594,122 priority patent/US20200032047A1/en
Priority to US17/938,881 priority patent/US20230046977A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4021Ureas; Thioureas; Guanidines; Dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide

Definitions

  • the present invention relates to a sheet molding compound and a fiber reinforced composite material.
  • Carbon fiber reinforced composite materials composed of carbon fibers and matrix resins are widely used in aircraft, automobiles, and industrial applications because of their excellent mechanical properties. In recent years, the application range of carbon fiber reinforced composite materials has been expanded more and more as the use results are accumulated.
  • the matrix resin of the carbon fiber reinforced composite material is required to exhibit high mechanical properties even in a high temperature environment. Further, the matrix resin of a molding material (sheet molding compound (hereinafter also referred to as SMC), prepreg, etc.) used for the production of a carbon fiber reinforced composite material is required to have excellent moldability.
  • thermosetting resin phenol resin, melamine resin, bismaleimide resin, unsaturated polyester resin, epoxy resin or the like is used.
  • the epoxy resin composition is excellent as moldability and heat resistance after curing, and the carbon fiber reinforced composite material using the epoxy resin composition can exhibit high mechanical properties, and thus is suitable as a matrix resin. .
  • Examples of methods for producing a carbon fiber reinforced composite material by molding a molding material include an autoclave molding method, a filament wind molding method, a resin injection molding method, a vacuum resin injection molding method, and a press molding method.
  • the press molding method has high demand because it is highly productive and a carbon fiber reinforced composite material having an excellent design surface can be easily obtained.
  • As a molding material used in the press molding method it is possible to manufacture a carbon fiber reinforced composite material having a complicated shape, and since a carbon fiber reinforced composite material optimum for a structural member can be obtained, the reinforced short fiber and matrix resin are used.
  • the configured SMC is actively used.
  • the matrix resin used for SMC is required to have the following characteristics. -In order to ensure the impregnation property to the carbon fiber at the time of manufacture of SMC, the matrix resin of SMC is required to have a very low viscosity at the time of manufacture of SMC. ⁇ In order to ensure the workability of SMC during press molding, the SMC matrix resin has a B-stage (thickened by semi-curing and can be fluidized by heating) by moderately thickening. Therefore, it is required to have appropriate tackiness (adhesiveness) and drapeability (flexibility).
  • the matrix resin of SMC is required to be able to hold the B stage for a long period of time (stability of the B stage).
  • the matrix resin of SMC is required to be cured in a short time and to have high heat resistance after curing.
  • the SMC matrix resin is required to have high rigidity after curing.
  • the SMC matrix resin is required to exhibit high mechanical properties and heat resistance after curing.
  • the epoxy resin composition is excellent in the mechanical properties and heat resistance of the cured product, it is difficult to achieve both fast curability and B-stage stability. That is, since the curing agent that cures the epoxy resin in a short time allows the curing reaction to proceed rapidly at room temperature, the B stage of the epoxy resin composition cannot be retained for a long period of time. On the other hand, it is difficult for the curing agent that can hold the B stage of the epoxy resin composition for a long time to cure the epoxy resin in a short time.
  • thermosetting resin composition obtained by diluting an unsaturated polyester resin or vinyl ester resin with styrene is usually used as the matrix resin of SMC.
  • thermosetting resin compositions containing unsaturated polyester resins and vinyl ester resins have large cure shrinkage, development of SMC using an epoxy resin composition with low cure shrinkage is desired.
  • a resin composition comprising an epoxy resin having a hydroxyl group, a polyol, and a polyisocyanate compound (Patent Document 1).
  • a resin composition comprising an epoxy resin, a polyol, a polyisocyanate compound, dicyandiamide, and a specific imidazole compound (Patent Document 2).
  • a liquid adhesive comprising an epoxy resin, a curing agent having an activation temperature of 20 to 100 ° C., and a curing agent having an activation temperature of 100 to 200 ° C.
  • Patent Document 3 A reactive hot melt adhesive containing an epoxy resin that is solid at room temperature, an epoxy resin that is liquid at room temperature, a linear polyoxypropylene having an amino group terminal, and a latent curing agent (dicyandiamide) (Patent Document 4).
  • An epoxy resin composition used for a prepreg. An impregnation resin composition containing an epoxy resin, a latent curing agent, a resin having a polymerizable unsaturated group, and a polymerization initiator (Patent Document 5).
  • Non-patent Document 1 A resin composition containing an epoxy resin and 2,5-dimethyl-2,5-hexamethylenediamine and mensendiamine as curing agents.
  • Liquid adhesive (3) the use of the curing agent activation temperature is 20 ⁇ 100 ° C. (polyamine, mercaptan, isocyanate, imidazole, polyamide, polysulfide phenol, BF 3 complexes, ketimine, etc.), 1-stage It will be gelled by eye curing reaction. Therefore, before the second stage curing, the fluidity is low, the shaping is difficult, and it cannot be used as an SMC matrix resin.
  • the reactive hot-melt adhesive (4) has a high viscosity, cannot obtain good impregnation properties for reinforcing fibers, and cannot be used as an SMC matrix resin.
  • the viscosity after B-stage at room temperature is low and the tack is too strong, so it is not suitable for SMC.
  • the resin composition of (7) contains 2,5-dimethyl-2,5-hexanediamine, the pot life is short. Moreover, since it contains mensendiamine, the curability of the resin composition is insufficient. Therefore, it is not suitable for the matrix resin of SMC.
  • the present invention is excellent in handling workability (tack and drape), fluidity and fast curability of the matrix resin at the time of press molding, and can suppress the generation of burrs, demoldability, mechanical properties and heat resistance.
  • the present invention provides a sheet molding compound capable of obtaining an excellent fiber-reinforced composite material; and a fiber-reinforced composite material excellent in demoldability, mechanical properties and heat resistance.
  • a sheet molding compound which is a thickened product of an epoxy resin composition containing the component (A), the component (B), and the component (C),
  • the component (A) is a liquid epoxy resin at 25 ° C.
  • the component (B) is an acid anhydride
  • the component (C) is an epoxy resin curing agent
  • the thickened product is a sheet molding compound in which an ester is formed with at least a part of the epoxy group of the component (A) and at least a part of the carboxy group derived from the component (B).
  • the sheet molding compound according to [1] further comprising reinforcing fibers.
  • the viscosity at 30 ° C. of the epoxy resin composition 10 days after the preparation measured by the following viscosity measurement (b) is 2,000 to 55,000 Pa ⁇ s
  • the viscosity at 30 ° C. of the epoxy resin composition 20 days after the preparation measured by the following viscosity measurement (c) is 2,000 to 100,000 Pa ⁇ s
  • the viscosity (b) measured in the viscosity measurement (b) and the viscosity (c) measured in the viscosity measurement (c) are [viscosity (c)] / [viscosity (b)] ⁇ 3.
  • the content of the component (B) is an amount such that the acid anhydride group is 0.1 to 0.5 equivalent with respect to 1 equivalent of the epoxy group contained in the epoxy resin composition.
  • the epoxy resin composition further comprises a component (D), The component (D) is dicyandiamide; Any one of [1] to [17], wherein the content of the component (D) is 0.1 to 5 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition.
  • the component (C) further comprises a component (E), The component (E) is an imidazole compound that is liquid at 25 ° C.
  • the compound having two cyclic acid anhydrides in the molecule is glyceryl bisanhydro trimellitate monoacetate, ethylene glycol bis anhydro trimellitate, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, 1 , 2,3,4-cyclobutanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, diphenyl-3,3 ′ , 4,4'-tetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3 -Yl) -tetralin-1,2-dicarboxylic anhydride, 5- (2,5-dioxotetrahydrofuryl)
  • the listed sheet molding compound is 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine.
  • the listed sheet molding compound [23]
  • the component (E) is selected from the group consisting of 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • the sheet molding compound according to [19] which is at least one kind.
  • the sheet molding compound according to [10] wherein the glycidylamine epoxy resin is N, N, N ′, N′-tetraglycidyl-m-xylylenediamine.
  • the sheet molding compound of the present invention is impregnated into reinforcing fibers, B-stage stability, handling workability (tacking and draping properties) after B-stage, storage stability, fast curability when heated, press
  • the matrix resin has excellent fluidity and fast curability during molding, and there are few burrs on the mold.
  • the fiber-reinforced composite material of the present invention which is a cured product of this sheet molding compound, is excellent in demoldability, rigidity, mechanical properties, and heat resistance.
  • Epoxy resin is a compound having two or more epoxy groups in the molecule.
  • the “acid anhydride group” is a group having a structure in which one water molecule is removed from two acid groups (carboxy group or the like).
  • An “acid anhydride” is a compound having an acid anhydride group.
  • “Hydrogenated phthalic anhydride” is a compound in which some or all of the unsaturated carbon bonds of the benzene ring of phthalic anhydride are replaced with saturated carbon bonds.
  • “Viscosity” is a value measured using a rheometer under the following conditions: measurement mode: constant stress, stress value: 300 Pa, frequency: 1.59 Hz, plate diameter: 25 mm, plate type: parallel plate, plate gap: 0.5 mm It is.
  • the “burr” is an unnecessary portion formed at the end of the molded product, which is formed by the resin flowing into the gap between the molds during press molding and solidifying.
  • “ ⁇ ” indicating a numerical range means that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the sheet molding compound of the present invention is a thickened product of the epoxy resin composition described later.
  • the epoxy resin composition used in the present invention contains component (A): an epoxy resin that is liquid at 25 ° C., component (B): an acid anhydride, and component (C): an epoxy resin curing agent.
  • This epoxy resin composition forms an ester bond by the action of component (B) with component (A), and thickens immediately after preparation.
  • This thickened product is the sheet molding compound of the present invention.
  • the epoxy resin composition may further contain component (D): dicyandiamide.
  • the component (C) may further contain a component (E): an imidazole compound that is liquid at 25 ° C.
  • the epoxy resin composition used in the present invention may contain other components as necessary within a range not impairing the effects of the present invention.
  • the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after the preparation measured by the following viscosity measurement (a) is preferably 0.5 to 15 Pa ⁇ s, more preferably 0.5 to 10 Pa ⁇ s, 5 Pa ⁇ s is more preferable. If the viscosity at 30 ° C. 30 minutes after the preparation is 0.5 Pa ⁇ s or more, more preferably 1 Pa ⁇ s or more, the epoxy resin composition is applied to the film during the production of the sheet molding compound of the present invention. The accuracy of the basis weight (the thickness of the epoxy resin composition) tends to be stable. Further, if the viscosity at 30 ° C.
  • the viscosity at 30 ° C. of the epoxy resin composition 10 days after the preparation measured by the following viscosity measurement (b) is preferably 2000 to 55,000 Pa ⁇ s, more preferably 2000 to 42,000 Pa ⁇ s, and 4000 to 20 1,000 Pa ⁇ s is more preferable. If the viscosity at 30 ° C. 10 days after the preparation is 2000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, the surface tack tends to be reduced during the handling of the sheet molding compound. If the viscosity at 30 ° C.
  • the viscosity at 30 ° C. of the epoxy resin composition 20 days after the preparation measured by the following viscosity measurement (c) is preferably 2000 to 100,000 Pa ⁇ s, more preferably 4000 to 80,000 Pa ⁇ s, and 5000 to 70. 1,000 Pa ⁇ s is more preferable. If the viscosity at 30 ° C. after 20 days from the preparation is 2000 Pa ⁇ s or more, more preferably 4000 Pa ⁇ s or more, and even more preferably 5000 Pa ⁇ s or more, the surface tack tends to be reduced when the sheet molding compound is handled. is there. If the viscosity at 30 ° C.
  • the drapeability of the sheet molding compound is appropriate. It is in the range, and the handling workability tends to be good. Moreover, that the viscosity in 30 degreeC 20 days after preparation is in the said range has shown that B stage can be hold
  • the viscosity (b) measured in the viscosity measurement (b) and the viscosity (c) measured in the viscosity measurement (c) are [viscosity (c)] / [viscosity (b)] ⁇ 3. If there is a relationship, the stability of the B stage tends to be more excellent, the change in the viscosity of the sheet molding compound over time is small, and the storage stability tends to be excellent, which is preferable. More preferably, [Viscosity (c)] / [Viscosity (b)] is in the range of 0.3 to 3, more preferably in the range of 0.5 to 3.
  • Component (A) is an epoxy resin that is liquid at 25 ° C.
  • the component (A) is a component that adjusts the viscosity of the epoxy resin composition within the above range and enhances the impregnation property of the epoxy resin composition into the reinforcing fibers at the time of manufacturing the sheet molding compound. Moreover, it is a component which improves the mechanical characteristics and heat resistance of a fiber reinforced composite material which are the hardened
  • Component (A) includes glycidyl ethers of bisphenols (bisphenol A, bisphenol F, bisphenol AD, halogen substituted products thereof, etc.); glycidyl polyhydric phenols obtained by condensation reaction of phenols and aromatic carbonyl compounds Ethers; glycidyl ethers of polyhydric alcohols (polyoxyalkylene bisphenol A and the like); polyglycidyl compounds derived from aromatic amines, and the like.
  • bisphenols bisphenol A, bisphenol F, bisphenol AD, halogen substituted products thereof, etc.
  • glycidyl polyhydric phenols obtained by condensation reaction of phenols and aromatic carbonyl compounds Ethers
  • glycidyl ethers of polyhydric alcohols polyoxyalkylene bisphenol A and the like
  • polyglycidyl compounds derived from aromatic amines and the like.
  • a bisphenol-type epoxy is used because it is easy to adjust the viscosity of the epoxy resin composition to a viscosity suitable for impregnation of reinforcing fibers and to easily adjust the mechanical properties of the fiber-reinforced composite material to a desired range. Resins are preferred.
  • the bisphenol type epoxy resin a bifunctional bisphenol type epoxy resin is preferable. From the viewpoint of good heat resistance and chemical resistance of the fiber reinforced composite material, a bisphenol A type epoxy resin is more preferable. A bisphenol F type epoxy resin is more preferable from the viewpoint that the viscosity is lower than that of the bisphenol A type epoxy resin having the same molecular weight and the elastic modulus of the fiber reinforced composite material is high.
  • the “bifunctional bisphenol type epoxy resin” means a bisphenol type epoxy resin having two epoxy groups in the molecule.
  • the component (A) may be a trifunctional or higher functional epoxy resin.
  • Trifunctional epoxy resins and tetrafunctional epoxy resins can further improve the heat resistance of the fiber-reinforced composite material without greatly changing the viscosity of the epoxy resin composition.
  • the “trifunctional epoxy resin” means a resin having three epoxy groups in the molecule.
  • the “tetrafunctional epoxy resin” means a resin having four epoxy groups in the molecule.
  • JER registered trademark 825, 827, 828, 828EL, 828XA, 806, 806H, 807, 4004P, 4005P, 4007P, 4010P, manufactured by Mitsubishi Chemical Corporation DIC, Epicron (registered trademark) 840, 840-S, 850, 850-S, EXA-850CRP, 850-LC, 830, 830-S, 835, EXA-830CRP, EXA-830LVP, EXA-835LV, EPOTOTO (registered trademark) YD-115, YD-115G, YD-115CA, YD-118T, YD-127, YD-128, YD-128G, YD-128S, YD-128CA, YDF- manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. 170, YDF-2001, YDF-2004,
  • JER registered trademark
  • JER registered trademark
  • the change in the viscosity of the epoxy resin composition with time can be accelerated. That is, by adjusting the content of this glycidylamine-based epoxy resin, the viscosity values of the above-mentioned viscosity (b) and viscosity (c) can be controlled, and the time for making the B-stage in the production of the sheet molding compound is accelerated. Productivity can also be increased.
  • this glycidylamine epoxy resin it is preferably contained in an amount of about 1 to 30% by mass with respect to 100% by mass of component (A).
  • a component (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of component (A) in the epoxy resin composition used in the present invention may be set so that the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation is 0.5 to 15 Pa ⁇ s.
  • the content of component (A) is preferably 20 to 100% by mass, more preferably 50 to 95% by mass, out of 100% by mass of the total amount of epoxy resin contained in the epoxy resin composition. If content of a component (A) is in the said range, the viscosity of an epoxy resin composition can be easily adjusted to the said range, and the impregnation property to a reinforced fiber will become high. Further, the heat resistance of the fiber reinforced composite material is increased.
  • Component (B) is an acid anhydride.
  • the component (B) is a component that can act on the component (A) at room temperature, and is a component that thickens the epoxy resin composition immediately after preparation and B-stages it as a sheet molding compound.
  • This component (B) is preferably liquid at 25 ° C. Thereby, each component in an epoxy resin composition is mixed uniformly, and an epoxy resin composition can be thickened uniformly.
  • Component (B) can include cyclic acid anhydrides having a structure in which one or more water molecules have been removed from two or more acids in the molecule, and these include 1 Including compounds having one or more cyclic anhydride groups.
  • the compound having one cyclic acid anhydride group includes dodecenyl succinic anhydride, polyadipic anhydride, polyazelinic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, Hexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride, 3-acetamidophthalic anhydride, 4-pentene-1,2-dicarboxylic anhydride, 6-bromo-1,2-dihydro-4H-3,1 -Benzoxazine-2,4-dione, 2,3-anthracene dicarboxylic acid anhydride and the like.
  • Examples of the compound having two cyclic acid anhydride groups include glyceryl bisanhydro trimellitate monoacetate, ethylene glycol bisanhydro trimellitate, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, 1, 2, 3,4-cyclobutanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, diphenyl-3,3 ′, 4 4′-tetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -Tetralin-1,2-dicarboxylic anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclo
  • Component (B) is a hydrogenated anhydride that may have phthalic anhydride or a substituent from the viewpoint of the stability of thickening of the epoxy resin composition, the heat resistance of the cured product of the epoxy resin composition, and mechanical properties.
  • Phthalic acid is preferable, and a compound represented by the following formula (1) or a compound represented by the following formula (2) is more preferable.
  • a component (B) it is preferable to use the compound which has two cyclic acid anhydrides in a molecule
  • a component (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of component (B) is preferably such that the acid anhydride group is 0.1 to 0.5 equivalents relative to 1 equivalent of the epoxy groups contained in the epoxy resin composition. An amount of ⁇ 0.4 equivalent is preferred, and an amount of 0.1 ⁇ 0.3 equivalent is more preferred. If the content of the component (B) is within the above range, the B molding of the sheet molding compound proceeds appropriately. By setting the content of the component (B) to be equal to or more than the lower limit of the above range, the B molding of the sheet molding compound is satisfactorily achieved, an appropriate tack is obtained, and the release property of the carrier film from the sheet molding compound is obtained. Tend to be good.
  • the B molding of the sheet molding compound proceeds appropriately, so that good draping properties can be obtained and the sheet molding compound cutting operation and laminating operation are performed.
  • the workability such as the above tends to be good.
  • the content of component (B) is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. More preferably, it is 5 to 25 parts by mass, and still more preferably 8 to 20 parts by mass. If the content of the component (B) is within the above range, the B molding of the sheet molding compound proceeds appropriately. By making content of a component (B) into 3 mass parts or more with respect to 100 mass parts of all the epoxy resins contained in an epoxy resin composition, More preferably, it is 5 mass parts or more, More preferably, it is 8 mass parts or more. B molding of the molding compound is well achieved, an appropriate tack is obtained, and the release property of the carrier film from the sheet molding compound tends to be good.
  • the content of the component (B) By setting the content of the component (B) to 30 parts by mass or less, more preferably 25 parts by mass or less, more preferably 20 parts by mass or less with respect to 100 parts by mass of the total epoxy resin contained in the poxy resin composition, Since the B molding of the sheet molding compound proceeds appropriately, good drapeability is obtained, and workability such as sheet molding compound cutting work and stacking work tends to be good.
  • the content is 100 mass parts of all the epoxy resins contained in an epoxy resin composition
  • the amount is preferably 1 to 20 parts by mass.
  • the amount is more preferably 1 to 10 parts by mass, and further preferably 1 to 5 parts by mass.
  • the content of the compound having two cyclic acid anhydrides in the molecule is 20% by mass or less, more preferably 10 parts by mass or less, more preferably 100% by mass with respect to 100 parts by mass of all epoxy resins contained in the epoxy resin composition.
  • the content is 5 parts by mass or less, the fluidity in the molding die of the sheet molding compound during press molding tends to be good.
  • Component (C) is an epoxy resin curing agent.
  • the component (C) acts as a curing agent for the epoxy resin, and the component (A) and the component (B) are reacted at room temperature during the B-staging in which the component (A) and the component (B) react. It is a component that acts as a catalyst.
  • This component (C) is preferably solid at 25 ° C.
  • component (C) examples include aliphatic amines, aromatic amines, modified amines, secondary amines, tertiary amines, imidazole compounds, mercaptans, and the like.
  • Component (C) is preferably an imidazole compound having a melting point of 120 to 300 ° C. from the viewpoint of storage stability of the sheet molding compound containing the above epoxy resin composition, for example, 2,4-diamino-6- [2′-Methylimidazolyl- (1 ′)]-ethyl-s-triazine can be preferably used.
  • component (E) a liquid imidazole compound
  • component (E) a liquid imidazole compound
  • component (E) examples include 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, and the like.
  • the content of component (E) is preferably 0.01 to 0.2 parts by weight, more preferably 0.01 to 0.1 parts by weight, with respect to 100 parts by weight of the total epoxy resin contained in the epoxy resin composition.
  • 0.03 to 0.07 parts by mass is more preferable.
  • Said component (C) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of component (C) is preferably 0.1 to 25 parts by weight, more preferably 2 to 10 parts by weight, with respect to 100 parts by weight of the total epoxy resin contained in the epoxy resin composition. Part is more preferred.
  • the content of the component (C) is 0.1 parts by mass or more, more preferably 2 parts by mass or more, and even more preferably 3 parts by mass or more, the quick curability at the time of molding the sheet molding compound tends to be good. It is in.
  • the content of the component (C) to 25 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 7 parts by mass or less, the stability of the B stage at the time of manufacturing the sheet molding compound is improved. There is a tendency.
  • the particle size of component (C) at 25 ° C. may affect the properties of the sheet molding compound. For example, when the particle size of the component (C) is large, the surface area of the component (C) becomes small, and it is necessary to increase the content of the component (C) in order to cure the epoxy resin composition in a short time. There is. Moreover, when the particle diameter of a component (C) is large, the ratio of the epoxy resin composition which penetrate
  • the average particle size of the component (C) is preferably 25 ⁇ m or less, and more preferably 15 ⁇ m or less.
  • the average particle diameter can be measured using a particle size distribution measuring apparatus having a measurement principle such as an image analysis method, a laser diffraction scattering method, a Coulter method, or a centrifugal sedimentation method.
  • Component (D) is dicyandiamide.
  • the toughness of the cured product of the sheet molding compound obtained from this epoxy resin composition without impairing the B-stage of the sheet molding compound and its stability and rapid curing property.
  • the heat resistance can be further improved.
  • the content of component (D) is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 5 parts by weight, with respect to 100 parts by weight of the total epoxy resin contained in the epoxy resin composition. 4 parts by mass is more preferable.
  • the toughness and heat resistance of the cured product of the sheet molding compound is good. It tends to be.
  • the content of the component (D) is 5 parts by mass or less, more preferably 4 parts by mass or less, the stability of the B stage at the time of manufacturing the sheet molding compound tends to be good.
  • epoxy resin composition may contain as necessary include an epoxy resin curing accelerator, an inorganic filler, an internal mold release agent, a surfactant, an organic pigment, an inorganic pigment, and a component.
  • Epoxy resins other than (A) other resins (thermoplastic resins, thermoplastic elastomers and elastomers) and the like can be mentioned.
  • a urea compound is preferable because the mechanical properties (bending strength and flexural modulus) of the fiber-reinforced composite material are increased.
  • urea compounds include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3- (3-chloro-4-methylphenyl) -1,1- Examples include dimethylurea, 2,4-bis (3,3-dimethylureido) toluene, 1,1 ′-(4-methyl-1,3-phenylene) bis (3,3-dimethylurea) and the like.
  • Examples of the inorganic filler include calcium carbonate, aluminum hydroxide, clay, barium sulfate, magnesium oxide, glass powder, hollow glass beads, and aerosil.
  • Examples of the internal release agent include carnauba wax, zinc stearate, calcium stearate and the like.
  • the releasability of the carrier film from the sheet molding compound can be improved.
  • voids contained in the sheet molding compound can be reduced.
  • Examples of the epoxy resin other than the component (A) include an epoxy resin that is semi-solid or solid at 25 ° C.
  • an epoxy resin other than the component (A) an epoxy resin having an aromatic ring is preferable, and a bifunctional epoxy resin is more preferable.
  • various epoxy resins may be included in the epoxy resin composition of the present invention for the purpose of improving the heat resistance of the cured product and adjusting the viscosity of the epoxy resin composition. In order to improve heat resistance, polyfunctional epoxy resins, novolac type epoxy resins, and epoxy resins having a naphthalene skeleton are effective.
  • thermoplastic resins, thermoplastic elastomers and elastomers not only change the viscoelasticity of the epoxy resin composition to optimize the viscosity, storage modulus and thixotropic properties of the epoxy resin composition, but also cure the epoxy resin composition. There is a role to improve the toughness of things.
  • a thermoplastic resin, a thermoplastic elastomer, and an elastomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the epoxy resin composition of the present invention can be prepared by a conventionally known method.
  • each component may be mixed and prepared at the same time, and a master batch in which component (B), component (C), etc. are appropriately dispersed in component (A) in advance is prepared and used. May be.
  • a master batch in which component (B), component (C), etc. are appropriately dispersed in component (A) in advance is prepared and used. May be.
  • measures that do not raise the temperature during kneading such as adjusting the kneading speed or water cooling the preparation kettle or kneading kettle.
  • Examples of the kneading apparatus include a rough machine, an attritor, a planetary mixer, a dissolver, a triple roll, a kneader, a universal stirrer, a homogenizer, a homodispenser, a ball mill, and a bead mill. Two or more kneading apparatuses may be used in combination.
  • the viscosity immediately after preparation can be lowered, for example, after 30 minutes
  • the viscosity at 30 ° C. of the epoxy resin composition can be 15 Pa ⁇ s or less, it is excellent in impregnation into reinforcing fibers and can be suitably used for producing a sheet molding compound.
  • the viscosity can be increased in a short time after preparation. For example, the viscosity at 30 ° C.
  • the viscosity after thickening can be maintained for a long time.
  • the viscosity at 30 ° C. of the epoxy resin composition 20 days after preparation is 2000 to 100,000 Pa ⁇ s. Therefore, it is excellent in tackiness and draping properties after B-stage formation and B-stage stability.
  • this epoxy resin composition since it contains a component (A), it is excellent in the rigidity, mechanical characteristics, and heat resistance of the cured product of the sheet molding compound.
  • the sheet molding compound may contain reinforcing fibers.
  • Various reinforcing fibers can be used depending on the purpose and purpose of use of the sheet molding compound, including carbon fibers (including graphite fibers; the same applies hereinafter), aramid fibers, silicon carbide fibers, alumina fibers, and boron. Examples thereof include fibers, tungsten carbide fibers, and glass fibers. From the viewpoint of mechanical properties of the fiber-reinforced composite material, carbon fibers and glass fibers are preferable, and carbon fibers are particularly preferable.
  • the reinforcing fiber is usually used in the state of a reinforcing fiber bundle composed of single fibers in the range of 1000 or more and 60000 or less.
  • the reinforcing fiber bundle may exist while maintaining the shape of the reinforcing fiber bundle, or may exist in a bundle of fewer fibers. In SMC, they usually exist in smaller bundles.
  • a chopped reinforcing fiber bundle made of short fibers is preferable.
  • the length of the short fiber is preferably 0.3 to 10 cm, and more preferably 1 to 5 cm. If the length of the short fiber is 0.3 cm or more, a fiber-reinforced composite material having good mechanical properties can be obtained. If the length of the short fiber is 10 cm or less, an SMC having good flow characteristics during press molding can be obtained.
  • a form of the reinforcing fiber in SMC a sheet-like product in which chopped reinforcing fiber bundles are stacked two-dimensionally at random is more preferable.
  • the SMC is manufactured, for example, by sufficiently impregnating the epoxy resin composition into a sheet of a chopped reinforcing fiber bundle and thickening the epoxy resin composition.
  • the temperature is from room temperature to about 60 ° C. for several hours to several tens of days, or about 60 to 80 ° C.
  • the epoxy group possessed by the component (A) in the epoxy resin composition and other epoxy resins optionally blended with the carboxy group derived from the component (B) is an ester.
  • the epoxy resin composition is B-staged.
  • the reaction conditions between the epoxy group of the epoxy resin and the carboxyl group derived from the component (B) are selected so that the viscosity at 30 ° C. of the thickened product of the epoxy resin composition obtained after the esterification reaction is within the above-mentioned range. It is preferable.
  • the SMC of the present invention described above includes a thickened product of an epoxy resin composition that is excellent in tackiness and drapeability after B-stage formation, and is therefore excellent in handling workability (tackiness and drapeability).
  • the SMC of the present invention includes a thickened product of the epoxy resin composition of the present invention that is excellent in the stability of the B stage, the fluidity of the matrix resin during press molding is excellent, and Generation of burrs can be suppressed.
  • the SMC of the present invention is excellent in rapid curability during press molding. Since the curing speed at the time of press molding is fast, the mold occupation time is shortened, and the productivity of the fiber-reinforced composite material is increased.
  • the SMC of the present invention includes a thickened product of an epoxy resin composition excellent in rigidity, mechanical properties and heat resistance of the cured product, it is a fiber reinforced composite excellent in demoldability, mechanical properties and heat resistance. Material can be obtained.
  • the fiber-reinforced composite material of the present invention is a cured product of the SMC of the present invention.
  • the fiber-reinforced composite material of the present invention is produced by thermoforming the SMC and curing the above-mentioned resin composition that has been B-staged.
  • the following method is mentioned, for example.
  • One SMC or a stack of a plurality of SMCs is set between a pair of molds.
  • SMC is heated and compressed at 120 to 230 ° C. for 2 to 60 minutes to cure the epoxy resin composition to obtain a fiber-reinforced composite material as a molded product.
  • a honeycomb structure such as corrugated cardboard may be used as a core material, and SMC may be disposed on both sides or one side.
  • the fiber-reinforced composite material of the present invention described above is a cured product of the SMC of the present invention, it is excellent in demoldability, mechanical properties, and heat resistance.
  • jER (registered trademark) 828 bisphenol A type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, viscosity at 25 ° C .: 12 Pa ⁇ s).
  • jER (registered trademark) 807 Bisphenol F type liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation, viscosity at 25 ° C .: 4 Pa ⁇ s).
  • jER (registered trademark) 604 tetraglycidyldiaminodiphenylmethane (manufactured by Mitsubishi Chemical Corporation, viscosity at 25 ° C .: 360 Pa ⁇ s).
  • jER (registered trademark) 630 triglycidyl-p-aminophenol (manufactured by Mitsubishi Chemical Corporation, viscosity at 25 ° C .: 0.7 Pa ⁇ s).
  • TETRAD-X N, N, N ′, N′-tetraglycidyl-m-xylylenediamine (manufactured by Mitsubishi Gas Chemical Company, viscosity at 25 ° C .: 2 Pa ⁇ s).
  • HN-2200 3-methyl-1,2,3,6-tetrahydrophthalic anhydride or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., viscosity at 25 ° C .: 75 mPa ⁇ s).
  • HN-2000 3-methyl-1,2,3,6-tetrahydrophthalic anhydride or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., viscosity at 25 ° C .: 40 mPa ⁇ s).
  • HN-5500 3-methyl-hexahydrophthalic anhydride or 4-methyl-hexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., viscosity at 25 ° C .: 75 mPa ⁇ s).
  • MHAC-P Methyl-5-norbornene-2,3-dicarboxylic anhydride (manufactured by Hitachi Chemical Co., Ltd., viscosity at 25 ° C .: 225 mPa ⁇ s).
  • HN-2200 3-methyl-1,2,3,6-tetrahydrophthalic anhydride or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd.).
  • MH-700 A mixture of 4-methyl-hexahydrophthalic anhydride and hexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd.).
  • TMEG-600 ethylene glycol-bis (anhydrotrimellitate) (manufactured by Shin Nippon Chemical Co., Ltd.).
  • MTA-15 A mixture of 4-methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, and glyceryl bis (anhydrotrimellitate) monoacetate (manufactured by Shin Nippon Rika Co., Ltd.).
  • DICYANEX 1400F Dicyandiamide (manufactured by Air Products).
  • Measurement mode constant stress, Stress value: 300 Pa, Frequency: 1.59 Hz Plate diameter: 25mm, Plate type: Parallel plate, Plate gap: 0.5 mm.
  • Measurement mode constant stress, Stress value: 300 Pa, Frequency: 1.59 Hz Plate diameter: 25mm, Plate type: Parallel plate, Plate gap: 0.5mm Temperature: 2 ° C./min. From 30 ° C. to the warm side immediately before the epoxy resin composition starts the curing reaction (that is, the temperature at which the viscosity suddenly increases). Temperature rise at
  • the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after the preparation is a measure of impregnation property when the epoxy resin composition impregnates the reinforcing fibers.
  • the viscosity after 30 minutes was evaluated according to the following criteria. A: The viscosity after 30 minutes is 15 Pa ⁇ s or less (excellent impregnation property). B: The viscosity after 30 minutes is more than 15 Pa ⁇ s.
  • the viscosity at 30 ° C. of the epoxy resin composition 10 days after the preparation is a measure of whether SMC can exhibit appropriate tackiness and draping properties in a short time and maintain good handling workability.
  • the viscosity after 10 days was evaluated according to the following criteria. A: The viscosity after 10 days is 2000 to 55,000 Pa ⁇ s (excellent workability). B: The viscosity after 10 days is less than 2000 Pa ⁇ s or more than 55,000 Pa ⁇ s.
  • the viscosity at 30 ° C. of the epoxy resin composition 20 days after preparation is a measure for determining whether the SMC is a B-stage thickener that can exhibit appropriate tackiness and draping properties.
  • Viscosity after 20 days is 2000 to 50,000 Pa ⁇ s (excellent in B-stage stability).
  • B The viscosity after 20 days is less than 2000 Pa ⁇ s or more than 100,000 Pa ⁇ s.
  • the temperature rising viscosity measurement is a measure of SMC fluidity during press molding. From the results of the temperature rise viscosity measurement, the higher the viscosity immediately before the epoxy resin composition starts the curing reaction (that is, the viscosity at which the viscosity suddenly increases), the more the generation of burrs during press molding can be suppressed.
  • the temperature rise viscosity was evaluated according to the following criteria. A: The viscosity immediately before starting the curing reaction of the epoxy resin composition after 7 days is 0.5 Pa ⁇ s to 500 Pa ⁇ s (good SMC fluidity during press molding). B: The viscosity immediately before starting the curing reaction of the epoxy resin composition after 7 days is less than 0.5 Pa ⁇ s or more than 500 Pa ⁇ s.
  • the epoxy resin composition was weighed on a standard aluminum hermetic pan of a differential scanning calorimeter (TA Instrument Co., Ltd., Q1000), and a sample was prepared by capping with a standard aluminum lid. The temperature was raised from 30 ° C. to 140 ° C. at 200 ° C./min according to the temperature control program of the apparatus, and then held at 140 ° C. for 30 minutes to obtain a DSC exothermic curve of the epoxy resin composition under a series of control temperatures. .
  • the curing completion time is a measure of the molding time of the molding material.
  • the fast curability was evaluated according to the following criteria. A: Curing completion time is within 10 minutes (good fast curability). B: Curing completion time is more than 10 minutes.
  • the epoxy resin composition is degassed in a vacuum and injected between two 4 mm thick glass plates with a 2 mm thick polytetrafluoroethylene spacer sandwiched between them. After heating for 10 minutes in a circulating thermostat, it was cooled to obtain a cured resin plate.
  • a cured resin plate is processed into a 55 mm long x 12.5 mm wide test piece and measured with a rheometer (TA Instruments, ARES-RDA) at a measurement frequency of 1 Hz and a heating rate of 5 ° C./min. It was.
  • Log G ′ is plotted against temperature, and the temperature at the intersection of the approximate straight line of the flat region of log G ′ and the approximate straight line of the region where log G ′ decreases rapidly is defined as the glass transition temperature (G′ ⁇ Tg (° C.)). Recorded. Further, the top of the peak of Log G ′′ was set to G ′′ -Tg (° C.).
  • the top of the tan ⁇ peak was defined as tan ⁇ (° C.).
  • the heat resistance was evaluated according to the following criteria.
  • the epoxy resin compositions of Examples 1 to 23 have a low viscosity after 30 minutes from the preparation, and are excellent in impregnation properties when producing SMC. Further, it is moderately B-staged 10 days after preparation, and when it is SMC, it has moderate tack and drape properties. Also, the stability of the B stage is good. Furthermore, it has good fast curability, and when it is SMC, it can be molded in a short time. Cured SMCs obtained from the epoxy resin compositions of Examples 1 to 23 have no burrs, high bending strength, high bending elastic modulus, and high heat resistance.
  • Comparative Examples 1 and 2 are examples in which epoxy resin compositions were prepared with reference to Examples in Patent Documents 6 to 8.
  • the epoxy resin compositions of Comparative Examples 1 and 2 have a low viscosity 30 minutes after preparation and good impregnation properties, but have a low viscosity 20 days after preparation and a very strong tack.
  • the stickiness is strong and the handling workability is poor.
  • it is inferior in quick-curing property, and time required for hardening is long.
  • the mold occupation time becomes long.
  • Comparative Example 3 is an example in which an epoxy resin composition was prepared with reference to Examples in Patent Documents 6 to 8.
  • the epoxy resin composition of Comparative Example 3 has a low viscosity 30 minutes after preparation and a high impregnation property. Moreover, 20 days after preparation, it is appropriately B-staged, and when used as a molding material, it has moderate tack and drape properties. However, it is inferior in rapid curability and takes a long time for curing. When a molding material is used, the mold occupation time becomes long.
  • the same epoxy resin composition was apply
  • the chopped carbon fiber bundle was sandwiched between the two carrier films so that the epoxy resin composition side was the inside. This was pressed between rolls to impregnate the chopped carbon fiber bundle with the epoxy resin composition to obtain an SMC precursor.
  • the epoxy resin composition in the SMC precursor was sufficiently thickened to obtain SMC.
  • the SMC precursor was cut about 30 cm, the impregnation state was visually confirmed, and the following criteria were evaluated. A: There is no dry carbon fiber or the like on the cut surface, and the impregnation property is good. B: Dry carbon fiber is confirmed on the cut surface, and impregnation is not good.
  • Tackiness The tackiness of SMC was evaluated according to the following criteria. A: When SMC was touched by hand, it had an appropriate tack, and SMC lamination work was simple. B: When SMC was touched by hand, stickiness was strong or stickiness was weak and lamination work It was difficult.
  • the draping property of SMC was evaluated according to the following criteria. A: When the SMC was touched by hand, it had moderate flexibility and was easy to cut and carry. B: When the SMC was touched by hand, it was poor in flexibility and difficult to cut and carry.
  • a CFRP molding plate is processed into a 55 mm long x 12.5 mm wide test piece, and measured using a rheometer (TA Instruments, ARES-RDA) at a measurement frequency of 1 Hz and a heating rate of 5 ° C./min. It was.
  • Log G ′ is plotted against temperature, and the temperature at the intersection of the approximate straight line of the flat region of log G ′ and the approximate straight line of the region where log G ′ decreases rapidly is defined as the glass transition temperature (G′ ⁇ Tg (° C.)). Recorded. Further, the top of the peak of Log G ′′ was set to G ′′ -Tg (° C.).
  • the top of the tan ⁇ peak was defined as tan ⁇ (° C.).
  • the heat resistance was evaluated according to the following criteria.
  • SMCs were produced using the epoxy resin compositions of Examples 24 to 26 to produce fiber reinforced composite materials.
  • the impregnation, tackiness, and drape were good, and the handling workability was very good. In addition, it had high heat resistance, retained sufficient rigidity when taken out from the mold, and had good mold release properties.
  • the epoxy compositions of Examples 27 to 30 have a low viscosity after 30 minutes from the preparation, and have excellent impregnation properties when producing SMC. Further, it is moderately B-staged 10 days after preparation, and when it is SMC, it has moderate tack and drape properties. Also, the stability of the B stage is good. Furthermore, it has good fast curability, and when it is SMC, it can be molded in a short time.
  • the cured SMCs obtained from the epoxy resin compositions of Examples 27 to 30 have no burrs, high bending strength, high bending elastic modulus, and high heat resistance.
  • the sheet molding compound according to the present invention has an impregnation property to reinforcing fibers, tackiness and drape after B-stage, B-stage stability (fluidity during press molding), and fast curability when heated (press molding) The mold occupancy time is short), and the cured product has excellent heat resistance.
  • the sheet molding compound of the present invention is suitable as a raw material for industrial and automotive structural parts because it has excellent mechanical properties and heat resistance after curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

成分(A)、成分(B)、及び成分(C)を含むエポキシ樹脂組成物の増粘物であるシートモールディングコンパウンドであって、前記成分(A)が25℃において液状のエポキシ樹脂であり、前記成分(B)が酸無水物であり、前記成分(C)がエポキシ樹脂硬化剤であり、前記増粘物は、前記成分(A)のエポキシ基の少なくとも一部と、前記(B)成分に由来するカルボキシ基の少なくとも一部とでエステルを形成している、シートモールディングコンパウンド。

Description

シートモールディングコンパウンド、および繊維強化複合材料
 本発明は、シートモールディングコンパウンド、および繊維強化複合材料に関する。
 本願は、2017年4月12日に、日本に出願された特願2017-079132号に基づき優先権を主張し、その内容をここに援用する。
 炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料は、その優れた機械特性等から、航空機、自動車、産業用途に幅広く用いられている。近年、その使用実績を積むにしたがって炭素繊維強化複合材料の適用範囲はますます拡がってきている。炭素繊維強化複合材料のマトリックス樹脂には、高温環境にあっても高度の機械特性を発現することが必要とされる。また、炭素繊維強化複合材料の製造に用いられる成形材料(シートモールディングコンパウンド(以下、SMCとも記す。)、プリプレグ等)のマトリックス樹脂には、成形性に優れることが必要とされる。
 成形材料のマトリックス樹脂としては、炭素繊維への含浸性や硬化後の耐熱性に優れる熱硬化性樹脂を含む樹脂組成物が用いられることが多い。熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が用いられている。このうち、エポキシ樹脂組成物は、成形性および硬化後の耐熱性に優れており、エポキシ樹脂組成物を用いた炭素繊維強化複合材料が高度の機械特性を発揮できることから、マトリックス樹脂として好適である。
 成形材料を成形して炭素繊維強化複合材料を製造する方法としては、オートクレーブ成形法、フィラメントワインド成形法、樹脂注入成形法、真空樹脂注入成形法、プレス成形法等がある。このうち、プレス成形法は、生産性が高く、優れた意匠面を有する炭素繊維強化複合材料が得られやすいことから需要が高まっている。プレス成形法に用いる成形材料としては、複雑な形状の炭素繊維強化複合材料の製造が可能であり、構造部材に最適な炭素繊維強化複合材料が得られることから、強化短繊維とマトリックス樹脂とから構成されるSMCが活発に利用されている。
 SMCに用いられるマトリックス樹脂には、下記の特性が求められる。
 ・SMCの製造時の炭素繊維への含浸性を確保するため、SMCのマトリックス樹脂には、SMCの製造時に非常に低粘度であることが求められる。
 ・プレス成形時のSMCの取り扱い作業性を確保するため、SMCのマトリックス樹脂には、適度に増粘することによってBステージ(半硬化によって増粘した状態であって、加熱によって流動化し得る状態)となり、適度なタック性(粘着性)およびドレープ性(柔軟性)を有することが求められる。
 ・プレス成形時のマトリックス樹脂の流動性を確保するため、SMCのマトリックス樹脂には、Bステージを長期間保持できること(Bステージの安定性)が求められる。
 ・プレス成形法においては短時間かつ高温でSMCを成形するため、SMCのマトリックス樹脂には、短時間で硬化し、かつ硬化後に高い耐熱性を有することが求められる。
 ・プレス成形後の脱型性を確保するために、SMCのマトリックス樹脂には、硬化後に剛性が高いことが求められる。
 ・高い機械特性および耐熱性を有する炭素繊維強化複合材料を得るため、SMCのマトリックス樹脂には、硬化後に高い機械特性および耐熱性を発現できることが求められる。
 しかし、エポキシ樹脂組成物は、硬化物の機械特性および耐熱性に優れるものの、速硬化性とBステージの安定性とを両立することは困難である。
 すなわち、エポキシ樹脂を短時間で硬化させる硬化剤は、室温において硬化反応を速やかに進行させるため、エポキシ樹脂組成物のBステージを長期間保持できない。一方、エポキシ樹脂組成物のBステージを長期間保持できる硬化剤は、短時間でエポキシ樹脂を硬化させることが困難である。
 そのため、SMCのマトリックス樹脂としては、通常、不飽和ポリエステル樹脂またはビニルエステル樹脂をスチレンで希釈した熱硬化性樹脂組成物が用いられる。しかし、不飽和ポリエステル樹脂やビニルエステル樹脂を含む熱硬化性樹脂組成物は、硬化収縮が大きいことから、硬化収縮が小さいエポキシ樹脂組成物を用いたSMCの開発が望まれている。
 SMCに用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
 (1)水酸基を有するエポキシ樹脂、ポリオール、ポリイソシアネート化合物からなる樹脂組成物(特許文献1)。
 (2)エポキシ樹脂、ポリオール、ポリイソシアネート化合物、ジシアンジアミド、特定のイミダゾール化合物からなる樹脂組成物(特許文献2)。
 接着剤に用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
 (3)エポキシ樹脂と、活性化温度が20~100℃である硬化剤と、活性化温度が100~200℃である硬化剤からなる液状接着剤(特許文献3)。
 (4)室温において固体のエポキシ樹脂、室温において液体のエポキシ樹脂、アミノ基末端を有する線状ポリオキシプロピレン、潜伏性硬化剤(ジシアンジアミド)を含有する反応性ホットメルト接着剤(特許文献4)。
 プリプレグに用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
 (5)エポキシ樹脂、潜在性硬化剤、重合性不飽和基を有する樹脂、重合開始剤を含有する含浸用樹脂組成物(特許文献5)。
 (6)エポキシ樹脂、酸無水物、ルイス酸塩(三塩化ホウ素アミン錯体)を含むエポキシ樹脂組成物(特許文献6~8)。
 エポキシ樹脂を安定してBステージ化することができるエポキシ樹脂組成物としては、下記のものが提案されている。
 (7)エポキシ樹脂と、硬化剤として2,5-ジメチル-2,5-ヘキサメチレンジアミン、メンセンジアミンを含有する樹脂組成物(非特許文献1)。
特開昭58-191723号公報 特開平4-88011号公報 特開平2-88684号公報 特開平2-88685号公報 特開平2-286722号公報 特開2004-189811号公報 特開2004-43769号公報 特開2001-354788号公報
新保正樹編、「エポキシ樹脂ハンドブック」、日刊工業新聞社、昭和62年12月25日、p.155
 (1)、(2)の樹脂組成物は、ウレタン化反応を利用しているため、樹脂組成物中の水分の影響で増粘反応速度とBステージの状態が大幅に変化する。そのため、SMCの取り扱い作業性およびBステージの安定性を確保することが困難である。
 (3)の液状接着剤は、活性化温度が20~100℃である硬化剤(ポリアミン、メルカプタン、イソシアネート、イミダゾール、ポリアミド、ポリサルファイドフェノール、BF錯体、ケチミン等)を用いているため、1段目の硬化反応でゲル化状態に至ってしまう。そのため、2段階目の硬化前では流動性が少なく、賦形が困難であり、SMCのマトリックス樹脂として用いることができない。
 (4)の反応性ホットメルト接着剤は、粘度が高く、強化繊維への良好な含浸性を得ることができず、SMCのマトリックス樹脂として用いることができない。
 (5)の含浸用樹脂組成物を用いたプリプレグの製造においては、含浸用樹脂組成物に溶媒を含ませ、加熱によって溶媒の除去および硬化反応の一部を進めることが、特許文献5に記載されている。この方法は、溶媒の除去が容易であり、加熱、冷却時の厚さによる温度むらが少ない薄いプリプレグの製造には適用できる。しかし、SMCのような厚物のシートでは、溶媒の除去が困難であり、温度むらが大きくなるため、Bステージ化後には表面と内部の状態が違った不良物となる。
 (6)のエポキシ樹脂組成物は、室温(23℃)でBステージ化するまでに時間が長くかかる。また、室温でBステージ化した後の粘度が低く、タックが強すぎるためSMCには適さない。
 (7)の樹脂組成物は、2、5-ジメチル-2,5-ヘキサンジアミンを含有するため、ポットライフが短い。また、メンセンジアミンを含有するため、樹脂組成物の硬化性が不十分である。そのため、SMCのマトリックス樹脂には適さない。
 本発明は、取り扱い作業性(タック性およびドレープ性)、プレス成形時のマトリックス樹脂の流動性および速硬化性に優れるとともに、バリの発生を抑えることができ、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができるシートモールディングコンパウンド;および、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を提供する。
 本発明者らは鋭意検討の結果、特定のエポキシ樹脂と、酸無水物と、エポキシ樹脂硬化剤とを用いることによって上記課題を解決できることを見出し、本発明に至った。
 本発明は、下記の態様を有する。
[1] 成分(A)、成分(B)、及び成分(C)を含むエポキシ樹脂組成物の増粘物であるシートモールディングコンパウンドであって、
 前記成分(A)が25℃において液状のエポキシ樹脂であり、
 前記成分(B)が酸無水物であり、
 前記成分(C)がエポキシ樹脂硬化剤であり、
 前記増粘物は、前記成分(A)のエポキシ基の少なくとも一部と、前記成分(B)に由来するカルボキシ基の少なくとも一部とでエステルを形成している、シートモールディングコンパウンド。
[2] さらに強化繊維を含む、[1]に記載のシートモールディングコンパウンド。
[3] 下記粘度測定(a)で測定される調製から30分後の前記エポキシ樹脂組成物の30℃における粘度が、0.5~15Pa・sである、[1]又は[2]に記載のシートモールディングコンパウンド。
 粘度測定(a):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で30分間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
[4] 下記粘度測定(b)で測定される調製から10日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~55,000Pa・sである、[1]~[3]のいずれか一項に記載のシートモールディングコンパウンド。
 粘度測定(b):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で10日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
[5] 下記粘度測定(c)で測定される調製から20日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~100,000Pa・sである、[1]~[3]のいずれか一項に記載のシートモールディングコンパウンド。
 粘度測定(c):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で20日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
[6] 下記粘度測定(b)で測定される調製から10日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~55,000Pa・sであり、
 下記粘度測定(c)で測定される調製から20日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~100,000Pa・sであり、
 前記粘度測定(b)にて測定される粘度(b)と、前記粘度測定(c)にて測定される粘度(c)が、[粘度(c)]/[粘度(b)]≦3の関係にある[1]~[3]のいずれか一項に記載のシートモールディングコンパウンド。
 粘度測定(b):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で10日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
 粘度測定(c):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で20日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
[7] 前記成分(B)の含有量が、前記エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1~0.5当量となる量である、[1]~[6]のいずれか一項に記載のシートモールディングコンパウンド。
[8] 前記成分(B)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して3~30質量部である、[1]~[7]のいずれか一項に記載のシートモールディングコンパウンド。
[9] 前記成分(C)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して0.1~25質量部である、[1]~[8]のいずれか一項に記載のシートモールディングコンパウンド。
[10] 前記成分(A)が、グリシジルアミン系エポキシ樹脂を含む、[1]~[9]のいずれか一項に記載のシートモールディングコンパウンド。
[11] 前記グリシジルアミン系エポキシ樹脂の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して1~30質量部である、[10]に記載のシートモールディングコンパウンド。
[12] 前記成分(B)が、25℃において液状である、[1]~[11]のいずれか一項に記載のシートモールディングコンパウンド。
[13] 前記成分(C)が、25℃において固体状である、[1]~[12]のいずれか一項に記載のシートモールディングコンパウンド。
[14] 前記成分(B)が、分子内に2つの環状酸無水物を有する化合物を含む、[1]~[13]のいずれか一項に記載のシートモールディングコンパウンド。
[15] 前記成分(B)が、無水フタル酸または置換基を有してもよい水素添加無水フタル酸を含む、[1]~[14]のいずれか一項に記載のシートモールディングコンパウンド。
[16] 前記成分(B)が、置換基を有してもよい水素添加無水フタル酸を含み、前記置換基を有してもよい水素添加無水フタル酸が、下記式(1)で表される化合物または下記式(2)で表される化合物である、[1]~[15]のいずれか一項に記載のシートモールディングコンパウンド。
Figure JPOXMLDOC01-appb-C000002
[17] 前記成分(C)が、融点が120~300℃であるイミダゾール系化合物を含む、[1]~[16]のいずれか一項に記載のシートモールディングコンパウンド。
[18] 前記エポキシ樹脂組成物が、成分(D)をさらに含み、
 前記成分(D)が、ジシアンジアミドであり、
 前記成分(D)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.1~5質量部である、[1]~[17]のいずれか一項に記載のシートモールディングコンパウンド。
[19] 前記成分(C)が、成分(E)をさらに含み、
 前記成分(E)が、25℃において液状のイミダゾール系化合物であり、
 前記成分(E)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.01~0.2質量部である、[1]~[18]のいずれか一項に記載のシートモールディングコンパウンド。
[20] [1]~[19]のいずれか一項に記載のシートモールディングコンパウンドの硬化物である、繊維強化複合材料。
[21]前記分子内に2つの環状酸無水物を有する化合物が、グリセリルビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジフェニル-3,3’,4,4’-テトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、N,N-ビス[2-(2,6-ジオキソモルホリノ)エチル]グリシン、4,4’-スルホニルジフタル酸無水物、4,4’-エチレンビス(2,6-モルホリンジオン)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)、及び4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物からなる群から選択される少なくとも1種である、[14]に記載のシートモールディングコンパウンド。
[22]前記融点が120~300℃であるイミダゾール系化合物が、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンである、[17]に記載のシートモールディングコンパウンド。
[23]前記成分(E)が、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、及び1-ベンジル-2-フェニルイミダゾールからなる群から選択される少なくとも1種である、[19]に記載のシートモールディングコンパウンド。
[24]前記グリシジルアミン系エポキシ樹脂が、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンである、[10]に記載のシートモールディングコンパウンド。
 本発明のシートモールディングコンパウンドは、強化繊維への含浸性、Bステージの安定性、Bステージ化後の取扱い作業性(タック性およびドレープ性)、貯蔵安定性、加熱した際の速硬化性、プレス成形時のマトリックス樹脂の流動性および速硬化性に優れるとともに、金型へのバリの発生が少ない。
 また、このシートモールディングコンパウンドの硬化物である本発明の繊維強化複合材料は、脱型性、剛性、機械特性および耐熱性に優れる。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「25℃において液状」とは、25℃、1気圧の条件下で液体であることを意味する。
 「25℃において固体状」とは、25℃、1気圧の条件下で固体であることを意味する。
 「エポキシ樹脂」は、エポキシ基を分子内に2個以上有する化合物である。
 「酸無水物基」は、2つの酸基(カルボキシ基等)から1つの水分子が除去された構造を有する基である。
 「酸無水物」は、酸無水物基を有する化合物である。
 「水素添加無水フタル酸」は、無水フタル酸のベンゼン環の不飽和炭素結合の一部または全部が飽和炭素結合に置き換わった化合物である。
 「粘度」は、レオメータを用い、測定モード:応力一定、応力値:300Pa、周波数:1.59Hz、プレート径:25mm、プレートタイプ:パラレルプレート、プレートギャップ:0.5mmの条件で測定された値である。
 「バリ」は、プレス成形時に金型の隙間に樹脂が流入し固化することで形成される、成型品の端部に形成される不要部分である。
 数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
≪シートモールディングコンパウンド≫
 本発明のシートモールディングコンパウンドは、後述するエポキシ樹脂組成物の増粘物である。
<エポキシ樹脂組成物>
 本発明で使用するエポキシ樹脂組成物は、成分(A):25℃において液状のエポキシ樹脂と、成分(B):酸無水物と、成分(C):エポキシ樹脂硬化剤とを含む。
 このエポキシ樹脂組成物は、成分(B)が成分(A)と作用することによってエステル結合を形成し、調製直後から増粘する。そして、この増粘物が本発明のシートモールディングコンパウンドである。
 このエポキシ樹脂組成物は、成分(D):ジシアンジアミドをさらに含んでもよい。本発明のエポキシ樹脂組成物は、成分(C)が、成分(E):25℃において液状のイミダゾール系化合物をさらに含んでもよい。本発明で使用するエポキシ樹脂組成物は、本発明の効果を損なわない範囲において、必要に応じて他の成分を含んでもよい。
 下記粘度測定(a)で測定される調製から30分後のエポキシ樹脂組成物の30℃における粘度は、0.5~15Pa・sが好ましく、0.5~10Pa・sがより好ましく、1~5Pa・sがさらに好ましい。調製から30分後の30℃における粘度が0.5Pa・s以上、より好ましくは1Pa・s以上であれば、本発明のシートモールディングコンパウンドの製造時において、エポキシ樹脂組成物をフィルムに塗工する際の目付(エポキシ樹脂組成物の厚み)の精度が安定しやすい傾向にある。また、調製から30分後の30℃における粘度が、15Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは5Pa・s以下であれば、このエポキシ樹脂組成物と強化繊維等からシートモールディングコンパウンドを製造する場合において、エポキシ樹脂組成物の強化繊維への含浸性が高くなる傾向にある。
 粘度測定(a):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で30分間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
 下記粘度測定(b)で測定される調製から10日後のエポキシ樹脂組成物の30℃における粘度は、2000~55,000Pa・sが好ましく、2000~42,000Pa・sがより好ましく、4000~20,000Pa・sがさらに好ましい。調製から10日後の30℃における粘度が、2000Pa・s以上、より好ましくは4000Pa・s以上であれば、シートモールディングコンパウンドの取扱い時において表面のタックが少なくなる傾向にある。調製から10日後の30℃における粘度が、55,000Pa・s以下、より好ましくは42,000Pa・s以下、さらに好ましくは20,000Pa・s以下であれば、シートモールディングコンパウンドのドレープ性が適切な範囲となり、取り扱い作業性が良好となる傾向にある。
 粘度測定(b):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で20日間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
 下記粘度測定(c)で測定される調製から20日後のエポキシ樹脂組成物の30℃における粘度は、2000~100,000Pa・sが好ましく、4000~80,000Pa・sがより好ましく、5000~70,000Pa・sがさらに好ましい。調製から20日後の30℃における粘度が、2000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは5000Pa・s以上であれば、シートモールディングコンパウンドの取扱い時において表面のタックが少なくなる傾向にある。調製から20日後の30℃における粘度が、100,000Pa・s以下、より好ましくは80,000Pa・s以下、さらに好ましくは70,000Pa・s以下であれば、シートモールディングコンパウンドのドレープ性が適切な範囲となり、取り扱い作業性が良好となる傾向にある。
 また、調製から20日後の30℃における粘度が前記範囲内であるということは、Bステージを長期間保持できていること(Bステージの安定性に優れていること)を示している。
 前記粘度測定(b)にて測定される粘度(b)と、前記粘度測定(c)にて測定される粘度(c)が、[粘度(c)]/[粘度(b)]≦3の関係にある場合には、このBステージの安定性がより優れる傾向にあるとともに、シートモールディングコンパウンドの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にあり好ましい。より好ましくは、[粘度(c)]/[粘度(b)]が0.3~3の範囲にある場合であり、さらに好ましくは、0.5~3の範囲である。
 (成分(A))
 成分(A)は、25℃において液状のエポキシ樹脂である。
 成分(A)は、エポキシ樹脂組成物の粘度を前記範囲に調整し、シートモールディングコンパウンドの製造時において、エポキシ樹脂組成物の強化繊維への含浸性を高める成分である。また、シートモールディングコンパウンドの硬化物である、繊維強化複合材料の機械特性および耐熱性を高める成分である。また、成分(A)が芳香族環を有する場合、繊維強化複合材料の機械特性を所望の範囲に調整しやすい。
 成分(A)としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールAD、これらのハロゲン置換体等)のグリシジルエーテル;フェノール類と芳香族カルボニル化合物との縮合反応により得られる多価フェノール類のグリシジルエーテル;多価アルコール類(ポリオキシアルキレンビスフェノールA等)のグリシジルエーテル;芳香族アミン類から誘導されるポリグリシジル化合物等が挙げられる。
 成分(A)としては、エポキシ樹脂組成物の粘度を強化繊維への含浸に適した粘度に調製しやすく、かつ繊維強化複合材料の機械特性を所望の範囲に調整しやすい点から、ビスフェノール型エポキシ樹脂が好ましい。
 ビスフェノール型エポキシ樹脂としては、二官能のビスフェノール型エポキシ樹脂が好ましい。繊維強化複合材料の耐熱性および耐薬品性が良好である点からは、ビスフェノールA型エポキシ樹脂がより好ましい。同程度の分子量を有するビスフェノールA型エポキシ樹脂よりも粘度が低く、繊維強化複合材料の弾性率が高い点からは、ビスフェノールF型エポキシ樹脂がより好ましい。
 ここで「二官能のビスフェノール型エポキシ樹脂」とは、分子内にエポキシ基を2つ有するビスフェノール型エポキシ樹脂のことを意味する。
 成分(A)は、三官能以上のエポキシ樹脂であってもよい。三官能のエポキシ樹脂、四官能のエポキシ樹脂は、エポキシ樹脂組成物の粘度を大きく変えずに、繊維強化複合材料の耐熱性をさらに向上できる。
 ここで「三官能のエポキシ樹脂」とは、分子内にエポキシ基を3つ有する樹脂のことを意味する。「四官能のエポキシ樹脂」とは、分子内にエポキシ基を4つ有する樹脂のことを意味する。
 二官能のビスフェノール型エポキシ樹脂の市販品としては、下記のものが挙げられる。
 三菱ケミカル社製のjER(登録商標)の825、827、828、828EL、828XA、806、806H、807、4004P、4005P、4007P、4010P、
 DIC社製のエピクロン(登録商標)の840、840-S、850、850-S、EXA-850CRP、850-LC、830、830-S、835、EXA-830CRP、EXA-830LVP、EXA-835LV、
 新日鉄住金化学社製のエポトート(登録商標)のYD-115、YD-115G、YD-115CA、YD-118T、YD-127、YD-128、YD-128G、YD-128S、YD-128CA、YDF-170、YDF-2001、YDF-2004、YDF-2005RL等。
 三官能以上の成分(A)の市販品としては、下記のものが挙げられる。
 三菱ケミカル社製のjER(登録商標)の152、154、157S70、1031S、1032H60、604、630、630LSD、
 DIC社製のN-730A、N-740、N-770、N-775、N-740-80M、N-770-70M、N-865、N-865-80M、N-660、N-665、N-670、N-673、N-680、N-690、N-695、N-665-EXP、N-672-EXP、N-655-EXP-S、N-662-EXP-S、N-665-EXP-S、N-670-EXP-S、N-685-EXP-S、HP-5000、
 三菱ガス化学社製のTETRAD-X等。
 特に、成分(A)が上記のTETRAD-X等のようなグリシジルアミン系エポキシ樹脂を含むことによって、エポキシ樹脂組成物の粘度の経時変化を早めることができる。 すなわち、このグリシジルアミン系エポキシ樹脂の含有量を調整することで、上記の粘度(b)や粘度(c)の粘度値を制御でき、シートモールディングコンパウンドの製造においてBステージ化する時間を早め、その生産性を高めることもできる。
 このグリシジルアミン系エポキシ樹脂を使用する場合は、成分(A)100質量%に対して1~30質量%程度含有するのが好ましい。より好ましくは2~20質量%であり、さらに好ましくは3~15質量%である。これは、グリシジルアミン系エポキシ樹脂を1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上含有することによって、シートモールディングコンパウンドのBステージ化時間を好適に短縮できる傾向にあるためである。また、グリシジルアミン系エポキシ樹脂を30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下含有することによって、シートモールディングコンパウンドの貯蔵安定性が良好となる傾向にあるためである。
 成分(A)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 本発明で使用するエポキシ樹脂組成物における成分(A)の含有量は、調製から30分後のエポキシ樹脂組成物の30℃における粘度が0.5~15Pa・sとなるように設定すればよく、成分(A)の種類により異なる。
 成分(A)の含有量は、エポキシ樹脂組成物に含まれるエポキシ樹脂の全量100質量%のうち、20~100質量%が好ましく、50~95質量%がより好ましい。成分(A)の含有量が前記範囲内であれば、エポキシ樹脂組成物の粘度を前記範囲に容易に調整でき、強化繊維への含浸性が高くなる。また、繊維強化複合材料の耐熱性が高くなる。
 (成分(B))
 成分(B)は、酸無水物である。
 成分(B)は、成分(A)に対して室温で作用できる成分であり、エポキシ樹脂組成物を調製直後から増粘させ、シートモールディングコンパウンドとしてBステージ化させる成分である。
 この成分(B)は、25℃において液状であることが好ましい。これによって、エポキシ樹脂組成物における各成分が均一に混合され、エポキシ樹脂組成物を均一に増粘させることができる。
 成分(B)としては、分子内の2つまたはそれ以上の酸から1つまたはそれ以上の水分子が除去された構造を有する環状酸無水物を挙げることができ、これらは、分子内に1つまたは2つ以上の環状酸無水物基を有する化合物を含む。
 例えば、1つの環状酸無水物基を有する化合物としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、3-アセトアミドフタル酸無水物、4-ペンテン-1,2-ジカルボン酸無水物、6-ブロモ-1,2-ジヒドロ-4H-3,1-ベンゾオキサジン-2,4-ジオン、2,3-アントラセンジカルボン酸無水物等が挙げられる。
 また、2つの環状酸無水物基を有する化合物としては、グリセリルビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジフェニル-3,3’,4,4’-テトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、N,N-ビス[2-(2,6-ジオキソモルホリノ)エチル]グリシン、4,4’-スルホニルジフタル酸無水物、4,4’-エチレンビス(2,6-モルホリンジオン)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられる。
 成分(B)としては、エポキシ樹脂組成物の増粘の安定性、エポキシ樹脂組成物の硬化物の耐熱性や機械特性の点から、無水フタル酸または置換基を有してもよい水素添加無水フタル酸が好ましく、下記式(1)で表される化合物または下記式(2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000003
 また、成分(B)としては、プレス成形時のバリの発生を低減できる点から、分子内に2つの環状酸無水物を有する化合物を使用するのが好ましい。
 成分(B)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 成分(B)の含有量は、エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1~0.5当量となる量とするのが好ましく、0.1~0.4当量となる量が好ましく、0.1~0.3当量となる量がより好ましい。成分(B)の含有量が前記範囲内であれば、シートモールディングコンパウンドのBステージ化が適度に進行する。成分(B)の含有量を前記範囲の下限値以上とすることによって、シートモールディングコンパウンドのBステージ化が良好に達成され、適度なタックが得られ、シートモールディングコンパウンドからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量が前記範囲の上限値以下とすることによって、シートモールディングコンパウンドのBステージ化が適度に進むため、良好なドレープ性が得られるとともに、シートモールディングコンパウンドのカット作業、積層作業等の作業性も良好となる傾向にある。
 また、成分(B)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して3~30質量部とするのが好ましい。より好ましくは5~25質量部であり、さらに好ましくは、8~20質量部である。成分(B)の含有量が前記範囲内であれば、シートモールディングコンパウンドのBステージ化が適度に進行する。成分(B)の含有量をエポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して3質量部以上、より好ましく5質量部以上、さらに好ましくは8質量部以上とすることによって、シートモールディングコンパウンドのBステージ化が良好に達成され、適度なタックが得られ、シートモールディングコンパウンドからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量をポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して30質量部以下、より好ましくは25質量部以下、さらに好ましくは20質量部以下とすることによって、シートモールディングコンパウンドのBステージ化が適度に進むため、良好なドレープ性が得られるとともに、シートモールディングコンパウンドのカット作業、積層作業等の作業性も良好となる傾向にある。
 また、成分(B)として、上述の分子内に2つの環状酸無水物を有する化合物を使用する場合、その含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、1~20質量部とするのが好ましい。より好ましくは1~10質量部であり、さらに好ましくは1~5質量部である。
分子内に2つの環状酸無水物を有する化合物の含有量をエポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して1質量%以上とすることによって、シートモールディングコンパウンドのプレス成形時のバリの発生が低減できる傾向にある。また、分子内に2つの環状酸無水物を有する化合物の含有量をエポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して20質量%以下、より好ましくは10質量部以下、さらに好ましくは5質量部以下とすることによって、プレス成形時のシートモールディングコンパウンドの成形型内の流動性が良好となる傾向にある。
 (成分(C))
 成分(C)は、エポキシ樹脂硬化剤である。
 成分(C)は、エポキシ樹脂の硬化剤として働くとともに、成分(A)と成分(B)とが反応するBステージ化の際に、成分(A)と成分(B)とを室温で反応させるための触媒として作用する成分である。
 この成分(C)は、25℃において固体状であることが好ましい。これにより、シートモールディングコンパウンド製造時や製造されたシートモールディングコンパウンドの貯蔵中における成分(C)の反応が抑制され、シートモールディングコンパウンドの生産性、貯蔵安定性、取扱い性、成形時の流動性等が良好となる傾向にある。
 成分(C)としては、脂肪族アミン、芳香族アミン、変性アミン、二級アミン、三級アミン、イミダゾール系化合物、メルカプタン類等が挙げられる。
 成分(C)としては、上記のエポキシ樹脂組成物を含むシートモールディングコンパウンドの貯蔵安定性の点から、融点が120~300℃であるイミダゾール系化合物が好ましく、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンを好適に使用することができる。
 また、成分(C)として、25℃において液状のイミダゾール系化合物(以下、成分(E)ともいう)を使用することによって、シートモールディングコンパウンドをBステージ化する時間を早めることができる。
 成分(E)としては、例えば、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等を挙げることができる。
 成分(E)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.01~0.2質量部が好ましく、0.01~0.1質量部がより好ましく、0.03~0.07質量部がさらに好ましい。この含有量を0.01質量部以上、好ましくは0.03質量部以上とすることによって、シートモールディングコンパウンドをBステージ化する時間を早めることができる傾向にある。また、この含有量を0.2質量部以下、より好ましくは0.1質量部以下、さらに好ましくは0.07質量部以下とすることによって、シートモールディングコンパウンドのBステージ化の安定性が良好となる傾向にある。
 上記の成分(C)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 成分(C)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.1~25質量部が好ましく、2~10質量部がより好ましく、3~7質量部がさらに好ましい。成分(C)の含有量を0.1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上とすることによって、シートモールディングコンパウンドの成形時の速硬化性が良好となる傾向にある。また、成分(C)の含有量を25質量部以下、より好ましくは10質量部以下、さらに好ましくは7質量部以下とすることによって、シートモールディングコンパウンド製造時におけるBステージの安定性が良好となる傾向にある。
 成分(C)の25℃における粒子径は、シートモールディングコンパウンドの特性に影響することがある。例えば、成分(C)の粒子径が大きい場合、成分(C)の表面積が小さくなり、エポキシ樹脂組成物が短時間で硬化するためには成分(C)の含有量を多くする必要が生じることがある。また、成分(C)の粒子径が大きい場合、強化繊維の内部にまで侵入するエポキシ樹脂組成物の割合が小さくなり、結果的に硬化時間が遅くなることがある。成分(C)の平均粒子径は、25μm以下が好ましく、15μm以下がより好ましい。より具体的には、0μm超~25μmが好ましく、1~15μmがより好ましい。
 なお、平均粒子径は、画像解析法、レーザー回折散乱法、コールター法、遠心沈降法等を測定原理とする粒度分布測定装置を用いて測定できる。
 (成分(D))
 成分(D)は、ジシアンジアミドである。
 上記のエポキシ樹脂組成物がジシアンジアミドをさらに含むことによって、シートモールディングコンパウンドのBステージ化およびその安定性、速硬化性を損なうことなく、このエポキシ樹脂組成物から得られるシートモールディングコンパウンドの硬化物の靱性および耐熱性をさらに向上することができる。
 成分(D)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.1~5質量部が好ましく、0.3~5質量部がより好ましく、1~4質量部がさらに好ましい。成分(D)の含有量を0.1質量部以上、より好ましくは0.3質量部以上、さらに好ましくは1質量部以上とすることによって、シートモールディングコンパウンドの硬化物の靱性や耐熱性が良好となる傾向にある。また、成分(D)の含有量を5質量部以下、より好ましくは4質量部以下とすることによって、シートモールディングコンパウンド製造時におけるBステージの安定性が良好となる傾向にある。
 (他の成分)
 上記のエポキシ樹脂組成物が必要に応じて含有していてもよい他の成分としては、エポキシ樹脂の硬化促進剤、無機質充填材、内部離型剤、界面活性剤、有機顔料、無機顔料、成分(A)以外のエポキシ樹脂、他の樹脂(熱可塑性樹脂、熱可塑性エラストマーおよびエラストマー)等が挙げられる。
 硬化促進剤としては、繊維強化複合材料の機械特性(曲げ強度、曲げ弾性率)が高くなる点から、尿素化合物が好ましい。
 尿素化合物としては、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、2,4-ビス(3,3-ジメチルウレイド)トルエン、1,1’-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)等が挙げられる。
 無機質充填材としては、炭酸カルシウム、水酸化アルミニウム、クレー、硫酸バリウム、酸化マグネシウム、ガラスパウダー、中空ガラスビーズ、エアロジル等が挙げられる。
 内部離型剤としては、カルナバワックス、ステアリン酸亜鉛、ステアリン酸カルシウム等が挙げられる。
 界面活性剤を含むことによって、シートモールディングコンパウンドからのキャリアフィルムの離形性を向上することができる。また、シートモールディングコンパウンドに含まれるボイドを減らすことができる。
 成分(A)以外のエポキシ樹脂としては、25℃で半固形または固形状態のエポキシ樹脂が挙げられる。成分(A)以外のエポキシ樹脂としては、芳香族環を有するエポキシ樹脂が好ましく、二官能のエポキシ樹脂がさらに好ましい。また、二官能のエポキシ樹脂以外にも、硬化物の耐熱性向上やエポキシ樹脂組成物の粘度調節を目的として、様々なエポキシ樹脂を本発明のエポキシ樹脂組成物に含有させてもよい。耐熱性を向上させるためには、多官能のエポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂が有効である。
 熱可塑性樹脂、熱可塑性エラストマーおよびエラストマーは、エポキシ樹脂組成物の粘弾性を変化させて、エポキシ樹脂組成物の粘度、貯蔵弾性率およびチキソトロープ性を適正化するだけでなく、エポキシ樹脂組成物の硬化物の靭性を向上させる役割がある。熱可塑性樹脂、熱可塑性エラストマーおよびエラストマーは、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
 (エポキシ樹脂組成物の調製方法)
 本発明のエポキシ樹脂組成物は、従来公知の方法で調製できる。例えば、各成分を同時に混合して調製してもよく、あらかじめ成分(A)に、成分(B)、成分(C)等を各々適宜分散させたマスターバッチを調製し、これを用いて調製してもよい。また、混練による剪断発熱等で、系内の温度が上がる場合には、混練速度を調節することや、調製釜や混練釜を水冷する等、混練中に温度を上げない工夫をすることが好ましい。混練装置としては、らいかい機、アトライタ、プラネタリミキサー、ディゾルバー、三本ロール、ニーダー、万能撹拌機、ホモジナイザー、ホモディスペンサー、ボールミル、ビーズミルが挙げられる。混練装置は、2種以上を併用してもよい。
 (作用効果)
 以上説明した本発明で使用するエポキシ樹脂組成物にあっては、成分(A):25℃において液状のエポキシ樹脂を主成分とし、調製直後の粘度を低くすることができ、例えば、30分後のエポキシ樹脂組成物の30℃における粘度を15Pa・s以下とすることができるため、強化繊維への含浸性に優れ、シートモールディングコンパウンドの製造に好適に使用することができる。
 また、このエポキシ樹脂組成物にあっては、調製後から短時間で増粘させることができ、例えば、調製から10日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~55,000Pa・sとすることができるため、シートモールディングコンパウンドの取扱い時において表面のタックを抑えることができるとともに、適切なドレープ性を得ることができ、良好な取り扱い作業性を得ることができる。
 さらに、このエポキシ樹脂組成物にあっては、増粘後の粘度を長時間保持させることができ、例えば、調製から20日後のエポキシ樹脂組成物の30℃における粘度が2000~100,000Pa・sとすることができるため、Bステージ化後のタック性およびドレープ性、ならびにBステージの安定性に優れる。
 また、このエポキシ樹脂組成物にあっては、成分(A)を含むため、シートモールディングコンパウンドの硬化物の剛性、機械特性および耐熱性に優れる。
 (強化繊維)
 シートモールディングコンパウンドは、強化繊維を含んでいてもよい。強化繊維としては、シートモールディングコンパウンドの用途や使用目的に応じて様々なものを採用することができ、炭素繊維(黒鉛繊維を含む。以下同様。)、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられ、繊維強化複合材料の機械特性の点から、炭素繊維、ガラス繊維が好ましく、炭素繊維が特に好ましい。
 強化繊維は、通常1000本以上、60000本以下の範囲の単繊維からなる強化繊維束の状態で使用される。成形材料中では強化繊維束の形状を保ったまま存在している場合もあれば、より少ない繊維からなる束に分かれて存在する場合もある。SMC中では、通常、より少ない束に分かれて存在する。
 SMCにおける強化繊維としては、短繊維からなるチョップド強化繊維束が好ましい。短繊維の長さは、0.3~10cmが好ましく、1~5cmがより好ましい。短繊維の長さが0.3cm以上であれば、機械特性が良好な繊維強化複合材料が得られる。短繊維の長さが10cm以下であれば、プレス成形時の流動特性が良好なSMCが得られる。
 SMCにおける強化繊維の形態としては、チョップド強化繊維束が二次元ランダムに積み重なったシート状物がより好ましい。
 (SMCの製造方法)
 SMCは、例えば、チョップド強化繊維束のシート状物に、このエポキシ樹脂組成物を十分に含浸させ、エポキシ樹脂組成物を増粘させることによって製造される。
 上記のエポキシ樹脂組成物を、強化繊維の形態に合った周知の方法によって強化繊維に含浸させた後、室温~60℃程度の温度に数時間~数十日間、または、60~80℃程度の温度に数秒~数十分保持することによって、エポキシ樹脂組成物中の成分(A)および任意に配合された他のエポキシ樹脂が有するエポキシ基と、成分(B)に由来するカルボキシ基とがエステル化反応し、エポキシ樹脂組成物がBステージ化する。
 エポキシ樹脂が有するエポキシ基と成分(B)に由来するカルボキシ基との反応条件は、エステル化反応後に得られるエポキシ樹脂組成物の増粘物の30℃における粘度が上述した範囲になるよう選択することが好ましい。
 チョップド強化繊維束のシート状物に上記のエポキシ樹脂組成物を含浸させる方法については、従来公知の様々な方法を採用できる。例えば、下記の方法が挙げられる。
 上記のエポキシ樹脂組成物を均一に塗布したフィルムを2枚用意する。一方のフィルムのエポキシ樹脂組成物の塗布面にチョップド強化繊維束を無秩序に撒き、シート状物とする。他方のフィルムのエポキシ樹脂組成物の塗布面をシート状物の上に貼り合わせ、エポキシ樹脂組成物をシート状物に圧着含浸させる。その後、エポキシ樹脂組成物を増粘させることによって、SMCの表面のタックが抑制され、成形作業に適したSMCが得られる。
 (作用効果)
 以上説明した本発明のSMCにあっては、Bステージ化後のタック性およびドレープ性に優れるエポキシ樹脂組成物の増粘物を含むため、取り扱い作業性(タック性およびドレープ性)に優れる。
 また、本発明のSMCにあっては、Bステージの安定性に優れる本発明のエポキシ樹脂組成物の増粘物を含むため、プレス成形時のマトリックス樹脂の流動性に優れるとともに、金型へのバリの発生を抑えることができる。
 また、本発明のSMCにあっては、プレス成形時の速硬化性に優れる。プレス成形時の硬化速度が速いことから、金型占有時間が短くなり、繊維強化複合材料の生産性が高くなる。
 また、本発明のSMCにあっては、硬化物の剛性、機械特性および耐熱性に優れるエポキシ樹脂組成物の増粘物を含むため、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができる。
<繊維強化複合材料>
 本発明の繊維強化複合材料は、本発明のSMCの硬化物である。
 本発明の繊維強化複合材料は、SMCを加熱成形して、Bステージ化した上記の樹脂組成物を硬化させることによって製造される。
 SMCを用いた繊維強化複合材料の製造方法としては、例えば、下記の方法が挙げられる。
 1枚のSMCまたは複数枚のSMCを重ねたものを、1対の金型の間にセットする。SMCを120~230℃で2~60分間加熱圧縮して、エポキシ樹脂組成物を硬化させ、成形品である繊維強化複合材料を得る。ダンボール等のハニカム構造体を芯材とし、その両面または片面にSMCを配してもよい。
 (作用効果)
 以上説明した本発明の繊維強化複合材料にあっては、本発明のSMCの硬化物であるため、脱型性、機械特性および耐熱性に優れる。
<他の実施形態>
 本発明は、上述した各実施形態に限定されるものではなく、特許請求の範囲内で種々の変更が可能である。異なる実施形態に、上述した各実施形態に示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
<各成分>
 (成分(A))
 jER(登録商標)828:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:12Pa・s)。
 jER(登録商標)807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:4Pa・s)。
 jER(登録商標)604:テトラグリシジルジアミノジフェニルメタン(三菱ケミカル社製、25℃における粘度:360Pa・s)。
 jER(登録商標)630:トリグリシジル-p-アミノフェノール(三菱ケミカル社製、25℃における粘度:0.7Pa・s)。
 TETRAD-X:N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン(三菱ガス化学社製、25℃における粘度:2Pa・s)。
 (成分(B))
 HN-2200:3-メチル-1,2,3,6-テトラヒドロ無水フタル酸又は4-メチル-1,2,3,6-テトラヒドロ無水フタル酸(日立化成社製、25℃における粘度:75mPa・s)。
 HN-2000:3-メチル-1,2,3,6-テトラヒドロ無水フタル酸又は4-メチル-1,2,3,6-テトラヒドロ無水フタル酸(日立化成社製、25℃における粘度:40mPa・s)。
 HN―5500:3-メチル-ヘキサヒドロ無水フタル酸又は4-メチル-ヘキサヒドロ無水フタル酸(日立化成社製、25℃における粘度:75mPa・s)。
 MHAC-P:メチル-5-ノルボルネン-2,3-ジカルボン酸無水物(日立化成社製、25℃における粘度:225mPa・s)。
 HN-2200:3-メチル-1,2,3,6-テトラヒドロ無水フタル酸又は4-メチル-1,2,3,6-テトラヒドロ無水フタル酸(日立化成社製)。
 MH―700:4-メチル-ヘキサヒドロ無水フタル酸と、ヘキサヒドロ無水フタル酸との混合物(新日本理化株式会社製)。
 TMEG-600:エチレングリコール-ビス(アンヒドロトリメリテート)(新日本理化株式会社製)。
 MTA-15:4-メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、及びグリセリルビス(アンヒドロトリメリテート)モノアセテートの混合物(新日本理化株式会社製)。
 (成分(C))
 2MZA-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業社製、融点:253℃)。
 (成分(D))
 DICYANEX1400F:ジシアンジアミド(エアープロダクツ社製)。
 (成分(E))
 2E4MZ:2-エチル-4-メチルイミダゾール(四国化成工業社製、融点:約40℃)。
 (他の成分)
 Omicure(登録商標)24:2,4-ジ(N,N-ジメチルウレイド)トルエン(ピイ・ティ・アイ・ジャパン社製)。
 DY9577:三塩化ホウ素アミン錯体(ハンツマン社製、融点28~35℃)。
 (マスターバッチの調製)
 DICYANEX1400F、2MZA-PW、TMEG-600については、それぞれをjER(登録商標)828と1:1(質量比)で混合した。混合物をそれぞれ三本ロールで混練し、マスターバッチを得た。
<エポキシ樹脂組成物の調製>
 (実施例1~23、比較例1~3)
 表1~表5に示す配合にしたがい、各成分をフラスコに秤量した。DICYANEX1400F、2MZA-PW、リカシッドTH、リカシッドTMEG-600については、マスターバッチを用いた。フラスコに秤量した各成分を室温にて撹拌機で均一に撹拌し、エポキシ樹脂組成物を得た。下記の測定および評価を行った。結果を表1~表5に示す。
 (等温粘度の測定)
 調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から30分後、10日後、20日後のエポキシ樹脂組成物の粘度を以下のように測定した。
 レオメータ(TAインスツルメント社製、AR-G2)のプレートをあらかじめ30℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、下記条件にて測定を開始した。10分間で10点測定し、その平均値を粘度とした。
 測定モード:応力一定、
 応力値:300Pa、
 周波数:1.59Hz、
 プレート径:25mm、
 プレートタイプ:パラレルプレート、
 プレートギャップ:0.5mm。
(昇温粘度の測定)
 調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から7日後のエポキシ樹脂組成物の粘度を以下のように測定した。
 レオメータ(サーモフィッシャー社製、MARS40)のプレートをあらかじめ30℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、下記条件にて測定を開始した。10分間で10点測定し、その平均値を粘度とした。
 測定モード:応力一定、
 応力値:300Pa、
 周波数:1.59Hz、
 プレート径:25mm、
 プレートタイプ:パラレルプレート、
 プレートギャップ:0.5mm
 温度:30℃から、エポキシ樹脂組成物が硬化反応を開始する直前の温側(つまり、急激に粘度が上昇する温度)まで2℃/min.で昇温
 (粘度の評価)
 調製から30分後のエポキシ樹脂組成物の30℃における粘度は、エポキシ樹脂組成物が強化繊維に含浸する際の含浸性の目安となる。30分後の粘度について、下記の基準で評価した。
 A:30分後の粘度が15Pa・s以下である(含浸性に優れる)。
 B:30分後の粘度が15Pa・s超である。
 調製から10日後のエポキシ樹脂組成物の30℃における粘度は、SMCが適度なタック性やドレープ性を短時間で発揮し、良好な取り扱い作業性を保持できているかの目安となる。10日後の粘度について、下記の基準で評価した。
 A:10日後の粘度が2000~55,000Pa・sである(取り扱い作業性に優れる)。
 B:10日後の粘度2000Pa・s未満または55,000Pa・s超である。
 調製から20日後のエポキシ樹脂組成物の30℃における粘度は、SMCが適度なタック性やドレープ性を発揮できるようなBステージの増粘物となっているかを判断するための目安となる。また、Bステージを長期間保持できているか(Bステージの安定性)の目安となる。20日後の粘度について、下記の基準で評価した。
 A:20日後の粘度が2000~50,000Pa・sである(Bステージの安定性に優れる)。
 B:20日後の粘度2000Pa・s未満または100,000Pa・s超である。
(粘度測定(c)と粘度測定(b)の変化率)
[粘度測定(c)]/[粘度測定(b)]の値はSMCの貯蔵安定性の目安となる。
[粘度測定(c)]/[粘度測定(b)]の値について、下記の基準で評価した。
 A:[粘度測定(c)]/[粘度測定(b)]の値が3以下(貯蔵安定性に優れる)
 B:[粘度測定(c)]/[粘度測定(b)]の値が3より大きい
(昇温粘度の評価)
 昇温粘度測定は、プレス成形時のSMC流動性の目安となる。昇温粘度測定の結果から、エポキシ樹脂組成物が硬化反応を開始する直前の粘度(つまり、急激に粘度が上昇する粘度)が高いほど、プレス成形時のバリの発生が抑制できる。昇温粘度について、下記の基準で評価した。
 A:7日後のエポキシ樹脂組成物の硬化反応を開始する直前の粘度が0.5Pa・s~500Pa・sである(プレス成形時のSMC流動性が良好)。
 B:7日後のエポキシ樹脂組成物の硬化反応を開始する直前の粘度が0.5Pa・s未満または500Pa・s超である。
(バリ発生の評価)
 成形の金型へのバリの発生が少ないと、成形後、短時間でバリを除去できるので、成形サイクルを短縮することができる。
 縦300mm、横300mm、厚さ2mmの金型に縦300mm、横300mmのSMCを2ply積層した積層物をチャージし、金型温度140℃、圧力4MPaの条件で5分間加熱圧縮し、300mm角、厚さ約2mmの平板状の繊維強化複合材料(CFRP成形板)を得た。このCFRP成形板の製造時のバリ発生率を以下の式で算出した。
(X-Y)/(X)*100
 ここで、
 X:金型にチャージしたSMC重量
 Y:成形後、金型から取り出した成型物の重量
である。
 バリ発生の評価基準を以下に示す。
 A(良好):上記式で算出されるバリ発生率の割合が10%未満
 B(不良):上記式で算出されるバリ発生率の割合が10%以上
 (速硬化性)
 示差走査熱量測定装置(TAインスツルメント社製、Q1000)の装置標準のアルミニウムハーメチックパンにエポキシ樹脂組成物を秤量し、装置標準のアルミニウムリッドで蓋をして試料を作成した。装置の温度制御プログラムによって30℃から140℃まで200℃/分で昇温した後、140℃の等温で30分間保持し、一連の制御温度下でのエポキシ樹脂組成物のDSC発熱曲線を得た。DSC発熱曲線において、発熱量のピークから発熱量が減少していく部分の曲線で勾配が最大になる点で引いた接線と、硬化反応による発熱が終息した部分で引いた接線(ベースライン)との交点の時間を硬化完了時間とした。硬化完了時間は、成形材料の成形時間の目安となる。速硬化性について、下記の基準で評価した。
 A:硬化完了時間が10分以内である(速硬化性良好)。
 B:硬化完了時間が10分超である。
 (硬化樹脂板の作製)
 エポキシ樹脂組成物を真空中で脱泡し、2mm厚のポリテトラフルオロエチレンのスペーサを挟んだ2枚の4mm厚のガラス板の間に注入し、ガラス板の表面温度が140℃となる条件で、熱風循環式恒温炉にて10分間加熱した後に冷却して硬化樹脂板を得た。
 (曲げ特性)
 硬化樹脂板から幅8mm、長さ60mmの試験片を6枚切り出し、万能試験機(インストロン社製、インストロン4465)を用い、下記条件にて曲げ強度、曲げ弾性率、曲げ破断伸度、曲げ降伏伸度を測定し、6枚の平均値を求めた。
 クロスヘッドスピード;2mm/分、
 スパン間距離:硬化樹脂板の厚さを実測し、(厚さ×16)mmとした。
 (耐熱性)
 硬化樹脂板を長さ55mm×幅12.5mmの試験片に加工し、レオメータ(TAインスツルメント社製、ARES-RDA)を用いて測定周波数1Hz、昇温速度5℃/分で測定を行った。logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、logG’が急激に低下する領域の近似直線との交点の温度をガラス転移温度(G’-Tg(℃))として記録した。また、LogG”のピークのトップをG”-Tg(℃)とした。また、tanδのピークのトップをtanδ(℃)とした。耐熱性について、下記の基準で評価した。
 A:ガラス転移温度(G’-Tg)が130℃以上である(耐熱性良好)。
 B:ガラス転移温度(G’-Tg)が130℃未満である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例1~23のエポキシ樹脂組成物は、調製から30分後の粘度が低く、SMCを製造する際に含浸性に優れる。また、調製から10日後に適度にBステージ化しており、SMCとした場合、ほどよいタックとドレープ性を有する。また、Bステージの安定性もよい。さらに、速硬化性も良好であり、SMCとした場合、短時間で成形できる。実施例1~23のエポキシ樹脂組成物から得られるSMCの硬化物は、バリの発生もなく、曲げ強度、曲げ弾性率が高く、耐熱性も高い。
 比較例1、2は、特許文献6~8の実施例を参考にエポキシ樹脂組成物を調製した例である。比較例1、2のエポキシ樹脂組成物は、調製から30分後の粘度は低く、良好な含浸性が得られるが、調製から20日後の粘度が低く、タックが非常に強い。成形材料とした場合、べたつきが強く取り扱い作業性が悪い。また、速硬化性に劣り、硬化に要する時間が長い。成形材料とした場合、金型占有時間が長くなる。
 比較例3は、特許文献6~8の実施例を参考にエポキシ樹脂組成物を調製した例である。比較例3のエポキシ樹脂組成物は、調製から30分後の粘度は低く、含浸性が高い。また、調製から20日後に適度にBステージ化しており、成形材料とした場合、ほどよいタックとドレープ性を有する。しかし、速硬化性に劣り、硬化に要する時間が長い。成形材料とした場合、金型占有時間が長くなる。
<繊維強化複合材料の製造>
 (実施例24~26)
 表6に示す配合のエポキシ樹脂組成物を、ドクターブレードを用いてポリエチレン製キャリアフィルム上に600g/mとなるように塗布した。エポキシ樹脂組成物の上に、フィラメント数が15000本の炭素繊維束(三菱ケミカル社製、TR50S 15L)を長さ25mmに切断したチョップド炭素繊維束を、炭素繊維の目付が1200g/mで略均一になるように、かつ炭素繊維の繊維方向がランダムになるように散布した。
 同じエポキシ樹脂組成物を、ドクターブレードを用いてポリエチレン製キャリアフィルム上に厚さ600g/mになるように塗布した。
 2枚のキャリアフィルムで、エポキシ樹脂組成物側が内側となるようにチョップド炭素繊維束を挟み込んだ。これをロールの間に通して押圧して、エポキシ樹脂組成物をチョップド炭素繊維束に含浸させ、SMC前駆体を得た。
 SMC前駆体を室温(23℃)にて20日間静置することによって、SMC前駆体中のエポキシ樹脂組成物を十分に増粘させてSMCを得た。
 SMCを2ply積層し、成形用金型にチャージ率(金型面積に対するSMCの面積の割合)65%でチャージして、金型温度140℃、圧力4MPaの条件で5分間加熱圧縮し、エポキシ樹脂組成物を硬化させ、厚さ約2mm、300mm角の平板状の繊維強化複合材料(CFRP成形板)を得た。下記の測定および評価を行った。結果を表6に示す。
 (含浸性)
 SMC前駆体を約30cm切断し、含浸状態を目視で確認し、下記基準にて評価した。
 A:切断面にドライ炭素繊維等がなく、含浸性が良好である。
 B:切断面にドライ炭素繊維が確認され、含浸性が良くない。
 (タック性)
 SMCのタック性について下記基準にて評価した。
 A:SMCを手で触ったところ、適度なタックを有しており、SMCの積層作業が簡便であった
 B:SMCを手で触ったところ、べたつきが強い、または、べたつきが弱く積層作業が困難であった。
 (ドレープ性)
 SMCのドレープ性について下記基準にて評価した。
 A:SMCを手で触ったところ、適度な柔軟性を有しており、カット作業、持ち運びが容易であった。
 B:SMCを手で触ったところ、柔軟性に乏しく、カット作業、持ち運びが困難であった。
 (取り扱い作業性)
 SMCの取り扱い作業性について下記基準にて評価した。
 A:タック性およびドレープ性の評価がいずれもAである。
 B:タック性およびドレープ性のいずれか一方または両方の評価がBである。
 (耐熱性)
 CFRP成形版を長さ55mm×幅12.5mmの試験片に加工し、レオメータ(TAインスツルメント社製、ARES-RDA)を用いて測定周波数1Hz、昇温速度5℃/分で測定を行った。logG’を温度に対してプロットし、logG’の平坦領域の近似直線と、logG’が急激に低下する領域の近似直線との交点の温度をガラス転移温度(G’-Tg(℃))として記録した。また、LogG”のピークのトップをG”-Tg(℃)とした。また、tanδのピークのトップをtanδ(℃)とした。耐熱性について、下記の基準で評価した。
 A:ガラス転移温度(G’-Tg)が130℃以上である(耐熱性良好)。
 B:ガラス転移温度(G’-Tg)が130℃未満である。
Figure JPOXMLDOC01-appb-T000009
 実施例24~26のエポキシ樹脂組成物を用いてSMCを作製し、繊維強化複合材料を製造した。含浸性、タック性、ドレープ性が良好であり、取り扱い作業性が非常に優れていた。また、耐熱性が高く、金型からの取り出しの際に、十分な剛性を保持しており、脱型性も良好であった。
<エポキシ樹脂組成物の調製>
 (実施例27~30)
 表7に示す配合に従い、実施例1~23と同様にしてエポキシ樹脂組成物を得た。各測定および評価を実施例1~23と同様に行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000010
 実施例27~30のエポキシ組成物は、調製から30分後の粘度が低く、SMCを製造する際に含浸性に優れる。また、調製から10日後に適度にBステージ化しており、SMCとした場合、ほどよいタックとドレープ性を有する。また、Bステージの安定性もよい。さらに、速硬化性も良好であり、SMCとした場合、短時間で成形できる。実施例27~30のエポキシ樹脂組成物から得られるSMCの硬化物は、バリの発生もなく、曲げ強度、曲げ弾性率が高く、耐熱性も高い。
 本発明のシートモールディングコンパウンドは、強化繊維への含浸性、Bステージ化後のタック性およびドレープ性、Bステージの安定性(プレス成形時の流動性)、加熱した際の速硬化性(プレス成形時の金型占有時間が短いこと)、および硬化物の耐熱性に優れる。また、本発明のシートモールディングコンパウンドは、硬化後の機械特性および耐熱性に優れることから、工業用、自動車用の構造部品の原料として好適である。

Claims (20)

  1.  成分(A)、成分(B)、及び成分(C)を含むエポキシ樹脂組成物の増粘物であるシートモールディングコンパウンドであって、
     前記成分(A)が25℃において液状のエポキシ樹脂であり、
     前記成分(B)が酸無水物であり、
     前記成分(C)がエポキシ樹脂硬化剤であり、
     前記増粘物は、前記成分(A)のエポキシ基の少なくとも一部と、前記成分(B)に由来するカルボキシ基の少なくとも一部とでエステルを形成している、シートモールディングコンパウンド。
  2.  さらに強化繊維を含む、請求項1に記載のシートモールディングコンパウンド。
  3.  下記粘度測定(a)で測定される調製から30分後の前記エポキシ樹脂組成物の30℃における粘度が、0.5~15Pa・sである、請求項1又は2に記載のシートモールディングコンパウンド。
     粘度測定(a):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で30分間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
  4.  下記粘度測定(b)で測定される調製から10日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~55,000Pa・sである、請求項1~3のいずれか一項に記載のシートモールディングコンパウンド。
     粘度測定(b):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で10日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
  5.  下記粘度測定(c)で測定される調製から20日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~100,000Pa・sである、請求項1~3のいずれか一項に記載のシートモールディングコンパウンド。
     粘度測定(c):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で20日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
  6.  下記粘度測定(b)で測定される調製から10日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~55,000Pa・sであり、
     下記粘度測定(c)で測定される調製から20日後の前記エポキシ樹脂組成物の30℃における粘度が、2,000~100,000Pa・sであり、
     前記粘度測定(b)にて測定される粘度(b)と、前記粘度測定(c)にて測定される粘度(c)が、[粘度(c)]/[粘度(b)]≦3の関係にある請求項1~3のいずれか一項に記載のシートモールディングコンパウンド。
     粘度測定(b):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で10日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
     粘度測定(c):調製した直後の前記エポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で20日間静置した後、前記エポキシ樹脂組成物の30℃における粘度を測定する。
  7.  前記成分(B)の含有量が、前記エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1~0.5当量となる量である、請求項1~6のいずれか一項に記載のシートモールディングコンパウンド。
  8.  前記成分(B)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して3~30質量部である、請求項1~7のいずれか一項に記載のシートモールディングコンパウンド。
  9.  前記成分(C)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して0.1~25質量部である、請求項1~8のいずれか一項に記載のシートモールディングコンパウンド。
  10.  前記成分(A)が、グリシジルアミン系エポキシ樹脂を含む、請求項1~9のいずれか一項に記載のシートモールディングコンパウンド。
  11.  前記グリシジルアミン系エポキシ樹脂の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して1~30質量部である、請求項10に記載のシートモールディングコンパウンド。
  12.  前記成分(B)が、25℃において液状である、請求項1~11のいずれか一項に記載のシートモールディングコンパウンド。
  13.  前記成分(C)が、25℃において固体状である、請求項1~12のいずれか一項に記載のシートモールディングコンパウンド。
  14.  前記成分(B)が、分子内に2つの環状酸無水物を有する化合物を含む、請求項1~13のいずれか一項に記載のシートモールディングコンパウンド。
  15.  前記成分(B)が、無水フタル酸または置換基を有してもよい水素添加無水フタル酸を含む、請求項1~14のいずれか一項に記載のシートモールディングコンパウンド。
  16.  前記成分(B)が、置換基を有してもよい水素添加無水フタル酸を含み、前記置換基を有してもよい水素添加無水フタル酸が、下記式(1)で表される化合物または下記式(2)で表される化合物である、請求項1~15のいずれか一項に記載のシートモールディングコンパウンド。
    Figure JPOXMLDOC01-appb-C000001
  17.  前記成分(C)が、融点が120~300℃であるイミダゾール系化合物を含む、請求項1~16のいずれか一項に記載のシートモールディングコンパウンド。
  18.  前記エポキシ樹脂組成物が、成分(D)をさらに含み、
     前記成分(D)が、ジシアンジアミドであり、
     前記成分(D)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.1~5質量部である、請求項1~17のいずれか一項に記載のシートモールディングコンパウンド。
  19.  前記成分(C)が、成分(E)をさらに含み、
     前記成分(E)が、25℃において液状のイミダゾール系化合物であり、
     前記成分(E)の含有量が、前記エポキシ樹脂組成物に含まれる全エポキシ樹脂の100質量部に対して、0.01~0.2質量部である、請求項1~18のいずれか一項に記載のシートモールディングコンパウンド。
  20.  請求項1~19のいずれか一項に記載のシートモールディングコンパウンドの硬化物である、繊維強化複合材料。
PCT/JP2018/015027 2017-04-12 2018-04-10 シートモールディングコンパウンド、および繊維強化複合材料 WO2018190329A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES18783748T ES2972887T3 (es) 2017-04-12 2018-04-10 Compuesto para el moldeo de láminas y material compuesto reforzado con fibra
EP18783748.9A EP3611210B1 (en) 2017-04-12 2018-04-10 Sheet molding compound and fiber-reinforced composite material
CN202310202953.5A CN116333267A (zh) 2017-04-12 2018-04-10 片状模塑料及纤维增强复合材料
CN201880024018.1A CN110536914B (zh) 2017-04-12 2018-04-10 片状模塑料及纤维增强复合材料
JP2018523820A JP6708256B2 (ja) 2017-04-12 2018-04-10 シートモールディングコンパウンド、および繊維強化複合材料
US16/594,122 US20200032047A1 (en) 2017-04-12 2019-10-07 Sheet molding compound and fiber-reinforced composite material
US17/938,881 US20230046977A1 (en) 2017-04-12 2022-10-07 Sheet molding compound and fiber-reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079132 2017-04-12
JP2017-079132 2017-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/594,122 Continuation US20200032047A1 (en) 2017-04-12 2019-10-07 Sheet molding compound and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
WO2018190329A1 true WO2018190329A1 (ja) 2018-10-18

Family

ID=63792630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015027 WO2018190329A1 (ja) 2017-04-12 2018-04-10 シートモールディングコンパウンド、および繊維強化複合材料

Country Status (6)

Country Link
US (2) US20200032047A1 (ja)
EP (1) EP3611210B1 (ja)
JP (5) JP6708256B2 (ja)
CN (2) CN116333267A (ja)
ES (1) ES2972887T3 (ja)
WO (1) WO2018190329A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098028A1 (ja) * 2017-11-16 2019-05-23 三菱ケミカル株式会社 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法
WO2019142735A1 (ja) * 2018-01-16 2019-07-25 三菱ケミカル株式会社 プリプレグおよび繊維強化複合材料
WO2020050200A1 (ja) * 2018-09-05 2020-03-12 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
WO2020071360A1 (ja) * 2018-10-05 2020-04-09 三菱ケミカル株式会社 シートモールディングコンパウンド、繊維強化複合材料、繊維強化複合材料の製造方法
JPWO2019176568A1 (ja) * 2018-03-16 2020-04-16 三菱ケミカル株式会社 シートモールディングコンパウンド及び炭素繊維複合材料成形品
WO2020080240A1 (ja) * 2018-10-16 2020-04-23 三菱ケミカル株式会社 シートモールディングコンパウンド、及び成形品
WO2020241180A1 (ja) * 2019-05-28 2020-12-03 Dic株式会社 成形材料、シートモールディングコンパウンド、及び成形品
WO2021131571A1 (ja) * 2019-12-25 2021-07-01 Dic株式会社 シートモールディングコンパウンド用樹脂組成物、シートモールディングコンパウンド、成形品、及びシートモールディングコンパウンドの製造方法
WO2022045329A1 (ja) 2020-08-31 2022-03-03 東レ株式会社 成形材料および繊維強化複合材料
WO2022085707A1 (ja) 2020-10-22 2022-04-28 三菱ケミカル株式会社 電着塗装品の製造方法、プリプレグおよびエポキシ樹脂組成物
JP2022179548A (ja) * 2017-04-12 2022-12-02 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226288A1 (en) * 2017-06-07 2018-12-13 Dow Global Technologies Llc Molding compound having randomly oriented filaments and methods for making and using same
CN115960455B (zh) * 2023-03-16 2023-07-25 亨弗劳恩(江苏)复合材料研发有限公司 一种彩色零收缩碳纤维增强smc片状模塑料及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191723A (ja) 1982-05-04 1983-11-09 Dainippon Ink & Chem Inc エポキシシ−トモ−ルデイングコンパウンドの製造方法
JPS6178841A (ja) * 1984-09-27 1986-04-22 Mitsubishi Gas Chem Co Inc エポキシ樹脂積層板の製法
JPH0288685A (ja) 1988-08-10 1990-03-28 Teroson Gmbh 反応性ホツトメルト接着剤
JPH0288684A (ja) 1988-09-27 1990-03-28 Nitto Denko Corp 接着方法及びそれに使用する液状接着剤
JPH02286722A (ja) 1989-04-28 1990-11-26 Dainippon Ink & Chem Inc 含浸用樹脂組成物、プリプレグ、及び積層板の製法
JPH0488011A (ja) 1990-07-31 1992-03-19 Sumitomo Chem Co Ltd エポキシ樹脂組成物
JP2001354788A (ja) 2000-06-16 2001-12-25 Toho Tenax Co Ltd ロービングプリプレグ及びその製造方法
JP2002145986A (ja) * 2000-11-10 2002-05-22 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグ
JP2004043769A (ja) 2002-05-23 2004-02-12 Toho Tenax Co Ltd エポキシ樹脂組成物並びにロービングプリプレグ及びその製造方法
JP2004189811A (ja) 2002-12-10 2004-07-08 Toho Tenax Co Ltd 織物プリプレグ
JP2008038082A (ja) * 2006-08-09 2008-02-21 Toray Ind Inc 引き抜き成形繊維強化複合材料
JP2011089071A (ja) * 2009-10-26 2011-05-06 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれを有してなる釣竿穂先
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2014185256A (ja) * 2013-03-25 2014-10-02 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
WO2015001764A1 (ja) * 2013-07-04 2015-01-08 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ及び積層板
JP2017079132A (ja) 2015-10-20 2017-04-27 船井電機株式会社 光出力制御ユニット、及び光投射装置
WO2017150521A1 (ja) * 2016-02-29 2017-09-08 三菱ケミカル株式会社 エポキシ樹脂組成物、成形材料および繊維強化複合材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166742A (ja) * 1992-12-02 1994-06-14 Sumitomo Chem Co Ltd エポキシ樹脂組成物
ZA9710293B (en) * 1996-11-18 1998-06-10 Shell Int Research Epoxy resin composition suitable for sheet moulding.
JP3633449B2 (ja) * 2000-06-28 2005-03-30 松下電工株式会社 エポキシ樹脂組成物、シートモールディングコンパウンド及び成形品
EP1966268A1 (en) * 2005-12-22 2008-09-10 Dow Gloval Technologies Inc. A curable epoxy resin composition and laminates made therefrom
JP4894377B2 (ja) * 2006-06-29 2012-03-14 日立化成工業株式会社 シートモールディングコンパウンドの製造方法及び繊維強化プラスチック製品の製造方法
JP2012056980A (ja) 2010-09-06 2012-03-22 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
CN109320914B (zh) * 2015-05-13 2021-09-21 三菱化学株式会社 成型材料、片状模塑材料、块状模塑材料和纤维增强复合材料
JP6739921B2 (ja) * 2015-10-21 2020-08-12 日鉄ケミカル&マテリアル株式会社 ウレタン変性エポキシ樹脂組成物、およびその硬化物
JP6708256B2 (ja) * 2017-04-12 2020-06-10 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191723A (ja) 1982-05-04 1983-11-09 Dainippon Ink & Chem Inc エポキシシ−トモ−ルデイングコンパウンドの製造方法
JPS6178841A (ja) * 1984-09-27 1986-04-22 Mitsubishi Gas Chem Co Inc エポキシ樹脂積層板の製法
JPH0288685A (ja) 1988-08-10 1990-03-28 Teroson Gmbh 反応性ホツトメルト接着剤
JPH0288684A (ja) 1988-09-27 1990-03-28 Nitto Denko Corp 接着方法及びそれに使用する液状接着剤
JPH02286722A (ja) 1989-04-28 1990-11-26 Dainippon Ink & Chem Inc 含浸用樹脂組成物、プリプレグ、及び積層板の製法
JPH0488011A (ja) 1990-07-31 1992-03-19 Sumitomo Chem Co Ltd エポキシ樹脂組成物
JP2001354788A (ja) 2000-06-16 2001-12-25 Toho Tenax Co Ltd ロービングプリプレグ及びその製造方法
JP2002145986A (ja) * 2000-11-10 2002-05-22 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグ
JP2004043769A (ja) 2002-05-23 2004-02-12 Toho Tenax Co Ltd エポキシ樹脂組成物並びにロービングプリプレグ及びその製造方法
JP2004189811A (ja) 2002-12-10 2004-07-08 Toho Tenax Co Ltd 織物プリプレグ
JP2008038082A (ja) * 2006-08-09 2008-02-21 Toray Ind Inc 引き抜き成形繊維強化複合材料
JP2011089071A (ja) * 2009-10-26 2011-05-06 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびそれを有してなる釣竿穂先
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2014185256A (ja) * 2013-03-25 2014-10-02 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
WO2015001764A1 (ja) * 2013-07-04 2015-01-08 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ及び積層板
JP2017079132A (ja) 2015-10-20 2017-04-27 船井電機株式会社 光出力制御ユニット、及び光投射装置
WO2017150521A1 (ja) * 2016-02-29 2017-09-08 三菱ケミカル株式会社 エポキシ樹脂組成物、成形材料および繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKI SHIMBO: "Epoxy Resin Handbook", 25 December 1987, NIKKAN KYOGYO SHIMBUN, LTD., pages: 155

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022179548A (ja) * 2017-04-12 2022-12-02 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
US10988589B2 (en) 2017-11-16 2021-04-27 Mitsubishi Chemical Corporation Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor
US11618803B2 (en) 2017-11-16 2023-04-04 Mitsubishi Chemical Corporation Thermosetting resin composition, prepreg, and fiber-reinforced composite material and production method therefor
WO2019098028A1 (ja) * 2017-11-16 2019-05-23 三菱ケミカル株式会社 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法
WO2019142735A1 (ja) * 2018-01-16 2019-07-25 三菱ケミカル株式会社 プリプレグおよび繊維強化複合材料
JPWO2019142735A1 (ja) * 2018-01-16 2020-01-23 三菱ケミカル株式会社 プリプレグおよび繊維強化複合材料
US11339261B2 (en) 2018-01-16 2022-05-24 Mitsubishi Chemical Corporation Prepreg and fiber-reinforced composite material
JPWO2019176568A1 (ja) * 2018-03-16 2020-04-16 三菱ケミカル株式会社 シートモールディングコンパウンド及び炭素繊維複合材料成形品
WO2020050200A1 (ja) * 2018-09-05 2020-03-12 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
JPWO2020050200A1 (ja) * 2018-09-05 2020-09-10 三菱ケミカル株式会社 シートモールディングコンパウンド、および繊維強化複合材料
JP7036122B2 (ja) 2018-09-05 2022-03-15 三菱ケミカル株式会社 シートモールディングコンパウンドの製造方法
WO2020071360A1 (ja) * 2018-10-05 2020-04-09 三菱ケミカル株式会社 シートモールディングコンパウンド、繊維強化複合材料、繊維強化複合材料の製造方法
WO2020080240A1 (ja) * 2018-10-16 2020-04-23 三菱ケミカル株式会社 シートモールディングコンパウンド、及び成形品
WO2020241180A1 (ja) * 2019-05-28 2020-12-03 Dic株式会社 成形材料、シートモールディングコンパウンド、及び成形品
EP3978572A4 (en) * 2019-05-28 2023-05-24 DIC Corporation MOLDING MATERIAL, SHEET MOLDING COMPOUND AND MOLDED ARTICLE
WO2021131571A1 (ja) * 2019-12-25 2021-07-01 Dic株式会社 シートモールディングコンパウンド用樹脂組成物、シートモールディングコンパウンド、成形品、及びシートモールディングコンパウンドの製造方法
CN114746483A (zh) * 2019-12-25 2022-07-12 Dic株式会社 片状模塑料用树脂组合物、片状模塑料、成形品及片状模塑料的制造方法
JP7024930B2 (ja) 2019-12-25 2022-02-24 Dic株式会社 シートモールディングコンパウンド用樹脂組成物、シートモールディングコンパウンド、成形品、及びシートモールディングコンパウンドの製造方法
JPWO2021131571A1 (ja) * 2019-12-25 2021-07-01
WO2022045329A1 (ja) 2020-08-31 2022-03-03 東レ株式会社 成形材料および繊維強化複合材料
WO2022085707A1 (ja) 2020-10-22 2022-04-28 三菱ケミカル株式会社 電着塗装品の製造方法、プリプレグおよびエポキシ樹脂組成物

Also Published As

Publication number Publication date
JP2020122162A (ja) 2020-08-13
EP3611210A1 (en) 2020-02-19
CN110536914B (zh) 2023-03-14
EP3611210B1 (en) 2024-02-07
JP7151806B2 (ja) 2022-10-12
US20200032047A1 (en) 2020-01-30
EP3611210A4 (en) 2020-05-06
ES2972887T3 (es) 2024-06-17
US20230046977A1 (en) 2023-02-16
JP2024097920A (ja) 2024-07-19
CN110536914A (zh) 2019-12-03
JP6708256B2 (ja) 2020-06-10
JP2022179548A (ja) 2022-12-02
JP2021091920A (ja) 2021-06-17
JPWO2018190329A1 (ja) 2019-04-25
JP6856157B2 (ja) 2021-04-07
CN116333267A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
JP6856157B2 (ja) シートモールディングコンパウンド、および繊維強化複合材料
JP6292345B2 (ja) 成形材料および繊維強化複合材料
JP6330327B2 (ja) Rtm成形法用プリフォーム用のバインダー樹脂組成物を用いたrtm成形法用強化繊維基材、rtm成形法用プリフォームおよび繊維強化複合材料
JP7036122B2 (ja) シートモールディングコンパウンドの製造方法
JPWO2019098028A1 (ja) 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法
JP7206993B2 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2018043490A1 (ja) 熱硬化性樹脂組成物、プリプレグ、及び繊維強化プラスチック成形体とその製造方法
WO2019003824A1 (ja) 繊維強化複合材料用プリフォーム、熱硬化性樹脂組成物、繊維強化複合材料及び繊維強化複合材料の製造方法
JP6866936B2 (ja) シートモールディングコンパウンド、及び成形品
JP2019023281A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2019023284A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP6835253B2 (ja) シートモールディングコンパウンド、シートモールディングコンパウンドの製造方法、繊維強化複合材料、繊維強化複合材料の製造方法
JP7215001B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2019210464A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2023149496A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料及びその製造方法
JP2015108052A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2019023283A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523820

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018783748

Country of ref document: EP

Effective date: 20191112