WO2018190221A1 - Microscope device and sample observation method using same - Google Patents

Microscope device and sample observation method using same Download PDF

Info

Publication number
WO2018190221A1
WO2018190221A1 PCT/JP2018/014423 JP2018014423W WO2018190221A1 WO 2018190221 A1 WO2018190221 A1 WO 2018190221A1 JP 2018014423 W JP2018014423 W JP 2018014423W WO 2018190221 A1 WO2018190221 A1 WO 2018190221A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
microscope
microscope apparatus
light
observed
Prior art date
Application number
PCT/JP2018/014423
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Priority to JP2019512470A priority Critical patent/JP6632762B2/en
Priority to CN201890000408.0U priority patent/CN210954468U/en
Publication of WO2018190221A1 publication Critical patent/WO2018190221A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing

Definitions

  • the present invention relates to a microscope apparatus capable of observing a sample to be observed as it is (planar or three-dimensional state) and a sample observation method using the same.
  • Patent Document 1 since the sample is observed while being sandwiched between the slide glass and the cover glass, the sample has a flat shape, and the sample cannot be observed as it is (original state). .
  • Patent Documents 2 to 4 propose a stereoscopic image display device and a method for manufacturing the same, but do not enlarge the sample image.
  • the present invention has been made in view of such circumstances, and has a simple apparatus configuration. 1) For example, a transparent or translucent sample is left as it is, and an arbitrary depth position is desired without damaging the objective lens. 2) To provide a microscope apparatus capable of magnifying and observing a sample without fear of bringing the sample or a specimen into contact with an objective lens even if it is an opaque sample, and a sample observation method using the same For the purpose.
  • the microscope apparatus is directed to a supporting means for holding a sample to be observed, an illuminating means for irradiating light on the sample from a specific direction, and an object to be enlarged and observed.
  • a microscope device having a microscope arranged
  • a stereoscopic image forming unit is disposed between the sample and the objective lens of the microscope, the sample is disposed on one side of the stereoscopic image forming unit, and the stereoscopic image is formed by the stereoscopic image forming unit.
  • An actual image of the sample is formed on the other side of the means, and the actual image is used as the object of the microscope.
  • the three-dimensional image forming means has a plan view of the first and second light control panels each having a plurality of strip-shaped light reflecting portions arranged in parallel. It is preferable that the light reflecting portions are formed so as to overlap each other (preferably orthogonally crossed) (see, for example, Patent Documents 2 and 4). As described, a microlens array can also be selected as the imaging means.
  • the support means has a container filled with a light-transmitting liquid, the transparent or translucent sample is disposed in the liquid of the container, and the focus of the microscope It is preferable that an enlarged cross section of the sample can be observed by adjustment.
  • the real image may be formed via the two stereoscopic image forming means optically arranged in series.
  • the support means is a plastic body having light permeability, and the sample can be charged or sealed in the plastic body.
  • the sample observation method using the microscope apparatus according to the second invention in accordance with the above object is directed to a sample to be observed, which is held by the supporting means and arranged on one side of the stereoscopic image forming means, by the illumination means. Then, a real image of the sample is formed on the other side of the stereoscopic image forming means, and the real image is observed with a microscope.
  • the stereoscopic image forming means has first and second light control panels each having a plurality of strip-like light reflecting portions arranged in parallel.
  • the light reflecting portion is formed in an overlapping manner (preferably orthogonal) in a plan view, and is reflected by the light reflecting portion of the first light control panel, It is preferable that an actual image of the sample is formed by re-reflection at the light reflecting portion of the second light control panel.
  • the support means has a container filled with a light-transmitting liquid, and the sample is disposed in the liquid of the container. preferable.
  • the sample is transparent or translucent, and an enlarged cross section of the sample can be observed by adjusting the focus of the microscope.
  • a stereoscopic image forming unit is disposed between the sample and the objective lens of the microscope, and the sample is disposed on one side of the stereoscopic image forming unit. Therefore, a real image of the sample is formed on the other side by the three-dimensional image forming means, and this real image can be magnified and observed with a microscope.
  • a transparent or translucent sample is imaged in a space as it is, and the image formed in this space is viewed with the objective lens, so that the objective lens is damaged. And can be observed at an arbitrary depth position of the object.
  • the sample can be enlarged and observed without fear of bringing the sample or the preparation into contact with the objective lens.
  • a microscope apparatus 10 includes a stage (an example of a support unit) 11 a that holds a sample 11, a stereoscopic image imaging unit 12, and a microscope 13.
  • the sample 11 is planarized by magnifying and observing a real image (an example of an object) 14 of the sample 11 formed by the stereoscopic image forming means 12 with a microscope 13 arranged toward the real image 14. It is an apparatus that can be observed as it is (three-dimensional state) without making a shape. This will be described in detail below.
  • the microscope 13 is a conventionally known optical microscope, and includes, for example, an inverted microscope, a measurement microscope, a dissecting microscope, a phase contrast microscope, a differential interference microscope, a polarizing microscope, and a fluorescence microscope.
  • the microscope 13 includes an objective lens 15 and an eyepiece lens 16 and forms an image of a real image 14 (also referred to as an inverted real image, an intermediate image, or a primary enlarged image) through the objective lens 15, and An erecting virtual image is formed by guiding the eyepiece 16.
  • the microscope 13 is a compound microscope having an objective lens 15 and an eyepiece lens 16, but a single microscope that directly observes an inverted real image magnified by the objective lens, for example, a television that directly captures an inverted real image with a CCD camera or the like.
  • An observable microscope may be used (that is, a microscope having no eyepiece).
  • the microscope apparatus 10 is provided with an illuminating means 17 and is configured to irradiate light from the left side in a horizontal direction (specific direction) toward the sample 11 as shown in FIG.
  • a light source such as an LED lamp or a halogen lamp can be used.
  • symbol 18 in FIG. 1 is the reflective mirror of the light provided in the microscope 13, it does not need to be.
  • the sample 11 to be observed with the microscope apparatus 10 is observable with an optical microscope and can be visually recognized from the outside.
  • the sample 11 is transparent or translucent. Specific examples include microorganisms such as Paramecium and Daphnia, human cells, and fungi such as Escherichia coli. Note that the sample may be opaque in some cases.
  • the stereoscopic image forming means 12 includes a plurality of strip-shaped vertical light reflecting surfaces (an example of a light reflecting portion) 19 arranged (standing) in parallel.
  • the first light control panel (parallel light reflection panel) 20 and the second light control panel (parallel light reflection panel) 20a each having the vertical light reflection surface 19 and the second light control of the first light control panel 20 are provided.
  • the panel 20a and the vertical light reflecting surface 19 are arranged in an overlapping manner in a state of being orthogonal to each other in plan view (an example of an intersection, for example, it may intersect within a range of 88 to 92 degrees) (for example, (See Patent Literature 4, PCT / JP2017 / 12622).
  • the 1st, 2nd light control panels 20 and 20a have the same structure, the same number is provided to the component.
  • the first light control panel 20 (the same applies to the second light control panel 20a) is provided on one side of the transparent flat plate 21 (in the upper part in the first light control panel 20 and in the lower part in the second light control panel 20a).
  • a groove 24 having a triangular cross section having a vertical surface 22 and an inclined surface 23, and a ridge 25 having a triangular cross section formed between the grooves 24 are provided.
  • a plurality of grooves 24 and ridges 25 of the first and second light control panels 20 are provided in parallel at a constant pitch.
  • the vertical surface 22 of the groove 24 is mirror-finished, that is, a metal reflection film (metal film) 22 a is formed, and one surface of the metal reflection film 22 a is a vertical light reflection surface (mirror surface) 19. .
  • the inclined surface 23 is preferably a non-light reflecting surface and a light transmitting surface.
  • the groove 24 is filled with a transparent resin 26, and the filling surface 27 is parallel to the surface 28 of the first and second light control panels 20, 20a (for example, the transparent flat plate 21).
  • the first and second light control panels 20 and 20a are arranged so as to be in contact with or close to each other in a state in which the vertical light reflection surfaces 19 are orthogonal to each other in plan view.
  • the 1st, 2nd light control panels 20 and 20a may be joined and integrated through the transparent adhesive agent (resin), for example.
  • the transparent resin constituting the shapes of the first and second light control panels 20 and 20a (the transparent flat plate 21 and the ridges 25) and the transparent resin 26 filling the grooves 24 are the same resin. Different types of transparent resins may be used. In addition, when using a different kind of transparent resin, it is preferable that the refractive index is the same or approximate. In other words, the refractive index ( ⁇ ) is the same as or substantially equal to the refractive index ( ⁇ ) of the transparent resin constituting the shape of the first and second light control panels 20 and 20a (for example, in the range of ⁇ 20%, ie, (0.8 to 1.. 2) in the range of ⁇ is used as the transparent resin 26 filling the groove 24.
  • the light L1 and L2 from the sample 11 incident obliquely from one side (lower left side) of the stereoscopic image forming means 12 are the lower first light.
  • a real image 14 (stereoscopic image) can be formed on the other side (upper right side).
  • the back side (left side in FIG. 3) of the metal reflection film 22a formed on the vertical surface 22 by the mirror surface treatment is used as the vertical light reflection surface 19 of the first and second light control panels 20 and 20a.
  • the front side (the right side in FIG. 3) of the metal reflection film 22a can also be used as the vertical light reflection surface 19.
  • the first light control panel 20 (the same applies to the second light control panel 20a) is formed by a groove 24 having a triangular cross section having a vertical surface 22 and an inclined surface 23 on one side of the transparent plate 21 and an adjacent groove 24.
  • the vertical surface 22 of the ridges 25 (grooves 24) is made of, for example, aluminum, silver, nickel or the like. It can be manufactured by forming the metal reflective film 22a.
  • the molding base material described above can be manufactured by press molding, injection molding, or roll molding.
  • the metal reflection film 22a can be formed by performing sputtering, metal vapor deposition, or metal fine particle spraying on the vertical surface 22 of the ridge 25.
  • the pitch of the metal reflecting film 22a is not particularly limited. However, considering the dimensions of the sample 11, for example, 1 to 20 ⁇ m (more preferably 5 to 10 ⁇ m). It is preferable that
  • the stereoscopic image forming means is not limited to the above-described configuration as long as a real image of the sample can be formed.
  • the vertical surface forming the light reflecting portion is formed in a convex line having a triangular cross section as described above, for example, as described in Japanese Patent No. 4865088, the cross sectional rectangle in which the light reflecting portions are stacked. Each may be formed on one side of the transparent plate.
  • the three-dimensional image forming means 12 is formed by separately manufacturing the first and second light control panels 20 and 20a and overlapping them. A strip may be formed and the first and second light control panels may be integrally formed.
  • the observation of the sample 11 by the microscope apparatus 10 is performed by arranging and holding the sample 11 on a planar stage (an example of a support means) 11 a provided in the microscope apparatus 10.
  • the stereoscopic image forming means 12 is arranged between the lenses 15, the sample 11 is arranged on one side (lower left side in FIG. 1) of the stereoscopic image forming means 12, and the illumination means 17 is placed on the sample 11 from the horizontal direction. This is done by shining light.
  • the stereoscopic image imaging means 12 is symmetrical with respect to the sample 11 with the stereoscopic image imaging means 12 as the center (pinch).
  • a real image 14 of the sample 11 is formed on the other side (upper right side in FIG. 1), and this real image 14 becomes an object of the microscope 13 to be enlarged and observed.
  • the observation of the sample 11 can be performed in a state where the sample 11 is disposed (loaded) in a petri dish (flat plate) which is an example of a plastic body having light transmittance.
  • a light-transmitting (transparent) plastic body in which the sample 11 is sealed can be disposed on the stage 11a (in this case, the plastic body and the stage 11a serve as support means).
  • a method of sealing the sample 11 in a plastic body a method in which the sample 11 is filled with a resin in a molten state (filled with resin) and solidified (a method in which heat or ultraviolet light is used depending on the type of resin). Etc.
  • the sample 11 may be observed using containers 31 to 33 into which the sample 11 can be loaded as a supporting means for holding the sample 11.
  • the containers 31 to 33 are preferably transparent and made of a light-transmitting plastic body, but may be made of other light-transmitting materials such as glass.
  • Each of the containers 31 to 33 is filled with a liquid 34 having optical transparency.
  • the liquid 34 for example, water, physiological saline, a culture solution, or the like can be used according to the type of the sample 11 (the same applies when a petri dish is used). Note that the liquid 34 may be frozen in a state where the sample 11 is present (in a solid state) and the sample 11 may be positioned.
  • a container 31 shown in FIG. 4A has a horizontal opening 35 formed in the upper part.
  • the stereoscopic image forming means 12 is attached and fixed obliquely on the upper portion of the container 31 with the opening 35 of the container 31 being opened.
  • the microscope 13 is arranged so that the observation direction is the horizontal direction (horizontal direction) toward the real image 14.
  • the actual image 14 of the sample 11 (charged in the container 31) in the liquid 34 filled in the container 31 is placed in a symmetrical position with respect to the sample 11 with the stereoscopic image imaging means 12 interposed therebetween. It can be formed on the side of the container 31 in plan view.
  • a container 32 shown in FIG. 4B has an inclined opening 36 formed at the top.
  • the stereoscopic image forming means 12 is attached and fixed to the upper end portion of the container 32 so as to close the opening 36.
  • the microscope 13 is arranged so that the observation direction is the horizontal direction (horizontal direction) toward the real image 14.
  • the liquid 34 is filled in the container 32 closed by the three-dimensional image forming means 12
  • air can be excluded from the container 32, so that the liquid 34 and the air layer are not considered in refraction.
  • the actual image 14 of the sample 11 in 34 can be formed in a symmetrical position with respect to the sample 11 with the three-dimensional image forming means 12 interposed therebetween, and thus on the side of the container 32 in plan view.
  • the container 33 shown in FIG. 4C is provided with two stereoscopic image forming means 12.
  • the two three-dimensional image forming means 12 are optically arranged in series, and are arranged in a mountain shape with their tops in contact with each other. Constitutes the bottom. For this reason, the liquid 34 does not enter between the two stereoscopic image forming means 12 arranged in a mountain shape.
  • the upper ends of the two stereoscopic image forming means 12 are in contact with each other, but the two stereoscopic image forming means 12 may be arranged in a separated state.
  • an actual image 14a of the sample 11 formed at a position symmetrical to the sample 11 in the liquid 34 with the three-dimensional image imaging means 12 as the center is further added to the other one.
  • the three-dimensional image forming unit 12 forms a real image (an example of an object) 37 at a position symmetrical to the real image 14a with the three-dimensional image forming unit 12 as a center.
  • the microscope 13 is arranged so that the observation direction is the vertical direction (vertical direction) toward the real image 37. Therefore, since the real image 37 of the sample 11 to be observed is an image formed through the two stereoscopic image forming means 12 optically arranged in series, the unevenness is in a normal state (the same state as the sample 11). It becomes.
  • FIG. 1 a sample 11 that is an object to be observed is placed on one side of the stereoscopic image forming means 12 on the stage 11 a of the microscope apparatus 10.
  • the stereoscopic image forming means 12 is arranged on the stage 11a, and the sample 11 is arranged in the petri dish as described above.
  • the containers 31 to 31 shown in FIGS. 4 (A) to (C) are used. 33 may be used.
  • the illumination unit 17 applies light to the sample 11 from a specific direction. Thereby, the real image 14 of the sample 11 shown in FIG. 2 (or the real image 37 shown in FIG. 4C) is formed on the other side of the stereoscopic image forming means 12.
  • the cross-sectional image of the formed real image 14 of the sample 11 is magnified by the objective lens 15 to create a cross-sectional magnified image, and the cross-sectional magnified image is magnified by the eyepiece 16 to create a further cross-sectional magnified image. Observed with the naked eye. Specifically, when the cross-sectional image of the real image 14 of the sample 11 is mn, the primary image (cross-sectional enlarged image) m′n ′ of the inverted real image is created by the objective lens 15.
  • an enlarged image (enlarged cross section) of the cross section at each position of the real image 14 can be observed by moving the objective lens 15 close to or away from the real image 14 (adjusting the focus of the microscope 13).
  • the objective lens 15 may enter the actual image 14.
  • the transparent or translucent sample can be left in an arbitrary depth position without damaging the objective lens with a simple apparatus configuration. Observe.
  • the sample can be enlarged and observed without fear of bringing the sample or the preparation into contact with the objective lens.
  • the present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included.
  • the microscope included in the microscope apparatus of the present invention has a configuration on the premise that a three-dimensional image forming unit is arranged, but a conventionally used microscope apparatus (a three-dimensional image forming unit is arranged).
  • a stereoscopic image forming means is provided in a microscope apparatus that has not been assumed is also included in the scope of the right of the present invention.
  • the microscope apparatus and the sample observation method using the same according to the present invention have a simple apparatus configuration, and form an image of a sample in a space as it is, and an image (actual image) imaged in the space with an objective lens. You can see it enlarged.
  • the object can be observed at an arbitrary depth position, it can contribute to, for example, research on living organisms (animals, plants, fungi, bacteria), medical development, drug development, and the like.
  • Microscope device 11: Sample, 11a: Stage (supporting means), 12: Stereoscopic image forming means, 13: Microscope, 14: Real image (object), 14a: Real image, 15: Objective lens, 16: Eyepiece, 17: illuminating means, 18: reflector, 19: vertical light reflecting surface (light reflecting portion), 20: first light control panel, 20a: second light control panel, 21: transparent flat plate, 22: Vertical surface, 22a: metal reflecting film, 23: inclined surface, 24: groove, 25: ridge, 26: transparent resin, 27: filling surface, 28: surface, 31 to 33: container, 34: liquid, 35, 36 : Opening, 37: Real image (object)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

This microscope device 10 comprises: a support means 11a for holding a sample 11 to be observed; an illumination means 17 for illuminating the sample 11 with light from a specific direction; and a microscope 13 disposed to face an object to be magnified and observed, wherein a stereo image formation means 12 is disposed between the sample 11 and an objective lens 15 of the microscope 13, the sample 11 is disposed on one side of the stereo image formation means 12, a real image 14 of the sample 11 is formed on the other side of the stereo image formation means 12 by the stereo image formation means 12, and the real image 14 is defined as the object of the microscope 13. This sample observation method using the microscope device 11 comprises: illuminating the sample 11 to be observed, which is held by the support means 11a and disposed on one side of the stereo image formation means 12, with light from the specific direction by the illumination means 17; forming the real image 14 of the sample 11 on the other side of the stereo image formation means 12; and observing the real image 14 with the microscope 13.

Description

顕微鏡装置及びこれを用いた試料観察方法Microscope device and sample observation method using the same
 本発明は、観察対象となる試料をそのままの状態(平面又は立体の状態)で観察可能な顕微鏡装置及びこれを用いた試料観察方法に関する。 The present invention relates to a microscope apparatus capable of observing a sample to be observed as it is (planar or three-dimensional state) and a sample observation method using the same.
 従来、顕微鏡(光学顕微鏡)を用いた試料の観察は、スライドガラスに貼り付けられカバーガラスで封じられた試料(即ち、プレパラート)を、ステージ上に配置して行っている(例えば、特許文献1参照)。 Conventionally, observation of a sample using a microscope (an optical microscope) is performed by placing a sample (that is, a preparation) attached to a slide glass and sealed with a cover glass on a stage (for example, Patent Document 1). reference).
特開2007-17806号公報Japanese Patent Laid-Open No. 2007-17806 特許第5437436号公報Japanese Patent No. 5437436 WO2006/001158号公報WO2006 / 001158 特許第6203989号公報Japanese Patent No. 6203389
 しかしながら、特許文献1においては、試料はスライドガラスとカバーガラスで挟まれた状態で観察されるため、試料が平面状となり、試料をそのままの状態(本来の状態)で観察することはできなかった。なお、試料の3次元像を観察する顕微鏡として、共焦点レーザ走査型顕微鏡や多光子励起レーザ走査型顕微鏡等もあるが、この場合、顕微鏡の装置構成が複雑となり、高額となって不経済であり、操作性にも問題があった。
 更に、プレパラートを用いて試料を観察するに際しては、焦点調整の際に、対物レンズがプレパラートに衝突して、対物レンズが損傷するおそれもあった。
 なお、特許文献2~4には、立体画像の表示装置並びにその製造方法が提案されているが、試料の画像を拡大するものではない。
However, in Patent Document 1, since the sample is observed while being sandwiched between the slide glass and the cover glass, the sample has a flat shape, and the sample cannot be observed as it is (original state). . There are confocal laser scanning microscopes, multiphoton excitation laser scanning microscopes, and the like as microscopes for observing a three-dimensional image of a sample. In this case, however, the configuration of the microscope becomes complicated, which is expensive and uneconomical. There was also a problem in operability.
Furthermore, when observing a sample using a preparation, the objective lens may collide with the preparation during focus adjustment, and the objective lens may be damaged.
Patent Documents 2 to 4 propose a stereoscopic image display device and a method for manufacturing the same, but do not enlarge the sample image.
 本発明はかかる事情に鑑みてなされたもので、簡単な装置構成で、1)例えば、透明又は半透明の試料をそのままの状態で、対物レンズを損傷させることなく、希望する任意の深さ位置で観察可能な、2)場合によっては不透明な試料であっても、対物レンズに試料やプレパラートを接触させるおそれなく、試料を拡大して観察できる顕微鏡装置及びこれを用いた試料観察方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a simple apparatus configuration. 1) For example, a transparent or translucent sample is left as it is, and an arbitrary depth position is desired without damaging the objective lens. 2) To provide a microscope apparatus capable of magnifying and observing a sample without fear of bringing the sample or a specimen into contact with an objective lens even if it is an opaque sample, and a sample observation method using the same For the purpose.
 前記目的に沿う第1の発明に係る顕微鏡装置は、観察しようとする試料を保持する支持手段と、前記試料に特定方向から光を当てる照明手段と、拡大して観察しようとする対象物に向けて配置された顕微鏡とを有する顕微鏡装置において、
 前記試料と、前記顕微鏡の対物レンズとの間に立体像結像手段を配置し、前記立体像結像手段の一側に前記試料を配置し、前記立体像結像手段によって該立体像結像手段の他側に前記試料の実画像を形成し、該実画像を前記顕微鏡の前記対象物とする。
The microscope apparatus according to the first aspect of the present invention is directed to a supporting means for holding a sample to be observed, an illuminating means for irradiating light on the sample from a specific direction, and an object to be enlarged and observed. A microscope device having a microscope arranged
A stereoscopic image forming unit is disposed between the sample and the objective lens of the microscope, the sample is disposed on one side of the stereoscopic image forming unit, and the stereoscopic image is formed by the stereoscopic image forming unit. An actual image of the sample is formed on the other side of the means, and the actual image is used as the object of the microscope.
 第1の発明に係る顕微鏡装置において、前記立体像結像手段は、平行に並んで配置された帯状の多数の光反射部をそれぞれ有する第1、第2の光制御パネルを、平面視して前記光反射部が交差(好ましくは、直交)した状態で重ねて配置して形成されている(例えば、特許文献2、4参照)が好ましいが、前記立体像結像手段として、特許文献3に記載のようにマイクロレンズアレイを結像手段として選択することもできる。 In the microscope apparatus according to the first aspect of the present invention, the three-dimensional image forming means has a plan view of the first and second light control panels each having a plurality of strip-shaped light reflecting portions arranged in parallel. It is preferable that the light reflecting portions are formed so as to overlap each other (preferably orthogonally crossed) (see, for example, Patent Documents 2 and 4). As described, a microlens array can also be selected as the imaging means.
 第1の発明に係る顕微鏡装置において、前記支持手段は光透過性を有する液体が充填された容器を有し、該容器の液体内に透明又は半透明の前記試料が配置され、前記顕微鏡の焦点調整によって、前記試料の拡大断面を観察可能であることが好ましい。
 ここで、前記実画像を、光学的に直列に配置された2つの前記立体像結像手段を介して形成することもできる。
In the microscope apparatus according to the first invention, the support means has a container filled with a light-transmitting liquid, the transparent or translucent sample is disposed in the liquid of the container, and the focus of the microscope It is preferable that an enlarged cross section of the sample can be observed by adjustment.
Here, the real image may be formed via the two stereoscopic image forming means optically arranged in series.
 第1の発明に係る顕微鏡装置において、前記支持手段が光透過性を有するプラスチック体であって、該プラスチック体内に前記試料を装入又は封止することもできる。 In the microscope apparatus according to the first invention, the support means is a plastic body having light permeability, and the sample can be charged or sealed in the plastic body.
 前記目的に沿う第2の発明に係る顕微鏡装置を用いた試料観察方法は、支持手段で保持されて、立体像結像手段の一側に配置した観察しようとする試料に、照明手段によって特定方向から光を当て、前記立体像結像手段の他側に、前記試料の実画像を形成し、該実画像を顕微鏡で観察する。 The sample observation method using the microscope apparatus according to the second invention in accordance with the above object is directed to a sample to be observed, which is held by the supporting means and arranged on one side of the stereoscopic image forming means, by the illumination means. Then, a real image of the sample is formed on the other side of the stereoscopic image forming means, and the real image is observed with a microscope.
 第2の発明に係る顕微鏡装置を用いた試料観察方法において、前記立体像結像手段は、平行に並んで配置された帯状の多数の光反射部をそれぞれ有する第1、第2の光制御パネルを、平面視して前記光反射部が交差(好ましくは、直交)した状態で重ねて配置して形成され、前記第1の光制御パネルの光反射部で反射した前記試料からの光を、前記第2の光制御パネルの光反射部で再反射して前記試料の実画像を形成することが好ましい。 In the sample observation method using the microscope apparatus according to the second invention, the stereoscopic image forming means has first and second light control panels each having a plurality of strip-like light reflecting portions arranged in parallel. , The light reflecting portion is formed in an overlapping manner (preferably orthogonal) in a plan view, and is reflected by the light reflecting portion of the first light control panel, It is preferable that an actual image of the sample is formed by re-reflection at the light reflecting portion of the second light control panel.
 第2の発明に係る顕微鏡装置を用いた試料観察方法において、前記支持手段は光透過性を有する液体が充填された容器を有し、前記試料は前記容器の液体内に配置されていることが好ましい。 In the sample observation method using the microscope apparatus according to the second invention, the support means has a container filled with a light-transmitting liquid, and the sample is disposed in the liquid of the container. preferable.
 第2の発明に係る顕微鏡装置を用いた試料観察方法において、前記試料は透明又は半透明であって、前記顕微鏡の焦点調整によって、前記試料の拡大断面が観察できることが好ましい。 In the sample observation method using the microscope apparatus according to the second invention, it is preferable that the sample is transparent or translucent, and an enlarged cross section of the sample can be observed by adjusting the focus of the microscope.
 本発明に係る顕微鏡装置及びこれを用いた試料観察方法は、試料と、顕微鏡の対物レンズとの間に立体像結像手段を配置し、この立体像結像手段の一側に試料を配置するので、立体像結像手段によってその他側に試料の実画像を形成して、この実画像を、顕微鏡により拡大して観察できる。これにより、簡単な装置構成で、例えば、透明又は半透明の試料をそのままの状態で、空間に結像させ、この空間に結像された像を対物レンズで見るので、対物レンズを損傷させることなく、対象物の任意の深さ位置で観察できる。また、場合によっては不透明な試料であっても、対物レンズに試料やプレパラートを接触させるおそれなく、試料を拡大して観察できる。 In the microscope apparatus and the sample observation method using the same according to the present invention, a stereoscopic image forming unit is disposed between the sample and the objective lens of the microscope, and the sample is disposed on one side of the stereoscopic image forming unit. Therefore, a real image of the sample is formed on the other side by the three-dimensional image forming means, and this real image can be magnified and observed with a microscope. As a result, with a simple apparatus configuration, for example, a transparent or translucent sample is imaged in a space as it is, and the image formed in this space is viewed with the objective lens, so that the objective lens is damaged. And can be observed at an arbitrary depth position of the object. Moreover, even if it is an opaque sample depending on the case, the sample can be enlarged and observed without fear of bringing the sample or the preparation into contact with the objective lens.
本発明の一実施例に係る顕微鏡装置の説明図である。It is explanatory drawing of the microscope apparatus which concerns on one Example of this invention. 同顕微鏡装置の立体像結像手段による試料の実画像の形成状況を示す説明図である。It is explanatory drawing which shows the formation condition of the real image of the sample by the three-dimensional image formation means of the microscope apparatus. (A)、(B)はそれぞれ同顕微鏡装置の立体像結像手段の正断面図及び側断面図である。(A) and (B) are a front sectional view and a side sectional view, respectively, of the stereoscopic image forming means of the microscope apparatus. (A)~(C)はそれぞれ同顕微鏡装置に用いられる試料の容器の説明図である。(A)-(C) are explanatory drawings of sample containers used in the microscope apparatus, respectively.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
 図1、図2に示すように、本発明の一実施例に係る顕微鏡装置10は、試料11を保持するステージ(支持手段の一例)11aと、立体像結像手段12と、顕微鏡13とを有し、立体像結像手段12によって形成される試料11の実画像(対象物の一例)14を、実画像14に向けて配置された顕微鏡13によって拡大し観察することで、試料11を平面状にすることなくそのままの状態(立体の状態)で観察可能な装置である。以下、詳しく説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 and 2, a microscope apparatus 10 according to an embodiment of the present invention includes a stage (an example of a support unit) 11 a that holds a sample 11, a stereoscopic image imaging unit 12, and a microscope 13. The sample 11 is planarized by magnifying and observing a real image (an example of an object) 14 of the sample 11 formed by the stereoscopic image forming means 12 with a microscope 13 arranged toward the real image 14. It is an apparatus that can be observed as it is (three-dimensional state) without making a shape. This will be described in detail below.
 顕微鏡13は従来公知の光学顕微鏡であり、例えば、倒立顕微鏡、測定顕微鏡、解剖顕微鏡、位相差顕微鏡、微分干渉顕微鏡、偏光顕微鏡、蛍光顕微鏡等がある。
 この顕微鏡13は、対物レンズ15と接眼レンズ16を有し、対物レンズ15を介して実画像14の像(倒立実像、中間像、又は、一次拡大像ともいう)を形成すると共に、この像を接眼レンズ16に案内して正立虚像を形成する。なお、顕微鏡13は、対物レンズ15と接眼レンズ16を有する複式顕微鏡であるが、対物レンズで拡大された倒立実像を直接観察する単式顕微鏡、例えば、CCDカメラ等で倒立実像を直接に撮像するテレビ観察可能な顕微鏡でもよい(即ち、接眼レンズを有しない顕微鏡)。
The microscope 13 is a conventionally known optical microscope, and includes, for example, an inverted microscope, a measurement microscope, a dissecting microscope, a phase contrast microscope, a differential interference microscope, a polarizing microscope, and a fluorescence microscope.
The microscope 13 includes an objective lens 15 and an eyepiece lens 16 and forms an image of a real image 14 (also referred to as an inverted real image, an intermediate image, or a primary enlarged image) through the objective lens 15, and An erecting virtual image is formed by guiding the eyepiece 16. The microscope 13 is a compound microscope having an objective lens 15 and an eyepiece lens 16, but a single microscope that directly observes an inverted real image magnified by the objective lens, for example, a television that directly captures an inverted real image with a CCD camera or the like. An observable microscope may be used (that is, a microscope having no eyepiece).
 顕微鏡装置10には照明手段17が設けられ、図1に示すように、試料11に向けて水平方向左側(特定方向)から光を当てる構成となっている。この照明手段17には、例えば、LEDランプやハロゲンランプ等の光源を使用できる。なお、図1中の符号18は顕微鏡13に設けられた光の反射鏡であるが、なくてもよい。
 この顕微鏡装置10で観察しようとする試料11は、光学顕微鏡で観察可能な、外部から内部を視認できる、例えば、透明又は半透明のものである。具体的には、ゾウリムシやミジンコ等の微生物、人の細胞、大腸菌等の菌類等がある。なお、試料は、場合によっては不透明でもよい。
The microscope apparatus 10 is provided with an illuminating means 17 and is configured to irradiate light from the left side in a horizontal direction (specific direction) toward the sample 11 as shown in FIG. For the illumination means 17, for example, a light source such as an LED lamp or a halogen lamp can be used. In addition, although the code | symbol 18 in FIG. 1 is the reflective mirror of the light provided in the microscope 13, it does not need to be.
The sample 11 to be observed with the microscope apparatus 10 is observable with an optical microscope and can be visually recognized from the outside. For example, the sample 11 is transparent or translucent. Specific examples include microorganisms such as Paramecium and Daphnia, human cells, and fungi such as Escherichia coli. Note that the sample may be opaque in some cases.
 上記した顕微鏡13の対物レンズ15と試料11との間には、立体像結像手段12が配置されている。
 立体像結像手段12は、図3(A)、(B)に示すように、平行に並んで配置(立設)された帯状の多数の垂直光反射面(光反射部の一例)19をそれぞれ有する第1の光制御パネル(平行光反射パネル)20と第2の光制御パネル(平行光反射パネル)20aを、第1の光制御パネル20の垂直光反射面19と第2の光制御パネル20aの垂直光反射面19とが平面視して直交(交差の一例であり、例えば、88~92度の範囲で交差させてもよい)した状態で重ねて配置したものである(例えば、特許文献4、PCT/JP2017/12622参照)。なお、第1、第2の光制御パネル20、20aは同一の構成を有しているので、その構成要素には同一の番号を付与する。
Between the objective lens 15 of the microscope 13 and the sample 11, a stereoscopic image forming unit 12 is disposed.
As shown in FIGS. 3A and 3B, the stereoscopic image forming means 12 includes a plurality of strip-shaped vertical light reflecting surfaces (an example of a light reflecting portion) 19 arranged (standing) in parallel. The first light control panel (parallel light reflection panel) 20 and the second light control panel (parallel light reflection panel) 20a each having the vertical light reflection surface 19 and the second light control of the first light control panel 20 are provided. The panel 20a and the vertical light reflecting surface 19 are arranged in an overlapping manner in a state of being orthogonal to each other in plan view (an example of an intersection, for example, it may intersect within a range of 88 to 92 degrees) (for example, (See Patent Literature 4, PCT / JP2017 / 12622). In addition, since the 1st, 2nd light control panels 20 and 20a have the same structure, the same number is provided to the component.
 第1の光制御パネル20(第2の光制御パネル20aも同様)は、透明平板21の片側に(第1の光制御パネル20では上部に、第2の光制御パネル20aでは下部に)、垂直面22及び傾斜面23を有する断面三角形の溝24と、この溝24間に形成される断面三角形の凸条25を備えている。第1、第2の光制御パネル20の溝24及び凸条25はそれぞれ一定のピッチで平行に多数設けられている。
 溝24の垂直面22には、鏡面処理がなされて、即ち、金属反射膜(金属被膜)22aが形成されており、金属反射膜22aの片面が垂直光反射面(鏡面)19となっている。
 一方、傾斜面23は、非光反射面であって光透過面とするのが好ましい。
The first light control panel 20 (the same applies to the second light control panel 20a) is provided on one side of the transparent flat plate 21 (in the upper part in the first light control panel 20 and in the lower part in the second light control panel 20a). A groove 24 having a triangular cross section having a vertical surface 22 and an inclined surface 23, and a ridge 25 having a triangular cross section formed between the grooves 24 are provided. A plurality of grooves 24 and ridges 25 of the first and second light control panels 20 are provided in parallel at a constant pitch.
The vertical surface 22 of the groove 24 is mirror-finished, that is, a metal reflection film (metal film) 22 a is formed, and one surface of the metal reflection film 22 a is a vertical light reflection surface (mirror surface) 19. .
On the other hand, the inclined surface 23 is preferably a non-light reflecting surface and a light transmitting surface.
 溝24の内部には、透明樹脂26が充填され、充填面27はそれぞれ第1、第2の光制御パネル20、20a(例えば透明平板21)の表面28と平行となっている。
 この第1、第2の光制御パネル20、20aは、それぞれの垂直光反射面19を平面視して直交させた状態で、当接、又は、近接させて重ねて配置されている。また、第1、第2の光制御パネル20、20aは、例えば、透明な接着剤(樹脂)を介して接合され、一体化されていてもよい。
The groove 24 is filled with a transparent resin 26, and the filling surface 27 is parallel to the surface 28 of the first and second light control panels 20, 20a (for example, the transparent flat plate 21).
The first and second light control panels 20 and 20a are arranged so as to be in contact with or close to each other in a state in which the vertical light reflection surfaces 19 are orthogonal to each other in plan view. Moreover, the 1st, 2nd light control panels 20 and 20a may be joined and integrated through the transparent adhesive agent (resin), for example.
 第1、第2の光制御パネル20、20aの形状(透明平板21及び凸条25)を構成する透明樹脂と、溝24に充填する透明樹脂26とは、同一の樹脂であることが好ましいが、異なる種類の透明樹脂であってもよい。なお、異なる種類の透明樹脂を使用する場合は、屈折率が同一又は近似しているのが好ましい。即ち、第1、第2の光制御パネル20、20aの形状を構成する透明樹脂の屈折率(η)と同一又は略等しい屈折率(例えば±20%の範囲、即ち(0.8~1.2)ηの範囲)のものを、溝24に充填する透明樹脂26として使用する。 It is preferable that the transparent resin constituting the shapes of the first and second light control panels 20 and 20a (the transparent flat plate 21 and the ridges 25) and the transparent resin 26 filling the grooves 24 are the same resin. Different types of transparent resins may be used. In addition, when using a different kind of transparent resin, it is preferable that the refractive index is the same or approximate. In other words, the refractive index (η) is the same as or substantially equal to the refractive index (η) of the transparent resin constituting the shape of the first and second light control panels 20 and 20a (for example, in the range of ± 20%, ie, (0.8 to 1.. 2) in the range of η is used as the transparent resin 26 filling the groove 24.
 これにより、図3(A)、(B)において、立体像結像手段12の一側(左下側)から斜めに入光した試料11からの光L1、L2は、下側の第1の光制御パネル20の垂直光反射面19のP1、P2で反射し、更に上側の第2の光制御パネル20aの垂直光反射面19のQ1、Q2で再反射して、立体像結像手段12の他側(右上側)に実画像14(立体像)を形成できる。
 なお、ここでは、鏡面処理によって垂直面22に形成された金属反射膜22aの裏側(図3では左側)を第1、第2の光制御パネル20、20aの垂直光反射面19として使用したが、金属反射膜22aの表側(図3では右側)を垂直光反射面19として使用することもできる。
Thus, in FIGS. 3A and 3B, the light L1 and L2 from the sample 11 incident obliquely from one side (lower left side) of the stereoscopic image forming means 12 are the lower first light. Reflected by P1 and P2 of the vertical light reflecting surface 19 of the control panel 20, and re-reflected by Q1 and Q2 of the vertical light reflecting surface 19 of the second light control panel 20a on the upper side. A real image 14 (stereoscopic image) can be formed on the other side (upper right side).
Here, the back side (left side in FIG. 3) of the metal reflection film 22a formed on the vertical surface 22 by the mirror surface treatment is used as the vertical light reflection surface 19 of the first and second light control panels 20 and 20a. The front side (the right side in FIG. 3) of the metal reflection film 22a can also be used as the vertical light reflection surface 19.
 第1の光制御パネル20(第2の光制御パネル20aも同様)は、透明板材21の片側に、垂直面22と傾斜面23とを有する断面三角形の溝24、及び、隣り合う溝24によって形成される断面三角形の凸条25がそれぞれ平行配置された透明樹脂からなる成型母材を製造した後、凸条25(溝24)の垂直面22に、例えば、アルミニウム、銀、ニッケル等からなる金属反射膜22aを形成することで、製造できる。 The first light control panel 20 (the same applies to the second light control panel 20a) is formed by a groove 24 having a triangular cross section having a vertical surface 22 and an inclined surface 23 on one side of the transparent plate 21 and an adjacent groove 24. After producing a molded base material made of transparent resin in which the ridges 25 having a triangular cross-section to be formed are arranged in parallel, the vertical surface 22 of the ridges 25 (grooves 24) is made of, for example, aluminum, silver, nickel or the like. It can be manufactured by forming the metal reflective film 22a.
 上記した成型母材は、プレス成型、インジェクション成型、又は、ロール成型で製造できる。
 また、金属反射膜22aは、凸条25の垂直面22に、スパッターリング、金属蒸着、又は、金属微小粒子の吹き付けを行うことで形成できる。
 そして、金属反射膜22a(垂直光反射面19)のピッチは、特に限定されるものではないが、試料11の寸法等を考慮すれば、例えば、1~20μm(より好ましくは、5~10μm)であることが好ましい。
The molding base material described above can be manufactured by press molding, injection molding, or roll molding.
The metal reflection film 22a can be formed by performing sputtering, metal vapor deposition, or metal fine particle spraying on the vertical surface 22 of the ridge 25.
The pitch of the metal reflecting film 22a (vertical light reflecting surface 19) is not particularly limited. However, considering the dimensions of the sample 11, for example, 1 to 20 μm (more preferably 5 to 10 μm). It is preferable that
 なお、立体像結像手段は、試料の実画像を形成できれば、上記した構成に限定されるものではない。
 光反射部を形成する垂直面は、前記のように断面三角形の凸条に形成されている場合の他、例えば、特許第4865088号公報に記載のように、光反射部を積層される断面矩形の透明板の片面にそれぞれ形成してもよい。
 また、立体像結像手段12は、第1、第2の光制御パネル20、20aを別々に製造して、これらを重ね合わせて形成したものであるが、透明平板の表裏面に溝及び凸条を形成して、第1、第2の光制御パネルを一体成型したものでもよい。
Note that the stereoscopic image forming means is not limited to the above-described configuration as long as a real image of the sample can be formed.
In addition to the case where the vertical surface forming the light reflecting portion is formed in a convex line having a triangular cross section as described above, for example, as described in Japanese Patent No. 4865088, the cross sectional rectangle in which the light reflecting portions are stacked. Each may be formed on one side of the transparent plate.
The three-dimensional image forming means 12 is formed by separately manufacturing the first and second light control panels 20 and 20a and overlapping them. A strip may be formed and the first and second light control panels may be integrally formed.
 顕微鏡装置10による試料11の観察は、図1に示すように、顕微鏡装置10に設けられた平面状のステージ(支持手段の一例)11a上に試料11を配置して保持し、試料11と対物レンズ15の間に立体像結像手段12を配置して、立体像結像手段12の一側(図1では左下側)に試料11を配置し、この試料11に照明手段17で水平方向から光を当てることにより行う。これにより、試料11は透明又は半透明であるため、立体像結像手段12によって、立体像結像手段12を中心にして(挟んで)試料11とは対称位置(立体像結像手段12の他側(図1では右上側))に試料11の実画像14が形成され、この実画像14が、拡大して観察しようとする顕微鏡13の対象物となる。 As shown in FIG. 1, the observation of the sample 11 by the microscope apparatus 10 is performed by arranging and holding the sample 11 on a planar stage (an example of a support means) 11 a provided in the microscope apparatus 10. The stereoscopic image forming means 12 is arranged between the lenses 15, the sample 11 is arranged on one side (lower left side in FIG. 1) of the stereoscopic image forming means 12, and the illumination means 17 is placed on the sample 11 from the horizontal direction. This is done by shining light. Thus, since the sample 11 is transparent or translucent, the stereoscopic image imaging means 12 is symmetrical with respect to the sample 11 with the stereoscopic image imaging means 12 as the center (pinch). A real image 14 of the sample 11 is formed on the other side (upper right side in FIG. 1), and this real image 14 becomes an object of the microscope 13 to be enlarged and observed.
 ここで、試料11の観察は、試料11を、光透過性を有するプラスチック体の一例であるシャーレ(平皿)内に配置した(装入された)状態で行うことができるが、このシャーレの代わりに、試料11が封止された光透過性を有する(透明な)プラスチック体を、ステージ11a上に配置して行うこともできる(この場合、プラスチック体とステージ11aが支持手段となる)。
 なお、試料11をプラスチック体に封止する方法としては、試料11を溶融状態の樹脂に埋めて(樹脂埋めして)固化させる方法(樹脂の種類によって、熱や紫外線を用いて固化させる方法)等がある。
Here, the observation of the sample 11 can be performed in a state where the sample 11 is disposed (loaded) in a petri dish (flat plate) which is an example of a plastic body having light transmittance. In addition, a light-transmitting (transparent) plastic body in which the sample 11 is sealed can be disposed on the stage 11a (in this case, the plastic body and the stage 11a serve as support means).
In addition, as a method of sealing the sample 11 in a plastic body, a method in which the sample 11 is filled with a resin in a molten state (filled with resin) and solidified (a method in which heat or ultraviolet light is used depending on the type of resin). Etc.
 また、試料11の観察は、図4(A)~(C)に示すように、試料11を保持する支持手段として、試料11を装入可能な容器31~33を用いて行ってもよい。この容器31~33は、透明であることが好ましく、光透過性を有するプラスチック体で構成されているが、ガラス等の光透過性を有する他の材質で構成することもできる。
 上記した各容器31~33内には、光透過性を有する液体34が充填されている。この液体34としては、試料11の種類に応じて、例えば、水や生理食塩水、また、培養液等を使用できる(シャーレを使用する場合も同様)。なお、液体34は試料11が存在する状態で凍結させて(固体状態にして)、試料11の位置決めを行ってもよい。
In addition, as shown in FIGS. 4A to 4C, the sample 11 may be observed using containers 31 to 33 into which the sample 11 can be loaded as a supporting means for holding the sample 11. The containers 31 to 33 are preferably transparent and made of a light-transmitting plastic body, but may be made of other light-transmitting materials such as glass.
Each of the containers 31 to 33 is filled with a liquid 34 having optical transparency. As the liquid 34, for example, water, physiological saline, a culture solution, or the like can be used according to the type of the sample 11 (the same applies when a petri dish is used). Note that the liquid 34 may be frozen in a state where the sample 11 is present (in a solid state) and the sample 11 may be positioned.
 図4(A)に示す容器31は、上部に水平状態の開口部35が形成されたものである。この容器31の上部には立体像結像手段12が、容器31の開口部35を開口させた状態で斜めに取付け固定されている。このとき、顕微鏡13は、実画像14に向けて、観察方向が横方向(水平方向)となるように配置する。
 これにより、容器31に充填された液体34中の(容器31内に装入された)試料11の実画像14を、立体像結像手段12を挟んで試料11とは対称位置に、従って、平面視して容器31の側方に形成できる。
A container 31 shown in FIG. 4A has a horizontal opening 35 formed in the upper part. The stereoscopic image forming means 12 is attached and fixed obliquely on the upper portion of the container 31 with the opening 35 of the container 31 being opened. At this time, the microscope 13 is arranged so that the observation direction is the horizontal direction (horizontal direction) toward the real image 14.
Thereby, the actual image 14 of the sample 11 (charged in the container 31) in the liquid 34 filled in the container 31 is placed in a symmetrical position with respect to the sample 11 with the stereoscopic image imaging means 12 interposed therebetween. It can be formed on the side of the container 31 in plan view.
 図4(B)に示す容器32は、上部に傾斜状態の開口部36が形成されたものである。この容器32の上端部には立体像結像手段12が、開口部36を塞ぐように取付け固定されている。このとき、顕微鏡13は、実画像14に向けて、観察方向が横方向(水平方向)となるように配置する。
 これにより、立体像結像手段12で閉塞された容器32内に液体34を充填することで、容器32内から空気を排除できるため、液体34と空気層との屈折を考慮することなく、液体34中の試料11の実画像14を、立体像結像手段12を挟んで試料11とは対称位置に、従って、平面視して容器32の側方に形成できる。
A container 32 shown in FIG. 4B has an inclined opening 36 formed at the top. The stereoscopic image forming means 12 is attached and fixed to the upper end portion of the container 32 so as to close the opening 36. At this time, the microscope 13 is arranged so that the observation direction is the horizontal direction (horizontal direction) toward the real image 14.
Thus, since the liquid 34 is filled in the container 32 closed by the three-dimensional image forming means 12, air can be excluded from the container 32, so that the liquid 34 and the air layer are not considered in refraction. The actual image 14 of the sample 11 in 34 can be formed in a symmetrical position with respect to the sample 11 with the three-dimensional image forming means 12 interposed therebetween, and thus on the side of the container 32 in plan view.
 図4(C)に示す容器33には、2つの立体像結像手段12が設けられている。この2つの立体像結像手段12は、光学的に直列に配置されており、その頂部を当接させた状態で山型状に配置され、一方の傾斜した立体像結像手段12が容器33の底部を構成している。このため、山型状に配置された2つの立体像結像手段12の間には、液体34が浸入しない構成となっている。
 なお、ここでは、2つの立体像結像手段12の上端部が当接した状態となっているが、離れた状態で2つの立体像結像手段12を配置してもよい。
The container 33 shown in FIG. 4C is provided with two stereoscopic image forming means 12. The two three-dimensional image forming means 12 are optically arranged in series, and are arranged in a mountain shape with their tops in contact with each other. Constitutes the bottom. For this reason, the liquid 34 does not enter between the two stereoscopic image forming means 12 arranged in a mountain shape.
Here, the upper ends of the two stereoscopic image forming means 12 are in contact with each other, but the two stereoscopic image forming means 12 may be arranged in a separated state.
 これにより、一方の立体像結像手段12で、この立体像結像手段12を中心にして液体34中の試料11とは対称位置に形成される試料11の実画像14aが、更に、他方の立体像結像手段12により、この立体像結像手段12を中心にして実画像14aとは対称位置に、実画像(対象物の一例)37として形成される。このとき、顕微鏡13は、実画像37に向けて、観察方向が縦方向(垂直方向)となるように配置する。
 従って、観察する試料11の実画像37は、光学的に直列に配置された2つの立体像結像手段12を介して形成された像であるため、凹凸が正常状態(試料11と同じ状態)となる。
As a result, in one of the three-dimensional image imaging means 12, an actual image 14a of the sample 11 formed at a position symmetrical to the sample 11 in the liquid 34 with the three-dimensional image imaging means 12 as the center is further added to the other one. The three-dimensional image forming unit 12 forms a real image (an example of an object) 37 at a position symmetrical to the real image 14a with the three-dimensional image forming unit 12 as a center. At this time, the microscope 13 is arranged so that the observation direction is the vertical direction (vertical direction) toward the real image 37.
Therefore, since the real image 37 of the sample 11 to be observed is an image formed through the two stereoscopic image forming means 12 optically arranged in series, the unevenness is in a normal state (the same state as the sample 11). It becomes.
 次に、本発明の一実施例に係る顕微鏡装置10を用いた試料観察方法について、図1、図2を参照しながら説明する。
 まず、図1に示すように、顕微鏡装置10のステージ11a上で立体像結像手段12の一側に観察対象物である試料11を配置する。なお、立体像結像手段12はステージ11aに配置され、試料11は前記したようにシャーレ内に配置されているが、シャーレの代わりに、図4(A)~(C)に示す容器31~33を用いてもよい。そして、照明手段17によって特定方向から試料11に光を当てる。
 これにより、立体像結像手段12の他側に、図2に示す試料11の実画像14(又は図4(C)に示す実画像37)が形成される。
Next, a sample observation method using the microscope apparatus 10 according to an embodiment of the present invention will be described with reference to FIGS.
First, as shown in FIG. 1, a sample 11 that is an object to be observed is placed on one side of the stereoscopic image forming means 12 on the stage 11 a of the microscope apparatus 10. The stereoscopic image forming means 12 is arranged on the stage 11a, and the sample 11 is arranged in the petri dish as described above. However, instead of the petri dish, the containers 31 to 31 shown in FIGS. 4 (A) to (C) are used. 33 may be used. Then, the illumination unit 17 applies light to the sample 11 from a specific direction.
Thereby, the real image 14 of the sample 11 shown in FIG. 2 (or the real image 37 shown in FIG. 4C) is formed on the other side of the stereoscopic image forming means 12.
 形成された試料11の実画像14の断面像は、対物レンズ15によって拡大されて断面拡大像がつくられ、その断面拡大像が接眼レンズ16によって拡大されて更なる断面拡大像がつくられることにより、肉眼で観察される。
 具体的には、試料11の実画像14の断面像をmnとすると、対物レンズ15によって倒立実像の1次像(断面拡大像)m´n´がつくられる。また、接眼レンズ16をその前側焦点よりも接眼レンズ16側に1次像m´n´が配置されるようにすることにより、更に拡大された正立虚像MNがつくられ、眼(瞳)によって拡大像を観察できる。
The cross-sectional image of the formed real image 14 of the sample 11 is magnified by the objective lens 15 to create a cross-sectional magnified image, and the cross-sectional magnified image is magnified by the eyepiece 16 to create a further cross-sectional magnified image. Observed with the naked eye.
Specifically, when the cross-sectional image of the real image 14 of the sample 11 is mn, the primary image (cross-sectional enlarged image) m′n ′ of the inverted real image is created by the objective lens 15. Further, by placing the primary image m′n ′ on the eyepiece 16 side of the eyepiece 16 closer to the eyepiece 16 than the front focal point, a further enlarged erecting virtual image MN is created, and the eye (pupil) A magnified image can be observed.
 このとき、対物レンズ15を、実画像14に近づける又は遠ざける(顕微鏡13の焦点調整を行う)ことで、実画像14の各々の位置での断面の拡大像(拡大断面)を観察できるが、観察しようとする実画像14の位置によっては、対物レンズ15が実画像14内に侵入する場合もある。しかし、実画像14は、試料11そのものではなく、試料11の像であるため、対物レンズ15が損傷するおそれもない。
 従って、本発明の顕微鏡装置10及びこれを用いた試料観察方法により、簡単な装置構成で、透明又は半透明の試料をそのままの状態で、対物レンズを損傷させることなく、任意の深さ位置で観察できる。また、場合によっては不透明な試料であっても、対物レンズに試料やプレパラートを接触させるおそれなく、試料を拡大して観察できる。
At this time, an enlarged image (enlarged cross section) of the cross section at each position of the real image 14 can be observed by moving the objective lens 15 close to or away from the real image 14 (adjusting the focus of the microscope 13). Depending on the position of the actual image 14 to be attempted, the objective lens 15 may enter the actual image 14. However, since the actual image 14 is not the sample 11 itself but an image of the sample 11, there is no possibility that the objective lens 15 is damaged.
Therefore, with the microscope apparatus 10 of the present invention and the sample observation method using the same, the transparent or translucent sample can be left in an arbitrary depth position without damaging the objective lens with a simple apparatus configuration. Observe. Moreover, even if it is an opaque sample depending on the case, the sample can be enlarged and observed without fear of bringing the sample or the preparation into contact with the objective lens.
 以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、前記したそれぞれの実施例や変形例の一部又は全部を組合せて本発明の顕微鏡装置及びこれを用いた試料観察方法を構成する場合も本発明の権利範囲に含まれる。
 例えば、本発明の顕微鏡装置が有する顕微鏡は、立体像結像手段を配置することを前提とした構成となっているが、従来使用されている顕微鏡装置(立体像結像手段を配置することを前提としていなかった顕微鏡装置)に立体像結像手段を設けた場合も、本発明の権利範囲に含まれる。
The present invention has been described with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. For example, a case where the microscope apparatus of the present invention and the sample observation method using the same are configured by combining some or all of the above-described embodiments and modifications are also included in the scope of the right of the present invention.
For example, the microscope included in the microscope apparatus of the present invention has a configuration on the premise that a three-dimensional image forming unit is arranged, but a conventionally used microscope apparatus (a three-dimensional image forming unit is arranged). A case in which a stereoscopic image forming means is provided in a microscope apparatus that has not been assumed is also included in the scope of the right of the present invention.
 本発明に係る顕微鏡装置及びこれを用いた試料観察方法は、簡単な装置構成で、試料をそのままの状態で空間に結像させ、この空間に結像された像(実画像)を対物レンズで拡大して見ることができる。これによって、対象物を任意の深さ位置で観察できるため、例えば、生物(動物、植物、菌類、細菌)の研究、医学の発展、薬剤の開発等に寄与できる。 The microscope apparatus and the sample observation method using the same according to the present invention have a simple apparatus configuration, and form an image of a sample in a space as it is, and an image (actual image) imaged in the space with an objective lens. You can see it enlarged. Thus, since the object can be observed at an arbitrary depth position, it can contribute to, for example, research on living organisms (animals, plants, fungi, bacteria), medical development, drug development, and the like.
10:顕微鏡装置、11:試料、11a:ステージ(支持手段)、12:立体像結像手段、13:顕微鏡、14:実画像(対象物)、14a:実画像、15:対物レンズ、16:接眼レンズ、17:照明手段、18:反射鏡、19:垂直光反射面(光反射部)、20:第1の光制御パネル、20a:第2の光制御パネル、21:透明平板、22:垂直面、22a:金属反射膜、23:傾斜面、24:溝、25:凸条、26:透明樹脂、27:充填面、28:表面、31~33:容器、34:液体、35、36:開口部、37:実画像(対象物) 10: Microscope device, 11: Sample, 11a: Stage (supporting means), 12: Stereoscopic image forming means, 13: Microscope, 14: Real image (object), 14a: Real image, 15: Objective lens, 16: Eyepiece, 17: illuminating means, 18: reflector, 19: vertical light reflecting surface (light reflecting portion), 20: first light control panel, 20a: second light control panel, 21: transparent flat plate, 22: Vertical surface, 22a: metal reflecting film, 23: inclined surface, 24: groove, 25: ridge, 26: transparent resin, 27: filling surface, 28: surface, 31 to 33: container, 34: liquid, 35, 36 : Opening, 37: Real image (object)

Claims (9)

  1.  観察しようとする試料を保持する支持手段と、前記試料に特定方向から光を当てる照明手段と、拡大して観察しようとする対象物に向けて配置された顕微鏡とを有する顕微鏡装置において、
     前記試料と、前記顕微鏡の対物レンズとの間に立体像結像手段を配置し、前記立体像結像手段の一側に前記試料を配置し、前記立体像結像手段によって該立体像結像手段の他側に前記試料の実画像を形成し、該実画像を前記顕微鏡の前記対象物とすることを特徴とする顕微鏡装置。
    In a microscope apparatus having a supporting means for holding a sample to be observed, an illuminating means for irradiating the sample with light from a specific direction, and a microscope arranged toward an object to be enlarged and observed,
    A stereoscopic image forming unit is disposed between the sample and the objective lens of the microscope, the sample is disposed on one side of the stereoscopic image forming unit, and the stereoscopic image is formed by the stereoscopic image forming unit. A microscope apparatus, wherein an actual image of the sample is formed on the other side of the means, and the actual image is used as the object of the microscope.
  2.  請求項1記載の顕微鏡装置において、前記立体像結像手段は、平行に並んで配置された帯状の多数の光反射部をそれぞれ有する第1、第2の光制御パネルを、平面視して前記光反射部が交差した状態で重ねて配置して形成されていることを特徴とする顕微鏡装置。 2. The microscope apparatus according to claim 1, wherein the three-dimensional image forming unit includes a plurality of strip-shaped light reflecting portions arranged in parallel and each of the first and second light control panels as viewed in a plan view. A microscope apparatus, wherein the light reflecting portions are arranged so as to overlap each other in an intersecting state.
  3.  請求項1又は2記載の顕微鏡装置において、前記支持手段は光透過性を有する液体が充填された容器を有し、該容器の液体内に透明又は半透明の前記試料が配置され、前記顕微鏡の焦点調整によって、前記試料の拡大断面を観察可能であることを特徴とする顕微鏡装置。 3. The microscope apparatus according to claim 1, wherein the support means includes a container filled with a light-transmitting liquid, and the transparent or translucent sample is disposed in the liquid of the container. A microscope apparatus characterized in that an enlarged cross section of the sample can be observed by focus adjustment.
  4.  請求項3記載の顕微鏡装置において、前記実画像が、光学的に直列に配置された2つの前記立体像結像手段を介して、形成されることを特徴とする顕微鏡装置。 4. The microscope apparatus according to claim 3, wherein the real image is formed through the two stereoscopic image forming means optically arranged in series.
  5.  請求項1又は2記載の顕微鏡装置において、前記支持手段が光透過性を有するプラスチック体であって、該プラスチック体内に前記試料が装入又は封止されていることを特徴とする顕微鏡装置。 3. The microscope apparatus according to claim 1, wherein the support means is a plastic body having light permeability, and the sample is inserted or sealed in the plastic body.
  6.  支持手段で保持されて、立体像結像手段の一側に配置した観察しようとする試料に、照明手段によって特定方向から光を当て、前記立体像結像手段の他側に、前記試料の実画像を形成し、該実画像を顕微鏡で観察することを特徴とする顕微鏡装置を用いた試料観察方法。 The specimen to be observed, which is held by the support means and is arranged on one side of the stereoscopic image imaging means, is irradiated with light from a specific direction by the illumination means, and the actual sample is applied to the other side of the stereoscopic image imaging means. A sample observation method using a microscope apparatus, characterized in that an image is formed and the actual image is observed with a microscope.
  7.  請求項6記載の顕微鏡装置を用いた試料観察方法において、前記立体像結像手段は、平行に並んで配置された帯状の多数の光反射部をそれぞれ有する第1、第2の光制御パネルを、平面視して前記光反射部が交差した状態で重ねて配置して形成され、前記第1の光制御パネルの光反射部で反射した前記試料からの光を、前記第2の光制御パネルの光反射部で再反射して前記試料の実画像を形成することを特徴とする顕微鏡装置を用いた試料観察方法。 7. The sample observation method using the microscope apparatus according to claim 6, wherein the three-dimensional image forming means includes first and second light control panels each having a plurality of strip-shaped light reflecting portions arranged in parallel. The light from the sample reflected by the light reflecting portion of the first light control panel is formed by overlapping the light reflecting portions in a state of crossing when viewed in plan, and the second light control panel. A sample observation method using a microscope apparatus, characterized in that an actual image of the sample is formed by being re-reflected by a light reflecting portion of the sample.
  8.  請求項6又は7記載の顕微鏡装置を用いた試料観察方法において、前記支持手段は光透過性を有する液体が充填された容器を有し、前記試料は前記容器の液体内に配置されていることを特徴とする顕微鏡装置を用いた試料観察方法。 The sample observation method using the microscope apparatus according to claim 6 or 7, wherein the support means includes a container filled with a light-transmitting liquid, and the sample is disposed in the liquid of the container. A sample observation method using a microscope apparatus characterized by the above.
  9.  請求項6~8のいずれか1項に記載の顕微鏡装置を用いた試料観察方法において、前記試料は透明又は半透明であって、前記顕微鏡の焦点調整によって、前記試料の拡大断面が観察できることを特徴とする顕微鏡装置を用いた試料観察方法。 The sample observation method using the microscope apparatus according to any one of claims 6 to 8, wherein the sample is transparent or translucent, and an enlarged cross section of the sample can be observed by adjusting a focus of the microscope. A sample observation method using a featured microscope apparatus.
PCT/JP2018/014423 2017-04-11 2018-04-04 Microscope device and sample observation method using same WO2018190221A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019512470A JP6632762B2 (en) 2017-04-11 2018-04-04 Stereoscopic image forming means and microscope apparatus using the same
CN201890000408.0U CN210954468U (en) 2017-04-11 2018-04-04 Microscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-078090 2017-04-11
JP2017078090 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018190221A1 true WO2018190221A1 (en) 2018-10-18

Family

ID=63793496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014423 WO2018190221A1 (en) 2017-04-11 2018-04-04 Microscope device and sample observation method using same

Country Status (3)

Country Link
JP (2) JP6632762B2 (en)
CN (2) CN212749367U (en)
WO (1) WO2018190221A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176861A (en) * 2019-04-16 2020-10-29 株式会社アイテックシステム Optical inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297910A (en) * 1988-10-05 1990-04-10 Nissho Seimitsu Kogaku Kk Attachment optical device for stereoscopic microscope
JP2001183300A (en) * 1999-12-28 2001-07-06 Fujikura Ltd Foreign matter checking method
WO2008123473A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Transmission optical system
JP2011081296A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Display device
JP2011081309A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Spatial video display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027969B2 (en) * 2001-08-27 2012-09-19 大日本印刷株式会社 Manufacturing method of two-dimensional field expansion member
JP5085631B2 (en) * 2009-10-21 2012-11-28 株式会社アスカネット Optical imaging apparatus and optical imaging method using the same
JP5995131B2 (en) * 2011-11-25 2016-09-21 大日本印刷株式会社 Optical panel and display device
JP5828399B2 (en) * 2012-01-11 2015-12-02 大日本印刷株式会社 Optical panel and display device
WO2014024677A1 (en) * 2012-08-10 2014-02-13 株式会社アスカネット Size-altering optical image forming device and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297910A (en) * 1988-10-05 1990-04-10 Nissho Seimitsu Kogaku Kk Attachment optical device for stereoscopic microscope
JP2001183300A (en) * 1999-12-28 2001-07-06 Fujikura Ltd Foreign matter checking method
WO2008123473A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Transmission optical system
JP2011081296A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Display device
JP2011081309A (en) * 2009-10-09 2011-04-21 Pioneer Electronic Corp Spatial video display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176861A (en) * 2019-04-16 2020-10-29 株式会社アイテックシステム Optical inspection device
JP7300152B2 (en) 2019-04-16 2023-06-29 株式会社アイテックシステム Optical inspection device

Also Published As

Publication number Publication date
JPWO2018190221A1 (en) 2019-07-18
CN210954468U (en) 2020-07-07
CN212749367U (en) 2021-03-19
JP6632762B2 (en) 2020-01-22
JP2020034956A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6685977B2 (en) microscope
US10281704B2 (en) Observation apparatus and observation method to observe a sample with reflected light transmitted through the sample
JP6502338B2 (en) Apparatus for light sheet microscopy
JP6514198B2 (en) Apparatus for light sheet microscopy
US20180164569A1 (en) Microplate and microscope system
WO2013047315A1 (en) Beam splitter and observation device
JP6512667B2 (en) Side illumination microscope system and microscopic method
US20190219810A1 (en) Observation apparatus
Hedde et al. sideSPIM–selective plane illumination based on a conventional inverted microscope
WO2018190221A1 (en) Microscope device and sample observation method using same
EP1615061A1 (en) Observing tool and observing method using same
JPWO2018047583A1 (en) Observation device
JP2013156286A (en) Imaging apparatus
CN208833940U (en) Backlight, peep-proof display device and the device shown for realizing naked eye three-dimensional image
JP3232108U (en) Microscope device using stereoscopic imaging means
Daetwyler et al. Mesoscopic oblique plane microscopy via light-sheet mirroring
JP6888779B2 (en) Multi-faceted image acquisition system, observation device, observation method, screening method, and stereoscopic reconstruction method of the subject
US20070177255A1 (en) Observing tool and observing method using the same
US20110058252A1 (en) Bottomless micro-mirror well for 3d imaging for an object of interest
CN204229043U (en) A kind of medical microscope
WO2021210637A1 (en) Lighting device for microscope, microscope, and observation method
JP2015146009A (en) imaging optical element
CN220650980U (en) Dual-color electric control zooming calcium imaging microscopic system
CN208903001U (en) Display panel and 3D display device
CN1209654C (en) Ligh power telescope with short tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784814

Country of ref document: EP

Kind code of ref document: A1