WO2018190083A1 - Emitter, and tube for drip irrigation - Google Patents

Emitter, and tube for drip irrigation Download PDF

Info

Publication number
WO2018190083A1
WO2018190083A1 PCT/JP2018/010943 JP2018010943W WO2018190083A1 WO 2018190083 A1 WO2018190083 A1 WO 2018190083A1 JP 2018010943 W JP2018010943 W JP 2018010943W WO 2018190083 A1 WO2018190083 A1 WO 2018190083A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
tube
irrigation liquid
recess
disposed
Prior art date
Application number
PCT/JP2018/010943
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 守越
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2018190083A1 publication Critical patent/WO2018190083A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • A01G25/023Dispensing fittings for drip irrigation, e.g. drippers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present invention relates to an emitter and a drip irrigation tube having the emitter.
  • Drip irrigation is known as one of the plant cultivation methods.
  • the drip irrigation method is a method in which a drip irrigation tube is arranged on or in the soil where plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • a drip irrigation tube is joined to a tube having a plurality of through holes and a plurality of emitters (“drippers”) that are bonded to the inner wall surface of the tube and quantitatively discharge irrigation liquid from each through hole.
  • the irrigation liquid is sent into the tube by a pump, for example, and is discharged out of the tube through the through hole via the emitter.
  • the emitter described in Patent Document 1 includes a first member, a second member, and a film member disposed between the first member and the second member.
  • the first member has a water intake for taking in the irrigation liquid into the emitter, and a wall portion arranged to surround the water intake inside the first member.
  • the second member has a discharge port for discharging the irrigation liquid out of the emitter.
  • the water intake is blocked by the membrane member coming into contact with the wall portion.
  • the membrane member closing the intake port is pressed by the irrigation liquid and deformed.
  • the irrigation liquid flows into the emitter through a gap formed between the membrane member and the wall due to the deformation of the membrane member.
  • the irrigation liquid in the tube is continuously discharged for a certain period of time.
  • the amount of irrigation liquid discharged from lower emitters is higher than the amount of irrigation liquid discharged from higher emitters .
  • the pressure in the tube at a high position becomes a negative pressure.
  • a fluid such as air or water containing fine soil from the outside of the tube may flow backward into the flow path of the emitter.
  • the back flow phenomenon of the fluid that may be caused by the negative pressure in the tube (hereinafter also referred to as “siphon phenomenon”) may contaminate the inside of the emitter or cause clogging.
  • the emitter described in Patent Document 1 when the pressure of the irrigation liquid in the tube becomes less than a predetermined value after stopping the liquid feeding, the water intake is blocked by the membrane member. For this reason, generation
  • the emitter described in Patent Document 1 has a problem that if the pressure in the tube is too low, the water intake is blocked by the membrane member, and thus the irrigation liquid cannot be properly discharged.
  • An object of the present invention is to provide an emitter and a drip irrigation tube that can suppress the occurrence of a siphon phenomenon and can appropriately discharge the irrigation liquid even when the pressure of the irrigation liquid in the tube is low. .
  • an emitter has a first surface and a second surface that are in a relationship of front and back, and communicates the inside and outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. And an emitter for quantitatively discharging the irrigation liquid in the tube from the discharge port to the outside of the tube, and disposed on the first surface.
  • a drip irrigation tube according to the present invention is joined to a tube having a discharge port for discharging irrigation liquid and a position corresponding to the discharge port on the inner wall surface of the tube. And an emitter according to the present invention.
  • the siphon phenomenon can be suppressed and the irrigation liquid can be appropriately discharged even when the pressure of the irrigation liquid in the tube is low.
  • 1A and 1B are cross-sectional views illustrating an example of the configuration of a drip irrigation tube according to an embodiment.
  • 2A to 2C are diagrams showing the configuration of the emitter or emitter body according to the embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the emitter according to the embodiment.
  • 4A to 4C are schematic cross-sectional views for explaining the operation of the flow rate reducing unit.
  • 5A and 5B are diagrams illustrating an example of a configuration of an integrally molded product of a cover and a film according to the first modification.
  • 6A and 6B are diagrams illustrating an example of a configuration of an integrally molded product of a cover and a film according to the second modification.
  • FIG. 1A and 1B are cross-sectional views showing an example of the configuration of a drip irrigation tube 100 according to the present embodiment.
  • FIG. 1A is a cross-sectional view of the drip irrigation tube 100 in the axial direction
  • FIG. 1B is a cross-sectional view of the drip irrigation tube 100 in a direction perpendicular to the axial direction.
  • the drip irrigation tube 100 includes a tube 110 and an emitter 120.
  • the tube 110 is a tube for flowing irrigation liquid.
  • the irrigation liquid is sent into the tube 110 using a pump, for example.
  • a plurality of discharge ports 112 for discharging the irrigation liquid to the outside of the tube 110 at a predetermined interval (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
  • the diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can pass through. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm.
  • Emitters 120 are respectively joined to the positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110.
  • the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
  • the material of the tube 110 is not particularly limited. In the present embodiment, the material of the tube 110 is polyethylene.
  • irrigation liquid examples include water, liquid fertilizer, agricultural chemicals, and a mixture thereof.
  • FIGS. 2A to 2C are diagrams showing the configuration of the emitter 120 or the emitter body 121 according to the present embodiment.
  • 2A is a plan view of the emitter body 121
  • FIG. 2B is a plan view of the emitter 120
  • FIG. 2C is a bottom view of the emitter 120.
  • FIG. 3 is a diagram showing a configuration of the emitter 120 according to the present embodiment.
  • FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2B.
  • the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112.
  • the shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112.
  • the shape of the back surface of the emitter 120 joined to the inner wall surface of the tube 110 in the cross section perpendicular to the axial direction of the tube 110 is such that the inner wall surface of the tube 110 is aligned with the inner wall surface of the tube 110. It is a substantially circular arc shape convex toward.
  • the shape of the emitter 120 in plan view is a substantially rectangular shape with four corners rounded off.
  • the size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
  • the emitter 120 includes at least an emitter body 121, a film 122, and a cover 123. Details of the function of the emitter 120 will be described later.
  • the emitter body 121 (emitter 120) has a first surface 1211 and a second surface 1212 that are in a front-back relationship.
  • the first surface 1211 is located on the front surface side (irrigation liquid side) of the emitter 120
  • the second surface 1212 is located on the rear surface side (tube 110 side) of the emitter 120.
  • the emitter body 121 is appropriately formed with recesses, grooves, protrusions, and through-holes within a range where the effects of the present embodiment can be obtained.
  • at least a water intake recess 153, a flow rate reduction recess 161, and a backflow prevention recess 171 are formed on the first surface 1211 of the emitter body 121 (FIG. 2A). reference).
  • at least a first connection groove 131, a first decompression groove 132, a second connection groove 133, a second decompression groove 134, and a discharge recess 181 are formed on the second surface 1212 of the emitter body 121 (see FIG. 2C).
  • the emitter body 121 may be formed of a flexible material, or may be formed of a rigid material. Examples of the material of the emitter body 121 include resin and rubber. Examples of the resin include polyethylene and silicone. The flexibility of the emitter body 121 can be adjusted by using a resin material having elasticity. Examples of the method for adjusting the flexibility of the emitter body 121 include selection of a resin having elasticity, adjustment of a mixing ratio of a resin material having elasticity with respect to a hard resin material, and the like. The emitter body 121 can be manufactured by injection molding, for example.
  • the film 122 is bonded to a part of the first surface 1211 of the emitter body 121.
  • the film 122 is disposed on the emitter body 121 so as to close the opening of the flow rate reducing recess 161. That is, the film 122 is joined to the emitter main body 121 at a portion outside the opening.
  • the film 122 has flexibility and is deformed by the pressure of the irrigation liquid.
  • the shape and size of the film 122 can be appropriately set according to the shape and size of the emitter main body 121 and the shape and size of the opening of the flow rate reducing recess 161 formed in the emitter main body 121.
  • the thickness of the film 122 can be appropriately set according to the desired flexibility.
  • the film 122 is formed of a flexible resin material.
  • the material of the film 122 can be appropriately set according to the desired flexibility.
  • examples of the resin include polyethylene and silicone.
  • the flexibility of the film 122 can also be adjusted by using a resin material having elasticity.
  • An example of a method for adjusting the flexibility of the film 122 is the same as the method for adjusting the flexibility of the emitter body 121.
  • the film 122 can be manufactured by injection molding, for example.
  • the emitter body 121 and the film 122 may be integrated or separate.
  • the emitter main body 121 and the film 122 may be integrally formed via a hinge part.
  • the film 122 may be rotated about the hinge portion, and the film 122 may be joined to the first surface 1211 of the emitter body 121.
  • the joining method of the emitter body 121 and the film 122 is not particularly limited. Examples of the joining method include welding of a resin material, adhesion with an adhesive, and the like.
  • the hinge portion may be cut after the emitter body 121 and the film 122 are joined.
  • the cover 123 is joined to a part of the first surface 1211 of the emitter 121 main body.
  • the cover 123 is disposed on the emitter body 121 so as to close the opening of the backflow preventing recess 171. That is, the cover 123 is joined to the emitter body 121 at a portion outside the opening.
  • the shape and size of the cover 123 can be appropriately set according to the shape and size of the emitter body 121, the shape and size of the opening of the backflow prevention recess 171 formed in the emitter body 121, and the like.
  • a protrusion 124 is formed on one surface of the cover 123.
  • the ridges 124 are arranged so as to protrude toward the backflow prevention recess 171 formed in the emitter body 121. Further, as shown in FIG. 3, the ridge 124 is disposed in the cover 123 at a position corresponding to the ridge 172 disposed on the bottom surface of the backflow prevention recess 171.
  • the protrusion 124 is disposed in the recess 172 so as to be separated from the inner surface of the recess 172, and extends along the recess 172. In other words, the ridge 124 extends along a direction transverse to the flow direction of the irrigation liquid.
  • a gap is formed between the ridge 124 and the recess 172. The gap constitutes a part of the channel through which the irrigation liquid can move.
  • a liquid (sealed water) for blocking the channel in the middle can be accommodated between the ridges 124 and the ridges 172.
  • the position, shape, size, and number of the ridges 124 are not particularly limited as long as sealed water can be accommodated between the ridges 124 and the recesses 172, and is appropriately set according to the shape and size of the recesses 172. Can be done.
  • Examples of the shape of the ridge 124 include a cylindrical shape and a rectangular tube shape.
  • the shape of the ridge 124 is a cylindrical shape.
  • the number of ridges 124 is two. The two ridges 124 are arranged concentrically.
  • the cover 123 may be formed of a flexible material or may be formed of a rigid material.
  • the material of the cover 123 include resin, rubber, and metal. Examples of the resin include polyethylene and silicone.
  • the flexibility of the cover 123 is the same as the method for adjusting the flexibility of the emitter body 121.
  • the cover 123 can be manufactured by injection molding, for example. From the viewpoint of suppressing the deformation of the cover 123 due to the pressure of the irrigation liquid and keeping the size of the gap (part of the flow path) between the ridge 124 and the ridge 172 constant, the cover 123 is It is preferable to be made of a material having rigidity. In the present embodiment, cover 123 is formed of a material having rigidity.
  • the “material having rigidity” means a material having a rigidity such that a member formed of the material is not deformed by the pressure of the irrigation liquid.
  • the material means a material having such a rigidity that the distance between the ridges 124 and the ridges 172 is not substantially changed by the pressure of the irrigation liquid. To do.
  • the emitter body 121 and the cover 123 may be integrated or separate.
  • An example of a method for joining the emitter body 121 and the cover 123 is the same as an example of a method for joining the emitter body 121 and the film 122.
  • the film 122 and the cover 123 may be integrated (see modified examples 1 and 2 described later) or may be separate. When the film 122 and the cover 123 are integral, the film 122 and the cover 123 are both flexible. In the present embodiment, the film 122 and the cover 123 are separate bodies. From the viewpoint of imparting rigidity to the cover 123, the film 122 and the cover 123 are preferably separate.
  • the drip irrigation tube 100 is manufactured by joining the back surface of the emitter 120 to the inner wall surface of the tube 110.
  • the method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the bonding method include welding of a resin material constituting the emitter 120 or the tube 110, bonding with an adhesive, and the like.
  • the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
  • the emitter 120 includes a water intake unit 150, a first connection channel 141, a first decompression channel 142, a second connection channel 143, a second decompression channel 144, a flow rate reduction unit 160, a backflow prevention unit 170, and a discharge unit 180.
  • the water intake unit 150, the flow rate reduction unit 160, and the backflow prevention unit 170 are disposed on the surface of the emitter 120 (the first surface 1211 of the emitter body 121). Further, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, and the discharge unit 180 are provided on the back surface of the emitter 120 (the second surface 1212 of the emitter body 121). Has been placed.
  • the water intake unit 150 By connecting the emitter 120 and the tube 110 to each other, the water intake unit 150, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, the flow rate reduction unit 160, A backflow prevention unit 170 and a discharge unit 180 are formed.
  • a flow path that connects the water intake unit 150 and the discharge unit 180 is also formed. The flow channel distributes the irrigation liquid from the water intake unit 150 to the discharge unit 180.
  • the water intake unit 150 takes the irrigation liquid into the emitter 120.
  • the water intake 150 is disposed in a region that is approximately half of the first surface 1211 of the emitter body 121 (see FIGS. 2A and 2B).
  • the water intake unit 150 includes a water intake side screen unit 151 and a water intake through hole 152.
  • the water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the emitter 120.
  • the water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a plurality of slits 154, and a plurality of screen ridges 155.
  • the water intake recess 153 is a recess formed in a region where the film 122 is not joined on the first surface 1211 of the emitter body 121.
  • the depth of the water intake recess 153 is not particularly limited, and is appropriately set according to the size of the emitter 120.
  • a plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a plurality of screen ridges 155 are formed on the bottom surface of the water intake recess 153.
  • a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the plurality of slits 154 connect the inner surface of the water intake recess 153 and the outer surface of the emitter body 121, while taking the irrigation liquid from the side surface of the emitter body 121 into the water recess 153. Is prevented from entering the water intake recess 153.
  • the shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 121 toward the inner surface of the water intake recess 153 (see FIGS. 2A and 2B). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
  • the plurality of screen ridges 155 are arranged on the bottom surface of the water intake recess 153.
  • the arrangement and number of the screen ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented.
  • the plurality of screen ridges 155 are arranged such that the major axis direction of the screen ridges 155 is along the minor axis direction of the emitter 120. Further, the screen protrusion 155 is formed so that the width decreases from the first surface 1211 of the emitter body 121 toward the bottom surface of the water intake recess 153.
  • the space between the adjacent screen ridges 155 has a so-called wedge wire structure.
  • line parts 155 for screens will not be specifically limited if the above-mentioned function can be exhibited.
  • the space between the adjacent screen ridges 155 is configured to have a so-called wedge wire structure, so that the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
  • the water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 121.
  • the water intake through hole 152 is a single long hole formed along the major axis direction of the emitter 120 on the bottom surface of the water intake recess 153. Since this long hole is partially covered with the plurality of screen ridges 155, the water intake through hole 152 is divided into a large number of through holes when viewed from the first surface 1211 side. appear.
  • the irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 121 while the water intake side screen portion 151 prevents floating substances from entering the water intake recess 153.
  • the first connection flow path 141 (first connection groove 131) is disposed in the flow path, and includes the water intake section 150 (water intake through hole 152) and the first pressure reduction flow path 142 (first pressure reduction groove 132). Connecting.
  • the first connection channel 141 (first connection groove 131) is linearly arranged along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121.
  • the first connection channel 141 is formed by the first connection groove 131 and the inner wall surface of the tube 110.
  • the irrigation liquid taken in from the water intake unit 150 flows through the first connection channel 141 to the first decompression channel 142.
  • the first decompression flow path 142 (first decompression groove 132) is disposed downstream of the first connection flow path 141 in the flow path, and is connected to the first connection flow path 141 (first connection groove 131) and the second connection flow.
  • the path 143 (second connection groove 133) is connected.
  • the first reduced pressure channel 142 reduces the pressure of the irrigation liquid introduced from the water intake unit 150 and guides it to the second connection channel 143.
  • the first decompression flow path 142 (first decompression groove 132) is linearly disposed along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121.
  • the upstream end of the first decompression flow path 142 is connected to the first connection flow path 141, and the downstream end of the first decompression flow path 142 is connected to the upstream end of the second connection flow path 143. ing.
  • the shape of the first decompression groove 132 is not particularly limited as long as the above function can be exhibited.
  • the plan view shape of the first decompression groove 132 is a zigzag shape.
  • first triangular protrusions 1361 having a substantially triangular prism shape protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the first convex portion 1361 is disposed so that the tip does not exceed the central axis of the first decompression groove 132 when viewed in plan.
  • the second connection channel 143 (second connection groove 133) is disposed downstream of the first decompression channel 142 in the channel, and the first decompression channel 142 (first decompression groove 132) and the second decompression channel
  • the flow path 144 (second decompression groove 134) is connected.
  • the second connection channel 143 is formed linearly along the minor axis direction of the emitter 120 at the outer edge of the second surface 1212 of the emitter body 121.
  • the second connection channel 143 is formed by the second connection groove 133 and the inner wall surface of the tube 110.
  • the irrigation liquid that has been taken in from the water intake unit 150, led to the first connection channel 141, and decompressed in the first decompression channel 142 is guided to the second decompression channel 144 through the second connection channel 143. It is burned.
  • the second decompression flow path 144 (second decompression groove 134) is disposed downstream of the second connection flow path 143 in the flow path, and includes a second connection groove 133 (second connection flow path 143) and a flow rate reduction unit. 160 is connected.
  • the second decompression flow path 144 reduces the pressure of the irrigation liquid flowing from the second connection flow path 143 and guides it to the flow rate reduction unit 160.
  • the second decompression flow path 144 (second decompression groove 134) is disposed along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121.
  • the upstream end of the second decompression groove 134 is connected to the downstream end of the second connection groove 133, and the downstream end of the second decompression flow path 144 is connected to the first connection through hole 164 of the flow rate reducing unit 160. .
  • the shape of the second decompression groove 134 is not particularly limited as long as the above function can be exhibited.
  • the plan view shape of the second decompression groove 134 is a zigzag shape similar to the shape of the first decompression groove 132.
  • substantially triangular prism-shaped second protrusions 1362 protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the second convex portion 1362 is arranged so that the tip does not exceed the central axis of the second decompression groove 134 when viewed in plan.
  • the flow rate reduction unit 160 is disposed upstream of the backflow prevention unit 170 and downstream of the second decompression flow channel 144 in the flow path, and is disposed on the surface side of the emitter 120.
  • the flow rate reduction unit 160 sends the irrigation liquid to the backflow prevention unit 170 while reducing the flow rate of the irrigation liquid according to the deformation of the film 122 due to the pressure of the irrigation liquid in the tube 110.
  • the flow rate reducing portion 160 includes a flow rate reducing recess 161, a valve seat portion 162, a communication groove 163, a first connection through hole 164, a second connection through hole 165, and a diaphragm portion 166.
  • the flow rate reducing recess 161 is disposed on the first surface 1211 of the emitter body 121.
  • the plan view shape of the flow rate reducing recess 161 is not particularly limited, and is, for example, a substantially circular shape.
  • the depth of the flow rate reducing recess 161 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 163.
  • a first connection through hole 164 and a second connection through hole 165 are open on the inner surface of the flow rate reducing recess 161. In the present embodiment, the first connection through hole 164 and the second connection through hole 165 are open to the bottom surface of the flow rate reducing recess 161.
  • the valve seat 162 is arranged on the bottom surface of the flow rate reducing recess 161.
  • the valve seat portion 162 is disposed in a non-contact manner so as to face the diaphragm portion 166 so as to surround the opening portion of the second connection through hole 165.
  • the valve seat 162 is configured so that the diaphragm 166 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 exceeds a set value.
  • valve seat portion 162 is not particularly limited as long as the above-described function can be exhibited.
  • the valve seat portion 162 is a cylindrical convex portion.
  • the height of the end surface of the convex portion from the bottom surface of the flow rate reducing concave portion 161 decreases from the inside toward the outside.
  • the communication groove 163 communicates the inside of the flow rate reducing recess 161 with the second connection through hole 165 surrounded by the valve seat 162.
  • the communication groove 163 is disposed on a part of the surface of the valve seat portion 162 to which the diaphragm portion 166 can come into close contact.
  • the first connection through-hole 164 communicates with the upstream side of the flow path at the flow rate reducing portion 160.
  • the first connection through hole 164 communicates with the second reduced pressure channel 144 (second reduced pressure groove 134).
  • the first connection through hole 164 is disposed on the inner surface of the flow rate reducing recess 161.
  • the first connection through hole 164 is disposed, for example, on the bottom or side surface of the flow rate reducing recess 161.
  • the first connection through-hole 164 is disposed in a region where the valve seat 162 is not disposed on the bottom surface of the flow rate reducing recess 161.
  • the second connection through-hole 165 communicates with the downstream side of the flow path in the flow rate reduction unit 160.
  • the second connection through hole 165 communicates with the backflow prevention unit 170.
  • the second connection through-hole 165 is disposed on the inner surface of the flow rate reducing recess 161.
  • the second connection through hole 165 is disposed on the bottom surface or the side surface of the flow rate reducing recess 161, for example.
  • the second connection through-hole 165 is disposed at the central portion of the bottom surface of the flow rate reducing recess 161.
  • first connection through holes 164 and the second connection through holes 165 are not limited to the form of the present embodiment.
  • a second connection through hole 165 may be disposed outside the valve seat portion 162.
  • the first connection through hole 164 may be disposed so as to be surrounded by the valve seat portion 162.
  • the diaphragm portion 166 is a part of the film 122.
  • the diaphragm portion 166 is disposed so as to block communication between the inside of the flow rate reducing recess 161 and the inside of the tube 110 and close the opening of the flow rate reducing recess 161.
  • the diaphragm portion 166 has flexibility and deforms so as to contact the valve seat portion 162 in accordance with the pressure of the irrigation liquid in the tube 110. For example, the diaphragm portion 166 is distorted to the flow rate reducing recess 161 side when the pressure of the irrigation liquid flowing in the tube 110 exceeds a set value.
  • the diaphragm portion 166 deforms toward the valve seat portion 162 as the pressure of the irrigation liquid increases, and eventually comes into contact with the valve seat portion 162. Even when the diaphragm portion 166 is in close contact with the valve seat portion 162, the diaphragm portion 166 does not block the first connection through hole 164, the second connection through hole 165, and the communication groove 163. The irrigation liquid from the connection through hole 164 can be sent to the backflow prevention unit 170 through the communication groove 163 and the second connection through hole 165.
  • the backflow prevention unit 170 is disposed downstream of the flow rate adjustment unit 160 and upstream of the discharge unit 180 in the flow path, and is disposed on the surface side of the emitter 120.
  • the backflow prevention unit 170 sends the irrigation liquid to the discharge unit 180 and prevents the fluid that flows back from the discharge unit 180 to the flow path when the liquid supply is stopped from flowing upstream of the backflow prevention unit 170.
  • the part 170 is arrange
  • the backflow prevention unit 170 includes a backflow prevention recess 171, a recess 172, a third connection through-hole 173 (referred to as “first through-hole” in the claims), a fourth It has a connecting through-hole 174 (referred to as “second through-hole” in the claims), a sealed water accommodating portion 175, and a ridge 124.
  • the backflow preventing recess 171 is disposed on the first surface 1211 of the emitter body 121.
  • the shape in plan view of the recess 171 for preventing backflow is not particularly limited, and is, for example, a substantially circular shape.
  • the depth of the backflow preventing recess 171 is not particularly limited.
  • a third connection through hole 173, a fourth connection through hole 174, and a recess 172 are open on the inner surface of the backflow prevention recess 171.
  • the third connection through hole 173, the fourth connection through hole 174, and the recess 172 are open to the bottom surface of the backflow prevention recess 171.
  • the concave stripe 172 opens at the bottom surface of the flow path and extends along a direction transverse to the flow direction of the irrigation liquid.
  • the concave strip 172 is disposed on the bottom surface of the backflow preventing concave portion 171 so as to open toward the first surface 1211 of the emitter body 121. That is, the recess 172 has a bottom on the second surface 1212 side of the emitter body 121.
  • the recess 172 is disposed so as to surround the opening of the fourth connection through-hole 174. As described above, the recess 172 is disposed such that the outer surface of the protrusion 124 and the inner surface of the backflow prevention recess 171 are separated from each other.
  • the recess 172 is disposed so that a gap is formed between the recess 172 and the protrusion 124. Thereby, the flow rate of the irrigation liquid flowing from the flow rate reducing recess 161 to the discharge unit 180 can be ensured.
  • the position, shape, size, and number of the concave stripes 172 are not particularly limited as long as sealed water can be accommodated between the convex stripes 124 and the concave stripes 172, and is appropriately set according to the shape and size of the convex stripes 124. Can be done.
  • Examples of the shape of the recess 172 include a cylindrical shape and a rectangular tube shape.
  • the recess 172 is a cylindrical recess.
  • the number of concave stripes 172 is two. The two concave stripes 172 are arranged concentrically.
  • the third connection through-hole 173 communicates with the upstream side of the flow path in the backflow prevention unit 170.
  • the third connection through hole 173 communicates with the flow rate reducing unit 160.
  • the third connection through hole 173 is disposed on the inner surface of the backflow prevention recess 171.
  • the third connection through-hole 173 is disposed, for example, on the bottom surface or side surface of the backflow prevention recess 171.
  • the third connection through hole 173 is disposed on the bottom surface of the backflow prevention recess 171.
  • the fourth connection through-hole 174 communicates with the downstream side of the flow path in the backflow prevention unit 170.
  • the fourth connection through-hole 174 communicates with the discharge unit 180.
  • the fourth connection through hole 174 is disposed on the inner surface of the backflow prevention recess 171.
  • the fourth connection through-hole 174 is disposed, for example, on the bottom or side surface of the backflow prevention recess 171.
  • the fourth connection through-hole 174 is disposed at the center of the bottom surface of the backflow prevention recess 171.
  • the positions of the third connection through hole 173 and the fourth connection through hole 174 are not limited to those of the present embodiment.
  • the third connection through hole 173 may be disposed so as to be surrounded by the recess 172 instead of the fourth connection through hole 174.
  • the convex stripe 124 is a part of the cover 123 and is disposed in the concave stripe 172 so as to be separated from the inner surface of the concave stripe 172.
  • the interval (shortest distance) between the ridges 124 and the ridges 172 only needs to ensure the flow rate of the irrigation liquid to the discharge unit 180 and can accommodate a sufficient amount of sealed water.
  • the interval can be appropriately changed according to the size of the emitter 120, the desired flow rate of the irrigation liquid, and the like.
  • the sealed water storage unit 175 stores sealed water.
  • the sealed water accommodating portion 175 is constituted by the concave stripes 172 and the convex stripes 124.
  • the ridge 124 is disposed in the recess 172 so as to be separated from the inner surface of the recess 172.
  • the liquid is accommodated between the concave stripe 172 and the convex stripe 124 so as to interrupt the flow path in the middle.
  • the discharge unit 180 discharges the irrigation liquid to the outside of the emitter 120.
  • the discharge unit 180 is disposed on the second surface 1212 side of the emitter body 121 so as to face the discharge port 112 of the tube 110.
  • the discharge unit 180 sends the irrigation liquid in the emitter 120 to the discharge port 112 of the tube 110. Accordingly, the discharge unit 180 can discharge the irrigation liquid to the outside of the emitter 120.
  • the structure of the discharge part 180 will not be specifically limited if the above-mentioned function can be exhibited.
  • the discharge unit 180 includes a discharge recess 181 and an intrusion prevention unit 182.
  • the discharge recess 181 is disposed on the second surface 1212 of the emitter body 121.
  • the shape of the discharge recess 181 in plan view is a substantially rectangular shape.
  • a fourth connection through hole 174 and an intrusion prevention portion 182 are disposed on the bottom surface of the discharge recess 181.
  • the intrusion prevention unit 182 prevents intrusion of foreign matter from the discharge port 112.
  • the intrusion prevention unit 182 is not particularly limited as long as it can perform the above-described function.
  • intrusion prevention unit 182 is four convex portions arranged adjacent to each other. The four convex portions are arranged so as to be positioned between the fourth connection through hole 174 and the discharge port 112 when the emitter 120 is joined to the tube 110.
  • irrigation liquid is fed into the tube 110.
  • the pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged.
  • the irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake unit 150.
  • the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the screen protrusions 155 and passes through the water intake through hole 152.
  • the water intake part 150 has the water intake side screen part 151 (gap between the slit 154 and the projection ridge part 155), it is possible to remove the suspended matter in the irrigation liquid.
  • the so-called wedge wire structure is formed in the water intake part 150, the pressure loss of the irrigation liquid flowing into the water intake part 150 is suppressed.
  • the irrigation liquid taken from the water intake unit 150 reaches the first connection channel 141.
  • the irrigation liquid that has reached the first connection channel 141 passes through the first decompression channel 142 and reaches the second connection channel 143.
  • the irrigation liquid that has reached the second connection channel 143 flows into the second decompression channel 144.
  • the irrigation liquid that has flowed into the second reduced pressure channel 144 flows into the flow rate reduction unit 160 through the first connection through hole 164.
  • the irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the backflow prevention unit 170 through the second connection through hole 165 and the third connection through hole 173.
  • the irrigation liquid that has flowed into the backflow prevention unit 170 flows into the discharge unit 180 through the fourth connection through hole 174.
  • the irrigation liquid that has flowed into the discharge unit 180 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
  • FIG. 4A to 4C are schematic cross-sectional views for explaining the operation of the flow rate reducing unit 160.
  • FIG. 4A to 4C are partially enlarged sectional views taken along line AA shown in FIG. 2B.
  • 4A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110
  • FIG. 4B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure.
  • FIG. 4C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure.
  • the flow rate of the irrigation liquid is controlled by deforming the diaphragm unit 166 so as to be distorted toward the flow rate reduction concave portion 161 according to the pressure of the irrigation liquid in the tube 110.
  • the cover 123 is made of a rigid material, it is not deformed by the pressure of the irrigation liquid.
  • the pressure of the irrigation liquid is not applied to the film 122, so the diaphragm portion 166 is not deformed (see FIG. 4A).
  • the diaphragm portion 166 starts to deform (see FIG. 4B). However, when the diaphragm portion 166 is not in contact with the valve seat portion 162, the irrigation liquid taken from the water intake portion 150 passes through the flow path in the emitter 120 to the outside from the discharge port 112 of the tube 110. Discharged. As described above, when the irrigation liquid is started to be fed into the tube 110 or when the pressure of the irrigation liquid in the tube 110 is lower than a predetermined pressure, the irrigation introduced into the emitter 120 from the water intake unit 150. The working liquid is discharged outside through the flow path.
  • the diaphragm portion 166 is further deformed toward the valve seat portion 162.
  • the first pressure reduction flow path 142 and the second pressure reduction liquid are increased.
  • the diaphragm portion 166 contacts the valve seat portion 162 (see FIG. 4C). Even in this case, the diaphragm portion 166 does not block the first connection through-hole 164, the second connection through-hole 165, and the communication groove 163. Therefore, the irrigation liquid introduced from the water intake portion 150 is not connected to the communication groove. Through 163, the liquid is discharged from the discharge port 112 of the tube 110 to the outside.
  • the flow reduction unit 160 makes the irrigation liquid flowing through the flow path when the diaphragm unit 166 contacts the valve seat 162. Suppresses increase in liquid volume.
  • the flow rate reducing unit 160 adjusts the flow rate of the irrigation liquid discharged from the discharge port 112 of the tube 110 in accordance with the deformation of the film 122 due to the pressure of the irrigation liquid in the tube 110. For this reason, the drip irrigation tube 100 according to the present embodiment can discharge a certain amount of irrigation liquid out of the tube 110 regardless of whether the pressure of the irrigation liquid is low or high.
  • the emitter 120 includes a backflow prevention unit 170 including a sealed water storage unit 175.
  • a backflow prevention unit 170 including a sealed water storage unit 175.
  • the irrigation liquid is accommodated in the sealed water storage portion 175 as sealed water.
  • the upstream flow path of the sealed water storage part 175 and the downstream flow path of the sealed water storage part 175 are blocked by sealed water.
  • a fluid such as air or water containing fine soil existing outside the tube 110 from flowing upstream of the sealed water storage portion 175.
  • the emitter 120 according to the present embodiment has the sealed water storage portion 175 for storing sealed water.
  • the emitter 120 can suppress the occurrence of the siphon phenomenon and can appropriately discharge the irrigation liquid even when the pressure of the irrigation liquid in the tube 110 is low. Therefore, according to the drip irrigation tube 100 having the emitter 120 according to the present embodiment, it is possible to suppress the occurrence of clogging of the flow path due to the siphon phenomenon even in a place where there is a height difference, and Even when the pressure of the irrigation liquid is low, the irrigation liquid can be quantitatively discharged.
  • FIGS. 5A and 5B are diagrams showing an example of a configuration of a cover and film integral molding 125a according to Modification 1.
  • FIG. 5A is a bottom view of the integrally molded product 125a according to Modification 1
  • FIG. 5B is a cross-sectional view taken along the line BB of FIG. 5A.
  • 6A and 6B are diagrams illustrating an example of a configuration of an integrally formed product 125b of a cover and a film according to the second modification.
  • 6A is a bottom view of the integrally molded product 125b according to Modification 2
  • FIG. 6B is a cross-sectional view taken along the line BB of FIG. 6A.
  • the integrally molded products 125a and 125b have ridges 124 and a diaphragm 166 that are arranged adjacent to each other. Further, the size and the external appearance shape of the integrally molded products 125 a and 125 b can be appropriately changed according to the size of the emitter body 121.
  • the externally shaped shape of the integrally molded product 125a may be a rectangular shape, and the externally visible shape of the integrally molded product 125b may be an oval shape.
  • row 172 which comprise the sealed water accommodating part 175 was demonstrated to each cylindrical shape, the protruding item
  • Each of the shapes may be a rectangular parallelepiped shape.
  • the recess 172 is not disposed so as to surround the opening of the fourth connection through hole 174, and is disposed so that both ends of the recess 172 are connected to the side wall surface of the backflow prevention recess 171. ing.
  • the recess 172 is open to the bottom surface of the backflow prevention recess 171 and the opening of the third connection through hole 173 and the fourth connection through hole. It arrange
  • the emitter and the drip irrigation tube according to the present invention are not limited to the emitter 120 and the drip irrigation tube 100 according to the above-described embodiment.
  • the emitter includes the first decompression channel 142 and the second decompression tube.
  • the flow path 144 and the flow rate adjustment unit 160 may not be provided.
  • the emitter is constituted by at least an emitter body and a cover.
  • the 1st connection flow path 141, the 1st pressure reduction flow path 142, the 2nd connection flow path 143, and the 2nd pressure reduction flow path 144 are formed by joining the emitter 120 and the tube 110.
  • the first connection channel 141, the first decompression channel 142, the second connection channel 143, and the second decompression channel 144 may be formed in the emitter 120 in advance as channels. Good.
  • the emitter according to the present invention it is possible to suppress the occurrence of clogging caused by the backflow of the fluid outside the tube to the flow path even in a place with a height difference. Therefore, further development of drip irrigation is expected.
  • Tube for drip irrigation 110
  • Tube 112 Discharge port 120
  • Emitter 121
  • Emitter body 1211
  • First pressure reduction groove 133
  • Second connection Groove 134
  • Second decompression groove 1361
  • First convex part 1362 Second convex part
  • First connection flow path 142
  • First decompression flow path 143
  • Second connection flow path 144
  • Second decompression flow path 150
  • Water intake part 151
  • Water intake side screen part 152
  • Water intake Through-hole 153
  • Water intake recess 154
  • Slit Screen protrusion
  • Flow reduction portion 161
  • Flow reduction recess 162 Valve seat portion 163
  • Communication groove 164
  • First connection through-hole 165
  • Second connection through-hole 166
  • Backflow Prevention part 171
  • Backflow prevention concave part 172
  • Third connection through-hole 174
  • Fourth connection through-hole 175
  • Sealed water storage portion 180
  • Discharge reces 18

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Nozzles (AREA)

Abstract

This emitter is provided with a water intake part, a discharge part, a flow path, and a sealing water accommodation part. The water intake part takes in an irrigation liquid. The discharge part discharges the irrigation liquid. The flow path connects the water intake part and the discharge part, and circulates the irrigation liquid. The sealing water accommodation part is provided to the flow path, and accommodates sealing water.

Description

エミッタおよび点滴灌漑用チューブEmitter and drip irrigation tubes
 本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。 The present invention relates to an emitter and a drip irrigation tube having the emitter.
 植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌上または土壌中に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料などの灌漑用液体を滴下する方法である。点滴灌漑法の利点の1つは、灌漑用液体の消費量を最小限に抑えられることである。 Drip irrigation is known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is arranged on or in the soil where plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. One advantage of the drip irrigation method is that the consumption of irrigation liquid can be minimized.
 点滴灌漑用チューブには、複数の貫通孔が形成されたチューブと、当該チューブの内壁面に接合され、各貫通孔から灌漑用液体を定量的に吐出するための複数のエミッタ(「ドリッパ」ともいう)とを有する(例えば、特許文献1参照)。灌漑用液体は、例えば、ポンプによってチューブ内に送られ、上記エミッタを経由して上記貫通孔から上記チューブ外に吐出される。 A drip irrigation tube is joined to a tube having a plurality of through holes and a plurality of emitters (“drippers”) that are bonded to the inner wall surface of the tube and quantitatively discharge irrigation liquid from each through hole. (For example, refer to Patent Document 1). The irrigation liquid is sent into the tube by a pump, for example, and is discharged out of the tube through the through hole via the emitter.
 特許文献1に記載のエミッタは、第1部材と、第2部材と、当該第1部材および当該第2部材の間に配置されている膜部材とを有する。第1部材は、灌漑用液体をエミッタ内に取り入れるための取水口と、第1部材の内側において当該取水口を取り囲むように配置された壁部とを有する。第2部材は、灌漑用液体をエミッタ外に排出するための排出口を有する。第1部材、膜部材および第2部材をこの順番で積層することによって、第1部材および膜部材の間と、第2部材および膜部材の間とに、流灌漑用液体が移動できる流路が形成される。膜部材には、取水口からエミッタ内に取り入れられた液体が、第1部材および膜部材の間の流路から、第2部材および膜部材の間の流路に移動するための貫通孔が形成されている。 The emitter described in Patent Document 1 includes a first member, a second member, and a film member disposed between the first member and the second member. The first member has a water intake for taking in the irrigation liquid into the emitter, and a wall portion arranged to surround the water intake inside the first member. The second member has a discharge port for discharging the irrigation liquid out of the emitter. By laminating the first member, the membrane member, and the second member in this order, there is a flow path through which the flow irrigation liquid can move between the first member and the membrane member and between the second member and the membrane member. It is formed. A through hole is formed in the membrane member for the liquid taken into the emitter from the water intake port to move from the flow path between the first member and the membrane member to the flow path between the second member and the membrane member. Has been.
 また、特許文献1に記載のエミッタでは、膜部材が壁部に接触することによって取水口が閉塞される。当該エミッタでは、チューブ内の灌漑用液体の圧力が所定値以上となった場合に、取水口を閉塞している膜部材が灌漑用液体により押圧されて変形する。灌漑用液体は、膜部材の変形によって膜部材および壁部の間に生じた隙間を介してエミッタ内に流入する。 Further, in the emitter described in Patent Document 1, the water intake is blocked by the membrane member coming into contact with the wall portion. In the emitter, when the pressure of the irrigation liquid in the tube becomes equal to or higher than a predetermined value, the membrane member closing the intake port is pressed by the irrigation liquid and deformed. The irrigation liquid flows into the emitter through a gap formed between the membrane member and the wall due to the deformation of the membrane member.
特開2010-046094号公報JP 2010-046094 A
 一般に、チューブ内への送液を停止した後も、チューブ内の灌漑用液体は、ある程度の時間継続してチューブ外に吐出される。点滴灌漑用チューブが高低差のある場所に配置されている場合、高い位置におけるエミッタからの灌漑用液体の吐出量と比較して、より低い位置におけるエミッタからの灌漑用液体の吐出量はより多い。結果として、高い位置におけるチューブ内の圧力は、陰圧になる。これにより、チューブ外から細かい土を含んだ空気や水などの流体が、エミッタの流路に逆流することがある。このように、チューブ内の陰圧に起因して生じうる流体の逆流現象(以下、「サイフォン現象」ともいう)によって、エミッタ内が汚染されたり、目詰まりが生じたりすることがある。 Generally, even after the liquid feeding into the tube is stopped, the irrigation liquid in the tube is continuously discharged for a certain period of time. When drip irrigation tubes are placed at different elevations, the amount of irrigation liquid discharged from lower emitters is higher than the amount of irrigation liquid discharged from higher emitters . As a result, the pressure in the tube at a high position becomes a negative pressure. As a result, a fluid such as air or water containing fine soil from the outside of the tube may flow backward into the flow path of the emitter. As described above, the back flow phenomenon of the fluid that may be caused by the negative pressure in the tube (hereinafter also referred to as “siphon phenomenon”) may contaminate the inside of the emitter or cause clogging.
 一方で、特許文献1に記載のエミッタでは、送液を停止した後にチューブ内の灌漑用液体の圧力が所定値未満となった場合、上記取水口は、上記膜部材により閉塞される。このため、サイフォン現象の発生が抑制されうる。しかしながら、特許文献1に記載のエミッタでは、チューブ内の圧力が低すぎると、上記取水口が上記膜部材により閉塞されるため、灌漑用液体を適切に吐出できないという問題がある。 On the other hand, in the emitter described in Patent Document 1, when the pressure of the irrigation liquid in the tube becomes less than a predetermined value after stopping the liquid feeding, the water intake is blocked by the membrane member. For this reason, generation | occurrence | production of a siphon phenomenon can be suppressed. However, the emitter described in Patent Document 1 has a problem that if the pressure in the tube is too low, the water intake is blocked by the membrane member, and thus the irrigation liquid cannot be properly discharged.
 本発明の目的は、サイフォン現象の発生を抑制できるとともに、チューブ内の灌漑用液体の圧力が低くても適切に灌漑用液体を吐出することができるエミッタおよび点滴灌漑用チューブを提供することである。 An object of the present invention is to provide an emitter and a drip irrigation tube that can suppress the occurrence of a siphon phenomenon and can appropriately discharge the irrigation liquid even when the pressure of the irrigation liquid in the tube is low. .
 上記の課題を解決するため、本発明に係るエミッタは、互いに表裏の関係にある第1面および第2面を有し、灌漑用液体を流通させるチューブの内壁面において、前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記第1面に配置され、前記灌漑用液体を取り入れるための取水部と、前記第2面に配置され、前記灌漑用液体を吐出するための吐出部と、前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させるための流路と、前記流路に配置されており、封水を収容するための封水収容部と、を有する。 In order to solve the above-described problems, an emitter according to the present invention has a first surface and a second surface that are in a relationship of front and back, and communicates the inside and outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. And an emitter for quantitatively discharging the irrigation liquid in the tube from the discharge port to the outside of the tube, and disposed on the first surface. A water intake part for taking in the liquid for irrigation, a discharge part arranged on the second surface for discharging the irrigation liquid, and connecting the water intake part and the discharge part to distribute the irrigation liquid It has a flow path and a sealed water storage part that is disposed in the flow path and stores sealed water.
 上記の課題を解決するため、本発明に係る点滴灌漑用チューブは、灌漑用液体を吐出するための吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、本発明に係るエミッタと、を有する。 In order to solve the above problems, a drip irrigation tube according to the present invention is joined to a tube having a discharge port for discharging irrigation liquid and a position corresponding to the discharge port on the inner wall surface of the tube. And an emitter according to the present invention.
 本発明に係るエミッタおよび点滴灌漑用チューブによれば、サイフォン現象の発生を抑制できるとともに、チューブ内の灌漑用液体の圧力が低くても適切に灌漑用液体を吐出することができる。 According to the emitter and the drip irrigation tube according to the present invention, the siphon phenomenon can be suppressed and the irrigation liquid can be appropriately discharged even when the pressure of the irrigation liquid in the tube is low.
図1A、Bは、実施の形態に係る点滴灌漑用チューブの構成の一例を示す断面図である。1A and 1B are cross-sectional views illustrating an example of the configuration of a drip irrigation tube according to an embodiment. 図2A~Cは、実施の形態に係るエミッタまたはエミッタ本体の構成を示す図である。2A to 2C are diagrams showing the configuration of the emitter or emitter body according to the embodiment. 図3は、実施の形態に係るエミッタの構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the emitter according to the embodiment. 図4A~Cは、流量減少部の動作について説明するための断面模式図である。4A to 4C are schematic cross-sectional views for explaining the operation of the flow rate reducing unit. 図5A、Bは、変形例1に係るカバーおよびフィルムの一体成型物の構成の一例を示す図である。5A and 5B are diagrams illustrating an example of a configuration of an integrally molded product of a cover and a film according to the first modification. 図6A、Bは、変形例2に係るカバーおよびフィルムの一体成型物の構成の一例を示す図である。6A and 6B are diagrams illustrating an example of a configuration of an integrally molded product of a cover and a film according to the second modification.
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 [点滴灌漑用チューブおよびエミッタの構成]
 図1A、Bは、本実施の形態に係る点滴灌漑用チューブ100の構成の一例を示す断面図である。図1Aは、点滴灌漑用チューブ100の軸方向における断面図であり、図1Bは、点滴灌漑用チューブ100の当該軸方向に垂直な方向における断面図である。点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。
[Composition of drip irrigation tube and emitter]
1A and 1B are cross-sectional views showing an example of the configuration of a drip irrigation tube 100 according to the present embodiment. FIG. 1A is a cross-sectional view of the drip irrigation tube 100 in the axial direction, and FIG. 1B is a cross-sectional view of the drip irrigation tube 100 in a direction perpendicular to the axial direction. The drip irrigation tube 100 includes a tube 110 and an emitter 120.
 チューブ110は、灌漑用液体を流すための管である。灌漑用液体は、例えば、ポンプを用いてチューブ110内に送られる。チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200~500mm)で灌漑用液体をチューブ110外に吐出するための複数の吐出口112が形成されている。吐出口112の開口部の直径は、灌漑用液体が通過することができれば特に限定されない。本実施の形態では、吐出口112の開口部の直径は、1.5mmである。チューブ110の内壁面の吐出口112に対応する位置には、エミッタ120がそれぞれ接合されている。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を配置することができれば特に限定されない。 The tube 110 is a tube for flowing irrigation liquid. The irrigation liquid is sent into the tube 110 using a pump, for example. A plurality of discharge ports 112 for discharging the irrigation liquid to the outside of the tube 110 at a predetermined interval (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110. The diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can pass through. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm. Emitters 120 are respectively joined to the positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
 チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。 The material of the tube 110 is not particularly limited. In the present embodiment, the material of the tube 110 is polyethylene.
 灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。 Examples of the irrigation liquid include water, liquid fertilizer, agricultural chemicals, and a mixture thereof.
 図2A~Cは、本実施の形態に係るエミッタ120またはエミッタ本体121の構成を示す図である。図2Aは、エミッタ本体121の平面図であり、図2Bは、エミッタ120の平面図であり、図2Cは、エミッタ120の底面図である。図3は、本実施の形態に係るエミッタ120の構成を示す図である。図3は、図2Bに示されるA-A線における断面図である。 2A to 2C are diagrams showing the configuration of the emitter 120 or the emitter body 121 according to the present embodiment. 2A is a plan view of the emitter body 121, FIG. 2B is a plan view of the emitter 120, and FIG. 2C is a bottom view of the emitter 120. FIG. 3 is a diagram showing a configuration of the emitter 120 according to the present embodiment. FIG. 3 is a cross-sectional view taken along line AA shown in FIG. 2B.
 図1Aに示されるように、エミッタ120は、吐出口112を覆うようにチューブ110の内壁面に接合されている。エミッタ120の形状は、チューブ110の内壁面に密着して、吐出口112を覆うことができれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直な方向の断面における、チューブ110の内壁面に接合するエミッタ120の裏面の形状は、チューブ110の内壁面に沿うように、チューブ110の内壁面に向かって凸の略円弧形状である。エミッタ120の平面視形状は、四隅がR面取りされた略矩形状である。エミッタ120の大きさは、特に限定されない。本実施の形態では、エミッタ120の長辺方向の長さは25mmであり、短辺方向の長さは8mmであり、高さは2.5mmである。 As shown in FIG. 1A, the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112. The shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112. In the present embodiment, the shape of the back surface of the emitter 120 joined to the inner wall surface of the tube 110 in the cross section perpendicular to the axial direction of the tube 110 is such that the inner wall surface of the tube 110 is aligned with the inner wall surface of the tube 110. It is a substantially circular arc shape convex toward. The shape of the emitter 120 in plan view is a substantially rectangular shape with four corners rounded off. The size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
 本実施の形態に係るエミッタ120は、少なくとも、エミッタ本体121、フィルム122およびカバー123よって構成されている。エミッタ120の機能の詳細については後述する。 The emitter 120 according to the present embodiment includes at least an emitter body 121, a film 122, and a cover 123. Details of the function of the emitter 120 will be described later.
 エミッタ本体121(エミッタ120)は、互いに表裏の関係にある第1面1211および第2面1212を有する。本実施の形態では、第1面1211は、エミッタ120の表面側(灌漑用液体側)に位置し、第2面1212は、エミッタ120の裏面側(チューブ110側)に位置する。 The emitter body 121 (emitter 120) has a first surface 1211 and a second surface 1212 that are in a front-back relationship. In the present embodiment, the first surface 1211 is located on the front surface side (irrigation liquid side) of the emitter 120, and the second surface 1212 is located on the rear surface side (tube 110 side) of the emitter 120.
 エミッタ本体121には、本実施の形態の効果を得られる範囲内において、凹部、溝、凸部および貫通孔が、適宜に形成されている。詳細については後述するが、本実施の形態では、エミッタ本体121の第1面1211には、少なくとも、取水用凹部153、流量減少用凹部161および逆流防止用凹部171が形成されている(図2A参照)。また、エミッタ本体121の第2面1212には、少なくとも、第1接続溝131、第1減圧溝132、第2接続溝133、第2減圧溝134および吐出用凹部181が形成されている(図2C参照)。 The emitter body 121 is appropriately formed with recesses, grooves, protrusions, and through-holes within a range where the effects of the present embodiment can be obtained. Although details will be described later, in the present embodiment, at least a water intake recess 153, a flow rate reduction recess 161, and a backflow prevention recess 171 are formed on the first surface 1211 of the emitter body 121 (FIG. 2A). reference). In addition, at least a first connection groove 131, a first decompression groove 132, a second connection groove 133, a second decompression groove 134, and a discharge recess 181 are formed on the second surface 1212 of the emitter body 121 (see FIG. 2C).
 エミッタ本体121は、可撓性を有する材料で形成されていてもよいし、剛性を有する材料で形成されていてもよい。エミッタ本体121の材料の例には、樹脂およびゴムが含まれる。当該樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ本体121の可撓性は、弾性を有する樹脂材料の使用によって調整されうる。エミッタ本体121の可撓性の調整方法の例には、弾性を有する樹脂の選択や、硬質の樹脂材料に対する弾性を有する樹脂材料の混合比の調整などが含まれる。エミッタ本体121は、例えば、射出成形によって製造されうる。 The emitter body 121 may be formed of a flexible material, or may be formed of a rigid material. Examples of the material of the emitter body 121 include resin and rubber. Examples of the resin include polyethylene and silicone. The flexibility of the emitter body 121 can be adjusted by using a resin material having elasticity. Examples of the method for adjusting the flexibility of the emitter body 121 include selection of a resin having elasticity, adjustment of a mixing ratio of a resin material having elasticity with respect to a hard resin material, and the like. The emitter body 121 can be manufactured by injection molding, for example.
 フィルム122は、エミッタ本体121の第1面1211の一部に接合されている。フィルム122は、流量減少用凹部161の開口部を塞ぐようにエミッタ本体121上に配置されている。すなわち、フィルム122は、当該開口部の外側の部分でエミッタ本体121に接合されている。フィルム122は、可撓性を有し、灌漑用液体の圧力により変形する。 The film 122 is bonded to a part of the first surface 1211 of the emitter body 121. The film 122 is disposed on the emitter body 121 so as to close the opening of the flow rate reducing recess 161. That is, the film 122 is joined to the emitter main body 121 at a portion outside the opening. The film 122 has flexibility and is deformed by the pressure of the irrigation liquid.
 フィルム122の形状および大きさは、エミッタ本体121の形状および大きさや、エミッタ本体121に形成されている流量減少用凹部161の開口部の形状および大きさなどに応じて適宜設定されうる。フィルム122の厚みは、所望の可撓性に応じて適宜設定されうる。 The shape and size of the film 122 can be appropriately set according to the shape and size of the emitter main body 121 and the shape and size of the opening of the flow rate reducing recess 161 formed in the emitter main body 121. The thickness of the film 122 can be appropriately set according to the desired flexibility.
 フィルム122は、可撓性を有する樹脂材料で形成されている。フィルム122の材料は、所望の可撓性に応じて適宜設定されうる。当該樹脂の例には、ポリエチレンおよびシリコーンが含まれる。フィルム122の可撓性も、弾性を有する樹脂材料の使用によって調整されうる。フィルム122の可撓性の調整方法の例は、エミッタ本体121の可撓性の調整方法と同じである。フィルム122は、例えば、射出成形によって製造されうる。 The film 122 is formed of a flexible resin material. The material of the film 122 can be appropriately set according to the desired flexibility. Examples of the resin include polyethylene and silicone. The flexibility of the film 122 can also be adjusted by using a resin material having elasticity. An example of a method for adjusting the flexibility of the film 122 is the same as the method for adjusting the flexibility of the emitter body 121. The film 122 can be manufactured by injection molding, for example.
 エミッタ本体121およびフィルム122は、一体であってもよいし、別体であってもよい。たとえば、エミッタ本体121およびフィルム122は、それぞれヒンジ部を介して一体的に形成されていてもよい。ヒンジ部を軸にフィルム122を回動させ、フィルム122をエミッタ本体121の第1面1211に接合すればよい。エミッタ本体121およびフィルム122の接合方法は、特に限定されない。当該接合方法の例には、樹脂材料の溶着や、接着剤による接着などが含まれる。なお、上記ヒンジ部は、エミッタ本体121およびフィルム122を接合した後に切断されてもよい。 The emitter body 121 and the film 122 may be integrated or separate. For example, the emitter main body 121 and the film 122 may be integrally formed via a hinge part. The film 122 may be rotated about the hinge portion, and the film 122 may be joined to the first surface 1211 of the emitter body 121. The joining method of the emitter body 121 and the film 122 is not particularly limited. Examples of the joining method include welding of a resin material, adhesion with an adhesive, and the like. The hinge portion may be cut after the emitter body 121 and the film 122 are joined.
 カバー123は、エミッタ121本体の第1面1211の一部に接合されている。カバー123は、逆流防止用凹部171の開口部を塞ぐようにエミッタ本体121上に配置されている。すなわち、カバー123は、当該開口部の外側の部分でエミッタ本体121に接合されている。カバー123の形状および大きさは、エミッタ本体121の形状および大きさや、エミッタ本体121に形成されている逆流防止用凹部171の開口部の形状および大きさなどに応じて適宜設定されうる。 The cover 123 is joined to a part of the first surface 1211 of the emitter 121 main body. The cover 123 is disposed on the emitter body 121 so as to close the opening of the backflow preventing recess 171. That is, the cover 123 is joined to the emitter body 121 at a portion outside the opening. The shape and size of the cover 123 can be appropriately set according to the shape and size of the emitter body 121, the shape and size of the opening of the backflow prevention recess 171 formed in the emitter body 121, and the like.
 カバー123の一方の面には、凸条124が形成されている。凸条124は、エミッタ本体121に形成されている逆流防止用凹部171側に突出するように配置されている。さらに、図3に示されるように、凸条124は、カバー123において、逆流防止用凹部171の底面に配置されている凹条172に対応する位置に配置されている。具体的には、凸条124は、凹条172の内面から離間するように凹条172内に配置され、凹条172に沿って延在している。換言すると、凸条124は、灌漑用液体の流れ方向に対して横断する方向に沿って延在している。凸条124および凹条172の間には隙間が形成されている。当該隙間は、灌漑用液体が移動できる流路の一部を構成している。 A protrusion 124 is formed on one surface of the cover 123. The ridges 124 are arranged so as to protrude toward the backflow prevention recess 171 formed in the emitter body 121. Further, as shown in FIG. 3, the ridge 124 is disposed in the cover 123 at a position corresponding to the ridge 172 disposed on the bottom surface of the backflow prevention recess 171. Specifically, the protrusion 124 is disposed in the recess 172 so as to be separated from the inner surface of the recess 172, and extends along the recess 172. In other words, the ridge 124 extends along a direction transverse to the flow direction of the irrigation liquid. A gap is formed between the ridge 124 and the recess 172. The gap constitutes a part of the channel through which the irrigation liquid can move.
 詳細については後述するが、凸条124および凹条172の間には、流路を途中で遮断するための液体(封水)が収容されうる。凸条124の位置、形状、大きさおよび数は、凸条124および凹条172の間に封水を収容することができれば特に限定されず、凹条172の形状および大きさに応じて適宜設定されうる。凸条124の形状の例には、円筒形状および角筒形状が含まれる。本実施の形態では、凸条124の形状は、円筒形状である。本実施の形態では、凸条124の数は、2つである。2つの凸条124は、同心円状に配置されている。 Although details will be described later, a liquid (sealed water) for blocking the channel in the middle can be accommodated between the ridges 124 and the ridges 172. The position, shape, size, and number of the ridges 124 are not particularly limited as long as sealed water can be accommodated between the ridges 124 and the recesses 172, and is appropriately set according to the shape and size of the recesses 172. Can be done. Examples of the shape of the ridge 124 include a cylindrical shape and a rectangular tube shape. In the present embodiment, the shape of the ridge 124 is a cylindrical shape. In the present embodiment, the number of ridges 124 is two. The two ridges 124 are arranged concentrically.
 カバー123は、可撓性を有する材料で形成されていてもよいし、剛性を有する材料で形成されていてもよい。カバー123の材料の例には、樹脂、ゴムおよび金属が含まれる。当該樹脂の例には、ポリエチレンおよびシリコーンが含まれる。カバー123の可撓性は、エミッタ本体121の可撓性の調整方法と同じである。カバー123は、例えば、射出成形によって製造されうる。灌漑用液体の圧力に起因するカバー123の変形を抑制して、凸条124および凹条172の間の隙間(流路の一部)の大きさを一定に保持する観点からは、カバー123は、剛性を有する材料で形成されていることが好ましい。本実施の形態では、カバー123は、剛性を有する材料で形成されている。 The cover 123 may be formed of a flexible material or may be formed of a rigid material. Examples of the material of the cover 123 include resin, rubber, and metal. Examples of the resin include polyethylene and silicone. The flexibility of the cover 123 is the same as the method for adjusting the flexibility of the emitter body 121. The cover 123 can be manufactured by injection molding, for example. From the viewpoint of suppressing the deformation of the cover 123 due to the pressure of the irrigation liquid and keeping the size of the gap (part of the flow path) between the ridge 124 and the ridge 172 constant, the cover 123 is It is preferable to be made of a material having rigidity. In the present embodiment, cover 123 is formed of a material having rigidity.
 本明細書中、「剛性を有する材料」とは、当該材料によって形成された部材が、灌漑用液体の圧力によって変形しない程度の剛性を有する材料を意味する。たとえば、カバー123が剛性を有する材料で形成されている場合、上記材料は、凸条124および凹条172の間隔が、灌漑用液体の圧力によって実質的に変化しない程度の剛性を有する材料を意味する。 In the present specification, the “material having rigidity” means a material having a rigidity such that a member formed of the material is not deformed by the pressure of the irrigation liquid. For example, when the cover 123 is formed of a material having rigidity, the material means a material having such a rigidity that the distance between the ridges 124 and the ridges 172 is not substantially changed by the pressure of the irrigation liquid. To do.
 エミッタ本体121およびカバー123は、一体であってもよいし、別体であってもよい。エミッタ本体121およびカバー123の接合方法の例は、エミッタ本体121およびフィルム122の接合方法の例と同じである。 The emitter body 121 and the cover 123 may be integrated or separate. An example of a method for joining the emitter body 121 and the cover 123 is the same as an example of a method for joining the emitter body 121 and the film 122.
 フィルム122およびカバー123は、一体であってもよいし(後述の変形例1、2参照)、別体であってもよい。フィルム122およびカバー123が一体である場合、フィルム122およびカバー123は、いずれも可撓性を有する。本実施の形態では、フィルム122およびカバー123は、別体である。カバー123に剛性を付与する観点からは、フィルム122およびカバー123は、別体であることが好ましい。 The film 122 and the cover 123 may be integrated (see modified examples 1 and 2 described later) or may be separate. When the film 122 and the cover 123 are integral, the film 122 and the cover 123 are both flexible. In the present embodiment, the film 122 and the cover 123 are separate bodies. From the viewpoint of imparting rigidity to the cover 123, the film 122 and the cover 123 are preferably separate.
 点滴灌漑用チューブ100は、エミッタ120の裏面をチューブ110の内壁面に接合することによって作製される。チューブ110とエミッタ120との接合方法は、特に限定されない。当該接合方法の例には、エミッタ120またはチューブ110を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、通常、吐出口112は、チューブ110とエミッタ120とを接合した後に形成されるが、接合前に形成されてもよい。 The drip irrigation tube 100 is manufactured by joining the back surface of the emitter 120 to the inner wall surface of the tube 110. The method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the bonding method include welding of a resin material constituting the emitter 120 or the tube 110, bonding with an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
 エミッタ120は、取水部150、第1接続流路141、第1減圧流路142、第2接続流路143、第2減圧流路144、流量減少部160、逆流防止部170および吐出部180を有する。取水部150、流量減少部160および逆流防止部170は、エミッタ120の表面(エミッタ本体121の第1面1211)に配置されている。また、第1接続流路141、第1減圧流路142、第2接続流路143、第2減圧流路144および吐出部180は、エミッタ120の裏面(エミッタ本体121の第2面1212)に配置されている。 The emitter 120 includes a water intake unit 150, a first connection channel 141, a first decompression channel 142, a second connection channel 143, a second decompression channel 144, a flow rate reduction unit 160, a backflow prevention unit 170, and a discharge unit 180. Have. The water intake unit 150, the flow rate reduction unit 160, and the backflow prevention unit 170 are disposed on the surface of the emitter 120 (the first surface 1211 of the emitter body 121). Further, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, and the discharge unit 180 are provided on the back surface of the emitter 120 (the second surface 1212 of the emitter body 121). Has been placed.
 エミッタ120およびチューブ110が互いに接合されることにより、取水部150、第1接続流路141、第1減圧流路142、第2接続流路143、第2減圧流路144、流量減少部160、逆流防止部170および吐出部180が形成される。また、エミッタ120において、取水部150と吐出部180とを繋ぐ流路も形成される。当該流路は、取水部150から吐出部180まで灌漑用液体を流通させる。 By connecting the emitter 120 and the tube 110 to each other, the water intake unit 150, the first connection channel 141, the first decompression channel 142, the second connection channel 143, the second decompression channel 144, the flow rate reduction unit 160, A backflow prevention unit 170 and a discharge unit 180 are formed. In the emitter 120, a flow path that connects the water intake unit 150 and the discharge unit 180 is also formed. The flow channel distributes the irrigation liquid from the water intake unit 150 to the discharge unit 180.
 取水部150は、灌漑用液体をエミッタ120内に取り入れる。取水部150は、エミッタ本体121の第1面1211の約半分の領域に配置されている(図2A、B参照)。取水部150は、取水側スクリーン部151および取水用貫通孔152を有する。 The water intake unit 150 takes the irrigation liquid into the emitter 120. The water intake 150 is disposed in a region that is approximately half of the first surface 1211 of the emitter body 121 (see FIGS. 2A and 2B). The water intake unit 150 includes a water intake side screen unit 151 and a water intake through hole 152.
 取水側スクリーン部151は、エミッタ120に取り入れられる灌漑用液体中の浮遊物がエミッタ120内に侵入することを防止する。取水側スクリーン部151は、チューブ110内に対して開口しており、取水用凹部153、複数のスリット154および複数のスクリーン用凸条部155を有する。 The water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the emitter 120. The water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a plurality of slits 154, and a plurality of screen ridges 155.
 取水用凹部153は、エミッタ本体121の第1面1211において、フィルム122が接合されていない領域に形成されている凹部である。取水用凹部153の深さは特に限定されず、エミッタ120の大きさに応じて適宜設定される。取水用凹部153の外周壁には複数のスリット154が形成されており、取水用凹部153の底面上には複数のスクリーン用凸条部155が形成されている。また、取水用凹部153の底面には取水用貫通孔152が形成されている。 The water intake recess 153 is a recess formed in a region where the film 122 is not joined on the first surface 1211 of the emitter body 121. The depth of the water intake recess 153 is not particularly limited, and is appropriately set according to the size of the emitter 120. A plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a plurality of screen ridges 155 are formed on the bottom surface of the water intake recess 153. In addition, a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
 複数のスリット154は、取水用凹部153の内側面と、エミッタ本体121の外側面とを繋いでおり、エミッタ本体121の側面から灌漑用液体を取水用凹部153内に取り入れつつ、灌漑用液体中の浮遊物が取水用凹部153内に侵入することを防止する。スリット154の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、スリット154の形状は、エミッタ本体121の外側面から取水用凹部153の内側面に向かうにつれて、幅が大きくなるように形成されている(図2A、B参照)。このように、スリット154は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した灌漑用液体の圧力損失が抑制される。 The plurality of slits 154 connect the inner surface of the water intake recess 153 and the outer surface of the emitter body 121, while taking the irrigation liquid from the side surface of the emitter body 121 into the water recess 153. Is prevented from entering the water intake recess 153. The shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 121 toward the inner surface of the water intake recess 153 (see FIGS. 2A and 2B). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
 複数のスクリーン用凸条部155は、取水用凹部153の底面上に配置されている。スクリーン用凸条部155の配置および数は、取水用凹部153の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止することができれば特に限定されない。本実施の形態では、複数のスクリーン用凸条部155は、スクリーン用凸条部155の長軸方向がエミッタ120の短軸方向に沿うように配列されている。また、スクリーン用凸条部155は、エミッタ本体121の第1面1211から取水用凹部153の底面に向かうにつれて幅が小さくなるように形成されている。すなわち、スクリーン用凸条部155の配列方向において、隣接するスクリーン用凸条部155間の空間は、いわゆるウェッジワイヤー構造となっている。また、隣接するスクリーン用凸条部155間の間隔は、前述の機能を発揮することができれば特に限定されない。このように、隣接するスクリーン用凸条部155間の空間は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した灌漑用液体の圧力損失が抑制される。 The plurality of screen ridges 155 are arranged on the bottom surface of the water intake recess 153. The arrangement and number of the screen ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented. In the present embodiment, the plurality of screen ridges 155 are arranged such that the major axis direction of the screen ridges 155 is along the minor axis direction of the emitter 120. Further, the screen protrusion 155 is formed so that the width decreases from the first surface 1211 of the emitter body 121 toward the bottom surface of the water intake recess 153. That is, in the arrangement direction of the screen ridges 155, the space between the adjacent screen ridges 155 has a so-called wedge wire structure. Moreover, the space | interval between the adjacent protruding item | line parts 155 for screens will not be specifically limited if the above-mentioned function can be exhibited. In this way, the space between the adjacent screen ridges 155 is configured to have a so-called wedge wire structure, so that the pressure loss of the irrigation liquid flowing into the water intake recess 153 is suppressed.
 取水用貫通孔152は、取水用凹部153の底面に形成されている。取水用貫通孔152の形状および数は、取水用凹部153の内部に取り込まれた灌漑用液体をエミッタ本体121内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔152は、取水用凹部153の底面において、エミッタ120の長軸方向に沿って形成された1つの長孔である。この長孔は、複数のスクリーン用凸条部155により部分的に覆われているため、第1面1211側から見た場合、取水用貫通孔152は、多数の貫通孔に分かれているように見える。 The water intake through hole 152 is formed on the bottom surface of the water intake recess 153. The shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 121. In the present embodiment, the water intake through hole 152 is a single long hole formed along the major axis direction of the emitter 120 on the bottom surface of the water intake recess 153. Since this long hole is partially covered with the plurality of screen ridges 155, the water intake through hole 152 is divided into a large number of through holes when viewed from the first surface 1211 side. appear.
 チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部151によって浮遊物が取水用凹部153内に侵入することが防止されつつ、エミッタ本体121内に取り込まれる。 The irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 121 while the water intake side screen portion 151 prevents floating substances from entering the water intake recess 153.
 第1接続流路141(第1接続溝131)は、流路に配置されており、取水部150(取水用貫通孔152)と、第1減圧流路142(第1減圧溝132)とを接続する。第1接続流路141(第1接続溝131)は、エミッタ本体121の第2面1212の外縁部においてエミッタ120の長軸方向に沿って直線状に配置されている。チューブ110およびエミッタ120が接合されることで、第1接続溝131とチューブ110の内壁面とにより、第1接続流路141が形成される。取水部150から取り込まれた灌漑用液体は、第1接続流路141を通って、第1減圧流路142に流れる。 The first connection flow path 141 (first connection groove 131) is disposed in the flow path, and includes the water intake section 150 (water intake through hole 152) and the first pressure reduction flow path 142 (first pressure reduction groove 132). Connecting. The first connection channel 141 (first connection groove 131) is linearly arranged along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121. By joining the tube 110 and the emitter 120, the first connection channel 141 is formed by the first connection groove 131 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 150 flows through the first connection channel 141 to the first decompression channel 142.
 第1減圧流路142(第1減圧溝132)は、流路において第1接続流路141の下流に配置されており、第1接続流路141(第1接続溝131)と第2接続流路143(第2接続溝133)とを接続する。第1減圧流路142は、取水部150から取り入れられた灌漑用液体の圧力を減圧させて、第2接続流路143に導く。第1減圧流路142(第1減圧溝132)は、エミッタ本体121の第2面1212の外縁部においてエミッタ120の長軸方向に沿って直線状に配置されている。本実施の形態では、第1減圧流路142の上流端は第1接続流路141に接続されており、第1減圧流路142の下流端は第2接続流路143の上流端に接続されている。 The first decompression flow path 142 (first decompression groove 132) is disposed downstream of the first connection flow path 141 in the flow path, and is connected to the first connection flow path 141 (first connection groove 131) and the second connection flow. The path 143 (second connection groove 133) is connected. The first reduced pressure channel 142 reduces the pressure of the irrigation liquid introduced from the water intake unit 150 and guides it to the second connection channel 143. The first decompression flow path 142 (first decompression groove 132) is linearly disposed along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121. In the present embodiment, the upstream end of the first decompression flow path 142 is connected to the first connection flow path 141, and the downstream end of the first decompression flow path 142 is connected to the upstream end of the second connection flow path 143. ing.
 第1減圧溝132の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第1減圧溝132の平面視形状は、ジグザグ形状である。第1減圧溝132には、内側面から突出する略三角柱形状の第1凸部1361が灌漑用液体の流れる方向に沿って交互に配置されている。第1凸部1361は、平面視したときに、先端が第1減圧溝132の中心軸を超えないように配置されている。チューブ110およびエミッタ120が互いに接合されることで、第1減圧溝132とチューブ110の内壁面により、第1減圧流路142が形成される。取水部150から取り込まれた灌漑用液体は、第1減圧流路142により減圧されて第2接続流路143(第2接続溝133)に導かれる。 The shape of the first decompression groove 132 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the plan view shape of the first decompression groove 132 is a zigzag shape. In the first decompression groove 132, first triangular protrusions 1361 having a substantially triangular prism shape protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The first convex portion 1361 is disposed so that the tip does not exceed the central axis of the first decompression groove 132 when viewed in plan. By joining the tube 110 and the emitter 120 to each other, the first decompression channel 142 is formed by the first decompression groove 132 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake 150 is decompressed by the first decompression channel 142 and guided to the second connection channel 143 (second connection groove 133).
 第2接続流路143(第2接続溝133)は、流路において第1減圧流路142の下流に配置されており、第1減圧流路142(第1減圧溝132)と、第2減圧流路144(第2減圧溝134)とを接続する。第2接続流路143は、エミッタ本体121の第2面1212の外縁部においてエミッタ120の短軸方向に沿って直線状に形成されている。チューブ110およびエミッタ120が接合されることで、第2接続溝133とチューブ110の内壁面とにより、第2接続流路143が形成される。取水部150から取り込まれ、第1接続流路141に導かれ、第1減圧流路142で減圧された灌漑用液体は、第2接続流路143を通って、第2減圧流路144に導かれる。 The second connection channel 143 (second connection groove 133) is disposed downstream of the first decompression channel 142 in the channel, and the first decompression channel 142 (first decompression groove 132) and the second decompression channel The flow path 144 (second decompression groove 134) is connected. The second connection channel 143 is formed linearly along the minor axis direction of the emitter 120 at the outer edge of the second surface 1212 of the emitter body 121. By joining the tube 110 and the emitter 120, the second connection channel 143 is formed by the second connection groove 133 and the inner wall surface of the tube 110. The irrigation liquid that has been taken in from the water intake unit 150, led to the first connection channel 141, and decompressed in the first decompression channel 142 is guided to the second decompression channel 144 through the second connection channel 143. It is burned.
 第2減圧流路144(第2減圧溝134)は、流路において第2接続流路143の下流に配置されており、第2接続溝133(第2接続流路143)と、流量減少部160とを接続する。第2減圧流路144は、第2接続流路143から流入した灌漑用液体の圧力を減圧させて、流量減少部160に導く。第2減圧流路144(第2減圧溝134)は、エミッタ本体121の第2面1212の外縁部においてエミッタ120の長軸方向に沿って配置されている。第2減圧溝134の上流端は第2接続溝133の下流端に接続されており、第2減圧流路144の下流端は流量減少部160の第1接続用貫通孔164に接続されている。 The second decompression flow path 144 (second decompression groove 134) is disposed downstream of the second connection flow path 143 in the flow path, and includes a second connection groove 133 (second connection flow path 143) and a flow rate reduction unit. 160 is connected. The second decompression flow path 144 reduces the pressure of the irrigation liquid flowing from the second connection flow path 143 and guides it to the flow rate reduction unit 160. The second decompression flow path 144 (second decompression groove 134) is disposed along the major axis direction of the emitter 120 at the outer edge portion of the second surface 1212 of the emitter body 121. The upstream end of the second decompression groove 134 is connected to the downstream end of the second connection groove 133, and the downstream end of the second decompression flow path 144 is connected to the first connection through hole 164 of the flow rate reducing unit 160. .
 第2減圧溝134の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第2減圧溝134の平面視形状は、第1減圧溝132の形状と同様のジグザグ形状である。第2減圧溝134には、内側面から突出する略三角柱形状の第2凸部1362が灌漑用液体の流れる方向に沿って交互に配置されている。第2凸部1362は、平面視したときに、先端が第2減圧溝134の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることで、第2減圧溝134とチューブ110の内壁面により、第2減圧流路144が形成される。取水部150から取り込まれた灌漑用液体は、第1減圧流路142および第2減圧流路144により減圧されて、流量減少部160に導かれる。 The shape of the second decompression groove 134 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the plan view shape of the second decompression groove 134 is a zigzag shape similar to the shape of the first decompression groove 132. In the second decompression groove 134, substantially triangular prism-shaped second protrusions 1362 protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The second convex portion 1362 is arranged so that the tip does not exceed the central axis of the second decompression groove 134 when viewed in plan. By joining the tube 110 and the emitter 120, the second decompression channel 144 is formed by the second decompression groove 134 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 150 is decompressed by the first decompression channel 142 and the second decompression channel 144 and guided to the flow rate reduction unit 160.
 流量減少部160は、流路内において、逆流防止部170の上流であり、かつ第2減圧流路144の下流に配置されており、かつエミッタ120の表面側に配置されている。流量減少部160は、チューブ110内の灌漑用液体の圧力によるフィルム122の変形に応じて灌漑用液体の流量を減少させつつ、灌漑用液体を逆流防止部170に送る。 The flow rate reduction unit 160 is disposed upstream of the backflow prevention unit 170 and downstream of the second decompression flow channel 144 in the flow path, and is disposed on the surface side of the emitter 120. The flow rate reduction unit 160 sends the irrigation liquid to the backflow prevention unit 170 while reducing the flow rate of the irrigation liquid according to the deformation of the film 122 due to the pressure of the irrigation liquid in the tube 110.
 流量減少部160の構成は、上記の機能を発揮することができれば特に限定されない。本実施の形態では、流量減少部160は、流量減少用凹部161、弁座部162、連通溝163、第1接続用貫通孔164、第2接続用貫通孔165、およびダイヤフラム部166を有する。 The configuration of the flow reduction unit 160 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the flow rate reducing portion 160 includes a flow rate reducing recess 161, a valve seat portion 162, a communication groove 163, a first connection through hole 164, a second connection through hole 165, and a diaphragm portion 166.
 流量減少用凹部161は、エミッタ本体121の第1面1211に配置されている。流量減少用凹部161の平面視形状は、特に限定されず、例えば、略円形状である。流量減少用凹部161の深さは、特に限定されず、連通溝163の深さ以上であればよい。流量減少用凹部161の内面には、第1接続用貫通孔164および第2接続用貫通孔165が開口している。本実施の形態では、第1接続用貫通孔164および第2接続用貫通孔165は、流量減少用凹部161の底面に開口している。 The flow rate reducing recess 161 is disposed on the first surface 1211 of the emitter body 121. The plan view shape of the flow rate reducing recess 161 is not particularly limited, and is, for example, a substantially circular shape. The depth of the flow rate reducing recess 161 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 163. A first connection through hole 164 and a second connection through hole 165 are open on the inner surface of the flow rate reducing recess 161. In the present embodiment, the first connection through hole 164 and the second connection through hole 165 are open to the bottom surface of the flow rate reducing recess 161.
 弁座部162は、流量減少用凹部161の底面に配置されている。本実施の形態では、弁座部162は、第2接続用貫通孔165の開口部を取り囲むように、ダイヤフラム部166に面して非接触に配置されている。弁座部162は、チューブ110を流れる灌漑用液体の圧力が設定値を超えた場合、ダイヤフラム部166が密着できるように構成されている。弁座部162にダイヤフラム部166が接触することによって、流量減少用凹部161から逆流防止部170に流れ込む灌漑用液体の流量を減少させる。 The valve seat 162 is arranged on the bottom surface of the flow rate reducing recess 161. In the present embodiment, the valve seat portion 162 is disposed in a non-contact manner so as to face the diaphragm portion 166 so as to surround the opening portion of the second connection through hole 165. The valve seat 162 is configured so that the diaphragm 166 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 exceeds a set value. When the diaphragm portion 166 contacts the valve seat portion 162, the flow rate of the irrigation liquid flowing into the backflow prevention portion 170 from the flow rate reducing recess portion 161 is reduced.
 弁座部162の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、弁座部162は、円筒形状の凸部である。本実施の形態では、当該凸部の端面は、内側から外側に向かうにつれて流量減少用凹部161の底面からの高さが低くなっている。 The shape of the valve seat portion 162 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the valve seat portion 162 is a cylindrical convex portion. In the present embodiment, the height of the end surface of the convex portion from the bottom surface of the flow rate reducing concave portion 161 decreases from the inside toward the outside.
 連通溝163は、流量減少用凹部161の内部と、弁座部162に囲まれている第2接続用貫通孔165とを連通している。連通溝163は、弁座部162の、ダイヤフラム部166が密着可能な面の一部に配置されている。 The communication groove 163 communicates the inside of the flow rate reducing recess 161 with the second connection through hole 165 surrounded by the valve seat 162. The communication groove 163 is disposed on a part of the surface of the valve seat portion 162 to which the diaphragm portion 166 can come into close contact.
 第1接続用貫通孔164は、流量減少部160において流路の上流側に連通している。本実施の形態では、第1接続用貫通孔164は、第2減圧流路144(第2減圧溝134)に連通している。第1接続用貫通孔164は、流量減少用凹部161の内面に配置されている。第1接続用貫通孔164は、例えば、流量減少用凹部161の底面または側面に配置される。本実施の形態では、第1接続用貫通孔164は、流量減少用凹部161の底面において、弁座部162が配置されていない領域に配置されている。 The first connection through-hole 164 communicates with the upstream side of the flow path at the flow rate reducing portion 160. In the present embodiment, the first connection through hole 164 communicates with the second reduced pressure channel 144 (second reduced pressure groove 134). The first connection through hole 164 is disposed on the inner surface of the flow rate reducing recess 161. The first connection through hole 164 is disposed, for example, on the bottom or side surface of the flow rate reducing recess 161. In the present embodiment, the first connection through-hole 164 is disposed in a region where the valve seat 162 is not disposed on the bottom surface of the flow rate reducing recess 161.
 第2接続用貫通孔165は、流量減少部160において流路の下流側に連通している。本実施の形態では、第2接続用貫通孔165は、逆流防止部170に連通している。第2接続用貫通孔165は、流量減少用凹部161の内面に配置されている。第2接続用貫通孔165は、例えば、流量減少用凹部161の底面または側面に配置される。本実施の形態では、第2接続用貫通孔165は、流量減少用凹部161の底面の中央部分に配置されている。 The second connection through-hole 165 communicates with the downstream side of the flow path in the flow rate reduction unit 160. In the present embodiment, the second connection through hole 165 communicates with the backflow prevention unit 170. The second connection through-hole 165 is disposed on the inner surface of the flow rate reducing recess 161. The second connection through hole 165 is disposed on the bottom surface or the side surface of the flow rate reducing recess 161, for example. In the present embodiment, the second connection through-hole 165 is disposed at the central portion of the bottom surface of the flow rate reducing recess 161.
 なお、第1接続用貫通孔164および第2接続用貫通孔165の位置は、本実施の形態の態様に限定されない。たとえば、第1接続用貫通孔164の代わりに第2接続用貫通孔165が、弁座部162の外側に配置されていてもよい。また、第2接続用貫通孔165の代わりに第1接続用貫通孔164が、弁座部162に取り囲まれるように配置されてもよい。 Note that the positions of the first connection through holes 164 and the second connection through holes 165 are not limited to the form of the present embodiment. For example, instead of the first connection through hole 164, a second connection through hole 165 may be disposed outside the valve seat portion 162. Further, instead of the second connection through hole 165, the first connection through hole 164 may be disposed so as to be surrounded by the valve seat portion 162.
 ダイヤフラム部166は、フィルム122の一部である。ダイヤフラム部166は、流量減少用凹部161の内部とチューブ110の内部との連通を遮断するように、かつ流量減少用凹部161の開口部を塞ぐように配置されている。ダイヤフラム部166は、可撓性を有し、チューブ110内の灌漑用液体の圧力に応じて、弁座部162に接触するように変形する。たとえば、ダイヤフラム部166は、チューブ110内を流れる灌漑用液体の圧力が設定値を超えた場合に流量減少用凹部161側に歪む。具体的には、ダイヤフラム部166は、灌漑用液体の圧力が高くなるにつれて、弁座部162に向かって変形し、やがて弁座部162に接触する。ダイヤフラム部166が弁座部162に密着している場合であっても、ダイヤフラム部166は、第1接続用貫通孔164、第2接続用貫通孔165および連通溝163を閉塞しないため、第1接続用貫通孔164からの灌漑用液体は、連通溝163および第2接続用貫通孔165を通って、逆流防止部170に送られうる。 The diaphragm portion 166 is a part of the film 122. The diaphragm portion 166 is disposed so as to block communication between the inside of the flow rate reducing recess 161 and the inside of the tube 110 and close the opening of the flow rate reducing recess 161. The diaphragm portion 166 has flexibility and deforms so as to contact the valve seat portion 162 in accordance with the pressure of the irrigation liquid in the tube 110. For example, the diaphragm portion 166 is distorted to the flow rate reducing recess 161 side when the pressure of the irrigation liquid flowing in the tube 110 exceeds a set value. Specifically, the diaphragm portion 166 deforms toward the valve seat portion 162 as the pressure of the irrigation liquid increases, and eventually comes into contact with the valve seat portion 162. Even when the diaphragm portion 166 is in close contact with the valve seat portion 162, the diaphragm portion 166 does not block the first connection through hole 164, the second connection through hole 165, and the communication groove 163. The irrigation liquid from the connection through hole 164 can be sent to the backflow prevention unit 170 through the communication groove 163 and the second connection through hole 165.
 逆流防止部170は、流路内において、流量調整部160の下流であり、かつ吐出部180の上流に配置されており、かつエミッタ120の表面側に配置されている。逆流防止部170は、灌漑用液体を吐出部180に送るとともに、送液を停止したときに吐出部180から流路に逆流する流体が、逆流防止部170の上流へ流通するのを阻止する。 The backflow prevention unit 170 is disposed downstream of the flow rate adjustment unit 160 and upstream of the discharge unit 180 in the flow path, and is disposed on the surface side of the emitter 120. The backflow prevention unit 170 sends the irrigation liquid to the discharge unit 180 and prevents the fluid that flows back from the discharge unit 180 to the flow path when the liquid supply is stopped from flowing upstream of the backflow prevention unit 170.
 吐出部180から流路内へ逆流する流体によって、エミッタ120からの吐出量を調整するための構成要素における流路内が汚染されたり、目詰まりが生じたりすることを抑制する観点から、逆流防止部170は、流路の下流側に配置されていることが好ましい。すなわち、逆流防止部170は、エミッタ120からの吐出量を調整するための構成要素の下流に配置されていることが好ましく、吐出部180に直接連通する位置に配置されていることがより好ましい。本実施の形態では、逆流防止部170は、流量調整部160の下流に配置されているため、流路内に逆流した上記流体が流量調整部160内に流れ込まない。 From the viewpoint of suppressing the inside of the flow path in the component for adjusting the discharge amount from the emitter 120 from being contaminated or clogged by the fluid flowing backward from the discharge section 180 into the flow path, the back flow is prevented. It is preferable that the part 170 is arrange | positioned in the downstream of a flow path. That is, the backflow prevention unit 170 is preferably disposed downstream of the component for adjusting the discharge amount from the emitter 120, and more preferably disposed at a position that directly communicates with the discharge unit 180. In the present embodiment, since the backflow prevention unit 170 is disposed downstream of the flow rate adjustment unit 160, the fluid that has flowed back into the flow path does not flow into the flow rate adjustment unit 160.
 逆流防止部170の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、逆流防止部170は、逆流防止用凹部171、凹条172、第3接続用貫通孔173(特許請求の範囲では、「第1貫通孔」と称している)、第4接続用貫通孔174(特許請求の範囲では、「第2貫通孔」と称している)、封水収容部175および凸条124を有する。 The configuration of the backflow prevention unit 170 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the backflow prevention unit 170 includes a backflow prevention recess 171, a recess 172, a third connection through-hole 173 (referred to as “first through-hole” in the claims), a fourth It has a connecting through-hole 174 (referred to as “second through-hole” in the claims), a sealed water accommodating portion 175, and a ridge 124.
 逆流防止用凹部171は、エミッタ本体121の第1面1211に配置されている。逆流防止用凹部171の平面視形状は、特に限定されず、例えば、略円形状である。逆流防止用凹部171の深さは、特に限定されない。逆流防止用凹部171の内面には、第3接続用貫通孔173、第4接続用貫通孔174および凹条172が開口している。本実施の形態では、第3接続用貫通孔173、第4接続用貫通孔174および凹条172は、逆流防止用凹部171の底面に開口している。 The backflow preventing recess 171 is disposed on the first surface 1211 of the emitter body 121. The shape in plan view of the recess 171 for preventing backflow is not particularly limited, and is, for example, a substantially circular shape. The depth of the backflow preventing recess 171 is not particularly limited. A third connection through hole 173, a fourth connection through hole 174, and a recess 172 are open on the inner surface of the backflow prevention recess 171. In the present embodiment, the third connection through hole 173, the fourth connection through hole 174, and the recess 172 are open to the bottom surface of the backflow prevention recess 171.
 凹条172は、流路の底面に開口し、かつ灌漑用液体の流れ方向に対して横断する方向に沿って延在している。凹条172は、逆流防止用凹部171の底面において、エミッタ本体121の第1面1211に向かって開口するように配置されている。すなわち、凹条172は、エミッタ本体121の第2面1212側に底部を有する。また、本実施の形態では、凹条172は、第4接続用貫通孔174の開口部を取り囲むように配置されている。前述のとおり、凹条172は、凸条124の外面と、逆流防止用凹部171の内面とが互いに離間するように配置されている。すなわち、凹条172は、凸条124との間に隙間が形成されるように配置されている。これにより、流量減少用凹部161から吐出部180に流れる灌漑用液体の流量を確保することができる。 The concave stripe 172 opens at the bottom surface of the flow path and extends along a direction transverse to the flow direction of the irrigation liquid. The concave strip 172 is disposed on the bottom surface of the backflow preventing concave portion 171 so as to open toward the first surface 1211 of the emitter body 121. That is, the recess 172 has a bottom on the second surface 1212 side of the emitter body 121. In the present embodiment, the recess 172 is disposed so as to surround the opening of the fourth connection through-hole 174. As described above, the recess 172 is disposed such that the outer surface of the protrusion 124 and the inner surface of the backflow prevention recess 171 are separated from each other. That is, the recess 172 is disposed so that a gap is formed between the recess 172 and the protrusion 124. Thereby, the flow rate of the irrigation liquid flowing from the flow rate reducing recess 161 to the discharge unit 180 can be ensured.
 凹条172の位置、形状、大きさおよび数は、凸条124および凹条172の間に封水を収容することができれば特に限定されず、凸条124の形状および大きさに応じて適宜設定されうる。凹条172の形状の例には、円筒形状および角筒形状が含まれる。本実施の形態では、凹条172は、円筒形状の凹部である。本実施の形態では、凹条172の数は、2つである。2つの凹条172は、同心円状に配置されている。 The position, shape, size, and number of the concave stripes 172 are not particularly limited as long as sealed water can be accommodated between the convex stripes 124 and the concave stripes 172, and is appropriately set according to the shape and size of the convex stripes 124. Can be done. Examples of the shape of the recess 172 include a cylindrical shape and a rectangular tube shape. In the present embodiment, the recess 172 is a cylindrical recess. In the present embodiment, the number of concave stripes 172 is two. The two concave stripes 172 are arranged concentrically.
 第3接続用貫通孔173は、逆流防止部170において流路の上流側に連通している。本実施の形態では、第3接続用貫通孔173は、流量減少部160に連通している。第3接続用貫通孔173は、逆流防止用凹部171の内面に配置されている。第3接続用貫通孔173は、例えば、逆流防止用凹部171の底面または側面に配置される。本実施の形態では、第3接続用貫通孔173は、逆流防止用凹部171の底面に配置されている。 The third connection through-hole 173 communicates with the upstream side of the flow path in the backflow prevention unit 170. In the present embodiment, the third connection through hole 173 communicates with the flow rate reducing unit 160. The third connection through hole 173 is disposed on the inner surface of the backflow prevention recess 171. The third connection through-hole 173 is disposed, for example, on the bottom surface or side surface of the backflow prevention recess 171. In the present embodiment, the third connection through hole 173 is disposed on the bottom surface of the backflow prevention recess 171.
 第4接続用貫通孔174は、逆流防止部170において流路の下流側に連通している。本実施の形態では、第4接続用貫通孔174は、吐出部180に連通している。第4接続用貫通孔174は、逆流防止用凹部171の内面に配置されている。第4接続用貫通孔174は、例えば、逆流防止用凹部171の底面または側面に配置される。本実施の形態では、第4接続用貫通孔174は、逆流防止用凹部171の底面の中央部分に配置されている。 The fourth connection through-hole 174 communicates with the downstream side of the flow path in the backflow prevention unit 170. In the present embodiment, the fourth connection through-hole 174 communicates with the discharge unit 180. The fourth connection through hole 174 is disposed on the inner surface of the backflow prevention recess 171. The fourth connection through-hole 174 is disposed, for example, on the bottom or side surface of the backflow prevention recess 171. In the present embodiment, the fourth connection through-hole 174 is disposed at the center of the bottom surface of the backflow prevention recess 171.
 なお、第3接続用貫通孔173および第4接続用貫通孔174の位置は、本実施の形態の態様に限定されない。たとえば、第4接続用貫通孔174の代わりに第3接続用貫通孔173が、凹条172に取り囲まれるように配置されてもよい。 It should be noted that the positions of the third connection through hole 173 and the fourth connection through hole 174 are not limited to those of the present embodiment. For example, the third connection through hole 173 may be disposed so as to be surrounded by the recess 172 instead of the fourth connection through hole 174.
 凸条124は、カバー123の一部であり、凹条172の内面から離間するように凹条172内に配置されている。凸条124および凹条172の間隔(最短距離)は、灌漑用液体の吐出部180への流量を確保することができ、かつ十分な量の封水を収容することができればよい。上記間隔は、エミッタ120の大きさや、灌漑用液体の所期の流量などに応じて適宜変更されうる。 The convex stripe 124 is a part of the cover 123 and is disposed in the concave stripe 172 so as to be separated from the inner surface of the concave stripe 172. The interval (shortest distance) between the ridges 124 and the ridges 172 only needs to ensure the flow rate of the irrigation liquid to the discharge unit 180 and can accommodate a sufficient amount of sealed water. The interval can be appropriately changed according to the size of the emitter 120, the desired flow rate of the irrigation liquid, and the like.
 封水収容部175は、封水を収容する。本実施の形態では、封水収容部175は、凹条172および凸条124により構成されている。前述のとおり、凸条124は、凹条172の内面から離間するように凹条172内に配置されている。これにより、液体(封水)は、凹条172および凸条124の間において、流路を途中で遮断するように収容される。 The sealed water storage unit 175 stores sealed water. In the present embodiment, the sealed water accommodating portion 175 is constituted by the concave stripes 172 and the convex stripes 124. As described above, the ridge 124 is disposed in the recess 172 so as to be separated from the inner surface of the recess 172. Thereby, the liquid (sealed water) is accommodated between the concave stripe 172 and the convex stripe 124 so as to interrupt the flow path in the middle.
 吐出部180は、灌漑用液体をエミッタ120外に吐出する。吐出部180は、エミッタ本体121の第2面1212側において、チューブ110の吐出口112に面して配置されている。吐出部180は、エミッタ120内の灌漑用液体をチューブ110の吐出口112に送る。これにより、吐出部180は、灌漑用液体をエミッタ120の外部に吐出することができる。吐出部180の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、吐出部180は、吐出用凹部181と、侵入防止部182とを有する。 The discharge unit 180 discharges the irrigation liquid to the outside of the emitter 120. The discharge unit 180 is disposed on the second surface 1212 side of the emitter body 121 so as to face the discharge port 112 of the tube 110. The discharge unit 180 sends the irrigation liquid in the emitter 120 to the discharge port 112 of the tube 110. Accordingly, the discharge unit 180 can discharge the irrigation liquid to the outside of the emitter 120. The structure of the discharge part 180 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the discharge unit 180 includes a discharge recess 181 and an intrusion prevention unit 182.
 吐出用凹部181は、エミッタ本体121の第2面1212に配置されている。吐出用凹部181の平面視形状は、略矩形状である。吐出用凹部181の底面には、第4接続用貫通孔174および侵入防止部182が配置されている。 The discharge recess 181 is disposed on the second surface 1212 of the emitter body 121. The shape of the discharge recess 181 in plan view is a substantially rectangular shape. A fourth connection through hole 174 and an intrusion prevention portion 182 are disposed on the bottom surface of the discharge recess 181.
 侵入防止部182は、吐出口112からの異物の侵入を防止する。侵入防止部182は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、侵入防止部182は、隣接して配置された4つの凸部である。4つの凸部は、エミッタ120をチューブ110に接合した場合に、第4接続用貫通孔174および吐出口112の間に位置するように配置されている。 The intrusion prevention unit 182 prevents intrusion of foreign matter from the discharge port 112. The intrusion prevention unit 182 is not particularly limited as long as it can perform the above-described function. In the present embodiment, intrusion prevention unit 182 is four convex portions arranged adjacent to each other. The four convex portions are arranged so as to be positioned between the fourth connection through hole 174 and the discharge port 112 when the emitter 120 is joined to the tube 110.
 [点滴灌漑用チューブの動作]
 次に、点滴灌漑用チューブ100の動作について説明する。
[Operation of drip irrigation tube]
Next, the operation of the drip irrigation tube 100 will be described.
 まず、チューブ110内に灌漑用液体が送液される。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部150からエミッタ120内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、スリット154、またはスクリーン用凸条部155間の隙間から取水用凹部153に入り込み、取水用貫通孔152を通過する。このとき、取水部150は、取水側スクリーン部151(スリット154およびスクリーン用凸条部155間の隙間)を有しているため、灌漑用液体中の浮遊物を除去することができる。また、取水部150には、いわゆるウェッジワイヤー構造が形成されているため、取水部150へ流入した灌漑用液体の圧力損失は抑制される。 First, irrigation liquid is fed into the tube 110. The pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. . The irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake unit 150. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the screen protrusions 155 and passes through the water intake through hole 152. At this time, since the water intake part 150 has the water intake side screen part 151 (gap between the slit 154 and the projection ridge part 155), it is possible to remove the suspended matter in the irrigation liquid. Moreover, since the so-called wedge wire structure is formed in the water intake part 150, the pressure loss of the irrigation liquid flowing into the water intake part 150 is suppressed.
 取水部150から取り込まれた灌漑用液体は、第1接続流路141に到達する。第1接続流路141に到達した灌漑用液体は、第1減圧流路142を通過し、第2接続流路143に到達する。第2接続流路143に到達した灌漑用液体は、第2減圧流路144に流れ込む。第2減圧流路144に流れ込んだ灌漑用液体は、第1接続用貫通孔164を通って、流量減少部160に流れ込む。流量減少部160に流れ込んだ灌漑用液体は、第2接続用貫通孔165および第3接続用貫通孔173を通って逆流防止部170に流れ込む。逆流防止部170に流れ込んだ灌漑用液体は、第4接続用貫通孔174を通って吐出部180に流れ込む。吐出部180に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 The irrigation liquid taken from the water intake unit 150 reaches the first connection channel 141. The irrigation liquid that has reached the first connection channel 141 passes through the first decompression channel 142 and reaches the second connection channel 143. The irrigation liquid that has reached the second connection channel 143 flows into the second decompression channel 144. The irrigation liquid that has flowed into the second reduced pressure channel 144 flows into the flow rate reduction unit 160 through the first connection through hole 164. The irrigation liquid that has flowed into the flow rate reduction unit 160 flows into the backflow prevention unit 170 through the second connection through hole 165 and the third connection through hole 173. The irrigation liquid that has flowed into the backflow prevention unit 170 flows into the discharge unit 180 through the fourth connection through hole 174. The irrigation liquid that has flowed into the discharge unit 180 is discharged out of the tube 110 from the discharge port 112 of the tube 110.
 (流量減少部の動作)
 ここで、チューブ110内の灌漑用液体の圧力に応じた流量減少部160の動作について説明する。図4A~Cは、流量減少部160の動作について説明するための断面模式図である。なお、図4A~Cは、図2Bに示されるA-A線における部分拡大断面図である。図4Aは、チューブ110に灌漑用液体が送液されていない場合における断面図であり、図4Bは、チューブ110内の灌漑用液体の圧力が第1圧力である場合における断面図であり、図4Cは、チューブ110内の灌漑用液体の圧力が第1圧力を超える第2圧力である場合における断面図である。
(Operation of the flow reduction part)
Here, the operation of the flow rate reducing unit 160 according to the pressure of the irrigation liquid in the tube 110 will be described. 4A to 4C are schematic cross-sectional views for explaining the operation of the flow rate reducing unit 160. FIG. 4A to 4C are partially enlarged sectional views taken along line AA shown in FIG. 2B. 4A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110, and FIG. 4B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure. FIG. 4C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure.
 流量減少部160では、チューブ110内の灌漑用液体の圧力に応じて、ダイヤフラム部166が流量減少用凹部161側に歪むように変形することで、灌漑用液体の流量が制御される。なお、本実施の形態では、カバー123は、剛性材料により構成されているため、灌漑用液体の圧力によって変形しない。 In the flow rate reduction unit 160, the flow rate of the irrigation liquid is controlled by deforming the diaphragm unit 166 so as to be distorted toward the flow rate reduction concave portion 161 according to the pressure of the irrigation liquid in the tube 110. In the present embodiment, since the cover 123 is made of a rigid material, it is not deformed by the pressure of the irrigation liquid.
 チューブ110内に灌漑用液体が送液される前は、フィルム122に灌漑用液体の圧力が加わらないため、ダイヤフラム部166は、変形していない(図4A参照)。 Before the irrigation liquid is fed into the tube 110, the pressure of the irrigation liquid is not applied to the film 122, so the diaphragm portion 166 is not deformed (see FIG. 4A).
 チューブ110内に灌漑用液体を流し始めると、ダイヤフラム部166が変形し始める(図4B参照)。しかし、ダイヤフラム部166は、弁座部162に接触していない状態では、取水部150から取り入れられた灌漑用液体は、エミッタ120内の流路を通って、チューブ110の吐出口112から外部に吐出される。このように、チューブ110内への灌漑用液体の送液開始時や、チューブ110内の灌漑用液体の圧力が所定の圧力より低い場合には、取水部150からエミッタ120内に取り入れられた灌漑用液体は、流路を通って外部に吐出される。 When the irrigation liquid starts to flow into the tube 110, the diaphragm portion 166 starts to deform (see FIG. 4B). However, when the diaphragm portion 166 is not in contact with the valve seat portion 162, the irrigation liquid taken from the water intake portion 150 passes through the flow path in the emitter 120 to the outside from the discharge port 112 of the tube 110. Discharged. As described above, when the irrigation liquid is started to be fed into the tube 110 or when the pressure of the irrigation liquid in the tube 110 is lower than a predetermined pressure, the irrigation introduced into the emitter 120 from the water intake unit 150. The working liquid is discharged outside through the flow path.
 チューブ110内の灌漑用液体の圧力がさらに高まると、ダイヤフラム部166は、弁座部162に向かってさらに変形する。通常は、灌漑用液体の圧力が高くなるにつれて、流路を流れる灌漑用液体の量が増大するはずであるが、本実施の形態に係るエミッタ120では、第1減圧流路142および第2減圧流路144で灌漑用液体の圧力を減少させるとともに、ダイヤフラム部166と弁座部162との間隔を狭めることで、流路を流れる灌漑用液体の量の過剰な増大を防止している(図4B参照)。そして、チューブ110内の灌漑用液体の圧力が所定値(第2圧力)以上である場合に、ダイヤフラム部166は、弁座部162に接触する(図4C参照)。この場合であっても、ダイヤフラム部166は、第1接続用貫通孔164、第2接続用貫通孔165および連通溝163を閉塞しないため、取水部150から取り入れられた灌漑用液体は、連通溝163を通って、チューブ110の吐出口112から外部に吐出される。このように、流量減少部160は、チューブ110内の灌漑用液体の圧力が第2圧力以上である場合、ダイヤフラム部166が弁座部162に接触することにより、流路を流れる灌漑用液体の液量の増大を抑制する。 When the pressure of the irrigation liquid in the tube 110 is further increased, the diaphragm portion 166 is further deformed toward the valve seat portion 162. Normally, as the pressure of the irrigation liquid increases, the amount of the irrigation liquid flowing through the flow path should increase. However, in the emitter 120 according to the present embodiment, the first pressure reduction flow path 142 and the second pressure reduction liquid are increased. By reducing the pressure of the irrigation liquid in the flow path 144 and reducing the distance between the diaphragm portion 166 and the valve seat portion 162, an excessive increase in the amount of the irrigation liquid flowing in the flow path is prevented (FIG. 4B). When the pressure of the irrigation liquid in the tube 110 is equal to or higher than a predetermined value (second pressure), the diaphragm portion 166 contacts the valve seat portion 162 (see FIG. 4C). Even in this case, the diaphragm portion 166 does not block the first connection through-hole 164, the second connection through-hole 165, and the communication groove 163. Therefore, the irrigation liquid introduced from the water intake portion 150 is not connected to the communication groove. Through 163, the liquid is discharged from the discharge port 112 of the tube 110 to the outside. As described above, when the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure, the flow reduction unit 160 makes the irrigation liquid flowing through the flow path when the diaphragm unit 166 contacts the valve seat 162. Suppresses increase in liquid volume.
 このように、流量減少部160は、チューブ110内の灌漑用液体の圧力によるフィルム122の変形に応じて、チューブ110の吐出口112から吐出される灌漑用液体の流量を調整する。このため、本実施の形態に係る点滴灌漑用チューブ100は、灌漑用液体の圧力が低圧および高圧のいずれの場合であっても、一定量の灌漑用液体をチューブ110外に吐出できる。 As described above, the flow rate reducing unit 160 adjusts the flow rate of the irrigation liquid discharged from the discharge port 112 of the tube 110 in accordance with the deformation of the film 122 due to the pressure of the irrigation liquid in the tube 110. For this reason, the drip irrigation tube 100 according to the present embodiment can discharge a certain amount of irrigation liquid out of the tube 110 regardless of whether the pressure of the irrigation liquid is low or high.
 (逆流防止部の機能)
 ここで、逆流防止部170の機能について説明する。まず、比較のために、逆流防止部170を有しない比較用のエミッタについて説明する。前述のとおり、点滴灌漑用チューブが、高低差のある場所に配置されている場合、チューブ110内への灌漑用液体の送液を停止したとき、高い位置におけるエミッタから吐出される灌漑用液体の量と、低い位置におけるエミッタから吐出される灌漑用液体の量とに差が生じる。これにより、高低差に起因して、チューブ110内が陰圧となって、結果として、比較用のエミッタを有する点滴灌漑用チューブでは、チューブ外から細かい土を含んだ空気や水などの流体が、エミッタの流路に逆流する、いわゆるサイフォン現象が生じることがある。
(Function of backflow prevention unit)
Here, the function of the backflow prevention unit 170 will be described. First, for comparison, a comparative emitter without the backflow prevention unit 170 will be described. As described above, in the case where the drip irrigation tube is arranged at a place with a height difference, when the liquid supply for irrigation into the tube 110 is stopped, the irrigation liquid discharged from the emitter at a high position is stopped. There is a difference between the amount and the amount of irrigation liquid dispensed from the emitter at a low location. As a result, due to the difference in height, the inside of the tube 110 has a negative pressure. As a result, in the drip irrigation tube having the comparative emitter, fluid such as air or water containing fine soil from the outside of the tube. In some cases, a so-called siphon phenomenon occurs that flows backward in the flow path of the emitter.
 これに対して、本実施の形態に係るエミッタ120は、封水収容部175を含む逆流防止部170を有する。チューブ110内への灌漑用液体の送液を停止したとき、封水収容部175内には、灌漑用液体が封水として収容されている。これにより、エミッタ120においては、封水収容部175の上流側の流路と、封水収容部175の下流側の流路とが封水により遮断される。この結果として、チューブ110外に存在する、細かい土などを含んだ空気や水などの流体が、封水収容部175の上流へ流通することを阻止できる。 In contrast, the emitter 120 according to the present embodiment includes a backflow prevention unit 170 including a sealed water storage unit 175. When the feeding of the irrigation liquid into the tube 110 is stopped, the irrigation liquid is accommodated in the sealed water storage portion 175 as sealed water. Thereby, in the emitter 120, the upstream flow path of the sealed water storage part 175 and the downstream flow path of the sealed water storage part 175 are blocked by sealed water. As a result, it is possible to prevent a fluid such as air or water containing fine soil existing outside the tube 110 from flowing upstream of the sealed water storage portion 175.
 (効果)
 以上のとおり、本実施の形態に係るエミッタ120は、封水を収容するための封水収容部175を有する。これにより、エミッタ120では、サイフォン現象の発生を抑制できるとともに、チューブ110内の灌漑用液体の圧力が低くても適切に灌漑用液体を吐出することができる。したがって、本実施の形態に係るエミッタ120を有する点滴灌漑用チューブ100によれば、高低差のある場所であっても、サイフォン現象に起因する流路の目詰まりの発生を抑制できるとともに、チューブ内の灌漑用液体の圧力が低い場合であっても、灌漑用液体を定量的に吐出できる。
(effect)
As described above, the emitter 120 according to the present embodiment has the sealed water storage portion 175 for storing sealed water. Thereby, the emitter 120 can suppress the occurrence of the siphon phenomenon and can appropriately discharge the irrigation liquid even when the pressure of the irrigation liquid in the tube 110 is low. Therefore, according to the drip irrigation tube 100 having the emitter 120 according to the present embodiment, it is possible to suppress the occurrence of clogging of the flow path due to the siphon phenomenon even in a place where there is a height difference, and Even when the pressure of the irrigation liquid is low, the irrigation liquid can be quantitatively discharged.
 [変形例]
 なお、上記実施の形態では、フィルム122およびカバー123が別体である態様について説明したが、本発明では、フィルムおよびカバーは、一体であってもよい。
[Modification]
In addition, in the said embodiment, although the film 122 and the cover 123 were demonstrated as the separate body, in this invention, a film and a cover may be integrated.
 図5A、Bは、変形例1に係るカバーおよびフィルムの一体成形物125aの構成の一例を示す図である。図5Aは、変形例1に係る一体成形物125aの底面図であり、図5Bは、図5AのB-B線における断面図である。図6A、Bは、変形例2に係るカバーおよびフィルムの一体成形物125bの構成の一例を示す図である。図6Aは、変形例2に係る一体成形物125bの底面図であり、図6Bは、図6AのB-B線における断面図である。 FIGS. 5A and 5B are diagrams showing an example of a configuration of a cover and film integral molding 125a according to Modification 1. FIG. 5A is a bottom view of the integrally molded product 125a according to Modification 1, and FIG. 5B is a cross-sectional view taken along the line BB of FIG. 5A. 6A and 6B are diagrams illustrating an example of a configuration of an integrally formed product 125b of a cover and a film according to the second modification. 6A is a bottom view of the integrally molded product 125b according to Modification 2, and FIG. 6B is a cross-sectional view taken along the line BB of FIG. 6A.
 図5A、Bおよび図6A、Bに示されるように、一体成形物125a、125bは、互いに隣り合うように配置されている、凸条124およびダイヤフラム166を有する。また、一体成形物125a、125bの大きさおよび外観視形状は、エミッタ本体121の大きさに応じて適宜変更されうる。一体成形物125a外観視形状は、矩形状であってもよいし、一体成形物125bの外観視形状は、長円形状であってもよい。 As shown in FIGS. 5A and 5B and FIGS. 6A and 6B, the integrally molded products 125a and 125b have ridges 124 and a diaphragm 166 that are arranged adjacent to each other. Further, the size and the external appearance shape of the integrally molded products 125 a and 125 b can be appropriately changed according to the size of the emitter body 121. The externally shaped shape of the integrally molded product 125a may be a rectangular shape, and the externally visible shape of the integrally molded product 125b may be an oval shape.
 また、上記実施の形態では、封水収容部175を構成する凸条124および凹条172の形状が、それぞれ円筒形状である態様について説明したが、本発明に係る凸条124および凹条172の形状は、それぞれ直方体形状であってもよい。この場合、凹条172は、第4接続用貫通孔174の開口部を取り囲むように配置されておらず、凹条172の両端が逆流防止用凹部171の側壁面に接続されるように配置されている。たとえば、逆流防止用凹部171を平面視したときに、凹条172は、逆流防止用凹部171の底面に開口している、第3接続用貫通孔173の開口部と、第4接続用貫通孔174の開口部とを接続する仮想線分に対して直交する方向に沿うように配置されている。 Moreover, in the said embodiment, although the shape of the protruding item | line 124 and the recessed item | row 172 which comprise the sealed water accommodating part 175 was demonstrated to each cylindrical shape, the protruding item | line 124 and the recessed item | line 172 which concern on this invention were demonstrated. Each of the shapes may be a rectangular parallelepiped shape. In this case, the recess 172 is not disposed so as to surround the opening of the fourth connection through hole 174, and is disposed so that both ends of the recess 172 are connected to the side wall surface of the backflow prevention recess 171. ing. For example, when the backflow prevention recess 171 is viewed in plan, the recess 172 is open to the bottom surface of the backflow prevention recess 171 and the opening of the third connection through hole 173 and the fourth connection through hole. It arrange | positions along the direction orthogonal to the virtual line segment which connects 174 opening parts.
 また、本発明に係るエミッタおよび点滴灌漑用チューブの構成は、上記実施の形態に係るエミッタ120および点滴灌漑用チューブ100に限定されず、例えば、エミッタは、第1減圧流路142、第2減圧流路144および流量調整部160を有していなくてもよい。この場合、エミッタは、少なくともエミッタ本体およびカバーによって構成される。 The configurations of the emitter and the drip irrigation tube according to the present invention are not limited to the emitter 120 and the drip irrigation tube 100 according to the above-described embodiment. For example, the emitter includes the first decompression channel 142 and the second decompression tube. The flow path 144 and the flow rate adjustment unit 160 may not be provided. In this case, the emitter is constituted by at least an emitter body and a cover.
 また、上記実施の形態では、エミッタ120およびチューブ110が接合されることにより、第1接続流路141、第1減圧流路142、第2接続流路143および第2減圧流路144が形成されている態様について説明したが、第1接続流路141、第1減圧流路142、第2接続流路143および第2減圧流路144は、あらかじめエミッタ120内に流路として形成されていてもよい。 Moreover, in the said embodiment, the 1st connection flow path 141, the 1st pressure reduction flow path 142, the 2nd connection flow path 143, and the 2nd pressure reduction flow path 144 are formed by joining the emitter 120 and the tube 110. FIG. However, the first connection channel 141, the first decompression channel 142, the second connection channel 143, and the second decompression channel 144 may be formed in the emitter 120 in advance as channels. Good.
 本出願は、2017年4月12日出願の特願2017-078665に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2017-077865 filed on Apr. 12, 2017. The contents described in the application specification and the drawings are all incorporated herein.
 本発明に係るエミッタによれば、高低差のある場所であっても、チューブ外の流体の流路への逆流に起因する目詰まりの発生を抑制しうる。したがって、点滴灌漑のさらなる発展が期待される。 According to the emitter according to the present invention, it is possible to suppress the occurrence of clogging caused by the backflow of the fluid outside the tube to the flow path even in a place with a height difference. Therefore, further development of drip irrigation is expected.
 100 点滴灌漑用チューブ
 110 チューブ
 112 吐出口
 120 エミッタ
 121 エミッタ本体
 1211 第1面
 1212 第2面
 122 フィルム
 123 カバー
 124 凸条
 125a、125b 一体成形物
 131 第1接続溝
 132 第1減圧溝
 133 第2接続溝
 134 第2減圧溝
 1361 第1凸部
 1362 第2凸部
 141 第1接続流路
 142 第1減圧流路
 143 第2接続流路
 144 第2減圧流路
 150 取水部
 151 取水側スクリーン部
 152 取水用貫通孔
 153 取水用凹部
 154 スリット
 155 スクリーン用凸条部
 160 流量減少部
 161 流量減少用凹部
 162 弁座部
 163 連通溝
 164 第1接続用貫通孔
 165 第2接続用貫通孔
 166 ダイヤフラム部
 170 逆流防止部
 171 逆流防止用凹部
 172 凹条
 173 第3接続用貫通孔
 174 第4接続用貫通孔
 175 封水収容部
 180 吐出部
 181 吐出用凹部
 182 侵入防止部
100 Tube for drip irrigation 110 Tube 112 Discharge port 120 Emitter 121 Emitter body 1211 1st surface 1212 2nd surface 122 Film 123 Cover 124 Convex stripes 125a, 125b Integral molded product 131 First connection groove 132 First pressure reduction groove 133 Second connection Groove 134 Second decompression groove 1361 First convex part 1362 Second convex part 141 First connection flow path 142 First decompression flow path 143 Second connection flow path 144 Second decompression flow path 150 Water intake part 151 Water intake side screen part 152 Water intake Through-hole 153 Water intake recess 154 Slit 155 Screen protrusion 160 Flow reduction portion 161 Flow reduction recess 162 Valve seat portion 163 Communication groove 164 First connection through-hole 165 Second connection through-hole 166 Diaphragm portion 170 Backflow Prevention part 171 Backflow prevention concave part 172 concave Article 173 Third connection through-hole 174 Fourth connection through-hole 175 Sealed water storage portion 180 Discharge portion 181 Discharge recess 182 Intrusion prevention portion

Claims (9)

  1.  互いに表裏の関係にある第1面および第2面を有し、灌漑用液体を流通させるチューブの内壁面において、前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
     前記第1面に配置され、前記灌漑用液体を取り入れるための取水部と、
     前記第2面に配置され、前記灌漑用液体を吐出するための吐出部と、
     前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させるための流路と、
     前記流路に配置されており、封水を収容するための封水収容部と、
     を有する、エミッタ。
    A first surface and a second surface that are in a front-back relationship with each other, and are joined to a position corresponding to a discharge port that communicates the inside and outside of the tube on the inner wall surface of the tube through which the irrigation liquid flows. An emitter for quantitatively discharging the irrigation liquid from the discharge port to the outside of the tube;
    A water intake section disposed on the first surface for taking in the irrigation liquid;
    A discharge part disposed on the second surface for discharging the irrigation liquid;
    A channel for connecting the water intake unit and the discharge unit, and for distributing the irrigation liquid;
    A sealed water storage portion disposed in the flow path, for storing sealed water;
    Having an emitter.
  2.  前記封水収容部は、
     前記流路の底面に開口し、かつ前記灌漑用液体の流れ方向に対して横断する方向に沿って延在している凹条と、
     前記凹条の内面から離間するように前記凹条内に配置され、前記凹条に沿って延在している凸条と、
     を有する、請求項1に記載のエミッタ。
    The sealed water container is
    A recess that opens in the bottom surface of the flow path and extends along a direction transverse to the flow direction of the irrigation liquid;
    A ridge that is disposed within the groove and extends along the groove, and is spaced from the inner surface of the groove;
    The emitter of claim 1, comprising:
  3.  前記エミッタは、少なくとも、前記第1面および前記第2面を有するエミッタ本体と、前記第1面に接合されており、かつ前記凸条を有するカバーと、によって構成されており、
     前記エミッタは、
     前記第1面に配置され、前記カバーによって開口部を塞がれている逆流防止用凹部と、
     前記逆流防止用凹部の内面に開口し、前記流路の上流側に連通している第1貫通孔と、
     前記逆流防止用凹部の内面に開口し、前記吐出部に連通している第2貫通孔と、
     をさらに有し、
     前記凹条は、前記逆流防止用凹部の底面に配置されており、
     前記凸条は、前記逆流防止用凹部側に突出するように前記カバーに配置されている、
     請求項2に記載のエミッタ。
    The emitter is composed of at least an emitter body having the first surface and the second surface, and a cover joined to the first surface and having the ridges,
    The emitter is
    A recess for preventing backflow, which is disposed on the first surface and whose opening is blocked by the cover;
    A first through hole that opens to the inner surface of the backflow prevention recess and communicates with the upstream side of the flow path;
    A second through hole that opens to the inner surface of the backflow prevention recess and communicates with the discharge portion;
    Further comprising
    The recess is disposed on the bottom surface of the backflow prevention recess,
    The protrusion is disposed on the cover so as to protrude toward the backflow prevention recess.
    The emitter according to claim 2.
  4.  前記凹条は、前記第1貫通孔および前記第2貫通孔のいずれかの開口部を取り囲むように配置されている、請求項3に記載のエミッタ。 The emitter according to claim 3, wherein the concave stripe is disposed so as to surround an opening of either the first through hole or the second through hole.
  5.  前記エミッタは、少なくとも、前記エミッタ本体と、前記カバーと、前記第1面に接合されている可撓性を有する樹脂製のフィルムと、によって構成されており、
     前記エミッタは、前記流路において前記封水収容部の上流に配置されており、前記チューブ内の前記灌漑用液体の圧力による前記フィルムの変形に応じて、前記灌漑用液体の流量を減少させるための流量減少部をさらに有する、
     請求項3または請求項4に記載のエミッタ。
    The emitter is constituted by at least the emitter body, the cover, and a flexible resin film bonded to the first surface,
    The emitter is disposed upstream of the sealed water storage portion in the flow path, and reduces the flow rate of the irrigation liquid according to deformation of the film due to the pressure of the irrigation liquid in the tube. A flow rate reduction part
    The emitter according to claim 3 or 4.
  6.  前記カバーおよび前記フィルムは、別体である、請求項5に記載のエミッタ。 The emitter according to claim 5, wherein the cover and the film are separate bodies.
  7.  前記カバーは、剛性を有する材料で形成されている、請求項3~6のいずれか一項に記載のエミッタ。 The emitter according to any one of claims 3 to 6, wherein the cover is formed of a material having rigidity.
  8.  前記カバーおよび前記フィルムは、一体である、請求項5に記載のエミッタ。 The emitter according to claim 5, wherein the cover and the film are integral.
  9.  灌漑用液体を吐出するための吐出口を有するチューブと、
     前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~8のいずれか一項に記載のエミッタと、
     を有する、点滴灌漑用チューブ。
    A tube having a discharge port for discharging irrigation liquid;
    The emitter according to any one of claims 1 to 8, which is bonded to a position corresponding to the discharge port of the inner wall surface of the tube;
    Having a drip irrigation tube.
PCT/JP2018/010943 2017-04-12 2018-03-20 Emitter, and tube for drip irrigation WO2018190083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017078665A JP6831741B2 (en) 2017-04-12 2017-04-12 Emitter and drip irrigation tubes
JP2017-078665 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018190083A1 true WO2018190083A1 (en) 2018-10-18

Family

ID=63792388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010943 WO2018190083A1 (en) 2017-04-12 2018-03-20 Emitter, and tube for drip irrigation

Country Status (2)

Country Link
JP (1) JP6831741B2 (en)
WO (1) WO2018190083A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041563A1 (en) * 2013-08-12 2015-02-12 Rain Bird Corporation Elastomeric emitter and methods relating to same
WO2015105082A1 (en) * 2014-01-10 2015-07-16 株式会社エンプラス Emitter and drip irrigation tube
WO2017057034A1 (en) * 2015-10-01 2017-04-06 株式会社エンプラス Emitter and drip irrigation tube
WO2018025682A1 (en) * 2016-08-01 2018-02-08 株式会社エンプラス Emitter and drip-irrigation tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150041563A1 (en) * 2013-08-12 2015-02-12 Rain Bird Corporation Elastomeric emitter and methods relating to same
WO2015105082A1 (en) * 2014-01-10 2015-07-16 株式会社エンプラス Emitter and drip irrigation tube
WO2017057034A1 (en) * 2015-10-01 2017-04-06 株式会社エンプラス Emitter and drip irrigation tube
WO2018025682A1 (en) * 2016-08-01 2018-02-08 株式会社エンプラス Emitter and drip-irrigation tube

Also Published As

Publication number Publication date
JP2018174788A (en) 2018-11-15
JP6831741B2 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
EP3305064B1 (en) Emitter and drip irrigation tube
US10362740B2 (en) Emitter and drip irrigation tube
CN108024516B (en) Emitter and drip irrigation pipe
CN108024515B (en) Emitter and drip irrigation pipe
WO2018003303A1 (en) Emitter and tube for drip irrigation
US20190183074A1 (en) Emitter and drip-irrigation tube
WO2018190083A1 (en) Emitter, and tube for drip irrigation
WO2017159251A1 (en) Emitter, and tube for drip irrigation
US10869435B2 (en) Emitter and drip-irrigation tube
WO2018190084A1 (en) Emitter, and tube for drip irrigation
WO2018180700A1 (en) Emitter and drip irrigation tube
WO2016136695A1 (en) Emitter and drip irrigation tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784802

Country of ref document: EP

Kind code of ref document: A1