WO2018188304A1 - 小型化高增益滤波集成天线 - Google Patents

小型化高增益滤波集成天线 Download PDF

Info

Publication number
WO2018188304A1
WO2018188304A1 PCT/CN2017/107196 CN2017107196W WO2018188304A1 WO 2018188304 A1 WO2018188304 A1 WO 2018188304A1 CN 2017107196 W CN2017107196 W CN 2017107196W WO 2018188304 A1 WO2018188304 A1 WO 2018188304A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
high gain
disposed
integrated antenna
filter integrated
Prior art date
Application number
PCT/CN2017/107196
Other languages
English (en)
French (fr)
Inventor
曲美君
邓力
李书芳
张贯京
葛新科
高伟明
张红治
Original Assignee
深圳市景程信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景程信息科技有限公司 filed Critical 深圳市景程信息科技有限公司
Publication of WO2018188304A1 publication Critical patent/WO2018188304A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface

Definitions

  • the present invention relates to the field of radio frequency microwave communication technologies, and in particular, to a miniaturized high gain filter integrated antenna.
  • the filter is typically connected directly to the input or output port of the antenna.
  • Filters and antennas are two of the larger critical components, usually designed separately, but when the filter is cascaded with the antenna, the impedance is often mismatched. This requires the introduction of additional matching circuits for impedance matching, which in turn complicates the system and increases the weight, size and loss of the system. Therefore, it is very important to integrate the filter and the antenna to ensure its radiation characteristics, filtering characteristics and high gain to form a filter antenna.
  • the main object of the present invention is to provide a miniaturized high gain filter integrated antenna, which aims to solve the technical problem that the existing filter integrated antenna cannot ensure good radiation characteristics, filtering characteristics and high gain.
  • the present invention provides a miniaturized high gain filter integrated antenna including an upper surface and a lower surface, both of which are printed on a medium
  • the upper surface includes a first microstrip line, a rectangular resonant ring, and a second microstrip line, the rectangular resonant ring being disposed between the first microstrip line and the second microstrip line; a metal through hole on the upper surface of the belt;
  • the lower surface includes a ground, a third microstrip line, a fourth microstrip line, and a fifth microstrip line; one end of the third microstrip line is disposed as a funnel type, and the third microstrip line The other end is set to a rectangle and with the funnel a lower bottom end of the type is connected to form a connecting portion; the fourth microstrip line is disposed on the same line as the other end of the third microstrip line; and the fourth microstrip line is disposed on the fourth surface Metal vias matching the lower surface metal vias;
  • the upper surface and the lower surface of the antenna are connected through the upper surface metal via and the lower surface metal via through a metal copper pillar, such that the second microstrip line, the third microstrip line, and the fourth The microstrip lines together form a dipole;
  • the fifth microstrip line is disposed on a right side of the third microstrip line and the fourth microstrip line to form a guide.
  • the first microstrip line and the second microstrip line are both "L-shaped" structures, both including a lateral end and a vertical mountain.
  • the upper surface metal via is disposed at a lateral end of the second microstrip line away from an end of the rectangular resonant ring.
  • the lower surface metal via is disposed at a position adjacent to an end of the third microstrip line connecting portion corresponding to the upper surface metal via.
  • a vertical end of the first microstrip line and a vertical end of the second microstrip line are respectively disposed in parallel with a long side of the rectangular resonant ring, and a lateral end of the first microstrip line And lateral ends of the second microstrip line are respectively disposed in parallel with short sides of the rectangular resonance ring.
  • the length of the vertical end of the first microstrip line is the same as the length of the vertical end of the second microstrip line, and both are smaller than the length of the long side of the rectangular resonant ring.
  • one end of the lateral end of the first microstrip line is disposed on a left edge of an upper surface of the dielectric plate.
  • the horizontal end width of the horizontal end of the first microstrip line and the second microstrip line are both w
  • the dielectric plate has a dielectric constant of 3.66, a thickness of 0.762 mm, and a material of RO4350B.
  • the miniaturized high-gain filter integrated antenna of the present invention adopts the above technical solution, and achieves the following technical effects:
  • the present invention makes the antenna of the present invention by adding a rectangular resonant ring to the existing antenna. Have better filtering characteristics; constitute a reflector through the ground, so that the antenna of the present invention It has better radiation characteristics.
  • FIG. 1 is a schematic diagram showing the upper surface geometry and dimensions of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention
  • FIG. 2 is a schematic diagram showing the lower surface geometry and dimensions of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention
  • FIG. 3 is a graph showing reflection coefficient and gain effects of simulation and testing of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention
  • FIG. 4 is a schematic diagram of simulation and testing of a preferred embodiment of a miniaturized high gain filter integrated antenna of the present invention.
  • FIG. 1 is a schematic diagram showing the upper surface geometry and size of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention
  • FIG. 2 is a preferred implementation of the miniaturized high gain filter integrated antenna of the present invention.
  • the miniaturized high gain filter integrated antenna is printed on a dielectric board 00, and the miniaturized high gain filter integrated antenna includes an upper surface and a lower surface.
  • the dielectric plate 00 preferably has a dielectric constant of 3.66, a thickness of 0.762 mm, and a material of preferably RO4350B.
  • the upper surface of the miniaturized high gain filter integrated antenna includes a first microstrip line 10, a rectangular resonant ring 11 and a second microstrip line 12, and the rectangular resonant ring 11 is disposed at Between a microstrip line 10 and a second microstrip line 12.
  • the first microstrip line 10 and the second microstrip line 12 are both "L-shaped" structures, that is, The first microstrip line 10 and the second microstrip line 12 each include a lateral end and a vertical end.
  • the vertical end of the first microstrip line 10 and the vertical end of the second microstrip line 12 are respectively disposed in parallel with the long side of the rectangular resonant ring 11, and the length of the vertical end of the first microstrip line 10 is
  • the length of the vertical end of the second microstrip line 12 is smaller than the length of the long side of the rectangular resonant ring 11, the length of the vertical end of the first microstrip line 10 and the vertical end of the second microstrip line 12 The length is the same.
  • the lateral ends of the first microstrip line 10 and the lateral ends of the second microstrip line 12 are respectively disposed in parallel with the short sides of the rectangular resonance ring 11.
  • One end of the lateral end of the first microstrip line 10 is disposed on a left edge of the upper surface of the dielectric plate 00.
  • the lateral end of the second microstrip line 12 is disposed away from the end of the rectangular resonant ring 1 1 with an upper surface metal via 13 .
  • the upper surface of the antenna is connected to the lower surface of the antenna through the upper surface metal via 13 through a metal copper post (see below for details).
  • the transverse end of the first microstrip line 10 and the lateral end of the second microstrip line 12 are both wl, and the length of the horizontal end of the first microstrip line 10 is lc.
  • the length of the vertical end of the first microstrip line 10 is lb, the width of the vertical end of the first microstrip line 10 is wb, and the outer diameter of the rectangular resonant ring 11 is close to the long side of the first microstrip line 10.
  • the distance from the outer diameter of the vertical end of the first microstrip line 10 is wc, and the rectangular resonant ring 11 is adjacent to the outer diameter of the long side of the second microstrip line 12 and the second microstrip line
  • the distance between the outer diameters of the vertical ends of 12 is wc, the width of the long sides of the rectangular resonant ring 11 is wa, and the outer diameter of the long sides of the rectangular resonant ring 11 is la, the rectangular resonant ring 11
  • the distance between the inner diameters of the two long sides is wd.
  • the lower surface of the miniaturized high gain filter integrated antenna includes a ground 20, a third microstrip line 21, a fourth microstrip line 22, and a fifth microstrip line 23.
  • the floor 20 is disposed at one end of the left side of the lower surface of the dielectric plate 00 to constitute a reflector.
  • the width of the floor 20 is 11, and the length of the floor 20 is the same as the width of the dielectric plate 00.
  • One end of the third microstrip line 21 is disposed as a funnel type 211, the upper mouth of the funnel type 211 has a width w3, and the lower portion of the funnel type has a length of 12, and the other end of the third microstrip line 21 It is disposed as a rectangle 212 and is connected with the lower bottom end of the funnel-shaped 211 to form a connecting portion.
  • the connecting portion is provided with a notch 213, and the notch 213 is arranged in a triangular gradation structure to facilitate signal matching.
  • the other end of the third microstrip line 21 has a length of 13, and the other end of the third microstrip line 21 has a width w 1 .
  • the fourth microstrip line 22 and the other end of the third microstrip line 21 are disposed on the same line.
  • the fourth microstrip line 22 is adjacent to one end of the third microstrip line 21 connecting portion and is provided with a lower surface metal via 24 corresponding to the lateral end port position of the second microstrip line 12.
  • the fourth microstrip line 22 has a width wl.
  • the upper surface and the lower surface of the antenna pass through the upper surface metal via 13 and under a metal copper pillar Surface metal vias 24 are connected such that the second microstrip line 12, the third microstrip line 21, and the fourth microstrip line 2
  • the fifth microstrip line 23 is disposed on the right side of the dipole to form a director.
  • the length of the fifth microstrip line 23 is 14, and the width of the fifth microstrip line 23 is w2.
  • the distance between the fifth microstrip line 23 and the fourth microstrip line 22 is w4.
  • the antenna has a good filtering effect by adding a rectangular resonant ring 11 to the existing antenna.
  • Table 1 is a parameter value of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention.
  • Table 1 Preferred embodiment parameter values of the miniaturized high gain filter integrated antenna of the present invention
  • FIG. 3 is a graph showing the reflection coefficient and gain effect of the simulation and test of the preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention.
  • the preferred embodiment uses the parameter values shown in Table 1. It can be seen from the simulation and actual measurement results of FIG. 3 that the reflection coefficient IS11I of the miniaturized high gain filter integrated antenna of the present invention has two resonance frequency points, respectively resonating at 2.35 GHz and 2.45 GHz. This is because the present invention integrates a rectangular resonant ring on the basis of the existing antenna, which is equivalent to integrating a dual-mode high-selectivity filter. Since the values of the odd-even modes are different, the antenna can resonate at two frequencies. Reflects good filtering characteristics.
  • the measured antenna gain is flat in the operating band and rapidly drops outside the operating band, reflecting High selectivity of the antenna. If the rectangular resonant ring is removed and connected directly with a microstrip line, it can be seen that the antenna has no filtering performance and out-of-band rejection.
  • FIG. 4 is a schematic diagram of simulation and testing of a preferred embodiment of the miniaturized high gain filter integrated antenna of the present invention.
  • the preferred embodiment uses the parameter values shown in Table 1.
  • the antenna of the present invention has an orientation effect in the y direction, reflecting good radiation characteristics.
  • the simulated gain is 5.87dB and the front-to-back ratio is 16.3dB.
  • the miniaturized high-gain filter integrated antenna of the present invention adopts the above technical solution, and achieves the following technical effects:
  • the present invention makes the antenna of the present invention by adding a rectangular resonant ring to the existing antenna. It has better filtering characteristics; constituting a reflector through the ground, so that the antenna of the invention has better radiation characteristics; further improving by adding a fifth microstrip line on the other side of the dipole to form a guide Antenna gain.

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开一种小型化高增益滤波集成天线。该小型化高增益滤波集成天线包括上表面和下表面,上表面包括第一微带线、矩形谐振环和第二微带线;所述下表面包括地面、第三微带线、第四微带线以及第五微带线。本发明通过在现有天线中加入矩形谐振环,使得本发明的天线有具有较好的滤波特性;通过地面构成一个反射器,使得本发明的天线具有较好的辐射特性;通过在偶极子的另一侧添加第五微带线形成一个导向器,进一步了提高天线增益。

Description

小型化高增益滤波集成天线 技术领域
[0001] 本发明涉及射频微波通信技术领域, 尤其涉及一种小型化高增益滤波集成天线 背景技术
[0002] 随着无线通信和电子技术的迅猛发展, ***中的电子设备需要同吋满足多种需 要。 在大多数无线通信***中, 滤波器通常直接接在天线的输入或输出端口。 滤波器和天线作为两个尺寸较大的关键器件, 通常是独立设计, 但是当把滤波 器与天线进行级联使用, 往往会导致阻抗失去匹配。 此吋需要引入额外的匹配 电路实现阻抗匹配, 而这又使得***复杂, 增加***的重量、 尺寸以及损耗。 因此, 将滤波器和天线进行集成化设计, 保证其辐射特性、 滤波特性和高增益 , 构成滤波天线, 则具有非常重要的意义。
[0003] 然而, 现有的滤波集成天线不能同吋保证良好的辐射特性、 滤波特性和高增益 技术问题
[0004] 本发明的主要目的提供一种小型化高增益滤波集成天线, 旨在解决现有的滤波 集成天线不能同吋保证良好的辐射特性、 滤波特性和高增益的技术问题。
问题的解决方案
技术解决方案
[0005] 为实现上述目的, 本发明提供了一种小型化高增益滤波集成天线, 所述小型化 高增益滤波集成天线包括上表面和下表面, 所述上表面和下表面均印制于介质 板上, 所述上表面包括第一微带线、 矩形谐振环和第二微带线, 所述矩形谐振 环设置于第一微带线和第二微带线之间; 所述第二微带线上设置有上表面金属 过孔;
[0006] 所述下表面包括地面、 第三微带线、 第四微带线以及第五微带线; 所述第三微 带线的一端设置为漏斗型, 所述第三微带线的另一端设置为矩形并与所述漏斗 型的下部底端连接形成连接部; 所述第四微带线与所述第三微带线的另一端设 置于同一条线上; 所述第四微带线上设置有与所述上表面金属过孔相匹配的下 表面金属过孔;
[0007] 所述天线的上表面与下表面通过金属铜柱穿过所述上表面金属过孔和下表面金 属过孔相连, 使得所述第二微带线、 第三微带线以及第四微带线共同构成偶极 子;
[0008] 所述第五微带线设置于所述第三微带线和第四微带线的右侧, 形成导向器。
[0009] 优选地, 所述第一微带线和所述第二微带线均为" L型"结构, 均包括横端和竖 山
[0010] 优选地, 所述上表面金属过孔设置于所述第二微带线的横端远离所述矩形谐振 环的端头。
[0011] 优选地, 所述下表面金属过孔设置于靠近所述第三微带线连接部的一端与所述 上表面金属过孔对应的位置。
[0012] 优选地, 所述第一微带线的竖端和所述第二微带线的竖端分别与所述矩形谐振 环的长边平行设置, 所述第一微带线的横端和所述第二微带线的横端分别与所 述矩形谐振环的短边平行设置。
[0013] 优选地, 所述第一微带线的竖端的长度和所述第二微带线的竖端的长度相同, 且均小于所述矩形谐振环的长边的长度。
[0014] 优选地, 所述第一微带线的横端一端设置于所述介质板的上表面左侧边缘。
[0015] 优选地, 所述第一微带线的横端和所述第二微带线的横端宽度均为 w
Figure imgf000004_0001
[0016] 优选地, 所述第四微带线的宽度为 w ,=1.751^!!。
[0017] 优选地, 所述介质板的介电常数为 3.66, 厚度为 0.762mm, 材质为 RO4350B。 发明的有益效果
有益效果
[0018] 相较于现有技术, 本发明所述小型化高增益滤波集成天线采用上述技术方案, 达到了如下技术效果: 本发明通过在现有天线中加入矩形谐振环, 使得本发明 的天线有具有较好的滤波特性; 通过地面构成一个反射器, 使得本发明的天线 具有较好的辐射特性; 通过在偶极子的另一侧添加第五微带线构成一个导向器 , 进一步了提高天线增益。
对附图的简要说明
附图说明
[0019] 图 1是本发明小型化高增益滤波集成天线优选实施例的上表面几何结构和尺寸 示意图;
[0020] 图 2是本发明小型化高增益滤波集成天线优选实施例的下表面几何结构和尺寸 示意图;
[0021] 图 3是本发明小型化高增益滤波集成天线优选实施例的仿真和测试的反射系数 与增益效果图;
[0022] 图 4为本发明小型化高增益滤波集成天线优选实施例的仿真与测试的方向图。
[0023] 本发明目的实现、 功能特点及优点将结合实施例, 将在具体实施方式部分一并 参照附图做进一步说明。
实施该发明的最佳实施例
本发明的最佳实施方式
[0024] 为更进一步阐述本发明为达成上述目的所采取的技术手段及功效, 以下结合附 图及较佳实施例, 对本发明的具体实施方式、 结构、 特征及其功效进行详细说 明。 应当理解, 此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定 本发明。
[0025] 参照图 1、 图 2所示, 图 1是本发明小型化高增益滤波集成天线优选实施例的上 表面几何结构和尺寸示意图; 图 2是本发明小型化高增益滤波集成天线优选实施 例的下表面几何结构和尺寸示意图。
[0026] 在本实施例中, 所述小型化高增益滤波集成天线印制于介质板 00上, 所述小型 化高增益滤波集成天线包括上表面和下表面。 所述介质板 00的介电常数优选为 3. 66, 厚度优选为 0.762mm, 材质优选为 RO4350B。
[0027] 在本实施例中, 所述小型化高增益滤波集成天线的上表面包括第一微带线 10、 矩形谐振环 11和第二微带线 12, 所述矩形谐振环 11设置于第一微带线 10和第二 微带线 12之间。 所述第一微带线 10和所述第二微带线 12均为" L型"结构, 即所述 第一微带线 10和所述第二微带线 12均包括横端和竖端。 所述第一微带线 10的竖 端和所述第二微带线 12的竖端分别与所述矩形谐振环 11的长边平行设置, 所述 第一微带线 10的竖端的长度和所述第二微带线 12的竖端的长度均小于所述矩形 谐振环 11的长边的长度, 所述第一微带线 10的竖端的长度和所述第二微带线 12 的竖端的长度相同。 所述第一微带线 10的横端和所述第二微带线 12的横端分别 与所述矩形谐振环 11的短边平行设置。 所述第一微带线 10的横端一端设置于所 述介质板 00的上表面左侧边缘。 所述第二微带线 12的横端远离所述矩形谐振环 1 1的端头设置有上表面金属过孔 13。 所述天线的上表面通过金属铜柱穿过该上表 面金属过孔 13与天线的下表面连接 (详见下述) 。
[0028] 具体地, 所述第一微带线 10的横端和所述第二微带线 12的横端宽度均为 wl, 所 述第一微带线 10的横端的长度为 lc, 所述第一微带线 10的竖端的长度为 lb, 所述 第一微带线 10的竖端的宽度为 wb, 所述矩形谐振环 11靠近所述第一微带线 10的 长边的外径与所述第一微带线 10的竖端的外径之间的距离为 wc, 所述矩形谐振 环 11靠近所述第二微带线 12的长边的外径与所述第二微带线 12的竖端的外径之 间的距离为 wc, 所述矩形谐振环 11的长边的宽度为 wa, 所述矩形谐振环 11的长 边的外径长度为 la, 所述矩形谐振环 11的两个长边的内径之间的距离为 wd。
[0029] 参考图 2所示, 所述小型化高增益滤波集成天线的下表面包括地面 20、 第三微 带线 21、 第四微带线 22以及第五微带线 23。 所述地面 20设置于所述介质板 00的 下表面左侧一端, 构成反射器。 所述地面 20的宽度为 11, 所述地面 20的长度与所 述介质板 00的宽度相同。 所述第三微带线 21的一端设置为漏斗型 211, 所述漏斗 型 211的上部幵口宽度为 w3, 所述漏斗型的下部长度为 12, 所述第三微带线 21的 另一端设置为矩形 212并与所述漏斗型 211的下部底端连接形成连接部, 所述连 接部设置有缺口 213, 该缺口 213设置为三角形渐变结构, 有利于信号的匹配。 所述第三微带线 21的另一端的长度为 13, 所述第三微带线 21的另一端的宽度为 w 1。 所述第四微带线 22与所述第三微带线 21的另一端设置于同一条线上。 所述第 四微带线 22靠近所述第三微带线 21连接部的一端且与所述第二微带线 12的横端 端口位置对应设置有下表面金属过孔 24。 所述第四微带线 22的宽度为 wl。
[0030] 所述天线的上表面与下表面通过一个金属铜柱穿过所述上表面金属过孔 13和下 表面金属过孔 24相连, 使得所述第二微带线 12、 第三微带线 21以及第四微带线 2
2共同构成一个偶极子。
[0031] 所述第五微带线 23设置于所述偶极子的右侧, 形成导向器。 所述第五微带线 23 的长度为 14, 所述第五微带线 23的宽度为 w2。 所述第五微带线 23与所述第四微 带线 22之间的距离为 w4。
[0032] 本发明实施例通过在现有天线中加入矩形谐振环 11使得天线有良好的滤波效果
, 具备良好的滤波特性; 通过地面 20构成一个反射器, 使得天线具有定向的效 果, 具备良好的辐射特性; 通过在偶极子的另一侧添加第五微带线 23构成一个 导向器, 进一步了提高天线增益。
[0033] 下面结合具体实施例来说明本发明小型化高增益滤波集成天线的技术效果。 参 照表 1所示, 表 1为本发明小型化高增益滤波集成天线优选实施例参数值。
[0034] 表 1本发明小型化高增益滤波集成天线优选实施例参数值
[] [表 1]
Figure imgf000007_0001
如图 3所示, 图 3是本发明小型化高增益滤波集成天线优选实施例的仿真和测试 的反射系数与增益效果图。 该优选实施例选用表 1所示的参数值。 从图 3的仿真 和实测结果可以看出, 本发明小型化高增益滤波集成天线的反射系数 IS11I有两个 谐振频点, 分别谐振在 2.35 GHz和 2.45GHz。 这是由于本发明在现有天线的基础 上集成了矩形谐振环, 相当于集成了一个双模高选择性的滤波器, 由于奇偶模 的值不同, 导致天线可以谐振在两个频点上, 体现了良好的滤波特性。 从图 3也 可以看出, 所测天线增益在工作频带内平坦, 在工作频带外急速下降, 体现了 天线的高选择性。 如果去掉矩形谐振环, 直接用微带线连接, 可以看出天线没 有滤波性能和带外抑制性能。
[0037] 如图 4所示, 图 4为本发明小型化高增益滤波集成天线优选实施例的仿真与测试 的方向图。 该优选实施例选用表 1所示的参数值。 从图 4可以看出, 本发明的天 线在 y方向有定向效果, 体现了良好的辐射特性。 仿真的增益为 5.87dB, 前后比 为 16.3dB。 仿真和实测结果有些偏差, 这是由于连接器的损耗与加工误差导致。
[0038] 以上仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效功能变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。
工业实用性
[0039] 相较于现有技术, 本发明所述小型化高增益滤波集成天线采用上述技术方案, 达到了如下技术效果: 本发明通过在现有天线中加入矩形谐振环, 使得本发明 的天线有具有较好的滤波特性; 通过地面构成一个反射器, 使得本发明的天线 具有较好的辐射特性; 通过在偶极子的另一侧添加第五微带线构成一个导向器 , 进一步了提高天线增益。

Claims

权利要求书
一种小型化高增益滤波集成天线, 所述小型化高增益滤波集成天线包 括上表面和下表面, 所述上表面和下表面均印制于介质板上, 其特征 在于: 所述上表面包括第一微带线、 矩形谐振环和第二微带线, 所述 矩形谐振环设置于第一微带线和第二微带线之间; 所述第二微带线上 设置有上表面金属过孔; 所述下表面包括地面、 第三微带线、 第四微 带线以及第五微带线; 所述第三微带线的一端设置为漏斗型, 所述第 三微带线的另一端设置为矩形并与所述漏斗型的下部底端连接形成连 接部; 所述第四微带线与所述第三微带线的另一端设置于同一条线上 ; 所述第四微带线上设置有与所述上表面金属过孔相匹配的下表面金 属过孔; 所述天线的上表面与下表面通过金属铜柱穿过所述上表面金 属过孔和下表面金属过孔相连, 使得所述第二微带线、 第三微带线以 及第四微带线共同构成偶极子; 所述第五微带线设置于所述第三微带 线和第四微带线的右侧, 形成导向器。
如权利要求 1所述的小型化高增益滤波集成天线, 其特征在于, 所述 第一微带线和所述第二微带线均为 "L型"结构, 均包括横端和竖端。 如权利要求 2所述的小型化高增益滤波集成天线, 其特征在于, 所述 上表面金属过孔设置于所述第二微带线的横端远离所述矩形谐振环的 端头。
如权利要求 3所述的小型化高增益滤波集成天线, 其特征在于, 所述 下表面金属过孔设置于靠近所述第三微带线连接部的一端且与所述上 表面金属过孔对应的位置。
如权利要求 2所述的小型化高增益滤波集成天线, 其特征在于, 所述 第一微带线的竖端和所述第二微带线的竖端分别与所述矩形谐振环的 长边平行设置, 所述第一微带线的横端和所述第二微带线的横端分别 与所述矩形谐振环的短边平行设置。
如权利要求 2所述的小型化高增益滤波集成天线, 其特征在于, 所述 第一微带线的竖端的长度和所述第二微带线的竖端的长度相同, 且均 小于所述矩形谐振环的长边的长度。
[权利要求 7] 如权利要求 2所述的小型化高增益滤波集成天线, 其特征在于, 所述 第一微带线的横端一端设置于所述介质板的上表面左侧边缘。
[权利要求 8] 如权利要求 2所述的小型化高增益滤波集成天线, 其特征在于, 所述 第一微带线的横端和所述第二微带线的横端宽度均为 W l=1.75mm。
[权利要求 9] 如权利要求 1所述的小型化高增益滤波集成天线, 其特征在于, 所述 第四微带线的宽度为 w 1=1.75!^^
[权利要求 10] 如权利要求 1-9任一项所述的小型化高增益滤波集成天线, 其特征在 于, 所述介质板的介电常数为 3.66, 厚度为 0.762mm, 材质为 RO4350
PCT/CN2017/107196 2017-04-15 2017-10-21 小型化高增益滤波集成天线 WO2018188304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710246492.6A CN107069203A (zh) 2017-04-15 2017-04-15 小型化高增益滤波集成天线
CN201710246492.6 2017-04-15

Publications (1)

Publication Number Publication Date
WO2018188304A1 true WO2018188304A1 (zh) 2018-10-18

Family

ID=59599572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107196 WO2018188304A1 (zh) 2017-04-15 2017-10-21 小型化高增益滤波集成天线

Country Status (2)

Country Link
CN (1) CN107069203A (zh)
WO (1) WO2018188304A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107069203A (zh) * 2017-04-15 2017-08-18 深圳市景程信息科技有限公司 小型化高增益滤波集成天线
CN107230828A (zh) * 2017-04-15 2017-10-03 深圳市景程信息科技有限公司 小型化滤波集成天线
CN206619693U (zh) * 2017-04-15 2017-11-07 深圳市景程信息科技有限公司 滤波集成天线
CN206619694U (zh) * 2017-04-15 2017-11-07 深圳市景程信息科技有限公司 高增益滤波天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533939A (zh) * 2009-04-09 2009-09-16 山西大学 协同设计的双频带天线-滤波器装置
US20140198004A1 (en) * 2013-01-15 2014-07-17 Cubic Corporation Filter antenna
CN104681972A (zh) * 2015-02-15 2015-06-03 重庆大学 同时具有稳定方向图和良好带外抑制能力的槽加载超宽带单极子天线
CN105449379A (zh) * 2015-11-30 2016-03-30 华南理工大学 一种能抑制高频谐波的滤波天线
CN107069203A (zh) * 2017-04-15 2017-08-18 深圳市景程信息科技有限公司 小型化高增益滤波集成天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636812B2 (ja) * 1995-06-30 1997-07-30 日本電気株式会社 有極型帯域通過ろ波器
CN102800951A (zh) * 2012-08-06 2012-11-28 哈尔滨工业大学 一种振子加载型平衡微带线馈电的印刷型八木天线
CN105070985A (zh) * 2015-07-21 2015-11-18 天津大学 一种高介电常数陶瓷基微带双通带滤波器
CN105186118A (zh) * 2015-08-10 2015-12-23 哈尔滨工业大学 一种带有抛物线边界反射器的印刷准八木天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533939A (zh) * 2009-04-09 2009-09-16 山西大学 协同设计的双频带天线-滤波器装置
US20140198004A1 (en) * 2013-01-15 2014-07-17 Cubic Corporation Filter antenna
CN104681972A (zh) * 2015-02-15 2015-06-03 重庆大学 同时具有稳定方向图和良好带外抑制能力的槽加载超宽带单极子天线
CN105449379A (zh) * 2015-11-30 2016-03-30 华南理工大学 一种能抑制高频谐波的滤波天线
CN107069203A (zh) * 2017-04-15 2017-08-18 深圳市景程信息科技有限公司 小型化高增益滤波集成天线

Also Published As

Publication number Publication date
CN107069203A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018188304A1 (zh) 小型化高增益滤波集成天线
CN109904607B (zh) 一种简单紧凑的宽阻带滤波贴片天线
CN105449379B (zh) 一种能抑制高频谐波的滤波天线
CN110098482B (zh) 一种基于辐射抵消的多零点宽带滤波天线
WO2018188305A1 (zh) 小型化滤波集成天线
JP6563164B1 (ja) 高周波フィルタ
US20080291104A1 (en) Wide-band slot antenna apparatus with constant beam width
Maharjan et al. Compact microstrip square open-loop bandpass filter using open stub
EP3518344B1 (en) Antenna device
CN109449585A (zh) 一种紧凑高增益双极化差分滤波天线
CN107146930A (zh) 基于s‑型互补螺旋线的半模基片集成波导带通滤波器
US9214731B2 (en) Planar antenna having a widened bandwidth
TWI566474B (zh) 多頻天線
TWI499121B (zh) A balanced wideband pass filter with a common mode signal is designed with a ground plane defect structure (DGS) and a similar open loop resonator (SRR)
US9768505B2 (en) MIMO antenna with no phase change
Wu et al. Co-design of a compact dual-band filter-antenna for WLAN application
WO2018188303A1 (zh) 滤波集成天线
CN109193163A (zh) 基于枝节加载谐振器的三频滤波天线、无线电***射频前端
WO2018188302A1 (zh) 高增益滤波天线
Chen et al. Compact design of T‐type monopole antenna with asymmetrical ground plane for WLAN/WiMAX applications
Wu et al. Compact dual-band loop-loaded monopole with integrated band-select filter for WLAN application
Ding et al. A compact printed filtering antenna with flat gain using annular slot and UIR
KR20160051694A (ko) 컴팩트 멀티-레벨 안테나
Liang et al. Compact differential‐fed dual‐band antenna via loading shorting pin
Khan et al. Tuning of end-coupled line bandpass filter for 2.4 GHz using defected ground structure (DGS) parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905504

Country of ref document: EP

Kind code of ref document: A1