WO2018187946A1 - 雷达组件及无人机 - Google Patents

雷达组件及无人机 Download PDF

Info

Publication number
WO2018187946A1
WO2018187946A1 PCT/CN2017/080139 CN2017080139W WO2018187946A1 WO 2018187946 A1 WO2018187946 A1 WO 2018187946A1 CN 2017080139 W CN2017080139 W CN 2017080139W WO 2018187946 A1 WO2018187946 A1 WO 2018187946A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
rotor
radar assembly
microwave
drone
Prior art date
Application number
PCT/CN2017/080139
Other languages
English (en)
French (fr)
Inventor
王佳迪
吴晓龙
关毅骏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/080139 priority Critical patent/WO2018187946A1/zh
Priority to CN201780005387.1A priority patent/CN108513620B/zh
Priority to CN202210365471.7A priority patent/CN114755672A/zh
Priority to CN201721609097.1U priority patent/CN207587952U/zh
Publication of WO2018187946A1 publication Critical patent/WO2018187946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the invention relates to the technical field of unmanned aerial vehicles, in particular to a radar component and a drone.
  • the UAV is equipped with a radar to detect the distance between the UAV and the obstacle during flight.
  • a radar In order to make the UAV fully evade obstacles during flight, it is usually necessary to set multiple UAVs on the fuselage. Radars with different orientations are used to detect the distance between the drone and obstacles in various directions. However, at this time, the number of radars is large, which causes the structure of the drone to be complicated and easily causes the communication link of the drone to be congested.
  • Embodiments of the present invention provide a radar assembly and a drone.
  • the motor including a rotor
  • a microwave radar comprising a transmitter for receiving a microwave signal and a receiver for receiving a reflected microwave signal
  • a holder for mounting the microwave radar the rotor being coupled to the holder and capable of driving the holder to rotate to drive the microwave radar to rotate, so that the microwave radar can be selectively
  • the ground transmits microwave signals in multiple directions and receives microwave signals reflected back from multiple directions.
  • a drone includes a body and the radar assembly, and the radar assembly is mounted on the body.
  • the microwave radar can be rotated by the rotor and the cage to enable the microwave radar to selectively transmit microwave signals in multiple directions and receive microwave signals reflected from multiple directions, such that
  • the radar component can detect the distance between the drone and obstacles in multiple directions.
  • the structure of the drone is simple. Further, a single radar component can easily communicate with the drone.
  • FIG. 1 is a perspective view of a drone according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a radar assembly according to an embodiment of the present invention.
  • FIG. 3 is a perspective exploded view of a radar assembly according to an embodiment of the present invention.
  • FIG. 4 is a perspective exploded view of a radar assembly according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a working scenario of a radar assembly according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing the assembly of a motor, an upper bracket, a lower bracket, and a rear cover according to an embodiment of the present invention
  • Figure 7 is a schematic cross-sectional view taken along line VII-VII of Figure 6.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • a drone 100 includes a fuselage 10 and a radar assembly 20, and the radar assembly 20 is mounted on the body 10.
  • the body 10 includes a frame 12 and a stand 14 mounted on the frame 12.
  • the gantry 12 can serve as a mounting carrier for the flight control system, processor, camera, camera, etc. of the drone 100.
  • the stand 14 is mounted below the frame 12, and the stand 14 can be used to provide support for the drone 100 to land.
  • the stand 14 can also carry a water tank and be used to spray pesticides and fertilizers on the plants through the spray head. Wait.
  • the drone 100 further includes an arm 40 extending from the body 10, and the arm 40 can be used to mount components such as a power unit, a propeller, and the like to provide the drone 100 with the power of flight.
  • the radar assembly 20 includes a motor 21, a microwave radar 22, and a cage 23.
  • the motor 21 includes a stator 212 and a rotor 214.
  • the motor 21 is an outer rotor motor.
  • the stator 212 includes a core and a plurality of coils disposed on the core. The plurality of coils are circumferentially annular, and the intermediate portions of the plurality of coils together form a shaft hole 2122 for generating a magnetic field after being energized.
  • the rotor 214 includes a rotor case 2141 and a rotor magnet 2142, and the rotor case 2141 is fixedly coupled to the holder 23.
  • the rotor case 2141 includes a barrel 2143 and a top wall 2144.
  • the tubular body 2143 has an annular shape, one end of the tubular body 2143 is open, and the other end is closed by the top wall 2144.
  • the rotor magnet 2142 is housed in the tubular body 2143 and is in contact with the inner wall of the tubular body 2143.
  • the stator 212 can be received into the cylinder 2143 from the open end of the cylinder 2143, and an interaction force between the magnetic field generated by the coil and the magnetic field generated by the rotor magnet 2142 drives the rotor 214 to rotate.
  • the top wall 2144 includes a top surface 2145 that can be in contact with the cage 23 to assist in securing the cage 23 when the rotor 214 is coupled to the cage 23.
  • the rotor 214 includes a rotating shaft 2146.
  • the rotor housing 2141 is rotated about the rotating shaft 2146.
  • the rotating shaft 2146 may be a hollow structure.
  • the rotating shaft 2146 is connected to the top wall 2144.
  • the top wall 2144 may be provided with a wire hole 2146 at a position corresponding to the rotating shaft 2146. (As shown in FIG. 7), the transmission line is allowed to be connected to the microwave radar 22 through the rotating shaft 2146 and the wiring hole 2146.
  • the microwave radar 22 includes a transmitter 222 and a receiver 224.
  • Transmitter 222 is used for directional emission of microwave signals, microwave The signal propagates forward in the direction in which it is emitted, is reflected when an obstacle is encountered, and the receiver 224 is used to receive the microwave signal that is reflected back.
  • the frequency of the microwave signal is from 24.05 GHz to 24.25 GHz.
  • the direction in which the microwave signal is emitted may be a direction perpendicular to the axis of rotation 2146. That is, the direction in which the transmitter 222 emits the microwave signal may be a direction perpendicular to the axis of rotation 2146. It can be understood that the microwave received back by the receiver 224 is reflected.
  • the direction of the signal is also perpendicular to the axis of rotation 2146.
  • the holder 23 is used to mount the microwave radar 22, and the rotor 214 is coupled to the holder 23 and can drive the holder 23 to rotate to drive the microwave radar 22 to rotate, so that the microwave radar 22 can selectively transmit microwave signals in multiple directions, and Receiving microwave signals reflected back from multiple directions.
  • the transmitter 222 is rotated such that the microwave radar 22 can selectively transmit microwave signals in one of a plurality of directions
  • the receiver 224 is rotated to enable the microwave radar 22 to selectively receive from a plurality of directions. A microwave signal reflected back in one direction.
  • the microwave radar 22 can be rotated by the rotor 214 and the cage 23 to enable the microwave radar 22 to selectively transmit microwave signals in multiple directions and receive microwave signals reflected from multiple directions.
  • the distance between the UAV 100 and the obstacles in multiple directions can be selectively detected by a radar component 20, and the structure of the UAV 100 is simple.
  • the single radar component 20 is easy to be connected to the UAV 100. Communicate.
  • the horizontal pitch angle of the microwave radar 22 is greater than or equal to 10 degrees, or/and the horizontal narrow beam of the microwave radar 22 is less than or equal to 5 degrees.
  • the pitch angle of the microwave radar 22 when the pitch angle of the microwave radar 22 is greater than or equal to 10 degrees, the angles may be 10 degrees, 15 degrees, 30 degrees, 45 degrees, etc., and the coverage of the microwave signal is large, preventing the microwave signals from falling into the whole. There is no obstacle in front of the space between the obstacles. For example, as shown in FIG. 5, when the drone 100 is performing a spraying task, the drone 100 needs to perform spraying above the crop, and the gap between the crops may be large, at which time the pitch angle of the microwave radar 22 is higher. The drone 100 can accurately detect the position of the crop ahead, and prevent the drone 100 from flying into the space between the crops.
  • the horizontal narrow beam of the microwave radar 22 is less than or equal to 5 degrees, specifically 2 degrees, 3.5 degrees, 5 degrees, etc., and the microwave signal reflected by the microwave radar 22 has less clutter in the microwave signal, thereby improving the microwave radar 22 Detection accuracy.
  • the radar assembly 20 further includes a connector 24 that extends from the top surface 2145 and is used to connect the cage 23 and the microwave radar 22.
  • the connecting member 24 is formed with a first connecting hole 242
  • the retaining frame 23 is formed with a second connecting hole 232
  • the second connecting hole 232 corresponds to the first connecting hole 242
  • a fastener (not shown) can pass through the first connecting hole
  • the second connecting hole 232 and the second connecting hole 232 are fixedly connected to the rotor 214 and the holder 23.
  • the connector 24 includes two sub-connectors 244.
  • Each of the sub-connecting members 244 is substantially plate-shaped, and the first connecting holes 242 are opened on the sub-connecting members 244.
  • Two sub-connecting members 244 are relatively spaced apart, and between the two sub-connecting members 244
  • the partition portion forms an installation space, the retainer 23 is inserted into the installation space, and the retainer 23 is in contact with the two sub-connecting members 244 and the top surface 2145, respectively, and further passes through the first connecting hole 242 and the second connecting hole 232 through the fastener.
  • the holder 23 and the connecting member 24 are fixedly connected.
  • the number of the first connecting hole 242 and the second connecting hole 232 may be multiple.
  • each of the sub-connecting members 244 may have two first connecting holes 242. 242 corresponds to the second connection hole 232.
  • the radar assembly 20 further includes an upper bracket 25, a cover 26, a lower bracket 27, a rear cover 28, and an ESC 29.
  • the upper bracket 25 can be used to mount the motor 21.
  • the upper bracket 25 is substantially disk-shaped, and the upper bracket 25 is formed with a mounting platform 252 on which the motor 21 is disposed.
  • the mounting platform 252 is formed at an intermediate position of the upper bracket 25, and the upper bracket 25 further includes a sleeve 254 extending upward from the mounting platform 252.
  • the sleeve 254 has a hollow cylindrical shape, and the sleeve 254 extends into the shaft hole 2122. Wear set 212. Further, the rotating shaft 2146 is passed through the upper bracket 25 and is rotatable relative to the upper bracket 25.
  • the rotating shaft 2146 passes from the hollow portion of the sleeve 254 from the top to the bottom through the sleeve 254 such that the rotating shaft 2146 is rotatably coupled to the sleeve 254.
  • the radar assembly 20 further includes a bearing 30 disposed in the sleeve 254. The bearing 30 is locked in the hollow portion of the sleeve 254 and the rotating shaft 2146 is bored with the bearing 30 to realize the rotational connection between the rotating shaft 2146 and the sleeve 254. .
  • the cover 26 is fixedly coupled to the upper bracket 25, and the cover 26 and the upper bracket 25 cooperate to form an upper receiving space 262.
  • the motor 21, the microwave radar 22 and the retainer 23 are housed in the upper receiving space 262.
  • the motor 21, the microwave radar 22, and the cage 23 are less susceptible to erosion by external dust or water droplets, extending the operational life of the radar assembly 20.
  • the cover body 26 has an inverted cup shape as a whole, and the cover body 26 includes an open end 264, a closed end 266, and a side wall 268 connecting the open end 264 and the closed end 266.
  • the open end 264 is opposite to the upper bracket 25 and the upper bracket 25, the microwave signal can pass through the sidewall 268 from the upper receiving space 262, and the microwave signal can enter the upper receiving space 262 from the outside through the sidewall 268.
  • the cover body 26 and the upper bracket 25 may be connected by screwing, snapping, gluing, etc., so that it is preferable to disassemble the cover body 26 and the upper bracket 25.
  • the cover 26 can be made of a non-metallic material such as plastic to reduce the interference and shielding effect of the cover 26 on the microwave signal.
  • the lower bracket 27 is coupled to the upper bracket 25.
  • the lower bracket 27 has a flared shape that is open downward and gradually increases from top to bottom.
  • the lower bracket 27 and the upper bracket 25 may be integrally formed, and the lower bracket 27 and the upper bracket 25 may also be separately formed and connected by screwing, snapping, gluing, welding, or the like.
  • the lower bracket 27 is disposed coaxially with the upper bracket 25, the lower bracket 27 and the upper bracket 25 are communicated through a connecting hole (not shown), and the rotating shaft 2146 passes through the connecting hole to pass through the upper bracket 25 and the lower bracket. 27, the shaft 2146 is rotatable relative to the upper bracket 25 and the lower bracket 27.
  • the rear cover 28 is fixedly coupled to the lower bracket 27, and the rear cover 28 and the lower bracket 27 cooperate to form a lower receiving space 272.
  • the lower receiving space 272 communicates with the upper receiving space 262 through the connecting hole, and the end of the rotating shaft 2146 is located in the receiving space.
  • the ESC 29 is housed in the lower receiving space 272.
  • the ESC 29 is electrically connected to the motor 21 and the microwave radar 22 for controlling the rotation of the motor 21 and for controlling the microwave radar 22 to transmit and receive microwave signals.
  • the ESC 29 can be used to control the rotor 214 to selectively stay in a position that can be any of a plurality of directions in which the rotor 214 can be rotated, such that the transmitter 222 can be selected.
  • the microwave signal is transmitted in the direction of course, and of course, the receiver 224 can also receive the microwave signal reflected back from the selected direction.
  • the ESC 29 is coupled to the motor 21 and the microwave radar 22 via a flexible circuit board 31, and the flexible circuit board 31 is housed in the lower housing space 272. It will be appreciated that since the microwave radar 22 is rotatable under the drive of the motor 21 and the flexible circuit board 31 is electrically coupled to the microwave radar 22, the rotation of the microwave radar 22 may distort the flexible circuit board 31, and in some embodiments, the flexible circuit board 31 is wound in a predetermined length in the direction in which the rotor 214 is rotated. Specifically, the flexible circuit board 31 may be in the form of a strip, and the strip-shaped flexible circuit board 31 is wound by a predetermined length in a direction in which the rotor 214 is rotated. Thus, when the microwave radar 22 rotates and drives the flexible circuit board 31 to rotate, the amount of distortion of the flexible circuit board 31 can be offset from the amount of pre-wound, preventing the excessive amount of distortion of the flexible circuit board 31.
  • the radar assembly 20 further includes an angle sensor 32 that is electrically coupled to the ESC 29 that is used to detect the angle of rotation of the rotor 214.
  • the angle sensor 32 may be one or more of a Hall sensor, a potentiometer, and an encoder. It can be understood that the angle sensor 32 detects the angle of rotation of the rotor 214, that is, the angle of rotation of the microwave radar 22.
  • the drone 100 can assist in determining the direction in which the microwave signal is emitted and the direction of the received microwave signal based on the angle of rotation of the microwave radar 22, and further determines the relative direction of the obstacle and the drone 100.
  • the angle sensor 32 includes a rotating member 322 and a detecting member 324.
  • the rotating member 322 is fixedly coupled to the rotating shaft 2146.
  • the detecting member 324 is disposed on the ESC 29 and electrically connected to the ESC 29.
  • the detecting member 324 cooperates with the rotating member 322 to detect the rotation angle of the rotating member 322. Since the rotating member 322 is fixedly coupled to the rotating shaft 2146, the detecting member 324 detects the rotation angle of the rotating shaft 2146, and since the microwave radar 22 rotates synchronously with the rotating shaft 2146, the detecting member 324 detects the rotation angle of the microwave radar 22.
  • the rotating member 322 may be a magnet
  • the detecting member 324 may be a Hall sensor. The magnet may be fixed to the rotating shaft 2146 by gluing or the like, or the magnet may be fixedly connected to the rotating shaft 2146 by the magnet holder 326.
  • the motor 21 is provided with a limiting portion 216 for limiting the maximum angle of rotation of the rotor 214, the maximum angle of rotation being less than 360 degrees. Further, in some embodiments, the limiting portion 216 limits the maximum rotational angle of the rotor 214 to less than 300 degrees, such as 270 degrees, 250 degrees, 235 degrees, and the like.
  • the limiting portion 216 limits the maximum angle of rotation of the rotor 214 by mechanical limiting, that is, limits the maximum angle of rotation of the microwave radar 22.
  • the microwave radar 22 includes a stop 2542 that cooperates with the limit 216 and limits the maximum angle of rotation of the rotor 214.
  • the limiting portion 216 is a limiting boss that extends outwardly from the outer wall of the rotating shaft 2146 or extends downward from the top wall 2144.
  • the stop portion 2542 is a stop projection that extends distally from the upper surface 2544 of the sleeve 254, wherein the upper surface 2544 is the surface of the sleeve 254 that is remote from the mounting platform 252.
  • the stop boss is disposed on the rotation track of the limit boss to limit the rotation angle of the limit boss. It can be understood that the stop boss limits the angle of rotation of the limit boss, that is, the stop boss limits the angle of rotation of the rotor 214 and further limits the angle of rotation of the microwave radar 22.
  • the stop boss can be in the shape of a circular arc, and the stop boss is coaxially disposed with the rotating shaft 2146.
  • the angle at which the stop boss limits the rotation of the limiting boss can be set when the radar assembly 20 is shipped according to actual needs, for example, It can be 250 degrees, 270 degrees, 300 degrees, 315 degrees and so on.
  • the specific embodiment of the limiting portion 216 or the stopping portion 2542 is not limited to the above-mentioned form discussed for the limiting boss and the stop boss, and may be any other implementation that can limit the maximum rotation angle of the rotor 214.
  • the limiting portion 216 may also be a limiting protrusion formed on the outer wall of the cylinder 2143.
  • the stopping portion 2542 may be a stopping protrusion disposed on the upper bracket 25, and the stopping protrusion is disposed on the limiting protrusion. The trajectory is rotated to limit the angle of rotation of the limit projection, that is, to limit the angle of rotation of the rotor 214.
  • the radar assembly 20 further includes a seal 33 between the lower bracket 27 and the rear cover 28 for sealing the gap between the lower bracket 27 and the rear cover 28.
  • the sealing member 33 may be in the shape of a ring and may be a sealed silicone or sealing oil or the like. Further, a sealing groove (not shown) is formed on the rear cover 28 or the lower bracket 27, and the sealing member 33 is partially received in the sealing groove. When the rear cover 28 is engaged with the lower bracket 27, the upper and lower sides of the sealing member 33 Abutting the lower bracket 27 and the rear cover 28, respectively. In this way, water droplets are prevented from penetrating into the lower accommodating space 272 through the gap between the lower bracket 27 and the rear cover 28, and the erosion of the electric current regulating plate 29 by water droplets is prevented.
  • the lower bracket 27 and the rear cover 28 are collectively formed with a through hole 274 that communicates with the outside and the lower receiving space 272.
  • the radar assembly 20 also includes a communication member 34 that passes through the through hole 274 and is used to electrically connect the ESC 29 to an external device.
  • the external device may be a flight control system and/or a processor of the drone 100.
  • the axis of rotation 2146 of the rotor 214 is parallel to the pitch axis of the drone 100, or the axis of rotation 2146 of the rotor 214 is perpendicular to the pitch axis of the drone 100.
  • the microwave radar 22 can transmit microwave signals to the front, the rear, the upper side, and the lower side of the drone 100 by adjusting the angle of rotation of the microwave radar 22 and Receiving microwave signals reflected back by obstacles in front, rear, upper and lower, at this time, radar assembly 20 can be used for real It has functions such as obstacle avoidance at the front, obstacle avoidance at the rear, obstacle avoidance at the top, fixed height, front terrain prediction, and rear terrain prediction.
  • the rotating shaft 2146 of the rotor 214 When the rotating shaft 2146 of the rotor 214 is perpendicular to the pitch axis of the drone 100, specifically, the rotating shaft 2146 of the rotor 214 may be parallel to the roll axis or the rotating shaft 2146 of the rotor 214 may be parallel to the yaw axis.
  • the microwave radar 22 can transmit microwave signals to the left, right, upper and lower sides of the drone 100 and receive the left side, The microwave signals reflected by the obstacles on the right side, the upper side and the lower side, at this time, the radar assembly 20 can be used to implement the left side wall 268 barrier, the right side wall 268 barrier, the upper obstacle avoidance, the fixed height, the left terrain prediction, the right side Features such as terrain prediction.
  • the microwave radar 22 can transmit microwave signals to the left, right, front, and rear of the drone 100 and receive the left side, The microwave signals reflected by the obstacles on the right side, the front side and the rear side.
  • the radar component 20 can be used to implement the left side wall 268 barrier, the right side wall 268 barrier, the front obstacle avoidance, the rear obstacle avoidance, the left terrain prediction, the right Side terrain prediction, front terrain prediction, rear terrain prediction and other functions.
  • the rotation axis 2146 of the rotor 214 may be perpendicular to the pitch axis of the drone 100, and may be other specific cases.
  • the drone 100 further includes one or more of a front sensor 50, a rear sensor (not shown), and a lower sensor (not shown).
  • the front sensor 50 faces forward and has a predetermined first angle with the horizontal direction, and the front sensor 50 is used to detect the terrain in front of the drone 100.
  • the rear sensor is rearward and has a second predetermined angle with the horizontal direction and is used to detect the terrain behind the drone 100.
  • the lower sensor is directed directly below the drone 100 and is used to detect the height at which the drone 100 is located.
  • the drone 100 may include only the front sensor 50, or only the rear sensor, or only the lower sensor; the drone 100 may also include only the front sensor The 50 and rear sensors, or only the front sensor 50 and the lower sensor, or only the rear sensor and the lower sensor; the drone 100 may also include the front sensor 50, the rear sensor, and the lower sensor.
  • the front sensor 50, the rear sensor, and the lower sensor may be a radar, a visual sensor, an ultrasonic ranging sensor, a depth camera, etc., and the first angle and the second angle may be performed according to a specific flight speed of the drone 100.
  • the tasks and the like are adjusted, for example, angles of 30 degrees, 45 degrees, 60 degrees, 70 degrees, etc., and no limitation is imposed here.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance. Or implicitly indicate the number of technical features indicated. Thus, features defining “first” or “second” may include at least one of the features, either explicitly or implicitly. In the description of the present invention, "a plurality” means at least two, for example two, three, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达组件(20),包括电机(21)、微波雷达(22)及保持架(23)。电机(21)包括转子(214)。微波雷达(22)包括发射器(222)及接收器(224),发射器(222)用于定向发射微波信号,接收器(224)用于接收被反射回的微波信号。保持架(23)用于安装微波雷达(22),转子(214)与保持架(23)连接并能驱动保持架(23)转动而带动微波雷达(22)转动,以使微波雷达(22)能够可选择性地朝向多个方向发射微波信号及接收从多个方向反射回的微波信号。还提供了一种无人机(100)。无人机(100)包括机身(10)及安装在机身(10)上的雷达组件(20)。

Description

雷达组件及无人机 技术领域
本发明涉及无人飞行器技术领域,特别涉及一种雷达组件及无人机。
背景技术
无人机的机身上设置有雷达,以检测无人机飞行时与障碍物的距离,为了使得无人机在飞行时能够全向避障,通常需要无人机的机身上设置多个不同朝向的雷达,以检测无人机与各个方向上的障碍物的距离,然而,此时雷达的数量较多而导致无人机的结构复杂且容易造成无人机的通讯链路拥堵。
发明内容
本发明的实施方式提供了一种雷达组件及无人机。
本发明实施方式的种雷达组件包括:
电机,所述电机包括转子;
微波雷达,所述微波雷达包括发射器及接收器,所述发射器用于定向发射微波信号,所述接收器用于接收被反射回的微波信号;及
保持架,所述保持架用于安装所述微波雷达,所述转子与所述保持架连接并能驱动所述保持架转动而带动所述微波雷达转动,以使所述微波雷达能够可选择性地朝向多个方向发射微波信号及接收从多个方向反射回的微波信号。
本发明实施方式的无人机包括机身及所述雷达组件,所述雷达组件安装在所述机身上。
上述的雷达组件中,微波雷达能够在转子及保持架的带动下转动,以使得微波雷达能够可选择地朝向多个方向发射微波信号及接收从多个方向反射回的微波信号,如此,通过一个雷达组件就可以检测无人机与多个方向上的障碍物的距离,无人机的结构简单,进一步地,单个雷达组件容易与无人机进行通讯。
本发明的实施方式的附加方面及优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的无人机的立体示意图;
图2是本发明实施方式的雷达组件的立体示意图;
图3是本发明实施方式的雷达组件的立体分解示意图;
图4是本发明实施方式的雷达组件的立体分解示意图;
图5是本发明实施方式的雷达组件的工作场景示意图;
图6是本发明实施方式的电机、上支架、下支架、后盖的装配平面示意图;
图7是图6沿Ⅶ—Ⅶ线的截面示意图。
主要元件符号说明:
无人机100、机身10、机架12、脚架14、雷达组件20、电机21、定子212、轴孔2122、转子214、转子壳2141、转子磁铁2142、筒体2143、顶壁2144、顶面2145、转轴2146、走线孔2146、限位部216、微波雷达22、发射器222、接收器224、保持架23、第二连接孔232、连接件24、第一连接孔242、子连接件244、上支架25、安装平台252、轴套254、止挡部2542、上表面2544、罩体26、上收容空间262、开口端264、封闭端266、侧壁268、下支架27、下收容空间272、通孔274、后盖28、电调板29、轴承30、柔性电路板31、角度传感器32、转动件322、检测件324、磁铁支架326、密封件33、通讯件34、机臂40、前传感器50。
具体实施方式
以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、 结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
请参阅图1,本发明实施方式的无人机100包括机身10和雷达组件20,雷达组件20安装在机身10上。具体地,机身10包括机架12和安装在机架12上的脚架14。机架12可作为无人机100的飞行控制***、处理器、摄像机、照相机等的安装载体。脚架14安装在机架12的下方,脚架14可用于为无人机100降落时提供支撑,在一个实施例中,脚架14还可以搭载水箱,并用于通过喷头对植物喷洒农药和肥料等。
进一步地,无人机100还包括自机身10延伸的机臂40,机臂40可用于搭载动力装置、螺旋桨等元件以为无人机100提供飞行的动力。
请参阅图2-图4,在本发明实施方式中,雷达组件20包括电机21、微波雷达22和保持架23。
电机21包括定子212和转子214。在本发明实施例中,电机21为外转子电机。定子212包括铁芯和设置在铁芯上的多个线圈,多个线圈环绕呈圆环形,多个线圈的中间部分共同形成轴孔2122,线圈用于在通电后产生磁场。转子214包括转子壳2141和转子磁铁2142,转子壳2141与保持架23固定连接。具体地,转子壳2141包括筒体2143和顶壁2144。筒体2143呈圆环状,筒体2143的一端开放,另一端同由顶壁2144封闭,转子磁铁2142收容在筒体2143内且与筒体2143的内壁贴合。定子212可从筒体2143开放的一端收容进筒体2143内,线圈产生的磁场和转子磁铁2142产生的磁场之间存在相互作用力并驱动转子214转动。顶壁2144包括顶面2145,当转子214与保持架23连接时,顶面2145可以与保持架23接触以辅助固定保持架23。转子214包括转轴2146,转子壳2141绕转轴2146转动,具体地,转轴2146可以是中空的结构,转轴2146与顶壁2144连接,顶壁2144上与转轴2146对应的位置可以开设有走线孔2146(如图7所示),以允许传输线穿过转轴2146和走线孔2146与微波雷达22连接。
微波雷达22包括发射器222和接收器224。发射器222用于定向发射微波信号,微波 信号沿被发射的方向向前传播,在遇到障碍物时被反射,而接收器224用于接收被反射回的微波信号。在某些实施方式中,微波信号的频率为24.05吉赫至24.25吉赫。微波信号的发射方向可以是垂直于转轴2146的方向,也就是说,发射器222发射微波信号的方向可以是垂直于转轴2146的方向,可以理解,此时接收器224接收的被反射回的微波信号的方向也垂直于转轴2146。
保持架23用于安装微波雷达22,转子214与保持架23连接并能驱动保持架23转动而带动微波雷达22转动,以使得微波雷达22能够可选择性地朝向多个方向发射微波信号,及接收从多个方向反射回的微波信号。具体地,发射器222转动以使得微波雷达22能可选择性地朝向多个方向中的一个方向发射微波信号,接收器224转动以使得微波雷达22能可选择性地接收从多个方向中的一个方向反射回的微波信号。
上述的雷达组件20中,微波雷达22能够在转子214和保持架23的带动下转动,以使得微波雷达22能够可选择地朝向多个方向发射微波信号及接收从多个方向反射回的微波信号,如此,通过一个雷达组件20就可以选择性地检测无人机100与多个方向上的障碍物的距离,无人机100的结构简单,进一步地,单个雷达组件20容易与无人机100进行通讯。
在某些实施方式中,微波雷达22的水平俯仰角度大于或等于10度,或/及,微波雷达22的水平窄波束小于或等于5度。
可以理解,当微波雷达22的俯仰角度大于或等于10度时,具体可以是10度、15度、30度、45度等角度,微波信号的覆盖范围较大,防止微波信号全部落入到多个障碍物之间的空间内,而误判前方没有障碍物。例如,如图5所示,当无人机100在执行喷洒任务时,无人机100需要在农作物的上方执行喷洒,而农作物之间的间隙可能较大,此时微波雷达22的俯仰角度较大可以使得无人机100准确检测到前方农作物的位置,避免无人机100飞入农作物之间的间隔空间内。
微波雷达22的水平窄波束小于或等于5度,具体可以是2度、3.5度、5度等角度,微波雷达22接收到的反射回的微波信号中的杂波较少,进而提高微波雷达22的检测精度。
在某些实施方式中,雷达组件20还包括连接件24,连接件24自顶面2145延伸且用于连接保持架23和微波雷达22。连接件24形成有第一连接孔242,保持架23形成有第二连接孔232,第二连接孔232与第一连接孔242对应,紧固件(图未示)可穿过第一连接孔242和第二连接孔232以将转子214和保持架23固定连接。
具体地,连接件24包括两个子连接件244。每个子连接件244大致呈板状,第一连接孔242开设在子连接件244上。两个子连接件244相对间隔设置,两个子连接件244的间 隔部分形成安装空间,保持架23***安装空间内,且保持架23分别与两个子连接件244和顶面2145接触,并进一步通过紧固件穿设第一连接孔242和第二连接孔232以固定连接保持架23和连接件24。第一连接孔242和第二连接孔232的数量可以均为多个,例如每个子连接件244可以开设两个第一连接孔242,保持架23的两侧均开设两个与第一连接孔242对应的第二连接孔232。
在某些实施方式中,雷达组件20还包括上支架25、罩体26、下支架27、后盖28和电调板29。
上支架25可用于安装电机21。上支架25大致呈圆盘状,上支架25形成有安装平台252,电机21设置在安装平台252上。具体地,安装平台252形成在上支架25的中间位置,上支架25还包括自安装平台252向上延伸的轴套254,轴套254呈中空的圆筒状,轴套254伸入轴孔2122并穿设定子212。进一步地,转轴2146穿设上支架25且相对于上支架25可转动。具体地,转轴2146从轴套254的中空部分从上往下穿过轴套254,以使得转轴2146与轴套254转动连接。更进一步地,雷达组件20还包括设置在轴套254内的轴承30,轴承30卡设在轴套254的中空部分内且转轴2146穿设轴承30,以实现转轴2146与轴套254的转动连接。
罩体26与上支架25固定连接,罩体26与上支架25配合形成上收容空间262,电机21、微波雷达22和保持架23均收容在上收容空间262内。如此,电机21、微波雷达22和保持架23不易受到外界灰尘或水滴的侵蚀,延长雷达组件20的工作寿命。具体地,罩体26整体呈倒置的杯状,罩体26包括开口端264、封闭端266和连接开口端264与封闭端266的侧壁268,开口端264与上支架25相对且与上支架25配合,微波信号可穿过侧壁268从上收容空间262内穿出,且微波信号可穿过侧壁268从外界进入上收容空间262。罩体26与上支架25可以通过螺合、卡合、胶合等方式连接,以方便拆装罩体26和上支架25为佳。罩体26可采用塑料等非金属材料制成,以减少罩体26对微波信号的干扰和屏蔽作用。
下支架27与上支架25连接。具体地,在一个实施例中,下支架27呈开口向下且由上至下逐渐增大的喇叭状。下支架27与上支架25可以是一体成型,下支架27与上支架25也可以是分体成型,并通过螺合、卡合、胶合、焊接等方式连接。在本发明实施例中,下支架27与上支架25同轴设置,下支架27与上支架25通过连接孔(图未示)连通,转轴2146穿过连接孔以穿设上支架25和下支架27,转轴2146可相对于上支架25和下支架27转动。
后盖28与下支架27固定连接,后盖28与下支架27配合形成下收容空间272。下收容空间272通过连接孔与上收容空间262连通,转轴2146的末端位于收容空间内。
电调板29收容在下收容空间272内,电调板29与电机21和微波雷达22电连接,用于控制电机21转动并用于控制微波雷达22发射和接收微波信号。具体地,电调板29可用于控制转子214可选择性地停留在一个方向的位置上,该方向可以是转子214可转动的多个方向中的任意一个方向,以使得发射器222可向选择的方向上发射微波信号,当然,此时接收器224也可接收从选择的方向上被反射回的微波信号。
在某些实施方式中,电调板29通过柔性电路板31与电机21和微波雷达22连接,柔性电路板31收容在下收容空间272内。可以理解,由于微波雷达22可在电机21的驱动下转动,而柔性电路板31与微波雷达22电连接,微波雷达22转动可能会扭曲柔性电路板31,在某些实施方式中,柔性电路板31在转子214转动的方向缠绕预设长度。具体地,柔性电路板31可以呈条状,条状的柔性电路板31在沿转子214转动的方向缠绕预设长度。如此,当微波雷达22转动并带动柔性电路板31转动时,柔性电路板31被扭曲的量可与预先缠绕的量相互抵消,避免柔性电路板31的扭曲量过大。
在某些实施方式中,雷达组件20还包括角度传感器32,角度传感器32与电调板29电连接,角度传感器32用于检测转子214的转动角度。角度传感器32可以是霍尔传感器、电位器和编码器中的一种或几种。可以理解,角度传感器32检测转子214的转动角度,也就是检测微波雷达22的转动角度。无人机100可根据微波雷达22的转动角度来辅助判断微波信号的发射方向和接收到的微波信号的方向,并进一步地判断障碍物与无人机100的相对方向。
进一步地,在某些实施方式中,角度传感器32包括转动件322和检测件324。转动件322固定连接在转轴2146上,检测件324设置在电调板29上并与电调板29电连接,检测件324与转动件322配合以检测转动件322的转动角度。由于转动件322固定连接在转轴2146上,检测件324即是检测了转轴2146转动的角度,而由于微波雷达22与转轴2146同步转动,则检测件324即是检测了微波雷达22的转动角度。在一个实施例中,转动件322可以是磁铁,检测件324可以是霍尔传感器,磁铁可通过胶粘等方式固定在转轴2146上,也可通过磁铁支架326将磁铁与转轴2146固定连接。
在某些实施方式中,电机21设有限位部216,限位部216用于限制转子214的最大转动角度,最大转动角度小于360度。进一步地,在某些实施方式中,限位部216限制转子214的最大转动角度小于300度,例如可以是270度、250度、235度等角度。
具体地,限位部216通过机械限位的方式限制转子214的最大转动角度,也即是限制微波雷达22的最大转动角度。在某些实施方式中,微波雷达22包括止挡部2542,止挡部2542与限位部216配合并用于限制转子214的最大转动角度。
请结合图6和图7,在一个实施例中,限位部216为限位凸台,限位凸台自转轴2146的外壁向外延伸或自顶壁2144向下延伸。止挡部2542为止挡凸台,止挡凸台自轴套254的上表面2544向向延伸,其中上表面2544为轴套254上远离安装平台252的表面。止挡凸台设置在限位凸台的转动轨迹上以限制限位凸台的转动角度。可以理解,止挡凸台限制限位凸台的转动角度,也即是止挡凸台限制转子214的转动角度,并进一步限制微波雷达22的转动角度。具体地,止挡凸台可以呈圆弧状,止档凸台与转轴2146同轴设置,止档凸台限制限位凸台转动的角度可依据实际需求在雷达组件20出厂时进行设置,例如可以是250度、270度、300度、315度等角度。
当然,限位部216或止挡部2542的具体实施形式不限于上述对限位凸台和止挡凸台讨论的形式,还可以是其他任意可实现限制转子214的最大转动角度的实施形式,例如限位部216还可以是形成在筒体2143外壁上的限位凸起,止挡部2542可以是设置在上支架25上的止挡凸起,止挡凸起设置在限位凸起的转动轨迹上以限制限位凸起的转动角度,也就是限制转子214的转动角度。
在某些实施方式中,雷达组件20还包括密封件33,密封件33位于下支架27与后盖28之间,密封件33用于密封下支架27与后盖28之间的间隙。密封件33可以呈环状,可以是密封硅胶或密封油等。进一步地,在后盖28或者下支架27上形成有密封槽(图未示),密封件33部分收容在密封槽内,当后盖28与下支架27配合时,密封件33的上下两侧分别与下支架27和后盖28相抵接。如此,防止水滴通过下支架27与后盖28之间的间隙渗入下收容空间272内,避免水滴对电调板29的侵蚀。
在某些实施方式中,下支架27和后盖28共同形成有通孔274,通孔274连通外界与下收容空间272。雷达组件20还包括通讯件34,通讯件34穿过通孔274且用于电连接电调板29与外部设备。具体地,外部设备可以是无人机100的飞行控制***及/或处理器。
请再参阅图1,在某些实施方式中,转子214的转轴2146与无人机100的俯仰轴平行,或者转子214的转轴2146与无人机100的俯仰轴垂直。
具体地,当转子214的转轴2146与无人机100的俯仰轴平行时,通过调整微波雷达22转动的角度,微波雷达22可向无人机100的前方、后方、上方和下方发射微波信号并接收被前方、后方、上方和下方的障碍物反射回的微波信号,此时,雷达组件20可用于实 现前方避障、后方避障、上方避障、定高、前方地形预测、后方地形预测等功能。
当转子214的转轴2146与无人机100的俯仰轴垂直时,具体地,转子214的转轴2146可与横滚轴平行或者转子214的转轴2146可与偏航轴平行。当转子214的转轴2146与横滚轴平行时,通过调整微波雷达22转动的角度,微波雷达22可向无人机100的左侧、右侧、上方和下方发射微波信号并接收被左侧、右侧、上方和下方的障碍物反射回的微波信号,此时,雷达组件20可用于实现左侧壁268障、右侧壁268障、上方避障、定高、左侧地形预测、右侧地形预测等功能。当转子214的转轴2146与偏航轴平行时,通过调整微波雷达22转动的角度,微波雷达22可向无人机100的左侧、右侧、前方和后方发射微波信号并接收被左侧、右侧、前方和后方的障碍物反射回的微波信号,此时,雷达组件20可用于实现左侧壁268障、右侧壁268障、前方避障、后方避障、左侧地形预测、右侧地形预测、前方地形预测、后方地形预测等功能。当然,转子214的转轴2146与无人机100的俯仰轴垂直还可以是其他具体的情况,在此不再一一列举。
在某些实施方式中,无人机100还包括前传感器50、后传感器(图未示)和下传感器(图未示)中的一个或多个。具体地,前传感器50朝向前方且与水平方向呈预设的第一夹角,前传感器50用于检测无人机100的前方的地形。后传感器朝向后方且与水平方向呈预设的第二夹角,并用于检测无人机100的后方的地形。下传感器朝向无人机100的正下方,并用于检测无人机100所处的高度。也就是说,在上述前传感器50、后传感器和下传感器中,无人机100可以只包括前传感器50,或者只包括后传感器,或者只包括下传感器;无人机100也可以只包括前传感器50和后传感器,或者只包括前传感器50和下传感器,或者只包括后传感器和下传感器;无人机100也可以同时包括前传感器50、后传感器和下传感器。具体地,前传感器50、后传感器和下传感器可以是雷达、视觉传感器、超声波测距传感器、深度摄像头等,第一夹角和第二夹角可以根据无人机100具体的飞行速度、执行的任务等进行调整,例如可以是30度、45度、60度、70度等角度,在此不做限制。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (26)

  1. 一种雷达组件,其特征在于,包括:
    电机,所述电机包括转子;
    微波雷达,所述微波雷达包括发射器及接收器,所述发射器用于定向发射微波信号,所述接收器用于接收被反射回的微波信号;及
    保持架,所述保持架用于安装所述微波雷达,所述转子与所述保持架连接并能驱动所述保持架转动而带动所述微波雷达转动,以使所述微波雷达能够可选择性地朝向多个方向发射微波信号及接收从多个方向反射回的微波信号。
  2. 根据权利要求1所述的雷达组件,其特征在于,所述微波信号的频率为24.05吉赫至24.25吉赫。
  3. 根据权利要求1所述的雷达组件,其特征在于,所述微波信号的发射方向垂直于所述转子的转轴。
  4. 根据权利要求1所述的雷达组件,其特征在于,所述微波雷达的水平俯仰角度大于或等于10度,或/及,所述微波雷达的水平窄波束小于或等于5度。
  5. 根据权利要求1所述的雷达组件,其特征在于,所述电机为外转子电机,所述转子包括转子壳,所述转子壳与所述保持架固定连接,用于带动所述保持架转动。
  6. 根据权利要求1所述的雷达组件,其特征在于,所述转子包括转轴,所述雷达组件还包括上支架,所述电机设置在所述上支架上,所述转轴穿设所述上支架,且相对于所述上支架可转动。
  7. 根据权利要求6所述的雷达组件,其特征在于,所述雷达组件还包括与所述上支架固定连接的罩体,所述罩体与所述上支架配合形成上收容空间,所述电机、所述微波雷达及所述保持架均收容在所述上收容空间内。
  8. 根据权利要求6所述的雷达组件,其特征在于,所述上支架形成有安装平台,所述电机设置在所述安装平台上,所述上支架还包括自所述安装平台向上延伸的中空的轴套, 所述转轴穿设所述轴套且与所述轴套转动连接。
  9. 根据权利要求8所述的雷达组件,其特征在于,所述雷达组件包括设置在所述轴套内的轴承,所述轴承转动连接所述转轴及所述轴套。
  10. 根据权利要求8所述雷达组件,其特征在于,所述轴套包括远离所述安装平台的上表面及自所述上表面向上延伸的止挡凸台,所述转子包括限位凸台,所述限位凸台自所述转轴的外壁向外延伸或自所述转子的顶壁向下延伸,所述止挡凸台设置在所述限位凸台的转动轨迹上以限制所述转子的转动角度。
  11. 根据权利要求1所述的雷达组件,其特征在于,所述雷达组件还包括:
    电调板,所述电调板与所述电机及所述微波雷达电连接;以及
    连接所述电机、所述微波雷达及所述电调板的柔性电路板,所述柔性电路板在所述转子转动的方向缠绕预设长度。
  12. 根据权利要求11所述的雷达组件,其特征在于,所述转子包括转轴,所述雷达组件包括角度传感器,所述角度传感器与所述电调板电连接,用于检测所述转子的转动角度。
  13. 根据权利要求12所述的雷达组件,其特征在于,所述角度传感器包括如下至少一种:霍尔传感器,电位器,编码器。
  14. 根据权利要求12所述的雷达组件,其特征在于,所述角度传感器包括与所述转轴固定连接的转动件及设置在所述电调板上并且与所述电调板电连接的检测件,所述检测件与所述转动件相配合,以检测所述转动件的转动角度。
  15. 根据权利要求14所述的雷达组件,其特征在于,所述转动件为磁铁,所述检测件为霍尔传感器。
  16. 根据权利要求11所述的雷达组件,其特征在于,所述转子包括转轴,所述雷达组件还包括上支架及与所述上支架连接的下支架,所述电机设置在所述上支架上,所述转轴穿设所述上支架及所述下支架,所述转轴与所述上支架及所述下支架转动连接。
  17. 根据权利要求16所述的雷达组件,其特征在于,所述雷达组件还包括与所述下支架固定连接的后盖,所述后盖与所述下支架配合形成下收容空间,所述柔性电路板及所述电调板均收容在所述下收容空间内,所述转轴的末端位于所述下收容空间内。
  18. 根据权利要求17所述的雷达组件,其特征在于,所述雷达组件还包括密封件,所述密封件位于所述下支架与所述后盖之间,并且用于密封所述下支架与所述后盖之间的间隙。
  19. 根据权利要求17所述的雷达组件,其特征在于,所述下支架及所述后盖共同形成有连通外界与所述下收容空间的通孔,所述雷达组件还包括通讯件,所述通讯件穿过所述通孔且用于电连接所述电调板与外部设备。
  20. 根据权利要求11所述的雷达组件,其特征在于,所述电调板控制所述转子可选择性地停留在所述多个方向中的一个所述方向的位置上,以使所述发射器在选择的方向上发射微波信号。
  21. 根据权利要求1所述的雷达组件,其特征在于,所述电机设有限位部,所述限位部用于限制所述转子的最大转动角度,所述最大转动角度小于360度。
  22. 根据权利要求21所述的雷达组件,其特征在于,所述最大转动角度小于300度。
  23. 一种无人机,其特征在于,包括:
    机身;及
    权利要求1-22任意一项所述的雷达组件,所述雷达组件安装在所述机身上。
  24. 根据权利要求23所述的无人机,其特征在于,
    所述转子的转轴与所述无人机的俯仰轴平行;
    或者,所述转子的转轴与所述无人机的俯仰轴垂直。
  25. 根据权利要求23所述的无人机,其特征在于,所述机身包括脚架,所述雷达组件 安装在所述脚架上。
  26. 根据权利要求23所述的无人机,其特征在于,所述无人机还包括以下传感器中的一个或多个:
    前传感器,所述前传感器朝向前方且与水平方向呈预设的第一夹角,并用于检测所述无人机的前方的地形;
    后传感器,所述后传感器朝向所述后方且与水平方向呈预设的第二夹角,并用于检测所述无人机的后方的地形;及
    下传感器,所述下传感器朝向所述无人机的正下方,并用于检测所述无人机所处的高度。
PCT/CN2017/080139 2017-04-11 2017-04-11 雷达组件及无人机 WO2018187946A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/080139 WO2018187946A1 (zh) 2017-04-11 2017-04-11 雷达组件及无人机
CN201780005387.1A CN108513620B (zh) 2017-04-11 2017-04-11 雷达组件及无人机
CN202210365471.7A CN114755672A (zh) 2017-04-11 2017-04-11 雷达组件及无人机
CN201721609097.1U CN207587952U (zh) 2017-04-11 2017-11-24 雷达组件及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/080139 WO2018187946A1 (zh) 2017-04-11 2017-04-11 雷达组件及无人机

Publications (1)

Publication Number Publication Date
WO2018187946A1 true WO2018187946A1 (zh) 2018-10-18

Family

ID=62733629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080139 WO2018187946A1 (zh) 2017-04-11 2017-04-11 雷达组件及无人机

Country Status (2)

Country Link
CN (3) CN108513620B (zh)
WO (1) WO2018187946A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379805A (zh) * 2022-02-28 2022-04-22 山东交通学院 基于蝙蝠收发装置的避障无人机
CN116953704A (zh) * 2022-12-23 2023-10-27 河北德冠隆电子科技有限公司 一种智慧交通用多维度角度可调全向扫描毫米波雷达

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637144A1 (de) * 2018-10-10 2020-04-15 Covestro Deutschland AG Fahrzeugumfeldsensor mit beweglicher sensoreinheit
CN110892285A (zh) * 2018-11-26 2020-03-17 深圳市大疆创新科技有限公司 一种微波雷达和无人飞行器
CN109665112A (zh) * 2019-01-31 2019-04-23 江苏恒铭达航空设备有限公司 直升机电子自卫元器件安装支架和直升机
CN109932692A (zh) * 2019-03-28 2019-06-25 尹建霞 一种共轴双向伺服雷达转台
CN110361731B (zh) * 2019-07-22 2021-07-27 芜湖文青机械设备设计有限公司 一种地质雷达装置
CN112166334B (zh) * 2019-09-30 2024-04-09 深圳市大疆创新科技有限公司 雷达装置及可移动平台
KR20210057010A (ko) * 2019-11-04 2021-05-20 에스지 디제이아이 테크놀러지 코., 엘티디 센서 및 이동식 플랫폼
CN112204416A (zh) * 2019-11-04 2021-01-08 深圳市大疆创新科技有限公司 传感器及可移动平台
CN112334788A (zh) * 2019-11-11 2021-02-05 深圳市大疆创新科技有限公司 雷达组件、无人机、障碍物检测方法、设备及存储介质
CN113767299A (zh) * 2020-05-06 2021-12-07 深圳市大疆创新科技有限公司 旋转雷达及可移动平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340729A (ja) * 2003-05-15 2004-12-02 Hitachi Ltd 移動体検知レーダー装置
CN101201402A (zh) * 2006-12-15 2008-06-18 上海通运汽车科技有限公司 一种汽车行驶中检测危险接近物体的方法和装置
US20100090880A1 (en) * 2007-03-26 2010-04-15 Honda Motor Co.,Ltd. Object detecting apparatus
CN204515537U (zh) * 2015-04-23 2015-07-29 马鞍山市赛迪智能科技有限公司 一种基于无人车的留空雷达监测***
CN105173095A (zh) * 2015-09-07 2015-12-23 国网通用航空有限公司 一种直升机避障***
CN105242256A (zh) * 2015-10-16 2016-01-13 北京机械设备研究所 一种车速自适应的二维激光雷达匀速俯仰扫描装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308699C (zh) * 2004-09-21 2007-04-04 武汉理工大学 旋转式三维扫描雷达
CN105874349B (zh) * 2015-07-31 2018-06-12 深圳市大疆创新科技有限公司 探测装置、探测***、探测方法,以及可移动设备
CN106066475B (zh) * 2016-08-16 2018-10-26 深圳市佶达德科技有限公司 一种三维激光雷达测距***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340729A (ja) * 2003-05-15 2004-12-02 Hitachi Ltd 移動体検知レーダー装置
CN101201402A (zh) * 2006-12-15 2008-06-18 上海通运汽车科技有限公司 一种汽车行驶中检测危险接近物体的方法和装置
US20100090880A1 (en) * 2007-03-26 2010-04-15 Honda Motor Co.,Ltd. Object detecting apparatus
CN204515537U (zh) * 2015-04-23 2015-07-29 马鞍山市赛迪智能科技有限公司 一种基于无人车的留空雷达监测***
CN105173095A (zh) * 2015-09-07 2015-12-23 国网通用航空有限公司 一种直升机避障***
CN105242256A (zh) * 2015-10-16 2016-01-13 北京机械设备研究所 一种车速自适应的二维激光雷达匀速俯仰扫描装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379805A (zh) * 2022-02-28 2022-04-22 山东交通学院 基于蝙蝠收发装置的避障无人机
CN116953704A (zh) * 2022-12-23 2023-10-27 河北德冠隆电子科技有限公司 一种智慧交通用多维度角度可调全向扫描毫米波雷达

Also Published As

Publication number Publication date
CN108513620A (zh) 2018-09-07
CN207587952U (zh) 2018-07-06
CN114755672A (zh) 2022-07-15
CN108513620B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2018187946A1 (zh) 雷达组件及无人机
US11067990B2 (en) Operation method of an agriculture UAV
US9352834B2 (en) Micro unmanned aerial vehicle and method of control therefor
US9938005B2 (en) Thrust vectoring on a rotor-based remote vehicle
WO2019119198A1 (zh) 雷达和具有该雷达的可移动设备
WO2019119242A1 (zh) 雷达装置及无人飞行器
WO2018187936A1 (zh) 一种无人飞行器及无人飞行器的避障控制方法
CN108363071A (zh) 一种激光雷达装置
WO2019119193A1 (zh) 雷达装置、无线旋转装置及无人机
CN206926813U (zh) 雷达组件及无人机
US20200050219A1 (en) Uav control method, flight controller and uav
KR102182373B1 (ko) 드론용 레이더장치
US20220033073A1 (en) Image Capture and Obstacle Detection Assembly Intended to be Mounted on a Platform Such as a Drone and Drone Provided with Such an Image Capture and Obstacle Detection Assembly
CN211766269U (zh) 多旋翼无人飞行器
KR101715637B1 (ko) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
US20230358885A1 (en) Sonar steering for lures
CN208255418U (zh) 一种激光雷达装置
KR102190736B1 (ko) 무선신호 중계 드론
TWI785442B (zh) 無人機及其飛行控制方法
WO2021087703A1 (zh) 飞行器
KR101736800B1 (ko) 비행체용 레이저 장애물 탐지장치
KR102212029B1 (ko) 회전 비행체
CN112272780A (zh) 地杂波抑制与地形估计方法、无人机、旋转雷达及存储介质
KR20240045017A (ko) 무인 비행 장치의 감지 플랫폼 장치
US11912434B2 (en) Drone having collision prevention and recovery function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905652

Country of ref document: EP

Kind code of ref document: A1