WO2018185840A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2018185840A1
WO2018185840A1 PCT/JP2017/014105 JP2017014105W WO2018185840A1 WO 2018185840 A1 WO2018185840 A1 WO 2018185840A1 JP 2017014105 W JP2017014105 W JP 2017014105W WO 2018185840 A1 WO2018185840 A1 WO 2018185840A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer tube
fin
heat exchanger
heat
Prior art date
Application number
PCT/JP2017/014105
Other languages
French (fr)
Japanese (ja)
Inventor
暁 八柳
前田 剛志
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780088422.0A priority Critical patent/CN110462326B/en
Priority to PCT/JP2017/014105 priority patent/WO2018185840A1/en
Priority to US16/480,403 priority patent/US20200018494A1/en
Priority to ES17904889T priority patent/ES2877582T3/en
Priority to EP17904889.7A priority patent/EP3608618B1/en
Priority to JP2019510536A priority patent/JP6716021B2/en
Publication of WO2018185840A1 publication Critical patent/WO2018185840A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Definitions

  • the present invention relates to a heat exchanger that improves both drainage and heat transfer performance, and a refrigeration cycle apparatus including the heat exchanger.
  • each heat exchange part of the heat exchanger includes a plurality of fins extending in the vertical direction and a plurality of heat transfer tubes.
  • the plurality of fins are arranged in parallel in a lateral direction substantially perpendicular to the air flow direction with a predetermined interval.
  • the plurality of heat transfer tubes are juxtaposed in the vertical direction at a predetermined interval, and penetrate each fin along the juxtaposition direction of the fins.
  • the edge part of each heat exchanger tube is connected to the distribution pipe or header which forms a refrigerant
  • a flat tube is a heat transfer tube having an elliptical cross section, for example, in which the lateral width is larger than the longitudinal width in a cross section perpendicular to the refrigerant flow direction.
  • a heat exchanger using a flat tube can secure a large heat transfer area in the tube, and can suppress the air flow resistance.
  • the heat exchanger using a flat tube can improve heat transfer performance compared with the heat exchanger using a circular heat transfer tube.
  • heat exchangers using flat tubes tend to have poor drainage when used as evaporators compared to heat exchangers using circular heat transfer tubes. This is because water droplets are likely to remain on the upper surface of the flat tube.
  • Patent Document 1 heat exchange in which two fin-and-tube heat exchange parts using flat tubes having an oval cross section are arranged in parallel along the flow direction of air blown laterally from the blower.
  • a device in which a flat tube is arranged so as to incline the upper surface of the flat tube has been proposed.
  • the heat exchanger disclosed in Patent Document 1 makes it easy to discharge condensed water staying on the upper surface of the flat tube by the action of gravity by inclining the upper surface of the flat tube. For this reason, the heat exchanger disclosed in Patent Document 1 has an effect of reducing the time for the defrosting operation. On the other hand, the heat exchanger disclosed in Patent Document 1 has a problem that the heat transfer performance, which is a characteristic of a flat tube, cannot be sufficiently exhibited as follows.
  • the air that has flowed into the heat exchanger reaches the front edge of the flat tube, and is divided into two hands, the upper surface side and the lower surface side of the flat tube.
  • air flows along the tube wall and passes through the heat exchanger while maintaining a relatively high wind speed.
  • a stagnant state that is, a dead water area occurs.
  • the downstream side flat tube in the air flow direction is not positioned behind the upstream side flat tube. It is conceivable to change the arrangement position of the flat tube. That is, when the heat exchanger is viewed in the air flow direction, it is conceivable to arrange the downstream flat tube so that it does not overlap with the upstream flat tube.
  • the ventilation resistance of the heat exchanger increases, and the heat transfer performance is degraded by the ventilation resistance.
  • An object of the present invention is to provide a heat exchanger capable of improving both drainage and heat transfer performance, and a refrigeration cycle apparatus including the heat exchanger.
  • the heat exchanger according to the present invention has a first fin having a first end and a second end in the lateral direction, a third end and a fourth end in the lateral direction, and the third end is From the 2nd fin arrange
  • the second heat transfer tube has a planar or curved second upper surface and a planar second lower surface, and when the first upper surface is planar, the first upper surface is When the first upper surface is curved, the tangent plane of the first upper surface is defined as the first surface, and when the second upper surface is planar, the second upper surface is defined as the first surface. Defined as the second side. When the second upper surface is curved, when the tangent plane of the second upper surface is defined as the second surface, the first heat transfer tube and the second heat transfer tube are arranged so that the first lower surface is horizontal.
  • the first surface is inclined downward toward the first end side
  • the second surface is The second heat transfer tube is inclined downward toward the third end side
  • the upper end of the second heat transfer tube is positioned above the first lower surface, and the second surface or an extension line of the second surface and the first An intersection point A, which is an intersection point with the extension line of the lower surface, coincides with the intersection point B, which is an intersection point of the second surface or the extension line of the second surface and the extension line of the second lower surface, or the intersection point It is located closer to the second heat transfer tube than B.
  • the refrigeration cycle apparatus includes the heat exchanger according to the present invention and a blower that supplies air to the heat exchanger along the first lower surface from the first end side,
  • the heat exchanger is installed such that the first surface is inclined downward toward the first end side and the second surface is inclined downward toward the third end side. It is.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 includes a compressor 200, a condenser 300, an expansion mechanism 400, and an evaporator 500, which are sequentially connected by a refrigerant pipe.
  • the compressor 200 sucks a refrigerant and compresses the refrigerant into a high-temperature and high-pressure gas refrigerant.
  • the condenser 300 exchanges heat between a refrigerant flowing inside and a heat exchange target such as air, and is, for example, a fin tube heat exchanger.
  • a blower 301 that supplies air to be heat exchanged to the condenser 300 is provided.
  • the expansion mechanism 400 is an expansion valve, for example, and expands the refrigerant by decompressing it.
  • the evaporator 500 exchanges heat between a refrigerant flowing inside and a heat exchange target such as air.
  • the evaporator 500 according to the first embodiment is a fin tube type heat exchanger.
  • a blower 501 that supplies air to be heat exchanged to the evaporator 500 is provided in the vicinity of the evaporator 500.
  • the blower 501 is, for example, a propeller fan.
  • the refrigeration cycle apparatus 100 according to Embodiment 1 employs the heat exchanger 1 having the following configuration as the evaporator 500 in order to improve both drainage and heat transfer performance of the evaporator 500.
  • FIG. 2 is a front view showing the heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 3 is an enlarged view (front view) of a main part showing fins of the heat exchanger.
  • FIG. 4 is a cross-sectional view showing a heat transfer tube of this heat exchanger.
  • FIG. 5 is an enlarged view of a main part in which a part of FIG. 2 is enlarged.
  • the heat transfer tubes 15 and 25 are shown in cross section.
  • the white arrow shown in FIG.2 and FIG.5 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501.
  • the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. 2, 3, and 5, this air flow direction is also indicated by an arrow X. Arrows Z shown in FIGS. 2, 3 and 5 are directions of gravity.
  • the heat exchanger 1 includes a plurality of fin-and-tube heat exchange units arranged in parallel along the air flow direction.
  • the heat exchanger 1 including the first heat exchange unit 10 located on the upstream side in the air flow direction and the second heat exchange unit 20 located on the downstream side will be described as an example.
  • the first heat exchange unit 10 and the second heat exchange unit 20 have the same configuration.
  • the first heat exchanging unit 10 includes a plurality of plate-like fins 11 extending in the vertical direction. These fins 11 are juxtaposed in a transverse direction perpendicular to the air flow direction (a direction orthogonal to the plane of FIG. 2) with a prescribed fin pitch (interval).
  • a plurality of notches 12 are formed in the downstream end portion 11d of each fin 11 with a predetermined step pitch (interval) in the vertical direction. These notches 12 are into which the heat transfer tubes 15 are inserted, and have a shape corresponding to the outer shape of the heat transfer tubes 15.
  • the upstream end 12 a of the notch 12 is disposed at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval).
  • Each notch 12 has a shape in which the distance between the upper edge and the lower edge gradually increases from the upstream end 12a to the opening 12b. For this reason, the heat transfer tube 15 can be easily inserted into the notch 12.
  • the fin 11 corresponds to the first fin of the present invention.
  • the upstream end 11c corresponds to the first end of the present invention.
  • the downstream end portion 11d corresponds to the second end portion of the present invention.
  • the first heat exchange unit 10 includes a plurality of heat transfer tubes 15 inserted into the notches 12 of the fins 11. That is, the heat transfer tubes 15 are arranged side by side with a specified step pitch in the vertical direction. And each heat exchanger tube 15 is provided so that it may penetrate each fin 11 in the parallel arrangement direction of these fins 11. The fin 11 and the heat transfer tube 15 are in close contact with each other by brazing. These heat transfer tubes 15 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction. Each heat transfer tube 15 is partitioned by a plurality of partition walls, and a plurality of refrigerant channels 16 are formed.
  • the heat transfer tube 15 has a planar upper surface 15a and a planar lower surface 15c.
  • the distance between the upper surface 15a and the lower surface 15c gradually increases from the upstream end 15b toward the downstream end 15d.
  • the distance between the upper surface 15a and the lower surface 15c gradually increases from the upstream end 11c of the fin 11 toward the downstream end 11d.
  • Such a heat transfer tube 15 is made of, for example, aluminum or aluminum alloy, and is formed by, for example, extrusion molding.
  • coolant flow path 16 so that it may become substantially symmetrical with respect to the plane which equally divides the angle which the upper surface 15a and the lower surface 15c comprise. Is forming. Thereby, it becomes easy to ensure the manufacturability when the heat transfer tube 15 is extruded.
  • the heat transfer tube 15 may be formed, for example, by extrusion so that the cross section has an oval shape, and then the final shape may be formed by additional processing such as pressing. Further, a groove may be formed on the wall surface of the refrigerant flow path 16, that is, the inner wall surface of the heat transfer tube 15.
  • one of the heat transfer tubes 15 corresponds to the first heat transfer tube.
  • the upper surface 15a of the heat transfer tube 15 corresponding to the first heat transfer tube corresponds to the first surface of the present invention.
  • the upstream end 12a of the notch 12 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position away from the upstream end 11c of the fin 11 by a specified interval (first specified interval). Yes.
  • the upstream end portion 15 b of the heat transfer tube 15 is also at a position away from the upstream end portion 11 c of the fin 11 by a specified interval (first specified interval). Be placed. For this reason, the first region 11 a and the second region 11 b are formed in the fin 11.
  • the first region 11a is a region where a plurality of notches 12 are formed in the longitudinal direction which is the direction of gravity (arrow Z direction), and is a region where the heat transfer tube 15 is provided.
  • the second region 11b is a region where the heat transfer tube 15 is not provided in the longitudinal direction (arrow Z direction), and is a drainage region where water adhering to the fins 11 is discharged.
  • the second region 11b is arranged on the upstream side of the first region 11a in the flow direction (arrow X direction) of the air that is the heat exchange fluid.
  • the boundary line between the first region 11a and the second region 11b is an imaginary straight line connecting the upstream end portions 12a of the notches 12 arranged in parallel in the vertical direction, in other words, the heat transfer tubes 15 arranged in parallel in the vertical direction. It is an imaginary straight line connecting the upstream end 15b.
  • the upper surface 15 a of the heat transfer tube 15 extends from the downstream end 11 d of the fin 11 toward the upstream end 11 c, in other words, the second region which is a drainage region. It is descending toward 11b. That is, the upper surface 15 a of the heat transfer tube 15 is inclined downward toward the upstream end portion 11 c side of the fin 11. In the first embodiment, the upper surface 15a of the heat transfer tube 15 is inclined by an angle ⁇ with respect to the horizontal plane. On the other hand, in a state where the heat transfer tubes 15 are attached to the fins 11, the lower surface 15c of the heat transfer tubes 15 is substantially horizontal.
  • the second heat exchange unit 20 includes a plurality of plate-like fins 21 extending in the vertical direction. These fins 21 are juxtaposed in a horizontal direction perpendicular to the air flow direction (a direction perpendicular to the plane of FIG. 2) with a specified fin pitch (interval). A plurality of notches 22 are formed in the downstream end 21d of each fin 21 with a predetermined step pitch (interval) in the vertical direction. These notches 22 are into which the heat transfer tubes 25 are inserted, and have a shape corresponding to the outer shape of the heat transfer tubes 25. Further, the upstream end portion 22 a of the notch 22 is disposed at a position away from the upstream end portion 21 c of the fin 21 by a specified interval (second specified interval).
  • Each cutout 22 has a shape in which the distance between the upper edge and the lower edge gradually increases from the upstream end 22a to the opening 22b. For this reason, the heat transfer tube 25 can be easily inserted into the notch 22.
  • the fin 21 corresponds to the second fin of the present invention.
  • the upstream end 21c corresponds to the third end of the present invention.
  • the downstream end 21d corresponds to the fourth end of the present invention.
  • the second heat exchange unit 20 includes a plurality of heat transfer tubes 25 inserted into the notches 22 of the fins 21. That is, the heat transfer tubes 25 are arranged side by side with a specified step pitch in the vertical direction. The heat transfer tubes 25 are provided so as to penetrate the fins 21 in the direction in which the fins 21 are juxtaposed. The fin 21 and the heat transfer tube 25 are in close contact with each other by brazing. These heat transfer tubes 25 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction. The interior of each heat transfer tube 25 is partitioned by a plurality of partition walls, and a plurality of refrigerant channels 26 are formed.
  • the heat transfer tube 25 has a planar upper surface 25a and a planar lower surface 25c.
  • the distance between the upper surface 25a and the lower surface 25c gradually increases from the upstream end 25b toward the downstream end 25d.
  • the distance between the upper surface 25a and the lower surface 25c gradually increases from the upstream end 21c of the fin 21 toward the downstream end 21d.
  • Such a heat transfer tube 25 is made of, for example, aluminum or aluminum alloy, and is formed by, for example, extrusion molding.
  • coolant flow path 26 so that it may become substantially symmetrical with respect to the plane which equally divides the angle which the upper surface 25a and the lower surface 25c comprise. Is forming. Thereby, it becomes easy to ensure the manufacturability when the heat transfer tube 25 is extruded.
  • the heat transfer tube 25 may be formed, for example, by extrusion so that the cross section has an elliptical shape, and then the final shape may be formed by additional processing such as pressing. Further, a groove may be formed on the wall surface of the refrigerant flow path 26, that is, the inner wall surface of the heat transfer tube 25.
  • the heat transfer tube 15 adjacent to the heat transfer tube 15 corresponding to the first heat transfer tube in the lateral direction corresponds to the second heat transfer tube of the present invention.
  • the upper surface 25a of the heat transfer tube 25 corresponding to the second heat transfer tube corresponds to the second surface of the present invention.
  • the upstream end 22a of the notch 22 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position away from the upstream end 21c of the fin 21 by a specified interval (second specified interval). Yes.
  • the upstream end 25 b of the heat transfer tube 25 is also located at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). Be placed. For this reason, the first region 21 a and the second region 21 b are formed in the fin 21.
  • the first region 21a is a region in which a plurality of notches 22 are formed in the longitudinal direction that is the gravity direction (arrow Z direction), and is a region in which the heat transfer tube 25 is provided.
  • the second region 21b is a region where the heat transfer tube 25 is not provided in the longitudinal direction (arrow Z direction), and is a drainage region where water adhering to the fins 21 is discharged.
  • the second region 21b is arranged on the upstream side of the first region 21a in the flow direction (arrow X direction) of the air that is the heat exchange fluid.
  • the boundary line between the first region 21a and the second region 21b is a virtual straight line connecting the upstream end portions 22a of the notches 22 arranged in the vertical direction, in other words, the heat transfer tubes 25 arranged in parallel in the vertical direction. It is an imaginary straight line connecting the upstream end 25b.
  • the upper surface 25a of the heat transfer tube 25 is a second region that is a drainage region from the downstream end 21d of the fin 21 toward the upstream end 21c. It is descending toward 21b. That is, the upper surface 25 a of the heat transfer tube 25 is inclined downward toward the upstream end 21 c side of the fin 21. In the first embodiment, the upper surface 25a of the heat transfer tube 25 is inclined by an angle ⁇ with respect to the horizontal plane.
  • the lower surface 25c of the heat transfer tubes 25 is substantially horizontal.
  • the first heat exchanging unit 10 and the second heat exchanging unit 20 configured in this way are the downstream end 11d of the fin 11 of the first heat exchanging unit 10 and the upstream end of the fin 21 of the second heat exchanging unit 20. It arrange
  • FIG. 5 shows a vertical cross section perpendicular to the direction in which the heat transfer tube 15 penetrates the fins 11, in other words, an arrangement like FIG. 5 shows a vertical cross section perpendicular to the direction in which the heat transfer tubes 25 penetrate the fins 21. It has become a relationship.
  • the intersections A and B are defined as follows.
  • intersection point between the second surface of the present invention (the upper surface 25a of the heat transfer tube 25 in the first embodiment) or the extension line of the second surface and the extension line of the lower surface 15c of the heat transfer tube 15 is defined as an intersection point A.
  • An intersection point between the second surface of the present invention (in the first embodiment, the upper surface 25a of the heat transfer tube 25) or the extension line of the second surface and the extension line of the lower surface 25c of the heat transfer tube 25 is defined as an intersection point B.
  • the upper end portion (point C in FIG. 5) of the heat transfer tube 25 is located above the lower surface 15c of the heat transfer tube 15 adjacent to the heat transfer tube 25 in the lateral direction. Further, the intersection A of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15 is closer to the heat transfer tube 25 than the intersection B of the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 25c. positioned. That is, the intersection A is located downstream of the intersection B in the air flow direction.
  • the heat transfer tube 15 of the first heat exchange unit 10 and the heat transfer tube 25 of the second heat exchange unit 20 adjacent to the heat transfer tube 15 in the lateral direction are in the air flow direction. When looking at the heat exchanger 1, they overlap. Further, the heat transfer tube 15 and the heat transfer tube 25 that are overlapped when the heat exchanger 1 is viewed in the air flow direction are positioned slightly below the heat transfer tube 15.
  • the blower 501 is a propeller fan, for example, and the rotation shaft of the blower 501 is arranged in a substantially horizontal direction. For this reason, as indicated by white arrows in FIGS. 2 and 5, the air flows from the blower 501 to the heat exchanger 1 substantially horizontally from the upstream end portion 11 c side of the fin 11 of the first heat exchange unit 10. Supplied. The air flows into the first heat exchange unit 10 and flows out from the second heat exchange unit 20.
  • the air supplied from the blower 501 flows between the fins 11 of the first heat exchange unit 10 from the upstream end portion 11 c side of the fins 11. And when this air reaches
  • the upper surface 15 a of the heat transfer tube 15 is inclined downward toward the upstream end portion 11 c side of the fin 11. That is, the upper surface 15a of the heat transfer tube 15 faces the direction facing the air flow. For this reason, air can flow along the upper surface 15 a in most of the width direction of the heat transfer tube 15. Therefore, heat exchange between the air and the heat transfer tube 15 can be promoted without causing large separation, and ventilation resistance can be reduced.
  • the lower surface 15c of the heat transfer tube 15 is substantially horizontal. That is, the lower surface 15c of the heat transfer tube 15 substantially coincides with the air flow direction. For this reason, air can flow along the lower surface 15 c in almost the entire region of the heat transfer tube 15 in the width direction. Therefore, heat exchange between air and the surface of the heat transfer tube 15 can be promoted without causing large separation, and ventilation resistance can be reduced.
  • the gap between the lower surface 15c of the heat transfer tube 15 positioned above and the upper surface 15a of the heat transfer tube 15 positioned below is, with respect to the air flow direction, It becomes narrower as it goes downstream. For this reason, generation
  • the air that has flowed around the heat transfer tube 15 flows out of the first heat exchange unit 10 from the downstream end portion 11d side of the fin 11.
  • the heat exchanger tube 15 of the 1st heat exchange part 10 the upper surface 15a inclines below toward the upstream edge part 11c side, and the lower surface 15c is substantially horizontal. For this reason, the flow of air flowing between the heat transfer tubes 15 adjacent to each other in the vertical direction is a flow directed upward from the horizontal direction.
  • the air that has flowed out of the first heat exchange unit 10 flows between the fins 21 of the second heat exchange unit 20 from the upstream end 21c side of the fins 21. And when this air reaches
  • the upper surface 25a of the heat transfer tube 25 is located behind the downstream end 15d of the heat transfer tube 15 located on the upstream side in the air flow direction.
  • the upper surface 25a of the heat transfer tube 25 is located behind the dead water area where a sufficient amount of air does not flow and the wind speed is lowered, and the heat exchange efficiency is lowered.
  • the air flowing between the fins 21 flows upward in the horizontal direction and reaches the upstream end 25b of the heat transfer tube 25. Therefore, as indicated by an arrow W shown in FIG. 5, a part of the air that has reached the upstream end 25b of the heat transfer tube 25 can flow along the upper surface 25a, and heat between the air and the upper surface 25a. Exchange can be facilitated.
  • the upstream end portion 25 b of the heat transfer tube 25 is located slightly below the heat transfer tube 15. For this reason, the quantity of the air which flows along the upper surface 25a of the heat exchanger tube 25 can be increased more, and the heat exchange between air and the upper surface 25a can be accelerated
  • the lower surface 25c of the heat transfer tube 25 faces the direction facing the air flow. Yes. For this reason, air can flow along the lower surface 25c of the heat transfer tube 25, and heat exchange between the air and the lower surface 25c can also be promoted.
  • the drainage action of the first heat exchange unit 10 is as follows. Water droplets adhering to the first region 11a of the fin 11 of the first heat exchange unit 10 fall along the surface of the fin 11 serving as the first region 11a. This water droplet reaches the upper surface 15 a of the heat transfer tube 15. The water droplets reaching the upper surface 15a of the heat transfer tube 15 flow toward the upstream end 15b along the upper surface 15a due to the influence of gravity. Most of the water droplets that have reached the upstream end 15b are transmitted to the second region 11b using the momentum that has flowed, and then flow downward to the first heat exchange unit 10.
  • the heat transfer tube 15 does not exist in the second region 11b, the water droplet travels along the surface of the fin 11 and reaches the lower portion of the first heat exchange unit 10 at a stretch and is discharged. That is, the 1st heat exchange part 10 can improve drainage, although the cross-sectional shape heat transfer tube 15 whose horizontal width is larger than vertical width is used.
  • the drainage action of the second heat exchange unit 20 is the same as that of the first heat exchange unit 10. That is, the water droplets adhering to the first region 21a of the fin 21 of the second heat exchange unit 20 fall along the surface of the fin 21 that becomes the first region 21a. This water droplet reaches the upper surface 25 a of the heat transfer tube 25. The water droplets that have reached the upper surface 25a of the heat transfer tube 25 flow toward the upstream end 25b through the upper surface 25a due to the influence of gravity. Most of the water droplets that have reached the upstream end 25b are transmitted to the second region 21b using the force that has flowed, and flow downward to the second heat exchange unit 20.
  • the heat transfer tube 25 does not exist in the second region 21b, the water droplets travel along the surface of the fin 21 and reach the lower portion of the second heat exchange unit 20 at a stretch and are discharged. That is, the 2nd heat exchange part 20 can improve drainage, although the cross-sectional heat transfer tube 25 whose horizontal width is larger than vertical width is used.
  • some water droplets that have not been transmitted from the first region 21a to the second region 21b travel along the upstream end 25b of the heat transfer tube 25 and wrap around the lower surface 25c.
  • the entrained water droplets stay on the lower surface 25c of the heat transfer tube 25 and grow in a state where the surface tension, gravity, static frictional force and the like are balanced. Water droplets swell downward as they grow, and the effect of gravity increases. When the gravity applied to the water droplet exceeds the upward force such as the surface tension, the water droplet is not affected by the surface tension and is detached from the lower surface 25 c of the heat transfer tube 25. The detached water drops again fall on the first region 21a and reach the upper surface 25a of the heat transfer tube 25 below. After that, the operation as described above is repeated, and finally it is discharged below the second heat exchange unit 20.
  • the heat exchanger 1 includes the fin 11 having the upstream end 11c and the downstream end 11d in the lateral direction, and the upstream end 21c and the downstream end in the lateral direction.
  • a fin 21 having a portion 21d and having an upstream end 21c disposed opposite to the downstream end 11d, and a heat transfer tube 15 penetrating the fin 11 at a first predetermined distance from the upstream end 11c.
  • a heat transfer tube 25 penetrating the fin 21 away from the upstream end 21c by a second specified interval, and the heat transfer tube 15 has a flat upper surface 15a and a flat lower surface 15c.
  • the heat transfer tube 25 has a planar upper surface 25a and a planar lower surface 25c.
  • the lower surface 15c is horizontal.
  • the heat transfer tube 15 In a vertical cross section perpendicular to the direction penetrating through the line 11, the first surface is inclined downward toward the upstream end portion 11c, and the second surface is inclined downward toward the upstream end portion 21c.
  • the upper end of the heat transfer tube 25 is located above the lower surface 15c, and the intersection point A, which is the intersection of the second surface and the extension line of the lower surface 15c, is the extension line of the second surface and the extension line of the lower surface 25c. It is located closer to the heat transfer tube 25 than the intersection B, which is the intersection.
  • the heat exchanger 1 according to the first embodiment can improve the drainage performance while using the heat transfer tubes 15 and 25 having a cross-sectional shape whose width is larger than the height.
  • the heat exchanger 1 according to the first embodiment includes a heat transfer tube 15 located on the upstream side of the air flow and a heat transfer tube 25 located on the downstream side when the heat exchanger 1 is viewed in the air flow direction. In the arrangement in which the heat transfer tubes 25 overlap, heat exchange of the heat transfer tubes 25 can be promoted as described above. Therefore, the heat exchanger 1 according to Embodiment 1 can improve both drainage and heat transfer performance.
  • the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are horizontally arranged.
  • the present invention is not limited to this, and the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 may be inclined with respect to the horizontal plane. If the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are lowered toward the second regions 11b and 21b, which are drainage regions, the above-described drainage improvement effect can be obtained. Moreover, if air is supplied to the heat exchanger 1 from the air blower 501 so that air flows along the lower surface 15c of the heat transfer tube 15, the above-described effect of improving the heat transfer performance can be obtained.
  • the lower surfaces 15c, 25c of the heat transfer tubes 15, 25 are configured to descend from the upstream end portions 15b, 25b toward the downstream end portions 15d, 25d, the upper surfaces 15a, 25a of the heat transfer tubes 15, 25 Water droplets that have reached the upstream ends 15b and 25b are likely to wrap around the lower surfaces 15c and 25c. For this reason, the above-mentioned improvement effect of drainability falls a little. Therefore, it is preferable that the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are arranged horizontally or descend from the downstream ends 15d and 25d toward the upstream ends 15b and 25b. In other words, the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are disposed horizontally or descend from the downstream ends 11d and 21d of the fins 11 and 21 toward the upstream ends 11c and 21c. It is preferable.
  • the heat transfer tubes 15 and 25 are attached to the notches 12 and 22 of the fins 11 and 21, but through holes are formed in the fins 11 and 21, and the heat transfer tubes 15 and 25 are formed in the through holes. May be inserted. Even if the heat exchanger 1 is configured in this manner, both drainage and heat transfer performance can be improved.
  • the fins 11 and the fins 21 are formed as separate bodies, but the fins 11 and the fins 21 may be integrally formed as a single fin.
  • a virtual straight line extending in the vertical direction at a position away from the upstream end 25b of the heat transfer tube 25 by a specified interval (second specified interval) is expressed as a downstream end 11d of the fin 11 and an upstream end 21c of the fin 21.
  • the heat exchanger 1 may be manufactured. Even if the heat exchanger 1 is configured in this manner, both drainage and heat transfer performance can be improved.
  • Embodiment 2 the inclination of the lower surface 15c of the heat transfer tube 15 and the inclination of the lower surface 25c of the heat transfer tube 25 are the same. Not limited to this, the inclination of the lower surface 15c of the heat transfer tube 15 may be different from the inclination of the lower surface 25c of the heat transfer tube 25, and the heat exchanger 1 may be configured as follows.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 6 is a front view showing a heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 7 is an enlarged view (front view) of a main part showing fins of the heat exchanger.
  • FIG. 8 is an enlarged view of a main part in which a part of FIG. 6 is enlarged.
  • the heat transfer tubes 15 and 25 are shown in cross section.
  • the white arrow shown in FIG.6 and FIG.8 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501.
  • the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. 6 to 8, this air flow direction is also indicated by an arrow X.
  • the arrow Z shown in FIGS. 6 to 8 is the direction of gravity.
  • the heat transfer tube 15 of the first heat exchange unit 10 and the heat transfer tube 25 of the second heat exchange unit 20 adjacent to the heat transfer tube 15 in the lateral direction are the heat transfer tubes.
  • the position of the upper end portion of the heat transfer pipe 25 and the positions of the intersections A and B Is the same as in the first embodiment.
  • the upper end portion (point C in FIG. 8) of the heat transfer tube 25 is located above the lower surface 15c of the heat transfer tube 15 that is adjacent to the heat transfer tube 25 in the lateral direction. Further, the intersection A of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15 is closer to the heat transfer tube 25 than the intersection B of the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 25c. positioned. That is, the intersection A is located downstream of the intersection B in the air flow direction.
  • the heat transfer tube 15 of the first heat exchange unit 10 and the second heat exchange adjacent to the heat transfer tube 15 in the lateral direction overlaps when the heat exchanger 1 is viewed in the air flow direction. Further, the heat transfer tube 15 and the heat transfer tube 25 that overlap when the heat exchanger 1 is viewed in the air flow direction are such that the upstream end 25b of the heat transfer tube 25 is located slightly below the lower surface 15c of the heat transfer tube 15. Will be.
  • the heat exchanger 1 according to the second embodiment is different from the first embodiment in that the lower surface 25c of the heat transfer tube 25 is drained from the downstream end 21d of the fin 21 toward the upstream end 21c. This is a point descending toward the second region 21b, which is the region. That is, the lower surface 25 c of the heat transfer tube 25 is inclined downward toward the upstream end 21 c side of the fin 21.
  • the heat exchanger 1 according to the second embodiment configured as described above, as in the first embodiment, the water droplets that have reached the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are caused to flow into the heat transfer tubes 15 and 25 by gravity. 25 can be discharged to the second regions 11b and 21b. Furthermore, in the heat exchanger 1 according to Embodiment 2, the lower surface 25c of the heat transfer tube 25 is also lowered toward the second region 21b. For this reason, the water droplet adhering to the lower surface 25c of the heat exchanger tube 25 flows toward the upstream end 25b along the lower surface 25c due to the influence of gravity. And most of the water droplets that have reached the upstream end portion 25b are discharged to the second region 21b by utilizing the flowing momentum. Therefore, the heat exchanger 1 according to the second embodiment can further improve drainage compared to the first embodiment.
  • the heat exchanger 1 according to the second embodiment also has an effect that the heat transfer performance can be further improved as compared with the first embodiment.
  • both the upper surface 25a and the lower surface 25c are arranged so as to descend toward the upstream side of the air flow. For this reason, the plane which equally divides the angle which upper surface 25a and lower surface 25c comprise falls down toward the upstream of an air flow.
  • the center line of the cross section of the heat transfer tube 25 descends toward the upstream side of the air flow.
  • the air flowing between the fins 21 of the second heat exchange unit 20 is a flow that is directed upward from the horizontal direction, and the upstream end of the heat transfer tube 25. 25b is reached. That is, the heat exchanger 1 according to the second embodiment has a configuration in which the center line of the cross section of the heat transfer tube 25 follows the air flow as compared with the first embodiment. For this reason, the heat exchanger 1 which concerns on this Embodiment 2 can reduce the ventilation resistance at the time of air flowing around the heat exchanger tube 25 compared with Embodiment 1. FIG. Therefore, the heat exchanger 1 according to the second embodiment can further promote the heat exchange of the heat transfer tube 25 and can further improve the heat transfer performance as compared with the first embodiment.
  • Embodiment 3 In the first embodiment and the second embodiment, the intersection A is located closer to the heat transfer tube 25 than the intersection B.
  • the present invention is not limited to this, and the present invention may be applied even if the arrangement position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first and second embodiments so that the positions of the intersection A and the intersection B coincide. Can be implemented.
  • the third embodiment an example in which the position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first embodiment and the positions of the intersection A and the intersection B are matched will be described.
  • items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 9 is a front view showing a heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 10 is an enlarged view (front view) of a main part showing fins of the heat exchanger.
  • FIG. 11 is an enlarged view of a main part in which a part of FIG. 9 is enlarged.
  • the heat transfer tubes 15 and 25 are shown in cross section.
  • the white arrow shown in FIG.9 and FIG.11 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501.
  • the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction.
  • this air flow direction is also indicated by an arrow X.
  • the arrow Z shown in FIGS. 9 to 11 is the direction of gravity.
  • the intersection A between the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15, and the extension line and lower surface of the upper surface 25a of the heat transfer tube 25 coincides.
  • the upper end portion (point C in FIG. 11) of the heat transfer tube 25 is adjacent to the heat transfer tube 25 in the lateral direction. 15 is located above the lower surface 15c.
  • Other configurations of the heat exchanger 1 according to the third embodiment are the same as those in the first embodiment.
  • the air flow direction is the same as in Embodiment 2.
  • the heat transfer tubes 15 and 25 adjacent in the lateral direction overlap each other.
  • the upstream end 25b of the heat transfer tube 25 is slightly above the lower surface 15c of the heat transfer tube 15. Will be located.
  • water droplets reaching the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are transmitted by gravity, as in the first and second embodiments. It can discharge
  • position of the heat exchanger tubes 15 adjacent in the up-down direction in the 1st heat exchange part 10 is the same as Embodiment 1 and Embodiment 2. It has become. For this reason, the air flowing between the fins 21 of the second heat exchange unit 20 becomes a flow that is directed upward from the horizontal direction and reaches the upstream end portion 25 b of the heat transfer tube 25. Therefore, even if the heat exchanger 1 is configured as in the third embodiment, a sufficient amount of air can flow along the upper surface 25a of the heat transfer tube 25 of the second heat exchange unit 20. For this reason, also in the heat exchanger 1 comprised like this Embodiment 3, heat transfer performance can be improved.
  • both the drainage performance and the heat transfer performance can be improved as in the first and second embodiments.
  • the overlapping degree of the heat transfer tubes 15 and the heat transfer tubes 25 adjacent in the horizontal direction becomes the largest.
  • heat transfer tubes having the same shape are used as the heat transfer tube 15 and the heat transfer tube 25, when the heat exchanger 1 is viewed in the air flow direction, as shown in FIG. Completely hidden behind.
  • Embodiment 4 FIG.
  • the heat transfer tubes 15 and 25 having flat upper surfaces 15a and 25a are used.
  • the present invention is not limited to this, and the present invention can be implemented even when the heat transfer tubes 15 and 25 having the curved upper surfaces 15a and 25a are used.
  • items not particularly described are the same as those in any of the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a front view showing a heat exchanger according to Embodiment 4 of the present invention.
  • FIG. 13 is an enlarged view (front view) of a main part showing fins of the heat exchanger.
  • FIG. 14 is an enlarged view of a main part in which a part of FIG. 12 is enlarged.
  • the heat transfer tubes 15 and 25 are shown in cross section.
  • the white arrow shown in FIG.12 and FIG.14 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501.
  • the blower 501 supplies air to the heat exchanger 1 in a substantially horizontal direction.
  • the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction.
  • this air flow direction is also indicated by an arrow X.
  • the arrow Z shown in FIGS. 12 to 14 is the direction of gravity.
  • a plurality of notches 12 into which the heat transfer tubes 15 are inserted are formed in the fins 11 of the first heat exchanging section 10 with a predetermined step pitch (interval) in the vertical direction. It had been.
  • the plurality of through holes 13 into which the heat transfer tubes 15 are inserted into the fins 11 of the first heat exchange unit 10 have a predetermined step pitch (interval) in the vertical direction. Is formed.
  • Each through hole 13 has a shape corresponding to the outer shape of the heat transfer tube 15.
  • the upstream end 13 a of the through hole 13 is disposed at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval).
  • the downstream end 13b of the through hole 13 is also arranged at a position spaced apart from the downstream end 11d of the fin 11 by a specified distance.
  • the heat transfer tubes 15 according to the fourth embodiment are provided so as to penetrate the fins 11 in the juxtaposition direction of the fins 11 by being inserted into the through holes 13 of the fins 11.
  • the fin 11 and the heat transfer tube 15 are in close contact with each other by brazing.
  • These heat transfer tubes 15 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction.
  • the shape of the heat transfer tube 15 will be described in more detail.
  • the heat transfer tube 15 has a curved upper surface 15a that is convex upward, and a planar lower surface 15c.
  • the upper surface 15a and the lower surface 15c are located on the upstream side of the air flow (on the upstream end 11c side of the fin 11) from the lateral center position. Is gradually increased from the upstream end 11c of the fin 11 toward the downstream end 11d.
  • the tangent plane of the upper surface 15a is defined as the tangential plane 17
  • the distance between the tangential plane 17 and the lower surface 15c gradually increases from the upstream end portion 11c of the fin 11 toward the downstream end portion 11d.
  • the lower surface 15c of the heat transfer tube 15 is substantially horizontal. That is, the tangential plane 17 is inclined downward toward the upstream end portion 11 c side of the fin 11.
  • the tangential plane 17 corresponds to the first surface of the present invention.
  • the upstream end 13a of the through hole 13 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position away from the upstream end 11c of the fin 11 by a specified interval (first specified interval). Yes. Further, the downstream end 13 b of the through hole 13 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position spaced apart from the downstream end 11 d of the fin 11 by a specified distance. For this reason, in the state where the heat transfer tube 15 is attached to the fin 11, the upstream end 15 b of the heat transfer tube 15 is also arranged at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval). Is done. In the state where the heat transfer tube 15 is attached to the fin 11, the downstream end 15 d of the heat transfer tube 15 is also arranged at a position spaced apart from the downstream end 11 d of the fin 11 by a specified distance.
  • the fin 11 is formed with the second region 11b, which is a region where the heat transfer tube 15 is not provided, on both the upstream end 11c side and the downstream end 11d side.
  • the boundary line between the first region 11a and the second region 11b on the upstream end portion 11c side is a virtual straight line connecting the upstream end portions 13a of the through holes 13 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the upstream end 15b of the heat transfer tubes 15 arranged side by side.
  • the boundary line between the first region 11a and the second region 11b on the downstream end 11d side is a virtual straight line connecting the downstream ends 13b of the through holes 13 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the downstream end 15d of the heat transfer tubes 15 arranged side by side.
  • the second heat exchange unit 20 according to the fourth embodiment has the same configuration as the first heat exchange unit 10 according to the fourth embodiment. Specifically, a plurality of through holes 23 into which the heat transfer tubes 25 are inserted are formed in the fins 21 of the second heat exchange unit 20 with a predetermined step pitch (interval) in the vertical direction. Each through hole 23 has a shape corresponding to the outer shape of the heat transfer tube 25. Further, the upstream end 23 a of the through hole 23 is disposed at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). The downstream end 23b of the through hole 23 is also arranged at a position spaced apart from the downstream end 21d of the fin 21 by a specified distance.
  • the heat transfer tubes 25 according to the fourth embodiment are provided so as to pass through the fins 21 in the parallel arrangement direction of the fins 21 by being inserted into the through holes 23 of the fins 21.
  • the fin 21 and the heat transfer tube 25 are in close contact with each other by brazing.
  • These heat transfer tubes 25 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction.
  • the shape of the heat transfer tube 25 will be described in more detail.
  • the heat transfer tube 25 has a curved upper surface 25a that protrudes upward, and a planar lower surface 25c.
  • the upper surface 25a and the lower surface 25c are located on the upstream side of the air flow (on the upstream end 21c side of the fins 21) from the lateral center position. Is gradually increased from the upstream end 21c of the fin 21 toward the downstream end 21d.
  • the tangential plane 27 and the lower surface 25c Is gradually increased from the upstream end 21c of the fin 21 toward the downstream end 21d.
  • the lower surface 25c of the heat transfer tube 25 is substantially horizontal. That is, the tangential plane 27 is inclined downward toward the upstream end portion 21 c side of the fin 21.
  • the tangential plane 27 corresponds to the second surface of the present invention.
  • the upstream end 23a of the through hole 23 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position away from the upstream end 21c of the fin 21 by a specified interval (second specified interval). Yes. Further, the downstream end 23 b of the through hole 23 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position spaced apart from the downstream end 21 d of the fin 21 by a specified distance. For this reason, when the heat transfer tube 25 is attached to the fin 21, the upstream end 25 b of the heat transfer tube 25 is also arranged at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). Is done. Further, in a state where the heat transfer tube 25 is attached to the fins 21, the downstream end portion 25 d of the heat transfer tube 25 is also disposed at a position spaced apart from the downstream end portion 21 d of the fins 21 by a specified interval.
  • the fin 21 is formed with the second region 21b, which is a region where the heat transfer tube 25 is not provided, on both the upstream end 21c side and the downstream end 21d side.
  • the boundary line between the first region 21a and the second region 21b on the upstream end 21c side is a virtual straight line connecting the upstream end 23a of the through holes 23 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes the virtual straight line which connects the upstream end part 25b of the heat exchanger tube 25 arranged in parallel.
  • the boundary line between the first region 21a and the second region 21b on the downstream end 21d side is a virtual straight line connecting the downstream ends 23b of the through holes 23 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the downstream end portions 25d of the heat transfer tubes 25 arranged side by side.
  • the heat transfer tubes 15 and 25 exist due to the water droplets reaching the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 by gravity. Can be discharged to the second regions 11b and 21b. Therefore, also in the heat exchanger 1 according to the fourth embodiment, the drainage performance can be improved as in the first to third embodiments.
  • the tangential plane 17 of the heat transfer tube 15 of the first heat exchange unit 10 is arranged so as to be in the same posture as the upper surface 15a of the first to third embodiments, and the heat transfer tube 25 of the second heat exchange unit 20 is arranged.
  • the heat transfer performance can be improved as in the first to third embodiments. You can also.
  • the tangential planes 17 and 27 of the heat transfer tubes 15 and 25 may be arranged so as to descend from the downstream end portions 11d and 21d of the fins 11 and 21 toward the upstream end portions 11c and 21c. Moreover, what is necessary is just to arrange
  • the arrangement positions of the heat transfer tubes 15 and 25 can be made the same as those in the first to third embodiments.
  • the air flow in the first heat exchange unit 10 and the second heat exchange unit 20 can also be made the same as in the first to third embodiments.
  • the air supplied from the blower 501 to the first heat exchanging unit 10 substantially horizontally flows substantially horizontally along the bottom surface 15c in the vicinity of the bottom surface 15c of the heat transfer tube 15 arranged substantially horizontally. Further, in the vicinity of the upper surface 15a portion on the upstream side of the air flow from the lateral center position, the flow is directed upward from the horizontal direction.
  • the flow of air flowing between the heat transfer tubes 15 adjacent in the vertical direction is a flow that is directed upward from the horizontal direction, as in the first to third embodiments. Therefore, the air flowing between the fins 21 of the second heat exchange unit 20 reaches the upstream end 25b of the heat transfer tube 25 in a flow that is directed upward from the horizontal direction.
  • a sufficient amount of air can be flowed in the vicinity of the upper surface 25a of the heat transfer tube 25 at the position where the wind speed is reduced behind the dead water area. The heat exchange between the air and the upper surface 25a can be promoted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger is provided with: a first fin; a second fin; a first heat transfer tube penetrating the first fin by being separated from an upstream end section of the first fin by a first specified distance; and a second heat transfer tube penetrating the second fin by being separated from an upstream end section of the second fin by a second specified distance. When the first heat transfer tube and the second heat transfer tube are observed such that the lower surface of the first heat transfer tube is horizontal, in a longitudinal plane perpendicular to the direction in which the first heat transfer tube penetrates the first fin, the upper surfaces of the first and second heat transfer tubes are inclined downward toward the upstream end sections of the first and second fins, an upper end of the second heat transfer tube is positioned above the lower surface of the first heat transfer tube, and an intersection point A, which is a point where an extension line of the upper surface of the second heat transfer tube, and an extension line of the lower surface of the first heat transfer tube intersect each other, is positioned further toward the second heat transfer tube side than an intersection point B, which is a point where the extension line of the upper surface of the second heat transfer tube and an extension line of the lower surface of the second heat transfer tube intersect each other.

Description

熱交換器及び冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus
 本発明は、排水性と伝熱性能の双方の向上を図った熱交換器、及び該熱交換器を備えた冷凍サイクル装置に関する。 The present invention relates to a heat exchanger that improves both drainage and heat transfer performance, and a refrigeration cycle apparatus including the heat exchanger.
 従来、送風機から横方向に吹き出される空気の流れ方向に沿って、フィンアンドチューブ型の熱交換部を2つ以上並設した熱交換器が知られている。詳しくは、この熱交換器の各熱交換部は、上下方向に延びる複数のフィンと、複数の伝熱管とを備えている。複数のフィンは、所定の間隔を空けて、空気の流れ方向と略垂直な横方向に並設されている。複数の伝熱管は、所定の間隔を空けて上下方向に並設され、フィンの並設方向に沿って各フィンを貫通している。また、各伝熱管の端部は、これら伝熱管と共に冷媒流路を形成する分配管又はヘッダに接続されている。そして、熱交換器において、フィンの間を流動する空気と、伝熱管内を流動する冷媒との間で熱が交換される。 Conventionally, a heat exchanger in which two or more fin-and-tube heat exchange units are arranged in parallel along the flow direction of air blown laterally from a blower is known. Specifically, each heat exchange part of the heat exchanger includes a plurality of fins extending in the vertical direction and a plurality of heat transfer tubes. The plurality of fins are arranged in parallel in a lateral direction substantially perpendicular to the air flow direction with a predetermined interval. The plurality of heat transfer tubes are juxtaposed in the vertical direction at a predetermined interval, and penetrate each fin along the juxtaposition direction of the fins. Moreover, the edge part of each heat exchanger tube is connected to the distribution pipe or header which forms a refrigerant | coolant flow path with these heat exchanger tubes. In the heat exchanger, heat is exchanged between the air flowing between the fins and the refrigerant flowing in the heat transfer tube.
 上述のように構成された熱交換器には、伝熱管として、扁平管を用いたものも提案されている。扁平管とは、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きくなる例えば断面長円形状等の伝熱管である。扁平管を用いた熱交換器は、円管状の伝熱管を用いた熱交換器と比較して、管内の伝熱面積を大きく確保できることに加え、空気の通風抵抗を抑制することができる。このため、扁平管を用いた熱交換器は、円管状の伝熱管を用いた熱交換器と比較して、伝熱性能を向上することができる。一方で、扁平管を用いた熱交換器は、円管状の伝熱管を用いた熱交換器と比較して、蒸発器として用いたときの排水性が劣るという傾向がある。扁平管の上面に水滴が残留しやすいためである。 As the heat exchanger configured as described above, a heat exchanger having a flat tube has been proposed. A flat tube is a heat transfer tube having an elliptical cross section, for example, in which the lateral width is larger than the longitudinal width in a cross section perpendicular to the refrigerant flow direction. Compared with a heat exchanger using a circular heat transfer tube, a heat exchanger using a flat tube can secure a large heat transfer area in the tube, and can suppress the air flow resistance. For this reason, the heat exchanger using a flat tube can improve heat transfer performance compared with the heat exchanger using a circular heat transfer tube. On the other hand, heat exchangers using flat tubes tend to have poor drainage when used as evaporators compared to heat exchangers using circular heat transfer tubes. This is because water droplets are likely to remain on the upper surface of the flat tube.
 例えば、空気調和機及び冷凍機等の冷凍サイクル装置においては、低外気温時に室外機の熱交換器を蒸発器として用いた際、空気中の水分が露として熱交換器に付着し、該露が凍結して霜となる。このため、一般的に、このような冷凍サイクル装置は、着霜による通風抵抗の増加、伝熱性能の低下、及び熱交換器の損傷を防ぐこと等を目的として、熱交換器に付着した霜を溶かす除霜運転モードを備える。ここで、扁平管を用いた熱交換器は、上述のように水滴が残留しやすい。そして、水滴が残留した場合、この水滴が凍結して大きな霜に成長してしまう。このため、扁平管を用いた熱交換器は、除霜運転の時間を長くする必要があり、その結果、快適性の低下及び平均暖房能力の低下等を招くこととなる。 For example, in refrigeration cycle devices such as air conditioners and refrigerators, when an outdoor unit heat exchanger is used as an evaporator at a low outdoor temperature, moisture in the air adheres to the heat exchanger as dew, and the dew Freezes and becomes frost. For this reason, in general, such a refrigeration cycle apparatus is designed to prevent frost adhering to a heat exchanger in order to prevent an increase in ventilation resistance due to frost formation, a decrease in heat transfer performance, and damage to the heat exchanger. A defrosting operation mode for melting Here, in the heat exchanger using a flat tube, water droplets are likely to remain as described above. And when a water droplet remains, this water droplet freezes and grows into a big frost. For this reason, the heat exchanger using a flat tube needs to lengthen the time of a defrost operation, As a result, the fall of comfort, the fall of average heating capability, etc. will be caused.
 そこで、特許文献1には、送風機から横方向に吹き出される空気の流れ方向に沿って、断面長円形状の扁平管を用いたフィンアンドチューブ型の熱交換部を2つ並設した熱交換器において、扁平管の上面を傾斜させるように扁平管を配置したものが提案されている。 Therefore, in Patent Document 1, heat exchange in which two fin-and-tube heat exchange parts using flat tubes having an oval cross section are arranged in parallel along the flow direction of air blown laterally from the blower. In a vessel, a device in which a flat tube is arranged so as to incline the upper surface of the flat tube has been proposed.
特開2007-183088号公報JP 2007-183088 A
 特許文献1に開示された熱交換器は、扁平管の上面を傾斜させることにより、扁平管上面に滞留する結露水を、重力の作用によって排出し易くしている。このため、特許文献1に開示された熱交換器は、除霜運転の時間を低減できる効果がある。その反面、特許文献1に開示された熱交換器は、以下のように、扁平管の特徴である伝熱性能を十分に発揮できないという課題があった。 The heat exchanger disclosed in Patent Document 1 makes it easy to discharge condensed water staying on the upper surface of the flat tube by the action of gravity by inclining the upper surface of the flat tube. For this reason, the heat exchanger disclosed in Patent Document 1 has an effect of reducing the time for the defrosting operation. On the other hand, the heat exchanger disclosed in Patent Document 1 has a problem that the heat transfer performance, which is a characteristic of a flat tube, cannot be sufficiently exhibited as follows.
 詳しくは、熱交換器内部に流入した空気は、扁平管の前縁に到達し、扁平管の上面側と下面側との二手に分かれる。空気の流れに対面する方向を向いている面では、管壁に沿った空気の流れが生じ、比較的高い風速を維持して熱交換器を通過する。一方、空気の流れに対面しない方向を向いている面では、管壁に沿う空気の流れが生じづらく、流れが淀んだ状態、すなわち死水域が発生する。そして、空気の流れ方向に特許文献1に開示された熱交換器を見た場合、空気の流れ方向の下流側に位置する熱交換部の扁平管は、上流側に位置する熱交換部の扁平管の死水域の後方に配置されている。このため、空気の流れ方向の下流側に位置する熱交換部の扁平管の表面近傍に十分な量の空気が流れなくなり、該位置における風速が低くなる。これにより、特許文献1に開示された熱交換器は、扁平管の特徴である伝熱性能を十分に発揮できないという課題が発生する。 Specifically, the air that has flowed into the heat exchanger reaches the front edge of the flat tube, and is divided into two hands, the upper surface side and the lower surface side of the flat tube. On the surface facing the direction of air flow, air flows along the tube wall and passes through the heat exchanger while maintaining a relatively high wind speed. On the other hand, on the surface facing in a direction not facing the air flow, it is difficult for the air flow along the tube wall to occur, and a stagnant state, that is, a dead water area occurs. When the heat exchanger disclosed in Patent Document 1 is viewed in the air flow direction, the flat tube of the heat exchange unit located on the downstream side in the air flow direction is flattened on the heat exchange unit located on the upstream side. Located behind the dead water area of the pipe. For this reason, a sufficient amount of air does not flow in the vicinity of the surface of the flat tube of the heat exchanging part located on the downstream side in the air flow direction, and the wind speed at the position becomes low. Thereby, the subject that the heat exchanger disclosed by patent document 1 cannot fully exhibit the heat transfer performance which is the characteristic of a flat tube generate | occur | produces.
 当該課題を解決する1つの方法として、空気の流れ方向に熱交換器を見た際、空気の流れ方向の下流側の扁平管が上流側の扁平管の後方に位置しないように、下流側の扁平管の配置位置を変更することが考えられる。すなわち、空気の流れ方向に熱交換器を見た際、上流側の扁平管と重ならないように、下流側の扁平管を配置することが考えられる。しかしながら、このように熱交換器を構成すると、熱交換器の通風抵抗が増加してしまい、該通風抵抗によって伝熱性能が低下してしまう。 As one method for solving the problem, when the heat exchanger is viewed in the air flow direction, the downstream side flat tube in the air flow direction is not positioned behind the upstream side flat tube. It is conceivable to change the arrangement position of the flat tube. That is, when the heat exchanger is viewed in the air flow direction, it is conceivable to arrange the downstream flat tube so that it does not overlap with the upstream flat tube. However, when the heat exchanger is configured in this manner, the ventilation resistance of the heat exchanger increases, and the heat transfer performance is degraded by the ventilation resistance.
 本発明は、排水性と伝熱性能の双方の向上できる熱交換器、及び該熱交換器を備えた冷凍サイクル装置を提供することを目的とする。 An object of the present invention is to provide a heat exchanger capable of improving both drainage and heat transfer performance, and a refrigeration cycle apparatus including the heat exchanger.
 本発明に係る熱交換器は、横方向に第1端部及び第2端部を有する第1フィンと、横方向に第3端部及び第4端部を有し、前記第3端部が前記第2端部と対向して配置された第2フィンと、前記第1端部から第1規定間隔離れて前記第1フィンを貫通している第1伝熱管と、前記第3端部から第2規定間隔離れて前記第2フィンを貫通している第2伝熱管と、を備え、前記第1伝熱管は、平面状又は曲面状の第1上面と、平面状の第1下面とを有し、前記第2伝熱管は、平面状又は曲面状の第2上面と、平面状の第2下面とを有し、前記第1上面が平面状の場合には、該第1上面を第1面と定義し、前記第1上面が曲面状の場合には、該第1上面の接平面を第1面と定義し、前記第2上面が平面状の場合には、該第2上面を第2面と定義し、前記第2上面が曲面状の場合には、該第2上面の接平面を第2面と定義したとき、前記第1下面が水平となるように前記第1伝熱管及び前記第2伝熱管を観察した際、前記第1伝熱管が前記第1フィンを貫通する方向と垂直な縦断面において、前記第1面が、前記第1端部側に向かって下方に傾斜し、前記第2面が、前記第3端部側に向かって下方に傾斜し、前記第2伝熱管の上端は前記第1下面よりも上方に位置し、前記第2面又は該第2面の延長線と前記第1下面の延長線との交点である交点Aが、前記第2面又は該第2面の延長線と前記第2下面の延長線との交点である交点Bと一致している、あるいは、前記交点Bよりも前記第2伝熱管側に位置するものである。 The heat exchanger according to the present invention has a first fin having a first end and a second end in the lateral direction, a third end and a fourth end in the lateral direction, and the third end is From the 2nd fin arrange | positioned facing the said 2nd end part, the 1st heat exchanger tube which has penetrated the said 1st fin in the 1st predetermined space | interval from the said 1st end part, From the said 3rd end part A second heat transfer tube penetrating the second fin at a second predetermined interval, and the first heat transfer tube has a planar or curved first upper surface and a planar first lower surface. And the second heat transfer tube has a planar or curved second upper surface and a planar second lower surface, and when the first upper surface is planar, the first upper surface is When the first upper surface is curved, the tangent plane of the first upper surface is defined as the first surface, and when the second upper surface is planar, the second upper surface is defined as the first surface. Defined as the second side. When the second upper surface is curved, when the tangent plane of the second upper surface is defined as the second surface, the first heat transfer tube and the second heat transfer tube are arranged so that the first lower surface is horizontal. When observed, in the longitudinal section perpendicular to the direction in which the first heat transfer tube penetrates the first fin, the first surface is inclined downward toward the first end side, and the second surface is The second heat transfer tube is inclined downward toward the third end side, and the upper end of the second heat transfer tube is positioned above the first lower surface, and the second surface or an extension line of the second surface and the first An intersection point A, which is an intersection point with the extension line of the lower surface, coincides with the intersection point B, which is an intersection point of the second surface or the extension line of the second surface and the extension line of the second lower surface, or the intersection point It is located closer to the second heat transfer tube than B.
 また、本発明に係る冷凍サイクル装置は、本発明に係る熱交換器と、前記第1端部側から、前記第1下面に沿って前記熱交換器に空気を供給する送風機と、を備え、前記熱交換器は、前記第1面が前記第1端部側に向かって下方に傾斜し、前記第2面が前記第3端部側に向かって下方に傾斜するように設置されているものである。 The refrigeration cycle apparatus according to the present invention includes the heat exchanger according to the present invention and a blower that supplies air to the heat exchanger along the first lower surface from the first end side, The heat exchanger is installed such that the first surface is inclined downward toward the first end side and the second surface is inclined downward toward the third end side. It is.
 本発明によれば、排水性と伝熱性能の双方の向上できる熱交換器、及び該熱交換器を備えた冷凍サイクル装置を得ることができる。 According to the present invention, it is possible to obtain a heat exchanger capable of improving both drainage and heat transfer performance, and a refrigeration cycle apparatus including the heat exchanger.
本発明の実施の形態1に係る冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器のフィンを示す要部拡大図(正面図)である。It is a principal part enlarged view (front view) which shows the fin of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の伝熱管を示す断面図である。It is sectional drawing which shows the heat exchanger tube of the heat exchanger which concerns on Embodiment 1 of this invention. 図2の一部を拡大した要部拡大図である。It is the principal part enlarged view which expanded a part of FIG. 本発明の実施の形態2に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器のフィンを示す要部拡大図(正面図)である。It is a principal part enlarged view (front view) which shows the fin of the heat exchanger which concerns on Embodiment 2 of this invention. 図6の一部を拡大した要部拡大図である。It is the principal part enlarged view which expanded a part of FIG. 本発明の実施の形態3に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器のフィンを示す要部拡大図(正面図)である。It is a principal part enlarged view (front view) which shows the fin of the heat exchanger which concerns on Embodiment 3 of this invention. 図9の一部を拡大した要部拡大図である。It is the principal part enlarged view which expanded a part of FIG. 本発明の実施の形態4に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る熱交換器のフィンを示す要部拡大図(正面図)である。It is a principal part enlarged view (front view) which shows the fin of the heat exchanger which concerns on Embodiment 4 of this invention. 図12の一部を拡大した要部拡大図である。It is the principal part enlarged view which expanded a part of FIG.
 以下、本発明に係る熱交換器及び冷凍サイクル装置の各実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the heat exchanger and the refrigeration cycle apparatus according to the present invention will be described with reference to the drawings.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置を示す冷媒回路図である。
 冷凍サイクル装置100は、圧縮機200、凝縮器300、膨張機構400及び蒸発器500を有しており、これらが順次冷媒配管で接続されて構成されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
The refrigeration cycle apparatus 100 includes a compressor 200, a condenser 300, an expansion mechanism 400, and an evaporator 500, which are sequentially connected by a refrigerant pipe.
 圧縮機200は、冷媒を吸入し、その冷媒を圧縮して高温高圧のガス冷媒にするものである。凝縮器300は、内部を流れる冷媒と空気等の熱交換対象とを熱交換させるものであり、例えばフィンチューブ型熱交換器である。凝縮器300の近傍には、該凝縮器300に熱交換対象となる空気を供給する送風機301が設けられている。膨張機構400は、例えば膨張弁であり、冷媒を減圧して膨張させるものである。蒸発器500は、内部を流れる冷媒と空気等の熱交換対象とを熱交換させるものである。本実施の形態1に係る蒸発器500は、フィンチューブ型熱交換器となっている。また、蒸発器500の近傍には、該蒸発器500に熱交換対象となる空気を供給する送風機501が設けられている。送風機501は、例えばプロペラファンである。
 本実施の形態1に係る冷凍サイクル装置100は、蒸発器500の排水性と伝熱性能の双方を向上させるため、蒸発器500として以下のような構成の熱交換器1を採用している。
The compressor 200 sucks a refrigerant and compresses the refrigerant into a high-temperature and high-pressure gas refrigerant. The condenser 300 exchanges heat between a refrigerant flowing inside and a heat exchange target such as air, and is, for example, a fin tube heat exchanger. In the vicinity of the condenser 300, a blower 301 that supplies air to be heat exchanged to the condenser 300 is provided. The expansion mechanism 400 is an expansion valve, for example, and expands the refrigerant by decompressing it. The evaporator 500 exchanges heat between a refrigerant flowing inside and a heat exchange target such as air. The evaporator 500 according to the first embodiment is a fin tube type heat exchanger. A blower 501 that supplies air to be heat exchanged to the evaporator 500 is provided in the vicinity of the evaporator 500. The blower 501 is, for example, a propeller fan.
The refrigeration cycle apparatus 100 according to Embodiment 1 employs the heat exchanger 1 having the following configuration as the evaporator 500 in order to improve both drainage and heat transfer performance of the evaporator 500.
 図2は、本発明の実施の形態1に係る熱交換器を示す正面図である。図3は、この熱交換器のフィンを示す要部拡大図(正面図)である。図4は、この熱交換器の伝熱管を示す断面図である。また、図5は、図2の一部を拡大した要部拡大図である。
 なお、図2では、伝熱管15,25を断面で示している。また、図2及び図5に示す白抜き矢印は、送風機501から熱交換器1へ供給される空気の流れ方向を示している。つまり、本実施の形態1では、送風機501は、略水平方向に熱交換器1へ空気を供給する。換言すると、プロペラファンである送風機501の回転軸は、略水平方向に配置されている。また、図2,3,5では、この空気の流れ方向を矢印Xでも示している。図2,3,5に示す矢印Zは、重力方向である。
FIG. 2 is a front view showing the heat exchanger according to Embodiment 1 of the present invention. FIG. 3 is an enlarged view (front view) of a main part showing fins of the heat exchanger. FIG. 4 is a cross-sectional view showing a heat transfer tube of this heat exchanger. FIG. 5 is an enlarged view of a main part in which a part of FIG. 2 is enlarged.
In FIG. 2, the heat transfer tubes 15 and 25 are shown in cross section. Moreover, the white arrow shown in FIG.2 and FIG.5 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501. FIG. That is, in this Embodiment 1, the air blower 501 supplies air to the heat exchanger 1 in a substantially horizontal direction. In other words, the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. 2, 3, and 5, this air flow direction is also indicated by an arrow X. Arrows Z shown in FIGS. 2, 3 and 5 are directions of gravity.
 熱交換器1は、空気の流れ方向に沿って、複数のフィンアンドチューブ型の熱交換部が並設されたものである。本実施の形態1では、空気の流れ方向の上流側に位置する第1熱交換部10と、下流側に位置する第2熱交換部20とを備えた熱交換器1を例に説明する。第1熱交換部10及び第2熱交換部20は、同様な構成となっている。 The heat exchanger 1 includes a plurality of fin-and-tube heat exchange units arranged in parallel along the air flow direction. In the first embodiment, the heat exchanger 1 including the first heat exchange unit 10 located on the upstream side in the air flow direction and the second heat exchange unit 20 located on the downstream side will be described as an example. The first heat exchange unit 10 and the second heat exchange unit 20 have the same configuration.
 詳しくは、第1熱交換部10は、上下方向に延びた板状のフィン11を複数備えている。これらフィン11は、空気の流れ方向に対して垂直な横方向(図2の紙面直交方向)に、規定のフィンピッチ(間隔)を空けて並設されている。また、各フィン11の下流側端部11dには、上下方向に規定の段ピッチ(間隔)を空けて複数の切り欠き12が形成されている。これら切り欠き12は、伝熱管15が挿入されるものであり、伝熱管15の外形に対応した形状となっている。また、切り欠き12の上流側端部12aは、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置されている。なお、各切り欠き12は、上流側端部12aから開口部12bにかけて、上縁部と下縁部との間の距離が徐々に大きくなる形状となっている。このため、切り欠き12への伝熱管15の挿入を容易に行うことができる。
 ここで、フィン11が、本発明の第1フィンに相当する。上流側端部11cが、本発明の第1端部に相当する。また、下流側端部11dが、本発明の第2端部に相当する。
Specifically, the first heat exchanging unit 10 includes a plurality of plate-like fins 11 extending in the vertical direction. These fins 11 are juxtaposed in a transverse direction perpendicular to the air flow direction (a direction orthogonal to the plane of FIG. 2) with a prescribed fin pitch (interval). In addition, a plurality of notches 12 are formed in the downstream end portion 11d of each fin 11 with a predetermined step pitch (interval) in the vertical direction. These notches 12 are into which the heat transfer tubes 15 are inserted, and have a shape corresponding to the outer shape of the heat transfer tubes 15. Further, the upstream end 12 a of the notch 12 is disposed at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval). Each notch 12 has a shape in which the distance between the upper edge and the lower edge gradually increases from the upstream end 12a to the opening 12b. For this reason, the heat transfer tube 15 can be easily inserted into the notch 12.
Here, the fin 11 corresponds to the first fin of the present invention. The upstream end 11c corresponds to the first end of the present invention. Further, the downstream end portion 11d corresponds to the second end portion of the present invention.
 また、第1熱交換部10は、フィン11の切り欠き12に挿入された複数の伝熱管15を備えている。すなわち、各伝熱管15は、上下方向に規定の段ピッチを空けて並設されている。そして、各伝熱管15は、各フィン11をこれらフィン11の並設方向に貫通するように設けられている。フィン11と伝熱管15とは、ろう付けにより一体的に密着されている。これら伝熱管15は、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きい形状となっている。各伝熱管15は、その内部が複数の隔壁によって区画され、複数の冷媒流路16が形成されている。 Further, the first heat exchange unit 10 includes a plurality of heat transfer tubes 15 inserted into the notches 12 of the fins 11. That is, the heat transfer tubes 15 are arranged side by side with a specified step pitch in the vertical direction. And each heat exchanger tube 15 is provided so that it may penetrate each fin 11 in the parallel arrangement direction of these fins 11. The fin 11 and the heat transfer tube 15 are in close contact with each other by brazing. These heat transfer tubes 15 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction. Each heat transfer tube 15 is partitioned by a plurality of partition walls, and a plurality of refrigerant channels 16 are formed.
 伝熱管15の形状をさらに詳細に説明すると、伝熱管15は、平面状の上面15a及び平面状の下面15cを有する。そして、上面15aと下面15cとの距離は、上流側端部15bから下流側端部15dに向かって徐々に広くなっている。換言すると、上面15aと下面15cとの距離は、フィン11の上流側端部11cから下流側端部11dに向かって徐々に広くなっている。このような伝熱管15は、例えばアルミニウム製又はアルミニウム合金製であり、例えば押出成形により形成される。このため、本実施の形態1では、上面15aと下面15cとが成す角度を等分する平面に対して略対称となるように、伝熱管15の内部を複数の冷媒流路16に区画する隔壁を形成している。これにより、伝熱管15を押出成形する場合の製造性を確保し易くなる。なお、伝熱管15は、例えば、押出成形により断面が長円形状となるように作製した後に、プレス等の追加工により最終形状を形成してもよい。また、冷媒流路16の壁面、すなわち、伝熱管15の内壁面に溝が形成されてもよい。これにより、伝熱管15の内壁面と冷媒との接触面積が増える。従って、熱交換効率が向上する。
 ここで、伝熱管15のいずれかが、第1伝熱管に相当する。また、第1伝熱管に相当する伝熱管15の上面15aが、本発明の第1面に相当する。
The shape of the heat transfer tube 15 will be described in more detail. The heat transfer tube 15 has a planar upper surface 15a and a planar lower surface 15c. The distance between the upper surface 15a and the lower surface 15c gradually increases from the upstream end 15b toward the downstream end 15d. In other words, the distance between the upper surface 15a and the lower surface 15c gradually increases from the upstream end 11c of the fin 11 toward the downstream end 11d. Such a heat transfer tube 15 is made of, for example, aluminum or aluminum alloy, and is formed by, for example, extrusion molding. For this reason, in this Embodiment 1, the partition which divides the inside of the heat exchanger tube 15 into the some refrigerant | coolant flow path 16 so that it may become substantially symmetrical with respect to the plane which equally divides the angle which the upper surface 15a and the lower surface 15c comprise. Is forming. Thereby, it becomes easy to ensure the manufacturability when the heat transfer tube 15 is extruded. Note that the heat transfer tube 15 may be formed, for example, by extrusion so that the cross section has an oval shape, and then the final shape may be formed by additional processing such as pressing. Further, a groove may be formed on the wall surface of the refrigerant flow path 16, that is, the inner wall surface of the heat transfer tube 15. Thereby, the contact area of the inner wall surface of the heat exchanger tube 15 and a refrigerant | coolant increases. Therefore, the heat exchange efficiency is improved.
Here, one of the heat transfer tubes 15 corresponds to the first heat transfer tube. Further, the upper surface 15a of the heat transfer tube 15 corresponding to the first heat transfer tube corresponds to the first surface of the present invention.
 上述のように、伝熱管15が挿入されるフィン11の切り欠き12の上流側端部12aは、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置されている。このため、伝熱管15がフィン11に取り付けられた状態においては、伝熱管15の上流側端部15bもまた、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置される。このため、フィン11には、第1領域11aと、第2領域11bとが形成される。第1領域11aは、重力方向(矢印Z方向)となる長手方向に複数の切り欠き12が形成された領域であり、伝熱管15が設けられている領域である。第2領域11bは、長手方向(矢印Z方向)に伝熱管15が設けられていない領域であり、フィン11に付着した水が排出される排水領域である。第2領域11bは、熱交換流体である空気の流れ方向(矢印X方向)において、第1領域11aの上流側に配置される。第1領域11aと第2領域11bとの境界線は、上下方向に並設された切り欠き12の上流側端部12aを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管15の上流側端部15bを結ぶ仮想直線となっている。 As described above, the upstream end 12a of the notch 12 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position away from the upstream end 11c of the fin 11 by a specified interval (first specified interval). Yes. For this reason, in the state where the heat transfer tube 15 is attached to the fin 11, the upstream end portion 15 b of the heat transfer tube 15 is also at a position away from the upstream end portion 11 c of the fin 11 by a specified interval (first specified interval). Be placed. For this reason, the first region 11 a and the second region 11 b are formed in the fin 11. The first region 11a is a region where a plurality of notches 12 are formed in the longitudinal direction which is the direction of gravity (arrow Z direction), and is a region where the heat transfer tube 15 is provided. The second region 11b is a region where the heat transfer tube 15 is not provided in the longitudinal direction (arrow Z direction), and is a drainage region where water adhering to the fins 11 is discharged. The second region 11b is arranged on the upstream side of the first region 11a in the flow direction (arrow X direction) of the air that is the heat exchange fluid. The boundary line between the first region 11a and the second region 11b is an imaginary straight line connecting the upstream end portions 12a of the notches 12 arranged in parallel in the vertical direction, in other words, the heat transfer tubes 15 arranged in parallel in the vertical direction. It is an imaginary straight line connecting the upstream end 15b.
 また、伝熱管15がフィン11に取り付けられた状態において、伝熱管15の上面15aは、フィン11の下流側端部11dから上流側端部11cに向かって、換言すると排水領域である第2領域11bに向かって下降している。つまり、伝熱管15の上面15aは、フィン11の上流側端部11c側に向かって下方に傾斜している。本実施の形態1では、伝熱管15の上面15aは、水平面に対して角度θだけ傾いている。一方、伝熱管15がフィン11に取り付けられた状態において、伝熱管15の下面15cは、略水平となっている。 In the state where the heat transfer tube 15 is attached to the fin 11, the upper surface 15 a of the heat transfer tube 15 extends from the downstream end 11 d of the fin 11 toward the upstream end 11 c, in other words, the second region which is a drainage region. It is descending toward 11b. That is, the upper surface 15 a of the heat transfer tube 15 is inclined downward toward the upstream end portion 11 c side of the fin 11. In the first embodiment, the upper surface 15a of the heat transfer tube 15 is inclined by an angle θ with respect to the horizontal plane. On the other hand, in a state where the heat transfer tubes 15 are attached to the fins 11, the lower surface 15c of the heat transfer tubes 15 is substantially horizontal.
 第2熱交換部20は、上下方向に延びた板状のフィン21を複数備えている。これらフィン21は、空気の流れ方向に対して垂直な横方向(図2の紙面直交方向)に、規定のフィンピッチ(間隔)を空けて並設されている。また、各フィン21の下流側端部21dには、上下方向に規定の段ピッチ(間隔)を空けて複数の切り欠き22が形成されている。これら切り欠き22は、伝熱管25が挿入されるものであり、伝熱管25の外形に対応した形状となっている。また、切り欠き22の上流側端部22aは、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置されている。なお、各切り欠き22は、上流側端部22aから開口部22bにかけて、上縁部と下縁部との間の距離が徐々に大きくなる形状となっている。このため、切り欠き22への伝熱管25の挿入を容易に行うことができる。
 ここで、フィン21が、本発明の第2フィンに相当する。上流側端部21cが、本発明の第3端部に相当する。また、下流側端部21dが、本発明の第4端部に相当する。
The second heat exchange unit 20 includes a plurality of plate-like fins 21 extending in the vertical direction. These fins 21 are juxtaposed in a horizontal direction perpendicular to the air flow direction (a direction perpendicular to the plane of FIG. 2) with a specified fin pitch (interval). A plurality of notches 22 are formed in the downstream end 21d of each fin 21 with a predetermined step pitch (interval) in the vertical direction. These notches 22 are into which the heat transfer tubes 25 are inserted, and have a shape corresponding to the outer shape of the heat transfer tubes 25. Further, the upstream end portion 22 a of the notch 22 is disposed at a position away from the upstream end portion 21 c of the fin 21 by a specified interval (second specified interval). Each cutout 22 has a shape in which the distance between the upper edge and the lower edge gradually increases from the upstream end 22a to the opening 22b. For this reason, the heat transfer tube 25 can be easily inserted into the notch 22.
Here, the fin 21 corresponds to the second fin of the present invention. The upstream end 21c corresponds to the third end of the present invention. The downstream end 21d corresponds to the fourth end of the present invention.
 また、第2熱交換部20は、フィン21の切り欠き22に挿入された複数の伝熱管25を備えている。すなわち、各伝熱管25は、上下方向に規定の段ピッチを空けて並設されている。そして、各伝熱管25は、各フィン21をこれらフィン21の並設方向に貫通するように設けられている。フィン21と伝熱管25とは、ろう付けにより一体的に密着されている。これら伝熱管25は、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きい形状となっている。各伝熱管25は、その内部が複数の隔壁によって区画され、複数の冷媒流路26が形成されている。 Further, the second heat exchange unit 20 includes a plurality of heat transfer tubes 25 inserted into the notches 22 of the fins 21. That is, the heat transfer tubes 25 are arranged side by side with a specified step pitch in the vertical direction. The heat transfer tubes 25 are provided so as to penetrate the fins 21 in the direction in which the fins 21 are juxtaposed. The fin 21 and the heat transfer tube 25 are in close contact with each other by brazing. These heat transfer tubes 25 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction. The interior of each heat transfer tube 25 is partitioned by a plurality of partition walls, and a plurality of refrigerant channels 26 are formed.
 伝熱管25の形状をさらに詳細に説明すると、伝熱管25は、平面状の上面25a及び平面状の下面25cを有する。そして、上面25aと下面25cとの距離は、上流側端部25bから下流側端部25dに向かって徐々に広くなっている。換言すると、上面25aと下面25cとの距離は、フィン21の上流側端部21cから下流側端部21dに向かって徐々に広くなっている。このような伝熱管25は、例えばアルミニウム製又はアルミニウム合金製であり、例えば押出成形により形成される。このため、本実施の形態1では、上面25aと下面25cとが成す角度を等分する平面に対して略対称となるように、伝熱管25の内部を複数の冷媒流路26に区画する隔壁を形成している。これにより、伝熱管25を押出成形する場合の製造性を確保し易くなる。なお、伝熱管25は、例えば、押出成形により断面が長円形状となるように作製した後に、プレス等の追加工により最終形状を形成してもよい。また、冷媒流路26の壁面、すなわち、伝熱管25の内壁面に溝が形成されてもよい。これにより、伝熱管25の内壁面と冷媒との接触面積が増える。従って、熱交換効率が向上する。
 ここで、第1伝熱管に相当する伝熱管15と横方向において隣り合う伝熱管25が、本発明の第2伝熱管に相当する。また、第2伝熱管に相当する伝熱管25の上面25aが、本発明の第2面に相当する。
The shape of the heat transfer tube 25 will be described in more detail. The heat transfer tube 25 has a planar upper surface 25a and a planar lower surface 25c. The distance between the upper surface 25a and the lower surface 25c gradually increases from the upstream end 25b toward the downstream end 25d. In other words, the distance between the upper surface 25a and the lower surface 25c gradually increases from the upstream end 21c of the fin 21 toward the downstream end 21d. Such a heat transfer tube 25 is made of, for example, aluminum or aluminum alloy, and is formed by, for example, extrusion molding. For this reason, in this Embodiment 1, the partition which partitions the inside of the heat exchanger tube 25 into the some refrigerant | coolant flow path 26 so that it may become substantially symmetrical with respect to the plane which equally divides the angle which the upper surface 25a and the lower surface 25c comprise. Is forming. Thereby, it becomes easy to ensure the manufacturability when the heat transfer tube 25 is extruded. Note that the heat transfer tube 25 may be formed, for example, by extrusion so that the cross section has an elliptical shape, and then the final shape may be formed by additional processing such as pressing. Further, a groove may be formed on the wall surface of the refrigerant flow path 26, that is, the inner wall surface of the heat transfer tube 25. Thereby, the contact area of the inner wall surface of the heat exchanger tube 25 and a refrigerant | coolant increases. Therefore, the heat exchange efficiency is improved.
Here, the heat transfer tube 15 adjacent to the heat transfer tube 15 corresponding to the first heat transfer tube in the lateral direction corresponds to the second heat transfer tube of the present invention. The upper surface 25a of the heat transfer tube 25 corresponding to the second heat transfer tube corresponds to the second surface of the present invention.
 上述のように、伝熱管25が挿入されるフィン21の切り欠き22の上流側端部22aは、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置されている。このため、伝熱管25がフィン21に取り付けられた状態においては、伝熱管25の上流側端部25bもまた、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置される。このため、フィン21には、第1領域21aと、第2領域21bとが形成される。第1領域21aは、重力方向(矢印Z方向)となる長手方向に複数の切り欠き22が形成された領域であり、伝熱管25が設けられている領域である。第2領域21bは、長手方向(矢印Z方向)に伝熱管25が設けられていない領域であり、フィン21に付着した水が排出される排水領域である。第2領域21bは、熱交換流体である空気の流れ方向(矢印X方向)において、第1領域21aの上流側に配置される。第1領域21aと第2領域21bとの境界線は、上下方向に並設された切り欠き22の上流側端部22aを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管25の上流側端部25bを結ぶ仮想直線となっている。 As described above, the upstream end 22a of the notch 22 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position away from the upstream end 21c of the fin 21 by a specified interval (second specified interval). Yes. For this reason, in the state where the heat transfer tube 25 is attached to the fin 21, the upstream end 25 b of the heat transfer tube 25 is also located at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). Be placed. For this reason, the first region 21 a and the second region 21 b are formed in the fin 21. The first region 21a is a region in which a plurality of notches 22 are formed in the longitudinal direction that is the gravity direction (arrow Z direction), and is a region in which the heat transfer tube 25 is provided. The second region 21b is a region where the heat transfer tube 25 is not provided in the longitudinal direction (arrow Z direction), and is a drainage region where water adhering to the fins 21 is discharged. The second region 21b is arranged on the upstream side of the first region 21a in the flow direction (arrow X direction) of the air that is the heat exchange fluid. The boundary line between the first region 21a and the second region 21b is a virtual straight line connecting the upstream end portions 22a of the notches 22 arranged in the vertical direction, in other words, the heat transfer tubes 25 arranged in parallel in the vertical direction. It is an imaginary straight line connecting the upstream end 25b.
 また、伝熱管25がフィン21に取り付けられた状態において、伝熱管25の上面25aは、フィン21の下流側端部21dから上流側端部21cに向かって、換言すると排水領域である第2領域21bに向かって下降している。つまり、伝熱管25の上面25aは、フィン21の上流側端部21c側に向かって下方に傾斜している。本実施の形態1では、伝熱管25の上面25aは、水平面に対して角度θだけ傾いている。一方、伝熱管25がフィン21に取り付けられた状態において、伝熱管25の下面25cは、略水平となっている。 Further, in a state where the heat transfer tube 25 is attached to the fins 21, the upper surface 25a of the heat transfer tube 25 is a second region that is a drainage region from the downstream end 21d of the fin 21 toward the upstream end 21c. It is descending toward 21b. That is, the upper surface 25 a of the heat transfer tube 25 is inclined downward toward the upstream end 21 c side of the fin 21. In the first embodiment, the upper surface 25a of the heat transfer tube 25 is inclined by an angle θ with respect to the horizontal plane. On the other hand, in a state where the heat transfer tubes 25 are attached to the fins 21, the lower surface 25c of the heat transfer tubes 25 is substantially horizontal.
 このように構成された第1熱交換部10及び第2熱交換部20は、第1熱交換部10のフィン11の下流側端部11dと第2熱交換部20のフィン21の上流側端部21cとが対向するように配置される。なお、図2の紙面直交方向に第1熱交換部10のフィン11と第2熱交換部20のフィン21とがずれている場合でも、本実施の形態1では、第1熱交換部10のフィン11の下流側端部11dと第2熱交換部20のフィン21の上流側端部21cとが対向すると表現する。 The first heat exchanging unit 10 and the second heat exchanging unit 20 configured in this way are the downstream end 11d of the fin 11 of the first heat exchanging unit 10 and the upstream end of the fin 21 of the second heat exchanging unit 20. It arrange | positions so that the part 21c may oppose. Even in the case where the fins 11 of the first heat exchange unit 10 and the fins 21 of the second heat exchange unit 20 are displaced in the direction orthogonal to the paper surface of FIG. It is expressed that the downstream end portion 11d of the fin 11 and the upstream end portion 21c of the fin 21 of the second heat exchange unit 20 face each other.
 ここで、本実施の形態1に係る熱交換器1においては、第1熱交換部10の伝熱管15と、該伝熱管15と横方向で隣り合う第2熱交換部20の伝熱管25とは、伝熱管15がフィン11を貫通する方向と垂直な縦断面を示す図5のような、換言すると伝熱管25がフィン21を貫通する方向と垂直な縦断面を示す図5のような配置関係となっている。なお、この配置関係の詳細を説明するに当たり、交点A,Bを次のように定義する。本発明の第2面(本実施の形態1では伝熱管25の上面25a)又は第2面の延長線と、伝熱管15の下面15cの延長線との交点を、交点Aとする。本発明の第2面(本実施の形態1では伝熱管25の上面25a)又は第2面の延長線と、伝熱管25の下面25cの延長線との交点を、交点Bとする。 Here, in the heat exchanger 1 according to the first embodiment, the heat transfer tube 15 of the first heat exchange unit 10 and the heat transfer tube 25 of the second heat exchange unit 20 adjacent to the heat transfer tube 15 in the lateral direction FIG. 5 shows a vertical cross section perpendicular to the direction in which the heat transfer tube 15 penetrates the fins 11, in other words, an arrangement like FIG. 5 shows a vertical cross section perpendicular to the direction in which the heat transfer tubes 25 penetrate the fins 21. It has become a relationship. In describing the details of the arrangement relationship, the intersections A and B are defined as follows. An intersection point between the second surface of the present invention (the upper surface 25a of the heat transfer tube 25 in the first embodiment) or the extension line of the second surface and the extension line of the lower surface 15c of the heat transfer tube 15 is defined as an intersection point A. An intersection point between the second surface of the present invention (in the first embodiment, the upper surface 25a of the heat transfer tube 25) or the extension line of the second surface and the extension line of the lower surface 25c of the heat transfer tube 25 is defined as an intersection point B.
 詳しくは、伝熱管25の上端部(図5のC点)は、該伝熱管25と横方向で隣り合う伝熱管15の下面15cよりも上方に位置している。また、伝熱管25の上面25aと伝熱管15の下面15cの延長線との交点Aは、伝熱管25の上面25aの延長線と下面25cの延長線との交点Bよりも伝熱管25側に位置している。すなわち、空気の流れ方向において、交点Aは、交点Bよりも下流側に位置している。このような配置関係になっている場合、第1熱交換部10の伝熱管15と、該伝熱管15と横方向で隣り合う第2熱交換部20の伝熱管25とは、空気の流れ方向に熱交換器1を見た際に重なりあっている。また、空気の流れ方向に熱交換器1を見た際に重なり合っている伝熱管15及び伝熱管25は、伝熱管25が伝熱管15よりも若干下方に位置することとなる。 Specifically, the upper end portion (point C in FIG. 5) of the heat transfer tube 25 is located above the lower surface 15c of the heat transfer tube 15 adjacent to the heat transfer tube 25 in the lateral direction. Further, the intersection A of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15 is closer to the heat transfer tube 25 than the intersection B of the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 25c. positioned. That is, the intersection A is located downstream of the intersection B in the air flow direction. In such an arrangement relationship, the heat transfer tube 15 of the first heat exchange unit 10 and the heat transfer tube 25 of the second heat exchange unit 20 adjacent to the heat transfer tube 15 in the lateral direction are in the air flow direction. When looking at the heat exchanger 1, they overlap. Further, the heat transfer tube 15 and the heat transfer tube 25 that are overlapped when the heat exchanger 1 is viewed in the air flow direction are positioned slightly below the heat transfer tube 15.
 続いて、本実施の形態1に係る熱交換器1の作用について説明する。 Subsequently, the operation of the heat exchanger 1 according to the first embodiment will be described.
 まず、送風機501から供給された空気と、伝熱管15,25の内部を流れる冷媒との間で熱交換を行うときの熱交換作用について説明する。
 上述のように、送風機501は例えばプロペラファンであり、送風機501の回転軸は略水平方向に配置されている。このため、図2及び図5に白抜き矢印で示すように、送風機501から熱交換器1へは、第1熱交換部10のフィン11の上流側端部11c側から、略水平に空気が供給される。この空気は、第1熱交換部10に流入し、第2熱交換部20から流出する。
First, the heat exchange action when heat exchange is performed between the air supplied from the blower 501 and the refrigerant flowing in the heat transfer tubes 15 and 25 will be described.
As described above, the blower 501 is a propeller fan, for example, and the rotation shaft of the blower 501 is arranged in a substantially horizontal direction. For this reason, as indicated by white arrows in FIGS. 2 and 5, the air flows from the blower 501 to the heat exchanger 1 substantially horizontally from the upstream end portion 11 c side of the fin 11 of the first heat exchange unit 10. Supplied. The air flows into the first heat exchange unit 10 and flows out from the second heat exchange unit 20.
 詳しくは、送風機501から供給された空気は、フィン11の上流側端部11c側から、第1熱交換部10のフィン11間に流入する。そして、この空気は、伝熱管15の上流側端部15bに到達すると、上面15a側と下面15c側の二手に分かれる。 Specifically, the air supplied from the blower 501 flows between the fins 11 of the first heat exchange unit 10 from the upstream end portion 11 c side of the fins 11. And when this air reaches | attains the upstream edge part 15b of the heat exchanger tube 15, it will be divided into two hands, the upper surface 15a side and the lower surface 15c side.
 上述のように、伝熱管15の上面15aは、フィン11の上流側端部11c側に向かって下方に傾斜している。つまり、伝熱管15の上面15aは、空気の流れに対面する方向を向いている。このため、伝熱管15の横幅方向の大半において、空気は上面15aに沿って流れことができる。したがって、大きな剥離を発生させることなく空気と伝熱管15との間の熱交換を促進することができ、通風抵抗を軽減することができる。 As described above, the upper surface 15 a of the heat transfer tube 15 is inclined downward toward the upstream end portion 11 c side of the fin 11. That is, the upper surface 15a of the heat transfer tube 15 faces the direction facing the air flow. For this reason, air can flow along the upper surface 15 a in most of the width direction of the heat transfer tube 15. Therefore, heat exchange between the air and the heat transfer tube 15 can be promoted without causing large separation, and ventilation resistance can be reduced.
 また、上述のように、伝熱管15の下面15cは、略水平となっている。つまり、伝熱管15の下面15cは、空気流れ方向と略一致している。このため、伝熱管15の横幅方向のほぼ全域において、空気は下面15cに沿って流れことができる。したがって、大きな剥離を発生させることなく空気と伝熱管15表面との間の熱交換を促進することができ、通風抵抗を軽減することができる。 Further, as described above, the lower surface 15c of the heat transfer tube 15 is substantially horizontal. That is, the lower surface 15c of the heat transfer tube 15 substantially coincides with the air flow direction. For this reason, air can flow along the lower surface 15 c in almost the entire region of the heat transfer tube 15 in the width direction. Therefore, heat exchange between air and the surface of the heat transfer tube 15 can be promoted without causing large separation, and ventilation resistance can be reduced.
 また、上下方向に隣接する伝熱管15に着目すると、上方に位置する伝熱管15の下面15cと下方に位置する伝熱管15の上面15aとの間の隙間は、空気の流れ方向に対して、下流側に向かうにしたがって狭くなる。このため、風路拡大による上下面での低風速領域(死水域)の生成が抑制でき、空気と第1熱交換部10の表面との間の熱交換を促進することができる。 Further, when paying attention to the heat transfer tube 15 adjacent in the vertical direction, the gap between the lower surface 15c of the heat transfer tube 15 positioned above and the upper surface 15a of the heat transfer tube 15 positioned below is, with respect to the air flow direction, It becomes narrower as it goes downstream. For this reason, generation | occurrence | production of the low wind speed area | region (dead water area) by the upper and lower surfaces by an air path expansion can be suppressed, and the heat exchange between the air and the surface of the 1st heat exchange part 10 can be accelerated | stimulated.
 伝熱管15の周囲を流れた空気は、フィン11の下流側端部11d側から第1熱交換部10を流出する。ここで、第1熱交換部10の伝熱管15は、上面15aが上流側端部11c側に向かって下方に傾斜しており、下面15cが略水平となっている。このため、上下方向に隣接する伝熱管15間を流れる空気の流れは、水平方向よりも上方向を向いた流れとなる。 The air that has flowed around the heat transfer tube 15 flows out of the first heat exchange unit 10 from the downstream end portion 11d side of the fin 11. Here, as for the heat exchanger tube 15 of the 1st heat exchange part 10, the upper surface 15a inclines below toward the upstream edge part 11c side, and the lower surface 15c is substantially horizontal. For this reason, the flow of air flowing between the heat transfer tubes 15 adjacent to each other in the vertical direction is a flow directed upward from the horizontal direction.
 第1熱交換部10を流出した空気は、フィン21の上流側端部21c側から第2熱交換部20のフィン21間に流入する。そして、この空気は、伝熱管25の上流側端部25bに到達すると、上面25a側と下面25c側の二手に分かれる。 The air that has flowed out of the first heat exchange unit 10 flows between the fins 21 of the second heat exchange unit 20 from the upstream end 21c side of the fins 21. And when this air reaches | attains the upstream edge part 25b of the heat exchanger tube 25, it will be divided into two hands, the upper surface 25a side and the lower surface 25c side.
 伝熱管25の上面25aは、空気の流れ方向において、上流側に位置する伝熱管15の下流側端部15dの後方に位置する。すなわち、伝熱管25の上面25aは、従来であれば、死水域の後方となって十分な量の空気が流れずに風速が低下し、熱交換効率が低下する位置にある。しかしながら、本実施の形態1においては、フィン21間を流れる空気は、水平方向よりも上方向を向いた流れとなって、伝熱管25の上流側端部25bに到達する。このため、図5に示す矢印Wのように、伝熱管25の上流側端部25bに到達した空気の一部は、上面25aに沿って流れることができ、空気と上面25aとの間の熱交換を促進することができる。また、本実施の形態1では、伝熱管25の上流側端部25bが伝熱管15よりも若干下方に位置することとなる。このため、伝熱管25の上面25aに沿って流れる空気の量をより増大でき、空気と上面25aとの間の熱交換を促進することができる。 The upper surface 25a of the heat transfer tube 25 is located behind the downstream end 15d of the heat transfer tube 15 located on the upstream side in the air flow direction. In other words, conventionally, the upper surface 25a of the heat transfer tube 25 is located behind the dead water area where a sufficient amount of air does not flow and the wind speed is lowered, and the heat exchange efficiency is lowered. However, in the first embodiment, the air flowing between the fins 21 flows upward in the horizontal direction and reaches the upstream end 25b of the heat transfer tube 25. Therefore, as indicated by an arrow W shown in FIG. 5, a part of the air that has reached the upstream end 25b of the heat transfer tube 25 can flow along the upper surface 25a, and heat between the air and the upper surface 25a. Exchange can be facilitated. In the first embodiment, the upstream end portion 25 b of the heat transfer tube 25 is located slightly below the heat transfer tube 15. For this reason, the quantity of the air which flows along the upper surface 25a of the heat exchanger tube 25 can be increased more, and the heat exchange between air and the upper surface 25a can be accelerated | stimulated.
 一方、伝熱管25の上流側端部25bに到達する空気は水平方向よりも上方向を向いた流れとなっているため、伝熱管25の下面25cは、空気の流れに対面する方向を向いている。このため、伝熱管25の下面25cに沿って空気が流れることができ、空気と下面25cとの間の熱交換も促進することができる。 On the other hand, since the air reaching the upstream end portion 25b of the heat transfer tube 25 has a flow directed upward from the horizontal direction, the lower surface 25c of the heat transfer tube 25 faces the direction facing the air flow. Yes. For this reason, air can flow along the lower surface 25c of the heat transfer tube 25, and heat exchange between the air and the lower surface 25c can also be promoted.
 次に、熱交換器1に付着した水滴を排出するときの排水作用について説明する。 Next, the drainage action when discharging water droplets attached to the heat exchanger 1 will be described.
 第1熱交換部10の排水作用は、以下のようになる。
 第1熱交換部10のフィン11の第1領域11aに付着した水滴は、第1領域11aとなるフィン11の表面を伝って落下する。この水滴は、伝熱管15の上面15aに到達する。伝熱管15の上面15aに到達した水滴は、重力の影響により、上面15aを伝って上流側端部15bの方へ流れる。上流側端部15bに到達した水滴は、流れてきた勢いを利用して、その大部分が第2領域11bに伝っていき、第1熱交換部10の下方に流れていく。この第2領域11bには伝熱管15が存在しないため、水滴は、フィン11の表面を伝って一気に第1熱交換部10の下部に到達し、排出される。すなわち、第1熱交換部10は、横幅が縦幅よりも大きい断面形状の伝熱管15を用いていながらも、排水性を向上することができる。
The drainage action of the first heat exchange unit 10 is as follows.
Water droplets adhering to the first region 11a of the fin 11 of the first heat exchange unit 10 fall along the surface of the fin 11 serving as the first region 11a. This water droplet reaches the upper surface 15 a of the heat transfer tube 15. The water droplets reaching the upper surface 15a of the heat transfer tube 15 flow toward the upstream end 15b along the upper surface 15a due to the influence of gravity. Most of the water droplets that have reached the upstream end 15b are transmitted to the second region 11b using the momentum that has flowed, and then flow downward to the first heat exchange unit 10. Since the heat transfer tube 15 does not exist in the second region 11b, the water droplet travels along the surface of the fin 11 and reaches the lower portion of the first heat exchange unit 10 at a stretch and is discharged. That is, the 1st heat exchange part 10 can improve drainage, although the cross-sectional shape heat transfer tube 15 whose horizontal width is larger than vertical width is used.
 なお、第1領域11aから第2領域11bに伝っていかなかった一部の水滴は、伝熱管15の上流側端部15bを伝って下面15cに回り込む。回り込んだ水滴は、表面張力、重力及び静止摩擦力等が釣り合った状態で、伝熱管15の下面15cに滞留して成長する。水滴は、成長に伴って下方に膨らんでいき、重力の影響が大きくなる。そして、水滴にかかる重力が表面張力等の上方向の力に勝ると、水滴は、表面張力の影響を受けなくなり、伝熱管15の下面15cから離脱する。離脱した水滴は、再び第1領域11a上を落下し、下方の伝熱管15の上面15aに到達する。その後は、上述したとおりの動作を繰り返し、最終的には第1熱交換部10の下方に排出される。 Note that some water droplets that have not been transmitted from the first region 11 a to the second region 11 b travel around the lower surface 15 c through the upstream end 15 b of the heat transfer tube 15. The entrained water droplets stay on the lower surface 15c of the heat transfer tube 15 and grow in a state where the surface tension, gravity, static friction force and the like are balanced. Water droplets swell downward as they grow, and the effect of gravity increases. When the gravity applied to the water droplets exceeds the upward force such as the surface tension, the water droplets are not affected by the surface tension and are detached from the lower surface 15 c of the heat transfer tube 15. The detached water drops again fall on the first region 11a and reach the upper surface 15a of the heat transfer tube 15 below. Thereafter, the operation as described above is repeated, and finally, the operation is discharged below the first heat exchange unit 10.
 第2熱交換部20の排水作用も、第1熱交換部10と同様となる。
 すなわち、第2熱交換部20のフィン21の第1領域21aに付着した水滴は、第1領域21aとなるフィン21の表面を伝って落下する。この水滴は、伝熱管25の上面25aに到達する。伝熱管25の上面25aに到達した水滴は、重力の影響により、上面25aを伝って上流側端部25bの方へ流れる。上流側端部25bに到達した水滴は、流れてきた勢いを利用して、その大部分が第2領域21bに伝っていき、第2熱交換部20の下方に流れていく。この第2領域21bには伝熱管25が存在しないため、水滴は、フィン21の表面を伝って一気に第2熱交換部20の下部に到達し、排出される。すなわち、第2熱交換部20は、横幅が縦幅よりも大きい断面形状の伝熱管25を用いていながらも、排水性を向上することができる。
The drainage action of the second heat exchange unit 20 is the same as that of the first heat exchange unit 10.
That is, the water droplets adhering to the first region 21a of the fin 21 of the second heat exchange unit 20 fall along the surface of the fin 21 that becomes the first region 21a. This water droplet reaches the upper surface 25 a of the heat transfer tube 25. The water droplets that have reached the upper surface 25a of the heat transfer tube 25 flow toward the upstream end 25b through the upper surface 25a due to the influence of gravity. Most of the water droplets that have reached the upstream end 25b are transmitted to the second region 21b using the force that has flowed, and flow downward to the second heat exchange unit 20. Since the heat transfer tube 25 does not exist in the second region 21b, the water droplets travel along the surface of the fin 21 and reach the lower portion of the second heat exchange unit 20 at a stretch and are discharged. That is, the 2nd heat exchange part 20 can improve drainage, although the cross-sectional heat transfer tube 25 whose horizontal width is larger than vertical width is used.
 なお、第1領域21aから第2領域21bに伝っていかなかった一部の水滴は、伝熱管25の上流側端部25bを伝って下面25cに回り込む。回り込んだ水滴は、表面張力、重力及び静止摩擦力等が釣り合った状態で、伝熱管25の下面25cに滞留して成長する。水滴は、成長に伴って下方に膨らんでいき、重力の影響が大きくなる。そして、水滴にかかる重力が表面張力等の上方向の力に勝ると、水滴は、表面張力の影響を受けなくなり、伝熱管25の下面25cから離脱する。離脱した水滴は、再び第1領域21a上を落下し、下方の伝熱管25の上面25aに到達する。その後は、上述したとおりの動作を繰り返し、最終的には第2熱交換部20の下方に排出される。 In addition, some water droplets that have not been transmitted from the first region 21a to the second region 21b travel along the upstream end 25b of the heat transfer tube 25 and wrap around the lower surface 25c. The entrained water droplets stay on the lower surface 25c of the heat transfer tube 25 and grow in a state where the surface tension, gravity, static frictional force and the like are balanced. Water droplets swell downward as they grow, and the effect of gravity increases. When the gravity applied to the water droplet exceeds the upward force such as the surface tension, the water droplet is not affected by the surface tension and is detached from the lower surface 25 c of the heat transfer tube 25. The detached water drops again fall on the first region 21a and reach the upper surface 25a of the heat transfer tube 25 below. After that, the operation as described above is repeated, and finally it is discharged below the second heat exchange unit 20.
 以上のように、本実施の形態1に係る熱交換器1は、横方向に上流側端部11c及び下流側端部11dを有するフィン11と、横方向に上流側端部21c及び下流側端部21dを有し、上流側端部21cが下流側端部11dと対向して配置されたフィン21と、上流側端部11cから第1規定間隔離れてフィン11を貫通している伝熱管15と、上流側端部21cから第2規定間隔離れてフィン21を貫通している伝熱管25と、を備え、伝熱管15は、平面状の上面15aと、平面状の下面15cとを有し、伝熱管25は、平面状の上面25aと、平面状の下面25cとを有し、上面15aを第1面と定義し、上面25aを第2面と定義したとき、下面15cが水平となるように伝熱管15及び伝熱管25を観察した際、伝熱管15がフィン11を貫通する方向と垂直な縦断面において、前記第1面が上流側端部11c側に向かって下方に傾斜し、前記第2面が上流側端部21c側に向かって下方に傾斜し、伝熱管25の上端は下面15cよりも上方に位置し、前記第2面と下面15cの延長線との交点である交点Aが、前記第2面の延長線と下面25cの延長線との交点である交点Bよりも伝熱管25側に位置する。 As described above, the heat exchanger 1 according to the first embodiment includes the fin 11 having the upstream end 11c and the downstream end 11d in the lateral direction, and the upstream end 21c and the downstream end in the lateral direction. A fin 21 having a portion 21d and having an upstream end 21c disposed opposite to the downstream end 11d, and a heat transfer tube 15 penetrating the fin 11 at a first predetermined distance from the upstream end 11c. And a heat transfer tube 25 penetrating the fin 21 away from the upstream end 21c by a second specified interval, and the heat transfer tube 15 has a flat upper surface 15a and a flat lower surface 15c. The heat transfer tube 25 has a planar upper surface 25a and a planar lower surface 25c. When the upper surface 15a is defined as the first surface and the upper surface 25a is defined as the second surface, the lower surface 15c is horizontal. Thus, when the heat transfer tube 15 and the heat transfer tube 25 are observed, the heat transfer tube 15 In a vertical cross section perpendicular to the direction penetrating through the line 11, the first surface is inclined downward toward the upstream end portion 11c, and the second surface is inclined downward toward the upstream end portion 21c. The upper end of the heat transfer tube 25 is located above the lower surface 15c, and the intersection point A, which is the intersection of the second surface and the extension line of the lower surface 15c, is the extension line of the second surface and the extension line of the lower surface 25c. It is located closer to the heat transfer tube 25 than the intersection B, which is the intersection.
 このため、本実施の形態1に係る熱交換器1は、横幅が縦幅よりも大きい断面形状の伝熱管15,25を用いていながらも、排水性を向上することができる。また、本実施の形態1に係る熱交換器1は、空気の流れ方向に熱交換器1を見た際に空気流れの上流側に位置する伝熱管15と下流側に位置する伝熱管25とが重なりあっている配置において、上述のように伝熱管25の熱交換を促進することもできる。したがって、本実施の形態1に係る熱交換器1は、排水性と伝熱性能の双方を向上することができる。 For this reason, the heat exchanger 1 according to the first embodiment can improve the drainage performance while using the heat transfer tubes 15 and 25 having a cross-sectional shape whose width is larger than the height. The heat exchanger 1 according to the first embodiment includes a heat transfer tube 15 located on the upstream side of the air flow and a heat transfer tube 25 located on the downstream side when the heat exchanger 1 is viewed in the air flow direction. In the arrangement in which the heat transfer tubes 25 overlap, heat exchange of the heat transfer tubes 25 can be promoted as described above. Therefore, the heat exchanger 1 according to Embodiment 1 can improve both drainage and heat transfer performance.
 なお、本実施の形態1では、伝熱管15,25の下面15c,25cを水平に配置した。これに限らず、伝熱管15,25の下面15c,25cを水平面に対して傾けて配置してもよい。伝熱管15,25の上面15a,25aが排水領域である第2領域11b,21bに向かって下降していれば、上述の排水性の向上効果を得ることができる。また、伝熱管15の下面15cに沿って空気が流れるように、送風機501から熱交換器1に空気を供給すれば、上述の伝熱性能の向上効果を得ることができる。ただし、伝熱管15,25の下面15c,25cが上流側端部15b,25bから下流側端部15d,25dに向かって下降するように構成した場合、伝熱管15,25の上面15a,25aから上流側端部15b,25bに到達した水滴が、下面15c,25cに回り込みやすくなる。このため、上述の排水性の向上効果が若干低下する。したがって、伝熱管15,25の下面15c,25cは、水平に、あるいは、下流側端部15d,25dから上流側端部15b,25bに向かって下降するように配置されることが好ましい。換言すると、伝熱管15,25の下面15c,25cは、水平に、あるいは、フィン11,21の下流側端部11d,21dから上流側端部11c,21cに向かって下降するように配置されることが好ましい。 In the first embodiment, the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are horizontally arranged. However, the present invention is not limited to this, and the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 may be inclined with respect to the horizontal plane. If the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are lowered toward the second regions 11b and 21b, which are drainage regions, the above-described drainage improvement effect can be obtained. Moreover, if air is supplied to the heat exchanger 1 from the air blower 501 so that air flows along the lower surface 15c of the heat transfer tube 15, the above-described effect of improving the heat transfer performance can be obtained. However, when the lower surfaces 15c, 25c of the heat transfer tubes 15, 25 are configured to descend from the upstream end portions 15b, 25b toward the downstream end portions 15d, 25d, the upper surfaces 15a, 25a of the heat transfer tubes 15, 25 Water droplets that have reached the upstream ends 15b and 25b are likely to wrap around the lower surfaces 15c and 25c. For this reason, the above-mentioned improvement effect of drainability falls a little. Therefore, it is preferable that the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are arranged horizontally or descend from the downstream ends 15d and 25d toward the upstream ends 15b and 25b. In other words, the lower surfaces 15c and 25c of the heat transfer tubes 15 and 25 are disposed horizontally or descend from the downstream ends 11d and 21d of the fins 11 and 21 toward the upstream ends 11c and 21c. It is preferable.
 また、本実施の形態1では、伝熱管15,25をフィン11,21の切り欠き12,22に取り付けたが、フィン11,21に貫通孔を形成し、該貫通孔に伝熱管15,25を挿入して取り付けてもよい。このように熱交換器1を構成しても、排水性と伝熱性能の双方を向上することができる。 Further, in the first embodiment, the heat transfer tubes 15 and 25 are attached to the notches 12 and 22 of the fins 11 and 21, but through holes are formed in the fins 11 and 21, and the heat transfer tubes 15 and 25 are formed in the through holes. May be inserted. Even if the heat exchanger 1 is configured in this manner, both drainage and heat transfer performance can be improved.
 また、本実施の形態1では、フィン11とフィン21とを別体で形成したが、フィン11とフィン21とを一体として一枚のフィンで形成してもよい。この場合、伝熱管25の上流側端部25bから規定間隔(第2規定間隔)離れた位置において上下方向に延びた仮想直線をフィン11の下流側端部11d及びフィン21の上流側端部21cとみなして、熱交換器1を製造すればよい。このように熱交換器1を構成しても、排水性と伝熱性能の双方を向上することができる。 In the first embodiment, the fins 11 and the fins 21 are formed as separate bodies, but the fins 11 and the fins 21 may be integrally formed as a single fin. In this case, a virtual straight line extending in the vertical direction at a position away from the upstream end 25b of the heat transfer tube 25 by a specified interval (second specified interval) is expressed as a downstream end 11d of the fin 11 and an upstream end 21c of the fin 21. And the heat exchanger 1 may be manufactured. Even if the heat exchanger 1 is configured in this manner, both drainage and heat transfer performance can be improved.
実施の形態2.
 実施の形態1では、伝熱管15の下面15cの傾きと、伝熱管25の下面25cの傾きとを同じにした。これに限らず、伝熱管15の下面15cの傾きと、伝熱管25の下面25cの傾きとを異ならせ、以下のように熱交換器1を構成してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the first embodiment, the inclination of the lower surface 15c of the heat transfer tube 15 and the inclination of the lower surface 25c of the heat transfer tube 25 are the same. Not limited to this, the inclination of the lower surface 15c of the heat transfer tube 15 may be different from the inclination of the lower surface 25c of the heat transfer tube 25, and the heat exchanger 1 may be configured as follows. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図6は、本発明の実施の形態2に係る熱交換器を示す正面図である。図7は、この熱交換器のフィンを示す要部拡大図(正面図)である。また、図8は、図6の一部を拡大した要部拡大図である。
 なお、図6では、伝熱管15,25を断面で示している。また、図6及び図8に示す白抜き矢印は、送風機501から熱交換器1へ供給される空気の流れ方向を示している。つまり、本実施の形態2では、送風機501は、略水平方向に熱交換器1へ空気を供給する。換言すると、プロペラファンである送風機501の回転軸は、略水平方向に配置されている。また、図6~図8では、この空気の流れ方向を矢印Xでも示している。図6~図8に示す矢印Zは、重力方向である。
FIG. 6 is a front view showing a heat exchanger according to Embodiment 2 of the present invention. FIG. 7 is an enlarged view (front view) of a main part showing fins of the heat exchanger. FIG. 8 is an enlarged view of a main part in which a part of FIG. 6 is enlarged.
In FIG. 6, the heat transfer tubes 15 and 25 are shown in cross section. Moreover, the white arrow shown in FIG.6 and FIG.8 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501. FIG. That is, in this Embodiment 2, the air blower 501 supplies air to the heat exchanger 1 in a substantially horizontal direction. In other words, the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. 6 to 8, this air flow direction is also indicated by an arrow X. The arrow Z shown in FIGS. 6 to 8 is the direction of gravity.
 本実施の形態2に係る熱交換器1においても、第1熱交換部10の伝熱管15と、該伝熱管15と横方向で隣り合う第2熱交換部20の伝熱管25とは、伝熱管15がフィン11を貫通する方向と垂直な縦断面において、換言すると伝熱管25がフィン21を貫通する方向と垂直な縦断面において、伝熱管25の上端部の位置及び交点A,Bの位置が実施の形態1と同様になっている。 Also in the heat exchanger 1 according to the second embodiment, the heat transfer tube 15 of the first heat exchange unit 10 and the heat transfer tube 25 of the second heat exchange unit 20 adjacent to the heat transfer tube 15 in the lateral direction are the heat transfer tubes. In the vertical cross section perpendicular to the direction in which the heat pipe 15 penetrates the fin 11, in other words, in the vertical cross section perpendicular to the direction in which the heat transfer pipe 25 penetrates the fin 21, the position of the upper end portion of the heat transfer pipe 25 and the positions of the intersections A and B Is the same as in the first embodiment.
 詳しくは、伝熱管25の上端部(図8のC点)は、該伝熱管25と横方向で隣り合う伝熱管15の下面15cよりも上方に位置している。また、伝熱管25の上面25aと伝熱管15の下面15cの延長線との交点Aは、伝熱管25の上面25aの延長線と下面25cの延長線との交点Bよりも伝熱管25側に位置している。すなわち、空気の流れ方向において、交点Aは、交点Bよりも下流側に位置している。したがって、本実施の形態2に係る熱交換器1においても、実施の形態1と同様に、第1熱交換部10の伝熱管15と、該伝熱管15と横方向で隣り合う第2熱交換部20の伝熱管25とは、空気の流れ方向に熱交換器1を見た際に重なりあっている。また、空気の流れ方向に熱交換器1を見た際に重なり合っている伝熱管15及び伝熱管25は、伝熱管25の上流側端部25bが伝熱管15の下面15cよりも若干下方に位置することとなる。 Specifically, the upper end portion (point C in FIG. 8) of the heat transfer tube 25 is located above the lower surface 15c of the heat transfer tube 15 that is adjacent to the heat transfer tube 25 in the lateral direction. Further, the intersection A of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15 is closer to the heat transfer tube 25 than the intersection B of the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 25c. positioned. That is, the intersection A is located downstream of the intersection B in the air flow direction. Therefore, also in the heat exchanger 1 according to the second embodiment, as in the first embodiment, the heat transfer tube 15 of the first heat exchange unit 10 and the second heat exchange adjacent to the heat transfer tube 15 in the lateral direction. The heat transfer tube 25 of the section 20 overlaps when the heat exchanger 1 is viewed in the air flow direction. Further, the heat transfer tube 15 and the heat transfer tube 25 that overlap when the heat exchanger 1 is viewed in the air flow direction are such that the upstream end 25b of the heat transfer tube 25 is located slightly below the lower surface 15c of the heat transfer tube 15. Will be.
 本実施の形態2に係る熱交換器1が実施の形態1と異なる点は、伝熱管25の下面25cが、フィン21の下流側端部21dから上流側端部21cに向かって、換言すると排水領域である第2領域21bに向かって下降している点である。つまり、伝熱管25の下面25cは、フィン21の上流側端部21c側に向かって下方に傾斜している。 The heat exchanger 1 according to the second embodiment is different from the first embodiment in that the lower surface 25c of the heat transfer tube 25 is drained from the downstream end 21d of the fin 21 toward the upstream end 21c. This is a point descending toward the second region 21b, which is the region. That is, the lower surface 25 c of the heat transfer tube 25 is inclined downward toward the upstream end 21 c side of the fin 21.
 このように構成された本実施の形態2に係る熱交換器1においても、実施の形態1と同様に、伝熱管15,25の上面15a,25aに到達した水滴を、重力によって伝熱管15,25が存在しない第2領域11b,21bに排出することができる。さらに、本実施の形態2に係る熱交換器1においては、伝熱管25の下面25cも、第2領域21bに向かって下降している。このため、伝熱管25の下面25cに付着した水滴は、重力の影響により、下面25cを伝って上流側端部25bの方へ流れる。そして、上流側端部25bに到達した水滴は、流れてきた勢いを利用して、その大部分が第2領域21bに排出される。したがって、本実施の形態2に係る熱交換器1は、実施の形態1に比べ、排水性をさらに向上させることができる。 Also in the heat exchanger 1 according to the second embodiment configured as described above, as in the first embodiment, the water droplets that have reached the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are caused to flow into the heat transfer tubes 15 and 25 by gravity. 25 can be discharged to the second regions 11b and 21b. Furthermore, in the heat exchanger 1 according to Embodiment 2, the lower surface 25c of the heat transfer tube 25 is also lowered toward the second region 21b. For this reason, the water droplet adhering to the lower surface 25c of the heat exchanger tube 25 flows toward the upstream end 25b along the lower surface 25c due to the influence of gravity. And most of the water droplets that have reached the upstream end portion 25b are discharged to the second region 21b by utilizing the flowing momentum. Therefore, the heat exchanger 1 according to the second embodiment can further improve drainage compared to the first embodiment.
 また、本実施の形態2に係る熱交換器1は、実施の形態1に比べ、伝熱性能をさらに向上させることができるという効果も得られる。詳しくは、本実施の形態2に係る伝熱管25においては、上面25a及び下面25cの双方が、空気流れの上流側に向かって下降するように配置されている。このため、上面25aと下面25cとが成す角度を等分する平面が、空気流れの上流側に向かって下降することとなる。換言すると、伝熱管25がフィン21を貫通する方向と垂直な断面において、伝熱管25の断面の中心線は、空気流れの上流側に向かって下降することとなる。ここで、実施の形態1で述べたように、第2熱交換部20のフィン21間を流れる空気は、水平方向よりも上方向を向いた流れとなって、伝熱管25の上流側端部25bに到達する。すなわち、本実施の形態2に係る熱交換器1は、実施の形態1と比べ、伝熱管25の断面の中心線が空気流れに沿った構成となる。このため、本実施の形態2に係る熱交換器1は、実施の形態1と比べ、伝熱管25の周囲を空気が流れる際の通風抵抗を低減することができる。したがって、本実施の形態2に係る熱交換器1は、実施の形態1と比べ、伝熱管25の熱交換をさらに促進させることができ、伝熱性能をさらに向上させることができる。 In addition, the heat exchanger 1 according to the second embodiment also has an effect that the heat transfer performance can be further improved as compared with the first embodiment. Specifically, in the heat transfer tube 25 according to the second embodiment, both the upper surface 25a and the lower surface 25c are arranged so as to descend toward the upstream side of the air flow. For this reason, the plane which equally divides the angle which upper surface 25a and lower surface 25c comprise falls down toward the upstream of an air flow. In other words, in the cross section perpendicular to the direction in which the heat transfer tube 25 penetrates the fins 21, the center line of the cross section of the heat transfer tube 25 descends toward the upstream side of the air flow. Here, as described in the first embodiment, the air flowing between the fins 21 of the second heat exchange unit 20 is a flow that is directed upward from the horizontal direction, and the upstream end of the heat transfer tube 25. 25b is reached. That is, the heat exchanger 1 according to the second embodiment has a configuration in which the center line of the cross section of the heat transfer tube 25 follows the air flow as compared with the first embodiment. For this reason, the heat exchanger 1 which concerns on this Embodiment 2 can reduce the ventilation resistance at the time of air flowing around the heat exchanger tube 25 compared with Embodiment 1. FIG. Therefore, the heat exchanger 1 according to the second embodiment can further promote the heat exchange of the heat transfer tube 25 and can further improve the heat transfer performance as compared with the first embodiment.
実施の形態3.
 実施の形態1及び実施の形態2では、交点Aが交点Bよりも伝熱管25側に位置していた。これに限らず、実施の形態1及び実施の形態2で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置が一致するようにしても、本発明を実施することができる。本実施の形態3では、実施の形態1で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置を一致させた例を図示して説明する。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
In the first embodiment and the second embodiment, the intersection A is located closer to the heat transfer tube 25 than the intersection B. However, the present invention is not limited to this, and the present invention may be applied even if the arrangement position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first and second embodiments so that the positions of the intersection A and the intersection B coincide. Can be implemented. In the third embodiment, an example in which the position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first embodiment and the positions of the intersection A and the intersection B are matched will be described. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2, and the same functions and configurations are described using the same reference numerals.
 図9は、本発明の実施の形態3に係る熱交換器を示す正面図である。図10は、この熱交換器のフィンを示す要部拡大図(正面図)である。また、図11は、図9の一部を拡大した要部拡大図である。
 なお、図9では、伝熱管15,25を断面で示している。また、図9及び図11に示す白抜き矢印は、送風機501から熱交換器1へ供給される空気の流れ方向を示している。つまり、本実施の形態3では、送風機501は、略水平方向に熱交換器1へ空気を供給する。換言すると、プロペラファンである送風機501の回転軸は、略水平方向に配置されている。また、図9~図11では、この空気の流れ方向を矢印Xでも示している。図9~図11に示す矢印Zは、重力方向である。
FIG. 9 is a front view showing a heat exchanger according to Embodiment 3 of the present invention. FIG. 10 is an enlarged view (front view) of a main part showing fins of the heat exchanger. FIG. 11 is an enlarged view of a main part in which a part of FIG. 9 is enlarged.
In FIG. 9, the heat transfer tubes 15 and 25 are shown in cross section. Moreover, the white arrow shown in FIG.9 and FIG.11 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501. FIG. That is, in this Embodiment 3, the air blower 501 supplies air to the heat exchanger 1 in a substantially horizontal direction. In other words, the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. Further, in FIG. 9 to FIG. 11, this air flow direction is also indicated by an arrow X. The arrow Z shown in FIGS. 9 to 11 is the direction of gravity.
 本実施の形態3に係る熱交換器1においては、伝熱管25の上面25aの延長線と伝熱管15の下面15cの延長線との交点Aと、伝熱管25の上面25aの延長線と下面25cの延長線との交点Bとの位置が一致している。なお、本実施の形態3においても、実施の形態1及び実施の形態2と同様に、伝熱管25の上端部(図11のC点)は、該伝熱管25と横方向で隣り合う伝熱管15の下面15cよりも上方に位置している。本実施の形態3に係る熱交換器1のその他の構成は、実施の形態1と同様である。 In the heat exchanger 1 according to the third embodiment, the intersection A between the extension line of the upper surface 25a of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15, and the extension line and lower surface of the upper surface 25a of the heat transfer tube 25 The position of the intersection B with the extended line 25c coincides. In the third embodiment, as in the first and second embodiments, the upper end portion (point C in FIG. 11) of the heat transfer tube 25 is adjacent to the heat transfer tube 25 in the lateral direction. 15 is located above the lower surface 15c. Other configurations of the heat exchanger 1 according to the third embodiment are the same as those in the first embodiment.
 本実施の形態3に係る熱交換器1のように、実施の形態1で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置を一致させた場合、実施の形態1と同様に、空気の流れ方向に熱交換器1を見た際、横方向に隣り合う伝熱管15及び25が重なりあう。また、空気の流れ方向に熱交換器1を見た際に重なり合っている伝熱管15及び伝熱管25においては、伝熱管25の下面25cの上下方向位置と伝熱管15の下面15cの上下方向位置とが、一致する。 When the arrangement position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first embodiment and the positions of the intersection A and the intersection B are made to coincide with each other as in the heat exchanger 1 according to the third embodiment. As in the first embodiment, when the heat exchanger 1 is viewed in the air flow direction, the heat transfer tubes 15 and 25 adjacent in the lateral direction overlap each other. In addition, in the heat transfer tube 15 and the heat transfer tube 25 that overlap when the heat exchanger 1 is viewed in the air flow direction, the vertical position of the lower surface 25c of the heat transfer tube 25 and the vertical position of the lower surface 15c of the heat transfer tube 15 And match.
 なお、実施の形態2で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置を一致させた場合、実施の形態2と同様に、空気の流れ方向に熱交換器1を見た際、横方向に隣り合う伝熱管15及び25が重なりあう。また、空気の流れ方向に熱交換器1を見た際に重なり合っている伝熱管15及び伝熱管25においては、伝熱管25の上流側端部25bが伝熱管15の下面15cよりも若干上方に位置することとなる。 In addition, in the heat exchanger 1 shown in Embodiment 2, when the arrangement position of the heat transfer tube 25 is shifted upward and the positions of the intersection A and the intersection B are made to coincide with each other, the air flow direction is the same as in Embodiment 2. When the heat exchanger 1 is viewed, the heat transfer tubes 15 and 25 adjacent in the lateral direction overlap each other. Further, in the heat transfer tube 15 and the heat transfer tube 25 that overlap when the heat exchanger 1 is viewed in the air flow direction, the upstream end 25b of the heat transfer tube 25 is slightly above the lower surface 15c of the heat transfer tube 15. Will be located.
 本実施の形態3のように構成された熱交換器1においても、実施の形態1及び実施の形態2と同様に、伝熱管15,25の上面15a,25aに到達した水滴を、重力によって伝熱管15,25が存在しない第2領域11b,21bに排出することができる。したがって、本実施の形態3に係る熱交換器1においても、実施の形態1及び実施の形態2と同様に、排水性を向上させることができる。 Also in the heat exchanger 1 configured as in the third embodiment, water droplets reaching the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 are transmitted by gravity, as in the first and second embodiments. It can discharge | emit to 2nd area | region 11b, 21b in which the heat pipes 15 and 25 do not exist. Therefore, also in the heat exchanger 1 according to the third embodiment, the drainage performance can be improved as in the first and second embodiments.
 また、本実施の形態3に係る熱交換器1においては、第1熱交換部10において上下方向に隣接している伝熱管15同士の配置姿勢は、実施の形態1及び実施の形態2と同じになっている。このため、第2熱交換部20のフィン21間を流れる空気は、水平方向よりも上方向を向いた流れとなって、伝熱管25の上流側端部25bに到達する。したがって、本実施の形態3のように熱交換器1を構成しても、第2熱交換部20の伝熱管25の上面25aに沿って、十分な量の空気が流れることができる。このため、本実施の形態3のように構成された熱交換器1においても、伝熱性能を向上させることができる。 Moreover, in the heat exchanger 1 which concerns on this Embodiment 3, the arrangement | positioning attitude | position of the heat exchanger tubes 15 adjacent in the up-down direction in the 1st heat exchange part 10 is the same as Embodiment 1 and Embodiment 2. It has become. For this reason, the air flowing between the fins 21 of the second heat exchange unit 20 becomes a flow that is directed upward from the horizontal direction and reaches the upstream end portion 25 b of the heat transfer tube 25. Therefore, even if the heat exchanger 1 is configured as in the third embodiment, a sufficient amount of air can flow along the upper surface 25a of the heat transfer tube 25 of the second heat exchange unit 20. For this reason, also in the heat exchanger 1 comprised like this Embodiment 3, heat transfer performance can be improved.
 すなわち、本実施の形態3に係る熱交換器1においても、実施の形態1及び実施の形態2と同様に、排水性と伝熱性能の双方を向上することができる。 That is, in the heat exchanger 1 according to the third embodiment, both the drainage performance and the heat transfer performance can be improved as in the first and second embodiments.
 さらに、実施の形態1で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置を一致させた場合、図11等に示すように、空気の流れ方向に熱交換器1を見た際の、横方向に隣り合う伝熱管15及び伝熱管25の重なり度合いが最も大きくなる。例えば、伝熱管15及び伝熱管25として同形状の伝熱管を用いた場合、図11等に示すように、空気の流れ方向に熱交換器1を見た際、伝熱管25は、伝熱管15の後方に完全に隠れる。このため、実施の形態1で示した熱交換器1において伝熱管25の配置位置を上方にずらし、交点Aと交点Bの位置を一致させた場合、伝熱管15及び伝熱管25の重なり度合いが増大した分だけ通風抵抗が低減し、該通風抵抗の低減分だけ伝熱性能を向上させることができる。 Furthermore, when the arrangement position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in the first embodiment and the positions of the intersection point A and the intersection point B coincide with each other, as shown in FIG. In addition, when the heat exchanger 1 is viewed, the overlapping degree of the heat transfer tubes 15 and the heat transfer tubes 25 adjacent in the horizontal direction becomes the largest. For example, when heat transfer tubes having the same shape are used as the heat transfer tube 15 and the heat transfer tube 25, when the heat exchanger 1 is viewed in the air flow direction, as shown in FIG. Completely hidden behind. For this reason, when the arrangement position of the heat transfer tube 25 is shifted upward in the heat exchanger 1 shown in Embodiment 1 and the positions of the intersection A and the intersection B are matched, the degree of overlap between the heat transfer tube 15 and the heat transfer tube 25 is increased. The ventilation resistance is reduced by the increased amount, and the heat transfer performance can be improved by the reduced amount of the ventilation resistance.
実施の形態4.
 実施の形態1~実施の形態3では、上面15a,25aが平面状の伝熱管15,25を用いた。これに限らず、上面15a,25aが曲面状の伝熱管15,25を用いても、本発明を実施することができる。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3のいずれかと同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 4 FIG.
In the first to third embodiments, the heat transfer tubes 15 and 25 having flat upper surfaces 15a and 25a are used. However, the present invention is not limited to this, and the present invention can be implemented even when the heat transfer tubes 15 and 25 having the curved upper surfaces 15a and 25a are used. In the fourth embodiment, items not particularly described are the same as those in any of the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
 図12は、本発明の実施の形態4に係る熱交換器を示す正面図である。図13は、この熱交換器のフィンを示す要部拡大図(正面図)である。また、図14は、図12の一部を拡大した要部拡大図である。
 なお、図12では、伝熱管15,25を断面で示している。また、図12及び図14に示す白抜き矢印は、送風機501から熱交換器1へ供給される空気の流れ方向を示している。つまり、本実施の形態4では、送風機501は、略水平方向に熱交換器1へ空気を供給する。換言すると、プロペラファンである送風機501の回転軸は、略水平方向に配置されている。また、図12~図14では、この空気の流れ方向を矢印Xでも示している。図12~図14に示す矢印Zは、重力方向である。
FIG. 12 is a front view showing a heat exchanger according to Embodiment 4 of the present invention. FIG. 13 is an enlarged view (front view) of a main part showing fins of the heat exchanger. FIG. 14 is an enlarged view of a main part in which a part of FIG. 12 is enlarged.
In FIG. 12, the heat transfer tubes 15 and 25 are shown in cross section. Moreover, the white arrow shown in FIG.12 and FIG.14 has shown the flow direction of the air supplied to the heat exchanger 1 from the air blower 501. FIG. That is, in Embodiment 4, the blower 501 supplies air to the heat exchanger 1 in a substantially horizontal direction. In other words, the rotating shaft of the blower 501 that is a propeller fan is arranged in a substantially horizontal direction. Further, in FIG. 12 to FIG. 14, this air flow direction is also indicated by an arrow X. The arrow Z shown in FIGS. 12 to 14 is the direction of gravity.
 実施の形態1~実施の形態3では、第1熱交換部10のフィン11に、伝熱管15が挿入される複数の切り欠き12が、上下方向に規定の段ピッチ(間隔)を空けて形成されていた。これに対して、本実施の形態4では、第1熱交換部10のフィン11に、伝熱管15が挿入される複数の貫通孔13が、上下方向に規定の段ピッチ(間隔)を空けて形成されている。各貫通孔13は、伝熱管15の外形に対応した形状となっている。また、貫通孔13の上流側端部13aは、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置されている。貫通孔13の下流側端部13bも、フィン11の下流側端部11dから規定間隔離れた位置に配置されている。 In the first to third embodiments, a plurality of notches 12 into which the heat transfer tubes 15 are inserted are formed in the fins 11 of the first heat exchanging section 10 with a predetermined step pitch (interval) in the vertical direction. It had been. On the other hand, in the fourth embodiment, the plurality of through holes 13 into which the heat transfer tubes 15 are inserted into the fins 11 of the first heat exchange unit 10 have a predetermined step pitch (interval) in the vertical direction. Is formed. Each through hole 13 has a shape corresponding to the outer shape of the heat transfer tube 15. Further, the upstream end 13 a of the through hole 13 is disposed at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval). The downstream end 13b of the through hole 13 is also arranged at a position spaced apart from the downstream end 11d of the fin 11 by a specified distance.
 本実施の形態4に係る各伝熱管15は、各フィン11の貫通孔13に挿入されることにより、各フィン11をこれらフィン11の並設方向に貫通するように設けられている。フィン11と伝熱管15とは、ろう付けにより一体的に密着されている。これら伝熱管15は、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きい形状となっている。 The heat transfer tubes 15 according to the fourth embodiment are provided so as to penetrate the fins 11 in the juxtaposition direction of the fins 11 by being inserted into the through holes 13 of the fins 11. The fin 11 and the heat transfer tube 15 are in close contact with each other by brazing. These heat transfer tubes 15 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction.
 伝熱管15の形状をさらに詳細に説明すると、伝熱管15は、上側に凸となった曲面状の上面15aと、平面状の下面15cと有する。そして、冷媒の流通方向と垂直な断面で伝熱管15を見た際、横方向の中央位置よりも空気流れの上流側(フィン11の上流側端部11c側)においては、上面15aと下面15cとの距離は、フィン11の上流側端部11cから下流側端部11dに向かって徐々に広くなっている。換言すると、上面15aの接平面を接平面17と定義した場合、接平面17と下面15cとの距離は、フィン11の上流側端部11cから下流側端部11dに向かって徐々に広くなっている。なお、伝熱管15の下面15cは、略水平となっている。つまり、接平面17は、フィン11の上流側端部11c側に向かって下方に傾斜している。
 ここで、接平面17が本発明の第1面に相当する。
The shape of the heat transfer tube 15 will be described in more detail. The heat transfer tube 15 has a curved upper surface 15a that is convex upward, and a planar lower surface 15c. When the heat transfer tube 15 is viewed in a cross section perpendicular to the refrigerant flow direction, the upper surface 15a and the lower surface 15c are located on the upstream side of the air flow (on the upstream end 11c side of the fin 11) from the lateral center position. Is gradually increased from the upstream end 11c of the fin 11 toward the downstream end 11d. In other words, when the tangent plane of the upper surface 15a is defined as the tangential plane 17, the distance between the tangential plane 17 and the lower surface 15c gradually increases from the upstream end portion 11c of the fin 11 toward the downstream end portion 11d. Yes. Note that the lower surface 15c of the heat transfer tube 15 is substantially horizontal. That is, the tangential plane 17 is inclined downward toward the upstream end portion 11 c side of the fin 11.
Here, the tangential plane 17 corresponds to the first surface of the present invention.
 上述のように、伝熱管15が挿入されるフィン11の貫通孔13の上流側端部13aは、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置されている。また、伝熱管15が挿入されるフィン11の貫通孔13の下流側端部13bは、フィン11の下流側端部11dから規定間隔離れた位置に配置されている。このため、伝熱管15がフィン11に取り付けられた状態においては、伝熱管15の上流側端部15bも、フィン11の上流側端部11cから規定間隔(第1規定間隔)離れた位置に配置される。また、伝熱管15がフィン11に取り付けられた状態においては、伝熱管15の下流側端部15dも、フィン11の下流側端部11dから規定間隔離れた位置に配置される。 As described above, the upstream end 13a of the through hole 13 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position away from the upstream end 11c of the fin 11 by a specified interval (first specified interval). Yes. Further, the downstream end 13 b of the through hole 13 of the fin 11 into which the heat transfer tube 15 is inserted is disposed at a position spaced apart from the downstream end 11 d of the fin 11 by a specified distance. For this reason, in the state where the heat transfer tube 15 is attached to the fin 11, the upstream end 15 b of the heat transfer tube 15 is also arranged at a position away from the upstream end 11 c of the fin 11 by a specified interval (first specified interval). Is done. In the state where the heat transfer tube 15 is attached to the fin 11, the downstream end 15 d of the heat transfer tube 15 is also arranged at a position spaced apart from the downstream end 11 d of the fin 11 by a specified distance.
 したがって、本実施の形態4においては、フィン11には、上流側端部11c側と下流側端部11d側の両方に、伝熱管15が設けられていない領域である第2領域11bが形成される。なお、第1領域11aと上流側端部11c側の第2領域11bとの境界線は、上下方向に並設された貫通孔13の上流側端部13aを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管15の上流側端部15bを結ぶ仮想直線となる。また、第1領域11aと下流側端部11d側の第2領域11bとの境界線は、上下方向に並設された貫通孔13の下流側端部13bを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管15の下流側端部15dを結ぶ仮想直線となる。 Therefore, in the fourth embodiment, the fin 11 is formed with the second region 11b, which is a region where the heat transfer tube 15 is not provided, on both the upstream end 11c side and the downstream end 11d side. The The boundary line between the first region 11a and the second region 11b on the upstream end portion 11c side is a virtual straight line connecting the upstream end portions 13a of the through holes 13 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the upstream end 15b of the heat transfer tubes 15 arranged side by side. The boundary line between the first region 11a and the second region 11b on the downstream end 11d side is a virtual straight line connecting the downstream ends 13b of the through holes 13 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the downstream end 15d of the heat transfer tubes 15 arranged side by side.
 本実施の形態4に係る第2熱交換部20は、本実施の形態4に係る第1熱交換部10と同様の構成になっている。詳しくは、第2熱交換部20のフィン21には、伝熱管25が挿入される複数の貫通孔23が、上下方向に規定の段ピッチ(間隔)を空けて形成されている。各貫通孔23は、伝熱管25の外形に対応した形状となっている。また、貫通孔23の上流側端部23aは、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置されている。貫通孔23の下流側端部23bも、フィン21の下流側端部21dから規定間隔離れた位置に配置されている。 The second heat exchange unit 20 according to the fourth embodiment has the same configuration as the first heat exchange unit 10 according to the fourth embodiment. Specifically, a plurality of through holes 23 into which the heat transfer tubes 25 are inserted are formed in the fins 21 of the second heat exchange unit 20 with a predetermined step pitch (interval) in the vertical direction. Each through hole 23 has a shape corresponding to the outer shape of the heat transfer tube 25. Further, the upstream end 23 a of the through hole 23 is disposed at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). The downstream end 23b of the through hole 23 is also arranged at a position spaced apart from the downstream end 21d of the fin 21 by a specified distance.
 本実施の形態4に係る各伝熱管25は、各フィン21の貫通孔23に挿入されることにより、各フィン21をこれらフィン21の並設方向に貫通するように設けられている。フィン21と伝熱管25とは、ろう付けにより一体的に密着されている。これら伝熱管25は、冷媒の流通方向と垂直な断面において、横幅が縦幅よりも大きい形状となっている。 The heat transfer tubes 25 according to the fourth embodiment are provided so as to pass through the fins 21 in the parallel arrangement direction of the fins 21 by being inserted into the through holes 23 of the fins 21. The fin 21 and the heat transfer tube 25 are in close contact with each other by brazing. These heat transfer tubes 25 have a shape in which the horizontal width is larger than the vertical width in a cross section perpendicular to the refrigerant flow direction.
 伝熱管25の形状をさらに詳細に説明すると、伝熱管25は、上側に凸となった曲面状の上面25aと、平面状の下面25cと有する。そして、冷媒の流通方向と垂直な断面で伝熱管25を見た際、横方向の中央位置よりも空気流れの上流側(フィン21の上流側端部21c側)においては、上面25aと下面25cとの距離は、フィン21の上流側端部21cから下流側端部21dに向かって徐々に広くなっている。換言すると、横方向の中央位置よりも空気流れの上流側(フィン21の上流側端部21c側)となる上面25a部分の接平面を接平面27と定義した場合、接平面27と下面25cとの距離は、フィン21の上流側端部21cから下流側端部21dに向かって徐々に広くなっている。なお、伝熱管25の下面25cは、略水平となっている。つまり、接平面27は、フィン21の上流側端部21c側に向かって下方に傾斜している。
 ここで、接平面27が本発明の第2面に相当する。
The shape of the heat transfer tube 25 will be described in more detail. The heat transfer tube 25 has a curved upper surface 25a that protrudes upward, and a planar lower surface 25c. When the heat transfer tube 25 is viewed in a cross section perpendicular to the refrigerant flow direction, the upper surface 25a and the lower surface 25c are located on the upstream side of the air flow (on the upstream end 21c side of the fins 21) from the lateral center position. Is gradually increased from the upstream end 21c of the fin 21 toward the downstream end 21d. In other words, when the tangent plane of the upper surface 25a portion that is on the upstream side of the air flow (on the upstream end 21c side of the fin 21) from the lateral center position is defined as the tangential plane 27, the tangential plane 27 and the lower surface 25c Is gradually increased from the upstream end 21c of the fin 21 toward the downstream end 21d. In addition, the lower surface 25c of the heat transfer tube 25 is substantially horizontal. That is, the tangential plane 27 is inclined downward toward the upstream end portion 21 c side of the fin 21.
Here, the tangential plane 27 corresponds to the second surface of the present invention.
 上述のように、伝熱管25が挿入されるフィン21の貫通孔23の上流側端部23aは、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置されている。また、伝熱管25が挿入されるフィン21の貫通孔23の下流側端部23bは、フィン21の下流側端部21dから規定間隔離れた位置に配置されている。このため、伝熱管25がフィン21に取り付けられた状態においては、伝熱管25の上流側端部25bも、フィン21の上流側端部21cから規定間隔(第2規定間隔)離れた位置に配置される。また、伝熱管25がフィン21に取り付けられた状態においては、伝熱管25の下流側端部25dも、フィン21の下流側端部21dから規定間隔離れた位置に配置される。 As described above, the upstream end 23a of the through hole 23 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position away from the upstream end 21c of the fin 21 by a specified interval (second specified interval). Yes. Further, the downstream end 23 b of the through hole 23 of the fin 21 into which the heat transfer tube 25 is inserted is disposed at a position spaced apart from the downstream end 21 d of the fin 21 by a specified distance. For this reason, when the heat transfer tube 25 is attached to the fin 21, the upstream end 25 b of the heat transfer tube 25 is also arranged at a position away from the upstream end 21 c of the fin 21 by a specified interval (second specified interval). Is done. Further, in a state where the heat transfer tube 25 is attached to the fins 21, the downstream end portion 25 d of the heat transfer tube 25 is also disposed at a position spaced apart from the downstream end portion 21 d of the fins 21 by a specified interval.
 したがって、本実施の形態4においては、フィン21には、上流側端部21c側と下流側端部21d側の両方に、伝熱管25が設けられていない領域である第2領域21bが形成される。なお、第1領域21aと上流側端部21c側の第2領域21bとの境界線は、上下方向に並設された貫通孔23の上流側端部23aを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管25の上流側端部25bを結ぶ仮想直線となる。また、第1領域21aと下流側端部21d側の第2領域21bとの境界線は、上下方向に並設された貫通孔23の下流側端部23bを結ぶ仮想直線、換言すると、上下方向に並設された伝熱管25の下流側端部25dを結ぶ仮想直線となる。 Therefore, in the fourth embodiment, the fin 21 is formed with the second region 21b, which is a region where the heat transfer tube 25 is not provided, on both the upstream end 21c side and the downstream end 21d side. The The boundary line between the first region 21a and the second region 21b on the upstream end 21c side is a virtual straight line connecting the upstream end 23a of the through holes 23 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes the virtual straight line which connects the upstream end part 25b of the heat exchanger tube 25 arranged in parallel. The boundary line between the first region 21a and the second region 21b on the downstream end 21d side is a virtual straight line connecting the downstream ends 23b of the through holes 23 arranged in parallel in the vertical direction, in other words, the vertical direction. It becomes an imaginary straight line connecting the downstream end portions 25d of the heat transfer tubes 25 arranged side by side.
 このように熱交換器1を構成した場合、実施の形態1~実施の形態3と同様に、伝熱管15,25の上面15a,25aに到達した水滴を、重力によって伝熱管15,25が存在しない第2領域11b,21bに排出することができる。したがって、本実施の形態4に係る熱交換器1においても、実施の形態1~実施の形態3と同様に、排水性を向上させることができる。 When the heat exchanger 1 is configured in this way, as in the first to third embodiments, the heat transfer tubes 15 and 25 exist due to the water droplets reaching the upper surfaces 15a and 25a of the heat transfer tubes 15 and 25 by gravity. Can be discharged to the second regions 11b and 21b. Therefore, also in the heat exchanger 1 according to the fourth embodiment, the drainage performance can be improved as in the first to third embodiments.
 また、第1熱交換部10の伝熱管15の上記接平面17を実施の形態1~実施の形態3の上面15aと同姿勢となるように配置し、第2熱交換部20の伝熱管25の上記接平面27を実施の形態1~実施の形態3の上面25aと同姿勢となるように配置することにより、実施の形態1~実施の形態3と同様に、伝熱性能を向上させることもできる。 Further, the tangential plane 17 of the heat transfer tube 15 of the first heat exchange unit 10 is arranged so as to be in the same posture as the upper surface 15a of the first to third embodiments, and the heat transfer tube 25 of the second heat exchange unit 20 is arranged. By arranging the tangential plane 27 in the same posture as the upper surface 25a of the first to third embodiments, the heat transfer performance can be improved as in the first to third embodiments. You can also.
 すなわち、伝熱管15,25の接平面17,27を、フィン11,21の下流側端部11d,21dから上流側端部11c,21cに向かって下降するように配置すればよい。また、伝熱管25の上端部(図14のC点)を、該伝熱管25と横方向で隣り合う伝熱管15の下面15cよりも上方に配置すればよい。また、伝熱管25の接平面27と伝熱管15の下面15cの延長線との交点Aを、伝熱管25の接平面27と下面25cの延長線との交点Bと一致する位置、あるいは交点Bよりも伝熱管25側に位置させればよい。 That is, the tangential planes 17 and 27 of the heat transfer tubes 15 and 25 may be arranged so as to descend from the downstream end portions 11d and 21d of the fins 11 and 21 toward the upstream end portions 11c and 21c. Moreover, what is necessary is just to arrange | position the upper end part (C point of FIG. 14) of the heat exchanger tube 25 rather than the lower surface 15c of the heat exchanger tube 15 adjacent to this heat exchanger tube 25 in the horizontal direction. Further, the intersection point A of the tangential plane 27 of the heat transfer tube 25 and the extension line of the lower surface 15c of the heat transfer tube 15 coincides with the intersection point B of the tangential plane 27 of the heat transfer tube 25 and the extension line of the lower surface 25c, or the intersection point B. What is necessary is just to be located in the heat exchanger tube 25 side rather than.
 このような構成にすることで、伝熱管15,25の配置位置を、実施の形態1~実施の形態3と同様にすることができる。そして、第1熱交換部10及び第2熱交換部20内の空気の流れも、実施の形態1~実施の形態3と同様にすることができる。詳しくは、送風機501から略水平に第1熱交換部10に供給された空気は、略水平に配置された伝熱管15の下面15c近傍では、該下面15cに沿って略水平に流れる。また、横方向の中央位置よりも空気流れの上流側となる上面15a部分近傍では、水平方向よりも上方向を向いた流れとなる。このため、上下方向に隣接する伝熱管15間を流れる空気の流れは、実施の形態1~実施の形態3と同様に、水平方向よりも上方向を向いた流れとなる。したがって、第2熱交換部20のフィン21間を流れる空気は、水平方向よりも上方向を向いた流れとなって、伝熱管25の上流側端部25bに到達する。そして、実施の形態1~実施の形態3と同様に、従来であれば死水域の後方となって風速が低下する位置の伝熱管25の上面25a近傍に十分な量の空気を流すことができ、空気と上面25aとの間の熱交換を促進することができる。 With this configuration, the arrangement positions of the heat transfer tubes 15 and 25 can be made the same as those in the first to third embodiments. The air flow in the first heat exchange unit 10 and the second heat exchange unit 20 can also be made the same as in the first to third embodiments. Specifically, the air supplied from the blower 501 to the first heat exchanging unit 10 substantially horizontally flows substantially horizontally along the bottom surface 15c in the vicinity of the bottom surface 15c of the heat transfer tube 15 arranged substantially horizontally. Further, in the vicinity of the upper surface 15a portion on the upstream side of the air flow from the lateral center position, the flow is directed upward from the horizontal direction. For this reason, the flow of air flowing between the heat transfer tubes 15 adjacent in the vertical direction is a flow that is directed upward from the horizontal direction, as in the first to third embodiments. Therefore, the air flowing between the fins 21 of the second heat exchange unit 20 reaches the upstream end 25b of the heat transfer tube 25 in a flow that is directed upward from the horizontal direction. As in the first to third embodiments, a sufficient amount of air can be flowed in the vicinity of the upper surface 25a of the heat transfer tube 25 at the position where the wind speed is reduced behind the dead water area. The heat exchange between the air and the upper surface 25a can be promoted.
 1 熱交換器、10 第1熱交換部、11 フィン、11a 第1領域、11b 第2領域、11c 上流側端部、11d 下流側端部、12 切り欠き、12a 上流側端部、12b 開口部、13 貫通孔、13a 上流側端部、13b 下流側端部、15 伝熱管、15a 上面、15b 上流側端部、15c 下面、15d 下流側端部、16 冷媒流路、17 接平面、20 第2熱交換部、21 フィン、21a 第1領域、21b 第2領域、21c 上流側端部、21d 下流側端部、22 切り欠き、22a 上流側端部、22b 開口部、23 貫通孔、23a 上流側端部、23b 下流側端部、25 伝熱管、25a 上面、25b 上流側端部、25c 下面、25d 下流側端部、26 冷媒流路、27 接平面、100 冷凍サイクル装置、200 圧縮機、300 凝縮器、301 送風機、400 膨張機構、500 蒸発器、501 送風機。 1 heat exchanger, 10 first heat exchange section, 11 fin, 11a first area, 11b second area, 11c upstream end, 11d downstream end, 12 notch, 12a upstream end, 12b opening 13 through hole, 13a upstream end, 13b downstream end, 15 heat transfer tube, 15a upper surface, 15b upstream end, 15c lower surface, 15d downstream end, 16 refrigerant flow path, 17 tangential plane, 20th 2 heat exchange part, 21 fin, 21a 1st area, 21b 2nd area, 21c upstream end, 21d downstream end, 22 notch, 22a upstream end, 22b opening, 23 through hole, 23a upstream Side end, 23b downstream end, 25 heat transfer tube, 25a upper surface, 25b upstream end, 25c lower surface, 25d downstream end, 26 refrigerant flow path, 27 contact Surface, 100 refrigeration cycle apparatus, 200 a compressor, 300 a condenser, 301 blower, 400 expansion mechanism, 500 evaporator, 501 blower.

Claims (5)

  1.  横方向に第1端部及び第2端部を有する第1フィンと、
     横方向に第3端部及び第4端部を有し、前記第3端部が前記第2端部と対向して配置された第2フィンと、
     前記第1端部から第1規定間隔離れて前記第1フィンを貫通している第1伝熱管と、
     前記第3端部から第2規定間隔離れて前記第2フィンを貫通している第2伝熱管と、
     を備え、
     前記第1伝熱管は、平面状又は曲面状の第1上面と、平面状の第1下面とを有し、
     前記第2伝熱管は、平面状又は曲面状の第2上面と、平面状の第2下面とを有し、
     前記第1上面が平面状の場合には、該第1上面を第1面と定義し、前記第1上面が曲面状の場合には、該第1上面の接平面を第1面と定義し、前記第2上面が平面状の場合には、該第2上面を第2面と定義し、前記第2上面が曲面状の場合には、該第2上面の接平面を第2面と定義したとき、
     前記第1下面が水平となるように前記第1伝熱管及び前記第2伝熱管を観察した際、
     前記第1伝熱管が前記第1フィンを貫通する方向と垂直な縦断面において、
     前記第1面が、前記第1端部側に向かって下方に傾斜し、
     前記第2面が、前記第3端部側に向かって下方に傾斜し、
     前記第2伝熱管の上端は前記第1下面よりも上方に位置し、
     前記第2面又は該第2面の延長線と前記第1下面の延長線との交点である交点Aが、前記第2面又は該第2面の延長線と前記第2下面の延長線との交点である交点Bと一致している、あるいは、前記交点Bよりも前記第2伝熱管側に位置する熱交換器。
    A first fin having a first end and a second end in the lateral direction;
    A second fin having a third end portion and a fourth end portion in a lateral direction, wherein the third end portion is disposed to face the second end portion;
    A first heat transfer tube penetrating the first fin at a first specified distance from the first end;
    A second heat transfer tube penetrating the second fin at a second predetermined interval from the third end;
    With
    The first heat transfer tube has a planar or curved first upper surface and a planar first lower surface,
    The second heat transfer tube has a planar or curved second upper surface and a planar second lower surface,
    When the first upper surface is planar, the first upper surface is defined as the first surface, and when the first upper surface is curved, the tangential plane of the first upper surface is defined as the first surface. When the second upper surface is planar, the second upper surface is defined as the second surface, and when the second upper surface is curved, the tangential plane of the second upper surface is defined as the second surface. When
    When observing the first heat transfer tube and the second heat transfer tube so that the first lower surface is horizontal,
    In a longitudinal section perpendicular to the direction in which the first heat transfer tube penetrates the first fin,
    The first surface is inclined downward toward the first end side;
    The second surface is inclined downward toward the third end side;
    The upper end of the second heat transfer tube is located above the first lower surface,
    The intersection A, which is the intersection of the second surface or the extension line of the second surface and the extension line of the first lower surface, is the second surface or the extension line of the second surface and the extension line of the second lower surface. A heat exchanger that coincides with the intersection B, which is the intersection of the two, or is located closer to the second heat transfer tube than the intersection B.
  2.  前記第1下面が水平となるように前記第1伝熱管及び前記第2伝熱管を観察した際、
     前記第2下面が、前記第3端部側に向かって下方に傾斜している請求項1に記載の熱交換器。
    When observing the first heat transfer tube and the second heat transfer tube so that the first lower surface is horizontal,
    The heat exchanger according to claim 1, wherein the second lower surface is inclined downward toward the third end portion side.
  3.  前記第1下面が水平となるように前記第1伝熱管及び前記第2伝熱管を観察した際、
     前記第1伝熱管が前記第1フィンを貫通する方向と垂直な縦断面において、
     前記交点Aが、前記交点Bと一致しており、
     前記第2下面が水平となっている請求項1に記載の熱交換器。
    When observing the first heat transfer tube and the second heat transfer tube so that the first lower surface is horizontal,
    In a longitudinal section perpendicular to the direction in which the first heat transfer tube penetrates the first fin,
    The intersection A coincides with the intersection B;
    The heat exchanger according to claim 1, wherein the second lower surface is horizontal.
  4.  請求項1~請求項3のいずれか一項に記載の熱交換器と、
     前記第1端部側から、前記第1下面に沿って前記熱交換器に空気を供給する送風機と、
     を備え、
     前記熱交換器は、
     前記第1面が前記第1端部側に向かって下方に傾斜し、前記第2面が前記第3端部側に向かって下方に傾斜するように設置されている冷凍サイクル装置。
    The heat exchanger according to any one of claims 1 to 3,
    A blower for supplying air to the heat exchanger along the first lower surface from the first end side;
    With
    The heat exchanger is
    A refrigeration cycle apparatus installed such that the first surface is inclined downward toward the first end portion and the second surface is inclined downward toward the third end portion.
  5.  前記熱交換器は、
     前記第1下面が、水平に、あるいは、前記第1端部側に向かって下方に傾斜するように設置されている請求項4に記載の冷凍サイクル装置。
    The heat exchanger is
    5. The refrigeration cycle apparatus according to claim 4, wherein the first lower surface is installed so as to be inclined horizontally or downward toward the first end portion side.
PCT/JP2017/014105 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device WO2018185840A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780088422.0A CN110462326B (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device
PCT/JP2017/014105 WO2018185840A1 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device
US16/480,403 US20200018494A1 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle apparatus
ES17904889T ES2877582T3 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device
EP17904889.7A EP3608618B1 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device
JP2019510536A JP6716021B2 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014105 WO2018185840A1 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018185840A1 true WO2018185840A1 (en) 2018-10-11

Family

ID=63712848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014105 WO2018185840A1 (en) 2017-04-04 2017-04-04 Heat exchanger and refrigeration cycle device

Country Status (6)

Country Link
US (1) US20200018494A1 (en)
EP (1) EP3608618B1 (en)
JP (1) JP6716021B2 (en)
CN (1) CN110462326B (en)
ES (1) ES2877582T3 (en)
WO (1) WO2018185840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137562A1 (en) * 2020-12-25 2022-06-30 三菱電機株式会社 Heat exchanger, method for manufacturing same, and refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603419A (en) * 2017-05-11 2019-12-20 三菱电机株式会社 Heat exchanger and refrigeration cycle device
US11525618B2 (en) * 2019-10-04 2022-12-13 Hamilton Sundstrand Corporation Enhanced heat exchanger performance under frosting conditions

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1396633A (en) * 1920-04-12 1921-11-08 Henry N Jensen Radiator for automobiles and the like
CH337558A (en) * 1956-01-20 1959-04-15 Calorifer Ag Heat exchanger
JPS5221447U (en) * 1975-08-04 1977-02-15
US4715432A (en) * 1984-05-26 1987-12-29 Gea Luftkuehlergesellschaft Happel Gmbh & Co. Air-cooled tube condenser
JPS633185A (en) * 1986-06-23 1988-01-08 Matsushita Refrig Co Finned heat exchanger
US4997036A (en) * 1987-11-03 1991-03-05 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Heat exchanger tube
JPH0455691A (en) * 1990-06-22 1992-02-24 Nissan Motor Co Ltd Pin fin heat exchanger
JPH04177091A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger
JPH1089870A (en) * 1996-09-18 1998-04-10 Nippon Light Metal Co Ltd Manufacture of heat exchanger and heat exchanger
JP2003314973A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Completely independent fin tube type heat exchanger and refrigerator equipped therewith
JP2005114308A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007183088A (en) 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008241057A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Finned tube heat exchanger, and heat exchanger unit and air conditioner using the same
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
JP2013024468A (en) * 2011-07-20 2013-02-04 Kanazawa Univ Heat transfer tube array structure for heat exchanger
WO2014091536A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus
JP2015117876A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger
WO2015188812A1 (en) * 2014-06-11 2015-12-17 GEA Luftkühler GmbH Heat exchanger
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1396633A (en) * 1920-04-12 1921-11-08 Henry N Jensen Radiator for automobiles and the like
CH337558A (en) * 1956-01-20 1959-04-15 Calorifer Ag Heat exchanger
JPS5221447U (en) * 1975-08-04 1977-02-15
US4715432A (en) * 1984-05-26 1987-12-29 Gea Luftkuehlergesellschaft Happel Gmbh & Co. Air-cooled tube condenser
JPS633185A (en) * 1986-06-23 1988-01-08 Matsushita Refrig Co Finned heat exchanger
US4997036A (en) * 1987-11-03 1991-03-05 Gea Luftkuhlergesellschaft Happel Gmbh & Co. Heat exchanger tube
JPH0455691A (en) * 1990-06-22 1992-02-24 Nissan Motor Co Ltd Pin fin heat exchanger
JPH04177091A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger
JPH1089870A (en) * 1996-09-18 1998-04-10 Nippon Light Metal Co Ltd Manufacture of heat exchanger and heat exchanger
JP2003314973A (en) * 2002-04-22 2003-11-06 Matsushita Refrig Co Ltd Completely independent fin tube type heat exchanger and refrigerator equipped therewith
JP2005114308A (en) * 2003-10-10 2005-04-28 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007183088A (en) 2005-12-07 2007-07-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008241057A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Finned tube heat exchanger, and heat exchanger unit and air conditioner using the same
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
JP2013024468A (en) * 2011-07-20 2013-02-04 Kanazawa Univ Heat transfer tube array structure for heat exchanger
WO2014091536A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus
JP2015117876A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger
WO2015188812A1 (en) * 2014-06-11 2015-12-17 GEA Luftkühler GmbH Heat exchanger
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137562A1 (en) * 2020-12-25 2022-06-30 三菱電機株式会社 Heat exchanger, method for manufacturing same, and refrigeration cycle device
JP7475496B2 (en) 2020-12-25 2024-04-26 三菱電機株式会社 Heat exchanger, its manufacturing method, and refrigeration cycle device

Also Published As

Publication number Publication date
EP3608618A1 (en) 2020-02-12
EP3608618A4 (en) 2020-04-22
ES2877582T3 (en) 2021-11-17
EP3608618B1 (en) 2021-05-26
CN110462326B (en) 2021-03-19
CN110462326A (en) 2019-11-15
JPWO2018185840A1 (en) 2019-11-07
JP6716021B2 (en) 2020-07-01
US20200018494A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6545277B2 (en) Outdoor unit of air conditioner
WO2018003123A1 (en) Heat exchanger and refrigeration cycle apparatus
US11346609B2 (en) Heat exchanger
WO2016194088A1 (en) Heat exchanger and refrigeration cycle apparatus
US20180372429A1 (en) Heat exchanger
EP2908082B1 (en) Heat exchanger
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
CN107076526B (en) Heat exchanger
WO2018185840A1 (en) Heat exchanger and refrigeration cycle device
JP2015017738A (en) Heat exchanger
JP5270732B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2007046868A (en) Evaporator
JP6621922B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
WO2018235215A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
WO2018207321A1 (en) Heat exchanger and refrigeration cycle device
JP2005201492A (en) Heat exchanger
CN106403388B (en) Micro-channel heat exchanger and refrigerator, wind cooling refrigerator
CN107076525B (en) Heat exchanger
JP2015014397A (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
CN106403389A (en) Micro-channel heat exchanger, refrigerator and air-cooled refrigerator
JP6548824B2 (en) Heat exchanger and refrigeration cycle device
CN205192050U (en) Evaporating dish subassembly and have refrigerator of this evaporating dish subassembly
JP6640500B2 (en) Air conditioner outdoor unit
JP6921323B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017904889

Country of ref document: EP

Effective date: 20191104