WO2018182767A1 - Methods for generating and storing electricity and managing temperature for a vehicle - Google Patents

Methods for generating and storing electricity and managing temperature for a vehicle Download PDF

Info

Publication number
WO2018182767A1
WO2018182767A1 PCT/US2017/043710 US2017043710W WO2018182767A1 WO 2018182767 A1 WO2018182767 A1 WO 2018182767A1 US 2017043710 W US2017043710 W US 2017043710W WO 2018182767 A1 WO2018182767 A1 WO 2018182767A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
vehicle
conditioning compressor
crankshaft
motor generator
Prior art date
Application number
PCT/US2017/043710
Other languages
French (fr)
Inventor
Bruce Richard Berkson
Sean Robert Scherer
Phillip Steven Brown
Original Assignee
N4 Innovations, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/475,763 external-priority patent/US20170203637A1/en
Application filed by N4 Innovations, Llc filed Critical N4 Innovations, Llc
Publication of WO2018182767A1 publication Critical patent/WO2018182767A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3222Cooling devices using compression characterised by the compressor driving arrangements, e.g. clutches, transmissions or multiple drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs

Definitions

  • the present invention is generally related to vehicle hybrid electric drive power and temperature management. More particularly, the present invention is directed to systems and processes for converting a vehicle's mechanically-driven air conditioning compressor to operate as an electromechanical air conditioning compressor, coupling an electric motor generator unit to an engine of a vehicle, and managing the temperature of rechargeable vehicle batteries.
  • Prior art vehicles typically incorporate a motor generator unit into a modified pulley and belt system. Moreover, prior art vehicles couple and drive air conditioning compressor units with a belt drive. This requires that the internal combustion engine be running in order for the air conditioning compressor to function and operate and provide cool air, such as to the passenger compartment of the vehicle. Furthermore, coupling such devices to the belts places a strain on the belts and related components and decreases efficiency.
  • crankshaft of the vehicle without the need for reconfiguring existing belts or providing additional belts.
  • present invention fulfills these needs, and provides other related
  • the present invention is generally concerned with methods and systems for adapting a vehicle to a hybrid drive vehicle having an energy storage and distribution system while providing fuel efficiency and improved fuel emissions and safety.
  • a conventional internal combustion engine-based vehicle can be converted and adapted into a hybrid drive vehicle which has these benefits.
  • a motor generator unit that generates electricity is coupled to the engine, in accordance with the invention.
  • a rotatable shaft of the motor generator unit is operably coupled to the crankshaft. This may be done by attaching a coupling between the motor generator shaft and the through-bolt of the crankshaft.
  • fasteners are inserted through a mounting flange and into the crankshaft pulley or wall of the engine.
  • the mounting flange and motor generator unit are attached to the crankshaft without coming into direct contact with a harmonic balancer, sometimes referred to as a vibration dampener, of the crankshaft pulley.
  • a second end of the motor generator unit generally opposite the crankshaft may be supported, such as by a bracket attached to an adjacent structure of the engine or within the engine compartment.
  • the present invention also provides systems and processes for converting a vehicle's mechanically-driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor.
  • a drive belt is operably coupled to a crankshaft of the engine and an air conditioning compressor.
  • the drive belt from the air conditioning compressor is detached in accordance with the present invention.
  • An electric motor is operably attached to the air conditioning compressor instead. This may be done by attaching the electric motor to a clutch or pulley of the air conditioning compressor.
  • the air conditioning compressor may be coupled to the electric motor by a bracket. The electric motor operates the air conditioning
  • an electronic controller selectively activates the electric motor and causes the air conditioning compressor to operate. This may be done when a temperature within a passenger compartment of the vehicle detects a temperature falling outside of a predetermined range of
  • the present invention provides an alternate power unit comprising rechargeable batteries electrically coupled to the motor generator unit.
  • the rechargeable batteries may provide electric power to various components and systems of the vehicle, such as the
  • the temperature of the rechargeable vehicle batteries is managed.
  • the rechargeable batteries are disposed within a housing of the alternate power unit.
  • a temperature of the interior housing is detected.
  • the interior of the housing is cooled, to cool the batteries, when the detected temperature is above a predetermined temperature, such as 90° F. This may be done by passing air through an evaporator to cool the air and direct the cooled air into the housing to cool the batteries.
  • a refrigerant may be passed from a low pressure line of an air conditioning compressor of the vehicle through the evaporator.
  • the alternate power unit may have a dedicated air conditioning unit comprising a condenser, a compressor, and an accumulator to cool the interior of the housing of the alternate power unit, and thus the rechargeable batteries.
  • the interior of the housing may be heated when a detected
  • FIGURE 1 is a perspective view and diagram illustrating a conventional engine arrangement in accordance with the prior art which incorporates a mechanical air conditioning compressor, an alternator, and a crankshaft pulley coupled to one another by a belt;
  • FIGURE 2 is a diagrammatic view illustrating the generation and supply of electricity to and from rechargeable batteries of an alternate power unit and an internal combustion engine by means of a motor generator unit and/or regenerative brakes;
  • FIGURE 3 is a diagrammatic view of a vehicle having sensors detecting conditions in an occupied compartment thereof, in accordance with the present invention
  • FIGURE 4 is a diagrammatic view similar to FIG. 1 , illustrating the incorporation of a motor generator unit and sensors and electronic controllers operably coupled to the motor generator unit and engine and alternate power unit, in accordance with the present invention
  • FIGURE 5 is a partially exploded perspective view of a motor generator unit coupled directly to a through-bolt of a crankshaft pulley, in accordance with the present invention
  • FIGURE 6 is an end view of a flange for attaching the motor generator unit to the crankshaft, in accordance with the present invention
  • FIGURE 7 is a cross-sectional view taken generally along line 7-7 of FIG. 6, illustrating attachment of the various component parts thereof;
  • FIGURE 8 is a diagrammatic view similar to FIGS. 1 and 3, but illustrating an electro-mechanical air conditioning compressor embodying the present invention
  • FIGURE 9 is a perspective and diagrammatic view illustrating the coupling of an electric motor with the air conditioning compressor unit, in accordance with the present invention.
  • FIGURE 1 0 is a diagrammatic view illustrating an alternate power unit having rechargeable batteries and components for detecting and managing the temperature of the batteries;
  • FIGURE 1 1 is a diagrammatic and perspective view similar to FIG. 1 0, but illustrating a self-contained, dedicated miniature air conditioning system for managing the temperature of the enclosure of the rechargeable batteries of the alternate power unit, in accordance with the present invention.
  • the present invention is directed to systems and processes for converting and adapting conventional internal combustion-based vehicles into hybrid vehicles which continue to use the internal combustion engine but also capture, store and use electricity in both driving the vehicle as well as operating various accessories associated with the vehicle.
  • These conversions and adaptations can take place at the factory, but more typically are retrofit to existing internal combustion-based vehicles wherein modifications are made to the existing vehicle in order to give the vehicle electric hybrid qualities and characteristics.
  • the system and method of the present invention can reduce or even eliminate periods of prolonged vehicle idling.
  • the present invention can also prolong the usable life of components of a conventional vehicle, and thus result in cost savings due to maintenance, replacement of parts, and fuel.
  • the engine 1 0 includes an engine block 1 2 having the typical pistons, crankshafts, camshafts, and the like.
  • An alternator 1 4 is typically mounted onto the engine block and generates electricity for charging the vehicle's battery 1 6, typically a 1 2-volt battery.
  • a mechanical air conditioning compressor 1 8 is also mounted to, or otherwise associated with, the engine 1 0 for creating cool air, as is known in the art.
  • a system of belts and pulleys 20 impart rotational energy from a crankshaft of the engine 1 0 to the alternator 1 4 and the mechanical air conditioning compressor 1 8 in order to operate these components, as is known in the art.
  • heated air is provided from heat generated by the engine and/or radiator 22 and piped into the passenger compartment, through filters, as desired.
  • FIG. 2 in accordance with the present invention, various components of a conventional engine 1 0 and other systems and components of the vehicle are changed, altered, or have additions made thereto, either at the time of manufacturing or as a process of retrofitting the vehicle to incorporate the aspects of the present invention.
  • a motor generator unit 40 is associated with the engine 1 0.
  • the motor generator unit 1 0 can generate power, in the form of electricity, which can be supplied to rechargeable batteries of an alternate power unit 42 , in accordance with the present invention.
  • Regenerative electric brakes diagrammatically illustrated as component 44, can also create electricity which may be utilized to recharge the batteries of the alternate power unit 42 or supply other components and systems of the vehicle with electricity, as needed.
  • Both the motor generator unit 40 and the regenerative braking system 44 may also supply power to the engine 1 0 so as to increase fuel efficiency of the engine 1 0, and thus the vehicle.
  • modular thermally managed rechargeable batteries in the alternate power unit 42 store energy to be distributed as a transportable electric grid micro source.
  • a vehicle 46 is illustrated. It will be appreciated that the vehicle 46 can comprise any type of passenger vehicle, typically including an automobile in the form of a car, truck, and the like. The vehicle 46 has therein a passenger compartment 48 where the driver sits to operate the vehicle 46 and passengers may be seated, as is well known.
  • one or more sensors 50 sense and detect parameters and conditions within the passenger compartment 48.
  • sensors include a sensor for sensing carbon monoxide levels in the passenger compartment, a sensor for sensing the temperature in the passenger compartment of the vehicle, and a sensor for detecting the presence of a living occupant within the passenger compartment.
  • the detection of a living occupant within the passenger compartment 48 can be by means of a motion detector, an infrared sensor, pressure sensors in the seats of the vehicle, or any other sensor which could detect that an occupant is within the passenger compartment 48 of the vehicle 46.
  • Sensors 50 may also detect contaminants within the passenger compartment including chemical levels, aerosol biological levels and even nuclear levels within the occupied passenger compartment of the vehicle in order to protect the occupants thereof as well as reducing unnecessary idling of the engine of the vehicle.
  • a controller 52 is operably connected to the one or more sensors 50.
  • the controller 52 is also operably coupled to an electric heating system 54 and an electric cooling system 56 embodying the present invention.
  • the system typically also has a blower 58 for blowing cool air from the electric cooling system 56 or OEM cooling system, heated air from the electric heating system 54 or OEM heating system, or air from outside of the vehicle into the passenger compartment 48 of the vehicle 46. This may be the case, for example, if air outside of the vehicle is at a more desirable temperature than the air within the passenger compartment 48 or the contaminant levels within the air of the passenger compartment 48 are determined to be too high and the blowers 58 may blow filtered air that may be used to flush out the
  • the controller 52 activates either a heating system 54 or a cooling system 56 to bring the temperatures within the passenger compartment within the predetermined temperature range.
  • a heating system 54 or a cooling system 56 may be electric instead of the standard air conditioning and heating systems.
  • the temperature range may be set between 60° F to 85° F.
  • the passenger and/or user of the vehicle 46 may be able to adjust the thermostat to a desired internal
  • the controller 52 is also operably connected to the engine 1 0 such that it can shut off the engine when the sensors 1 00 detect that the carbon monoxide level within the passenger compartment 42 rises above a
  • the controller 1 02 may also be used to shut off the engine and prevent it from idling unnecessarily.
  • the invention contemplates the automatic restart of the engine, such as when the driver depresses the gas pedal of the vehicle.
  • the alternate power unit 42 is operably coupled to the one or more controllers 52, and electrically coupled to the motor generator unit 40.
  • the alternate power unit 42 is used to provide electricity to the electric heating system 54 and the electric cooling system 56 of the present invention.
  • electrically-powered lights and other accessories of the vehicle 46 are also powered by the alternate power unit 42.
  • OEM original equipment manufacturing
  • the invention contemplates the motor generator unit 40 diverting power to the engine 1 0, such as a crankshaft of the engine, so as to conserve fuel.
  • the motor generator unit 40 is interactively connected to the alternate power unit, such as being monitored and controlled by controller 50, wherein it either charges the APU or returns hybrid electric power back to the crankshaft through an idler pulley belt, for example.
  • the appropriate sensor 50 detects the presence of the occupants and automatically activates the thermal climate control systems 54 and/or 56 of the present invention. If the engine is running and the vehicle is moving, the OEM heating system may be used to heat the passenger compartment. This can also be the case when the vehicle is parked and in idle, and the system of the present invention does not detect abnormal levels of carbon monoxide and the engine is not automatically shut off.
  • an electric heater 54 powered by the alternate power unit 42 may be used to provide heat, as necessary, to the passenger compartment 42.
  • electric heat strips may be placed in the heater vents and powered by the alternate power unit (APU) 42.
  • the motor generator unit 40 is operably coupled to the crankshaft, such as through crankshaft pulley 60, through the serpentine belt 20 which may also be connected to the alternator 1 4 and the air conditioning compressor unit 1 8.
  • Rotation of the belt 20 activates the motor generator unit 40 to create electricity, which is supplied, for example, to the batteries of the alternate power unit 42 and other electrical accessories of the vehicle, as needed.
  • the motor generator unit 40 can also supply motive power to the vehicle, such as assisting rotation of the crankshaft or the like.
  • a flange 64 such as the illustrated circular flange
  • Bolts 66 or other fasteners extend through the flange 64 and into the structure within pulley 60 at one end thereof, and into aperture 68 of the motor generator unit 40 at the other end thereof.
  • the flange 64 is not in contact with a harmonic balancer or vibration dampener 70 associated with the crankshaft pulley 60.
  • a rotatable shaft 72 of the motor generator unit 40 is coupled or otherwise attached to the through-bolt 62 of the crankshaft pulley by means of a coupler 74 or other fastener such that rotational energies are imparted between the through-bolt 62 and shaft 72.
  • the flange 64 serves to mount the motor generator unit 40 at one end thereof to the crankshaft pulley so that the through-bolt 62 of the crankshaft pulley and the shaft 72 of the motor generator unit 40 can be operably coupled to one another.
  • the generally opposite second end of the motor generator unit 40 can be supported as well, such as by utilizing a bracket 76 to attach the second end of the motor generator unit 40 to a structure associated with the internal combustion engine or disposed adjacent thereto such as within an engine compartment of the vehicle.
  • Electric contacts or terminals 78 are operably coupled to the motor generator unit 40 for transferring electricity between the motor generator unit 40 and the alternating power unit batteries, accessory or the like.
  • electricity is conveyed from the motor generator unit 40 to the rechargeable batteries of the alternate power unit 42.
  • electricity can be supplied to the motor generator unit 40, such as by the batteries of the alternate power unit 42 so as to apply power to the through- bolt 62 of the crankshaft and provide motive power to the crankshaft so as to conserve energy and make the vehicle more fuel efficient.
  • the motor generator unit 40 is coupled to a belt 20, as illustrated in FIG. 4, however, mounting the motor generator unit 40 directly to the crankshaft output shaft bolt 62 and isolating the harmonic balancer 70 with the flange 64 allows almost any vehicle to be converted to a hybrid electric drive. This also enables the installer to utilize the existing belts and pulley arrangements, such as between the crankshaft pulley 60, alternator 1 4, air conditioning compressor 1 8, etc. Aside from simplifying the installation and allowing the conversion of almost any car or truck with a more powerful hybrid drive motor, the system has the appearance of being factory installed.
  • the present invention is also directed to a process for converting a vehicle's mechanically driven air conditioning compressor 1 8 to operate as an electro-mechanical air conditioning compressor.
  • the air conditioning compressor 1 8 is operably coupled to the crankshaft pulley 60 by means of a belt 20.
  • the drive belt 20 is detached from the air conditioning compressor 1 8.
  • An electric motor 80 is operably attached to the air conditioning compressor 1 8, such as by operably attaching the electric motor 80 to a clutch or pulley 88 of the air conditioning compressor 1 8, and using the electric motor 80 to operate the air conditioning compressor as desired.
  • the electronic controller 52 may selectively activate the electric motor 80 and cause the air conditioning compressor 1 8 to operate. This may occur when a temperature within the passenger compartment of the vehicle is detected as being outside of a predetermined range of temperatures. This may be dictated by the user and occupant of the vehicle setting a desired temperature, or a range of temperatures, such as generally between 60° F - 85° F.
  • the system may be automatically set at a narrower temperature range, such as between 70° F to 77° F, with the preferred temperature setting of 72° F. If the detected temperature within the compartment of the vehicle exceeds this temperature or temperature range, the electronic controller 52 selectively activates the electric motor 80, causing the air conditioning compressor 1 8 to operate and cool air to be distributed into the passenger compartment.
  • a narrower temperature range such as between 70° F to 77° F, with the preferred temperature setting of 72° F.
  • brackets 82 may be used to connect the electric motor 80 to the air conditioning compressor 1 8, by use of bolts 84 or other fasteners.
  • a rotatable shaft 86 of the electric motor 80 may be used to selectively activate and operate the air conditioning compressor 1 8.
  • the electric motor 80 may be operably connected to the clutch or pulley 88 of the air conditioning compressor 1 8 to selectively activate and operate the air conditioning compressor 1 8.
  • this can be advantageously used, for example, in managing the temperature of rechargeable vehicle batteries 90 within an enclosure or housing 92 of the alternate power unit 42.
  • Low pressure refrigerant such as Freon ®
  • a fan 98 is used to direct air over the evaporator 96 and into the enclosure 92 to cool the batteries 90, as needed or desired.
  • a sensor 1 00 may detect the temperature of the interior of the housing 92. The interior of the housing 92 is selectively cooled when the detected temperature is above a predetermined temperature, such as 90° F.
  • the interior of the housing 92 may also be heated, as necessary or desired, in order to maintain the rechargeable batteries 90 within a
  • the interior of the housing 92 may be heated. This may be done, for example, by supplying electricity to electric heating elements 1 02, which may be disposed, such as on the floor or lower portion of the housing 92 to heat the interior of the housing 92 , and more particularly the rechargeable batteries 90 so as to maintain the temperature of the rechargeable batteries 90 within a desired temperature range.
  • Various components of the system such as the aforementioned refrigerant line 94, evaporator 96 and fan 98 may be disposed within an upper chamber or lid 1 04 of the alternate power unit 42 with an air duct 1 06 extending into the housing 92 where the rechargeable batteries 90 reside.
  • the alternate power unit 42 may have a dedicated air conditioning unit or system for managing the temperature of the rechargeable batteries 90. While this is illustrated being in the upper chamber or lid 1 04 of the alternate power unit 42 , it will be understood that varying configurations would still meet the needs and goals of the present invention.
  • Such an alternate power unit dedicated air conditioning unit would include and comprise the aforementioned evaporator 96 and fan or blower 98 as well as an expansion valve 1 08 disposed in a refrigerant line 94.
  • the micro- sized A/C system or unit would also comprise a condenser 1 1 0, compressor 1 1 2 and may include an accumulator and any other necessary components to create a closed-circuit and self-contained micro-sized A/C system or unit which could supply cold air through duct 1 06 into the interior of the housing 92 to cool the rechargeable batteries 90 of the alternate power unit 42 as needed or desired.
  • the air conditioning refrigerant lines may be properly drained and capped, the low pressure refrigerant line of the converted electromechanical air conditioning compressor routed through the modular evaporator 96, and the air conditioning lines being rerouted back to the electromechanical air conditioning compressor as illustrated and described above. Valves or the like could be actuated so as to direct compressed refrigerant into the evaporator 96 and activate fan or blower 98 to direct cold air into the enclosure 92, as needed. Once again, this could be done when the internal combustion engine 1 0 is not operating as the air conditioning compressor has been converted to an electro-mechanical air conditioning compressor, as illustrated and described above. However, it is also contemplated by the present invention that the OEM air conditioning compressor arrangement be used with added or rerouted refrigerant lines to maintain the temperature of the rechargeable batteries 90 within the housing 92 of the alternate power unit 42 , as needed or desired.
  • the alternate power unit, particularly the housing 92 and rechargeable batteries 90 and associated components may be placed where convenient in the vehicle.
  • the alternate power unit being charged by lithium rechargeable batteries typically may be relatively small and
  • the enclosure may be comprised of a material to shield components therein from electromagnetic signals and audible noise emissions generated by operation of the vehicle.
  • the alternator 1 4 is used only to recharge the vehicle-starting battery 1 6.
  • the motor generator unit 40, electric regenerative braking system 44 and the like are used to recharge the rechargeable batteries 90 of the alternate power unit 42 , and provide power to electrical components and accessories of the vehicle.
  • the motor generator unit 40 may generate electricity for charging the rechargeable battery cells 90 of the alternate power unit 42 in static charge mode or regenerative charge mode.
  • the motor generator unit 40 may provide motive power directly to the crankshaft and drive mode and regenerative braking in generator mode.
  • the motor generator unit may supply electric power to the batteries of the alternate power unit 42 by charging them while the vehicle is stopped and the engine of the vehicle is at idle, as a way of maintaining the minimum effective operating temperature in the catalytic converter. Otherwise, if the vehicle idles for a prolonged period of time, the exhaust temperatures may fall below a threshold temperature or effective operating temperature which can adversely affect the catalytic converter efficiency. This would enable full combustion of the vehicle emissions, particular nitrous oxides as when in the charging mode the motor generator unit 40 will place a load onto the crankshaft and then internal combustion engine 1 0. Moreover, the motor generator unit 40 may supply electric power to the batteries 90 of the alternate power unit 42 by charging resistance while the engine 1 0 of the vehicle is in optimum and most fuel-efficient RPM power range.
  • the motor generator unit motive force may be used in conjunction with the engine starter to proceed from a stop so as to minimize vehicle engine emissions.
  • the vehicle engine 1 0 may be automatically stopped when sensors detect the internal temperatures of the catalytic converter have been cooled by prolonged engine idling and are approaching the effective low operating temperatures that limit full catalytic combustion of nitrous oxides, carbon monoxide, etc. Turning off the engine before it falls below the predetermined temperature has the effect of stabilizing temperatures in the catalytic converter, thus enabling full combustion of nitrous oxides and other pollutants when the engine restarts.
  • Another method for maintaining a minimum effective operating temperature of the catalytic converter is to inject hydrogen upstream of the catalytic converter in the exhaust, so as to maintain a minimum effective operating temperature in the catalytic converter that enables full combustion of the vehicle emissions. This may be done by electrolysis or any other conventional method, such as those disclosed in U.S. Patent No. 7,808, 1 1 8, the contents of which are hereby incorporated by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Processes for converting and adapting a vehicle into a hybrid-driven vehicle include coupling an electric motor generator unit to an engine of the vehicle, including to a through-bolt extending through a crankshaft pulley. Also included is a process for converting a vehicle's mechanically-driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor by detaching the air conditioning compressor from the crankshaft and operating the air conditioning compressor using an electric motor. A temperature of rechargeable vehicle batteries of an alternate power unit of the vehicle is managed and maintained at a predetermined desired temperature.

Description

METHODS FOR GENERATING AND STORING ELECTRICITY AND MANAGING
TEMPERATURE FOR A VEHICLE
D ESC RI PTI ON
BACKGROUND OF THE INVENTION
[Para 1 ] The present invention is generally related to vehicle hybrid electric drive power and temperature management. More particularly, the present invention is directed to systems and processes for converting a vehicle's mechanically-driven air conditioning compressor to operate as an electromechanical air conditioning compressor, coupling an electric motor generator unit to an engine of a vehicle, and managing the temperature of rechargeable vehicle batteries.
[Para 2] Studies reveal that vehicles which idle for prolonged periods of time, including, but not limited to, police vehicles, taxis, limousines, construction, delivery and utility trucks, burn thousands of gallons of fuel each year while idling. In many cases, idle times exceed drive times. The resulting wasted fuel and added maintenance costs are very high. It is well known in the trade that the damage to gasoline engines caused by engine glazing and to diesel engines caused by piston slap that results from long duration engine idling is
significant. As a result, costly engine rebuilds are frequently required for prolonged-idle vehicles. It is also well known that when vehicle engines idle for prolonged periods of time, it may have the effect of cooling the catalytic converter, thereby increasing unburned hydrocarbon emissions from the engine and elevating nitrous oxide emission levels.
[Para 3] It has been found to be cost effective to develop idle reduction strategies that turn off the engine any time the vehicle is at rest and in a state of prolonged idle. However, experience has shown drivers often won't voluntarily turn off their cabin air conditioning or cabin heater when
temperatures become uncomfortable and/or potentially unsafe.
[Para 4] Drivers of prolonged-idle vehicles, including police, taxis, limousines, construction and utility companies and the like, often use their radios, lights, heaters, air conditioning and other accessories while idling. These added accessories overload the original equipment manufacturers' (OEM) 1 2-volt electric systems and cause the batteries, starters and alternators to experience extremely high failure rates. When the OEM electrical alternator system is also used to recharge the idle reduction system batteries, as well as the OEM electric system, failure also frequently occurs. As a result, prolonged-idle vehicles with or without other idle reduction systems are often left inoperable due to battery and starter system failure.
[Para 5] Police vehicles which idle to power their accessories pose a significant security and safety risk when the vehicle must be left running, particularly when the driver must exit the vehicle. Police agencies have reported numerous accidental deaths of children, pets and K9 officers who were inadvertently left unattended in overheated vehicles. [Para 6] Previous idle reduction systems and methods do not automatically detect or activate thermal or carbon monoxide or other contaminant occupant protection when a passenger occupies the vehicle. Previous idle reduction systems and methods do not integrate adaptive electro-mechanical air conditioning or electric space heating with the OEM HVAC systems. Previous idle reduction systems typically exceed OEM 1 2-volt electrical system
capacities, and do not provide autonomous charge-sustaining operation.
[Para 7] Previous idle reduction systems and methods do not provide adaptive hybrid drive capability nor adaptive hybrid drive regenerative electric braking.
[Para 8] Previous idle reduction systems and methods do not provide an alternate power unit that enables stored energy to be distributed as a
transportable electric grid micro source. Moreover, such previous idle reduction systems do not thermally manage the rechargeable batteries of the alternate power unit and related controllers.
[Para 9] Previous hybrid idle reduction system methods that idle for prolonged times may allow the catalytic converter temperature to drop below an effective range, causing increased nitrous oxide emissions during
subsequent duty cycles. Nor do previous idle reduction systems and methods capture the wasted cold air from the low pressure lines of the air conditioning system in order to introduce cold air into the engine air intake manifold, improving complete engine combustion, fuel efficiency and power.
[Para 1 0] It is well known that the distributed electric infrastructure required to recharge fleets of hybrid or electric vehicles is either limited or virtually non- existent. It is also well known that the cost to install large distributed electric recharging systems is extremely expensive. Previous idle reduction systems do not provide autonomous charge-sustaining operation, and previous vehicles using electric air conditioning are susceptible to motor controller failure due to high operating temperatures.
[Para 11] Prior art vehicles typically incorporate a motor generator unit into a modified pulley and belt system. Moreover, prior art vehicles couple and drive air conditioning compressor units with a belt drive. This requires that the internal combustion engine be running in order for the air conditioning compressor to function and operate and provide cool air, such as to the passenger compartment of the vehicle. Furthermore, coupling such devices to the belts places a strain on the belts and related components and decreases efficiency.
[Para 12] Accordingly, there is a continuing need for a system and method for converting a vehicle's mechanically driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor and be
selectively operated by an electric motor. There is also a continuing need for a system and method for coupling an electric motor generator unit to a
crankshaft of the vehicle without the need for reconfiguring existing belts or providing additional belts. Moreover, there is a continuing need for a system and method for managing the temperature of rechargeable vehicle batteries. The present invention fulfills these needs, and provides other related
advantages. SUMMARY OF THE INVENTION
[Para 1 3] The present invention is generally concerned with methods and systems for adapting a vehicle to a hybrid drive vehicle having an energy storage and distribution system while providing fuel efficiency and improved fuel emissions and safety. In accordance with the methods and systems of the present invention, a conventional internal combustion engine-based vehicle can be converted and adapted into a hybrid drive vehicle which has these benefits.
[Para 1 4] In addition to a primary alternator coupled to the engine, a motor generator unit that generates electricity is coupled to the engine, in accordance with the invention. In a particularly preferred embodiment, a rotatable shaft of the motor generator unit is operably coupled to the crankshaft. This may be done by attaching a coupling between the motor generator shaft and the through-bolt of the crankshaft. Typically, fasteners are inserted through a mounting flange and into the crankshaft pulley or wall of the engine. The mounting flange and motor generator unit are attached to the crankshaft without coming into direct contact with a harmonic balancer, sometimes referred to as a vibration dampener, of the crankshaft pulley. A second end of the motor generator unit generally opposite the crankshaft may be supported, such as by a bracket attached to an adjacent structure of the engine or within the engine compartment.
[Para 1 5] The present invention also provides systems and processes for converting a vehicle's mechanically-driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor. Conventionally, a drive belt is operably coupled to a crankshaft of the engine and an air conditioning compressor. The drive belt from the air conditioning compressor is detached in accordance with the present invention. An electric motor is operably attached to the air conditioning compressor instead. This may be done by attaching the electric motor to a clutch or pulley of the air conditioning compressor. The air conditioning compressor may be coupled to the electric motor by a bracket. The electric motor operates the air conditioning
compressor. For example, an electronic controller selectively activates the electric motor and causes the air conditioning compressor to operate. This may be done when a temperature within a passenger compartment of the vehicle detects a temperature falling outside of a predetermined range of
temperatures, thus activating the electric motor and air conditioning
compressor.
[Para 1 6] In addition to a battery electrically coupled to the primary
alternator for starting the engine of the vehicle, the present invention provides an alternate power unit comprising rechargeable batteries electrically coupled to the motor generator unit. The rechargeable batteries may provide electric power to various components and systems of the vehicle, such as the
aforementioned converted electro-mechanical air compressor, the motor generator unit to supply power to the crankshaft of the engine, electrically powered lights and other accessories. [Para 1 7] In accordance with the present invention, the temperature of the rechargeable vehicle batteries is managed. Typically, the rechargeable batteries are disposed within a housing of the alternate power unit. A temperature of the interior housing is detected. As necessary, the interior of the housing is cooled, to cool the batteries, when the detected temperature is above a predetermined temperature, such as 90° F. This may be done by passing air through an evaporator to cool the air and direct the cooled air into the housing to cool the batteries. A refrigerant may be passed from a low pressure line of an air conditioning compressor of the vehicle through the evaporator. The alternate power unit may have a dedicated air conditioning unit comprising a condenser, a compressor, and an accumulator to cool the interior of the housing of the alternate power unit, and thus the rechargeable batteries.
However, the interior of the housing may be heated when a detected
temperature falls below a predetermined temperature. In order to heat the interior of the housing of the alternate power unit, and thus the batteries, electricity may be provided to electrical heating elements associated with the housing or the batteries.
[Para 1 8] Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS [Para 1 9] The accompanying drawings illustrate the invention. In such drawings:
[Para 20] FIGURE 1 is a perspective view and diagram illustrating a conventional engine arrangement in accordance with the prior art which incorporates a mechanical air conditioning compressor, an alternator, and a crankshaft pulley coupled to one another by a belt;
[Para 21 ] FIGURE 2 is a diagrammatic view illustrating the generation and supply of electricity to and from rechargeable batteries of an alternate power unit and an internal combustion engine by means of a motor generator unit and/or regenerative brakes;
[Para 22] FIGURE 3 is a diagrammatic view of a vehicle having sensors detecting conditions in an occupied compartment thereof, in accordance with the present invention;
[Para 23] FIGURE 4 is a diagrammatic view similar to FIG. 1 , illustrating the incorporation of a motor generator unit and sensors and electronic controllers operably coupled to the motor generator unit and engine and alternate power unit, in accordance with the present invention;
[Para 24] FIGURE 5 is a partially exploded perspective view of a motor generator unit coupled directly to a through-bolt of a crankshaft pulley, in accordance with the present invention;
[Para 25] FIGURE 6 is an end view of a flange for attaching the motor generator unit to the crankshaft, in accordance with the present invention; [Para 26] FIGURE 7 is a cross-sectional view taken generally along line 7-7 of FIG. 6, illustrating attachment of the various component parts thereof;
[Para 27] FIGURE 8 is a diagrammatic view similar to FIGS. 1 and 3, but illustrating an electro-mechanical air conditioning compressor embodying the present invention;
[Para 28] FIGURE 9 is a perspective and diagrammatic view illustrating the coupling of an electric motor with the air conditioning compressor unit, in accordance with the present invention;
[Para 29] FIGURE 1 0 is a diagrammatic view illustrating an alternate power unit having rechargeable batteries and components for detecting and managing the temperature of the batteries; and
[Para 30] FIGURE 1 1 is a diagrammatic and perspective view similar to FIG. 1 0, but illustrating a self-contained, dedicated miniature air conditioning system for managing the temperature of the enclosure of the rechargeable batteries of the alternate power unit, in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[Para 31 ] As shown in the accompanying drawings, for purposes of
illustration, the present invention is directed to systems and processes for converting and adapting conventional internal combustion-based vehicles into hybrid vehicles which continue to use the internal combustion engine but also capture, store and use electricity in both driving the vehicle as well as operating various accessories associated with the vehicle. These conversions and adaptations can take place at the factory, but more typically are retrofit to existing internal combustion-based vehicles wherein modifications are made to the existing vehicle in order to give the vehicle electric hybrid qualities and characteristics. The system and method of the present invention can reduce or even eliminate periods of prolonged vehicle idling. The present invention can also prolong the usable life of components of a conventional vehicle, and thus result in cost savings due to maintenance, replacement of parts, and fuel.
[Para 32] With reference now to FIG. 1 , a conventional engine 1 0, typically an internal combustion engine, is shown. The engine 1 0 includes an engine block 1 2 having the typical pistons, crankshafts, camshafts, and the like. An alternator 1 4 is typically mounted onto the engine block and generates electricity for charging the vehicle's battery 1 6, typically a 1 2-volt battery. A mechanical air conditioning compressor 1 8 is also mounted to, or otherwise associated with, the engine 1 0 for creating cool air, as is known in the art. A system of belts and pulleys 20 impart rotational energy from a crankshaft of the engine 1 0 to the alternator 1 4 and the mechanical air conditioning compressor 1 8 in order to operate these components, as is known in the art.
[Para 33] As is well known in the art, engines typically have a radiator 22 and a condenser 24 for thermal management of the engine and its components. Conventionally, in order to provide cool, conditioned air to the passenger compartment of the vehicle, refrigerant, such as Freon®, is compressed by the mechanical air conditioning compressor 1 8 passed through tubing 26 to an accumulator 28 where it is then passed to an evaporator 30, where the evaporation of the compressed refrigerant creates a thermal condition where cool air can be generated. The evaporated refrigerant is then passed through tubing 32, through one or more orifices 34, a refrigerant charge tube 36, and then onto the condenser 24, before being returned via tubing 38 to the mechanical air conditioning compressor 1 8.
[Para 34] Conventionally, heated air is provided from heat generated by the engine and/or radiator 22 and piped into the passenger compartment, through filters, as desired.
[Para 35] In order to create and direct cooled or heated air into the passenger compartment of the vehicle, in the prior art, the engine must be running. Thus, there are many situations where when a vehicle is parked the driver of the vehicle leaves the engine idling so as to maintain the desired temperature within the passenger compartment of the vehicle. This requires expenditure of fuel and the operation of the aforementioned components. Moreover, in certain situations carbon monoxide levels within the passenger compartment can become elevated, posing a danger and threat to the occupants of the passenger compartment, when the vehicle is idling.
[Para 36] With reference now to FIG. 2, in accordance with the present invention, various components of a conventional engine 1 0 and other systems and components of the vehicle are changed, altered, or have additions made thereto, either at the time of manufacturing or as a process of retrofitting the vehicle to incorporate the aspects of the present invention. As shown schematically and diagrammatically in FIG. 2, a motor generator unit 40 is associated with the engine 1 0. The motor generator unit 1 0 can generate power, in the form of electricity, which can be supplied to rechargeable batteries of an alternate power unit 42 , in accordance with the present invention. Regenerative electric brakes, diagrammatically illustrated as component 44, can also create electricity which may be utilized to recharge the batteries of the alternate power unit 42 or supply other components and systems of the vehicle with electricity, as needed. Both the motor generator unit 40 and the regenerative braking system 44 may also supply power to the engine 1 0 so as to increase fuel efficiency of the engine 1 0, and thus the vehicle. In accordance with the present invention, modular thermally managed rechargeable batteries in the alternate power unit 42 store energy to be distributed as a transportable electric grid micro source.
[Para 37] With reference now to FIG. 3, a vehicle 46 is illustrated. It will be appreciated that the vehicle 46 can comprise any type of passenger vehicle, typically including an automobile in the form of a car, truck, and the like. The vehicle 46 has therein a passenger compartment 48 where the driver sits to operate the vehicle 46 and passengers may be seated, as is well known.
[Para 38] In accordance with an aspect of the present invention, one or more sensors 50 sense and detect parameters and conditions within the passenger compartment 48. Such sensors include a sensor for sensing carbon monoxide levels in the passenger compartment, a sensor for sensing the temperature in the passenger compartment of the vehicle, and a sensor for detecting the presence of a living occupant within the passenger compartment. The detection of a living occupant within the passenger compartment 48 can be by means of a motion detector, an infrared sensor, pressure sensors in the seats of the vehicle, or any other sensor which could detect that an occupant is within the passenger compartment 48 of the vehicle 46. Sensors 50 may also detect contaminants within the passenger compartment including chemical levels, aerosol biological levels and even nuclear levels within the occupied passenger compartment of the vehicle in order to protect the occupants thereof as well as reducing unnecessary idling of the engine of the vehicle.
[Para 39] A controller 52 is operably connected to the one or more sensors 50. The controller 52 is also operably coupled to an electric heating system 54 and an electric cooling system 56 embodying the present invention. The system typically also has a blower 58 for blowing cool air from the electric cooling system 56 or OEM cooling system, heated air from the electric heating system 54 or OEM heating system, or air from outside of the vehicle into the passenger compartment 48 of the vehicle 46. This may be the case, for example, if air outside of the vehicle is at a more desirable temperature than the air within the passenger compartment 48 or the contaminant levels within the air of the passenger compartment 48 are determined to be too high and the blowers 58 may blow filtered air that may be used to flush out the
contaminated air from within the passenger compartment 48 of the vehicle 46.
[Para 40] If the temperature within the passenger compartment 48 is detected as falling outside of a predetermined range of temperatures, the controller 52 activates either a heating system 54 or a cooling system 56 to bring the temperatures within the passenger compartment within the predetermined temperature range. These may be electric instead of the standard air conditioning and heating systems. For example, the temperature range may be set between 60° F to 85° F. The passenger and/or user of the vehicle 46 may be able to adjust the thermostat to a desired internal
temperature within the passenger compartment 48, and the air entering the passenger compartment will be heated or cooled accordingly. A particularly preferred temperature range is between 72° F and 76° F, which could be set as a default. The controller 52 is also operably connected to the engine 1 0 such that it can shut off the engine when the sensors 1 00 detect that the carbon monoxide level within the passenger compartment 42 rises above a
predetermined level. The controller 1 02 may also be used to shut off the engine and prevent it from idling unnecessarily. The invention contemplates the automatic restart of the engine, such as when the driver depresses the gas pedal of the vehicle.
[Para 41 ] With reference to FIG. 4, the alternate power unit 42 is operably coupled to the one or more controllers 52, and electrically coupled to the motor generator unit 40. The alternate power unit 42 is used to provide electricity to the electric heating system 54 and the electric cooling system 56 of the present invention. Preferably, electrically-powered lights and other accessories of the vehicle 46 are also powered by the alternate power unit 42. This enables the original equipment manufacturing (OEM) battery 1 6 and alternator 1 4 to be dedicated to starting the engine, and thus prolonging their usable lives. [Para 42] When the battery cells of the alternate power unit (APU) 42 are fully charged, the invention contemplates the motor generator unit 40 diverting power to the engine 1 0, such as a crankshaft of the engine, so as to conserve fuel. As such, the motor generator unit 40 is interactively connected to the alternate power unit, such as being monitored and controlled by controller 50, wherein it either charges the APU or returns hybrid electric power back to the crankshaft through an idler pulley belt, for example.
[Para 43] When an occupant of any type, size or weight is located within the vehicle, which can include adults, children, or even pets, the appropriate sensor 50 detects the presence of the occupants and automatically activates the thermal climate control systems 54 and/or 56 of the present invention. If the engine is running and the vehicle is moving, the OEM heating system may be used to heat the passenger compartment. This can also be the case when the vehicle is parked and in idle, and the system of the present invention does not detect abnormal levels of carbon monoxide and the engine is not automatically shut off. However, in the case when the engine is shut off, such as the present invention automatically shutting off the engine to conserve fuel, such as when a transmission lever of the vehicle is put into the park position, an electric heater 54 powered by the alternate power unit 42 may be used to provide heat, as necessary, to the passenger compartment 42. For example, electric heat strips may be placed in the heater vents and powered by the alternate power unit (APU) 42. [Para 44] As shown in FIG. 4, the motor generator unit 40 is operably coupled to the crankshaft, such as through crankshaft pulley 60, through the serpentine belt 20 which may also be connected to the alternator 1 4 and the air conditioning compressor unit 1 8. Rotation of the belt 20 activates the motor generator unit 40 to create electricity, which is supplied, for example, to the batteries of the alternate power unit 42 and other electrical accessories of the vehicle, as needed. The motor generator unit 40 can also supply motive power to the vehicle, such as assisting rotation of the crankshaft or the like.
[Para 45] With reference now to FIGS. 5-7, the present invention
contemplates coupling the motor generator unit 40 directly to the through-bolt 62 of the crankshaft or crankshaft pulley. This is done by attaching a flange 64, such as the illustrated circular flange, directly to a wall of the internal combustion engine or other non-moving structure within the pulley 60 of the crankshaft of the vehicle. Bolts 66 or other fasteners extend through the flange 64 and into the structure within pulley 60 at one end thereof, and into aperture 68 of the motor generator unit 40 at the other end thereof. The flange 64 is not in contact with a harmonic balancer or vibration dampener 70 associated with the crankshaft pulley 60. For example, there is a space 72 between the outer circumference of the generally circular flange 64 and the inner diameter surface of the harmonic balancer 70, as shown in FIG. 5. A rotatable shaft 72 of the motor generator unit 40 is coupled or otherwise attached to the through-bolt 62 of the crankshaft pulley by means of a coupler 74 or other fastener such that rotational energies are imparted between the through-bolt 62 and shaft 72.
[Para 46] The flange 64 serves to mount the motor generator unit 40 at one end thereof to the crankshaft pulley so that the through-bolt 62 of the crankshaft pulley and the shaft 72 of the motor generator unit 40 can be operably coupled to one another. The generally opposite second end of the motor generator unit 40 can be supported as well, such as by utilizing a bracket 76 to attach the second end of the motor generator unit 40 to a structure associated with the internal combustion engine or disposed adjacent thereto such as within an engine compartment of the vehicle.
[Para 47] Electric contacts or terminals 78 are operably coupled to the motor generator unit 40 for transferring electricity between the motor generator unit 40 and the alternating power unit batteries, accessory or the like. When in the battery charging mode, electricity is conveyed from the motor generator unit 40 to the rechargeable batteries of the alternate power unit 42. However, electricity can be supplied to the motor generator unit 40, such as by the batteries of the alternate power unit 42 so as to apply power to the through- bolt 62 of the crankshaft and provide motive power to the crankshaft so as to conserve energy and make the vehicle more fuel efficient.
[Para 48] Typically, the motor generator unit 40 is coupled to a belt 20, as illustrated in FIG. 4, however, mounting the motor generator unit 40 directly to the crankshaft output shaft bolt 62 and isolating the harmonic balancer 70 with the flange 64 allows almost any vehicle to be converted to a hybrid electric drive. This also enables the installer to utilize the existing belts and pulley arrangements, such as between the crankshaft pulley 60, alternator 1 4, air conditioning compressor 1 8, etc. Aside from simplifying the installation and allowing the conversion of almost any car or truck with a more powerful hybrid drive motor, the system has the appearance of being factory installed.
[Para 49] The present invention is also directed to a process for converting a vehicle's mechanically driven air conditioning compressor 1 8 to operate as an electro-mechanical air conditioning compressor. As shown in FIG. 1 , typically the air conditioning compressor 1 8 is operably coupled to the crankshaft pulley 60 by means of a belt 20. Typically, a clutch of the air conditioning
compressor is selectively actuated in order to have the belt 20 operate the air conditioning compressor 1 8 as the crankshaft pulley 60 is rotated, so as to rotate the internal components of the air conditioning compressor and compress the refrigerant, as is well known in the art.
[Para 50] However, in accordance with the present invention, as illustrated in FIG. 8, the drive belt 20 is detached from the air conditioning compressor 1 8. An electric motor 80 is operably attached to the air conditioning compressor 1 8, such as by operably attaching the electric motor 80 to a clutch or pulley 88 of the air conditioning compressor 1 8, and using the electric motor 80 to operate the air conditioning compressor as desired. For example, the electronic controller 52 may selectively activate the electric motor 80 and cause the air conditioning compressor 1 8 to operate. This may occur when a temperature within the passenger compartment of the vehicle is detected as being outside of a predetermined range of temperatures. This may be dictated by the user and occupant of the vehicle setting a desired temperature, or a range of temperatures, such as generally between 60° F - 85° F. The system may be automatically set at a narrower temperature range, such as between 70° F to 77° F, with the preferred temperature setting of 72° F. If the detected temperature within the compartment of the vehicle exceeds this temperature or temperature range, the electronic controller 52 selectively activates the electric motor 80, causing the air conditioning compressor 1 8 to operate and cool air to be distributed into the passenger compartment.
[Para 51 ] As illustrated in FIGS. 8 and 9, one or more brackets 82 may be used to connect the electric motor 80 to the air conditioning compressor 1 8, by use of bolts 84 or other fasteners. A rotatable shaft 86 of the electric motor 80 may be used to selectively activate and operate the air conditioning compressor 1 8. As discussed above, the electric motor 80 may be operably connected to the clutch or pulley 88 of the air conditioning compressor 1 8 to selectively activate and operate the air conditioning compressor 1 8.
[Para 52] There are benefits of converting the mechanically driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor in that the air conditioning compressor 1 8 can be moved to a more desirable location and does not need to be positioned to accept belt 20 to operate. Another advantage is that the air conditioning compressor 1 8 can be operated when the internal combustion engine 1 0 is not running, but instead the air conditioning compressor 1 8 is operating by means of electrical power, such as that provided by the alternate power unit 42. Motor 80 may be a small drive motor such as an approximately 3 KW pancake motor or axial flux motor. Another advantage of utilizing the electric motor to operate the air conditioning compressor 1 8 is that it eliminates the weak link and energy transfer loss of the drive belt. Not only may the air conditioning compressor 1 8 itself be moved to a more convenient or desired location, but the refrigerant lines from the converted electro-mechanical air conditioning compressor may be rerouted and strategically placed in any appropriate location in the vehicle, as desired or needed.
[Para 53] With reference now to FIG. 1 0, this can be advantageously used, for example, in managing the temperature of rechargeable vehicle batteries 90 within an enclosure or housing 92 of the alternate power unit 42. Low pressure refrigerant, such as Freon®, is passed through tube 94 into evaporator 96 where it is allowed to expand, and thus cool the air within the evaporator 96. A fan 98 is used to direct air over the evaporator 96 and into the enclosure 92 to cool the batteries 90, as needed or desired. A sensor 1 00 may detect the temperature of the interior of the housing 92. The interior of the housing 92 is selectively cooled when the detected temperature is above a predetermined temperature, such as 90° F.
[Para 54] The interior of the housing 92 may also be heated, as necessary or desired, in order to maintain the rechargeable batteries 90 within a
predetermined temperature range. Thus, when sensor 1 00 detects that the temperature within the housing 92 is below a predetermined lower temperature threshold, the interior of the housing 92 may be heated. This may be done, for example, by supplying electricity to electric heating elements 1 02, which may be disposed, such as on the floor or lower portion of the housing 92 to heat the interior of the housing 92 , and more particularly the rechargeable batteries 90 so as to maintain the temperature of the rechargeable batteries 90 within a desired temperature range. Various components of the system, such as the aforementioned refrigerant line 94, evaporator 96 and fan 98 may be disposed within an upper chamber or lid 1 04 of the alternate power unit 42 with an air duct 1 06 extending into the housing 92 where the rechargeable batteries 90 reside.
[Para 55] With reference now to FIG. 1 1 , the alternate power unit 42 may have a dedicated air conditioning unit or system for managing the temperature of the rechargeable batteries 90. While this is illustrated being in the upper chamber or lid 1 04 of the alternate power unit 42 , it will be understood that varying configurations would still meet the needs and goals of the present invention. Such an alternate power unit dedicated air conditioning unit would include and comprise the aforementioned evaporator 96 and fan or blower 98 as well as an expansion valve 1 08 disposed in a refrigerant line 94. The micro- sized A/C system or unit would also comprise a condenser 1 1 0, compressor 1 1 2 and may include an accumulator and any other necessary components to create a closed-circuit and self-contained micro-sized A/C system or unit which could supply cold air through duct 1 06 into the interior of the housing 92 to cool the rechargeable batteries 90 of the alternate power unit 42 as needed or desired.
[Para 56] However, when not utilizing the micro-sized A/C dedicated unit, it will be understood that the air conditioning refrigerant lines may be properly drained and capped, the low pressure refrigerant line of the converted electromechanical air conditioning compressor routed through the modular evaporator 96, and the air conditioning lines being rerouted back to the electromechanical air conditioning compressor as illustrated and described above. Valves or the like could be actuated so as to direct compressed refrigerant into the evaporator 96 and activate fan or blower 98 to direct cold air into the enclosure 92, as needed. Once again, this could be done when the internal combustion engine 1 0 is not operating as the air conditioning compressor has been converted to an electro-mechanical air conditioning compressor, as illustrated and described above. However, it is also contemplated by the present invention that the OEM air conditioning compressor arrangement be used with added or rerouted refrigerant lines to maintain the temperature of the rechargeable batteries 90 within the housing 92 of the alternate power unit 42 , as needed or desired.
[Para 57] The cold air from the low pressure lines of the electro-mechanical air conditioning system, or even the mechanical air conditioning system, such as that directed into the housing 92 of the alternate power unit 42, may be directed into the engine air intake manifold in order to improve complete engine combustion, fuel efficiency and power. [Para 58] The alternate power unit, particularly the housing 92 and rechargeable batteries 90 and associated components may be placed where convenient in the vehicle. For example, the alternate power unit being charged by lithium rechargeable batteries typically may be relatively small and
lightweight and thus be able to be placed in, for example, a trunk of the vehicle. The enclosure may be comprised of a material to shield components therein from electromagnetic signals and audible noise emissions generated by operation of the vehicle.
[Para 59] As mentioned above, in accordance with the present invention, typically the alternator 1 4 is used only to recharge the vehicle-starting battery 1 6. The motor generator unit 40, electric regenerative braking system 44 and the like are used to recharge the rechargeable batteries 90 of the alternate power unit 42 , and provide power to electrical components and accessories of the vehicle. The motor generator unit 40 may generate electricity for charging the rechargeable battery cells 90 of the alternate power unit 42 in static charge mode or regenerative charge mode. The motor generator unit 40 may provide motive power directly to the crankshaft and drive mode and regenerative braking in generator mode.
[Para 60] The motor generator unit may supply electric power to the batteries of the alternate power unit 42 by charging them while the vehicle is stopped and the engine of the vehicle is at idle, as a way of maintaining the minimum effective operating temperature in the catalytic converter. Otherwise, if the vehicle idles for a prolonged period of time, the exhaust temperatures may fall below a threshold temperature or effective operating temperature which can adversely affect the catalytic converter efficiency. This would enable full combustion of the vehicle emissions, particular nitrous oxides as when in the charging mode the motor generator unit 40 will place a load onto the crankshaft and then internal combustion engine 1 0. Moreover, the motor generator unit 40 may supply electric power to the batteries 90 of the alternate power unit 42 by charging resistance while the engine 1 0 of the vehicle is in optimum and most fuel-efficient RPM power range.
[Para 61 ] The motor generator unit motive force may be used in conjunction with the engine starter to proceed from a stop so as to minimize vehicle engine emissions. The vehicle engine 1 0 may be automatically stopped when sensors detect the internal temperatures of the catalytic converter have been cooled by prolonged engine idling and are approaching the effective low operating temperatures that limit full catalytic combustion of nitrous oxides, carbon monoxide, etc. Turning off the engine before it falls below the predetermined temperature has the effect of stabilizing temperatures in the catalytic converter, thus enabling full combustion of nitrous oxides and other pollutants when the engine restarts.
[Para 62] Another method for maintaining a minimum effective operating temperature of the catalytic converter is to inject hydrogen upstream of the catalytic converter in the exhaust, so as to maintain a minimum effective operating temperature in the catalytic converter that enables full combustion of the vehicle emissions. This may be done by electrolysis or any other conventional method, such as those disclosed in U.S. Patent No. 7,808, 1 1 8, the contents of which are hereby incorporated by reference.
[Para 63] Although several embodiments have been described in detail for purposes of illustration, various modifications may be made without departing from the scope and spirit of the invention. Accordingly, the invention is not to be limited, except as by the appended claims.

Claims

What i s cl ai m ed i s :
[C l ai m 1 ] A process for converting a vehicle's mechanically driven air conditioning compressor to operate as an electro-mechanical air conditioning compressor, comprising the steps of:
providing a vehicle having an internal combustion engine and a drive belt operably coupling a crankshaft of the engine to an air conditioning compressor; detaching the drive belt from the air conditioning compressor;
operably attaching an electric motor to the air conditioning compressor; and
using the electric motor to operate the air conditioning compressor.
[C l ai m 2] The process of claim 1 , wherein the step of attaching the electric motor to the air conditioning compressor comprises the step of operably attaching the electric motor to a clutch or pulley of the air conditioning compressor.
[C l ai m 3] The process of claim 1 , including the step of using an electronic controller to selectively activate the electric motor and cause the air
conditioning compressor to operate.
[C l ai m 4] The process of claim 3, including the step of detecting a
temperature within a passenger compartment of the vehicle and activating the electric motor, air conditioning compressor and fan when the detected temperature falls outside of a predetermined range of temperatures.
[C l ai m 5] The process of claim 1 , wherein the step of attaching the electric motor to the air conditioning compressor comprises the step of coupling the electric motor to the air conditioning compressor with a bracket.
[C l ai m 6] A process for coupling an electric motor generator unit to an engine of a vehicle, comprising the steps of:
providing a vehicle having an internal combustion engine with a
crankshaft and a crankshaft pully having a through-bolt extending through the crankshaft pully; and
operably coupling a rotatable shaft of a motor generator unit to the crankshaft through-bolt or crankshaft pully.
[C l ai m 7] The process of claim 6, wherein the step of operably coupling the motor generator shaft to the crankshaft comprises the step of attaching a coupling between the motor generator shaft and the through-bolt of the crankshaft.
[C l ai m 8] The process of claim 6, including the step of attaching a mounting flange to the motor generator unit and a crankshaft pulley or wall of the engine. [C l ai m 9] The process of claim 8, wherein the mounting flange and motor generator unit are not in direct contact with a harmonic balancer of the crankshaft pully.
[C l ai m 1 0] The process of claim 8, wherein the step of attaching the mounting flange comprises the step of inserting fasteners through the mounting flange and into the face of the motor generator unit.
[C l ai m 1 1 ] The process of claim 6, including the step of supporting a second end of the motor generator unit generally opposite the crankshaft.
[C l ai m 1 2] A process for managing the temperature of rechargeable vehicle batteries, comprising the steps of:
providing an alternate power unit comprised of rechargeable batteries disposed within a housing;
detecting a temperature of an interior of the housing;
cooling the interior of the housing when the detected temperature is above a predetermined temperature; and
heating the interior of the housing when the detected temperature is below a predetermined temperature. [Clai m 1 3] The process of claim 1 2, wherein the step of cooling the interior of the housing comprises the steps of passing air through an evaporator to cool the air and directing the cooled air into the housing to cool the batteries.
[Clai m 1 4] The process of claim 1 3, including the step of passing a refrigerant from a low pressure line of an air conditioning compressor of the vehicle through the evaporator.
[Clai m 1 5] The process of claim 1 2, including the step of providing an alternate power unit dedicated air conditioning unit comprising a condenser, a compressor, and an accumulator to cool the interior of the housing of the alternate power unit.
[Clai m 1 6] The process of claim 1 2, wherein the heating step comprises the step of selectively providing electricity to electrical heating elements to heat the interior of the housing of the alternate power unit.
PCT/US2017/043710 2017-03-31 2017-07-25 Methods for generating and storing electricity and managing temperature for a vehicle WO2018182767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/475,763 US20170203637A1 (en) 2014-09-25 2017-03-31 Methods for generating and storing electricity and managing temperature for a vehicle
US15/475,763 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018182767A1 true WO2018182767A1 (en) 2018-10-04

Family

ID=63676767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/043710 WO2018182767A1 (en) 2017-03-31 2017-07-25 Methods for generating and storing electricity and managing temperature for a vehicle

Country Status (1)

Country Link
WO (1) WO2018182767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110884322A (en) * 2019-12-03 2020-03-17 三一重机有限公司 Air conditioner overhauling device, air conditioner system and engineering machinery
DE102019101371A1 (en) * 2019-01-21 2020-07-23 Volkswagen Aktiengesellschaft Method for operating a hybrid vehicle
EP4289643A1 (en) * 2022-06-08 2023-12-13 MIG Marine Conversion kit for a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116368A1 (en) * 2001-12-20 2003-06-26 Winkelman James R. Accessory drive for vehicle with hybrid drive system
US20080078195A1 (en) * 2006-10-03 2008-04-03 Kuo-Len Lin Automobile Switchable Solar Air-Conditioning Auxiliary System
US20110083309A1 (en) * 2009-09-15 2011-04-14 Kpit Cummins Infosystems Ltd. Method of converting vehicle into hybrid vehicle
US20160090958A1 (en) * 2014-09-25 2016-03-31 Bruce Richard Berkson Vehicle occupant protection and engine idle reduction system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116368A1 (en) * 2001-12-20 2003-06-26 Winkelman James R. Accessory drive for vehicle with hybrid drive system
US20080078195A1 (en) * 2006-10-03 2008-04-03 Kuo-Len Lin Automobile Switchable Solar Air-Conditioning Auxiliary System
US20110083309A1 (en) * 2009-09-15 2011-04-14 Kpit Cummins Infosystems Ltd. Method of converting vehicle into hybrid vehicle
US20160090958A1 (en) * 2014-09-25 2016-03-31 Bruce Richard Berkson Vehicle occupant protection and engine idle reduction system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101371A1 (en) * 2019-01-21 2020-07-23 Volkswagen Aktiengesellschaft Method for operating a hybrid vehicle
CN110884322A (en) * 2019-12-03 2020-03-17 三一重机有限公司 Air conditioner overhauling device, air conditioner system and engineering machinery
EP4289643A1 (en) * 2022-06-08 2023-12-13 MIG Marine Conversion kit for a vehicle

Similar Documents

Publication Publication Date Title
US10054096B2 (en) Vehicle occupant protection and engine idle reduction system
US20170305235A1 (en) Process for coupling an electric motor generator unit to an engine of a vehicle
US11015566B2 (en) System for controlling power supplied to a starter motor
CN101298248B (en) Method of operating a plug-in hybrid electric vehicle
EP2844506B1 (en) Transport refrigeration system having electric fans
US7032393B2 (en) Climate cooling control systems and methods for hybrid vehicles
KR101897836B1 (en) Method of converting vehicle into hybrid vehicle
EP1454777B1 (en) An integrated electrical generator/starter and air conditioning compressor device and system and method for controlling the same
US7043931B2 (en) Method and apparatus for cooling interior spaces of vehicles
US20150191073A1 (en) Method and vehicle for operating a vehicle air conditioning system
US20070289325A1 (en) Dc to ac auxiliary power unit
WO2008112046A2 (en) Vehicle stop/start system with regenerative braking
WO2018182767A1 (en) Methods for generating and storing electricity and managing temperature for a vehicle
EP3455095B1 (en) Heating and cooling systems and methods for truck cabs
RU2247850C2 (en) Compact power-generating set and method of power generation
US20090120115A1 (en) Diesel truck battery disclosure
JP2003518458A (en) Drive units for cars
US20110260529A1 (en) On-demand electric power control strategy
JP3674925B2 (en) Vehicle air conditioning system
CA2398131A1 (en) Battery charging and air condition operating unit
CN114729597A (en) Front-end motor-generator system and hybrid electric vehicle operation method
US20040154298A1 (en) Compact power generation apparatus and method of generating energy
KR20120015904A (en) Air conditioner compressor operated electric motor
KR20190021080A (en) Electric cooling system with heater which is operated only by electric batteries for Truck and Bus Driver room
Smith University of Tennessee 1995 Hybrid Electric Vehicle Design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904046

Country of ref document: EP

Kind code of ref document: A1