WO2018182184A1 - 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 - Google Patents

부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 Download PDF

Info

Publication number
WO2018182184A1
WO2018182184A1 PCT/KR2018/002416 KR2018002416W WO2018182184A1 WO 2018182184 A1 WO2018182184 A1 WO 2018182184A1 KR 2018002416 W KR2018002416 W KR 2018002416W WO 2018182184 A1 WO2018182184 A1 WO 2018182184A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
size
coding
block
encoding
Prior art date
Application number
PCT/KR2018/002416
Other languages
English (en)
French (fr)
Inventor
전민용
박동진
김대연
Original Assignee
주식회사 칩스앤미디어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 칩스앤미디어 filed Critical 주식회사 칩스앤미디어
Priority to CN202311095172.7A priority Critical patent/CN116962703A/zh
Priority to US16/493,902 priority patent/US20200029082A1/en
Priority to CN202311101895.3A priority patent/CN116962705A/zh
Priority to CN202311094962.3A priority patent/CN116962702A/zh
Priority to CN202311100854.2A priority patent/CN116962704A/zh
Priority to CN201880023397.2A priority patent/CN110495173B/zh
Publication of WO2018182184A1 publication Critical patent/WO2018182184A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • H04N19/426Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements using memory downsizing methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree

Definitions

  • the present invention relates to an image processing method, an image decoding and encoding method using the same, and an apparatus thereof, and more particularly, to an image processing method for performing processing of an encoding tree unit and an encoding unit, an image decoding and encoding method using the same, and an apparatus thereof. It is about.
  • Digital video technologies include digital television, digital direct broadcast systems, wireless broadcast systems, personal digital assistants (PDAs), laptop or desktop computers, digital cameras, digital recording devices, video gaming devices, video game consoles, cellular or satellite radio telephones, etc. It can be integratedly applied to a wide range of digital video devices, including.
  • Digital video devices include video compression technologies such as MPEG-2, MPEG-4, or ITU-T H.264 / MPEG-4, Part 10, Advanced Video Coding (AVC), and High Efficiency Video Coding (HVC). By implementing the digital video information transmission and reception more efficiently.
  • Video compression techniques perform spatial prediction and temporal prediction to remove or reduce redundancy inherent in video sequences.
  • Such image compression techniques include an inter prediction technique for predicting pixel values included in a current picture from a picture before or after the current picture, and an intra prediction for predicting pixel values included in a current picture using pixel information in the current picture.
  • technologies such as technology, entropy encoding technology that assigns a short code to a high frequency of appearance and long code to a low frequency of frequency, and it is possible to effectively compress and transmit or store image data using such image compression technology. .
  • the video decoding apparatus may handle coding units having various sizes obtained by dividing an entire picture corresponding to one frame on a block basis.
  • the recent technology divides one picture into coding tree units having the same size, and each of the coding tree units is recursively divided into coding units that may have different sizes, thereby having a quadtree structure.
  • the encoding unit, the prediction unit, and the transform unit can each perform encoding processing.
  • the maximum size of coding units included in one coding tree unit should be equal to the size of the coding tree unit.
  • the size of the coding tree unit and the maximum size of the coding unit are not independent, and only the minimum coding unit size information is transmitted to the decoding apparatus and used for the division process.
  • the coding tree unit may be formed by dividing a picture or a tile into the same size, and each coding tree unit is generally encoded and decoded in a raster order in the picture or tile.
  • each of the coding units in each coding tree unit is encoded and decoded in a Z scan order.
  • the present invention is to solve the above problems, it is possible to independently determine the coding tree unit size and the maximum coding unit size, according to the bandwidth reduction effect and the maximum coding unit size of the line buffer according to the increase of the coding tree unit size It is an object of the present invention to provide an image processing method, an image decoding, an encoding method, and an apparatus using the same, which can simultaneously achieve an implementation cost reduction effect due to a reduction in the number of pixels.
  • a method of decoding an image including: obtaining encoded tree unit information from an image stream; Acquiring signaling information about a maximum coding unit size of a coding unit split from the coding tree unit; And dividing the coding tree unit stepwise according to the signaling information.
  • the video encoding method for solving the above problems, the method comprising the steps of: obtaining a picture to be encoded; Dividing the picture into coding tree units having a preset size; Determining a maximum coding unit size of a coding unit split from the coding tree unit independantly of the size of the coding tree unit; And processing the signaling for the maximum coding unit size.
  • the method according to an embodiment of the present invention for solving the above problems can be implemented as a program for executing the method on a computer and a non-volatile recording medium that is stored in the computer can be read by the computer.
  • the coding tree unit size and the maximum coding unit size may be independently set, and accordingly, as the coding tree unit size increases.
  • FIG. 1 is a block diagram illustrating a configuration of an image encoding apparatus according to an embodiment of the present invention.
  • 2 to 5 are diagrams for describing a first exemplary embodiment of a method of dividing and processing an image in block units.
  • FIG. 6 is a block diagram illustrating an embodiment of a method of performing inter prediction in an image encoding apparatus.
  • FIG. 7 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating an embodiment of a method of performing inter prediction in an image decoding apparatus.
  • FIG. 9 is a diagram for describing a second exemplary embodiment of a method of dividing and processing an image into blocks.
  • FIG. 10 is a diagram for describing a third embodiment of a method of dividing and processing an image into blocks.
  • FIG. 11 is a diagram for describing an example of a method of configuring a transform unit by dividing a coding unit into a binary tree structure.
  • FIG. 12 is a diagram for describing a fourth embodiment of a method of dividing and processing an image into blocks.
  • 13 to 14 are diagrams for describing still another example of a method of dividing and processing an image into blocks.
  • 15 and 16 are diagrams for describing embodiments of a method of determining a partition structure of a transform unit by performing rate distortion optimization (RDO).
  • RDO rate distortion optimization
  • 17 is a diagram illustrating a relationship between a coding tree unit and a coding unit according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating an operation of a decoding apparatus for performing picture division processing according to an embodiment of the present invention.
  • FIG. 19 is an exemplary diagram for describing a split flag process according to an exemplary embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance.
  • the present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
  • the image encoding apparatus 10 may include a picture divider 110, a transform unit 120, a quantization unit 130, and a scanning unit.
  • the picture dividing unit 110 analyzes an input video signal, divides a picture into coding units, determines a prediction mode, and determines a size of a prediction unit for each coding unit.
  • the picture splitter 110 sends the prediction unit to be encoded to the intra predictor 150 or the inter predictor 160 according to a prediction mode (or a prediction method). In addition, the picture dividing unit 110 sends the prediction unit to be encoded to the subtracting unit 190.
  • a picture of an image may be composed of a plurality of slices, and the slice may be divided into a plurality of coding tree units (CTUs) which are basic units for dividing a picture.
  • CTUs coding tree units
  • the coding tree unit may be divided into one or two coding units (CUs), which are basic units on which inter prediction or intra prediction is performed.
  • CUs coding units
  • the maximum sizes of the coding tree unit and the coding unit may be different, and signaling information thereof may be transmitted to the decoding apparatus 20. This will be described later in more detail with reference to FIG. 17.
  • the coding unit may be divided into one or more prediction units (PUs), which are basic units on which prediction is performed.
  • PUs prediction units
  • the encoding apparatus 10 determines one of inter prediction and intra prediction as a prediction method for each of the divided coding units (CUs), but differently predicts a prediction block for each prediction unit (PU). Can be generated.
  • the coding unit CU may be divided into one or two transform units (TUs), which are basic units for transforming a residual block.
  • TUs transform units
  • the picture dividing unit 110 may transmit the image data to the subtracting unit 190 in a block unit (for example, a prediction unit (PU) or a transformation unit (TU)) divided as described above.
  • a block unit for example, a prediction unit (PU) or a transformation unit (TU) divided as described above.
  • a coding tree unit (CTU) having a maximum size of 256 ⁇ 256 pixels may be divided into a quad tree structure and divided into four coding units (CUs) having a square shape.
  • the four coding units (CUs) having the square shape may be re-divided into quad tree structures, respectively, and the depth of the coding units CU divided into quad tree structures as described above may be any one of 0 to 3. It can have one integer value.
  • the coding unit CU may be divided into one or two or more prediction units (PUs) according to the prediction mode.
  • the prediction unit PU may have a size of 2Nx2N shown in FIG. 3A or NxN shown in FIG. 3B. have.
  • the prediction unit PU when the size of the coding unit CU is 2Nx2N, the prediction unit PU is 2Nx2N shown in FIG. 4A, 2NxN shown in FIG. 4B, and FIG. 4.
  • Nx2N shown in (c) of FIG. 4 NxN shown in (d) of FIG. 4, 2NxnU shown in (e) of FIG. 4, 2NxnD shown in (f) of FIG. 4, shown in (g) of FIG. It may have a size of any one of nLx2N and nRx2N shown in (h) of FIG.
  • the coding unit CU may be divided into a quad tree structure and divided into four transform units TUs having a square shape.
  • the four transform units (TUs) having a square shape may be re-divided into quad tree structures, and the depth of the transform units (TUs) divided into quad tree structures as described above may be any one of 0 to 3. It can have one integer value.
  • the prediction unit PU and the transform unit TU split from the coding unit CU may have a partition structure that is independent of each other.
  • the transform unit TU split from the coding unit CU cannot be larger than the size of the prediction unit PU.
  • the transform unit TU divided as described above may have a maximum size of 64x64 pixels.
  • the transform unit 120 converts a residual block that is a residual signal between the original block of the input prediction unit PU and the prediction block generated by the intra predictor 150 or the inter predictor 160, and the transform is performed. It may be performed using the unit (TU) as a basic unit.
  • different transform matrices may be determined according to a prediction mode (intra or inter), and since the residual signal of intra prediction has a direction according to the intra prediction mode, the transform matrix may be adaptively determined according to the intra prediction mode. have.
  • the transform unit may be transformed by two (horizontal and vertical) one-dimensional transform matrices. For example, in the case of inter prediction, one predetermined transform matrix may be determined.
  • intra prediction when the intra prediction mode is horizontal, the probability of the residual block having the directionality in the vertical direction increases, so a DCT-based integer matrix is applied in the vertical direction, and DST-based or in the horizontal direction. Apply KLT-based integer matrix.
  • an integer matrix based on DST or KLT may be applied in the vertical direction and a DCT based integer matrix in the horizontal direction.
  • a DCT based integer matrix may be applied in both directions.
  • a transform matrix may be adaptively determined based on the size of a transform unit (TU).
  • the quantization unit 130 determines a quantization step size for quantizing the coefficients of the residual block transformed by the transform matrix, and the quantization step size may be determined for each quantization unit having a predetermined size or more.
  • the size of the quantization unit may be 8x8 or 16x16, and the quantization unit 130 quantizes coefficients of the transform block using a quantization matrix determined according to the quantization step size and the prediction mode.
  • the quantization unit 130 may use the quantization step size of the quantization unit adjacent to the current quantization unit as the quantization step size predictor of the current quantization unit.
  • the quantization unit 130 may search for the left quantization unit, the upper quantization unit, and the upper left quantization unit of the current quantization unit and generate a quantization step size predictor of the current quantization unit using one or two valid quantization step sizes. have.
  • the quantization unit 130 may determine a valid first quantization step size found in the order as a quantization step size predictor, or determine an average value of two valid quantization step sizes found in the order as a quantization step size predictor, or If only one quantization step size is valid, this may be determined as a quantization step size predictor.
  • the quantization unit 130 transmits a difference value between the quantization step size and the quantization step size predictor of the current quantization unit to the entropy encoder 140.
  • the left coding unit, the upper coding unit, the upper left coding unit of the current coding unit does not all exist. Or there may be a coding unit previously present in the coding order within the largest coding unit.
  • candidates may be quantization step sizes of the quantization units adjacent to the current coding unit and the quantization unit immediately before the coding order within the maximum coding unit.
  • priority is set in the order of 1) the left quantization unit of the current coding unit, 2) the upper quantization unit of the current coding unit, 3) the upper left quantization unit of the current coding unit, and 4) the quantization unit immediately preceding the coding order.
  • the order may be reversed and the upper left quantization unit may be omitted.
  • the transform block quantized as described above is transferred to the inverse quantization unit 135 and the scanning unit 131.
  • the scanning unit 131 scans the coefficients of the quantized transform block and converts them into one-dimensional quantization coefficients. In this case, since the distribution of coefficients of the transform block after quantization may depend on the intra prediction mode, the scanning method is applied to the intra prediction mode. Can be determined accordingly.
  • the coefficient scanning scheme may be determined differently according to the size of the transform unit, and the scan pattern may vary according to the directional intra prediction mode, in which case the scanning order of the quantization coefficients may be scanned in the reverse direction.
  • the same scan pattern may be applied to the quantization coefficients in each subset, and a zigzag scan or a diagonal scan may be applied to the scan patterns between the subsets.
  • the scan pattern is preferably scanned in the forward direction from the main subset including DC to the remaining subsets, but the reverse direction is also possible.
  • a scan pattern between subsets may be set to be identical to a scan pattern of quantized coefficients in a subset, and the scan pattern between subsets may be determined according to an intra prediction mode.
  • the encoding apparatus 10 may include information indicative of the position of the last non-zero quantization coefficient and the position of the last non-zero quantization coefficient in each subset in the transform unit PU to include the decoding apparatus ( 20).
  • the inverse quantization unit 135 inverse quantizes the quantized coefficients as described above, and the inverse transform unit 125 performs inverse transformation in units of transform units (TUs) to restore the inverse quantized transform coefficients into a residual block of a spatial domain. can do.
  • TUs transform units
  • the adder 195 may generate a reconstructed block by adding the residual block reconstructed by the inverse transform unit 125 and the received prediction block from the intra predictor 150 or the inter predictor 160.
  • the post-processing unit 170 may perform a deblocking filtering process to remove the blocking effect occurring in the reconstructed picture, and a sample adaptive offset to compensate for the difference value from the original image in pixel units.
  • a SAO application process and a coding unit can perform an adaptive loop filtering (ALF) process to compensate for a difference value from an original image.
  • ALF adaptive loop filtering
  • the deblocking filtering process may be applied to the boundary of the prediction unit (PU) or transform unit (TU) having a size of a predetermined size or more.
  • the deblocking filtering process may include determining a boundary to filter, determining a boundary filtering strength to be applied to the boundary, determining whether to apply a deblocking filter, If it is determined to apply the deblocking filter, the method may include selecting a filter to be applied to the boundary.
  • whether the deblocking filter is applied depends on whether i) the boundary filtering intensity is greater than 0 and ii) the degree of change of pixel values at the boundary portions of two blocks (P block, Q block) adjacent to the boundary to be filtered.
  • the value represented may be determined by whether the value is smaller than the first reference value determined by the quantization parameter.
  • the said filter is at least 2 or more.
  • a filter that performs relatively weak filtering is selected.
  • the second reference value is determined by the quantization parameter and the boundary filtering intensity.
  • sample adaptive offset (SAO) application process is to reduce the distortion (distortion) between the pixel and the original pixel in the image to which the deblocking filter is applied, the sample adaptive offset (SAO) application process in the unit of picture or slice. Whether to perform may be determined.
  • the picture or slice may be divided into a plurality of offset regions, and an offset type may be determined for each offset region, and the offset type may be a predetermined number of edge offset types (eg, four) and two band offsets. It can include a type.
  • the offset type is an edge offset type
  • an edge type to which each pixel belongs is determined and an offset corresponding thereto is applied
  • the edge type may be determined based on a distribution of two pixel values adjacent to the current pixel. have.
  • the adaptive loop filtering (ALF) process may perform filtering based on a value obtained by comparing a reconstructed image and an original image that have undergone a deblocking filtering process or an adaptive offset application process.
  • the picture storage unit 180 receives the post-processed image data from the post-processing unit 170 and restores the image in a picture unit, and the picture may be an image in a frame unit or an image in a field unit.
  • the inter prediction unit 160 may perform motion estimation using at least one or more reference pictures stored in the picture storage unit 180, and may determine a reference picture index and a motion vector indicating the reference picture.
  • a prediction block corresponding to a prediction unit to be encoded may be extracted from a reference picture used for motion estimation among a plurality of reference pictures stored in the picture storage unit 180 according to the determined reference picture index and the motion vector. have.
  • the intra predictor 150 may perform intra prediction encoding by using the reconstructed pixel value inside the picture in which the current prediction unit is included.
  • the intra prediction unit 150 may receive the current prediction unit to be predictively encoded, and perform intra prediction by selecting one of a preset number of intra prediction modes according to the size of the current block.
  • the intra predictor 150 adaptively filters the reference pixel to generate the intra prediction block, and generates reference pixels using the available reference pixels when the reference pixel is not available.
  • the entropy encoder 140 may entropy encode quantized coefficients quantized by the quantizer 130, intra prediction information received from the intra predictor 150, motion information received from the inter predictor 160, and the like. Can be.
  • FIG. 6 is a block diagram illustrating an example of a configuration for performing inter prediction in the encoding apparatus 10.
  • the inter prediction encoder illustrated in FIG. 6 includes a motion information determiner 161 and a motion information encoding mode determiner 162.
  • FIG. 6 Motion information encoder 163, prediction block generator 164, residual block generator 165, residual block encoder 166, and multiplexer 167.
  • the motion information determiner 161 determines motion information of the current block, the motion information includes a reference picture index and a motion vector, and the reference picture index is any one of a previously coded and reconstructed picture. Can be represented.
  • the current block When the current block is unidirectional inter prediction coded, it represents one of the reference pictures belonging to list 0 (L0), and when the current block is bidirectional predictively coded, it is a reference picture indicating one of the reference pictures of list 0 (L0). It may include an index and a reference picture index indicating one of the reference pictures of the list 1 (L1).
  • the current block when the current block is bidirectional predictively coded, the current block may include an index indicating one or two pictures of reference pictures of the composite list LC generated by combining the list 0 and the list 1.
  • the motion vector indicates a position of a prediction block in a picture indicated by each reference picture index, and the motion vector may be in pixel units (integer units) or sub pixel units.
  • the motion vector may have a resolution of 1/2, 1/4, 1/8 or 1/16 pixels, and if the motion vector is not an integer unit, the prediction block may be generated from pixels of an integer unit. Can be.
  • the motion information encoding mode determiner 162 may determine an encoding mode for the motion information of the current block as one of a skip mode, a merge mode, and an AMVP mode.
  • the skip mode is applied when there are skip candidates having the same motion information as the motion information of the current block and the residual signal is 0.
  • the skip mode is that the current block, which is the prediction unit PU, has a size equal to that of the coding unit CU. Can be applied when
  • the merge mode is applied when there is a merge candidate having the same motion information as the motion information of the current block, and the merge mode includes a residual signal when the current block has a different size or the same size as the coding unit CU. Applies in the case. Meanwhile, the merge candidate and the skip candidate may be the same.
  • the AMVP mode is applied when the skip mode and the merge mode are not applied, and an AMVP candidate having a motion vector most similar to the motion vector of the current block may be selected as an AMVP predictor.
  • the motion information encoder 163 may encode motion information according to a method determined by the motion information encoding mode determiner 162.
  • the motion information encoder 163 may perform a merge motion vector encoding process when the motion information encoding mode is a skip mode or a merge mode, and may perform an AMVP encoding process when the motion information encoding mode is an AMVP mode.
  • the prediction block generator 164 generates a prediction block by using the motion information of the current block.
  • the prediction block generator 164 copies the block corresponding to the position indicated by the motion vector in the picture indicated by the reference picture index, and then copies the current block. Generate a predictive block of.
  • the prediction block generator 164 may generate pixels of the prediction block from integer unit pixels in a picture indicated by the reference picture index.
  • the prediction pixel may be generated using an 8-tap interpolation filter for the luminance pixel, and the prediction pixel may be generated using a 4-tap interpolation filter for the chrominance pixel.
  • the residual block generator 165 generates a residual block using the current block and the prediction block of the current block.
  • the residual block generator 165 uses the prediction block having a size of 2Nx2N corresponding to the current block and the current block. You can create a block.
  • the size of the current block used for prediction is 2NxN or Nx2N
  • the last prediction block of 2Nx2N size using the two 2NxN prediction blocks Can be generated.
  • a 2Nx2N sized residual block may be generated using the 2Nx2N sized prediction block, and overlap smoothing is applied to the pixels of the boundary part to eliminate discontinuity of the boundary parts of two prediction blocks having 2NxN size. Can be.
  • the residual block encoder 166 may divide the residual block into one or more transform units (TUs) so that each transform unit TU may be transform encoded, quantized, and entropy encoded.
  • TUs transform units
  • the residual block encoder 166 may transform the residual block generated by the inter prediction method using an integer-based transform matrix, and the transform matrix may be an integer-based DCT matrix.
  • the residual block encoder 166 uses a quantization matrix to quantize coefficients of the residual block transformed by the transform matrix, and the quantization matrix may be determined by a quantization parameter.
  • the quantization parameter is determined for each coding unit CU having a predetermined size or more, and when the current coding unit CU is smaller than the predetermined size, the first coding unit in the coding order among the coding units CU within the predetermined size ( Since only the quantization parameter of the CU) is encoded and the quantization parameter of the remaining coding unit CU is the same as the above parameter, it may not be encoded.
  • coefficients of the transform block may be quantized using a quantization matrix determined according to the quantization parameter and the prediction mode.
  • the quantization parameter determined for each coding unit CU having a predetermined size or more may be predictively encoded using the quantization parameter of the coding unit CU adjacent to the current coding unit CU.
  • a quantization parameter predictor of the current coding unit CU may be generated by searching in the order of the left coding unit CU and the upper coding unit CU of the current coding unit CU using one or two valid quantization parameters. have.
  • the first valid quantization parameter found in the above order may be determined as a quantization parameter predictor, and the left first coding unit (CU) is searched in order of the coding unit immediately before the coding order to quantize the first valid quantization parameter. Can be determined by the parameter predictor.
  • the coefficients of the quantized transform block are scanned and converted into one-dimensional quantization coefficients, and the scanning scheme may be set differently according to the entropy encoding mode.
  • inter prediction coded quantization coefficients may be scanned in a predetermined manner (zigzag or diagonal raster scan) when coded with CABAC, and different from the above method when coded with CAVLC. Can be.
  • the scanning method may be determined according to zigzag in case of inter, the intra prediction mode in case of intra, and the coefficient scanning method may be determined differently according to the size of a transform unit.
  • the scan pattern may vary according to the directional intra prediction mode, and the scanning order of the quantization coefficients may be scanned in the reverse direction.
  • the multiplexer 167 multiplexes the motion information encoded by the motion information encoder 163 and the residual signals encoded by the residual block encoder 166.
  • the motion information may vary according to an encoding mode.
  • the motion information may include only an index indicating a predictor, and in the case of AMVP, the motion information may include a reference picture index, a differential motion vector, and an AMVP index of the current block. .
  • the intra prediction unit 150 receives the prediction mode information and the size of the prediction unit PU from the picture division unit 110, and stores the reference pixel in the picture storage unit to determine the intra prediction mode of the prediction unit PU. Read from 180.
  • the intra predictor 150 determines whether a reference pixel is generated by examining whether there is a reference pixel that is not available, and the reference pixels may be used to determine an intra prediction mode of the current block.
  • pixels adjacent to the upper side of the current block are not defined. If the current block is located at the left boundary of the current picture, pixels adjacent to the left of the current block are not defined. It may be determined that the pixels are not available pixels.
  • the current block is located at the slice boundary and pixels adjacent to the upper or left side of the slice are not pixels that are first encoded and reconstructed, it may be determined that the pixels are not usable pixels.
  • the intra prediction mode of the current block may be determined using only the available pixels.
  • reference pixels at positions that are not available may be generated using the available reference pixels of the current block.
  • the upper pixels may be used using some or all of the left pixels. Can be generated and vice versa.
  • the reference pixel is generated by copying the available reference pixel at the position closest to the predetermined direction from the reference pixel at the position not available, or when the reference pixel is not available in the predetermined direction, the closest in the opposite direction.
  • the reference pixel can be generated by copying the available reference pixel at the location.
  • the upper or left pixels of the current block it may be determined as a reference pixel that is not available according to the encoding mode of the block to which the pixels belong.
  • the pixels may be determined as not available pixels.
  • reference pixels usable may be generated using pixels belonging to a block in which a block adjacent to the current block is intra-encoded, and the encoding apparatus 10 may determine that the reference pixels are available according to an encoding mode. It transmits to the decoding apparatus 20.
  • the intra predictor 150 determines the intra prediction mode of the current block by using the reference pixels, and the number of intra prediction modes allowable in the current block may vary depending on the size of the block.
  • the size of the current block is 8x8, 16x16, 32x32, there may be 34 intra prediction modes. If the size of the current block is 4x4, there may be 17 intra prediction modes.
  • the 34 or 17 intra prediction modes may be configured of at least one non-directional mode (non-directional mode) and a plurality of directional modes.
  • One or more non-directional modes may be DC mode and / or planar mode.
  • DC mode and the planner mode are included in the non-directional mode, there may be 35 intra prediction modes regardless of the size of the current block.
  • DC mode and planner mode two non-directional modes (DC mode and planner mode) and 33 directional modes may be included.
  • the prediction block of the current block is formed by using at least one pixel value (or a prediction value of the pixel value, hereinafter referred to as a first reference value) and reference pixels positioned at the bottom-right side of the current block. Is generated.
  • the configuration of an image decoding apparatus may be derived from the configuration of the image encoding apparatus 10 described with reference to FIGS. 1 to 6. For example, as described with reference to FIGS. 1 to 6. By performing the same processes of the same image encoding method in reverse, the image can be decoded.
  • the decoding apparatus 20 includes an entropy decoding unit 210, an inverse quantization / inverse transform unit 220, an adder 270, The deblocking filter 250, the picture storage unit 260, the intra predictor 230, the motion compensation predictor 240, and the intra / inter switch 280 are provided.
  • the entropy decoder 210 receives and decodes a bit stream encoded by the image encoding apparatus 10, divides the bit stream into intra prediction mode indexes, motion information, quantization coefficient sequences, and the like, and decodes the decoded motion information into a motion compensation predictor ( 240).
  • the entropy decoder 210 may transfer the intra prediction mode index to the intra predictor 230 and the inverse quantizer / inverse transformer 220, and may deliver the inverse quantization coefficient sequence to the inverse quantizer / inverse transformer 220. .
  • the inverse quantization / inverse transform unit 220 converts the quantization coefficient sequence into inverse quantization coefficients of a two-dimensional array, and selects one of a plurality of scanning patterns for the transformation, for example, the prediction mode of the current block (ie, , Intra prediction or inter prediction), and a scanning pattern may be selected based on the intra prediction mode.
  • the prediction mode of the current block ie, Intra prediction or inter prediction
  • the inverse quantization / inverse transform unit 220 restores the quantization coefficients by applying a quantization matrix selected from a plurality of quantization matrices to the inverse quantization coefficients of the two-dimensional array.
  • a quantization matrix may be selected based on at least one of the prediction mode and the intra prediction mode of the current block for the same size block.
  • the inverse quantization / inverse transform unit 220 inversely transforms the reconstructed quantization coefficients to reconstruct the residual block, and the inverse transform process may be performed using a transform unit (TU) as a basic unit.
  • TU transform unit
  • the adder 270 reconstructs the image block by adding the residual block reconstructed by the inverse quantization / inverse transform unit 220 and the prediction block generated by the intra predictor 230 or the motion compensation predictor 240.
  • the deblocking filter 250 may perform deblocking filter processing on the reconstructed image generated by the adder 270 to reduce deblocking artifacts due to image loss due to the quantization process.
  • the picture storage unit 260 is a frame memory for storing a local decoded image on which the deblocking filter process is performed by the deblocking filter 250.
  • the intra predictor 230 restores the intra prediction mode of the current block based on the intra prediction mode index received from the entropy decoder 210, and generates a prediction block according to the restored intra prediction mode.
  • the motion compensation predictor 240 generates a prediction block for the current block from the picture stored in the picture storage unit 260 based on the motion vector information, and applies the selected interpolation filter when a motion compensation with a small precision is applied. Can be generated.
  • the intra / inter switch 280 may provide the adder 270 with the prediction block generated by either the intra predictor 230 or the motion compensation predictor 240 based on the encoding mode.
  • FIG. 8 is a block diagram illustrating an example of a configuration of performing inter prediction in the image decoding apparatus 20.
  • the inter prediction decoder includes a demultiplexer 241, a motion information encoding mode determiner 242, and a merge mode motion.
  • An information decoder 243, an AMVP mode motion information decoder 244, a prediction block generator 245, a residual block decoder 246, and a reconstruction block generator 247 are included.
  • the de-multiplexer 241 demultiplexes the currently encoded motion information and the encoded residual signals from the received bitstream, and transmits the demultiplexed motion information to the motion information encoding mode determiner 242.
  • the demultiplexed residual signal may be transmitted to the residual block decoder 246.
  • the motion information encoding mode determiner 242 determines the motion information encoding mode of the current block. If the skip_flag of the received bitstream has a value of 1, the motion information encoding mode determiner 242 determines that the motion information encoding mode of the current block is encoded as the skip encoding mode. can do.
  • the motion information encoding mode determiner 242 determines the motion information encoding mode of the current block. It may be determined that is encoded in the merge mode.
  • the motion information encoding mode determiner 242 has a skip_flag of the received bitstream having a value of 0, and the motion information received from the demultiplexer 241 has a reference picture index, a differential motion vector, and an AMVP index. In this case, it may be determined that the motion information encoding mode of the current block is encoded in the AMVP mode.
  • the merge mode motion information decoder 243 is activated when the motion information encoding mode determiner 242 determines that the motion information encoding mode of the current block is a skip or merge mode, and the AMVP mode motion information decoder 244 moves.
  • the information encoding mode determiner 242 may be activated when the motion information encoding mode of the current block is determined to be an AMVP mode.
  • the prediction block generator 245 generates the prediction block of the current block by using the motion information reconstructed by the merge mode motion information decoder 243 or the AMVP mode motion information decoder 244.
  • the prediction block of the current block may be generated by copying a block corresponding to the position indicated by the motion vector in the picture indicated by the reference picture index.
  • pixels of the prediction block are generated from integer unit pixels in the picture indicated by the reference picture index.
  • an interpolation filter of 8 taps is used for a luminance pixel and a color difference pixel
  • Predictive pixels may be generated using a 4-tap interpolation filter.
  • the residual block decoder 246 entropy decodes the residual signal and inversely scans the entropy decoded coefficients to generate a two-dimensional quantized coefficient block, and the inverse scanning scheme may vary according to an entropy decoding scheme.
  • the reverse scanning method may be applied in a diagonal raster inverse scan manner and in the case of the CAVLC-based decoding in a zigzag inverse scanning manner.
  • the inverse scanning scheme may be determined differently according to the size of the prediction block.
  • the residual block decoder 246 dequantizes the coefficient block generated as described above using an inverse quantization matrix, and reconstructs a quantization parameter to derive the quantization matrix.
  • the quantization step size may be reconstructed for each coding unit of a predetermined size or more.
  • the residual block decoder 260 inversely transforms the inverse quantized coefficient block to restore the residual block.
  • the reconstruction block generation unit 270 generates a reconstruction block by adding the prediction block generated by the prediction block generation unit 250 and the residual block generated by the residual block decoding unit 260.
  • the intra prediction mode of the current block is decoded from the received bitstream, and for this purpose, the entropy decoder 210 may reconstruct the first intra prediction mode index of the current block by referring to one of the plurality of intra prediction mode tables. Can be.
  • any one table selected according to the distribution of intra prediction modes for a plurality of blocks adjacent to the current block may be applied.
  • the first intra prediction mode index of the current block is restored by applying the first intra prediction mode table, and not the same. Otherwise, the second intra prediction mode table may be applied to restore the first intra prediction mode index of the current block.
  • the intra prediction modes of the upper block and the left block of the current block are both the directional intra prediction mode
  • the direction of the intra prediction mode of the upper block and the direction of the intra prediction mode of the left block If within this predetermined angle, the first intra prediction mode index is restored by applying the first intra prediction mode table, and if outside the predetermined angle, the first intra prediction mode index is applied by applying the second intra prediction mode table. You can also restore.
  • the entropy decoder 210 transmits the first intra prediction mode index of the reconstructed current block to the intra predictor 230.
  • the intra prediction unit 230 that receives the index of the first intra prediction mode may determine the maximum possible mode of the current block as the intra prediction mode of the current block when the index has the minimum value (ie, 0). .
  • the intra prediction unit 230 compares the index indicated by the maximum possible mode of the current block with the first intra prediction mode index, and as a result of the comparison, the first intra prediction mode. If the index is not smaller than the index indicated by the maximum possible mode of the current block, the intra prediction mode corresponding to the second intra prediction mode index obtained by adding 1 to the first intra prediction mode index is determined as the intra prediction mode of the current block. Otherwise, the intra prediction mode corresponding to the first intra prediction mode index may be determined as the intra prediction mode of the current block.
  • the intra prediction mode allowable for the current block may consist of at least one non-directional mode (non-directional mode) and a plurality of directional modes.
  • One or more non-directional modes may be DC mode and / or planar mode.
  • either DC mode or planner mode may be adaptively included in the allowable intra prediction mode set.
  • information specifying the non-directional mode included in the allowable intra prediction mode set may be included in the picture header or the slice header.
  • the intra predictor 230 reads reference pixels from the picture storage unit 260 to generate an intra prediction block, and determines whether there is a reference pixel that is not available.
  • the determination may be performed according to the presence or absence of reference pixels used to generate the intra prediction block by applying the decoded intra prediction mode of the current block.
  • the intra predictor 230 may generate reference pixels at positions that are not available using the available reference pixels reconstructed in advance.
  • Definition of a reference pixel that is not available and a method of generating the reference pixel may be the same as the operation of the intra prediction unit 150 of FIG. 1, but generate an intra prediction block according to the decoded intra prediction mode of the current block.
  • the reference pixels used to selectively recover may be selectively restored.
  • the intra prediction unit 230 determines whether to apply a filter to the reference pixels to generate the prediction block, that is, whether to apply filtering to the reference pixels to generate the intra prediction block of the current block. It may be determined based on the decoded intra prediction mode and the size of the current prediction block.
  • the problem of blocking artifacts is that the larger the block size is, the larger the block size can increase the number of prediction modes for filtering the reference pixels, but if the block is larger than the predetermined size can be seen as a flat area, the complexity is reduced The reference pixel may not be filtered for.
  • the intra predictor 230 filters the reference pixels by using a filter.
  • At least two or more filters may be adaptively applied according to the degree of difference between the steps between the reference pixels.
  • the filter coefficient of the filter is preferably symmetrical.
  • the above two filters may be adaptively applied according to the size of the current block.
  • a narrow bandwidth filter is used for a small block
  • a wide bandwidth filter is used for a large block. May be applied.
  • the filter does not need to be applied to the reference pixel, and the image is horizontal. It may not be necessary to apply a filter to the reference pixel even in a horizontal mode that is correlated in the direction.
  • the reference pixel may be adaptively filtered based on the intra prediction mode of the current block and the size of the prediction block.
  • the intra prediction unit 230 generates a prediction block using reference pixels or filtered reference pixels according to the reconstructed intra prediction mode, and the generation of the prediction block is the same as the operation of the encoding apparatus 10. As such, detailed description thereof will be omitted.
  • the intra prediction unit 230 determines whether to filter the generated prediction block, and the filtering may be determined by using information included in a slice header or a coding unit header or according to an intra prediction mode of the current block.
  • the intra predictor 230 may generate a new pixel by filtering pixels at a specific position of the generated prediction block by using available reference pixels adjacent to the current block. .
  • a prediction pixel in contact with reference pixels among the prediction pixels may be filtered using a reference pixel in contact with the prediction pixel.
  • the prediction pixels are filtered using one or two reference pixels according to the positions of the prediction pixels, and the filtering of the prediction pixels in the DC mode may be applied to the prediction blocks of all sizes.
  • prediction pixels in contact with the left reference pixel among the prediction pixels of the prediction block may be changed by using reference pixels other than the upper pixel used to generate the prediction block.
  • the prediction pixels in contact with the upper reference pixel among the generated prediction pixels may be changed using reference pixels other than the left pixel used to generate the prediction block.
  • the current block may be reconstructed using the prediction block of the current block reconstructed and the residual block of the decoded current block.
  • FIG. 9 illustrates a second exemplary embodiment of a method of dividing and processing an image into blocks.
  • a coding tree unit (CTU) having a maximum size of 256 ⁇ 256 pixels may be first divided into a quad tree structure and divided into four coding units (CUs) having a square shape.
  • At least one of the coding units divided into the quad tree structure may be divided into a binary tree structure and re-divided into two coding units (CUs) having a rectangular shape.
  • At least one of the coding units divided into the quad tree structure may be divided into a quad tree structure and re-divided into four coding units (CUs) having a square shape.
  • CUs coding units
  • At least one of the coding units re-divided into the binary tree structure may be divided into two binary tree structures and divided into two coding units (CUs) having a square or rectangular shape.
  • At least one of the coding units re-divided into the quad tree structure may be divided into a quad tree structure or a binary tree structure and divided into coding units (CUs) having a square or rectangular shape.
  • coding blocks (CBs) formed by dividing into a binary tree structure are no longer divided and may be used for prediction and transformation. That is, the sizes of the prediction unit PU and the transform unit TU belonging to the coding block CB as shown in FIG. 9 may be equal to the size of the coding block CB.
  • the coding unit split into the quad tree structure as described above may be split into one or two prediction units (PUs) using the method described with reference to FIGS. 3 and 4.
  • the coding unit divided into the quad tree structure as described above may be divided into one or more transform units (TUs) by using the method as described with reference to FIG. 5, and the divided transform units (TU) May have a maximum size of 64x64 pixels.
  • the syntax structure used to divide and process an image in block units may indicate the partition information using a flag. For example, whether to split the coding unit CU may be indicated using split_cu_flag, and the depth of the coding unit CU split using the binary tree may be indicated using binary_depth. In addition, whether the coding unit (CU) is divided into a binary tree structure may be represented by a separate binary_split_flag.
  • Blocks divided by the method as described with reference to FIG. 9 eg, a coding unit (CU), a prediction unit (PU), and a transform unit (TU)
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • the coding unit CU may be divided into a binary tree structure and divided into transform units (TUs) which are basic units for transforming a residual block.
  • TUs transform units
  • At least one of rectangular coding blocks CB0 and CB1 divided into a binary tree structure and having a size of Nx2N or 2NxN is divided into a binary tree structure again, and has a square transform unit having a size of NxN. Can be divided into TU0 and TU1.
  • the block-based image encoding method may perform prediction, transform, quantization, and entropy encoding steps.
  • a prediction signal may be generated by referring to a block currently performing encoding and an existing coded image or a neighboring image, and thus a difference signal between the current block and the current block may be calculated.
  • the difference signal is input, and the transform is performed using various transform functions.
  • the transformed signal is classified into DC coefficients and AC coefficients and is energy compacted to improve encoding efficiency. Can be.
  • quantization may be performed by inputting transform coefficients, and then an image may be encoded by performing entropy encoding on the quantized signal.
  • the image decoding method is performed in the reverse order of the above encoding process, the image quality distortion may occur in the quantization step.
  • the size or shape of a transform unit (TU) and the type of transform function to be applied may be varied according to the distribution of the differential signal input to the input and the characteristics of the image in the conversion step. have.
  • a difference is measured using a cost measurement method such as a sum of absolute difference (SAD) or a mean square error (MSE).
  • SAD sum of absolute difference
  • MSE mean square error
  • the signal distribution may occur in various forms according to the characteristics of the image.
  • effective encoding can be performed by selectively determining the size or shape of the transform unit CU based on the distribution of various differential signals to perform the transform.
  • an effective transform may be performed by dividing the coding block CBx into a binary tree structure and dividing it into two transform units (TUs).
  • the DC value can generally be said to represent the average value of the input signal, so that when the differential signal is received at the input of the conversion process, the DC value can be effectively represented by dividing the coding block (CBx) into two transform units (TUs). have.
  • a square coding unit CU0 having a size of 2N ⁇ 2N may be divided into a binary tree structure and divided into rectangular transform units TU0 and TU1 having a size of N ⁇ 2N or 2N ⁇ N.
  • the step of dividing the coding unit (CU) into a binary tree structure may be repeated two or more times to divide the coding unit (CU) into a plurality of transform units (TUs).
  • a rectangular coding block CB1 having a size of Nx2N is divided into a binary tree structure, and a block having a size of the divided NxN is further divided into a binary tree structure to N / 2xN or NxN / 2.
  • the block having a size of N / 2xN or NxN / 2 is divided again into a binary tree structure of square conversion units having a size of N / 2xN / 2 (TU1, TU2) , TU4, TU5).
  • a square coding block CB0 having a size of 2Nx2N is divided into a binary tree structure, and a block having a size of Nx2N is further divided into a binary tree structure to have a square having a size of NxN.
  • the block having the size of NxN may be further divided into a binary tree structure and divided into rectangular transform units TU1 and TU2 having the size of N / 2xN.
  • a rectangular coding block CB0 having a size of 2N ⁇ N is divided into a binary tree structure, and a block having the size of divided NxN is further divided into a quad tree structure to have a size of N / 2 ⁇ N / 2.
  • Square units may be divided into TU1, TU2, TU3, and TU4.
  • FIGS. 1 through 8 for blocks divided by the method as described with reference to FIGS. 10 through 14 (eg, coding unit (CU), prediction unit (PU), and transform unit (TU)).
  • coding unit CU
  • prediction unit PU
  • transform unit TU
  • the picture division unit 110 included in the image encoding apparatus 10 performs rate distortion optimization (RDO) according to a preset order, and thus is capable of splitting a coding unit (CU), a prediction unit (PU), and a transform as described above.
  • RDO rate distortion optimization
  • the partition structure of the unit TU may be determined.
  • the picture division unit 110 performs rate distortion optimization-quantization (RDO-Q) while selecting an optimal block division structure in terms of bitrate and distortion. You can decide.
  • RDO-Q rate distortion optimization-quantization
  • RD may be performed in the order of transform unit (PU) partition structure of 2N ⁇ N pixel size shown in (d) to determine an optimal partition structure of the transform unit PU.
  • the coding unit CU has a form of Nx2N or 2NxN pixel size
  • the pixel size of Nx2N (or 2NxN) shown in (a) the pixel size of NxN shown in (b), N / 2xN (or NxN / 2) and NxN pixel sizes shown in (c), N / 2xN / 2, N / 2xN and NxN pixel sizes shown in (d), N shown in (e)
  • An RDO may be performed in a transform unit (PU) partition structure order of a pixel size of 2 ⁇ N to determine an optimal partition structure of the transform unit PU.
  • PU transform unit
  • the block division method of the present invention has been described with an example in which a block division structure is determined by performing RDO (Rate distortion Optimization).
  • the picture division unit 110 may have a sum of absolute difference (SAD) or mean square error (MSE). By deciding the block division structure using), it is possible to reduce the complexity and maintain proper efficiency.
  • SAD sum of absolute difference
  • MSE mean square error
  • 17 is a diagram illustrating a relationship between a coding tree unit and a coding unit according to an embodiment of the present invention.
  • an entire picture may be divided into encoding tree units (coding tree units, CTUs) as described above, and each CTU may have the same size, for example, a 64x64 pixel size.
  • Each CTU may be divided into a quad tree and a binary tree into a coding unit (CU) having various sizes.
  • the encoding apparatus 10 independently considers the size of the CTU and the maximum size of the CU independently, that is, the size of the CTU in consideration of the bandwidth efficiency of the line buffer and the reduction of the implementation cost.
  • the size of the CTU in consideration of the bandwidth efficiency of the line buffer and the reduction of the implementation cost.
  • the encoding apparatus 10 may determine a division structure in which the maximum CU size independently considers the CTU size within a predetermined unit (for example, a sequence level unit) preset during picture division in the picture division unit 110. You can decide. Accordingly, the maximum CU size may or may not be the same as the CTU size.
  • a predetermined unit for example, a sequence level unit
  • the encoding apparatus 10 may signal signaling information indicating that the CTU size and the maximum CU size corresponding to the CTU size are different when signaling the split information from the picture splitter 110 to the decoding apparatus 20. It may transmit to the decoding device 20.
  • the signaling information may be transmitted explicitly or implicitly.
  • the encoding apparatus 10 includes flag information indicating that a CTU size and a maximum CU size corresponding to the CTU size are different in the header information, or include the maximum CU size information in the header information. Can be sent.
  • the encoding apparatus 10 may transmit the same split flag to the header information, but omit the split information for splitting from the CTU size to the maximum CU size (SKIP). Accordingly, when the splitting information corresponding to the CTU size is omitted step by step according to the depth DEP, the decoding apparatus 20 identifies the difference between the maximum CU size and the CTU size by using the omitted depth information. Corresponding division processing can be performed.
  • the present invention can independently set the CTU size and the maximum CU size, while reducing the memory bandwidth according to the processing of the line buffer using a larger CTU than the conventional, while having a smaller size than the conventional CTU
  • the maximum CU size and providing signaling thereof it is possible to provide encoding and decoding considering the implementation cost and compression efficiency simultaneously.
  • the encoding apparatus 10 may determine the optimal maximum coding unit size in consideration of the line buffer bandwidth efficiency corresponding to the coding tree unit size and the implementation cost efficiency corresponding to the maximum coding unit size.
  • the minimum partition size MinQTSize information can be defined, and as a result, the maximum CU size is independently set because the CTU size. There is a limit that cannot be achieved.
  • the maximum CU size of the current scheme is 64x64 equal to the CTU size
  • the maximum CU size can be reduced, thereby excluding the implementation and processing for the 64x64 CU. Accordingly, the implementation cost and the encoding processing time can be reduced, and in signaling, the split flag is not transmitted from the depth 0 to the maximum coding unit size corresponding to each CTU, thereby improving the compression efficiency.
  • the maximum CTU size is 32x32 which is the same as the CTU size in the current scheme
  • the maximum CTU size is increased to 64x64 while maintaining the maximum CU size to 32x32.
  • Memory bandwidth is reduced by half. That is, memory usage or reference count for the line buffer may be determined according to the CTU size.
  • FIG. 18 is a flowchart illustrating an operation of a decoding apparatus for performing picture division processing according to an embodiment of the present invention.
  • the decoding apparatus 20 receives a video stream (S101) and obtains signaling information indicating a maximum coding unit size split from an encoding tree unit from the video stream (S105).
  • signaling information may be explicitly obtained from the video stream.
  • the decoding apparatus 20 may obtain the maximum coding unit size information from the header information of the video stream as the signaling information. Meanwhile, the maximum coding unit size may be implicitly signaled without directly transmitting the signaling information. have.
  • step S105 may be omitted, and for example, the decoding apparatus 20 may determine a maximum coding unit size, which may be different from the CTU size, in advance according to a profile, and use the same without any signaling information.
  • the decoding apparatus 20 identifies whether split information corresponding to the largest coding tree unit exists from header information of the video stream, and divides the data into quad trees up to a depth step in which split information exists.
  • the processing can be performed up to the maximum coding unit size. This is advantageous in that compression and transmission efficiency can be increased by not receiving unnecessary fragmentation information.
  • the decoding apparatus 20 identifies the difference between the maximum CU size and the CTU size by using the omitted depth information. Corresponding division processing can be performed.
  • the decoding apparatus 20 determines whether the encoding tree unit size and the maximum coding unit size are the same (S107).
  • the decoding apparatus 20 sequentially performs quadtree and binary tree splitting according to the split flag information from the maximum coding unit according to the depth. It may be (S111).
  • the decoding apparatus 20 may skip splitting flag processing and repeatedly divide the coding tree unit up to the maximum coding unit (S109). .
  • the splitting may be performed without separate split flag information as described above.
  • binary division methods other than quadtrees may be excluded in division when the division flag is skipped.
  • the decoding apparatus 20 may only perform N quadtree divisions when dividing the coding tree unit up to the maximum coding unit, and then performs quadtree and binary tree division from the largest coding unit having the partition flag. can do.
  • FIG. 19 is an exemplary diagram for describing a split flag process according to an exemplary embodiment of the present invention.
  • FIG. 19 illustrates transmission of a split flag of a CTU according to an embodiment of the present invention, and determination and division of a maximum CU size accordingly.
  • depth represents depth information that is increased by one when divided into quad-trees based on the CTU size.
  • the depth 0 corresponds to the CTU size, so that the block size is larger than the maximum CU size, and in this case, the decoding apparatus 20 does not need to decode the split flag. Can be divided into forms. Therefore, the compression and transmission efficiency can be improved by the separate split flag processing is skipped and not transmitted. Accordingly, the decoding apparatus 20 may confirm that the fragment flag information corresponding to the CTU is omitted, and thus identify the maximum CU size information.
  • split flags may be transmitted as far as depths 1 to 2 and quadtree and binary tree splitting may be performed together.
  • depth 3 is the case that the block size is the same as the minimum CU size, it is obvious that the split flag is not transmitted because it can no longer be split.
  • the method according to the present invention described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the method can be easily inferred by programmers in the art to which the present invention belongs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명의 실시 예에 따른 영상 복호화 방법은, 영상 스트림으로부터, 부호화 트리 유닛 정보를 획득하는 단계; 상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기에 대한 시그널링 정보를 획득하는 단계; 및 상기 시그널링 정보에 따라, 상기 부호화 트리 유닛을 단계적으로 분할하는 단계를 포함한다.

Description

부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치
본 발명은 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치에 관한 것으로, 보다 구체적으로는 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치에 관한 것이다.
디지털 비디오 기술은 디지털 텔레비전, 디지털 직접 방송 시스템, 무선 방송 시스템, 개인 휴대 정보 단말기 (PDA), 랩탑 또는 데스크탑 컴퓨터, 디지털 카메라, 디지털 레코딩 디바이스, 비디오 게이밍 디바이스, 비디오 게임 콘솔, 셀룰러 또는 위성 라디오 텔레폰 등을 포함하는 광범위의 디지털 비디오 디바이스에 통합적으로 적용될 수 있다. 디지털 비디오 디바이스는 MPEG-2, MPEG-4, 또는 ITU-T H.264/MPEG-4, 파트 10, AVC (Advanced Video Coding), H.265/HEVC (High Efficiency Video Coding) 와 같은 비디오 압축 기술을 구현하여, 디지털 비디오 정보를 보다 효율적으로 송수신한다. 비디오 압축 기술은 공간 예측 및 시간 예측을 수행하여 비디오 시퀀스에 고유한 리던던시를 제거 또는 감소시킨다.
이러한 영상 압축 기술로서, 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 엔코딩 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
이와 같은 응용에 따라 다양한 해상도, 프레임율 등에 cost-effective하게 대응하기 위해서는, 응용에서 요구되는 성능, 기능에 따라 쉽게 처리 가능한 동영상 복호화 장치를 가지고 있어야 한다.
특히 이와 같은 응용을 위해, 동영상 복호화 장치는 한 프레임에 대응하는 전체 픽쳐를 분할한 다양한 크기의 부호화 단위를 블록 기반으로 취급할 수 있다. 특히, 최근의 기술은 하나의 픽쳐를 동일한 사이즈를 갖는 부호화 트리 유닛들로 분할하고, 그 부호화 트리 유닛 각각을 서로 다른 사이즈를 가질 수 있는 부호화 유닛들로 재귀적으로 분할하여 쿼드트리 구조를 갖는 하나 이상의 부호화 유닛, 예측 유닛 및 변환 유닛으로 각각 부호화 처리할 수 있다.
이에 따라, 하나의 부호화 트리 유닛에 포함되는 부호화 유닛들의 최대 크기는 부호화 트리 유닛의 크기와 동일하여야 한다. 결과적으로, 부호화 트리 유닛의 크기와 부호화 유닛의 최대 크기는 독립적이지 않으며, 최소 부호화 단위 크기 정보만이 복호화 장치로 전달되어 분할 처리에 이용된다.
한편, 상기 부호화 트리 유닛은 픽처 또는 타일을 동일 크기로 분할하여 형성될 수 있으며, 각 상기 부호화 트리 유닛들은 상기 픽처 또는 타일 내에서 래스터 순서(raster order)로 부호화 및 복호화가 수행되는 것이 일반적이다. 반면 각 부호화 트리 유닛 내의 부호화 유닛들 각각은 Z 스캔 순서(z-scan order)로 부호화 및 복호화가 처리되고 있다.
그러나, 이와 같은 분할 및 처리 방식은 부호화 및 복호화기의 라인 버퍼 및 이를 처리하기 위한 데이터의 대역폭(bandwidth)을 고려하지 못하고 있는 문제점이 있다.
즉, 픽처 또는 타일을 분할하는 부호화 트리 유닛의 크기가 클수록 라인 버퍼(line buffer)의크기도 커질 수 있으며, 이를 사용하기 위한 처리 대역폭은 감소될 수 있는 장점이 있으나, 이에 따라 최대 부호화 유닛 크기도 동시에 증가되기 때문에 부호화 및 복호화기의 구현 비용(implementation cost)도 함께 증가되는 문제가 발생되고 있는 실정이다.
즉, 최대 부호화 유닛 크기는 작을 수록 부호화 및 복호화기의 구현 코스트 측면에서 유리하지만, 그 반대로 부호화 트리 유닛은 클수록 라인 버퍼에 의한 대역폭 감소 측면에서 유리하나, 현재와 같이 부호화 트리 유닛과 최대 부호화 유닛 크기가 독립적으로 결정되지 못하고 동일하게 처리되는 구조로는 이를 동시에 달성하는 것이 불가능한 문제점이 있다.
또한, 라인 버퍼를 고려하여, 현재 부호화 방식을 그대로 이용한 최대 부호화 유닛 크기만을 증가시키는 경우, 실질적으로는 불필요한 부호화 유닛의 분할 정보가 함께 전송되어야 하므로, 전송 효율 및 압축 효율이 떨어지는 문제점도 존재하고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 부호화 트리 유닛 사이즈와 최대 부호화 유닛 사이즈를 각각 독립적으로 결정할 수 있고, 이에 따라 부호화 트리 유닛 사이즈 증가에 따른 라인 버퍼의 대역폭 감소 효과와 최대 부호화 유닛 사이즈의 감소에 따른 구현 코스트 감소 효과를 동시에 달성할 수 있는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치를 제공하는데 그 목적이 있다.
상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 영상 복호화 방법은, 영상 스트림으로부터, 부호화 트리 유닛 정보를 획득하는 단계; 상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기에 대한 시그널링 정보를 획득하는 단계; 및 상기 시그널링 정보에 따라, 상기 부호화 트리 유닛을 단계적으로 분할하는 단계를 포함한다.
또한, 상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 영상 부호화 방법은, 부호화 대상 픽처를 획득하는 단계; 상기 픽처를 미리 설정된 크기의 부호화 트리 유닛으로 분할하는 단계; 상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기를 상기 부호화 트리 유닛의 크기와 비-의존적으로 결정하는 단계; 및 상기 최대 부호화 유닛 크기에 대한 시그널링을 처리하는 단계를 포함한다.
한편, 상기와 같은 과제를 해결하기 위한 본 발명의 실시 예에 따른 방법은 상기 방법을 컴퓨터에서 실행시키기 위한 프로그램 및 상기 프로그램이 저장되어 컴퓨터가 읽을 수 있는 비 휘발적 기록 매체로 구현될 수 있다.
본 발명의 실시 예에 따르면, 부호화 트리 유닛 사이즈와 최대 부호화 유닛간 사이즈 차이 정보를 시그널링함으로서, 부호화 트리 유닛 사이즈와 최대 부호화 유닛 사이즈를 각각 독립적으로 설정할 수 있고, 이에 따라 부호화 트리 유닛 사이즈 증가에 따른 라인 버퍼의 대역폭 감소 효과와 최대 부호화 유닛 사이즈의 감소에 따른 구현 코스트 감소 효과를 동시에 달성할 수 있는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치를 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치의 구성을 나타내는 블록도이다.
도 2 내지 도 5는 영상을 블록 단위로 분할하여 처리하는 방법에 대한 제1 실시예를 설명하기 위한 도면이다.
도 6은 영상 부호화 장치에서 인터 예측을 수행하는 방법에 대한 일실시예를 설명하기 위한 블록도이다.
도 7은 본 발명의 일실시예에 따른 영상 복호화 장치의 구성을 나타내는 블록도이다.
도 8은 영상 복호화 장치에서 인터 예측을 수행하는 방법에 대한 일실시예를 설명하기 위한 블록도이다.
도 9는 영상을 블록 단위로 분할하여 처리하는 방법에 대한 제2 실시예를 설명하기 위한 도면이다.
도 10은 영상을 블록 단위로 분할하여 처리하는 방법에 대한 제3 실시예를 설명하기 위한 도면이다.
도 11는 코딩 유닛을 이진 트리 구조로 분할하여 변환 유닛을 구성하는 방법에 대한 일실시예를 설명하기 위한 도면이다.
도 12는 영상을 블록 단위로 분할하여 처리하는 방법에 대한 제4 실시예를 설명하기 위한 도면이다.
도 13 내지 도 14는 영상을 블록 단위로 분할하여 처리하는 방법에 대한 또 다른 실시예들을 설명하기 위한 도면들이다.
도 15 및 도 16은 RDO(Rate distortion Optimization)를 수행하여 변환 유닛의 분할 구조를 결정하는 방법에 대한 실시예들을 설명하기 위한 도면들이다.
도 17은 본 발명의 실시 예에 따른 부호화 트리 유닛과 부호화 유닛간 관계를 설명하기 위한 도면이다.
도 18은 본 발명의 실시 예에 따른 픽쳐 분할 처리를 수행하는 복호화 장치의 동작을 설명하기 위한 흐름도이다.
도 19는 본 발명의 실시 예에 따른 분할 플래그 처리를 설명하기 위한 예시도이다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 아울러, 본 발명에서 특정 구성을 "포함"한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치의 구성을 블록도로 도시한 것으로, 영상 부호화 장치(10)는 픽쳐 분할부(110), 변환부(120), 양자화부(130), 스캐닝부(131), 엔트로피 부호화부(140), 인트라 예측부(150), 인터 예측부(160), 역양자화부(135), 역변환부(125), 후처리부(170), 픽쳐 저장부(180), 감산부(190) 및 가산부(195)를 포함한다.
도 1을 참조하면, 픽쳐 분할부(110)는 입력되는 비디오 신호를 분석하여 픽쳐를 코딩 유닛으로 분할하여 예측 모드를 결정하고, 상기 코딩 유닛별로 예측 유닛의 크기를 결정한다.
또한, 픽쳐 분할부(110)는 부호화할 예측 유닛을 예측 모드(또는 예측 방법)에 따라 인트라 예측부(150) 또는 인터 예측부(160)로 보낸다. 또한, 픽쳐 분할부(110)는 부호화할 예측 유닛을 감산부(190)로 보낸다.
여기서, 영상의 픽쳐(picture)는 복수의 슬라이스로 구성되고, 슬라이스는 픽쳐를 분할하는 기본 단위인 복수의 코딩 트리 유닛(Coding Tree Unit: CTU)들로 분할될 수 있다.
상기 코딩 트리 유닛은 인터 예측(inter prediction) 또는 인트라 예측(intra prediction)이 수행되는 기본 단위인 하나 또는 2 이상의 코딩 유닛(Coding Unit: CU)들로 분할될 수 있다.
여기서, 상기 코딩 트리 유닛과 코딩 유닛의 최대 크기는 상이할 수 있으며, 이에 대한 시그널링 정보가 복호화 장치(20)로 전송될 수 있다. 이에 대하여는 도 17에서 보다 구체적으로 후술하도록 한다.
코딩 유닛(CU)은 예측이 수행되는 기본 단위인 하나 또는 그 이상의 예측 유닛(Prediction unit: PU)들로 분할될 수 있다.
이 경우, 부호화 장치(10)는 상기 분할된 코딩 유닛(CU)들 각각에 대해 인터 예측과 인트라 예측 중 어느 하나를 예측 방법으로 결정하나, 각각의 예측 유닛(PU)에 대해 서로 다르게 예측 블록을 생성할 수 있다.
한편, 코딩 유닛(CU)은 잔차 블록(residual block)에 대한 변환이 수행되는 기본 단위인 하나 또는 2 이상의 변환 유닛(Transform Unit: TU)들로 분할될 수 있다.
이 경우, 픽쳐 분할부(110)는 상기와 같이 분할된 블록 단위(예를 들어, 예측 유닛(PU) 또는 변환 유닛(TU))로 영상 데이터를 감산부(190)에 전달할 수 있다.
도 2를 참조하면, 최대 256x256 픽셀 크기를 가지는 코딩 트리 유닛(CTU)는 쿼드 트리(quad tree) 구조로 분할되어, 정사각형의 형태를 가지는 4개의 코딩 유닛(CU)들로 분할될 수 있다.
상기 정사각형의 형태를 가지는 4개의 코딩 유닛(CU)들은 각각 쿼드 트리 구조로 재 분할될 수 있으며, 상기와 같이 쿼드 트리 구조로 분할되는 코딩 유닛(CU)의 깊이(Depth)는 0부터 3 중 어느 하나의 정수 값을 가질 수 있다.
코딩 유닛(CU)은 예측 모드에 따라 하나 또는 2 이상의 예측 유닛(PU)들로 분할될 수 있다.
인트라 예측 모드의 경우, 코딩 유닛(CU)의 크기가 2Nx2N 일 때, 예측 유닛(PU)은 도 3의 (a)에 도시된 2Nx2N 또는 도 3의 (b)에 도시된 NxN의 크기를 가질 수 있다.
한편, 인터 예측 모드의 경우, 코딩 유닛(CU)의 크기가 2Nx2N 일 때, 예측 유닛(PU)은 도 4의 (a)에 도시된 2Nx2N, 도 4의 (b)에 도시된 2NxN, 도 4의 (c)에 도시된 Nx2N, 도 4의 (d)에 도시된 NxN, 도 4의 (e)에 도시된 2NxnU, 도 4의 (f)에 도시된 2NxnD, 도 4의 (g)에 도시된 nLx2N 및 도 4의 (h)에 도시된 nRx2N 중 어느 하나의 크기를 가질 수 있다.
도 5를 참조하면, 코딩 유닛(CU)는 쿼드 트리(quad tree) 구조로 분할되어, 정사각형의 형태를 가지는 4개의 변환 유닛(TU)들로 분할될 수 있다.
상기 정사각형의 형태를 가지는 4개의 변환 유닛(TU)들은 각각 쿼드 트리 구조로 재 분할될 수 있으며, 상기와 같이 쿼드 트리 구조로 분할되는 변환 유닛(TU)의 깊이(Depth)는 0부터 3 중 어느 하나의 정수 값을 가질 수 있다.
여기서, 코딩 유닛(CU)이 인터 예측 모드인 경우, 해당 코딩 유닛(CU)으로부터 분할된 예측 유닛(PU)와 변환 유닛(TU)은 서로 독립적인 분할 구조를 가질 수 있다.
코딩 유닛(CU)이 인트라 예측 모드인 경우, 해당 코딩 유닛(CU)으로부터 분할된 변환 유닛(TU)은 예측 유닛(PU)의 크기보다 클 수 없다.
또한, 상기와 같이 분할되는 변환 유닛(TU)은 최대 64x64 픽셀 크기를 가질 수 있다.
변환부(120)는 입력된 예측 유닛(PU)의 원본 블록과 인트라 예측부(150) 또는 인터 예측부(160)에서 생성된 예측 블록 사이의 잔차 신호인 잔차 블록을 변환하며, 상기 변환은 변환 유닛(TU)을 기본 단위로 하여 수행될 수 있다.
상기 변환 과정에서 예측 모드(intra or inter)에 따라 서로 다른 변환 매트릭스가 결정될 수 있으며, 인트라 예측의 잔차 신호는 인트라 예측 모드에 따라 방향성을 가지므로 인트라 예측 모드에 따라 적응적으로 변환 매트릭스가 결정될 수 있다.
변환 단위는 2개(수평, 수직)의 1차원 변환 매트릭스에 의해 변환될 수 있으며, 예를 들어 인터 예측의 경우에는 미리 결정된 1개의 변환 매트릭스가 결정될 수 있다.
한편, 인트라 예측의 경우, 인트라 예측 모드가 수평인 경우에는 잔차 블록이 수직방향으로의 방향성을 가질 확률이 높아지므로, 수직방향으로는 DCT 기반의 정수 매트릭스를 적용하고, 수평방향으로는 DST 기반 또는 KLT 기반의 정수 매트릭스를 적용한다. 인트라 예측 모드가 수직인 경우에는 수직방향으로는 DST 기반 또는 KLT 기반의 정수 매트릭스를, 수평 방향으로는 DCT 기반의 정수 매트릭스를 적용할 수 있다.
또한, DC 모드의 경우에는 양방향 모두 DCT 기반 정수 매트릭스를 적용할 수 있다.
그리고, 인트라 예측의 경우, 변환 유닛(TU)의 크기에 기초하여 변환 매트릭스가 적응적으로 결정될 수도 있다.
양자화부(130)는 상기 변환 매트릭스에 의해 변환된 잔차 블록의 계수들을 양자화하기 위한 양자화 스텝 사이즈를 결정하며, 양자화 스텝 사이즈는 미리 정해진 크기 이상의 양자화 유닛별로 결정될 수 있다.
양자화 유닛의 크기는 8x8 또는 16x16일 수 있으며, 양자화부(130)는 양자화 스텝 사이즈 및 예측 모드에 따라 결정되는 양자화 매트릭스를 이용하여 변환 블록의 계수들을 양자화한다.
또한, 양자화부(130)는 현재 양자화 유닛의 양자화 스텝 사이즈 예측자로서 현재 양자화 유닛에 인접한 양자화 유닛의 양자화 스텝 사이즈를 이용할 수 있다.
양자화부(130)는 현재 양자화 유닛의 좌측 양자화 유닛, 상측 양자화 유닛, 좌상측 양자화 유닛 순서로 검색하여 1개 또는 2개의 유효한 양자화 스텝 사이즈를 이용하여 현재 양자화 유닛의 양자화 스텝 사이즈 예측자를 생성할 수 있다.
예를 들어, 양자화부(130)는 상기 순서로 검색된 유효한 첫번째 양자화 스텝 사이즈를 양자화 스텝 사이즈 예측자로 결정하거나, 상기 순서로 검색된 유효한 2개의 양자화 스텝 사이즈의 평균값을 양자화 스텝 사이즈 예측자로 결정하거나, 또는 1개의 양자화 스텝 사이즈만이 유효한 경우에는 이를 양자화 스텝 사이즈 예측자로 결정할 수 있다.
상기 양자화 스텝 사이즈 예측자가 결정되면, 양자화부(130)는 현재 양자화 유닛의 양자화 스텝 사이즈와 양자화 스텝 사이즈 예측자 사이의 차분값을 엔트로피 부호화부(140)로 전송한다.
한편, 현재 코딩 유닛의 좌측 코딩 유닛, 상측 코딩 유닛, 좌상측 코딩 유닛 모두가 존재하지 않거나. 또는 최대 코딩 유닛 내의 부호화 순서 상으로 이전에 존재하는 코딩 유닛이 존재할 수 있다.
따라서, 현재 코딩 유닛에 인접한 양자화 유닛들과 상기 최대 코딩 유닛 내에서는 부호화 순서상 바로 이전의 양자화 유닛의 양자화 스텝 사이즈가 후보자가 될 수 있다.
이 경우, 1) 현재 코딩 유닛의 좌측 양자화 유닛, 2) 현재 코딩 유닛의 상측 양자화 유닛, 3) 현재 코딩 유닛의 좌상측 양자화 유닛, 4) 부호화 순서상 바로 이전의 양자화 유닛 순서로 우선순위가 설정될 수 있다. 상기 순서는 바뀔 수 있고, 상기 좌상측 양자화 유닛은 생략될 수도 있다.
한편, 상기와 같이 양자화된 변환 블록은 역양자화부(135)와 스캐닝부(131)로 전달된다.
스캐닝부(131)는 양자화된 변환 블록의 계수들을 스캐닝하여 1차원의 양자화 계수들로 변환하며, 이 경우 양자화 후의 변환 블록의 계수 분포가 인트라 예측 모드에 의존적일 수 있으므로 스캐닝 방식은 인트라 예측 모드에 따라 결정될 수 있다.
또한, 계수 스캐닝 방식은 변환 단위의 크기에 따라 달리 결정될 수도 있고, 상기 스캔 패턴은 방향성 인트라 예측 모드에 따라 달라질 수 있으며, 이 경우 양자화 계수들의 스캔 순서는 역방향으로 스캔될 수 있다.
상기 양자화된 계수들이 복수의 서브셋(sub-set)들로 분할된 경우, 각각의 서브셋 내의 양자화 계수들에 동일한 스캔 패턴이 적용될 수 있으며, 서브셋 간의 스캔 패턴은 지그재그 스캔 또는 대각선 스캔이 적용될 수 있다.
한편, 상기 스캔 패턴은 DC를 포함하는 메인 서브셋으로부터 순방향으로 잔여 서브셋들로 스캔하는 것이 바람직하나, 그 역방향도 가능하다.
또한, 서브셋 내의 양자화된 계수들의 스캔 패턴과 동일하게 서브셋 간의 스캔 패턴을 설정할 수도 있으며, 서브셋 간의 스캔 패턴은 인트라 예측 모드에 따라 결정될 수 있다.
한편, 부호화 장치(10)는 상기 변환 유닛(PU) 내에서 0이 아닌 마지막 양자화 계수의 위치 및 각 서브셋 내의 0이 아닌 마지막 양자화 계수의 위치를 나타낼 수 있는 정보를 비트스트림에 포함시켜 복호화 장치(20)로 전송할 수 있다.
역양자화부(135)는 상기와 같이 양자화된 양자화 계수를 역양자화하며, 역변환부(125)는 변환 유닛(TU) 단위로 역변환을 수행하여 상기 역양자화된 변환 계수를 공간 영역의 잔차 블록으로 복원할 수 있다.
가산기(195)는 상기 역변환부(125)에 의해 복원된 잔차 블록과 인트라 예측부(150) 또는 인터 예측부(160)로부터의 수신된 예측 블록을 합하여 복원 블록을 생성할 수 있다.
또한, 후처리부(170)는 복원된 픽쳐에 발생하는 블록킹 효과의 제거하기 위한 디블록킹(deblocking) 필터링 과정, 화소 단위로 원본 영상과의 차이 값을 보완하기 위한 샘플 적응적 오프셋(Sample Adaptive Offset : SAO) 적용 과정 및 코딩 유닛으로 원본 영상과의 차이 값을 보완하기 위한 적응적 루프 필터링(Adaptive Loof Filtering : ALF) 과정을 수행할 수 있다.
디블록킹 필터링 과정은 미리 정해진 크기 이상의 크기를 갖는 예측 유닛(PU) 또는 변환 유닛(TU)의 경계에 적용될 수 있다.
예를 들어, 디블록킹 필터링 과정은, 필터링할 경계(boundary)를 결정하는 단계, 상기 경계에 적용할 경계 필터링 강도(bounary filtering strength)를 결정하는 단계, 디블록킹 필터의 적용 여부를 결정하는 단계, 상기 디블록킹 필터를 적용할 것으로 결정된 경우, 상기 경계에 적용할 필터를 선택하는 단계를 포함할 수 있다.
한편, 상기 디블록킹 필터의 적용 여부는 i) 상기 경계 필터링 강도가 0보다 큰지 여부 및 ii) 상기 필터링할 경계에 인접한 2개의 블록(P 블록, Q블록) 경계 부분에서의 화소값들이 변화 정도를 나타내는 값이 양자화 파라미터에 의해 결정되는 제1 기준값보다 작은지 여부에 의해 결정될 수 있다.
상기 필터는 적어도 2개 이상인 것이 바람직하다. 블록 경계에 위치한 2개의 화소들간의 차이값의 절대값이 제2 기준값보다 크거나 같은 경우에는 상대적으로 약한 필터링을 수행하는 필터를 선택한다.
상기 제2 기준값은 상기 양자화 파라미터 및 상기 경계 필터링 강도에 의해 결정된다.
또한, 샘플 적응적 오프셋(SAO) 적용 과정은 디블록킹 필터가 적용된 영상 내의 화소와 원본 화소 간의 차이값(distortion)을 감소시키기 위한 것으로, 픽쳐 또는 슬라이스 단위로 샘플 적응적 오프셋(SAO) 적용 과정을 수행할지 여부가 결정될 수 있다.
픽쳐 또는 슬라이스는 복수의 오프셋 영역들로 분할될 수 있고, 각 오프셋 영역별로 오프셋 타입이 결정될 수 있으며, 상기 오프셋 타입은 미리 정해진 개수(예를 들어, 4개)의 에지 오프셋 타입과 2개의 밴드 오프셋 타입을 포함할 수 있다.
예를 들어, 오프셋 타입이 에지 오프셋 타입일 경우, 각 화소가 속하는 에지 타입을 결정하여 이에 대응하는 오프셋을 적용하며, 상기 에지 타입은 현재 화소와 인접하는 2개의 화소값의 분포를 기준으로 결정될 수 있다.
적응적 루프 필터링(ALF) 과정은 디블록킹 필터링 과정 또는 적응적 오프셋 적용 과정을 거친 복원된 영상과 원본 영상을 비교한 값을 기초로 필터링을 수행할 수 있다.
픽쳐 저장부(180)는 후처리된 영상 데이터를 후처리부(170)로부터 입력받아 픽쳐(picture) 단위로 영상을 복원하여 저장하며, 픽쳐는 프레임 단위의 영상이거나 필드 단위의 영상일 수 있다.
인터 예측부(160)는 픽쳐 저장부(180)에 저장된 적어도 하나 이상의 참조 픽쳐를 이용하여 움직임 추정을 수행하고, 참조 픽쳐를 나타내는 참조 픽쳐 인덱스 및 움직임 벡터를 결정할 수 있다.
이 경우, 결정된 참조 픽쳐 인덱스 및 움직임 벡터에 따라, 픽쳐 저장부(180)에 저장된 다수의 참조 픽쳐들 중 움직임 추정에 이용된 참조 픽쳐로부터, 부호화하고자 하는 예측 유닛에 대응하는 예측 블록이 추출될 수 있다.
인트라 예측부(150)는 현재 예측 유닛이 포함되는 픽처 내부의 재구성된 화소값을 이용하여 인트라 예측 부호화를 수행할 수 있다.
인트라 예측부(150)는 예측 부호화할 현재 예측 유닛을 입력받아 현재 블록의 크기에 따라 미리 설정된 개수의 인트라 예측 모드 중에 하나를 선택하여 인트라 예측을 수행할 수 있다.
인트라 예측부(150)는 인트라 예측 블록을 생성하기 위해 참조 화소를 적응적으로 필터링하며, 참조 화소가 이용 가능하지 않은 경우 이용 가능한 참조 화소들을 이용하여 참조 화소들을 생성할 수 있다.
그리고, 엔트로피 부호화부(140)는 양자화부(130)에 의해 양자화된 양자화 계수, 인트라 예측부(150)로부터 수신된 인트라 예측 정보, 인터 예측부(160)로부터 수신된 움직임 정보 등을 엔트로피 부호화할 수 있다.
도 6은 부호화 장치(10)에서 인터 예측을 수행하는 구성에 대한 일실시예를 블록도로 도시한 것으로, 도시된 인터 예측 부호화기는 움직임 정보 결정부(161), 움직임 정보 부호화 모드 결정부(162), 움직임 정보 부호화부(163), 예측 블록 생성부(164), 잔차 블록 생성부(165), 잔차 블록 부호화부(166) 및 멀티플렉서(167)를 포함하여 구성될 수 있다.
도 6을 참조하면, 움직임 정보 결정부(161)는 현재 블록의 움직임 정보를 결정하며, 움직임 정보는 참조 픽쳐 인덱스와 움직임 벡터를 포함하고, 참조 픽쳐 인덱스는 이전에 부호화되어 복원된 픽쳐 중 어느 하나를 나타낼 수 있다.
현재 블록이 단방향 인터 예측 부호화되는 경우에는 리스트 0(L0)에 속하는 참조 픽쳐들 중의 어느 하나를 나타내며, 현재 블록이 양방향 예측 부호화되는 경우에는 리스트 0(L0)의 참조 픽쳐들 중 하나를 나타내는 참조 픽쳐 인덱스와 리스트 1(L1)의 참조 픽쳐들 중의 하나를 나타내는 참조 픽쳐 인덱스를 포함할 수 있다.
또한, 현재 블록이 양방향 예측 부호화되는 경우에는 리스트 0과 리스트 1을 결합하여 생성된 복합 리스트(LC)의 참조 픽쳐들 중의 1개 또는 2개의 픽쳐를 나타내는 인덱스를 포함할 수 있다.
움직임 벡터는 각각의 참조픽쳐 인덱스가 나타내는 픽쳐 내의 예측 블록의 위치를 나타내며, 상기 움직임 벡터는 화소 단위(정수 단위) 또는 서브 화소 단위일 수 있다.
예를 들어, 상기 움직임 벡터는 1/2, 1/4, 1/8 또는 1/16 화소의 해상도를 가질 수 있으며, 움직임 벡터가 정수단위가 아닐 경우 예측 블록은 정수 단위의 화소들로부터 생성될 수 있다.
움직임 정보 부호화 모드 결정부(162)는 현재 블록의 움직임 정보에 대한 부호화 모드를 스킵 모드, 머지 모드 및 AMVP 모드 중 어느 하나로 결정할 수 있다.
스킵 모드는 현재 블록의 움직임 정보와 동일한 움직임 정보를 갖는 스킵 후보자가 존재하고, 잔차 신호가 0인 경우에 적용되며, 상기 스킵 모드는 예측 유닛(PU)인 현재 블록이 코딩 유닛(CU)과 크기가 같을 때 적용될 수 있다.
머지 모드는 현재 블록의 움직임 정보와 동일한 움직임 정보를 갖는 머지 후보자가 존재할 때 적용되며, 상기 머지 모드는 현재 블록이 코딩 유닛(CU)과 크기가 다르거나, 크기가 같을 경우에는 잔차 신호가 존재하는 경우에 적용된다. 한편, 머지 후보자와 스킵 후보자는 동일할 수 있다.
AMVP 모드는 스킵 모드 및 머지 모드가 적용되지 않을 때 적용되며, 현재 블록의 움직임 벡터와 가장 유사한 움직임 벡터를 갖는 AMVP 후보자를 AMVP 예측자로 선택할 수 있다.
움직임 정보 부호화부(163)는 움직임 정보 부호화 모드 결정부(162)에 의해 결정된 방식에 따라 움직임 정보를 부호화할 수 있다.
예를 들어, 움직임 정보 부호화부(163)는 움직임 정보 부호화 모드가 스킵 모드 또는 머지 모드일 경우에는 머지 움직임 벡터 부호화 과정을 수행하며, AMVP 모드일 경우에는 AMVP 부호화 과정을 수행할 수 있다.
예측 블록 생성부(164)는 현재 블록의 움직임 정보를 이용하여 예측 블록을 생성하며, 움직임 벡터가 정수 단위일 경우 참조 픽쳐 인덱스가 나타내는 픽쳐 내의 움직임 벡터가 나타내는 위치에 대응하는 블록을 복사하여 현재 블록의 예측 블록을 생성한다.
한편, 움직임 벡터가 정수 단위가 아닌 경우, 예측 블록 생성부(164)는 참조 픽쳐 인덱스가 나타내는 픽쳐 내의 정수 단위 화소들로부터 예측 블록의 화소들을 생성할 수 있다.
이 경우, 휘도 화소에 대해 8탭의 보간 필터를 사용하여 예측 화소가 생성되며, 색차 화소에 대해서는 4탭 보간 필터를 사용하여 예측 화소가 생성될 수 있다.
잔차 블록 생성부(165)는 현재 블록과 현재 블록의 예측 블록을 이용하여 잔차 블록을 생성하며, 현재 블록의 크기가 2Nx2N인 경우 현재 블록과 현재 블록에 대응하는 2Nx2N 크기의 예측 블록을 이용하여 잔차 블록을 생성할 수 있다.
한편, 예측에 이용되는 현재 블록의 크기가 2NxN 또는 Nx2N인 경우, 2Nx2N을 구성하는 2개의 2NxN 블록 각각에 대한 예측 블록을 구한 후, 상기 2개의 2NxN 예측 블록을 이용하여 2Nx2N 크기의 최종 예측 블록이 생성될 수 있다.
또한, 상기 2Nx2N 크기의 예측 블록을 이용하여 2Nx2N 크기의 잔차 블록이 생성될 수도 있으며, 2NxN 크기를 가지는 2개의 예측 블록들의 경계 부분의 불연속성을 해소하기 위해 경계 부분의 픽셀들에 대해 오버랩 스무딩이 적용될 수 있다.
잔차 블록 부호화부(166)는 상기 잔차 블록을 하나 이상의 변환 유닛(TU)들로 분할하여, 각각의 변환 유닛(TU)이 변환 부호화, 양자화 및 엔트로피 부호화될 수 있다.
잔차 블록 부호화부(166)는 인터 예측 방법에 의해 생성된 잔차 블록을 정수기반 변환 매트릭스를 이용하여 변환할 수 있으며, 상기 변환 매트릭스는 정수기반 DCT 매트릭스일 수 있다.
한편, 잔차 블록 부호화부(166)는 변환 매트릭스에 의해 변환된 잔차 블록의 계수들을 양자화하기 위해 양자화 매트릭스를 이용하며, 상기 양자화 매트릭스는 양자화 파라미터에 의해 결정될 수 있다.
상기 양자화 파라미터는 미리 정해진 크기 이상의 코딩 유닛(CU) 별로 결정되며, 현재 코딩 유닛(CU)이 상기 미리 정해진 크기보다 작은 경우 상기 미리 정해진 크기 내의 코딩 유닛(CU)들 중 부호화 순서상 첫번째 코딩 유닛(CU)의 양자화 파라미터만을 부호화하고 나머지 코딩 유닛(CU)의 양자화 파라미터는 상기 파라미터와 동일하므로 부호화하지 않을 수 있다.
또한, 상기 양자화 파라미터 및 예측 모드에 따라 결정되는 양자화 매트릭스를 이용하여 상기 변환 블록의 계수들이 양자화될 수 있다.
상기 미리 정해진 크기 이상의 코딩 유닛(CU) 별로 결정되는 양자화 파라미터는 현재 코딩 유닛(CU)에 인접한 코딩 유닛(CU)의 양자화 파라미터를 이용하여 예측 부호화될 수 있다.
현재 코딩 유닛(CU)의 좌측 코딩 유닛(CU), 상측 코딩 유닛(CU) 순서로 검색하여 유효한 1개 또는 2개의 유효한 양자화 파라미터를 이용하여 현재 코딩 유닛(CU)의 양자화 파라미터 예측자를 생성할 수 있다.
예를 들어, 상기 순서로 검색된 유효한 첫번째 양자화 파라미터를 양자화 파라미터 예측자로 결정할 수 있으며, 또한 좌측 코딩 유닛(CU), 부호화 순서상 바로 이전의 코딩 유닛(CU) 순으로 검색하여 유효한 첫번째 양자화 파라미터를 양자화 파라미터 예측자로 결정할 수 있다.
양자화된 변환 블록의 계수들은 스캐닝되어 1차원의 양자화 계수들로 변환되며, 스캐닝 방식은 엔트로피 부호화 모드에 따라 다르게 설정될 수 있다.
예를 들어, CABAC으로 부호화될 경우 인터 예측 부호화된 양자화 계수들은 미리 정해진 하나의 방식(지그재그, 또는 대각선 방향으로의 래스터 스캔)으로 스캐닝될 수 있으며, CAVLC으로 부호화될 경우 상기 방식과 다른 방식으로 스캐닝될 수 있다.
예를 들어, 스캐닝 방식이 인터의 경우에는 지그재그, 인트라의 경우에는 인트라 예측 모드에 따라 결정될 수 있으며, 계수 스캐닝 방식은 변환 단위의 크기에 따라 상이하게 결정될 수도 있다.
한편, 상기 스캔 패턴은 방향성 인트라 예측 모드에 따라 달라질 수 있으며, 양자화 계수들의 스캔 순서는 역방향으로 스캔될 수 있다.
멀티플렉서(167)는 상기 움직임 정보 부호화부(163)에 의해 부호화된 움직임 정보들과 상기 잔차 블록 부호화부(166)에 의해 부호화된 잔차 신호들을 다중한다.
상기 움직임 정보는 부호화 모드에 따라 달라질 수 있으며, 예를 들어 스킵 또는 머지일 경우에는 예측자를 나타내는 인덱스만을 포함하고, AMVP일 경우 현재 블록의 참조 픽쳐 인덱스, 차분 움직임 벡터 및 AMVP 인덱스를 포함할 수 있다.
이하, 도 1에 도시된 인트라 예측부(150)의 동작에 대한 일실시예를 상세히 설명하기로 한다.
먼저, 인트라 예측부(150)는 픽쳐 분할부(110)로부터 예측 모드 정보 및 예측 유닛(PU)의 크기를 수신하며, 예측 유닛(PU)의 인트라 예측 모드를 결정하기 위해 참조 화소를 픽쳐 저장부(180)로부터 읽어들일 수 있다.
인트라 예측부(150)는 이용 가능하지 않은 참조 화소가 존재하는지 여부를 검토하여 참조 화소 생성 여부를 판단하며, 상기 참조 화소들은 현재 블록의 인트라 예측 모드를 결정하는데 사용될 수 있다.
현재 블록이 현재 픽쳐의 상측 경계에 위치하는 경우에는 현재 블록의 상측에 인접한 화소들이 정의되지 않고, 현재 블록이 현재 픽쳐의 좌측 경계에 위치하는 경우에는 현재 블록의 좌측에 인접한 화소들이 정의되지 않으며, 상기 화소들은 이용 가능한 화소들이 아닌 것으로 판단될 수 있다.
또한, 현재 블록이 슬라이스 경계에 위치하여 슬라이스의 상측 또는 좌측에 인접하는 화소들이 먼저 부호화되어 복원되는 화소들이 아닌 경우에도 이용 가능한 화소들이 아닌 것으로 판단될 수 있다.
상기와 같이 현재 블록의 좌측 또는 상측에 인접한 화소들이 존재하지 않거나, 미리 부호화되어 복원된 화소들이 존재하지 않는 경우, 이용 가능한 화소들만을 이용하여 현재 블록의 인트라 예측 모드가 결정될 수도 있다.
한편, 현재 블록의 이용 가능한 참조 화소들을 이용하여 이용 가능하지 않은 위치의 참조 화소가 생성될 수도 있으며, 예를 들어 상측 블록의 화소들이 이용 가능하지 않은 경우 좌측 화소들의 일부 또는 전부를 이용하여 상측 화소들을 생성할 수 있고, 그 역으로도 가능하다.
즉, 이용 가능하지 않은 위치의 참조 화소로부터 미리 정해진 방향으로 가장 가까운 위치의 이용 가능한 참조 화소를 복사하여 참조 화소가 생성되거나, 미리 정해진 방향에 이용 가능한 참조 화소가 존재하지 않는 경우 반대 방향의 가장 가까운 위치의 이용 가능한 참조 화소를 복사하여 참조 화소가 생성될 수 있다.
한편, 현재 블록의 상측 또는 좌측 화소들이 존재하는 경우에도 상기 화소들이 속하는 블록의 부호화 모드에 따라 이용 가능하지 않은 참조 화소로 결정될 수 있다.
예를 들어, 현재 블록의 상측에 인접한 참조 화소가 속하는 블록이 인터 부호화되어 복원된 블록일 경우, 상기 화소들을 이용 가능하지 않은 화소들로 판단할 수 있다.
이 경우, 현재 블록에 인접한 블록이 인트라 부호화되어 복원된 블록에 속하는 화소들을 이용하여 이용 가능한 참조 화소들이 생성될 수 있으며, 부호화 장치(10)가 부호화 모드에 따라 이용 가능한 참조 화소를 판단한다는 정보를 복호화 장치(20)로 전송한다.
인트라 예측부(150)는 상기 참조 화소들을 이용하여 현재 블록의 인트라 예측 모드를 결정하며, 현재 블록에 허용 가능한 인트라 예측 모드의 수는 블록의 크기에 따라 달라질 수 있다.
예를 들어, 현재 블록의 크기가 8x8, 16x16, 32x32인 경우에는 34개의 인트라 예측 모드가 존재할 수 있고, 현재 블록의 크기가 4x4인 경우에는 17개의 인트라 예측 모드가 존재할 수 있다.
상기 34개 또는 17개의 인트라 예측 모드는 적어도 하나 이상의 비방향성 모드(비 directional 모드)와 복수개의 방향성 모드들(directional 모드s)로 구성될 수 있다.
하나 이상의 비방향성 모드는 DC 모드 및/또는 플래너(planar) 모드일수 있다. DC 모드 및 플래너모드가 비방향성 모드로 포함되는 경우에는, 현재 블록의 크기에 관계없이 35개의 인트라 예측 모드가 존재할 수도 있다.
이 경우, 2개의 비방향성 모드(DC 모드 및 플래너 모드)와 33개의 방향성 모드가 포함될 수 있다.
플래너 모드의 경우, 현재 블록의 우하측(bottom-right)에 위치하는 적어도 하나의 화소값(또는 상기 화소값의 예측값, 이하 제1 참조값이라 함)과 참조 화소들을 이용하여 현재 블록의 예측 블록이 생성된다.
본 발명의 일실시예에 따른 영상 복호화 장치의 구성은 도 1 내지 도 6을 참조하여 설명한 영상 부호화 장치(10)의 구성으로부터 도출될 수 있으며, 예를 들어 도 1 내지 도 6을 참조하여 설명한 바와 같은 영상 부호화 방법의 과정들을 역으로 수행함으로써 영상을 복호화할 수 있다.
도 7은 본 발명의 일실시예에 따른 동영상 복호화 장치의 구성을 블록도로 도시한 것으로, 복호화 장치(20)는 엔트로피 복호화부(210), 역양자화/역변환부(220), 가산기(270), 디블록킹 필터(250), 픽쳐 저장부(260), 인트라 예측부(230), 움직임 보상 예측부(240) 및 인트라/인터전환 스위치(280)를 구비한다.
엔트로피 복호화부(210)는, 영상 부호화 장치(10)에서 부호화된 비트 스트림을 입력받아 복호화하여 인트라 예측 모드 인덱스, 움직임 정보, 양자화 계수 시퀀스 등으로 분리하며, 복호화된 움직임 정보를 움직임 보상 예측부(240)로 전달한다.
또한, 엔트로피 복호화부(210)는 인트라 예측 모드 인덱스를 인트라 예측부(230)와 역양자화/역변환부(220)로 전달하여, 역양자화 계수 시퀀스를 역양자화/역변환부(220)로 전달할 수 있다.
역양자화/역변환부(220)는 상기 양자화 계수 시퀀스를 2차원 배열의 역양자화 계수로 변환하며, 상기 변환을 위해 복수의 스캐닝 패턴들 중 하나를 선택할 수 있으며 예를 들어 현재 블록의 예측 모드(즉, 인트라 예측 또는 인터 예측)와 인트라 예측 모드에 기초하여 스캐닝 패턴을 선택할 수 있다.
역양자화/역변환부(220)는 2차원 배열의 역양자화 계수에 대해 복수의 양자화 매트릭스들 중에서 선택된 양자화 매트릭스를 적용하여 양자화 계수를 복원한다.
한편, 복원하고자 하는 현재 블록의 크기에 따라 서로 다른 양자화 매트릭스가 적용되며, 동일 크기의 블록에 대해서도 상기 현재 블록의 예측 모드 및 인트라 예측 모드 중 적어도 하나에 기초하여 양자화 매트릭스가 선택될 수 있다.
역양자화/역변환부(220)는 상기 복원된 양자화 계수를 역변환하여 잔차 블록을 복원하며, 상기 역변환 과정은 변환 유닛(TU)을 기본 단위로 하여 수행될 수 있다.
가산기(270)는 역양자화/역변환부(220)에 의해 복원된 잔차 블록과 인트라 예측부(230) 또는 움직임 보상 예측부(240)에 의해 생성되는 예측 블록을 합하여 영상 블록을 복원한다.
디블록킹 필터(250)는 가산기(270)에 의해 생성된 복원 영상에 디블록킹 필터 처리를 수행하여, 양자화 과정에 따른 영상 손실에 기인하는 디블록킹 아티펙트를 감소시킬 수 있다.
픽쳐 저장부(260)는 디블록킹 필터(250)에 의해 디블록킹 필터 처리가 수행된 로컬 복호 영상을 저장하기 위한 프레임 메모리이다.
인트라 예측부(230)는 엔트로피 복호화부(210)로부터 수신된 인트라 예측 모드 인덱스에 기초하여 현재 블록의 인트라 예측 모드를 복원하고, 복원된 인트라 예측 모드에 따라 예측 블록을 생성한다.
움직임 보상 예측부(240)는 움직임 벡터 정보에 기초하여 픽쳐 저장부(260)에 저장된 픽쳐로부터 현재 블록에 대한 예측 블록을 생성하며, 소수 정밀도의 움직임 보상이 적용될 경우 선택된 보간 필터를 적용하여 예측 블록을 생성할 수 있다.
인트라/인터 전환 스위치(280)는 부호화 모드에 기초하여 인트라 예측부(230)와 움직임 보상 예측부(240)의 어느 하나에서 생성된 예측 블록을 가산기(270)에 제공할 수 있다.
도 8는 영상 복호화 장치(20)에서 인터 예측을 수행하는 구성에 대한 일실시예를 블록도로 도시한 것으로, 인터 예측 복호화기는 디멀티플렉서(241), 움직임 정보 부호화 모드 판단부(242), 머지 모드 움직임 정보 복호화부(243), AMVP 모드 움직임 정보 복호화부(244), 예측블록 생성부(245), 잔차 블록 복호화부(246) 및 복원블록 생성부(247)를 포함한다.
도 8을 참조하면, 디-멀티플렉서(241)는 수신된 비트스트림으로부터 현재 부호화된 움직임 정보와 부호화된 잔차 신호들을 역다중화하여, 역다중화된 움직임 정보를 움직임 정보 부호화 모드 판단부(242)로 전송하고, 역다중화된 잔차신호를 잔차블록 복호화부(246)로 전송할 수 있다.
움직임 정보 부호화 모드 판단부(242)는 현재 블록의 움직임 정보 부호화 모드를 판단하며, 수신된 비트스트림의 skip_flag가 1의 값을 갖는 경우 현재 블록의 움직임 정보 부호화 모드가 스킵 부호화 모드로 부호화된 것으로 판단할 수 있다.
움직임 정보 부호화 모드 판단부(242)는 수신된 비트스트림의 skip_flag가 0의 값을 갖고, 디-멀티블렉서(241)로부터 수신된 움직임 정보가 머지 인덱스만을 갖는 경우, 현재 블록의 움직임 정보 부호화 모드가 머지 모드로 부호화된 것으로 판단할 수 있다.
또한, 움직임 정보 부호화 모드 판단부(242)는 수신된 비트스트림의 skip_flag가 0의 값을 갖고, 디멀티블렉서(241)로부터 수신된 움직임 정보가 참조 픽쳐 인덱스와 차분 움직임 벡터와 AMVP인덱스를 갖는 경우, 현재 블록의 움직임 정보 부호화 모드가 AMVP 모드로 부호화된 것으로 판단할 수 있다.
머지 모드 움직임 정보 복호화부(243)는 움직임 정보 부호화 모드 판단부(242)가 현재 블록의 움직임 정보 부호화 모드를 스킵 또는 머지 모드로 판단한 경우에 활성화되며, AMVP 모드 움직임 정보 복호화부(244)는 움직임 정보 부호화 모드 판단부(242)가 현재 블록의 움직임 정보 부호화 모드를 AMVP 모드로 판단한 경우에 활성화될 수 있다.
예측블록 생성부(245)는 머지 모드 움직임 정보 복호화부(243) 또는 AMVP 모드 움직임 정보 복호화부(244)에 의해 복원된 움직임 정보를 이용하여 현재 블록의 예측 블록을 생성한다.
움직임 벡터가 정수 단위일 경우, 참조 픽쳐 인덱스가 나타내는 픽쳐 내의 움직임 벡터가 나타내는 위치에 대응하는 블록을 복사하여 현재 블록의 예측 블록이 생성될 수 있다.
한편, 움직임 벡터가 정수 단위가 아닐 경우, 참조 픽쳐 인덱스가 나타내는 픽쳐 내의 정수 단위 화소들로부터 예측 블록의 화소들이 생성되며, 이 경우 휘도 화소의 경우에는 8탭의 보간 필터를 사용하고 색차 화소의 경우 4탭 보간 필터를 사용하여 예측 화소가 생성될 수 있다.
잔차 블록 복호화부(246)는 잔차 신호를 엔트로피 복호화하고, 엔트로피 복호화된 계수들을 역스캐닝하여 2차원의 양자화된 계수 블록을 생성하며, 역스캐닝 방식은 엔트로피 복호화 방식에 따라 달라질 수 있다.
예를 들어, CABAC 기반으로 복호화된 경우 대각선 방향의 래스터 역스캔 방식으로, CAVLC 기반으로 복호화된 경우에는 지그재그 역스캔 방식으로 상기 역스캐닝 방식이 적용될 수 있다. 또한, 예측 블록의 크기에 따라 상기 역스캐닝 방식이 상이하게 결정될 수도 있다.
잔차블록 복호화부(246)는 상기와 같이 생성된 계수블록을 역양자화 매트릭스를 이용하여 역양자화하며, 상기 양자화 매트릭스를 유도하기 위해 양자화 파리미터를 복원할 수 있다. 여기서, 양자화 스텝 사이즈는 미리 정해진 크기 이상의 코딩 유닛별로 복원될 수 있다.
잔차블록 복호화부(260)는 상기 역양자화된 계수 블록을 역변환하여 잔차블록을 복원한다.
복원블록 생성부(270)는 상기 예측블록 생성부(250)에 의해 생성된 예측 블록과 상기 잔차블록 복호화부(260)에 의하여 생성된 잔차 블록을 더하여 복원 블록을 생성한다.
이하, 현재 블록을 인트라 예측을 통해 복원하는 과정에 대한 일실시예를 도 7을 다시 참조하여 설명한다.
먼저, 수신된 비트스트림으로부터 현재 블록의 인트라 예측 모드가 복호화되며, 그를 위해 엔트로피 복호화부(210)는 복수의 인트라 예측 모드 테이블들 중 하나를 참조하여 현재 블록의 제1 인트라 예측 모드 인덱스를 복원할 수 있다.
상기 복수의 인트라 예측 모드 테이블들 부호화 장치(10)와 복호화 장치(20)가 공유하는 테이블로서, 현재 블록에 인접한 복수 블록들에 대한 인트라 예측 모드의 분포에 따라 선택된 어느 하나의 테이블이 적용될 수 있다.
예를 들어, 현재 블록의 좌측 블록의 인트라 예측 모드와 현재 블록의 상측 블록의 인트라 예측 모드가 동일하면 제1 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원하고, 동일하지 않으면 제2 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원할 수 있다.
또 다른 예로써, 현재 블록의 상측 블록과 좌측 블록의 인트라 예측 모드가 모두 방향성 예측 모드(directional intra prediction 모드)일 경우, 상기 상측 블록의 인트라 예측 모드의 방향과 상기 좌측 블록의 인트라 예측 모드의 방향이 소정 각도 이내이면 제 1 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원하고, 소정 각도를 벗어나면 제2 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원할 수도 있다.
엔트로피 복호화부(210)는 복원된 현재 블록의 제1 인트라 예측 모드 인덱스를 인트라 예측부(230)로 전송한다.
제1 인트라 예측 모드를 인덱스를 수신한 인트라 예측부(230)는, 상기 인덱스가 최소값을 가질 경우(즉, 0일 경우), 현재 블록의 최대 가능 모드를 현재 블록의 인트라 예측 모드로 결정할 수 있다.
한편, 인트라 예측부(230)는, 상기 인덱스가 0 이외의 값을 가질 경우, 현재 블록의 최대 가능 모드가 나타내는 인덱스와 상기 제1 인트라 예측 모드 인덱스를 비교하고, 비교 결과 상기 제1 인트라 예측 모드 인덱스가 상기 현재 블록의 최대 가능 모드가 나타내는 인덱스보다 작지 않으면 상기 제1 인트라 예측 모드 인덱스에 1을 더한 제2 인트라 예측 모드 인덱스에 대응하는 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 결정하고, 그렇지 않으면 상기 제1 인트라 예측 모드 인덱스에 대응하는 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 결정할 수 있다.
현재 블록에 허용 가능한 인트라 예측 모드는 적어도 하나 이상의 비방향성 모드(비 directional 모드)와 복수 개의 방향성 모드들(directional 모드s)로 구성될 수 있다.
하나 이상의 비방향성 모드는 DC 모드 및/또는 플래너(planar) 모드일수 있다. 또한, DC 모드와 플래너 모드 중 어느 하나가 적응적으로 상기 허용 가능한 인트라 예측 모드 셋에 포함될 수 있다.
이를 위해, 픽쳐 헤더 또는 슬라이스 헤더에 상기 허용 가능한 인트라 예측 모드 셋에 포함되는 비방향성 모드를 특정하는 정보가 포함될 수 있다.
다음으로, 인트라 예측부(230)는 인트라 예측 블록을 생성하기 위해, 참조 화소들을 픽쳐 저장부(260)로터 읽어들이고, 이용 가능하지 않은 참조 화소가 존재하는지 여부를 판단한다.
상기 판단은 현재 블록의 복호된 인트라 예측 모드를 적용하여 인트라 예측 블록을 생성하는데 이용되는 참조 화소들의 존재 여부에 따라 행해질 수도 있다.
다음으로, 인트라 예측부(230)는 참조 화소를 생성할 필요가 있을 경우에는 미리 복원된 이용 가능한 참조 화소들을 이용하여 이용 가능하지 않은 위치의 참조 화소들을 생성할 수 있다.
이용 가능하지 않은 참조 화소에 대한 정의 및 참조 화소의 생성 방법은 도 1에 따른 인트라 예측부(150)에서의 동작과 동일할 수 있으나, 현재 블록의 복호화된 인트라 예측 모드에 따라 인트라 예측 블록을 생성하는데 이용되는 참조 화소들이 선택적으로 복원될 수도 있다.
또한, 인트라 예측부(230)는 예측 블록을 생성하기 위해 참조 화소들에 필터를 적용할지 여부를 판단하며, 즉 현재 블록의 인트라 예측 블록을 생성하기 위하여 참조 화소들에 대해 필터링을 적용할지 여부를 상기 복호된 인트라 예측 모드 및 현재 예측 블록의 크기에 기초하여 결정할 수 있다.
블록킹 아티펙트의 문제는 블록의 크기가 커질수록 커지므로, 블록의 크기가 커질수록 참조 화소를 필터링하는 예측모드의 수를 증가시킬 수 있으나, 블록이 소정 크기보다 커지는 경우 평탄한 영역으로 볼 수 있으므로 복잡도 감소를 위해 참조 화소를 필터링하지 않을 수도 있다.
상기 참조 화소에 필터 적용이 필요하다고 판단된 경우, 인트라 예측부(230)는 필터를 이용하여 상기 참조 화소들을 필터링한다.
상기한 참조 화소들 간의 단차의 차이 정도에 따라 적어도 2개 이상의 필터를 적응적으로 적용할 수도 있다. 상기 필터의 필터계수는 대칭적인 것이 바람직하다.
또한, 상기한 2개 이상의 필터가 현재 블록의 크기에 따라 적응적으로 적용될 수도 있으며, 필터를 적용할 경우 크기가 작은 블록에 대해서는 대역폭이 좁은 필터가, 크기가 큰 블록들에 대해서는 대역폭이 넓은 필터가 적용될 수도 있다.
DC 모드의 경우에는 참조 화소들의 평균값으로 예측 블록이 생성되므로 필터를 적용할 필요가 없으며, 상이 수직 방향으로 연관성(correlation)이 있는 수직 모드에서는 참조 화소에 필터를 적용할 필요가 없고, 영상이 수평 방향으로 연관성이 있는 수평 모드에서도 참조 화소에 필터를 적용할 필요가 없을 수 있다.
이와 같이, 필터링의 적용 여부는 현재 블록의 인트라 예측 모드와도 연관성이 있으므로, 현재 블록의 인트라 예측 모드 및 예측 블록의 크기에 기초하여 참조 화소를 적응적으로 필터링할 수 있다.
다음으로, 인트라 예측부(230)는 상기 복원된 인트라 예측 모드에 따라 참조 화소 또는 필터링된 참조 화소들을 이용하여 예측 블록을 생성하며, 상기 예측 블록의 생성은 부호화 장치(10)에서의 동작과 동일할 수 있으므로, 그에 대한 상세한 설명은 생략하기로 한다.
인트라 예측부(230)는 상기 생성된 예측 블록을 필터링할지 여부를 판단하며, 상기 필터링 여부는 슬라이스 헤더 또는 부호화 유닛 헤더에 포함된 정보를 이용하거나 또는 현재 블록의 인트라 예측 모드에 따라 결정될 수 있다.
상기 생성된 예측 블록을 필터링할 것으로 판단할 경우, 인트라 예측부(230)는 현재 블록에 인접한 이용 가능한 참조 화소들을 이용하여 생성된 예측 블록의 특정 위치의 화소를 필터링하여 새로운 화소를 생성할 수 있다.
예를 들어, DC 모드에서는 예측 화소들 중 참조 화소들과 접하는 예측 화소는 상기 예측 화소와 접하는 참조 화소를 이용하여 필터링될 수 있다.
따라서, 예측 화소의 위치에 따라 1개 또는 2개의 참조 화소를 이용하여 예측 화소가 필터링되며, DC 모드에서의 예측 화소의 필터링은 모든 크기의 예측 블록에 적용할 수 있다.
한편, 수직 모드에서는 예측 블록의 예측 화소들 중 좌측 참조 화소와 접하는 예측 화소들은 상기 예측블록을 생성하는데 이용되는 상측 화소 이외의 참조 화소들을 이용하여 변경될 수 있다.
마찬가지로, 수평 모드에서는 생성된 예측 화소들 중 상측 참조 화소와 접하는 예측 화소들은 상기 예측블록을 생성하는데 이용되는 좌측 화소 이외의 참조 화소들을 이용하여 변경될 수 있다.
이와 같은 방식으로 복원된 현재 블록의 예측 블록과 복호화한 현재 블록의 잔차 블록을 이용하여 현재 블록이 복원될 수 있다.
도 9는 영상을 블록 단위로 분할하여 처리하는 방법에 대한 제2 실시예를 설명하기 위한 도시한 것이다.
도 9를 참조하면, 최대 256x256 픽셀 크기를 가지는 코딩 트리 유닛(CTU)은 먼저 쿼드 트리(quad tree) 구조로 나뉘어, 정사각형의 형태를 가지는 4개의 코딩 유닛(CU)들로 분할될 수 있다.
여기서, 상기 쿼드 트리 구조로 분할된 코딩 유닛들 중 적어도 하나는 이진 트리(bunary tree) 구조로 나뉘어, 직사각형의 형태를 가지는 2개의 코딩 유닛(CU)들로 재 분할될 수 있다.
한편, 상기 쿼드 트리 구조로 분할된 코딩 유닛들 중 적어도 하나는 쿼드 트리 구조로 나뉘어, 정사각형의 형태를 가지는 4개의 코딩 유닛(CU)들로 재 분할될 수도 있다.
그리고 상기 이진 트리 구조로 재 분할된 코딩 유닛들 중 적어도 하나는 이진 트리 구조로 다시 나뉘어, 정사각형 또는 직사각형의 형태를 가지는 2개의 코딩 유닛(CU)들로 분할될 수 있다.
한편, 상기 쿼드 트리 구조로 재 분할된 코딩 유닛들 중 적어도 하나는 쿼드 트리 구조 또는 이진 크리 구조로 다시 나뉘어, 정사각형 또는 직사각형의 형태를 가지는 코딩 유닛(CU)들로 분할될 수도 있다.
상기와 같이 이진 트리 구조로 분할되어 구성된 코딩 블록(Coding Block : CB)들은, 더 이상 분할되지 않고, 예측 및 변환에 이용될 수 있다. 즉, 도 9에 도시된 바와 같은 코딩 블록(CB)에 속하는 예측 유닛(PU)과 변환 유닛(TU)의 크기는, 해당 코딩 블록(CB)의 크기와 동일할 수 있다.
상기와 같이 쿼드 트리 구조로 분할된 코딩 유닛은 도 3 및 도 4를 참조하여 설명한 바와 같은 방법을 이용하여 하나 또는 2 이상의 예측 유닛(PU)들로 분할될 수 있다.
또한, 상기와 같이 쿼드 트리 구조로 분할된 코딩 유닛은 도 5를 참조하여 설명한 바와 같은 방법을 이용하여 하나 또는 2 이상의 변환 유닛(TU)들로 분할될 수 있으며, 상기 분할된 변환 유닛(TU)은 최대 64x64 픽셀 크기를 가질 수 있다.
그리고, 영상을 블록 단위로 분할하여 처리하기 위해 사용되는 신택스(syntax) 구조는 분할 정보를 flag를 이용하여 나타낼 수 있다. 예를 들어, 코딩 유닛(CU)의 분할 여부는 split_cu_flag를 이용하여 나타내어 지며, 이진 트리를 이용하여 분할되는 코딩 유닛(CU)의 깊이는 binary_depth를 이용하여 나타내어질 수 있다. 또한, 코딩 유닛(CU)이 이진 트리 구조로 분할되는지 여부는 별도의 binary_split_flag로 나타내어 질 수도 있다.
도 9를 참조하여 설명한 바와 같은 방법에 의해 분할된 블록들(예를 들어, 코딩 유닛(CU), 예측 유닛(PU) 및 변환 유닛(TU))에 대해 도 1 내지 도 8을 참조하여 설명한 바와 같은 방법들이 적용됨으로써, 영상에 대한 부호화 및 복호화가 수행될 수 있다.
이하에서는, 도 10 내지 도 15를 참조하여, 코딩 유닛(CU)을 하나 또는 2 이상의 변환 유닛(TU)들로 분할하는 방법에 대한 또 다른 실시예들을 설명하기로 한다.
본 발명의 실시예에 따르면, 코딩 유닛(CU)은 이진 트리 구조로 나뉘어 잔차 블록에 대한 변환이 수행되는 기본 단위인 변환 유닛(TU)들로 분할될 수 있다.
도 10을 참조하면, 이진 트리 구조로 분할되어 Nx2N 또는 2NxN의 크기를 가지는 직사각형의 코딩 블록들(CB0, CB1) 중 적어도 하나는, 다시 이진 트리 구조로 나뉘어, NxN의 크기를 가지는 정사각형의 변환 유닛들(TU0, TU1)로 분할될 수 있다.
상기한 바와 같이, 블록 기반의 영상 부호화 방법은, 예측, 변환, 양자화 및 엔트로피 부호화 단계들을 수행할 수 있다.
상기 예측 단계에서는, 현재 부호화를 수행하는 블록과 기존의 부호화된 영상 또는 주변 영상을 참조하여 예측 신호를 생성하며, 이를 통해 현재 블록과의 차분 신호를 계산할 수 있다.
한편, 변환 단계에서는, 상기 차분 신호를 입력으로 하여 다양한 변환 함수를 이용하여 변환을 수행하며, 상기 변환된 신호는 DC 계수와 AC 계수들로 분류되 에너지 집중(Energy compaction)되어 부호화 효율이 향상될 수 있다.
또한, 양자화 단계에서는 변환 계수(Transform coefficient)들을 입력으로 양자화가 수행하며, 이후 양자화된 신호에 대해 엔트로피 부호화가 수행됨으로써 영상이 부호화될 수 있다.
한편, 영상 복호화 방법은 상기와 같은 부호화 과정의 역순으로 진행되며, 영상의 화질 왜곡 현상이 양자화 단계에서 발생할 수 있다.
부호화 효율을 향상시키면서 화질 왜곡 현상을 줄이기 위한 방법으로서, 변환 단계에서 입력으로 들어오는 차분 신호의 분포 및 영상의 특징에 따라 변환 유닛(TU)의 크기 또는 모양과 적용되는 변환 함수 종류를 다양하게 할 수 있다.
예를 들어, 예측 단계에서 블록 기반 움직임 추정 과정을 통해 현재 블록과 유사한 블록을 찾는 경우, SAD(Sum of Absolute Difference) 또는 MSE(Mean Square error) 등과 같은 코스트(cost) 측정 방법을 이용하여, 차분 신호의 분포는 영상의 특성에 따라 다양한 형태로 생길 수 있다.
그에 따라, 다양한 차분 신호의 분포에 기초해 선택적으로 변환 유닛(CU)의 크기 또는 모양을 결정하여 변환을 수행함으로써, 효과적인 부호화가 수행될 수 있다.
예를 들어, 임의의 코딩 블록(CBx) 에서 차분 신호가 발생하는 경우, 해당 코딩 블록(CBx)을 이진 트리 구조로 나누어 2개의 변환 유닛(TU)들로 분할함으로써 효과적인 변환이 수행되도록 할 수 있다. DC 값은 일반적으로 입력 신호의 평균값을 나타낸다고 말할 수 있으므로, 차분 신호가 변환 과정의 입력으로 수신되는 경우, 코딩 블록(CBx)을 2개의 변환 유닛(TU)들로 분할함으로써 효과적으로 DC 값을 나타낼 수 있다.
도 11을 참조하면, 2Nx2N의 크기를 가지는 정사각형의 코딩 유닛(CU0)이 이진 트리 구조로 나뉘어, Nx2N 또는 2NxN의 크기를 가지는 직사각형의 변환 유닛들(TU0, TU1)로 분할될 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기한 바와 같이 코딩 유닛(CU)을 이진 트리 구조로 분할하는 단계를 2회 이상 반복해 수행하여, 복수의 변환 유닛(TU)들로 분할할 수 있다.
도 12를 참조하면, Nx2N의 크기를 가지는 직사각형의 코딩 블록(CB1)을 이진 트리 구조로 분할하고, 상기 분할된 NxN의 크기를 가지는 블록을 다시 이진 트리 구조로 분할하여 N/2xN 또는 NxN/2의 크기를 가지는 직사각형의 블록을 구성한 후, 상기 N/2xN 또는 NxN/2의 크기를 가지는 블록을 다시 이진 트리 구조로 분할하여 N/2xN/2의 크기를 가지는 정사각형의 변환 유닛들(TU1, TU2, TU4, TU5)로 분할할 수 있다.
도 13을 참조하면, 2Nx2N의 크기를 가지는 정사각형의 코딩 블록(CB0)을 이진 트리 구조로 분할하고, 상기 분할된 Nx2N의 크기를 가지는 블록을 다시 이진 트리 구조로 분할하여 NxN의 크기를 가지는 정사각형의 블록을 구성한 후, 상기 NxN의 크기를 가지는 블록을 다시 이진 트리 구조로 분할하여 N/2xN의 크기를 가지는 직사각형의 변환 유닛들(TU1, TU2)로 분할할 수 있다.
도 14를 참조하면, 2NxN의 크기를 가지는 직사각형의 코딩 블록(CB0)을 이진 트리 구조로 분할하고, 상기 분할된 NxN의 크기를 가지는 블록을 다시 쿼드 트리 구조로 분할하여 N/2xN/2의 크기를 가지는 정사각형의 변환 유닛들(TU1, TU2, TU3, TU4)로 분할할 수 있다.
도 10 내지 도 14를 참조하여 설명한 바와 같은 방법에 의해 분할된 블록들(예를 들어, 코딩 유닛(CU), 예측 유닛(PU) 및 변환 유닛(TU))에 대해 도 1 내지 도 8을 참조하여 설명한 바와 같은 방법들이 적용됨으로써, 영상에 대한 부호화 및 복호화가 수행될 수 있다.
이하에서는, 본 발명에 따른 부호화 장치(10)가 블록 분할 구조를 결정하는 방법에 대한 실시예들에 대해 설명한다.
영상 부호화 장치(10)에 구비된 픽쳐 분할부(110)는 미리 설정된 순서에 따라 RDO(Rate distortion Optimization)를 수행하여, 상기한 바와 같이 분할 가능한 코딩 유닛(CU), 예측 유닛(PU) 및 변환 유닛(TU)의 분할 구조를 결정할 수 있다.
예를 들어, 블록 분할 구조를 결정하기 위해, 픽쳐 분할부(110)는 RDO-Q(Rate distortion Optimization- Quantization)를수행하면서 비트레이트(bitrate)와 디스토션(distortion) 측면에서 최적의 블록 분할 구조를 결정할 수 있다.
도 15를 참조하면, 코딩 유닛(CU)이 2Nx2N 픽셀 크기의 형태를 가지는 경우, (a)에 도시된 2Nx2N 픽셀 크기, (b)에 도시된 NxN 픽셀 크기, (c)에 도시된 Nx2N 픽셀 크기, (d)에 도시된 2NxN 픽셀 크기의 변환 유닛(PU) 분할 구조 순서로 RDO를 수행하여 변환 유닛(PU)의 최적 분할 구조를 결정할 수 있다.
도 16을 참조하면, 코딩 유닛(CU)이 Nx2N 또는 2NxN 픽셀 크기의 형태를 가지는 경우, (a)에 도시된 Nx2N(또는, 2NxN)의 픽셀 크기, (b)에 도시된 NxN의 픽셀 크기, (c)에 도시된 N/2xN(또는, NxN/2)와 NxN의 픽셀 크기, (d)에 도시된 N/2xN/2, N/2xN 및 NxN의 픽셀 크기, (e)에 도시된 N/2xN의 픽셀 크기의 변환 유닛(PU) 분할 구조 순서로 RDO를 수행하여 변환 유닛(PU)의 최적 분할 구조를 결정할 수 있다.
상기에서는 RDO(Rate distortion Optimization)를 수행하여 블록 분할 구조가 결정되는 것을 예로 들어 본 발명의 블록 분할 방법을 설명하였으나, 픽쳐 분할부(110)는 SAD(Sum of Absolute difference) 또는 MSE(Mean Square Error)를 이용하여 블록 분할 구조를 결정함으로써 복잡도를 저감시키면서도 적절한 효율을 유지할 수 있다.
이하에서는 본 발명의 실시 예에 따른 부호화 트리 유닛 및 부호화 유닛 사이즈간 독립성을 제공하는 영상 처리 방법 및 이에 따른 부호화 및 복호화 방법에 대하여 보다 구체적으로 설명하도록 한다.
도 17은 본 발명의 실시 예에 따른 부호화 트리 유닛과 부호화 유닛간 관계를 설명하기 위한 도면이다.
도 17을 참조하면, 전체 픽쳐는 전술한 바와 같은 부호화 트리 유닛(코딩 트리 유닛, CTU)로 분할될 수 있으며, 각 CTU는 동일한 크기 예를 들어, 64x64 픽셀 크기를 가질 수 있다. 그리고, 각 CTU는 다양한 크기를 갖는 코딩 유닛(CU)로 쿼드 트리 및 바이너리 트리 형태로 분할될 수 있다.
이와 같은 구조에 있어서, 본 발명의 실시 예에 따른 부호화 장치(10)는 라인 버퍼의 대역폭 효율 및 구현 코스트 감소를 동시에 고려하여, CTU의 사이즈와 CU의 최대 사이즈를 독립적으로, 즉, CTU의 크기와 CU의 크기를 비-의존적으로 결정함으로써, 상기 두 효과가 동시에 달성가능한 최적의 분할 구조를 결정할 수 있다.
이를 위해, 부호화 장치(10)는 픽쳐 분할부(110)에서의 픽쳐 분할시 미리 설정된 임의 단위(예를 들어, 시퀀스 레벨 단위) 내에서, 최대 CU 크기가 CTU 크기를 독립적으로 고려하여 분할 구조를 결정할 수 있다. 이에 따라, 최대 CU 크기는 CTU 크기와 동일하거나 동일하지 않을 수 있다.
이에 따라, 부호화 장치(10)는 픽쳐 분할부(110)에서의 분할 정보를 복호화 장치(20)로 시그널링함에 있어서, CTU 크기와 상기 CTU 크기에 대응하는 최대 CU 크기가 상이함을 나타내는 시그널링 정보를 복호화 장치(20)로 전송할 수 있다.
여기서, 상기 시그널링 정보는 명시적 또는 묵시적으로 전송될 수 있다. 명시적인 경우, 부호화 장치(10)는 헤더 정보에 CTU 크기와 상기 CTU 크기에 대응하는 최대 CU 크기가 상이함을 나타내는 플래그 정보를 포함시키거나, 또는 상기 최대 CU 크기 정보를 상기 헤더 정보에 함께 포함시켜 전송시킬 수 있다.
또한, 묵시적인 경우, 부호화 장치(10)는 헤더 정보에 기존과 같은 분할 정보(Split flag)를 전송하되, CTU 크기로부터 최대 CU 크기로 분할하기 위한 분할 정보는 생략(SKIP)할 수있다. 이에 따라, 복호화 장치(20)는 CTU 크기에 대응하는 분할 정보가 깊이(DEPTH)에 따라 단계적으로 생략된 경우, 생략된 깊이 정보를 이용하여, 최대 CU 크기 및 CTU 크기간 차이를 식별하고, 이에 대응하는 분할 처리를 수행할 수 있다.
이와 같은 처리를 통해, 본 발명은 CTU 크기와 최대 CU 크기를 독립적으로 설정할 수 있음으로써, 기존대비 큰 사이즈의 CTU를 이용한 라인 버퍼의 처리에 따른 메모리 대역폭을 저감시키면서도, 기존대비 CTU보다 작은 사이즈의 최대 CU 크기를 허용하고 이에 대한 시그널링을 제공함으로써, 구현 코스트 및 압축 효율을 동시에 고려한 부호화 및 복호화를 제공할 수 있다.
이에 따라, 부호화 장치(10)는 상기 부호화 트리 유닛 크기에 대응하는 라인 버퍼 대역폭 효율 및 상기 최대 부호화 유닛 크기에 대응하는 구현 코스트 효율을 함께 고려하여, 최적의 최대 부호화 유닛 크기를 결정할 수도 있다.
또한 이는 쿼드트리 및 바이너리 트리로 분할되는 본 발명의 실시 예에 따른 구조에서도 마찬가지로, 현재 방식에 의하면 최소 분할 사이즈인 MinQTSize 정보만 정의될 수 있으며, 결과적으로 최대 CU 사이즈는 CTU 크기이기 때문에 독립적으로 설정될 수 없는 한계가 있다.
이에 따라, 현재 방식의 최대 CU 크기가 CTU 크기와 동일한 64x64인 경우를 가정하면, 본 발명의 경우에는 최대 CU 크기를 감소시킴으로써, 64x64 CU 에 대한 구현 및 처리를 제외할 수 있다. 이에 따라 구현 코스트 및 부호화 처리 시간을 줄일 수 있으며, 시그널링에 있어서, 각 CTU 에 대응한 depth 0 으로부터 최대 코딩 유닛 크기까지에 대한 split flag 는 전송되지 않음으로써, 압축 효율도 향상시킬 수 있는 장점이 있다.
또한, 현재 방식에서 최대 CU 크기가 CTU 크기와 동일한 32x32인 경우를 가정하면, 본 발명의 경우에는 최대 CU 크기는 32x32로 유지하면서도 최대 CTU 크기는 64x64로 증가시킴으로써, 라인 버퍼(line buffer)사용에 의한 메모리 대역폭은 절반으로 감소시킬 수 있는 장점이 있다. 즉, 상기 CTU 크기에 따라 라인 버퍼에 대한 메모리 사용량 또는 참조 횟수가 결정될 수 있다.
도 18은 본 발명의 실시 예에 따른 픽쳐 분할 처리를 수행하는 복호화 장치의 동작을 설명하기 위한 흐름도이다.
도 18을 참조하면, 복호화 장치(20)는 영상 스트림을 수신하고(S101), 영상 스트림으로부터 부호화 트리 유닛으로부터 분할되는 최대 부호화 유닛 크기를 나타내는 시그널링 정보를 획득한다(S105).
여기서, 시그널링 정보는 상기 영상 스트림으로부터 명시적으로 획득 수 있다. 이 경우, 복호화 장치(20)는 영상 스트림의 헤더 정보로부터 최대 부호화 유닛 크기 정보를 상기 시그널링 정보로서 획득할 수 있다.한편, 상기 시그널링 정보가 직접 전송되지 않고 묵시적으로 최대 부호화 유닛 크기가 시그널링될 수 있다. 이 경우, 상기 S105 단계는 생략될 수 있으며, 예를 들어, 복호화 장치(20)는 CTU 크기와 상이할 수 있는 최대 부호화 유닛 크기를 프로파일에 따라 미리 결정하여, 별도의 시그널링 정보 없이도 이용할 수 있다.
그리고, 복호화 장치(20)는 영상 스트림의 헤더 정보로부터 최대 부호화 트리 유닛에 대응하는 분할 정보(Split flag)가 존재하는지를 식별하고, 분할 정보가 존재하는 깊이(depth) 단계까지 쿼드 트리로 분할함으로써, 최대 부호화 유닛 크기까지 분할 처리할 수 있다. 이는 불필요한 분할 정보가 수신되지 않음으로써 압축 및 전송 효율을 증가시킬 수 있는 장점이 있다.
이에 따라, 복호화 장치(20)는 CTU 크기에 대응하는 분할 정보가 깊이(DEPTH)에 따라 단계적으로 생략된 경우, 생략된 깊이 정보를 이용하여, 최대 CU 크기 및 CTU 크기간 차이를 식별하고, 이에 대응하는 분할 처리를 수행할 수 있다.
이를 위해, 복호화 장치(20)는 부호화 트리 유닛 크기와 최대 부호화 유닛 크기와 동일한지 여부를 판단한다(S107).
만약 시그널링 정보에 따라 부호화 트리 유닛과 최대 부호화 유닛 크기간 차이가 없이 기존과 동일한 경우, 복호화 장치(20)는 최대 부호화 유닛으로부터 분할 플래그 정보에 따른 쿼드트리 및 바이너리 트리 분할을 깊이에 따라 순차적으로 수행할 수 있다(S111).
반면, 본 발명의 실시 예에 따라 부호화 트리 유닛보다 최대 부호화 유닛 크기가 작은 경우, 복호화 장치(20)는 분할 플래그 처리를 스킵하고, 부호화 트리 유닛을 최대 부호화 유닛까지 반복 분할할 수 있다(S109).
특히, 복호화 장치(20)는 부호화 트리 유닛을 최대 부호화 유닛 단위까지 분할함에 있어서는, 전술한 바와 같이 별도의 분할 플래그 정보 없이도 분할이 처리될 수 있다. 또한, 분할 플래그가 스킵된 경우의 분할에 있어서는 쿼드트리 이외의 바이너리 분할 방식은 제외될 수 있다.
예를 들어, 복호화 장치(20)는 부호화 트리 유닛을 최대 부호화 유닛까지 분할함에 있어서는 N번의 쿼드트리 분할만을 수행할 수 있으며, 이후 분할 플래그가 존재하는 최대 부호화 유닛부터 쿼드트리 및 바이너리 트리 분할을 수행할 수 있다.
도 19는 본 발명의 실시 예에 따른 분할 플래그 처리를 설명하기 위한 예시도이다.
도 19를 참조하면, 본 발명의 실시 예에 따른 CTU 의 분할 플래그(split flag) 의 전송 및 이에 따른 최대 CU 크기 결정 및 분할을 나타내고 있다.
도 19에서, 깊이(Depth) 는 CTU 크기를 기준으로 quad-tree형태로 분할될 때 하나씩 증가하는 깊이 정보를 나타낸다. 특히, 도 19에 도시된 바와 같이 depth 0 는 CTU 크기에 대응함에 따라, 블록의 크기가 최대 CU 크기보다 크며, 이 경우 복호화 장치(20)는 분할 플래그(split flag)를 복호화하지 않아도 quad-tree형태로 분할할 수 있다. 따라서, 별도의 분할 플래그 처리가 스킵되어 전송되지 않음으로써 압축 및 전송 효율이 향상될 수 있다. 따라서, 복호화 장치(20)는 상기 CTU에 대응하는 분할 플래그 정보가 생략됨을 확인하고, 이에 따라 최대 CU 크기 정보를 식별할 수 있다.
한편, depth 1 ~ 2 까지는 기존과 같은 분할 플래그(split flag) 가 전송될 수 있으며, 쿼드트리 및 바이너리 트리 분할이 함께 수행될 수 있다. 한편, depth 3 은 블록의 크기 가 최소 CU 크기와 동일한 경우로서, 더이상 분할할 수 없으므로 분할 플래그가 전송되지 않음은 자명하다.
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.

Claims (12)

  1. 영상 복호화 방법에 있어서,
    영상 스트림으로부터, 부호화 트리 유닛 정보를 획득하는 단계;
    상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기에 대한 시그널링 정보를 획득하는 단계; 및
    상기 시그널링 정보에 따라, 상기 부호화 트리 유닛을 단계적으로 분할하는 단계를 포함하는
    영상 복호화 방법.
  2. 제1항에 있어서,
    상기 시그널링 정보는 상기 영상 스트림의 헤더 정보로부터 획득되는 최대 부호화 유닛 크기 정보를 포함하는
    영상 복호화 방법.
  3. 제1항에 있어서,
    상기 시그널링 정보를 획득하는 단계는,
    상기 부호화 트리 유닛에 대응하는 분할 플래그 정보가 생략됨을 확인하는 단계를 포함하는
    영상 복호화 방법.
  4. 제1항에 있어서,
    상기 단계적으로 분할하는 단계는 별도의 분할 정보 없이, 상기 부호화 트리 유닛을 상기 최대 부호화 유닛 크기까지 분할하는 단계를 포함하는
    영상 복호화 방법.
  5. 제4항에 있어서,
    상기 부호화 트리 유닛을 상기 최대 부호화 유닛 크기까지 분할하는 단계는,
    상기 부호화 트리 유닛을 쿼드트리만으로 반복 분할하는 단계를 포함하는
    영상 복호화 방법.
  6. 제5항에 있어서,
    상기 단계적으로 분할하는 단계는,
    상기 최대 부호화 유닛까지 분할된 경우, 분할 정보에 따라 상기 최대 부호화 유닛을 쿼드트리 또는 바이너리 트리로 분할하는 단계를 포함하는
    영상 복호화 방법.
  7. 제1항에 있어서,
    상기 최대 부호화 유닛 크기보다 상기 부호화 트리 유닛 크기가 큰 것을 특징으로 하는 영상 복호화 방법.
  8. 제1항에 있어서,
    상기 부호화 트리 유닛의 크기에 따라 라인 버퍼에 대응하는 메모리 사용량 또는 참조 횟수가 결정되는 것을 특징으로 하는 영상 복호화 방법.
  9. 영상 부호화 방법에 있어서,
    부호화 대상 픽처를 획득하는 단계;
    상기 픽처를 미리 설정된 크기의 부호화 트리 유닛으로 분할하는 단계;
    상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기를 상기 부호화 트리 유닛의 크기와 비-의존적으로 결정하는 단계; 및
    상기 최대 부호화 유닛 크기에 대한 시그널링을 처리하는 단계를 포함하는
    영상 부호화 방법.
  10. 제9항에 있어서,
    상기 결정하는 단계는,
    상기 부호화 트리 유닛 크기에 대응하는 라인 버퍼 대역폭 효율 및 상기 최대 부호화 유닛 크기에 대응하는 구현 코스트 효율을 함께 고려하여, 최대 부호화 유닛 크기를 결정하는 단계를 포함하는
    영상 부호화 방법.
  11. 제9항에 있어서,
    상기 시그널링을 처리하는 단계는,
    상기 부호화 트리 유닛으로부터 상기 최대 부호화 유닛 크기로 분할됨에 따른 분할 정보의 처리를 스킵하는 단계를 포함하는
  12. 영상 부호화 장치에 있어서,
    부호화 대상 픽처를 획득하고, 상기 픽처를 미리 설정된 크기의 부호화 트리 유닛으로 분할하는 픽처 분할부를 포함하고,
    상기 픽처 분할부는 상기 부호화 트리 유닛으로부터 분할되는 부호화 유닛의 최대 부호화 유닛 크기를 상기 부호화 트리 유닛의 크기와 비-의존적으로 결정하며, 상기 최대 부호화 유닛 크기에 대한 시그널링을 처리하는
    영상 부호화 방법.
PCT/KR2018/002416 2017-03-31 2018-02-27 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 WO2018182184A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202311095172.7A CN116962703A (zh) 2017-03-31 2018-02-27 图像编解码方法及其装置
US16/493,902 US20200029082A1 (en) 2017-03-31 2018-02-27 Image processing method for performing processing of encoding tree unit and encoding unit, image decoding and encoding method using same, and device thereof
CN202311101895.3A CN116962705A (zh) 2017-03-31 2018-02-27 图像编解码方法及其装置
CN202311094962.3A CN116962702A (zh) 2017-03-31 2018-02-27 图像编解码方法及其装置
CN202311100854.2A CN116962704A (zh) 2017-03-31 2018-02-27 图像编解码方法及其装置
CN201880023397.2A CN110495173B (zh) 2017-03-31 2018-02-27 用于执行编码树单元和编码单元的处理的图像处理方法、使用该方法的图像解码和编码方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0042269 2017-03-31
KR1020170042269A KR102354628B1 (ko) 2017-03-31 2017-03-31 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2018182184A1 true WO2018182184A1 (ko) 2018-10-04

Family

ID=63677856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002416 WO2018182184A1 (ko) 2017-03-31 2018-02-27 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치

Country Status (4)

Country Link
US (1) US20200029082A1 (ko)
KR (4) KR102354628B1 (ko)
CN (5) CN116962702A (ko)
WO (1) WO2018182184A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106124A1 (ko) * 2018-11-23 2020-05-28 가온미디어 주식회사 효율적 블록 분할을 처리하는 영상 복호화 및 부호화 방법
WO2020122571A1 (ko) * 2018-12-11 2020-06-18 가온미디어 주식회사 움직임 예측을 사용하는 영상 복호화 및 부호화 방법
US20230053544A1 (en) * 2020-01-08 2023-02-23 Apple Inc. In-tree geometry quantization of point clouds

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102354628B1 (ko) * 2017-03-31 2022-01-25 한국전자통신연구원 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치
KR20210022510A (ko) 2019-08-20 2021-03-03 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
US20220368899A1 (en) * 2019-10-07 2022-11-17 Sk Telecom Co., Ltd. Method for splitting picture and decoding apparatus
TWI743919B (zh) * 2020-08-03 2021-10-21 緯創資通股份有限公司 視訊處理裝置及視訊串流的處理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017719A (ko) * 2009-08-14 2011-02-22 삼성전자주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR20130086334A (ko) * 2010-10-04 2013-08-01 한국전자통신연구원 쿼드 트리를 이용한 영상 부호화 방법 및 컴퓨터로 판독 가능한 저장매체
KR20140098032A (ko) * 2010-06-07 2014-08-07 (주)휴맥스 고해상도 영상의 부호화/복호화 방법 및 이를 수행하는 장치
KR20140127385A (ko) * 2013-04-22 2014-11-04 한국전자통신연구원 부호화 유닛 분할 결정 방법
KR20160040977A (ko) * 2014-12-08 2016-04-15 성균관대학교산학협력단 영상 압축을 위한 변환생략 여부를 지시하는 방법 및 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8494290B2 (en) * 2011-05-05 2013-07-23 Mitsubishi Electric Research Laboratories, Inc. Method for coding pictures using hierarchical transform units
US20150131713A1 (en) * 2012-04-16 2015-05-14 Samsung Electronics Co. Ltd. Video coding method and device using high-speed edge detection, and related video decoding method and device
KR20140043015A (ko) * 2012-09-28 2014-04-08 연세대학교 산학협력단 영상 부호화 방법 및 장치
EP2966866A4 (en) * 2013-04-05 2016-10-26 Samsung Electronics Co Ltd VIDEO CODING METHOD AND DEVICE THEREFOR, AND VIDEO CODING METHOD AND DEVICE THEREFOR
US20150063455A1 (en) * 2013-09-02 2015-03-05 Humax Holdings Co., Ltd. Methods and apparatuses for predicting depth quadtree in three-dimensional video
US9936201B2 (en) * 2015-01-27 2018-04-03 Qualcomm Incorporated Contexts for large coding tree units
CN105992000B (zh) * 2015-03-06 2019-03-22 扬智科技股份有限公司 影像流的处理方法及其影像处理装置
CN113794879B (zh) * 2015-05-12 2023-04-18 三星电子株式会社 视频编码方法、视频解码方法以及计算机可读介质
WO2017008263A1 (en) * 2015-07-15 2017-01-19 Mediatek Singapore Pte. Ltd. Conditional binary tree block partitioning structure
CN105141957B (zh) * 2015-07-31 2019-03-15 广东中星电子有限公司 图像和视频数据编解码的方法和设备
WO2018123312A1 (ja) * 2016-12-26 2018-07-05 日本電気株式会社 映像符号化方法、映像復号方法、映像符号化装置、映像復号装置及びプログラム
JPWO2018123316A1 (ja) * 2016-12-26 2019-10-31 日本電気株式会社 映像符号化方法、映像復号方法、映像符号化装置、映像復号装置及びプログラム
KR102354628B1 (ko) 2017-03-31 2022-01-25 한국전자통신연구원 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017719A (ko) * 2009-08-14 2011-02-22 삼성전자주식회사 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR20140098032A (ko) * 2010-06-07 2014-08-07 (주)휴맥스 고해상도 영상의 부호화/복호화 방법 및 이를 수행하는 장치
KR20130086334A (ko) * 2010-10-04 2013-08-01 한국전자통신연구원 쿼드 트리를 이용한 영상 부호화 방법 및 컴퓨터로 판독 가능한 저장매체
KR20140127385A (ko) * 2013-04-22 2014-11-04 한국전자통신연구원 부호화 유닛 분할 결정 방법
KR20160040977A (ko) * 2014-12-08 2016-04-15 성균관대학교산학협력단 영상 압축을 위한 변환생략 여부를 지시하는 방법 및 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106124A1 (ko) * 2018-11-23 2020-05-28 가온미디어 주식회사 효율적 블록 분할을 처리하는 영상 복호화 및 부호화 방법
WO2020122571A1 (ko) * 2018-12-11 2020-06-18 가온미디어 주식회사 움직임 예측을 사용하는 영상 복호화 및 부호화 방법
US20230053544A1 (en) * 2020-01-08 2023-02-23 Apple Inc. In-tree geometry quantization of point clouds
US11869223B2 (en) * 2020-01-08 2024-01-09 Apple Inc. In-tree geometry quantization of point clouds

Also Published As

Publication number Publication date
KR102354628B1 (ko) 2022-01-25
KR20180111377A (ko) 2018-10-11
CN110495173A (zh) 2019-11-22
CN116962702A (zh) 2023-10-27
KR20220012397A (ko) 2022-02-03
CN116962705A (zh) 2023-10-27
CN110495173B (zh) 2023-09-15
CN116962704A (zh) 2023-10-27
KR20240072982A (ko) 2024-05-24
KR102668462B1 (ko) 2024-05-24
CN116962703A (zh) 2023-10-27
KR20230109606A (ko) 2023-07-20
US20200029082A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2017204427A1 (ko) 영상 처리 방법, 그를 이용한 영상 복호화 및 부호화 방법
WO2018070809A1 (ko) 영상 처리 방법, 그를 이용한 영상 복호화 및 부호화 방법
WO2018070790A1 (ko) 영상의 부호화/복호화 방법 및 장치
WO2018008906A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018056703A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018106047A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018026118A1 (ko) 영상 부호화/복호화 방법
WO2018066927A1 (ko) 인터 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018066959A1 (ko) 비디오 신호 처리 방법 및 장치
WO2016200100A1 (ko) 적응적 가중치 예측을 위한 신택스 시그널링을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
WO2018182184A1 (ko) 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치
WO2018008905A1 (ko) 비디오 신호 처리 방법 및 장치
WO2015122549A1 (ko) 동영상 처리 방법 및 장치
WO2014171713A1 (ko) 인트라 예측을 이용한 비디오 부호화/복호화 방법 및 장치
WO2011049396A2 (en) Method and apparatus for encoding video and method and apparatus for decoding video, based on hierarchical structure of coding unit
WO2018236028A1 (ko) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2011087292A2 (en) Method and apparatus for encoding video and method and apparatus for decoding video by considering skip and split order
WO2020096425A1 (ko) 영상 신호 부호화/복호화 방법 및 이를 위한 장치
WO2017086738A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2018044089A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018066958A1 (ko) 비디오 신호 처리 방법 및 장치
WO2016159610A1 (ko) 비디오 신호 처리 방법 및 장치
WO2020004979A1 (ko) 영상 부호화/복호화 방법 및 장치
WO2021071183A1 (ko) 현재블록의 변환계수들을 역변환하는 방법 및 장치
WO2019235891A1 (ko) 비디오 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775376

Country of ref document: EP

Kind code of ref document: A1