WO2018181708A1 - Module - Google Patents

Module Download PDF

Info

Publication number
WO2018181708A1
WO2018181708A1 PCT/JP2018/013234 JP2018013234W WO2018181708A1 WO 2018181708 A1 WO2018181708 A1 WO 2018181708A1 JP 2018013234 W JP2018013234 W JP 2018013234W WO 2018181708 A1 WO2018181708 A1 WO 2018181708A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
wiring board
heat
module
resin layer
Prior art date
Application number
PCT/JP2018/013234
Other languages
French (fr)
Japanese (ja)
Inventor
喜孝 松川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019510121A priority Critical patent/JP6911917B2/en
Publication of WO2018181708A1 publication Critical patent/WO2018181708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present invention relates to a module including a heat dissipation member.
  • modules mounted on portable terminal devices have a plurality of components including an IC mounted on a wiring board and the components are sealed with resin.
  • heat may be generated during use due to heat generated from the mounted components, and problems such as changes in the characteristics of the mounted components and malfunctions may occur.
  • a module having a heat dissipation mechanism has been proposed.
  • a semiconductor element 102 that is a heat generating component and a plurality of chip components 103 such as chip capacitors are mounted on a wiring board 101, and these mountings are performed.
  • Components semiconductor element 102 and a plurality of chip components 103 are sealed in sealing resin layer 104.
  • the upper surface 104 a of the sealing resin layer 104 is covered with a heat radiating conductor layer 105, and the upper surface 102 a of the semiconductor element 102 and the conductor layer 105 are connected by a plurality of conductive posts 106.
  • the semiconductor element 102 is mounted face-down as in the conventional module 100, since the heat generation area is the lower surface 102b on which the circuit is formed, the conductive post 106 is provided on the upper surface 102a away from the heat generation area. In the configuration of connecting and radiating heat, there is a possibility that heat radiation is not sufficiently performed.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a module that can efficiently dissipate heat generated from a mounted component.
  • a module of the present invention includes a wiring board, a component mounted on the main surface of the wiring board, a heat dissipation member having a portion in contact with the component, and the main board of the wiring board.
  • a seal that seals the component and the heat dissipating member.
  • the seal includes a contact surface that contacts the surface, a facing surface that faces the contact surface, and a side surface that connects edges of the contact surface and the facing surface.
  • a first resin surface disposed opposite to the main surface of the wiring board; a second surface opposed to the first surface; the first surface and the second surface.
  • the heat radiation member is in contact with at least the side surface of the component.
  • the heat dissipating member since the heat dissipating member is in contact with the part close to the heat generation region of the part, the heat generated from the part can be efficiently dissipated.
  • the heat dissipation member may have a portion exposed from the facing surface of the sealing resin layer. According to this configuration, heat from the component can be radiated from the facing surface side of the sealing resin layer.
  • a shield film that covers the facing surface and the side surface of the sealing resin layer may be further provided, and the heat dissipation member may be connected to the shield film.
  • the heat generated from the components can be radiated from the shield film, the heat radiation characteristics of the module can be improved.
  • the heat radiating member and the shield film may both be made of a conductive material. According to this configuration, the heat dissipation characteristics of the module can be further improved.
  • the heat dissipation member may have a portion exposed from the contact surface of the sealing resin layer.
  • the heat dissipation member may be in contact with an electrode formed on the main surface of the wiring board, and the electrode may be connected to a ground electrode formed on the wiring board.
  • the heat dissipation member is connected to the ground electrode formed with a relatively large area, the heat dissipation characteristics of the heat dissipation member are improved.
  • the ground electrode is connected to a mother board on which the module is mounted. Therefore, the heat generated from the component can be released to the mother board via the ground electrode. Thereby, more efficient heat dissipation of the heat generated from the components can be achieved.
  • the shield film and the ground electrode are connected by a heat radiating member, the heat radiating member can be used as a conductor for grounding the shield film.
  • the heat radiating member may have a portion in contact with the second surface of the component. According to this structure, since the contact area of a heat radiating member and components increases, the heat radiating characteristic by a heat radiating member can be improved.
  • the heat dissipating member includes a plate-shaped portion that contacts the second surface of the component, and a surface of the plate-shaped portion that contacts the second surface of the component.
  • a plurality of legs extending in a direction, and the plurality of legs may be in contact with the side surface of the component.
  • the heat dissipation path to the wiring board side can be formed by the heat dissipation member. Further, since the component is not sealed with the heat radiating member, the sealing performance of the component by the sealing resin layer is improved.
  • the heat dissipating member since the heat dissipating member is in contact with the part close to the heat generating region of the part, the heat generated from the part can be efficiently dissipated.
  • FIG. 2 is a plan view of the module of FIG. 1 with a shield film removed. It is a figure for demonstrating the manufacturing method of the module of FIG. It is a figure which shows the modification of the heat radiating member of FIG. It is sectional drawing of the module concerning 2nd Embodiment of this invention. It is sectional drawing of the module concerning 3rd Embodiment of this invention. It is sectional drawing of the module concerning 4th Embodiment of this invention. It is sectional drawing of the module concerning 5th Embodiment of this invention. It is a perspective view of the heat radiating member of FIG. It is sectional drawing of the module concerning 6th Embodiment of this invention. It is sectional drawing of the conventional module.
  • FIGS. 1 is a cross-sectional view of the module 1a
  • FIG. 2 is a plan view of the module 1a with the shield film 6 removed
  • FIG. 3 is a view for explaining a method of manufacturing the module 1a. (F) shows each process.
  • a module 1a includes a wiring board 2 and a plurality of components 3a mounted on the upper surface 2a of the wiring board 2 (corresponding to the “main surface of the wiring board” of the present invention).
  • 3b the sealing resin layer 4 laminated on the upper surface 2a of the wiring substrate 2, the upper surface 4a and the side surface 4c of the sealing resin layer 4, and the shielding film 6 covering the side surface 2c of the wiring substrate 2,
  • it is mounted on a mother substrate of an electronic device using a high-frequency signal.
  • the wiring board 2 is formed by laminating a plurality of insulating layers made of, for example, a low-temperature co-fired ceramic or glass epoxy resin.
  • a mounting electrode 7a for mounting the components 3a and 3b and a surface layer electrode 7b (corresponding to an “electrode” in the present invention) connected to the heat radiating member 5a are formed on the upper surface 2a of the wiring board 2, a mounting electrode 7a for mounting the components 3a and 3b and a surface layer electrode 7b (corresponding to an “electrode” in the present invention) connected to the heat radiating member 5a are formed.
  • the surface layer electrode 7b is positioned so as to overlap the heat radiating member 5a when viewed from a direction perpendicular to the upper surface 2a of the wiring board 2, and has the same shape as the heat radiating member 5a and has a rectangular outline and surrounds the component 3a. It is formed into a shape.
  • a plurality of external electrodes (not shown) for external connection are formed on the lower surface 2 b of the wiring board 2.
  • Various internal wiring electrodes 8 are formed between adjacent insulating layers, and a plurality of via conductors for connecting the internal wiring electrodes 8 formed in different insulating layers to each other inside the wiring board 2. (Not shown) is formed.
  • the mounting electrode 7a, the surface layer electrode 7b, the external electrode, and the internal wiring electrode 8 are all made of a metal generally adopted as a wiring electrode such as Cu, Ag, or Al. Each via conductor is formed of a metal such as Ag or Cu. Each mounting electrode 7a, surface layer electrode 7b, and external electrode may be plated with Ni / Au.
  • the components 3a and 3b are composed of semiconductor elements formed of a semiconductor such as Si or GaAs, and chip components such as a chip inductor, a chip capacitor, and a chip resistor.
  • the wiring board 2 is formed by a general surface mounting technique such as solder bonding.
  • the component 3a (corresponding to the “component” of the present invention) surrounded by the heat radiating member 5a is constituted by a semiconductor element which is a heat-generating component, and the component 3b is formed by a chip capacitor.
  • the component 3a has a circuit formed on the lower surface 3a2 (corresponding to the “first surface of the component” of the present invention) and is flip-chip mounted face down.
  • the sealing resin layer 4 is laminated on the wiring board 2 so as to cover the components 3a and 3b and the heat dissipation member 5a.
  • the sealing resin layer 4 can be formed of a resin that is generally employed as a sealing resin such as an epoxy resin.
  • the upper surface 4a of the sealing resin layer 4 corresponds to the “opposing surface of the sealing resin layer” of the present invention, and the lower surface 4b corresponds to the “abutting surface of the sealing resin layer” of the present invention.
  • the heat dissipating member 5a is formed of, for example, a conductive paste mainly composed of Ag or Cu, and when viewed from a direction perpendicular to the upper surface 2a of the wiring board 2, the component 3a formed of a semiconductor element. Is disposed in the sealing resin layer 4 so as to surround the. Specifically, the heat dissipation member 5a is formed in a rectangular tube shape, and the inner side surface 5a1 is in contact with all four side surfaces 3a3 of the component 3a. Further, the upper end of the heat radiation member 5 a in the thickness direction of the sealing resin layer 4 is exposed from the upper surface 4 a of the sealing resin layer 4 and is connected to the shield film 6.
  • the lower end of the heat radiation member 5a in the thickness direction of the sealing resin layer 4 is exposed from the lower surface 4b of the sealing resin layer 4 and connected to the surface layer electrode 7b.
  • the surface layer electrode 7b is connected to an internal wiring electrode 8 (ground electrode (not shown)) formed on the wiring substrate 2, and the heat radiation member 5a is connected to the surface layer electrode 7b. Grounding is possible.
  • the shield film 6 can be formed, for example, in a multilayer structure having an adhesion film, a conductive film laminated on the adhesion film, and a protective film laminated on the conductive film.
  • the adhesion film is provided to increase the adhesion strength between the conductive film and the sealing resin layer 4 and can be formed of a metal such as SUS, for example.
  • the conductive film is a layer that bears the substantial shielding function of the shield film 6 and can be formed of, for example, any one of Cu, Ag, and Al.
  • the protective film is provided to prevent the conductive film from being corroded or scratched, and can be formed of, for example, SUS.
  • solder paste application method examples include a printing method using a metal mask, a dispenser method, and the like.
  • the components 3a and 3b are mounted at predetermined positions on the upper surface 2a of the wiring board 2 by a component mounting apparatus such as a mounter, and then soldered in a reflow furnace. After soldering, it is preferable to perform flux cleaning.
  • a sealing resin layer 4 is formed on the upper surface 2 a of the wiring board 2.
  • Examples of the method for forming the sealing resin layer 4 include a dispensing method, a printing method, and a compression mold method.
  • a groove 9 for disposing the heat radiating member 5 a is formed in the sealing resin layer 4.
  • the groove 9 is formed so that the side surface 3a3 of the component 3a is exposed from the sealing resin layer 4.
  • Examples of the groove forming method include laser processing, router processing, and dicing.
  • the groove 9 is filled with a conductive paste mainly composed of Ag or Cu, and cured to form the heat radiating member 5a.
  • a conductive paste mainly composed of Ag or Cu is filled with a conductive paste mainly composed of Ag or Cu, and cured to form the heat radiating member 5a.
  • the shield film 6 covering the upper surface 4a and the side surface 4c of the sealing resin layer 4 and the side surface 2c of the wiring board 2 is formed, and the module 1a is completed.
  • the shield film 6 can be obtained by, for example, forming an adhesion film, a conductive film, and a protective film in this order by sputtering or vacuum deposition, respectively.
  • the heat radiating member 5a is in contact with the side surface 3a3 close to the lower surface 3a2 that is the heat generation region of the component 3a, the upper surface 3a1 of the component 3a (the “second surface of the component” of the present invention).
  • the heat generated from the component 3a can be efficiently radiated as compared with the configuration in which the heat radiating member is in contact with Further, since the entire surface of the side surface 3a3 of the component 3a is in contact with the heat radiating member 5a, heat can be radiated more efficiently.
  • the heat radiating member 5 a is connected to the shield film 6, heat generated from the component 3 a is transmitted to the shield film 6 and can be radiated to the outside air through the shield film 6. Further, since the heat dissipating member 5a is also connected to the surface layer electrode 7b formed on the wiring board 2, the heat generated from the component 3a can be dissipated from the wiring board 2 side having many conductors such as the internal wiring electrode 8. Can do. In addition, when heat is radiated to the mother substrate side on which the module 1a is mounted, the heat radiation path is shortened, so that efficient heat radiation is possible.
  • the internal wiring electrode 8 (ground electrode) of the wiring board 2 and the shield film 6 are connected via the heat radiating member 5a.
  • the connection resistance between the shield film 6 and the internal wiring electrode 8 can be reduced as compared with the configuration in which the internal wiring electrode 8 (ground electrode) is exposed from the side surface 2 c of the wiring substrate 2 and connected to the shield film 6.
  • the heat radiating member 5a can be used as a shield for the component 3a, and the shielding characteristics for the component 3a are improved.
  • the heat radiating member 5a is formed in a rectangular tube shape, and the entire surface of the four side surfaces 3a3 of the component 3a is in contact with the heat radiating member 5a.
  • the structure which contacts may be sufficient.
  • two plate-like heat radiating members 5b may be formed so as to contact only two opposing side surfaces 3a3 among the four side surfaces 3a3 of the component 3a.
  • a plurality of columnar heat radiating members 5c are erected on the wiring board 2 so as to surround the component 3a, and a part of the peripheral side surface of each heat radiating member 5c is part 3a. It may be in contact with the side surface 3a3.
  • FIGS. 4A and 4B are diagrams showing modifications of the heat radiating member, and correspond to FIG.
  • FIG. 5 is a cross-sectional view of the module 1b.
  • the module 1b according to this embodiment differs from the module 1a according to the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the heat dissipating member 5d of this embodiment has a portion 5d1 that abuts on the upper surface 3a1 of the component 3a (hereinafter also referred to as the upper surface abutting portion 5d1) in addition to the configuration of the heat dissipating member 5a of the first embodiment.
  • a conductive paste is applied to the upper surface 3a1 of the component 3a to form the upper surface contact portion 5d1, and after forming the sealing resin layer 4 in this state,
  • the remaining part of the heat radiating member 5d is formed by the same method as the method of forming the heat radiating member 5a of the first embodiment.
  • FIG. 6 is a cross-sectional view of the module 1c.
  • the module 1c according to this embodiment differs from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the heat dissipating member 5e of this embodiment is formed so that the upper end is substantially the same height as the upper surface 3a1 of the component 3a, and the heat dissipating member 5e is not exposed from the upper surface 4a of the sealing resin layer 4.
  • a heat dissipation member 5e can be formed, for example, by forming the sealing resin layer 4 in two stages. Specifically, after mounting the components 3a and 3b, the components 3a and 3b are sealed with an epoxy resin (first-stage sealing resin layer), and then the upper surface of the sealing resin layer is polished or ground. The upper surface 3a1 of 3a is exposed.
  • a groove is formed so that the four side surfaces 3a3 of the component 3a are exposed, and the heat dissipation member 5e is filled with a conductive paste in the groove.
  • the sealing resin layer 4 is completed by laminating the sealing resin layer of the second stage on the sealing resin layer of the first stage.
  • the heat generated from the component 3a can be efficiently radiated to the wiring board 2 side.
  • FIG. 7 is a cross-sectional view of the module 1d.
  • the module 1d according to this embodiment is different from the module 1a according to the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the heat dissipating member 5f of this embodiment is different from the heat dissipating member 5a of the first embodiment in that the lower end is not exposed from the lower surface 4b of the sealing resin layer 4.
  • the heat radiating member 5f is formed in substantially the same manner as the heat radiating member 5a of the first embodiment, but the groove 9 (see FIG. 3) filled with the conductive paste reaches the lower surface 3a2 of the component 3a. 7b is formed with a depth not exposed.
  • the heat generated from the component 3a can be efficiently radiated to the outside air through the shield film 6.
  • FIGS. 8 is a cross-sectional view of the module 1e
  • FIG. 9 is a perspective view of the heat dissipation member 5g.
  • the module 1e according to this embodiment is different from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the heat radiating member 5g of this embodiment includes a plate-like portion 5g1 (hereinafter referred to as a plate-like portion 5g1) that contacts the upper surface 3a1 of the component 3a, and a component of the plate-like portion 5g1. And a plurality of (four in this embodiment) leg portions 5g2 extending in the direction of the upper surface 2a of the wiring board 2 from the contact surface of the 3a with the upper surface 3a1.
  • the plate-like portion 5g1 is formed in a rectangular shape, and leg portions 5g2 are arranged at the four corners of the plate-like portion 5g1, and the tip portions of the leg portions 5g2 are connected to the surface layer electrodes 7b of the wiring board 2 by soldering.
  • the plate-like portion 5g1 is in contact with the upper surface 3a1 of the component 3a, and the four leg portions 5g2 are in contact with the side surface 3a3 of the component 3a, so that the heat radiating member 5g is disposed so as to cover the component 3a.
  • the heat radiating member 5g can be formed, for example, by bending a plate-shaped metal plate.
  • the heat radiation member 5g can form a heat radiation path for radiating the heat generated from the component 3a to the wiring board 2 side. Moreover, since the heat radiating member 5g is shaped to cover the component 3a, there is a gap between the leg portions 5g2, so even if the sealing resin layer 4 is formed after the heat radiating member 5g is mounted on the wiring board 2, Since the resin of the sealing resin layer 4 can be easily filled between the lower surface 3a2 of the component 3a and the upper surface 2a of the wiring board 2, the sealing performance of the component 3a is improved.
  • FIG. 10 is a cross-sectional view of the module 1f.
  • the module 1f according to this embodiment is different from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the arrangement of the component 3a and the heat dissipating member 5a is different as shown in FIG. It is. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
  • the component 3 a is disposed near the periphery of the upper surface 2 a of the wiring board 2, and a part of the outer surface 5 a 2 of the heat radiating member 5 a is exposed from the side surface 4 c of the sealing resin layer 4 and contacts the shield film 6. is doing.
  • the number of insulating layers and wiring layers constituting the wiring board 2 can be changed as appropriate.
  • the present invention can be applied to various modules including a sealing resin layer that covers a component mounted on a wiring board and a heat dissipation member that dissipates heat generated from the component.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a module which is capable of efficiently dissipating heat that is generated by a mounted component. A module 1a according to the present invention is provided with: a wiring board 2; a component 3a which is mounted on an upper surface 2a of the wiring board 2; a heat dissipation member 5a having a portion that is in contact with the component 3a; and a sealing resin layer 4 which is laminated on the upper surface 2a of the wiring board 2 so as to seal the component 3a and the heat dissipation member 5a. Incidentally, the heat dissipation member 5a is formed into a square tube; and an inner lateral surface 5a1 is in contact with a lateral surface 3a3 of the component 3a. In addition, the upper end of the heat dissipation member 5a is exposed from an upper surface 4a of the sealing resin layer 4 and is connected to a shield film 6, while the lower end is connected to a surface layer electrode 7b of the wiring board 2.

Description

モジュールmodule
 本発明は、放熱部材を備えるモジュールに関する。 The present invention relates to a module including a heat dissipation member.
 携帯端末装置などに搭載されるモジュールには、配線基板にICを含む複数の部品が実装され、該部品が樹脂で封止されたものがある。この種のモジュールでは、実装部品などからの発熱により使用時に高温となる場合があり、実装部品の特性が変化したり、誤動作が生じたりするなどの不具合が生じる場合がある。そこで、従来、放熱機構を備えたモジュールが提案されている。例えば、図11に示すように、特許文献1に記載のモジュール100では、配線基板101に、発熱部品である半導体素子102と、チップコンデンサなどの複数のチップ部品103とが実装され、これらの実装部品(半導体素子102、複数のチップ部品103)が封止樹脂層104に封止される。また、封止樹脂層104の上面104aは、放熱用の導体層105で被覆され、半導体素子102の上面102aと導体層105とが複数の導電性ポスト106で接続されている。 Some modules mounted on portable terminal devices have a plurality of components including an IC mounted on a wiring board and the components are sealed with resin. In this type of module, heat may be generated during use due to heat generated from the mounted components, and problems such as changes in the characteristics of the mounted components and malfunctions may occur. Thus, conventionally, a module having a heat dissipation mechanism has been proposed. For example, as shown in FIG. 11, in the module 100 described in Patent Document 1, a semiconductor element 102 that is a heat generating component and a plurality of chip components 103 such as chip capacitors are mounted on a wiring board 101, and these mountings are performed. Components (semiconductor element 102 and a plurality of chip components 103) are sealed in sealing resin layer 104. The upper surface 104 a of the sealing resin layer 104 is covered with a heat radiating conductor layer 105, and the upper surface 102 a of the semiconductor element 102 and the conductor layer 105 are connected by a plurality of conductive posts 106.
特許第5195903号公報(段落0053~0055、図11等参照)Japanese Patent No. 5195903 (see paragraphs 0053 to 0055, FIG. 11, etc.)
 しかしながら、従来のモジュール100のように、半導体素子102がフェイスダウンで実装された場合は、発熱領域は回路が形成された下面102bであるため、発熱領域から離れた上面102aに導電性ポスト106を接続させて放熱する構成では、放熱が十分に行われないおそれがある。 However, when the semiconductor element 102 is mounted face-down as in the conventional module 100, since the heat generation area is the lower surface 102b on which the circuit is formed, the conductive post 106 is provided on the upper surface 102a away from the heat generation area. In the configuration of connecting and radiating heat, there is a possibility that heat radiation is not sufficiently performed.
 本発明は、上記した課題に鑑みてなされたものであり、実装部品から発熱した熱を効率よく放熱することができるモジュールを提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a module that can efficiently dissipate heat generated from a mounted component.
 上記した目的を達成するために、本発明のモジュールは、配線基板と、前記配線基板の主面に実装された部品と、前記部品と接触する部分を有する放熱部材と、前記配線基板の前記主面に当接する当接面と、該当接面に対向する対向面と、前記当接面と前記対向面の端縁同士を繋ぐ側面とを有し、前記部品および前記放熱部材を封止する封止樹脂層とを備え、前記部品は、前記配線基板の主面に対向して配置される第1面と、該第1面に対向する第2面と、前記第1面と前記第2面の端縁同士を繋ぐ側面とを有し、前記放熱部材は、少なくとも前記部品の前記側面に接触していることを特徴としている。 In order to achieve the above object, a module of the present invention includes a wiring board, a component mounted on the main surface of the wiring board, a heat dissipation member having a portion in contact with the component, and the main board of the wiring board. A seal that seals the component and the heat dissipating member. The seal includes a contact surface that contacts the surface, a facing surface that faces the contact surface, and a side surface that connects edges of the contact surface and the facing surface. A first resin surface disposed opposite to the main surface of the wiring board; a second surface opposed to the first surface; the first surface and the second surface. And the heat radiation member is in contact with at least the side surface of the component.
 この構成によれば、放熱部材が、部品の発熱領域に近接した箇所に接しているため、部品から発生した熱を効率よく放熱することができる。 According to this configuration, since the heat dissipating member is in contact with the part close to the heat generation region of the part, the heat generated from the part can be efficiently dissipated.
 また、前記放熱部材は、前記封止樹脂層の前記対向面から露出している部分があってもよい。この構成によれば、部品からの熱を封止樹脂層の対向面側から放熱することができる。 Further, the heat dissipation member may have a portion exposed from the facing surface of the sealing resin layer. According to this configuration, heat from the component can be radiated from the facing surface side of the sealing resin layer.
 また、前記封止樹脂層の前記対向面および前記側面を被覆するシールド膜をさらに備え、前記放熱部材が、前記シールド膜に接続されていてもよい。 Further, a shield film that covers the facing surface and the side surface of the sealing resin layer may be further provided, and the heat dissipation member may be connected to the shield film.
 この構成によれば、部品から発生する熱をシールド膜から放熱することができるため、モジュールの放熱特性を向上させることができる。 According to this configuration, since the heat generated from the components can be radiated from the shield film, the heat radiation characteristics of the module can be improved.
 前記放熱部材および前記シールド膜が、いずれも導電性材料で構成されていてもよい。この構成によれば、モジュールの放熱特性をさらに向上させることができる。 The heat radiating member and the shield film may both be made of a conductive material. According to this configuration, the heat dissipation characteristics of the module can be further improved.
 また、前記放熱部材は、前記封止樹脂層の前記当接面から露出している部分があってもよい。 Further, the heat dissipation member may have a portion exposed from the contact surface of the sealing resin layer.
 この構成によれば、放熱部材と配線基板が接触するため、部品から発生した熱を放熱部材を介して配線基板側に放熱することができる。 According to this configuration, since the heat radiating member and the wiring board are in contact, heat generated from the components can be radiated to the wiring board side through the heat radiating member.
 また、前記放熱部材は、前記配線基板の前記主面に形成された電極に接触し、前記電極が、前記配線基板に形成されたグランド電極に接続されていてもよい。 The heat dissipation member may be in contact with an electrode formed on the main surface of the wiring board, and the electrode may be connected to a ground electrode formed on the wiring board.
 この構成によれば、放熱部材が、比較的大面積で形成されるグランド電極に接続されるため、放熱部材による放熱特性が向上する。また、通常、グランド電極は、モジュールが実装されるマザー基板に接続される。そのため、部品から発生した熱をグランド電極を介してマザー基板に放出できる。これにより、部品から発生した熱のより効率的な放熱が可能となる。また、シールド膜とグランド電極とが放熱部材により接続される場合は、放熱部材をシールド膜を接地するための導体として利用できる。 According to this configuration, since the heat dissipation member is connected to the ground electrode formed with a relatively large area, the heat dissipation characteristics of the heat dissipation member are improved. Further, normally, the ground electrode is connected to a mother board on which the module is mounted. Therefore, the heat generated from the component can be released to the mother board via the ground electrode. Thereby, more efficient heat dissipation of the heat generated from the components can be achieved. Further, when the shield film and the ground electrode are connected by a heat radiating member, the heat radiating member can be used as a conductor for grounding the shield film.
 また、前記放熱部材は、前記部品の前記第2面に接触する部分があってもよい。この構成によれば、放熱部材と部品との接触面積が増えるため、放熱部材による放熱特性を向上させることができる。 Further, the heat radiating member may have a portion in contact with the second surface of the component. According to this structure, since the contact area of a heat radiating member and components increases, the heat radiating characteristic by a heat radiating member can be improved.
 また、前記放熱部材は、前記部品の前記第2面に当接する板状の部分と、前記板状の部分の前記部品の前記第2面に当接する面から、前記配線基板の前記主面の方向に延在する複数の脚部とを有し、前記複数の脚部は、前記部品の前記側面に接触していてもよい。 The heat dissipating member includes a plate-shaped portion that contacts the second surface of the component, and a surface of the plate-shaped portion that contacts the second surface of the component. A plurality of legs extending in a direction, and the plurality of legs may be in contact with the side surface of the component.
 この構成によれば、放熱部材により、配線基板側への放熱経路を形成することができる。また、部品が放熱部材で密封されないため、封止樹脂層による部品の封止性が向上する。 According to this configuration, the heat dissipation path to the wiring board side can be formed by the heat dissipation member. Further, since the component is not sealed with the heat radiating member, the sealing performance of the component by the sealing resin layer is improved.
 本発明によれば、放熱部材が、部品の発熱領域に近接した箇所に接しているため、部品から発生した熱を効率よく放熱することができる。 According to the present invention, since the heat dissipating member is in contact with the part close to the heat generating region of the part, the heat generated from the part can be efficiently dissipated.
本発明の第1実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 1st Embodiment of this invention. 図1のモジュールのシールド膜を除いた状態の平面図である。FIG. 2 is a plan view of the module of FIG. 1 with a shield film removed. 図1のモジュールの製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the module of FIG. 図1の放熱部材の変形例を示す図である。It is a figure which shows the modification of the heat radiating member of FIG. 本発明の第2実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 2nd Embodiment of this invention. 本発明の第3実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 4th Embodiment of this invention. 本発明の第5実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 5th Embodiment of this invention. 図8の放熱部材の斜視図である。It is a perspective view of the heat radiating member of FIG. 本発明の第6実施形態にかかるモジュールの断面図である。It is sectional drawing of the module concerning 6th Embodiment of this invention. 従来のモジュールの断面図である。It is sectional drawing of the conventional module.
 <第1実施形態>
 本発明の第1実施形態にかかるモジュール1aについて、図1~図3を参照して説明する。なお、図1はモジュール1aの断面図、図2はシールド膜6を除いた状態のモジュール1aの平面図、図3はモジュール1aの製造方法を説明するための図であって、(a)~(f)はその各工程を示す。
<First Embodiment>
The module 1a according to the first embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view of the module 1a, FIG. 2 is a plan view of the module 1a with the shield film 6 removed, and FIG. 3 is a view for explaining a method of manufacturing the module 1a. (F) shows each process.
 この実施形態にかかるモジュール1aは、図1に示すように、配線基板2と、該配線基板2の上面2a(本発明の「配線基板の主面」に相当)に実装された複数の部品3a、3bと、配線基板2の上面2aに積層された封止樹脂層4と、封止樹脂層4の上面4aおよび側面4cと、配線基板2の側面2cとを被覆するシールド膜6と、封止樹脂層4内に設けられた放熱部材5aとを備え、例えば、高周波信号が用いられる電子機器のマザー基板等に搭載される。 As shown in FIG. 1, a module 1a according to this embodiment includes a wiring board 2 and a plurality of components 3a mounted on the upper surface 2a of the wiring board 2 (corresponding to the “main surface of the wiring board” of the present invention). 3b, the sealing resin layer 4 laminated on the upper surface 2a of the wiring substrate 2, the upper surface 4a and the side surface 4c of the sealing resin layer 4, and the shielding film 6 covering the side surface 2c of the wiring substrate 2, For example, it is mounted on a mother substrate of an electronic device using a high-frequency signal.
 配線基板2は、例えば、低温同時焼成セラミックやガラスエポキシ樹脂などで形成された複数の絶縁層が積層されて成る。配線基板2の上面2aには、各部品3a,3bの実装用の実装電極7aや、放熱部材5aに接続される表層電極7b(本発明の「電極」に相当)が形成される。表層電極7bは、配線基板2の上面2aに対して垂直な方向から見たときに、放熱部材5aと重なる位置であって、放熱部材5aと略同形状の、輪郭が矩形で部品3aを囲む形状に形成される。配線基板2の下面2bには、外部接続用の複数の外部電極(図示省略)が形成される。また、隣接する絶縁層間それぞれに、各種の内部配線電極8が形成されるとともに、配線基板2の内部には、異なる絶縁層に形成された内部配線電極8同士を接続するための複数のビア導体(図示省略)が形成される。 The wiring board 2 is formed by laminating a plurality of insulating layers made of, for example, a low-temperature co-fired ceramic or glass epoxy resin. On the upper surface 2a of the wiring board 2, a mounting electrode 7a for mounting the components 3a and 3b and a surface layer electrode 7b (corresponding to an “electrode” in the present invention) connected to the heat radiating member 5a are formed. The surface layer electrode 7b is positioned so as to overlap the heat radiating member 5a when viewed from a direction perpendicular to the upper surface 2a of the wiring board 2, and has the same shape as the heat radiating member 5a and has a rectangular outline and surrounds the component 3a. It is formed into a shape. A plurality of external electrodes (not shown) for external connection are formed on the lower surface 2 b of the wiring board 2. Various internal wiring electrodes 8 are formed between adjacent insulating layers, and a plurality of via conductors for connecting the internal wiring electrodes 8 formed in different insulating layers to each other inside the wiring board 2. (Not shown) is formed.
 なお、実装電極7a、表層電極7b、外部電極および内部配線電極8は、いずれもCuやAg、Al等の配線電極として一般的に採用される金属で形成されている。また、各ビア導体は、AgやCu等の金属で形成されている。なお、各実装電極7a、表層電極7b、外部電極には、Ni/Auめっきがそれぞれ施されていてもよい。 The mounting electrode 7a, the surface layer electrode 7b, the external electrode, and the internal wiring electrode 8 are all made of a metal generally adopted as a wiring electrode such as Cu, Ag, or Al. Each via conductor is formed of a metal such as Ag or Cu. Each mounting electrode 7a, surface layer electrode 7b, and external electrode may be plated with Ni / Au.
 部品3a,3bは、SiやGaAs等の半導体で形成された半導体素子や、チップインダクタ、チップコンデンサ、チップ抵抗等のチップ部品で構成され、半田接合などの一般的な表面実装技術により配線基板2に実装される。この実施形態では、放熱部材5aで囲まれた部品3a(本発明の「部品」に相当)は、発熱部品である半導体素子で構成され、部品3bがチップコンデンサで形成されている。なお、部品3aは、下面3a2(本発明の「部品の第1面」に相当)に回路が形成されており、フェイスダウンでフリップチップ実装されている。 The components 3a and 3b are composed of semiconductor elements formed of a semiconductor such as Si or GaAs, and chip components such as a chip inductor, a chip capacitor, and a chip resistor. The wiring board 2 is formed by a general surface mounting technique such as solder bonding. To be implemented. In this embodiment, the component 3a (corresponding to the “component” of the present invention) surrounded by the heat radiating member 5a is constituted by a semiconductor element which is a heat-generating component, and the component 3b is formed by a chip capacitor. The component 3a has a circuit formed on the lower surface 3a2 (corresponding to the “first surface of the component” of the present invention) and is flip-chip mounted face down.
 封止樹脂層4は、各部品3a,3bおよび放熱部材5aを被覆して配線基板2に積層される。封止樹脂層4は、エポキシ樹脂等の封止樹脂として一般的に採用される樹脂で形成することができる。なお、封止樹脂層4の上面4aが、本発明の「封止樹脂層の対向面」に相当し、下面4bが、本発明の「封止樹脂層の当接面」に相当する。 The sealing resin layer 4 is laminated on the wiring board 2 so as to cover the components 3a and 3b and the heat dissipation member 5a. The sealing resin layer 4 can be formed of a resin that is generally employed as a sealing resin such as an epoxy resin. The upper surface 4a of the sealing resin layer 4 corresponds to the “opposing surface of the sealing resin layer” of the present invention, and the lower surface 4b corresponds to the “abutting surface of the sealing resin layer” of the present invention.
 放熱部材5aは、例えば、AgやCuを主成分とする導電性ペーストで形成されており、配線基板2の上面2aに対して垂直な方向から見たときに、半導体素子で構成された部品3aを囲むように封止樹脂層4内に配設される。具体的には、放熱部材5aは、角筒状に形成されており、内側面5a1が部品3aの4つの側面3a3全てに当接している。また、放熱部材5aにおける封止樹脂層4の厚み方向の上端が、封止樹脂層4の上面4aから露出し、シールド膜6に接続される。一方、放熱部材5aにおける封止樹脂層4の厚み方向の下端が、封止樹脂層4の下面4bから露出して、表層電極7bに接続される。なお、表層電極7bは、配線基板2に形成された内部配線電極8(グランド電極(図示省略))に接続されており、放熱部材5aが表層電極7bに接続されることにより、シールド膜6の接地が可能となっている。 The heat dissipating member 5a is formed of, for example, a conductive paste mainly composed of Ag or Cu, and when viewed from a direction perpendicular to the upper surface 2a of the wiring board 2, the component 3a formed of a semiconductor element. Is disposed in the sealing resin layer 4 so as to surround the. Specifically, the heat dissipation member 5a is formed in a rectangular tube shape, and the inner side surface 5a1 is in contact with all four side surfaces 3a3 of the component 3a. Further, the upper end of the heat radiation member 5 a in the thickness direction of the sealing resin layer 4 is exposed from the upper surface 4 a of the sealing resin layer 4 and is connected to the shield film 6. On the other hand, the lower end of the heat radiation member 5a in the thickness direction of the sealing resin layer 4 is exposed from the lower surface 4b of the sealing resin layer 4 and connected to the surface layer electrode 7b. Note that the surface layer electrode 7b is connected to an internal wiring electrode 8 (ground electrode (not shown)) formed on the wiring substrate 2, and the heat radiation member 5a is connected to the surface layer electrode 7b. Grounding is possible.
 シールド膜6は、例えば、密着膜と、密着膜に積層された導電膜と、導電膜に積層された保護膜とを有する多層構造で形成することができる。密着膜は、導電膜と封止樹脂層4との密着強度を高めるために設けられたものであり、例えば、SUSなどの金属で形成することができる。導電膜は、シールド膜6の実質的なシールド機能を担う層であり、例えば、Cu、Ag、Alのうちのいずれかの金属で形成することができる。保護膜は、導電膜が腐食したり、傷が付いたりするのを防止するために設けられたものであり、例えば、SUSで形成することができる。 The shield film 6 can be formed, for example, in a multilayer structure having an adhesion film, a conductive film laminated on the adhesion film, and a protective film laminated on the conductive film. The adhesion film is provided to increase the adhesion strength between the conductive film and the sealing resin layer 4 and can be formed of a metal such as SUS, for example. The conductive film is a layer that bears the substantial shielding function of the shield film 6 and can be formed of, for example, any one of Cu, Ag, and Al. The protective film is provided to prevent the conductive film from being corroded or scratched, and can be formed of, for example, SUS.
 (モジュール1aの製造方法)
 次に、図3を参照して、モジュール1aの製造方法の一例について説明する。
(Manufacturing method of module 1a)
Next, an example of a method for manufacturing the module 1a will be described with reference to FIG.
 まず、図3(a)に示すように、各種内部配線電極8や実装電極7a、表層電極7b、外部電極等が形成された配線基板2を準備し、実装電極7aに半田ペーストを塗布する。半田ペーストの塗布方法としては、例えば、メタルマスクを用いた印刷方式、ディスペンサ方式などがある。 First, as shown in FIG. 3A, a wiring board 2 on which various internal wiring electrodes 8, mounting electrodes 7a, surface layer electrodes 7b, external electrodes and the like are formed is prepared, and solder paste is applied to the mounting electrodes 7a. Examples of the solder paste application method include a printing method using a metal mask, a dispenser method, and the like.
 次に、図3(b)に示すように、マウンターなどの部品搭載装置により、配線基板2の上面2aの所定位置に各部品3a,3bを搭載した後、リフロー炉にて半田接合を行う。半田接合後は、フラックス洗浄を行うのが好ましい。 Next, as shown in FIG. 3B, the components 3a and 3b are mounted at predetermined positions on the upper surface 2a of the wiring board 2 by a component mounting apparatus such as a mounter, and then soldered in a reflow furnace. After soldering, it is preferable to perform flux cleaning.
 次に、図3(c)に示すように、配線基板2の上面2aに封止樹脂層4を形成する。封止樹脂層4の形成方法としては、ディスペンス方式、印刷方式、コンプレッションモールド方式などがある。 Next, as shown in FIG. 3C, a sealing resin layer 4 is formed on the upper surface 2 a of the wiring board 2. Examples of the method for forming the sealing resin layer 4 include a dispensing method, a printing method, and a compression mold method.
 次に、図3(d)に示すように、封止樹脂層4に放熱部材5aを配設するための溝9を形成する。このとき、封止樹脂層4から部品3aの側面3a3が露出するような溝9を形成する。溝の形成方法としては、例えば、レーザ加工、ルータ加工、ダイシングなどがある。 Next, as shown in FIG. 3 (d), a groove 9 for disposing the heat radiating member 5 a is formed in the sealing resin layer 4. At this time, the groove 9 is formed so that the side surface 3a3 of the component 3a is exposed from the sealing resin layer 4. Examples of the groove forming method include laser processing, router processing, and dicing.
 次に、図3(e)に示すように、溝9にAgやCuを主成分とする導電性ペーストを充填し、これを硬化させることにより放熱部材5aを形成する。これにより、放熱部材5aの内側面5a1が部品3aの側面3a3に当接した状態となる。 Next, as shown in FIG. 3 (e), the groove 9 is filled with a conductive paste mainly composed of Ag or Cu, and cured to form the heat radiating member 5a. Thereby, the inner surface 5a1 of the heat radiating member 5a comes into contact with the side surface 3a3 of the component 3a.
 次に、図3(f)に示すように、封止樹脂層4の上面4aおよび側面4c、および、配線基板2の側面2cを被覆するシールド膜6を形成して、モジュール1aが完成する。シールド膜6は、例えば、それぞれスパッタ法や真空蒸着法により、密着膜、導電膜、保護膜の順に成膜することで得ることができる。 Next, as shown in FIG. 3F, the shield film 6 covering the upper surface 4a and the side surface 4c of the sealing resin layer 4 and the side surface 2c of the wiring board 2 is formed, and the module 1a is completed. The shield film 6 can be obtained by, for example, forming an adhesion film, a conductive film, and a protective film in this order by sputtering or vacuum deposition, respectively.
 したがって、上記した実施形態によれば、放熱部材5aが、部品3aの発熱領域である下面3a2に近い側面3a3に接しているため、部品3aの上面3a1(本発明の「部品の第2面」に相当)に放熱部材を接触させる構成と比較して、部品3aから発生した熱を効率よく放熱することができる。また、部品3aの側面3a3の全面が放熱部材5aに接するため、より効率よく放熱することができる。 Therefore, according to the above-described embodiment, since the heat radiating member 5a is in contact with the side surface 3a3 close to the lower surface 3a2 that is the heat generation region of the component 3a, the upper surface 3a1 of the component 3a (the “second surface of the component” of the present invention). The heat generated from the component 3a can be efficiently radiated as compared with the configuration in which the heat radiating member is in contact with Further, since the entire surface of the side surface 3a3 of the component 3a is in contact with the heat radiating member 5a, heat can be radiated more efficiently.
 また、放熱部材5aはシールド膜6に接続されているため、部品3aから発生した熱がシールド膜6に伝わることにより、シールド膜6を介して外気に放熱することができる。また、放熱部材5aは、配線基板2に形成された表層電極7bにも接続されるため、内部配線電極8等の導体が多い配線基板2側からも、部品3aから発生した熱を放熱することができる。また、モジュール1aが実装されるマザー基板側に放熱する場合は、その放熱経路が短くなるため、効率的な放熱が可能になる。 Further, since the heat radiating member 5 a is connected to the shield film 6, heat generated from the component 3 a is transmitted to the shield film 6 and can be radiated to the outside air through the shield film 6. Further, since the heat dissipating member 5a is also connected to the surface layer electrode 7b formed on the wiring board 2, the heat generated from the component 3a can be dissipated from the wiring board 2 side having many conductors such as the internal wiring electrode 8. Can do. In addition, when heat is radiated to the mother substrate side on which the module 1a is mounted, the heat radiation path is shortened, so that efficient heat radiation is possible.
 また、配線基板2の内部配線電極8(グランド電極)とシールド膜6とは、放熱部材5aを介して接続される。この場合、内部配線電極8(グランド電極)を配線基板2の側面2cから露出させてシールド膜6と接続させる構成と比較して、シールド膜6と内部配線電極8との接続抵抗を低くできる。 Further, the internal wiring electrode 8 (ground electrode) of the wiring board 2 and the shield film 6 are connected via the heat radiating member 5a. In this case, the connection resistance between the shield film 6 and the internal wiring electrode 8 can be reduced as compared with the configuration in which the internal wiring electrode 8 (ground electrode) is exposed from the side surface 2 c of the wiring substrate 2 and connected to the shield film 6.
 また、部品3aが放熱部材5aで囲まれるため、放熱部材5aを部品3aのシールドとして利用することができ、部品3aに対するシールド特性が向上する。 In addition, since the component 3a is surrounded by the heat radiating member 5a, the heat radiating member 5a can be used as a shield for the component 3a, and the shielding characteristics for the component 3a are improved.
 (放熱部材の変形例)
 上記した実施形態では、放熱部材5aを角筒状に形成して、部品3aの4つの側面3a3の全面が放熱部材5aに接する場合について説明したが、部品3aの側面3a3の一部が放熱部材に接触する構成であってもよい。例えば、図4(a)に示すように、部品3aの4つの側面3a3のうち、対向する2つの側面3a3のみに接するように、2つの板状の放熱部材5bを形成してもよい。また、図4(b)に示すように、複数の柱状の放熱部材5cを、部品3aを囲むように配線基板2に立設し、各放熱部材5cそれぞれの周側面の一部が、部品3aの側面3a3に接するようにしてもよい。なお、図4(a)および(b)は、それぞれ放熱部材の変形例を示す図であって、図2に対応する図である。
(Modification of heat dissipation member)
In the above-described embodiment, the heat radiating member 5a is formed in a rectangular tube shape, and the entire surface of the four side surfaces 3a3 of the component 3a is in contact with the heat radiating member 5a. The structure which contacts may be sufficient. For example, as shown in FIG. 4A, two plate-like heat radiating members 5b may be formed so as to contact only two opposing side surfaces 3a3 among the four side surfaces 3a3 of the component 3a. Further, as shown in FIG. 4B, a plurality of columnar heat radiating members 5c are erected on the wiring board 2 so as to surround the component 3a, and a part of the peripheral side surface of each heat radiating member 5c is part 3a. It may be in contact with the side surface 3a3. FIGS. 4A and 4B are diagrams showing modifications of the heat radiating member, and correspond to FIG.
 <第2実施形態>
 本発明の第2実施形態にかかるモジュール1bについて、図5を参照して説明する。なお、図5はモジュール1bの断面図である。
Second Embodiment
A module 1b according to the second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of the module 1b.
 この実施形態にかかるモジュール1bが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図5に示すように、放熱部材の構成が異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。 The module 1b according to this embodiment differs from the module 1a according to the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
 この実施形態の放熱部材5dは、第1実施形態の放熱部材5aの構成に加えて、部品3aの上面3a1に当接する部分5d1(以下、上面当接部5d1という場合もある。)を有する。この場合、例えば、各部品3a,3bを実装した後に、部品3aの上面3a1に導電性ペーストを塗布して上面当接部5d1を形成し、この状態で封止樹脂層4を形成した後、第1実施形態の放熱部材5aの形成方法と同じ方法で、放熱部材5dの残りの部分を形成する。 The heat dissipating member 5d of this embodiment has a portion 5d1 that abuts on the upper surface 3a1 of the component 3a (hereinafter also referred to as the upper surface abutting portion 5d1) in addition to the configuration of the heat dissipating member 5a of the first embodiment. In this case, for example, after mounting the respective components 3a and 3b, a conductive paste is applied to the upper surface 3a1 of the component 3a to form the upper surface contact portion 5d1, and after forming the sealing resin layer 4 in this state, The remaining part of the heat radiating member 5d is formed by the same method as the method of forming the heat radiating member 5a of the first embodiment.
 この構成によれば、部品3aは、4つの側面3a3のみならず、上面3a1も放熱部材5dに接することになるため、部品3aから発生した熱の放熱特性がさらに向上する。 According to this configuration, since the component 3a is in contact with the heat radiating member 5d as well as the four side surfaces 3a3, the heat dissipation characteristics of the heat generated from the component 3a are further improved.
 <第3実施形態>
 本発明の第3実施形態にかかるモジュール1cについて、図6を参照して説明する。なお、図6はモジュール1cの断面図である。
<Third Embodiment>
A module 1c according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of the module 1c.
 この実施形態にかかるモジュール1cが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図6に示すように、放熱部材の構成が異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。 The module 1c according to this embodiment differs from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
 この実施形態の放熱部材5eは、上端が部品3aの上面3a1と略同じ高さとなるように形成され、放熱部材5eが封止樹脂層4の上面4aから露出しない。このような放熱部材5eは、例えば、封止樹脂層4を2段階で形成することにより形成することができる。具体的には、各部品3a,3bの実装後にエポキシ樹脂で部品3a,3bを封止した後(1段階目の封止樹脂層)、この封止樹脂層の上面を研磨または研削して部品3aの上面3a1を露出させる。次に、第1実施形態の放熱部材5aの形成方法と同じ要領で、部品3aの4つの側面3a3が露出するように溝を形成し、該溝に導電性ペーストを充填して放熱部材5eを形成する。次に、1段階目の封止樹脂層に2段階目の封止樹脂層を積層して封止樹脂層4が完成する。 The heat dissipating member 5e of this embodiment is formed so that the upper end is substantially the same height as the upper surface 3a1 of the component 3a, and the heat dissipating member 5e is not exposed from the upper surface 4a of the sealing resin layer 4. Such a heat dissipation member 5e can be formed, for example, by forming the sealing resin layer 4 in two stages. Specifically, after mounting the components 3a and 3b, the components 3a and 3b are sealed with an epoxy resin (first-stage sealing resin layer), and then the upper surface of the sealing resin layer is polished or ground. The upper surface 3a1 of 3a is exposed. Next, in the same manner as the method of forming the heat dissipation member 5a of the first embodiment, a groove is formed so that the four side surfaces 3a3 of the component 3a are exposed, and the heat dissipation member 5e is filled with a conductive paste in the groove. Form. Next, the sealing resin layer 4 is completed by laminating the sealing resin layer of the second stage on the sealing resin layer of the first stage.
 この構成によれば、部品3aから発生した熱を、配線基板2側に効率よく放熱することができる。 According to this configuration, the heat generated from the component 3a can be efficiently radiated to the wiring board 2 side.
 <第4実施形態>
 本発明の第4実施形態にかかるモジュール1dについて、図7を参照して説明する。なお、図7はモジュール1dの断面図である。
<Fourth embodiment>
A module 1d according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view of the module 1d.
 この実施形態にかかるモジュール1dが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図7に示すように、放熱部材の構成が異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。 The module 1d according to this embodiment is different from the module 1a according to the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
 この実施形態の放熱部材5fは、下端が封止樹脂層4の下面4bから露出していないところが第1実施形態の放熱部材5aと異なる。この放熱部材5fは、第1実施形態の放熱部材5aと略同じ要領で形成するが、導電性ペーストを充填する溝9(図3参照)を、部品3aの下面3a2に到達するが、表層電極7bは露出しない深さで形成する。 The heat dissipating member 5f of this embodiment is different from the heat dissipating member 5a of the first embodiment in that the lower end is not exposed from the lower surface 4b of the sealing resin layer 4. The heat radiating member 5f is formed in substantially the same manner as the heat radiating member 5a of the first embodiment, but the groove 9 (see FIG. 3) filled with the conductive paste reaches the lower surface 3a2 of the component 3a. 7b is formed with a depth not exposed.
 この構成によれば、部品3aから発生した熱を、シールド膜6を介して外気に効率よく放熱することができる。 According to this configuration, the heat generated from the component 3a can be efficiently radiated to the outside air through the shield film 6.
 <第5実施形態>
 本発明の第5実施形態にかかるモジュール1eについて、図8および図9を参照して説明する。なお、図8はモジュール1eの断面図、図9は放熱部材5gの斜視図である。
<Fifth Embodiment>
A module 1e according to a fifth embodiment of the present invention will be described with reference to FIGS. 8 is a cross-sectional view of the module 1e, and FIG. 9 is a perspective view of the heat dissipation member 5g.
 この実施形態にかかるモジュール1eが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図8に示すように、放熱部材の構成が異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。 The module 1e according to this embodiment is different from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the configuration of the heat dissipating member is different as shown in FIG. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
 この実施形態の放熱部材5gは、図8および図9に示すように、部品3aの上面3a1に当接する板状の部分5g1(以下、板状部5g1という)と、該板状部5g1の部品3aの上面3a1との当接面から配線基板2の上面2aの方向に延在する複数(この実施形態では4つ)の脚部5g2とを有する。板状部5g1は矩形状に形成されており、板状部5g1の四隅それぞれに脚部5g2が配置され、脚部5g2それぞれの先端部が配線基板2の表層電極7bに半田で接続される。そして、板状部5g1が部品3aの上面3a1に当接し、4つの脚部5g2それぞれが部品3aの側面3a3に接することで、放熱部材5gが部品3aを覆うように配設される。なお、放熱部材5gは、例えば、板状の金属板に折り曲げ加工を施すなどして形成することができる。 As shown in FIGS. 8 and 9, the heat radiating member 5g of this embodiment includes a plate-like portion 5g1 (hereinafter referred to as a plate-like portion 5g1) that contacts the upper surface 3a1 of the component 3a, and a component of the plate-like portion 5g1. And a plurality of (four in this embodiment) leg portions 5g2 extending in the direction of the upper surface 2a of the wiring board 2 from the contact surface of the 3a with the upper surface 3a1. The plate-like portion 5g1 is formed in a rectangular shape, and leg portions 5g2 are arranged at the four corners of the plate-like portion 5g1, and the tip portions of the leg portions 5g2 are connected to the surface layer electrodes 7b of the wiring board 2 by soldering. The plate-like portion 5g1 is in contact with the upper surface 3a1 of the component 3a, and the four leg portions 5g2 are in contact with the side surface 3a3 of the component 3a, so that the heat radiating member 5g is disposed so as to cover the component 3a. The heat radiating member 5g can be formed, for example, by bending a plate-shaped metal plate.
 この構成によると、放熱部材5gにより、部品3aから発生した熱を配線基板2側に放熱する放熱経路を形成することができる。また、放熱部材5gは、部品3aを覆う形状でありながら、脚部5g2間には隙間があるため、配線基板2に放熱部材5gを搭載した後で封止樹脂層4を形成しても、部品3aの下面3a2と配線基板2の上面2aとの間に封止樹脂層4の樹脂を容易に充填することができるため、部品3aの封止性が向上する。 According to this configuration, the heat radiation member 5g can form a heat radiation path for radiating the heat generated from the component 3a to the wiring board 2 side. Moreover, since the heat radiating member 5g is shaped to cover the component 3a, there is a gap between the leg portions 5g2, so even if the sealing resin layer 4 is formed after the heat radiating member 5g is mounted on the wiring board 2, Since the resin of the sealing resin layer 4 can be easily filled between the lower surface 3a2 of the component 3a and the upper surface 2a of the wiring board 2, the sealing performance of the component 3a is improved.
 <第6実施形態>
 本発明の第6実施形態にかかるモジュール1fについて、図10を参照して説明する。なお、図10はモジュール1fの断面図である。
<Sixth Embodiment>
A module 1f according to the sixth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a cross-sectional view of the module 1f.
 この実施形態にかかるモジュール1fが、図1~図3を参照して説明した第1実施形態のモジュール1aと異なるところは、図10に示すように、部品3aおよび放熱部材5aの配置が異なることである。その他の構成は、第1実施形態のモジュール1aと同じであるため、同一符号を付すことにより説明を省略する。 The module 1f according to this embodiment is different from the module 1a of the first embodiment described with reference to FIGS. 1 to 3 in that the arrangement of the component 3a and the heat dissipating member 5a is different as shown in FIG. It is. Since other configurations are the same as those of the module 1a of the first embodiment, the description thereof is omitted by attaching the same reference numerals.
 この実施形態では、部品3aが配線基板2の上面2aの周縁近傍に配置され、放熱部材5aの外側面5a2の一部が、封止樹脂層4の側面4cから露出してシールド膜6に接触している。 In this embodiment, the component 3 a is disposed near the periphery of the upper surface 2 a of the wiring board 2, and a part of the outer surface 5 a 2 of the heat radiating member 5 a is exposed from the side surface 4 c of the sealing resin layer 4 and contacts the shield film 6. is doing.
 この構成によれば、放熱部材5aとシールド膜6との接触面積が増えるため、部品3aから発生した熱の放熱特性が向上する。また、シールド膜6と内部配線電極8(グランド電極)との接続抵抗も低くなるため、シールド膜6のシールド特性が向上する。 According to this configuration, since the contact area between the heat radiation member 5a and the shield film 6 is increased, the heat radiation characteristic of the heat generated from the component 3a is improved. Further, since the connection resistance between the shield film 6 and the internal wiring electrode 8 (ground electrode) is lowered, the shield characteristics of the shield film 6 are improved.
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、上記した各実施形態や変形例の構成を組合わせてもよい。 The present invention is not limited to the above-described embodiments, and various modifications other than those described above can be made without departing from the spirit of the invention. For example, you may combine the structure of each above-mentioned embodiment and modification.
 また、配線基板2を構成する絶縁層や配線層の層数は、適宜変更することができる。 Further, the number of insulating layers and wiring layers constituting the wiring board 2 can be changed as appropriate.
 また、本発明は、配線基板に実装された部品を被覆する封止樹脂層と、部品から発生した熱を放熱する放熱部材とを備える種々のモジュールに本発明を適用することができる。 In addition, the present invention can be applied to various modules including a sealing resin layer that covers a component mounted on a wiring board and a heat dissipation member that dissipates heat generated from the component.
 1a~1e  モジュール
 2  配線基板
 2a  配線基板の上面(配線基板の主面)
 2c  配線基板の側面
 3a  部品
 3a1  部品の上面(第2面)
 3a2  部品の下面(第1面)
 3a3  部品の側面
 4  封止樹脂層
 4a  封止樹脂層の上面(対向面)
 4b  封止樹脂層の下面(当接面)
 4c  封止樹脂層の側面
 5a~5g  放熱部材
 6  シールド膜
 7b  表層電極(電極)
 8  内部配線電極(グランド電極)
1a to 1e Module 2 Wiring board 2a Upper surface of wiring board (main surface of wiring board)
2c Side surface of wiring board 3a Component 3a1 Upper surface of component (second surface)
3a2 Lower surface of the part (first surface)
3a3 Side surface of part 4 Sealing resin layer 4a Top surface of sealing resin layer (opposing surface)
4b The lower surface (contact surface) of the sealing resin layer
4c Side surface of the sealing resin layer 5a to 5g Heat radiation member 6 Shield film 7b Surface layer electrode (electrode)
8 Internal wiring electrode (ground electrode)

Claims (8)

  1.  配線基板と、
     前記配線基板の主面に実装された部品と、
     前記部品と接触する部分を有する放熱部材と、
     前記配線基板の前記主面に当接する当接面と、該当接面に対向する対向面と、前記当接面と前記対向面の端縁同士を繋ぐ側面とを有し、前記部品および前記放熱部材を封止する封止樹脂層とを備え、
     前記部品は、前記配線基板の主面に対向して配置される第1面と、該第1面に対向する第2面と、前記第1面と前記第2面の端縁同士を繋ぐ側面とを有し、
     前記放熱部材は、少なくとも前記部品の前記側面に接触していることを特徴とするモジュール。
    A wiring board;
    Components mounted on the main surface of the wiring board;
    A heat dissipating member having a portion in contact with the component;
    A contact surface contacting the main surface of the wiring board; a facing surface facing the contact surface; and a side surface connecting edges of the contact surface and the facing surface. A sealing resin layer for sealing the member,
    The component includes a first surface disposed opposite to the main surface of the wiring board, a second surface opposed to the first surface, and a side surface connecting edges of the first surface and the second surface. And
    The module, wherein the heat dissipating member is in contact with at least the side surface of the component.
  2.  前記放熱部材は、前記封止樹脂層の前記対向面から露出している部分があることを特徴とする請求項1に記載のモジュール。 2. The module according to claim 1, wherein the heat radiating member has a portion exposed from the facing surface of the sealing resin layer.
  3.  前記封止樹脂層の前記対向面および前記側面を被覆するシールド膜をさらに備え、
     前記放熱部材が、前記シールド膜に接続されていることを特徴とする請求項2に記載のモジュール。
    A shield film covering the opposing surface and the side surface of the sealing resin layer;
    The module according to claim 2, wherein the heat dissipation member is connected to the shield film.
  4.  前記放熱部材および前記シールド膜が、いずれも導電性材料で構成されていることを特徴とする請求項3に記載のモジュール。 The module according to claim 3, wherein both the heat radiating member and the shield film are made of a conductive material.
  5.  前記放熱部材は、前記封止樹脂層の前記当接面から露出している部分があることを特徴とする請求項1ないし4のいずれか1項に記載のモジュール。 The module according to any one of claims 1 to 4, wherein the heat dissipation member has a portion exposed from the contact surface of the sealing resin layer.
  6.  前記放熱部材は、前記配線基板の前記主面に形成された電極に接触し、
     前記電極が、前記配線基板に形成されたグランド電極に接続されていることを特徴とする請求項5に記載のモジュール。
    The heat radiating member is in contact with an electrode formed on the main surface of the wiring board,
    The module according to claim 5, wherein the electrode is connected to a ground electrode formed on the wiring board.
  7.  前記放熱部材は、前記部品の前記第2面に接触する部分があることを特徴とする請求項1ないし6のいずれか1項に記載のモジュール。 The module according to any one of claims 1 to 6, wherein the heat radiating member has a portion that contacts the second surface of the component.
  8.  前記放熱部材は、前記部品の前記第2面に当接する板状の部分と、前記板状の部分の前記部品の前記第2面に当接する面から、前記配線基板の前記主面の方向に延在する複数の脚部とを有し、
     前記複数の脚部は、前記部品の前記側面に接触していることを特徴とする請求項1に記載のモジュール。
    The heat dissipating member is arranged in a direction from the plate-shaped portion that contacts the second surface of the component and the surface of the plate-shaped portion that contacts the second surface of the component toward the main surface of the wiring board. A plurality of extending legs,
    The module according to claim 1, wherein the plurality of legs are in contact with the side surface of the component.
PCT/JP2018/013234 2017-03-31 2018-03-29 Module WO2018181708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019510121A JP6911917B2 (en) 2017-03-31 2018-03-29 module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070572 2017-03-31
JP2017070572 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181708A1 true WO2018181708A1 (en) 2018-10-04

Family

ID=63677895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013234 WO2018181708A1 (en) 2017-03-31 2018-03-29 Module

Country Status (2)

Country Link
JP (1) JP6911917B2 (en)
WO (1) WO2018181708A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162614A1 (en) * 2019-02-08 2020-08-13 株式会社村田製作所 Module
JP2021005674A (en) * 2019-06-27 2021-01-14 株式会社村田製作所 Electronic component module, electronic component unit, and manufacturing method of electronic component module
JPWO2021079851A1 (en) * 2019-10-25 2021-04-29
WO2021131776A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Module
WO2021140850A1 (en) * 2020-01-10 2021-07-15 株式会社村田製作所 Module
WO2022050042A1 (en) * 2020-09-03 2022-03-10 株式会社村田製作所 Module
WO2022153789A1 (en) * 2021-01-12 2022-07-21 株式会社村田製作所 Circuit module
EP4225004A1 (en) * 2022-02-03 2023-08-09 Qorvo US, Inc. Compartmentalized shielding of a module utilizing self-shielded sub-modules
WO2024029313A1 (en) * 2022-08-01 2024-02-08 株式会社村田製作所 Module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163494A (en) * 1997-11-28 1999-06-18 Toshiba Corp Mounting method of surface-mounting device, mounting structure of bga package and electronic device
US20150382448A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Thermal solutions for system-in-package assemblies in portable electronic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163494A (en) * 1997-11-28 1999-06-18 Toshiba Corp Mounting method of surface-mounting device, mounting structure of bga package and electronic device
US20150382448A1 (en) * 2014-06-26 2015-12-31 Apple Inc. Thermal solutions for system-in-package assemblies in portable electronic devices

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162614A1 (en) * 2019-02-08 2020-08-13 株式会社村田製作所 Module
US11317541B2 (en) 2019-06-27 2022-04-26 Murata Manufacturing Co., Ltd. Electronic component module, electronic component unit, and method for manufacturing electronic component module
JP2021005674A (en) * 2019-06-27 2021-01-14 株式会社村田製作所 Electronic component module, electronic component unit, and manufacturing method of electronic component module
JP7124795B2 (en) 2019-06-27 2022-08-24 株式会社村田製作所 Electronic component module, electronic component unit, and electronic component module manufacturing method
WO2021079851A1 (en) * 2019-10-25 2021-04-29 株式会社村田製作所 Circuit module and method for producing same
JPWO2021079851A1 (en) * 2019-10-25 2021-04-29
JP7302669B2 (en) 2019-10-25 2023-07-04 株式会社村田製作所 Circuit module and manufacturing method thereof
WO2021131776A1 (en) * 2019-12-27 2021-07-01 株式会社村田製作所 Module
WO2021140850A1 (en) * 2020-01-10 2021-07-15 株式会社村田製作所 Module
WO2022050042A1 (en) * 2020-09-03 2022-03-10 株式会社村田製作所 Module
WO2022153789A1 (en) * 2021-01-12 2022-07-21 株式会社村田製作所 Circuit module
EP4225004A1 (en) * 2022-02-03 2023-08-09 Qorvo US, Inc. Compartmentalized shielding of a module utilizing self-shielded sub-modules
WO2024029313A1 (en) * 2022-08-01 2024-02-08 株式会社村田製作所 Module

Also Published As

Publication number Publication date
JPWO2018181708A1 (en) 2020-01-23
JP6911917B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2018181708A1 (en) Module
US11335645B2 (en) High-frequency module and manufacturing method thereof
US11699670B2 (en) High-frequency module
US11476172B2 (en) Radio frequency module
WO2018101382A1 (en) High-frequency module
US20200381336A1 (en) High-frequency module
WO2018159453A1 (en) Module
US20190230781A1 (en) High-frequency module
TWI592073B (en) Printed circuit board
JP2020145394A (en) Electronic element module and manufacturing method thereof
US11322472B2 (en) Module
JP2000138317A (en) Semiconductor device and its manufacture
US11177189B2 (en) Module including heat dissipation structure
JP7320923B2 (en) module
JP2021005674A (en) Electronic component module, electronic component unit, and manufacturing method of electronic component module
KR101741648B1 (en) Semiconductor package having electromagnetic waves shielding means, and method for manufacturing the same
TW201832298A (en) Electronic package and fabrication method thereof
WO2018164160A1 (en) Module
US20210398866A1 (en) Package for containing electronic component, and electronic device
US10388628B2 (en) Electronic component package
JP2004207415A (en) Semiconductor module, electronic equipment, and manufacturing method of semiconductor module
JP2013110299A (en) Composite module
WO2020213572A1 (en) Electronic component module
CN116314071A (en) Electronic package module and method for manufacturing the same
JP2019021856A (en) module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774200

Country of ref document: EP

Kind code of ref document: A1