WO2018180974A1 - タイヤ試験方法及びタイヤ試験装置 - Google Patents

タイヤ試験方法及びタイヤ試験装置 Download PDF

Info

Publication number
WO2018180974A1
WO2018180974A1 PCT/JP2018/011669 JP2018011669W WO2018180974A1 WO 2018180974 A1 WO2018180974 A1 WO 2018180974A1 JP 2018011669 W JP2018011669 W JP 2018011669W WO 2018180974 A1 WO2018180974 A1 WO 2018180974A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
phase
reference point
dimensional code
point
Prior art date
Application number
PCT/JP2018/011669
Other languages
English (en)
French (fr)
Inventor
弘平 伊藤
康広 松下
幸司 後藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP18777709.9A priority Critical patent/EP3591369A4/en
Priority to US16/495,798 priority patent/US11274993B2/en
Priority to KR1020197030241A priority patent/KR102236682B1/ko
Priority to CN201880021196.9A priority patent/CN110462363B/zh
Publication of WO2018180974A1 publication Critical patent/WO2018180974A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/022Tyres the tyre co-operating with rotatable rolls
    • G01M17/024Tyres the tyre co-operating with rotatable rolls combined with tyre surface correcting or marking means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/001Decorating, marking or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested
    • G01M1/26Determining imbalance by oscillating or rotating the body to be tested with special adaptations for marking, e.g. by drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0633After-treatment specially adapted for vulcanising tyres
    • B29D2030/0634Measuring, calculating, correcting tyre uniformity, e.g. correcting RFV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/003Balancing means attached to the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C2019/004Tyre sensors other than for detecting tyre pressure

Definitions

  • the present invention relates to a tire test method and a tire test apparatus for marking a tire with singular points detected in a tire test using a tire test apparatus such as a tire uniformity machine.
  • a tire test such as tire uniformity is performed by rotating the tire around a spindle (rotating shaft) that faces in the vertical direction.
  • a tire test such as tire uniformity
  • a portion in the circumferential direction where the repulsive force of the tire is greatest, a portion where the mass is large in the circumferential direction, and the like are measured as “singular points”.
  • the tire is mounted on the wheel by using a balance weight. Thereby, a comfortable ride is obtained.
  • the lubrication section has a lube on the inner peripheral surface of the tire.
  • Application of application liquid is performed.
  • the tire sent from the lubrication part to the main body part is attached to the spindle.
  • the above-described singular point is measured while the tire is rotated by contacting the tire with a rotating drum that rotates about an axis that is directed in the vertical direction.
  • the tire in which the singular point is measured in the main body is transferred to the marking unit, and marking is performed at a circumferential position of the tire where the measured singular point exists. Thereby, the marking which shows the singular point mentioned above is stamped on the tire.
  • the tire is rotated by the rotating means under the mark detection sensor arranged in a predetermined direction from the rotation center of the rotating means, and the mark detection sensor detects the mark as a reference point of the tire. Then, the rotation of the tire is stopped and the mark is positioned in a predetermined direction from the tire center, and the position of the singular point of the tire is detected by the singular point position detecting means in a state where the mark is positioned in the predetermined direction from the tire center.
  • the present invention can obtain the phase from the reference point of the tire to the singular point with high accuracy and inexpensive means without accurately positioning the reference point of the tire at a certain position before detecting the singular point in the tire test. It is another object of the present invention to provide a tire test method and a tire test apparatus capable of following the fact that the marking has been made at a singular point.
  • the tire test method of the present invention includes a step of applying a lubrication liquid to a bead portion while rotating a tire provided with a reference point, a step of detecting a phase of the reference point after application of the lubrication liquid, Detecting a phase of a rotation origin of a spindle at a common coordinate common to coordinates set to indicate the phase of the reference point, and a tire test while rotating the tire coated with the lubrication liquid by the spindle And detecting a singular point existing in the tire and detecting a phase from the rotation origin of the spindle to the singular point, a phase of the reference point of the tire, and the rotation origin of the spindle And the singular point from the reference point based on the phase from the rotation origin of the spindle to the singular point. Calculating the phase up to, storing information on the reference point in the common coordinates, information on the rotation origin in the common coordinates, and in the circumferential position where the singular point exists Marking.
  • the tire test apparatus of the present invention includes a lubrication part that applies a lubrication liquid to a bead part while rotating a tire provided with a reference point, and the tire to which a lubrication liquid is applied in the lubrication part.
  • a storage unit wherein the lubrication unit is a phase of the reference point after application of the lubrication liquid and is in the common coordinates common to the lubrication unit, the main body unit, and the marking unit.
  • a reference point phase detection unit for detecting a phase of a reference point;
  • An origin phase detection unit that detects a phase of the rotation origin of the spindle, and a singular point phase detection unit that detects a phase from the rotation origin to the singular point, and the singular point phase calculation unit includes the reference point The phase of the reference point detected by the phase detector, the phase of the rotation origin detected by the origin phase detector, and the phase from the rotation origin to the singular point detected by the singular point phase detector And based on the reference point, the phase from the reference point to the singular point is calculated, the storage unit is information about the reference point in the common coordinates detected by the reference point phase detection unit, And information on the rotation origin in the common coordinates detected by the origin phase detection unit.
  • FIG. 10 schematically shows the overall configuration of the tire testing apparatus 1 of the present embodiment.
  • FIG. 10 shows an example of the tire testing apparatus of the present invention, and the tire testing apparatus of the present invention is not limited to the configuration illustrated in FIG.
  • the tire testing apparatus 1 of this embodiment has a lubrication part 2, a main body part 4, a marking part 5, and a controller 22 (see FIGS. 2 and 12).
  • the lubrication part 2 has a function of applying the lubrication liquid to the bead part while rotating the tire T.
  • the main body 4 has a function of detecting a singular point existing in the tire T by performing a tire test while rotating the tire T on which the lubrication liquid is applied in the lubrication unit 2 on the spindle 3.
  • the marking unit 5 has a function of marking the tire T at a circumferential position where a singular point exists.
  • the lubrication part 2, the main body part 4, and the marking part 5 are arranged in this order along the tire conveyance direction F in the tire testing apparatus 1.
  • Controller 22 controls the operation of lubrication unit 2, main unit 4 and marking unit 5.
  • the lubrication unit 2 applies the lubrication liquid to the tire T carried into the tire testing apparatus 1 as described above. Further, the lubrication unit 2 of the tire testing apparatus 1 of the present embodiment has a function of detecting a reference point (for example, a two-dimensional code) provided on the tire T.
  • a reference point for example, a two-dimensional code
  • the lubrication unit 2 includes a pair of conveyors 6, a pair of long arms 8, and a pair of rotating rollers 7.
  • the tire T is carried into the pair of conveyors 6.
  • the pair of conveyors 6 is configured to be able to transport the tire T in a state where the tire T is horizontally disposed so that the direction of the rotation axis of the tire T is in the vertical direction.
  • the pair of arms 8 hold the tire T at a predetermined position of the lubrication unit 2.
  • Each arm 8 is configured to be capable of turning around a turning axis that is directed in the vertical direction around a base end portion located on the radially outer side of the tire T.
  • Each rotating roller 7 is attached to the tip of the corresponding arm portion 8. Specifically, each rotation roller 7 is configured to be rotatable around a rotation axis that faces the arm 8 at the tip end portion of the corresponding arm 8 in the vertical direction. For this reason, in the state which contacted the outer peripheral surface of the tire T, each rotation roller 7 does not inhibit rotation of the tire T around the axis
  • the lubrication part 2 further has an unillustrated application part.
  • the application unit is configured to be movable from a position below the conveyor 6 to a position above the conveyor 6.
  • the said application part is for apply
  • the application part is a brush-like member that faces in the up-down direction, and has a structure for applying the lubrication liquid to the inner peripheral surface of the tire T. The application part moves up and down in the vertical direction to contact the bead part of the tire T and apply the lubrication liquid.
  • the lubrication unit 2 further includes a free roller (not shown).
  • the tire T is rotatably supported by the free roller in a state of being horizontally disposed on the free roller. That is, when applying the lubrication liquid to the tire 2 in the lubrication part 2, the lower surface of the tire 2 is supported by the free roller, the outer peripheral surface is supported by the two arms 8, and the bead part is lubricated. It rotates in the state supported by the application part (brush) of the part 2.
  • the lubrication unit 2 includes a reference point phase detection unit 10.
  • the reference point phase detection unit 10 is for detecting the circumferential position of the reference point of the tire T, that is, the phase of the reference point of the tire T.
  • the reference point detected by the reference point phase detection unit 10 serves as a reference when specifying the circumferential position of the singular point of the tire T.
  • the reference point is constituted by a two-dimensional code.
  • the reference point phase detection unit 10 in the present embodiment includes a position detection unit and an angle detection unit.
  • the position detector is for detecting the position of the reference point of the tire T.
  • the angle detector is for measuring an angle at which the tire T rotates after the position of the reference point is detected by the position detector.
  • the position detection unit is configured by a two-dimensional code reader 11, and the angle detection unit is configured by a pulse detector 12.
  • the two-dimensional code reader 11 is configured to be able to read the two-dimensional code of the tire T carried into the lubrication unit 2.
  • the pulse detector 12 is configured to be able to detect how much the two-dimensional code has rotated in the circumferential direction of the tire T when applying the lubrication liquid.
  • the two-dimensional code used as the reference point in the present embodiment is widely used in the tire T manufactured recently as a tag engraved with a lot number or a part of the manufacturing record. It can be used as a standard for However, the reference point is not limited as long as it can detect the position in the circumferential direction using an optical sensor or the like, and is, for example, a concavo-convex structure or an inscription provided in the sidewall portion or bead portion of the tire T. May be.
  • the two-dimensional code reader 11 detects the two-dimensional code by optically imaging the surface of the tire T, and has a much larger visual field area than the two-dimensional code.
  • the two-dimensional code reader 11 shown in FIG. 4 has 1600 pixels in the X direction and 1200 pixels in the Y direction in its visual field.
  • the pulse detector 12 is composed of an optical detection device.
  • the pulse detector 12 is provided on the rotating roller 7 provided at the tip of the arm portion 8, and is configured to be able to detect the number of rotations and the rotation angle of the rotating roller 7.
  • the pulse detector 12 can detect the rotation angle of the tire T after the two-dimensional code is detected by the two-dimensional code reader 11. In other words, after detecting the two-dimensional code, the pulse detector 12 can detect the rotation angle of the two-dimensional code that rotates until the tire T stops while the tire T rotates and the lubrication liquid is applied. it can.
  • the reference point phase detection unit 10 combines the phase of the two-dimensional code detected by the two-dimensional code reader 11 and the rotation angle at which the two-dimensional code on the tire T is rotated during application of the lubrication liquid.
  • the phase of the reference point at the time when it is unloaded from the lubrication unit 2 can be obtained.
  • the phase of the reference point obtained in this way is sent to the controller 22 described later.
  • the two-dimensional code as the reference point exists at a position of 180 ° in the common coordinates.
  • the angle formed by the straight line connecting the reference (origin) and the rotation axis of the tire T (center of the tire T) in common coordinates and the straight line connecting the two-dimensional code as the reference point and the rotation axis of the tire T is 180 °.
  • the common coordinates are coordinates common to the lubrication part 2, the main body part 4, and the marking part 5.
  • the common coordinates are coordinates common to the entire tire testing apparatus 1.
  • the reference (origin) in the common coordinates is at the “12 o'clock” position. Therefore, as shown in the left diagram of FIG. 11, the vector from the center of the tire T toward the two-dimensional code as the reference point faces the 6 o'clock direction of the watch.
  • the time for rotating the rotating roller 7 during application of the lubrication liquid may be until the two-dimensional code is detected by the two-dimensional code reader 11 or until a predetermined limit time is reached. There may be.
  • the basic information in the diameter and width direction of the tire T to be inspected is acquired from the information of the two-dimensional code detected by the two-dimensional code reader 11, and the reference existing in the tire T is used by using the acquired basic information. You may make it raise the detection accuracy of the position of a point.
  • the tire T to which the lubrication liquid is applied in the lubrication unit 2 is sent from the lubrication unit 2 to the main body unit 4.
  • the main body 4 includes a spindle 3, a rotation driving unit (not shown), a drum 15, a transfer means 13, and a load cell (not shown).
  • the spindle 3 holds the tire T so that the tire T can rotate about an axis that faces in the vertical direction.
  • the spindle 3 is a rod-like member configured to be rotatable about an axis that faces in the up-down direction, and includes a rim (not shown) that sandwiches the tire T in the up-down direction.
  • the rotation driving unit rotates the spindle 3 via a belt (not shown).
  • the drum 15 is a cylindrical member that is arranged on the outer side in the radial direction of the spindle 3 and is configured to be rotatable about an axis that faces in the vertical direction.
  • the drum 15 is configured to be movable in the horizontal direction, and the outer peripheral surface of the drum 15 can contact the outer peripheral surface of the tire T attached to the spindle 3 and can be separated from the tire T. it can.
  • the transfer means 13 has a pair of belt conveyors that convey the tire T.
  • the load cell is provided on the rotating shaft of the drum 15, for example.
  • the load cell can measure a force or moment applied to the drum 15 from the rotating tire T.
  • the tire test apparatus 1 is configured to be able to calculate tire uniformity and the like based on the measurement results of the force and moment by the load cell.
  • the rotation origin of the spindle 3 is not adjusted to a preset constant position at the end of each tire test. That is, at the end of each tire test, the direction of the rotation origin of the spindle 3 relative to the rotation axis of the spindle 3 can be in various directions. In the specific example shown in FIG. 11, the vector from the center of the tire T toward the rotation origin of the spindle 3 is in the direction of “9 o'clock of the clock” after the tire test immediately before the tire test.
  • the rotation origin of the spindle 3 exists at a position of 270 ° in the common coordinates.
  • the main body unit 4 further includes an origin phase detection unit 30 and a singular point phase detection unit 40.
  • the origin phase detector 30 detects the phase of the rotation origin of the spindle 3 at the common coordinates.
  • the origin phase detection unit 30 is configured to detect in which direction the rotation origin of the spindle 3 is located when viewed from the axis of the spindle 3 (the rotation axis of the tire T).
  • the origin phase detection unit 30 is configured by, for example, a rotary encoder (not shown) provided on the spindle 3.
  • the singular point phase detector 40 measures various characteristic values of the tire necessary for calculating the phase from the rotation origin of the spindle 3 to the singular point of the tire. Specifically, the main body unit 4 measures the repulsive force and the vibration of the tire necessary for calculating the phase of the singular point, and calculates the phase of the singular point using the measurement result.
  • the repulsive force of the tire is measured by, for example, a strain gauge or a moment meter.
  • the tire runout is measured by a position measurement sensor such as a laser sensor. In order to make the information obtained from these measurement results correspond to the rotation angle of the tire T, the rotation angle of the tire T is measured by a rotary encoder or a pulse counter. Therefore, the singular point phase detection unit 40 is configured by a sensor used for measuring various characteristic values of the tire T as described above.
  • a singular point phase calculation unit 223 in the controller 22 to be described later calculates a phase from the rotation origin of the spindle 3 to the singular point of the tire using the measurement results of various characteristic values of the tire measured by the singular point phase detection unit 40. .
  • the main body unit 4 rotates the tire T from which the singular point is detected so that the position of the singular point calculated by the singular point phase calculating unit 223 matches the position of the marking unit 19 in the marking unit 5. To the marking unit 5.
  • the tire test performed in the main body 4 includes not only the tire uniformity described above but also the measurement of the outer shape and the measurement of the dynamic balance.
  • a member for measuring the outer shape of the tire using a laser or the like is provided.
  • the marking unit 5 marks the tire T with a mark indicating the position of the “singular point” obtained in the tire test performed in the main body unit 4 described above.
  • the uniformity mark is marked as a singular point at a position in the circumferential direction of the tire T where the tire uniformity is specific in the marking portion 5.
  • a mark other than the uniformity mark may be marked.
  • the marking unit 5 includes a pair of conveyor belts 17 and a marking unit 19. Similar to the lubrication unit 2, the conveyor belt 17 can transport the tire T in a state where the tire T is horizontally arranged so that the direction of the rotation axis of the tire T is in the vertical direction.
  • the marking unit 19 performs marking on a predetermined position on the inner peripheral side of the tire T positioned on the conveyor belt 17. The positioning of the tire T at the time of marking is performed, for example, by controlling the movement of the conveyor belt 17 with a servo motor.
  • the controller 22 includes a storage unit 221, a reference point phase calculation unit 222, and a singular point phase calculation unit 223.
  • the storage unit 221 stores information on the reference point in the common coordinates detected by the reference point phase detection unit 10 and information on the rotation origin in the common coordinates detected by the origin phase detection unit 30.
  • the storage unit 221 stores information on the traceability of the tire T.
  • the information on the traceability is as follows: “In the present tire test apparatus 1, a singular point exists at a position of 135 ° from the rotation origin of the spindle 3 and the marking is made at the position. “Corresponding to a position of 225 ° from the code (reference point)”.
  • the reference point phase calculation unit 222 calculates the phase of the reference point of the tire T after application of the lubrication liquid. Specifically, the reference point phase calculation unit 222 determines the position of the reference point of the tire T at the common coordinates detected by the position detection unit during application of the lubrication liquid and the angle during application of the lubrication liquid. Based on the rotation angle of the tire T detected by the detection unit, the phase of the reference point of the tire T after application of the lubrication liquid is calculated.
  • the singular point phase calculation unit 223 is detected by the phase of the reference point detected by the reference point phase detection unit 10, the phase of the rotation origin detected by the origin phase detection unit 30, and the singular point phase detection unit 40.
  • the phase from the reference point to the singular point is calculated based on the phase from the rotation origin to the singular point.
  • the reference of the tire T can be obtained without accurately positioning the reference point of the tire T at a certain position before detecting the singular point in the tire test.
  • the phase from the point to the singular point can be obtained with high accuracy and at low cost, and it is possible to follow up the fact that the singular point has been marked.
  • the marking position with respect to the reference point matches the position of the singular point detected by the main body 4.
  • the position indicated in the actual tire T by the phase ⁇ from the two-dimensional code as the reference point in the tire T to the marking position, and the main body 4 of the tire testing apparatus 1 are the tire. It is important that the position indicated by the phase ⁇ detected in the test is “the same position”. If marking can be performed so as to indicate the same position, it can be said that the tire test apparatus 1 and the tire test method are excellent in traceability.
  • the information that is clarified by the tire test by the tire testing apparatus 1 and the information that is clarified from the actual tire T include the following two points.
  • the position of the marking with respect to the reference point is the position of the singular point obtained by the tire test by the main body portion 4, that is, the rotation. It is unclear whether or not it matches the position of the singular point with respect to the origin.
  • the phase of the two-dimensional code (reference point) detected in the lubrication unit 2 and the phase of the rotation origin of the spindle 3 detected in the main body unit 4 are common.
  • the reference point phase detection unit 10 and the origin phase detection unit 30 detect these phases, respectively.
  • information (2) can be associated with each other.
  • the controller 22 can leave information indispensable for traceability as a history, and if necessary, can output it to the outside. Specifically, for example, the controller 22 reads: “Since a singular point exists at a position of 135 ° from the rotation origin of the spindle 3, the part is marked. The marking position is a two-dimensional code (reference point). It is possible to leave information essential for traceability, such as “corresponding to a position of 225 ° from” as a history.
  • the reference point phase detection unit 10 (barcode reader) first determines the phase (angular position) of the tire two-dimensional code. Read.
  • the tire T from which the reference point has been read in this way is applied with the lubrication liquid while rotating in the lubrication unit 2.
  • the phase of the reference point at the time when the application of the lubrication liquid accompanying the rotation of the tire T is finished can be expressed as follows in the specific example shown in the left diagram of FIG. That is, when the application is finished, the reference point exists at a position of 180 ° in the common coordinates, and the vector from the center of the tire T toward the reference point is in the direction of “6 o'clock on the clock”. In other words, the angle formed by the straight line connecting the reference (origin) and the rotation axis of the tire T in the common coordinates and the straight line connecting the reference point (two-dimensional code) and the rotation axis of the tire T is 180 °.
  • the vector from the center of the tire T toward the rotation origin of the spindle 3 "9 o'clock" direction.
  • the rotation origin of the spindle 3 exists at a position of 270 ° in the common coordinates.
  • the angle formed by the straight line connecting the reference (origin) in common coordinates and the rotation axis of the tire T and the straight line connecting the rotation origin of the spindle 3 and the rotation axis of the tire T is 270 °.
  • the tire T carried in from the lubrication unit 2 is attached to the spindle 3 in this state, rotates around the axis facing the vertical direction, and the tire uniformity is measured by the tire test.
  • the phase (angular position) of the singular point calculated by the main body 4 is merely the phase ⁇ from the rotation origin of the spindle 3, and marking is performed on the position by the marking unit 5.
  • the information only from the main body 4 cannot grasp the information on how much the position ( ⁇ ) rotated from the reference point, such as a two-dimensional code, has a singular point.
  • the tire reference information “corresponds to a position of 225 ° from (reference point)” can be obtained.
  • the reference point from the tire T to the singular point can be obtained without accurately positioning the reference point of the tire T at a certain position before detecting the singular point in the tire test.
  • the phase can be obtained with an accurate and inexpensive means, and the fact that the singular point has been marked can be traced.
  • the marking position can be accurately read from the image data captured by the bar code reader (reference point phase detection unit), and the phase from the reference point to the singular point position can be calculated with high accuracy. .
  • the rotation mechanism without a positioning function can be used, the rotation mechanism can be realized with an inexpensive configuration.
  • phase of the reference point is specified in the lubrication unit 2, it is not necessary to detect the phase of the reference point in the main body unit 4. Therefore, it is not necessary to arrange the reference point phase detection unit in the main body unit 4.
  • the above-described singular point phase detector (various sensors for measuring the various characteristic values of the tire T) may be disposed.
  • the position of the reference point is detected during the lubrication operation, which is an essential operation in the tire testing apparatus, and the phase of the reference point can be specified at the end of the lubrication operation. There is no need to provide separate steps for position detection and phase detection, and the phase detection of the reference point does not affect the tire test time.
  • a two-dimensional code is used as a reference point.
  • the position of the reference point can be obtained more accurately by performing some corrections.
  • the controller 22 controls the lubrication unit 2 so that the lubrication operation is started (step S0 in FIG. 9).
  • the controller 22 controls the rotating roller 7 so that the rotation of the tire T is started (step S1).
  • the arm portion 8 to which the rotating roller 7 is attached on the tip end side is swung in the horizontal direction, and the rotating roller 7 positioned on the tip end side of the arm portion 8 is pressed against the outer peripheral surface of the tire T.
  • the gear of the pulse detector 25 assembled to the rotating roller 7 is also rotated, and the pulse detector 25 is turned on / off.
  • the pulse signal turned on / off by the pulse detector 25 is sent to the controller 22 through the input / output unit 26 and counted by the controller 22.
  • the data of the count number C is accumulated in the controller 22.
  • the controller 22 transmits a two-dimensional code reading start command to the two-dimensional code reader 24 (step S2).
  • a reading command from the controller 22 is transmitted to the two-dimensional code reader 24 via the input / output unit 26 and the connection box 27.
  • data such as coordinate data and code information stored in the controller 22 is reset.
  • the two-dimensional code reader 24 If the two-dimensional code reader 24 can read the two-dimensional code (YES in step S3), the two-dimensional code reader 24 transmits the read information to the controller 22. Specifically, signals such as position information (for example, detection coordinates (Xb, Yb)) of the two-dimensional code read by the two-dimensional code reader 24, decoding time Tb, character string information obtained by decoding the two-dimensional code are The data is transmitted from the two-dimensional code reader 24 to the controller 22 via the communication module 29.
  • position information for example, detection coordinates (Xb, Yb)
  • the two-dimensional code reader 24 when the two-dimensional code reader 24 cannot read the two-dimensional code normally, the two-dimensional code reader 24 performs the processing shown in steps S6 to S10 so that the two-dimensional code can be read normally. Specifically, it is as follows.
  • the time from the start of reading is measured by timer A and timer B.
  • the two-dimensional code reader 24 When the two-dimensional code reader 24 can read the two-dimensional code within a predetermined time by the timer A and the reading result is invalid (YES in step S7), the two-dimensional code reader 24 outputs a reading failure signal to the controller 22 ( Step S8). Also, the two-dimensional code reader 24 cannot read the two-dimensional code within the scheduled time and if a predetermined time by the timer B has elapsed (YES in step S9), a reading time-out error signal is sent to the controller 22. Output (step S10). In any case, the controller 22 performs control to stop the lubrication operation and stop the tire test.
  • the controller 22 When receiving the reading result from the two-dimensional code reader 24, the controller 22 transmits a two-dimensional code reading stop command to the two-dimensional code reader 24 (step S4).
  • the controller 22 transmits the character string information of the two-dimensional code to a computer device such as an external personal computer (PC) (see FIG. 2).
  • the character string obtained by decoding the two-dimensional code is, for example, a symbol indicating a tire standard.
  • information such as the tire diameter (Dt), the tire width (Dw), and the rim diameter (Db) is transmitted from the computer device to the controller 22 (step S14 described later). ).
  • Step S5 the controller 22 transmits again a two-dimensional code reading start command to the two-dimensional code reader 24 (step S5).
  • This command is a command for starting the second reading.
  • Steps S11 and S18 to S22 perform the same processing as steps S3 and S6 to S10 described above.
  • the controller 22 When the controller 22 receives the reading result from the two-dimensional code reader 24, the controller 22 transmits a two-dimensional code reading stop command to the two-dimensional code reader 24 (step S12). At this time, since the reading of the two-dimensional code and the application of the lubrication liquid have been completed, the controller 22 controls the rotating roller 7 so that the rotation of the tire T is stopped (step S13).
  • a computer device such as an external personal computer outputs tire information such as tire diameter (Dt), tire width (Dw), and rim diameter (Db) to the controller 22, and the controller 22 receives the tire information (step). S14).
  • a signal indicating the stop of the tire T is transmitted from the reference point phase detection unit 10 to the controller 22.
  • the controller 22 calculates the diameter of the tire T (step S15).
  • the controller 22 controls the lubrication unit 2 so that the lubrication operation stops (step S16), and calculates a stop angle (step S17).
  • the tire test method according to the present embodiment is performed.
  • calculation of the diameter of the tire T, calculation of the stop angle, and the like will be described more specifically.
  • the calculation of the diameter of the tire T is performed according to the following procedure.
  • a coefficient for converting a pixel into a length (mm) is calculated according to the procedure shown in FIG. That is, when the type of the tire T to be tested changes, the width of the tire T changes, and the visual field range (length) optically observed by the two-dimensional code reader 24 also changes. For this reason, the length (mm) per pixel (pix) is calculated using tire information such as the tire diameter (Dt), tire width (Dw), and rim diameter (Db) sent from the computer device to the controller 22. Can be calculated.
  • the detectable range of the code reader 24 is defined by using three directions: the width direction X of the visual field, the vertical direction Y of the visual field, and the height direction Z of the visual field.
  • the distance Zs is 1048.3 mm
  • the length of the visual field range in the X direction at that position When the length is 222.5 mm and the length of the visual field range in the Y direction is 170.0 mm, the conversion coefficient in the X direction and the conversion coefficient in the Y direction are expressed by Expression (1) and Expression (2).
  • the code reader 24 is installed so that the position of the Zs coincides with the bottom surface of the tire.
  • Equation (3) the coordinate distance Lbcr_RD between the two points a point (Xa, Ya) and b point (Xb, Yb ⁇ ⁇ ) represented by the number of pixels is expressed by Equation (3). Can be obtained in this way.
  • Lbcr_RD ⁇ [ ⁇ (Xa ⁇ Xb) ⁇ Xp ⁇ ⁇ 2 + ⁇ (Ya ⁇ Yb) ⁇ Yp ⁇ ⁇ 2] (3)
  • the distance between the two points obtained by the equation (3) is approximately considered to be an arc centered on the center of the tire T, and the coordinates of the point a and the point b are determined from the rim diameter information.
  • the angle ( ⁇ bcr_RD (deg)) is obtained as shown in equation (4).
  • the movement amount of the tire T that is, the rotation angle of the rotation of the tire T while applying the lubrication liquid is obtained from the rotation angle of the rotating roller 7.
  • the pulse count value measured by the pulse detector 25 is a delay time
  • the pulse count counted by the pulse detector 25 by obtaining the delay time. Correct the value.
  • This delay time is defined as “decode time” in this embodiment, and the controller 22 notifies the controller 22 of the “decode time” via the communication module 29 from the two-dimensional code reader 24. The minutes of time can be corrected.
  • Equation (5) “C1” is the pulse count actually measured at the first time, and “C2” is the pulse count actually measured at the second time. In other words, “C2” can be said to be a pulse count obtained when the tire T further rotates than “C1”.
  • the reading of the code reader is started at the same time as the tire T starts rotating.
  • the “pulse count number actually measured at the first time” is the pulse count number at which the reference point is measured at the first time after the tire T starts rotating, and “the pulse count number actually measured at the second time”. Is a time when the reference point reaches the position of the code reader again after the first measurement, and is a pulse count number measured when the tire T rotates one round from the first measurement.
  • the corrected pulse count value (P_C1, P_C2) can be expressed as in equation (5).
  • P_C1 (pieces) C1 (pieces)-(Ta (ns) ⁇ 7.4 (ns / pieces))
  • P_C2 (pieces) C2 (pieces)-(Tb (ns) ⁇ 7.4 (ns / pieces)) (5)
  • the tire diameter is then calculated.
  • the tire diameter and width direction information included in the two-dimensional code is a specification value of the tire and is often different from the actual tire diameter. If calculation is performed using the specification value, an error may occur in the position of the singular point. Therefore, for example, the tire diameter Dta is calculated from the transmitted tire diameter Dt and the pulse count value, and the repeated calculation is performed to calculate the tire diameter Dta again from the calculated tire diameter Dta and the pulse count value. The correct value is calculated. First, the tire diameter is calculated from the pulse count value based on the transmitted tire diameter, for example, as follows.
  • the angle ( ⁇ bcr_RD (°)) of the coordinates between these two points is expressed as shown in FIGS. . Further, when the distance between the two points (Lbcr_RD (mm)) is approximated as an arc centered on the center of the tire T, the following equation (6) is established.
  • PulseCount_Ang PulseCount_Ang (pieces)
  • PulseCount_Ang PulseCount_Ang is expressed by the following equation (7). Note that the tire diameter calculated from the pulse count value is Dta (mm), the diameter of the roller 7 is Dr (mm), and the number of pulses per one rotation of the roller 7 is 60 (pieces).
  • PulseCount_Ang ( ⁇ ⁇ Dta ⁇ ( ⁇ bcr_RD ⁇ 360)) ⁇ ( ⁇ ⁇ Dr ⁇ 60) (7)
  • PulseCount_Ang is expressed as the following formula (8).
  • PulseCount_Ang (pieces) ⁇ bcr_RD x Dta ⁇ 684 (8)
  • processing content needs to be switched depending on the position of the read coordinate read by the second pulse count relative to the read coordinate read by the first pulse count.
  • the position of the read coordinate read by the second pulse count is in front, in other words, the second read coordinate is positioned on the opposite side of the rotation direction of the tire T with respect to the first time.
  • the tire T since the tire T does not make a complete revolution, it is necessary to correct by adding the number of pulses between coordinates as shown in Equation (9).
  • PulseCount_RD in the equations (9) and (10) is a pulse count number (pieces) for one turn of the tire.
  • the obtained PulseCount_RD is substituted into the equation (11) to calculate the diameter Dta of the tire T.
  • “Dr” in Expression (11) is the diameter of the rotating roller 7.
  • the number of pulses per rotation of the rotating roller 7 is, for example, 60 pulses (pieces).
  • the stop angle is calculated using the tire diameter calculated in the above procedure.
  • the stop angle is calculated by using the number of pulses from the completion of the second coordinate reading until the rotation stops.
  • the number of pulses Cr counted from the completion of the second reading to the stop of rotation is represented by the following equation (12). Note that “C” in Expression (12) is the number of pulse counts from the start of the pulse count to the time when the tire T stops.
  • the equation (12) by subtracting the pulse number “P_C2” at the time of reading the second two-dimensional code from the pulse count number “C” from the start of counting to the stop of the tire T, the tire T from the time of the second reading is obtained. The number of counts until the stop is calculated.
  • roller rotation angle ⁇ r and the tire rotation angle ⁇ t can be expressed as in Expression (13).
  • “Pr” in Expression (13) is a rotation angle per pulse in the rotating roller 7 (for example, 6 deg / piece per pulse).
  • Equation (14) is obtained.
  • Lbcr (mm) ⁇ [ ⁇ (Xc-Xb) x Xp ⁇ ⁇ 2 + ⁇ (Yc-Yb) x Yp ⁇ ⁇ 2] (14 )
  • ⁇ bcr (deg) Lbcr (mm) ⁇ (Db (inch) x 25.4 x ⁇ ) x 360 (15)
  • the position of the reference point can be obtained with high accuracy, and the angle of the singular point based on the reference point can be calculated with high accuracy.
  • embodiment disclosed this time is an illustration and restrictive at no points.
  • matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. Instead, values that can be easily assumed by those skilled in the art are employed.
  • the provided tire test method includes a step of applying a lubrication liquid to a bead portion while rotating a tire provided with a reference point, a step of detecting a phase of the reference point after application of the lubrication liquid, A step of detecting a phase of a rotation origin of a spindle at a common coordinate common to a coordinate representing the phase of the reference point, and a tire test while rotating the tire coated with the lubrication liquid on the spindle. Detecting a singular point existing in the tire and detecting a phase from the rotation origin to the singular point, a phase of the reference point, a phase of the rotation origin, and the singular point from the rotation origin.
  • the phase from the reference point of the tire to the singular point can be accurately and inexpensively used without accurately positioning the tire reference point at a certain position before detecting the singular point in the tire test.
  • the singular point has been marked. Specifically, it is as follows.
  • the lubrication process performed before the detection of the singular point involves rotation of the tire.
  • the reference point of the tire is not positioned at a certain position (constant phase) but can take an arbitrary position (arbitrary phase).
  • the spindle rotation origin is not accurately positioned at a fixed position after detecting a singular point in a tire test, the spindle rotation origin is positioned at a fixed position (constant phase) at the end of the tire test. Instead, it can take any position (arbitrary phase). Therefore, at the start of the next tire test, the rotation origin of the spindle is not positioned at a certain position (constant phase).
  • the phase of the reference point of the tire is detected after application of the lubrication liquid, and the phase of the rotation origin of the spindle at the common coordinates that are common with the coordinates representing the phase of the reference point is detected. .
  • the phase of the reference point and the phase of the rotation origin are associated with each other, so that the difference between the phase of the reference point and the phase of the rotation origin can be obtained.
  • the singular point existing in the tire is detected, and the phase from the rotation origin of the spindle to the singular point is detected.
  • the phase from the reference point to the singular point can be calculated from the phase from the rotation origin to the singular point thus obtained and the difference between the phase of the reference point and the phase of the rotation origin.
  • the phase from the tire reference point to the singular point can be obtained with high accuracy without accurately positioning the tire reference point at a fixed position before the singular point is detected in the tire test. it can.
  • a servo motor in order to accurately position the reference point of the tire as in Patent Document 1, for example.
  • many complicated control commands are generated by the controller, so the number of processes increases accordingly, and the control becomes very complicated. Does not occur.
  • information on the reference point in the common coordinates and information on the rotation origin in the common coordinates are stored. For example, when an unexpected situation occurs, a marking is imprinted on a singular point. It is possible to follow up after manufacturing whether it has been done or not.
  • the reference point may be constituted by a two-dimensional code stamped on the tire.
  • the two-dimensional code includes information on the diameter and width direction of the tire, and the information on the diameter and width direction of the tire obtained from the two-dimensional code is used to detect the singular point. Is good.
  • the two-dimensional code is preferably read using a two-dimensional code reader.
  • the two-dimensional code reader has a wider visual field range than the two-dimensional code, and in the step of detecting the phase of the reference point, the two-dimensional code reader is within the visual field range of the two-dimensional code reader.
  • the position data of the two-dimensional code is input to a controller, and the controller corrects the phase of the two-dimensional code in the common coordinates based on the position data of the two-dimensional code, and the corrected two-dimensional code.
  • the phase of the dimension code is preferably the phase of the reference point.
  • the tire test apparatus rotates a tire provided with a reference point while applying a lubrication liquid to a bead part, and rotates the tire coated with the lubrication liquid in the lubrication part by a spindle.
  • the lubrication unit is a reference for detecting the phase of the reference point in the common coordinates common to the lubrication unit, the main body unit, and the marking unit after the application of the lubrication liquid. It has a point phase detector.
  • the main body includes an origin phase detection unit that detects a phase of the rotation origin of the spindle in the common coordinates, and a singular point phase detection unit that detects a phase from the rotation origin to the singular point.
  • the singular point phase calculation unit is detected by the reference point phase detected by the reference point phase detection unit, the rotation origin phase detected by the origin phase detection unit, and the singular point phase detection unit.
  • the phase from the reference point to the singular point is calculated based on the phase from the rotation origin to the singular point.
  • the storage unit stores information related to the reference point in the common coordinates detected by the reference point phase detection unit and information related to the rotation origin in the common coordinates detected by the origin phase detection unit. It is configured.
  • the tire test apparatus can accurately obtain the phase from the tire reference point to the singular point without accurately positioning the tire reference point at a certain position before detecting the singular point in the tire test. Thereby, in the tire test apparatus, there is no need to use complicated and expensive parts such as a servo motor in order to accurately position the reference point of the tire as in Patent Document 1, for example.
  • an unexpected situation occurs based on the information stored in the storage unit, that is, information on the reference point in the common coordinates and information on the rotation origin in the common coordinates. If it occurs, it becomes possible to follow up after manufacturing whether or not markings have been imprinted on the singular points.
  • the reference point may be configured by a two-dimensional code imprinted on the tire, and the lubrication unit may include a two-dimensional code reader that reads the two-dimensional code.
  • the tire testing apparatus further includes a reference point phase calculation unit, and the reference point phase detection unit detects a position of the reference point and an angle detection that detects a rotation angle of rotation of the tire.
  • the reference point phase calculation unit includes a position of the reference point of the tire at the common coordinates detected by the position detection unit during application of the lubrication liquid, and the lubrication liquid The phase of the reference point of the tire after application of the lubrication liquid may be calculated based on the rotation angle of the tire detected by the angle detection unit during application.
  • lubrication is performed based on the position of the reference point of the tire detected by the position detection unit during application of the lubrication liquid and the rotation angle of the tire detected by the angle detection unit during application of the lubrication liquid.
  • the phase of the reference point of the tire after application of the liquid can be calculated.
  • the mark detection position sensor detects the mark to control the rotation mechanism, but it is unclear where the mark detection position sensor has detected the mark. Therefore, it is difficult to accurately calculate the rotation direction angle of the singular point with high accuracy.
  • the correction step since the correction step is performed, it is possible to accurately calculate the rotation direction angle of the singular point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤ試験方法は、タイヤのビード部にルブリケーション液を塗布する工程と、前記タイヤの基準点の位相を検出する工程と、前記基準点の位相が表される座標と共通の共通座標におけるスピンドルの回転原点の位相を検出する工程と、前記タイヤを前記スピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出するとともに、前記回転原点から前記特異点までの位相を検出する工程と、前記基準点の位相と、前記回転原点の位相と、前記回転原点から前記特異点までの位相とに基づいて、前記基準点から前記特異点までの位相を算出する工程と、前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とを記憶する工程と、前記特異点が存在する周方向の位置において前記タイヤにマーキングする工程と、を備える。

Description

タイヤ試験方法及びタイヤ試験装置
 本発明は、タイヤユニフォミティマシンなどのタイヤ試験装置を用いたタイヤ試験において検出された特異点をタイヤにマーキングするタイヤ試験方法及びタイヤ試験装置に関するものである。
 従来、タイヤユニフォミティマシンなどのタイヤ試験装置では、上下方向を向くスピンドル(回転軸)回りにタイヤを回転させて、タイヤユニフォミティなどのタイヤ試験が行われている。このようなタイヤユニフォミティなどのタイヤ試験では、例えば、タイヤの反発力が最も大きくなる周方向の部位、周方向において質量が大きい部位などが「特異点」として計測される。この特異点を考慮し、バランス錘を用いるなどしてタイヤがホイールに装着される。これにより、快適な乗り心地が得られる。
 具体的には、タイヤユニフォミティなどのタイヤ試験においては、まず、タイヤ試験装置の本体部に設けられたスピンドルから試験済みのタイヤを取り外しやすくするために、ルブリケーション部においてタイヤの内周面にルブリケーション液の塗布が行われる。次に、ルブリケーション部から本体部に送られたタイヤはスピンドルに取り付けられる。そして、当該タイヤに上下方向を向く軸心回りに回転する回転ドラムを接触させてタイヤを回転させながら、上述した特異点が計測される。
 本体部において特異点が計測されたタイヤは、マーキング部へ移送され、計測された特異点が存在するタイヤの周方向の位置にマーキングが行われる。これにより、タイヤには、上述した特異点を示すマーキングが刻印される。
 ところで、近年は、タイヤについてさまざまなトレーサビリティが要求されるようになり、上述した特異点のマーキングについても、不測の事態があった場合に本当に特異点にマーキングが刻印されていたか否かを製造後に追跡調査できることが求められている。この要求に応えるために、特許文献1の技術が開発されている。
 特許文献1に記載のタイヤ検査方法は、回転手段の回転中心から所定方向に配置された目印検出センサの下で回転手段によりタイヤを回転させ、タイヤの基準点とする目印を目印検出センサが検出したところで回転を停止して前記目印をタイヤ中心から所定方向に位置させるタイヤ回転工程と、前記目印をタイヤ中心から所定方向に位置させた状態で特異点位置検出手段によりタイヤの特異点の位置を前記所定方向にある前記目印の基準点からの回転方向角度として検出する特異点位置検出工程を備える。
 特許文献1のタイヤ検査方法では、回転手段によりタイヤを回転させている状態で目印検出センサがタイヤの基準点である目印を検出すると、その検出したところでタイヤの回転を停止させ、これにより、前記目印をタイヤ中心から所定方向に位置させる。このように特許文献1のタイヤ検査方法は、タイヤ試験において特異点の検出前に前記目印を一定の位置に正確に位置決めする必要があるため、サーボモータのような複雑で高価な部品を用いる必要がある。
特許第4540205号公報
 本発明は、タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしなくても、タイヤの基準点から特異点までの位相を精度良く且つ安価な手段で得ることができ、しかも、特異点にマーキングされたことを追跡調査することが可能なタイヤ試験方法及びタイヤ試験装置を提供することを目的とする。
 本発明のタイヤ試験方法は、基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布する工程と、前記ルブリケーション液の塗布後における前記基準点の位相を検出する工程と、前記基準点の位相を示すために設定された座標と共通の共通座標におけるスピンドルの回転原点の位相を検出する工程と、前記ルブリケーション液が塗布された前記タイヤを前記スピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出するとともに、前記スピンドルの前記回転原点から前記特異点までの位相を検出する工程と、前記タイヤの前記基準点の位相と、前記スピンドルの前記回転原点の位相と、前記スピンドルの前記回転原点から前記特異点までの位相とに基づいて、前記基準点から前記特異点までの位相を算出する工程と、前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とを記憶する工程と、前記特異点が存在する周方向の位置において前記タイヤにマーキングする工程と、を備える。
 また、本発明のタイヤ試験装置は、基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布するルブリケーション部と、前記ルブリケーション部でルブリケーション液が塗布された前記タイヤをスピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出する本体部と、前記特異点が存在する周方向の位置において前記タイヤにマーキングするマーキング部と、特異点位相算出部と、記憶部と、を備え、前記ルブリケーション部は、前記ルブリケーション液の塗布後における前記基準点の位相であって前記ルブリケーション部と前記本体部と前記マーキング部とに共通する共通座標における前記基準点の位相を検出する基準点位相検出部を有し、前記本体部は、前記共通座標における前記スピンドルの回転原点の位相を検出する原点位相検出部と、前記回転原点から前記特異点までの位相を検出する特異点位相検出部と、を有し、前記特異点位相算出部は、前記基準点位相検出部によって検出された前記基準点の位相と、前記原点位相検出部によって検出された前記回転原点の位相と、前記特異点位相検出部によって検出された前記回転原点から前記特異点までの位相と、に基づいて、前記基準点から前記特異点までの位相を算出するように構成され、前記記憶部は、前記基準点位相検出部によって検出される前記共通座標における前記基準点に関する情報と、前記原点位相検出部によって検出される前記共通座標における前記回転原点に関する情報と、を記憶するように構成されている。
本実施形態にかかるタイヤ試験装置のルブリケーション部の構成を模式的に示した図である。 本実施形態にかかるタイヤ試験装置のコントローラ部の構成を模式的に示した図である。 二次元コードリーダの視野座標を示した図である。 二次元コードリーダの読取高さによる視野範囲の補正方法を示した図である。 二次元コードリーダでの2点間角度算出方法の考え方を示した図である。 パルスカウント計を用いたタイヤの直径算出方法の考え方を示した図である。 二次元コードリーダでのルブリケーション部での停止角度算出方法の考え方を示した図である。 パルスカウント計を用いたタイヤの直径算出方法の考え方を示した図である。 本実施形態のタイヤ試験方法の手順を示したフローチャートである。 タイヤ試験装置の全体構成を示した図である。 ルブリケーション部、本体部、及びマーキング部の各部における基準点、回転原点、特異点の位置関係を示した図である。 本実施形態にかかるタイヤ試験装置の機能的構成を示すブロック図である。 コンピュータ機器からコントローラへ送信されるリムの情報を示す表である。
 以下、本発明のタイヤ試験方法及びタイヤ試験装置1の実施の形態について、図面に基づき詳しく説明する。
 図10は、本実施形態のタイヤ試験装置1の全体構成を模式的に示したものである。なお、図10は本発明のタイヤ試験装置の一例を示したものであって、本発明のタイヤ試験装置は図10に例示された構成に限るものではない。
 図10に示すように、本実施形態のタイヤ試験装置1は、ルブリケーション部2と、本体部4と、マーキング部5と、コントローラ22(図2及び図12参照)とを有している。
 ルブリケーション部2は、タイヤTを回転させつつビード部にルブリケーション液を塗布する機能を有する。本体部4は、ルブリケーション部2でルブリケーション液が塗布されたタイヤTをスピンドル3上で回転させつつタイヤ試験を行ってタイヤTに存在する特異点を検出する機能を有する。マーキング部5は、特異点が存在する周方向の位置においてタイヤTにマーキングする機能を有する。これらのルブリケーション部2、本体部4、及びマーキング部5は、タイヤ試験装置1におけるタイヤの搬送方向Fに沿ってこの順に配置されている。
 コントローラ22は、ルブリケーション部2、本体部4及びマーキング部5の動作を制御する。
 [ルブリケーション部]
 ルブリケーション部2は、上述したようにタイヤ試験装置1に搬入されたタイヤTに対して、ルブリケーション液の塗布を行う。また、本実施形態のタイヤ試験装置1のルブリケーション部2は、タイヤTに設けられた基準点(例えば二次元コード)を検出する機能を有する。
 図1及び図10に示すように、ルブリケーション部2は、一対のコンベア6と、一対の長尺のアーム8と、一対の回転ローラ7とを有する。タイヤTは、一対のコンベア6に搬入される。一対のコンベア6は、タイヤTの回転軸の方向が鉛直方向に向くようにタイヤTを水平に配置した状態でタイヤTを搬送可能に構成されている。
 一対のアーム8は、ルブリケーション部2の所定位置にタイヤTを保持する。各アーム8は、タイヤTの径方向外側に位置する基端部を中心に上下方向を向く旋回軸周りに旋回可能に構成されている。
 各回転ローラ7は、対応するアーム部8の先端に取り付けられている。具体的に、各回転ローラ7は、対応するアーム8の先端部において当該アーム8に対して上下方向を向く回転軸周りに回転可能に構成されている。このため、各回転ローラ7は、タイヤTの外周面に接触した状態において、上下方向を向く軸回りのタイヤTの回転を阻害しない。各回転ローラ7は、対応するアーム8が旋回することにより、タイヤTの外周面に接触することができ、タイヤTの外周面から離隔することができる。
 また、ルブリケーション部2は、図略の塗布部をさらに有する。当該塗布部は、コンベア6よりも下方の位置からコンベア6よりも上方の位置に移動可能に構成されている。当該塗布部は、タイヤTのビード部(内周部)にルブリケーション液を塗布するためのものである。塗布部は、上下方向を向くブラシ状の部材であり、ルブリケーション液をタイヤTの内周面に塗布する構造を有する。塗布部は、上下方向に昇降することでタイヤTのビード部に接触してルブリケーション液を塗布する。
 ルブリケーション部2は、図略のフリーローラをさらに有する。タイヤTは、前記フリーローラ上に水平に配置された状態で回転可能に前記フリーローラに支持されている。つまり、ルブリケーション部2においてタイヤ2にルブリケーション液を塗布する際には、タイヤ2は、その下面がフリーローラによって支持され、外周面が2本のアーム8によって支持され、ビード部がルブリケーション部2の塗布部(ブラシ)で支持された状態で回転する。
 図1、図10及び図12に示すように、ルブリケーション部2は、基準点位相検出部10を備えている。基準点位相検出部10は、タイヤTの基準点の周方向の位置、すなわちタイヤTの基準点の位相を検出するためのものである。基準点位相検出部10により検出される基準点は、タイヤTの特異点の周方向の位置を特定する際に基準となるものである。本実施形態では、基準点は二次元コードによって構成されている。
 具体的には、本実施形態における基準点位相検出部10は、位置検出部と、角度検出部とを備える。前記位置検出部は、タイヤTの基準点の位置を検出するためのものである。前記角度検出部は、位置検出部によって基準点の位置が検出された後にタイヤTが回転する角度を計測するためのものである。本実施形態では、位置検出部は、二次元コードリーダ11によって構成されており、角度検出部は、パルス検出器12によって構成されている。二次元コードリーダ11は、ルブリケーション部2に搬入されたタイヤTの二次元コードを読み取り可能に構成されている。パルス検出器12は、ルブリケーション液を塗布する際に二次元コードがタイヤTの周方向にどの程度回転したかを検知可能に構成されている。
 本実施形態で基準点として用いられる二次元コードは、ロット番号や製造記録の一部などを刻印したタグとして昨今製造されたタイヤTに広く用いられているため、メーカや種別を問わず特異点の基準として用いることができる。ただし、基準点は、光学的なセンサなどを用いて周方向の位置を検出可能なものであればよく、例えば、タイヤTのサイドウォール部やビード部に設けられた凹凸構造や刻印などであってもよい。
 二次元コードリーダ11は、タイヤTの表面を光学的に撮像することで二次元コードを検出するものであり、二次元コードよりはるかに大きな視野面積を備えている。図4に示す二次元コードリーダ11は、その視野にはX方向に1600ピクセル、Y方向に1200ピクセルの画素数を有している。
 パルス検出器12は、光学的な検出装置から構成されている。本実施形態では、パルス検出器12は、アーム部8の先端に設けられた回転ローラ7に設けられており、回転ローラ7の回転数や回転角度を検出可能に構成されている。
 パルス検出器12は、二次元コードリーダ11によって二次元コードが検出された後のタイヤTの回転角度を検出することができる。言い換えると、パルス検出器12は、二次元コードの検出後において、タイヤTが回転しながらルブリケーション液が塗布され、タイヤTが停止するまでに回転する二次元コードの回転角度を検出することができる。
 そして、基準点位相検出部10は、二次元コードリーダ11で検出された二次元コードの位相と、このタイヤT上の二次元コードがルブリケーション液の塗布中に回転した回転角度とを組み合わせることで、ルブリケーション部2から搬出される時点での基準点の位相を求めることができる。このようにして求められた基準点の位相は後述するコントローラ22に送られる。
 図11の具体例では、基準点としての二次元コードは、共通座標における180°の位置に存在する。言い換えると、共通座標における基準(原点)とタイヤTの回転軸(タイヤTの中心)とを結ぶ直線と、基準点としての二次元コードとタイヤTの回転軸とを結ぶ直線とのなす角度は180°である。
 ここで、共通座標とは、ルブリケーション部2と、本体部4と、マーキング部5とに共通する座標である。言い換えれば、共通座標は、タイヤ試験装置1全体に共通する座標である。図11に示す具体例では、共通座標における基準(原点)は、「時計の12時」の位置にある。したがって、図11の左図に示すように、タイヤTの中心から基準点としての二次元コードに向かうベクトルは、時計の6時の方向を向いている。
 なお、ルブリケーション液の塗布中に回転ローラ7を回転させる時間は、二次元コードが二次元コードリーダ11で検出されるまでであっても良いし、予め定められたリミット時間に到達するまでであっても良い。
 また、二次元コードリーダ11で検出された二次元コードの情報から、検査しようとするタイヤTの直径及び幅方向の基礎情報を取り込み、取り込まれた基礎情報を用いて、タイヤTに存在する基準点の位置の検出精度を上げるようにしてもよい。
 ルブリケーション部2においてルブリケーション液が塗布されたタイヤTは、ルブリケーション部2から本体部4に送られる。
 [本体部]
 本体部4は、スピンドル3と、図略の回転駆動部と、ドラム15と、移載手段13と、図略のロードセルとを備えている。
 スピンドル3は、上下方向を向く軸回りにタイヤTが回転可能となるようにタイヤTを保持する。スピンドル3は上下方向を向く軸回りに回転可能に構成された棒状の部材であり、上下方向にタイヤTを挟み込むリム(図示略)を備えている。
 前記回転駆動部は、図略のベルトを介してスピンドル3を回転駆動する。
 ドラム15は、スピンドル3の径方向外側に配置され、上下方向を向く軸回りに回転可能に構成された円筒状の部材である。このドラム15は、水平方向に移動可能に構成されており、ドラム15の外周面は、スピンドル3に取り付けられたタイヤTの外周面に接触することができ、また、タイヤTから離隔することができる。
 移載手段13は、タイヤTを搬送する一対のベルトコンベアを有する。
 前記ロードセルは、例えばドラム15の回転軸に設けられている。前記ロードセルは、回転中のタイヤTからドラム15に加わる力やモーメントなどを計測することができる。タイヤ試験装置1は、ロードセルによる前記力やモーメントの計測結果に基づいてタイヤユニフォミティなどを計算可能に構成されている。
 本体部4では、複数のタイヤTについての複数のタイヤ試験が順次行われる。本体部4では、各タイヤ試験の終了時において、スピンドル3の回転原点は、予め設定された一定の位置に調節されない。すなわち、各タイヤ試験の終了時において、スピンドル3の回転原点のスピンドル3の回転軸に対する方向は、様々な方向を向き得る。図11に示す具体例においては、そのタイヤ試験の1つ前のタイヤ試験後において、タイヤTの中心からスピンドル3の回転原点に向かうベクトルは、「時計の9時」の方向を向いている。スピンドル3の回転原点は、共通座標における270°の位置に存在する。
 図12に示すように、本体部4は、原点位相検出部30と、特異点位相検出部40とをさらに備える。
 原点位相検出部30は、共通座標におけるスピンドル3の回転原点の位相を検出する。原点位相検出部30は、スピンドル3の軸心(タイヤTの回転軸)から見てスピンドル3の回転原点がどの方向に位置するかを検出できるように構成されている。原点位相検出部30は、例えばスピンドル3に設けられた図略のロータリーエンコーダなどによって構成される。
 特異点位相検出部40は、スピンドル3の回転原点からタイヤの特異点までの位相の算出に必要なタイヤの各種特性値を測定する。具体的には、本体部4においては、特異点の位相を算出するために必要な、タイヤの反発力や振れなどを測定し、その測定結果を用いて特異点の位相が算出される。前記タイヤの反発力は、例えば歪ゲージやモーメント計等によって測定される。前記タイヤの振れは、例えばレーザーセンサ等の位置計測センサによって計測される。これらの測定結果から得られる情報をタイヤTの回転角度と対応させるために、タイヤTの回転角度がロータリーエンコーダやパルスカウンタによって測定される。したがって、特異点位相検出部40は、上記のようなタイヤTの各種特性値の測定に用いられるセンサなどによって構成される。
 後述するコントローラ22における特異点位相算出部223は、特異点位相検出部40で測定したタイヤの各種特性値の測定結果を用いて、スピンドル3の回転原点からタイヤの特異点までの位相を算出する。
 本体部4において上記のようなタイヤ試験が行われることにより、タイヤTの反発力が最も大きくなる周方向の位置や質量が大きくなる位置などが「特異点」として計測される。本体部4は、特異点位相算出部223で算出された特異点の位置がマーキング部5における刻印部19の位置に合致するように、特異点が検出されたタイヤTを回転させ、本体部4からマーキング部5へ搬出するように構成されている。
 なお、本体部4で行われるタイヤ試験には、上述したタイヤユニフォミティだけでなく、外形形状の計測や動バランスの計測なども含まれる。例えば、本体部4で外形形状の計測を行う場合であれば、レーザなどを用いてタイヤの外形形状を計測する部材が設けられる。
 [マーキング部]
 マーキング部5は、上述した本体部4で行われたタイヤ試験で得られた「特異点」の位置を示すマークをタイヤTにマーキングする。例えば、本体部4でタイヤユニフォミティのタイヤ試験が行われる場合には、マーキング部5において、タイヤユニフォミティに特異性があるタイヤTの周方向の位置にユニフォミティマークが特異点としてマーキングされる。なお、外形形状の計測や動バランスの計測などの場合には、ユニフォミティマーク以外のマークをマーキングしても良い。
 具体的には、マーキング部5は、一対のコンベアベルト17と、刻印部19とを備えている。コンベアベルト17は、ルブリケーション部2と同様に、タイヤTの回転軸の方向が鉛直方向に向くようにタイヤTを水平に配置した状態でタイヤTを搬送可能である。刻印部19は、コンベアベルト17上に位置決めされたタイヤTの内周側の所定位置に対してマーキングを行う。このマーキングの際におけるタイヤTの位置決めは、例えばコンベアベルト17の動きをサーボモータで制御することによって行われる。
 [コントローラ]
 図12に示すように、コントローラ22は、記憶部221と、基準点位相算出部222と、特異点位相算出部223とを備える。
 記憶部221は、基準点位相検出部10によって検出される前記共通座標における基準点に関する情報と、原点位相検出部30によって検出される前記共通座標における回転原点に関する情報と、を記憶する。
 図11の具体例の場合、ルブリケーション部2における基準点位相検出部10によって検出される前記共通座標における基準点の位相と、本体部4における原点位相検出部30によって検出される前記共通座標における回転原点の位相との差である「β-α=90°」に基づいて、記憶部221は、タイヤTのトレーサビリティに関する情報を記憶する。当該トレーサビリティに関する情報としては、例えば、「本タイヤ試験装置1では、スピンドル3の回転原点から135°の位置に特異点が存在しその部位にマーキングがなされている。このマーキングの位置は、二次元コード(基準点)から225°の位置に対応する」という内容を挙げることができる。
 基準点位相算出部222は、ルブリケーション液の塗布後におけるタイヤTの基準点の位相を算出する。具体的に、基準点位相算出部222は、ルブリケーション液の塗布中に、前記位置検出部によって検出される前記共通座標におけるタイヤTの基準点の位置と、ルブリケーション液の塗布中に前記角度検出部によって検出されるタイヤTの回転角度とに基づいて、ルブリケーション液の塗布後におけるタイヤTの前記基準点の位相を算出するように構成されている。
 特異点位相算出部223は、基準点位相検出部10によって検出された前記基準点の位相と、原点位相検出部30によって検出された前記回転原点の位相と、特異点位相検出部40によって検出された前記回転原点から前記特異点までの位相と、に基づいて、前記基準点から前記特異点までの位相を算出する。
 このような本実施形態のタイヤ試験方法及びタイヤ試験装置1によれば、タイヤ試験において特異点の検出前にタイヤTの基準点を一定の位置に正確に位置決めしなくても、タイヤTの基準点から特異点までの位相を精度良く且つ安価な手段で得ることができ、しかも、特異点にマーキングされたことを追跡調査することが可能となる。
 本実施形態におけるトレーサビリティに関する特徴について以下により詳細に説明する。トレーサビリティを確保するためには、まず、基準点に対するマーキングの位置が、本体部4が検出した特異点の位置と一致していることが重要である。具体的に、図11に示すように、タイヤTにおける基準点としての二次元コードからマーキングの位置までの位相βによって実際のタイヤTにおいて示される位置と、タイヤ試験装置1の本体部4がタイヤ試験において検出した位相αによって示される位置とが「同じ位置」であることが重要である。同じ位置を示すようにマーキングを行うことができていれば、真にトレーサビリティに優れたタイヤ試験装置1やタイヤ試験方法ということができる。
 ここで、図11に示す具体例では、タイヤ試験装置1によるタイヤ試験によって明らかとなる情報、及び実際のタイヤTから明らかになる情報は、以下の2点を含む。
 (1)本体部4におけるタイヤ試験から得られる情報
 回転原点から135°の位置に特異点が存在する(回転原点から特異点までの位相α=135°)。
 (2)タイヤTを実測した際に得られる情報
 二次元コード(基準点)から225°の位置に特異点が存在する(基準点から特異点までの位相β=225°)。
 そして、タイヤTに関し検証を行う際、すなわちトレーサビリティの確認を行う際には、上記した情報(1)と、情報(2)だけでは不十分である。すなわち、情報(1)と情報(2)が独立しており、互いに関連付けられていない場合には、基準点に対するマーキングの位置が、本体部4によるタイヤ試験によって得られる特異点の位置、すなわち回転原点に対する特異点の位置と一致しているか否かが不明である。
 そこで、本実施形態に係るタイヤ試験装置1では、ルブリケーション部2において検出される二次元コード(基準点)の位相と、本体部4において検出されるスピンドル3の回転原点の位相とが共通の座標において表されるように、基準点位相検出部10及び原点位相検出部30は、これらの位相をそれぞれ検出する。そして、基準点位相検出部10及び原点位相検出部30は、検出された位相に関する情報をネットワーク等を介してコントローラ22に出力し、コントローラ22の記憶部221は、これらの情報を記憶する。したがって、コントローラ22は、二次元コードの位相(共通座標での位相)と回転原点の位相(共通座標での位相)との差(β-α=90°)に基づいて、上述した情報(1)と情報(2)とを関連づけることができる。
 これにより、コントローラ22は、トレーサビリティに必要不可欠な情報を履歴として残すことができ、必要であれば、外部に出力することが可能となる。具体的には、コントローラ22は、例えば、「スピンドル3の回転原点から135°の位置に特異点が存在するため、その部位にマーキングをした。このマーキングの位置は、二次元コード(基準点)から225°の位置に対応する」といった、トレーサビリティに必要不可欠な情報を履歴として残すことができる。
 さらに具体的な例を挙げて説明すれば、図11に示すように、ルブリケーション部2では、まず基準点位相検出部10(バーコードリーダ)でタイヤの二次元コードの位相(角度位置)が読み取られる。
 このようにして基準点が読み取られたタイヤTは、ルブリケーション部2で回転しながらルブリケーション液が塗布される。このようなタイヤTの回転を伴うルブリケーション液の塗布が終わった時点での基準点の位相は、図11の左図に示す具体例では、次のように表現できる。すなわち、塗布が終わった時点で基準点は、共通座標における180°の位置に存在し、タイヤTの中心から基準点に向かうベクトルは、「時計の6時」の方向を向いている。言い換えると、共通座標における基準(原点)とタイヤTの回転軸とを結ぶ直線と、基準点(二次元コード)とタイヤTの回転軸とを結ぶ直線とのなす角度は180°である。
 一方、図11の中央図の具体例に示すように、本体部4では、そのタイヤ試験の1つ前のタイヤ試験後において、タイヤTの中心からスピンドル3の回転原点に向かうベクトルが「時計の9時」の方向を向いている。言い換えると、スピンドル3の回転原点は、共通座標における270°の位置に存在する。さらに言い換えると、共通座標における基準(原点)とタイヤTの回転軸とを結ぶ直線と、スピンドル3の回転原点とタイヤTの回転軸とを結ぶ直線とのなす角度は270°である。
 この状態のスピンドル3にルブリケーション部2から搬入されたタイヤTが取り付けられ、上下方向を向く軸回りに回転し、タイヤユニフォミティなどがタイヤ試験で計測される。そして、本体部4では、このようにして計測されたタイヤユニフォミティなどの計測結果に基づいて特異点の位相が算出される(α=135°)。
 このとき、本体部4で算出された特異点の位相(角度位置)は、あくまでもスピンドル3の回転原点からの位相αに過ぎず、この位置に対してマーキング部5でマーキングが施されることとなる。つまり、本体部4からだけでの情報では、二次元コードのような基準点からどの程度回転した位置(β)に特異点があるかという情報は把握できない。
 そこで、本実施形態のタイヤ試験装置1では、「β-α=90°」というトレーサビリティに必要な情報がネットワーク等を介して、コントローラ22に受け渡されている。このため、タイヤ試験装置1では、上記情報に基づいて、「スピンドル3の回転原点から135°の位置に特異点が存在しその部位にマーキングがなされている。このマーキングの位置は、二次元コード(基準点)から225°の位置に対応する」というタイヤ基準の情報を得ることができる。
 以上述べた本実施形態のタイヤ試験装置1では、タイヤ試験において特異点の検出前にタイヤTの基準点を一定の位置に正確に位置決めしなくても、タイヤTの基準点から特異点までの位相を精度良く且つ安価な手段で得ることができ、しかも、特異点にマーキングされたことを追跡調査することが可能になる。
 更に、本実施形態では、以下に述べるような著しい作用効果を奏する。
 [1]位置決め動作を伴った回転機構(回転駆動部)の停止動作を行わず、基準点から特異点位置までの位相を算出するため、回転機構を制御するコントローラ22に対する処理が簡単なものとなる。
 [2]バーコードリーダ(基準点位相検出部)で撮像した画像データからマーキングの位置を精度良く読み取ることができ、基準点から特異点位置までの位相を高精度に算出することが可能である。
 [3]回転機構に位置決め機能を備えないものを使用できるため、回転機構を安価な構成で実現することができる。
 [4]ルブリケーション部2において基準点の位相が特定されるため、本体部4において基準点の位相を検出する必要がない。したがって、本体部4には基準点位相検出部を配置する必要がない。本体部4においては上述した特異点位相検出部(上述したタイヤTの各種特性値を測定する各種センサ)を配置すればよい。
 [5]タイヤ試験装置において必須の動作であるルブリケーション動作中に、基準点の位置の検出が行われ、ルブリケーション動作の終了時には、基準点の位相を特定することができるため、基準点の位置検出及び位相検出の工程を別途設ける必要が無く、基準点の位相検出は、タイヤ試験時間に影響を与えない。
 以上述べた本実施形態に係るタイヤ試験装置1においては、基準点として、二次元コードを使用している。この場合、幾つかの補正を施すことにより、基準点の位置をより精度よく求めることができる。
 以下、本発明の一実施形態に係るタイヤ試験方法について図9に示すフローチャートを用いて説明するとともに、二次元コードの位相を補正する方法について図5~図8などを参照しながら説明する。
 図9に示すように、コントローラ22は、ルブリケーション動作が開始されるようにルブリケーション部2を制御する(図9のステップS0)。コントローラ22は、タイヤTの回転が開始されるように回転ローラ7を制御する(ステップS1)。
 具体的には、回転ローラ7が先端側に取り付けてあるアーム部8を水平方向に揺動させ、アーム部8の先端側に位置する回転ローラ7をタイヤTの外周面へと押し当てる。回転ローラ7の回転が開始されると、回転ローラ7に組み付けてあるパルス検出器25の歯車も回転し、パルス検出器25がオンオフされる。このパルス検出器25でオンオフされたパルス信号は、入出力ユニット26を通じてコントローラ22に送られ、コントローラ22によってカウントされる。カウント数Cのデータはコントローラ22に蓄積される。
 次に、コントローラ22は、二次元コードリーダ24に対して二次元コードの読み取り開始の指令を送信する(ステップS2)。コントローラ22からの読取指令は、入出力ユニット26及び接続ボックス27を経由して二次元コードリーダ24へ送信される。この時、コントローラ22内に保存されていた座標データやコード情報などのデータはリセットされる。
 二次元コードリーダ24において二次元コードの読み取りができた場合(ステップS3においてYES)、二次元コードリーダ24は、読み取った情報をコントローラ22に送信する。具体的に、二次元コードリーダ24で読み取られた二次元コードの位置情報(例えば、検知座標(Xb、Yb))、デコード時間Tb、二次元コードのデコードによって得られる文字列情報などの信号は、二次元コードリーダ24から通信モジュール29を介してコントローラ22に送信される。
 一方、二次元コードリーダ24は、二次元コードの読み取りが正常にできない場合、二次元コードの読み取りが正常に行えるようにステップS6~S10に示す処理を行って読み取りを試行する。具体的には、次の通りである。
 読み取り開始からの時間はタイマA及びタイマBによって計測される。二次元コードリーダ24は、タイマAによる所定の時間内に二次元コードの読み取りができ、かつ、読み取り結果が不正である場合(ステップS7においてYES)、読み取り失敗の信号をコントローラ22へ出力する(ステップS8)。また、二次元コードリーダ24は、予定時間内に二次元コードの読み取りができず、かつ、タイマBによる所定の時間が経過した場合(ステップS9においてYES)、読み取りタイムアウトエラーの信号をコントローラ22へ出力する(ステップS10)。何れの場合も、コントローラ22は、ルブリケーション動作を停止し、タイヤ試験を停止するような制御を行う。
 コントローラ22は、二次元コードリーダ24からの読み取り結果を受信すると、二次元コードリーダ24に対して二次元コードの読み取り停止の指令を送信する(ステップS4)。
 また、コントローラ22は、二次元コードの文字列情報を外部のパソコン(PC)などのコンピュータ機器に送信する(図2参照)。二次元コードのデコードによって得られる文字列は、例えばタイヤの規格を示す記号である。コンピュータ機器に上記の文字列が送信されることで、コンピュータ機器からコントローラ22に対してタイヤ直径(Dt)、タイヤ幅(Dw)、リム径(Db)などの情報が送られる(後述のステップS14)。
 次に、コントローラ22は、二次元コードリーダ24に対して二次元コードの読み取り開始の指令を再度送信する(ステップS5)。当該指令は、2回目の読み取り開始の指令である。ステップS11,S18~S22は、上述したステップS3,S6~S10と同様の処理を行う。
 コントローラ22は、二次元コードリーダ24からの読み取り結果を受信すると、二次元コードリーダ24に対して二次元コードの読み取り停止の指令を送信する(ステップS12)。この時点では、二次元コードの読み取り及びルブリケーション液の塗布が完了しているので、コントローラ22は、タイヤTの回転が停止するように回転ローラ7を制御する(ステップS13)。
 外部のパソコンなどのコンピュータ機器は、タイヤ直径(Dt)、タイヤ幅(Dw)、リム径(Db)などのタイヤ情報をコントローラ22へ出力し、コントローラ22は、これらのタイヤ情報を受信する(ステップS14)。
 タイヤTの回転が停止した後、基準点位相検出部10からタイヤTの停止を示す信号がコントローラ22に送信される。コントローラ22はタイヤTの直径の算出を行う(ステップS15)。
 コントローラ22は、ルブリケーション動作が停止するようにルブリケーション部2を制御し(ステップS16)、停止角度の計算を行う(ステップS17)。以上のようにして本実施形態に係るタイヤ試験方法が実施される。以下では、タイヤTの直径の計算、停止角度の計算などについてより具体的に説明する。
 タイヤTの直径の計算は以下に示す手順に従って行われる。
 まず、図4に示す手順で画素を長さ(mm)に変換する係数を算出する。すなわち、試験対象のタイヤTの種別が変わると、タイヤTの幅が変わり、二次元コードリーダ24で光学的に観察される視野範囲(長さ)も変わる。このため、コンピュータ機器からコントローラ22に送られたタイヤ直径(Dt)、タイヤ幅(Dw)、リム径(Db)などのタイヤ情報を用いて、1ピクセル(pix)あたりの長さ(mm)を計算することができる。
 コードリーダ24の検出可能範囲は、視野の幅方向X、視野の縦方向Y、視野の高さ方向Zの3方向を用いて定義される。視野の高さ方向Zにおける、コードリーダ24の検出可能範囲の長さZwは、コードリーダ24に最も近い読み取り可能距離をZc、コードリーダから最も遠い読み取り可能距離をZsとすると、Zw=(Zs-Zc)で定義される。前記距離Zsを1048.3mmとし、コードリーダ24のZ方向の検出可能範囲における、検出に最適な位置を仮にZc+(Zw/2)=810.0mmとし、その位置におけるX方向の視野範囲の長さを222.5mm、Y方向の視野範囲の長さを170.0mmとすると、X方向の変換係数とY方向の変換係数は式(1)、式(2)で表される。
 コードリーダ24は、前記Zsの位置がタイヤの底面と一致するように設置される。
 変換係数Xp=((222.5(mm)÷810.0(mm))×(1048.3(mm)-Dw(mm)))÷1600(pix)・・・(1)
 変換係数Yp=((170.0(mm)÷810.0(mm))×(1048.3(mm)-Dw(mm)))÷1200(pix)・・・(2)
 上述した手順で得られる変換係数Xp,Ypを用いて、画素数で表記されたa点(Xa 、Ya )及びb点(Xb 、Yb )の二点間座標距離Lbcr_RDを、式(3)のようにして求めることができる。
 Lbcr_RD = √[{(Xa-Xb)×Xp}^2+{(Ya-Yb)×Yp}^2]・・・(3)
 次に、式(3)で求められた二点間距離を、タイヤTの中央を中心とする円弧であると近似的に考え、リム径の情報からa点及びb点の二点間座標の角度(θbcr_RD(deg))を式(4)のようにして求める。
 θbcr_RD(deg) =Lbcr_RD(mm)÷(Db(inch)×25.4×π)×360・・・(4)
 このようにして二点間座標の角度を計算できたら、回転ローラ7の回転角度からタイヤTの移動量、つまりルブリケーション液を塗布している間にタイヤTが回転した回転角度を求める。
 まず、回転角度を求める前に、パルス検出器25で計測されたパルスカウント値を補正する必要がある。具体的には、二次元コードリーダ24内では二次元コードの読取完了からデータ処理完了までの時間が遅れ時間となっているので、前記遅れ時間を求めてパルス検出器25でカウントされたパルスカウント値を補正する。この遅れ時間は、本実施形態では「デコード時間」と定義されるものであり、二次元コードリーダ24から通信モジュール29を介してコントローラ22に「デコード時間」を通知することで、コントローラ22で遅れ時間の分を補正することができる。
 具体的には、デコード時間の分だけパルスカウント値は正しい値よりも大きくなっているから、補正を行うためには式(5)に示すようにデコード時間の分を差し引く。なお、式(5)中の「C1」は1回目に実際に計測されたパルスカウント数であり、「C2」は2回目に実際に計測されたパルスカウント数である。言い換えれば、「C2」は「C1」よりもさらにタイヤTが回転した際に得られたパルスカウント数ということもできる。
 ルブリケーション部2でルブリケーション動作が開始されると、タイヤTが回転を始めると同時にコードリーダの読み取りも開始される。「1回目に実際に計測されたパルスカウント数」は、タイヤTが回転を始めてから基準点が1回目に計測されるパルスカウント数であり、「2回目に実際に計測されたパルスカウント数」は、前記1回目の計測後に再度コードリーダの位置に基準点が到達した時であり、前記1回目の計測からタイヤTが1周回転したときに計測されるパルスカウント数である。
 また、1回目のパルスカウントでの遅れ時間を「Ta」、2回目のパルスカウントでの遅れ時間を「Tb」とし、パルス1個あたりの時間を7.4nsとすると、補正後のパルスカウント値(P_C1、P_C2)は式(5)のように示すことができる。
 P_C1(個)=C1(個)-(Ta(ns)÷7.4(ns/個))
 P_C2(個)=C2(個)-(Tb(ns)÷7.4(ns/個))・・・(5)
 式(5)に従って、デコード時間による遅れが補正された1回目と2回目のパルスカウント値が得られたら、次にタイヤ直径の計算を実施する。一般的に、二次元コードに含まれたタイヤの直径及び幅方向の情報はタイヤの仕様値であり、実際のタイヤ直径とは異なることが多い。仕様値を用いて計算を行なうと特異点の位置に誤差が生じることがある。そのため、例えば、送信されたタイヤ直径Dtとパルスカウント値からタイヤ直径Dtaを算出し、算出したタイヤ直径Dtaとパルスカウント値から再度タイヤ直径Dtaを算出する繰り返し演算を行い、タイヤ直径Dtaのより正確な値を算出する。最初は送信されたタイヤ直径をもとにパルスカウント値からタイヤ直径の計算を例えば以下のように実施する。
 1回目の基準点の検出結果と2回目の基準点の検出結果とに基づいて、これらの二点間の座標の角度(θbcr_RD(°))は、図5及び図6のように表される。また、当該二点間の距離(Lbcr_RD(mm))を、タイヤTの中央を中心とする円弧であると近似すると、次の式(6)が成り立つ。
 (θbcr_RD÷360)×Dt×π=Lbcr_RD・・・(6)
 一方、二点間の距離Lbcr_RDに相当するパルスカウントをPulseCount_Ang(個)とすると、PulseCount_Angは、次の式(7)で表される。なお、パルスカウント値から計算されるタイヤ直径をDta(mm)とし、ローラ7の直径をDr(mm)とし、ローラ7の1回転あたりのパルス数を60(個)とする。
 PulseCount_Ang=(π×Dta×(θbcr_RD÷360))÷(π×Dr÷60)・・・(7)
 本実施形態では、ローラ7の直径Drが114mmであるので、この数値を上記式に代入すると、PulseCount_Angは、次の式(8)のように表される。
 PulseCount_Ang(個)=θbcr_RD×Dta÷684・・・(8)
 なお、2回目のパルスカウントで読み取られた読取座標の位置が、1回目のパルスカウントで読み取られた読取座標に対してどの位置にあるかによっても、処理内容を切り換える必要がある。
 つまり、図6に示すように、2回目のパルスカウントで読み取られた読取座標の位置が手前にある、言い換えれば2回目の読取座標が1回目に対してタイヤTの回転方向の反対側に位置する場合には、タイヤTは完全に一周していないので、式(9)のように座標間のパルス数を加えて補正する必要がある。
 逆に、2回目のパルスカウントで読み取られた読取座標の位置が奥にある、言い換えれば2回目の読取座標が1回目に対してタイヤTの回転方向に位置する場合には、余分にパルス数をカウントしているので、式(10)のように引いて補正する必要がある。ここで、式(9)、式(10)中のPulseCount_RDは、タイヤ1周分のパルスカウント数(個)である。
 Xb>Xaの場合、
 PulseCount_RD=(P_C2-P_C1)+PulseCount_Ang・・・(9)
 Xb<Xaの場合、
 PulseCount_RD=(P_C2-P_C1)-PulseCount_Ang・・・(10)
 このようにしてPulseCount_RDが求められたら、求められたPulseCount_RDを式(11)に代入して、タイヤTの直径Dtaを算出する。なお、式(11)における「Dr」は回転ローラ7の直径である。本実施形態では、回転ローラ7の1回転あたりのパルス数は、例えば60パルス(個)である。
 Dta=(Dr(mm) ÷60.0(個))×PulseCount_RD・・・(11)
 上述した繰り返し演算では、式(11)で算出したDtaから再度、式(6)、式(7)、式(8)、式(9)もしくは式(10)、及び式(11)を用いてDtaを算出する演算を繰り返す。
 回転ローラ7の回転停止後にアーム部8が駆動し、アーム部8が開いて開動作が完了したら、上述の手順で算出したタイヤ直径を使用して停止角度の計算を実施する。
 なお、この停止角度の計算は以下の通りである。
 すなわち、停止角度の計算は、2回目の座標の読取が完了してから、回転が停止するまでのパルス数を使用して停止角度の算出を行う。まず、2回目の読取が完了してから回転停止までにカウントされるパルス数Crは、以下の式(12)で示される。なお、式(12)における「C」は、パルスカウントの開始からタイヤTが停止した時点までのパルスカウント数である。式(12)では、カウント開始からタイヤTの停止までのパルスカウント数「C」から、2回目の二次元コード読み取り時のパルス数「P_C2」を引くことで、2回目の読み取り時からタイヤTの停止までのカウント数を算出している。
 Cr=C(個)-P_C2(個)・・・(12)
 パルス数Crを用いると、ローラ回転角度 θr及びタイヤ回転角度 θtは、式(13)のように示すことができる。なお、式(13)における「Pr」は、回転ローラ7における1パルスあたりの回転角度である(例えば1パルスあたり6deg/個)。
ローラ回転角度 θr(deg)=Cr(個)×Pr(deg/個)
タイヤ回転角度 θt(deg)=(Dr(mm)÷Dta(mm))×θr(deg)・・・(13)
 次に、上述した二次元バーコードの停止角度を求める。まず、図7に示すように、停止角度の基準となる座標中心から二次元バーコードまでの距離を求めると、式(14)のようになる。
 バーコードリーダの視野中心からバーコード検知位置までの距離:Lbcr(mm)=√[{(Xc-Xb)×Xp}^2+{(Yc-Yb)×Yp}^2]・・・(14)
 上記した式(14)より求められた距離Lbcrを用いて、さらにバーコードリーダの視野中心を基準とするバーコード検知位置の角度を式(15)のように計算する。
 バーコードリーダの視野中心を基準とするバーコード検知位置の角度:θbcr(deg)=Lbcr(mm)÷(Db(inch)×25.4×π)×360・・・(15)
 次に、図7に示すように、パルスカウント数を用いて、停止するまでの角度を計算する。 バーコードリーダ24からバーコードの停止位置までの角度をθbcとすると、θbcは式(16)のように求められる。ルブリケーション動作におけるタイヤTの回転は、バーコードリーダによる2回のバーコード検出後に停止するが、その停止位置はバーコードリーダの位置から少し行き過ぎた状態で停止する。したがって、式(16)では、タイヤTが停止したときのバーコードリーダの位置とバーコードの位置との差を算出する。なお、上述した図6の場合と同様に、XbとXcとの位置関係で処理内容を変える必要がある。
 Xb<Xcの場合
 θbc=θt+θbcr
 Xb≧Xcの場合
 θbc=θt-θbcr・・・(16)
 次に、停止角度をドラム基準で表示するために、ドラム基準の角度に置き換えて、バーコード停止位置の補正計算を実施する。この補正計算は、式(17)のようなものとなる。
 θ(deg)=θbc(deg)-θb(deg)・・・(17)
 最後に、得られた角度が0~360度の範囲になるように余剰計算を実施する。なお、式(17)の「θb」は、コンピュータ機器からコントローラ22へ送信されるリムの情報などから決定されるものである。具体的には、当該送信されるリムの情報は、図13に示す表における「センサ位置」に示すような値となる。当該センサ位置は、図8に示すように、二次元コードリーダの取付角度である。
 上述した補正方法を行えば、基準点の位置を精度よく求めることができ、基準点に基づく特異点の角度を精度良く算出することができる。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
 以上のように、タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしなくても、タイヤの基準点から特異点までの位相を精度良く且つ安価な手段で得ることができ、しかも、特異点にマーキングされたことを追跡調査することが可能なタイヤ試験方法及びタイヤ試験装置が提供される。
 提供されるタイヤ試験方法は、基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布する工程と、前記ルブリケーション液の塗布後における前記基準点の位相を検出する工程と、前記基準点の位相が表される座標と共通の共通座標におけるスピンドルの回転原点の位相を検出する工程と、前記ルブリケーション液が塗布された前記タイヤを前記スピンドル上で回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出するとともに、前記回転原点から前記特異点までの位相を検出する工程と、前記基準点の位相と、前記回転原点の位相と、前記回転原点から前記特異点までの位相とに基づいて、前記基準点から前記特異点までの位相を算出する工程と、前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とを記憶する工程と、前記特異点が存在する周方向の位置において前記タイヤにマーキングする工程と、を備える。
 このタイヤ試験方法では、タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしなくても、タイヤの基準点から特異点までの位相を精度良く且つ安価な手段で得ることができ、しかも、特異点にマーキングされたことを追跡調査することが可能になる。具体的には次の通りである。
 タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしない場合には、特異点の検出前に行われるルブリケーション液を塗布する工程はタイヤの回転を伴うため、ルブリケーション液の塗布後には、タイヤの基準点は、一定の位置(一定の位相)に位置決めされず、任意の位置(任意の位相)を取り得る。
 同様に、タイヤ試験において特異点の検出後にスピンドルの回転原点を一定の位置に正確に位置決めしない場合には、タイヤ試験の終了時には、スピンドルの回転原点は、一定の位置(一定の位相)に位置決めされず、任意の位置(任意の位相)を取り得る。したがって、次回のタイヤ試験の開始時には、スピンドルの回転原点は、一定の位置(一定の位相)に位置決めされていない状態となる。
 そこで、当該タイヤ試験方法では、ルブリケーション液の塗布後にタイヤの基準点の位相を検出するとともに、当該基準点の位相が表される座標と共通の共通座標におけるスピンドルの回転原点の位相を検出する。これにより、当該共通座標において、基準点の位相と回転原点の位相とが関連づけられるので、基準点の位相と回転原点の位相との差を得ることができる。そして、当該タイヤ試験方法では、タイヤに存在する特異点を検出するとともに、スピンドルの回転原点から特異点までの位相を検出する。このようにして得られた回転原点から特異点までの位相と、上述の基準点の位相と回転原点の位相との差とから、基準点から特異点までの位相を算出することができる。
 したがって、当該タイヤ試験方法では、タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしなくても、タイヤの基準点から特異点までの位相を精度良く得ることができる。これにより、当該タイヤ試験方法では、例えば特許文献1のようにタイヤの基準点を正確に位置決めするためにサーボモータのような複雑で高価な部品を用いる必要がない。また、仮にサーボモータを用いると、コントローラによる複雑な制御指令が多く発生するため、その分だけ処理数も多くなり、制御が非常に複雑なものとなるが、そのような問題も当該タイヤ試験方法では生じない。
 しかも、当該タイヤ試験方法では、前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とが記憶されるので、例えば不測の事態が生じた場合に特異点にマーキングが刻印されていたか否かを製造後に追跡調査することが可能になる。
 前記タイヤ試験方法において、前記基準点は、前記タイヤに刻印された二次元コードによって構成されていてもよい。
 また、前記二次元コードは、前記タイヤの直径及び幅方向の情報を含み、前記二次元コードから得られた前記タイヤの直径及び幅方向の前記情報が用いられ、前記特異点が検出されるのがよい。
 また、前記基準点の位相を検出する工程においては、前記二次元コードは、二次元コードリーダを用いて読み取られるのが好ましい。
 また、前記二次元コードリーダは、前記二次元コードよりも広い視野範囲を備えており、前記基準点の位相を検出する工程においては、前記二次元コードリーダが前記二次元コードリーダにおける視野範囲内での前記二次元コードの位置データをコントローラに入力し、前記コントローラが、前記二次元コードの前記位置データに基づいて、前記共通座標における前記二次元コードの位相を補正し、補正された前記二次元コードの位相が前記基準点の位相とされるのがよい。
 また、タイヤ試験装置は、基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布するルブリケーション部と、前記ルブリケーション部でルブリケーション液が塗布された前記タイヤをスピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出する本体部と、前記特異点が存在する周方向の位置において前記タイヤにマーキングするマーキング部と、特異点位相算出部と、記憶部と、を備える。前記ルブリケーション部は、前記ルブリケーション液の塗布後における前記基準点の位相であって前記ルブリケーション部と前記本体部と前記マーキング部とに共通する共通座標における前記基準点の位相を検出する基準点位相検出部を有する。前記本体部は、前記共通座標における前記スピンドルの回転原点の位相を検出する原点位相検出部と、前記回転原点から前記特異点までの位相を検出する特異点位相検出部と、を有する。前記特異点位相算出部は、前記基準点位相検出部によって検出された前記基準点の位相と、前記原点位相検出部によって検出された前記回転原点の位相と、前記特異点位相検出部によって検出された前記回転原点から前記特異点までの位相と、に基づいて、前記基準点から前記特異点までの位相を算出するように構成されている。前記記憶部は、前記基準点位相検出部によって検出される前記共通座標における前記基準点に関する情報と、前記原点位相検出部によって検出される前記共通座標における前記回転原点に関する情報と、を記憶するように構成されている。
 当該タイヤ試験装置では、タイヤ試験において特異点の検出前にタイヤの基準点を一定の位置に正確に位置決めしなくても、タイヤの基準点から特異点までの位相を精度良く得ることができる。これにより、当該タイヤ試験装置では、例えば特許文献1のようにタイヤの基準点を正確に位置決めするためにサーボモータのような複雑で高価な部品を用いる必要がない。
 しかも、当該タイヤ試験装置では、前記記憶部に記憶された前記情報、すなわち、前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とに基づいて、例えば不測の事態が生じた場合に特異点にマーキングが刻印されていたか否かを製造後に追跡調査することが可能になる。
 当該タイヤ試験装置では、前記基準点は、前記タイヤに刻印された二次元コードによって構成されており、前記ルブリケーション部は、前記二次元コードを読み取る二次元コードリーダを有していてもよい。
 また、当該タイヤ試験装置は、基準点位相算出部をさらに備え、前記基準点位相検出部は、前記基準点の位置を検出する位置検出部と、前記タイヤが回転した回転角度を検出する角度検出部とを有し、前記基準点位相算出部は、前記ルブリケーション液の塗布中に、前記位置検出部によって検出される前記共通座標における前記タイヤの前記基準点の位置と、前記ルブリケーション液の塗布中に前記角度検出部によって検出される前記タイヤの回転角度とに基づいて、前記ルブリケーション液の塗布後における前記タイヤの前記基準点の位相を算出するように構成されていてもよい。
 この態様では、ルブリケーション液の塗布中に位置検出部によって検出されたタイヤの基準点の位置と、ルブリケーション液の塗布中に角度検出部によって検出されるタイヤの回転角度とに基づいてルブリケーション液の塗布後におけるタイヤの基準点の位相を算出することができる。
 なお、特許文献1の技術では、目印検出位置センサが目印を検出することで回転機構の制御が行われるが、目印検出位置センサが目印のどこを検出したかは不明となっている。それゆえ、高精度な特異点の回転方向角度の精確な算出は困難となっている。一方、上記実施形態では、補正工程が実施されるので、特異点の回転方向角度の正確な算出が可能である。

 

Claims (7)

  1.  基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布する工程と、
     前記ルブリケーション液の塗布後における前記基準点の位相を検出する工程と、
     前記基準点の位相が表される座標と共通の共通座標におけるスピンドルの回転原点の位相を検出する工程と、
     前記ルブリケーション液が塗布された前記タイヤを前記スピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出するとともに、前記回転原点から前記特異点までの位相を検出する工程と、
     前記基準点の位相と、前記回転原点の位相と、前記回転原点から前記特異点までの位相とに基づいて、前記基準点から前記特異点までの位相を算出する工程と、
     前記共通座標における前記基準点に関する情報と、前記共通座標における前記回転原点に関する情報とを記憶する工程と、
     前記特異点が存在する周方向の位置において前記タイヤにマーキングする工程と、を備える、タイヤ試験方法。
  2.  前記基準点は、前記タイヤに刻印された二次元コードによって構成されている、請求項1に記載のタイヤ試験方法。
  3.  前記基準点の位相を検出する工程においては、前記二次元コードは、二次元コードリーダを用いて検出される、請求項2に記載のタイヤ試験方法。
  4.  前記二次元コードリーダは、前記二次元コードよりも広い視野範囲を備えており、
     前記基準点の位相を検出する工程においては、前記二次元コードリーダが前記二次元コードリーダにおける視野範囲内での前記二次元コードの位置データをコントローラに入力し、前記コントローラが、前記二次元コードの前記位置データに基づいて、前記共通座標における前記二次元コードの位相を補正し、補正された前記二次元コードの位相が前記基準点の位相とされる、請求項3に記載のタイヤ試験方法。
  5.  基準点が設けられたタイヤを回転させつつビード部にルブリケーション液を塗布するルブリケーション部と、
     前記ルブリケーション部でルブリケーション液が塗布された前記タイヤをスピンドルによって回転させつつタイヤ試験を行って前記タイヤに存在する特異点を検出する本体部と、
     前記特異点が存在する周方向の位置において前記タイヤにマーキングするマーキング部と、
     特異点位相算出部と、
     記憶部と、を備え、
     前記ルブリケーション部は、前記ルブリケーション液の塗布後における前記基準点の位相であって前記ルブリケーション部と前記本体部と前記マーキング部とに共通する共通座標における前記基準点の位相を検出する基準点位相検出部を有し、
     前記本体部は、前記共通座標における前記スピンドルの回転原点の位相を検出する原点位相検出部と、前記回転原点から前記特異点までの位相を検出する特異点位相検出部と、を有し、
     前記特異点位相算出部は、前記基準点位相検出部によって検出された前記基準点の位相と、前記原点位相検出部によって検出された前記回転原点の位相と、前記特異点位相検出部によって検出された前記回転原点から前記特異点までの位相と、に基づいて、前記基準点から前記特異点までの位相を算出するように構成され、
     前記記憶部は、前記基準点位相検出部によって検出される前記共通座標における前記基準点に関する情報と、前記原点位相検出部によって検出される前記共通座標における前記回転原点に関する情報と、を記憶するように構成されている、タイヤ試験装置。
  6.  前記基準点は、前記タイヤに刻印された二次元コードによって構成されており、
     前記ルブリケーション部は、前記二次元コードを読み取る二次元コードリーダを有する、請求項5に記載のタイヤ試験装置。
  7.  基準点位相算出部をさらに備え、
     前記基準点位相検出部は、前記基準点の位置を検出する位置検出部と、前記タイヤが回転した回転角度を検出する角度検出部とを有し、
     前記基準点位相算出部は、前記ルブリケーション液の塗布中に、前記位置検出部によって検出される前記共通座標における前記タイヤの前記基準点の位置と、前記ルブリケーション液の塗布中に前記角度検出部によって検出される前記タイヤの回転角度とに基づいて、前記ルブリケーション液の塗布後における前記タイヤの前記基準点の位相を算出するように構成されている、請求項5又は6に記載のタイヤ試験装置。
     

     
PCT/JP2018/011669 2017-03-28 2018-03-23 タイヤ試験方法及びタイヤ試験装置 WO2018180974A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18777709.9A EP3591369A4 (en) 2017-03-28 2018-03-23 TIRE INSPECTION PROCEDURE AND TIRE INSPECTION DEVICE
US16/495,798 US11274993B2 (en) 2017-03-28 2018-03-23 Tire testing method and tire testing device for locating a position on a tire based on a reference point on the tire and a rotation origin of a spindle
KR1020197030241A KR102236682B1 (ko) 2017-03-28 2018-03-23 타이어 시험 방법 및 타이어 시험 장치
CN201880021196.9A CN110462363B (zh) 2017-03-28 2018-03-23 轮胎试验方法以及轮胎试验装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062967 2017-03-28
JP2017-062967 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180974A1 true WO2018180974A1 (ja) 2018-10-04

Family

ID=63675701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011669 WO2018180974A1 (ja) 2017-03-28 2018-03-23 タイヤ試験方法及びタイヤ試験装置

Country Status (7)

Country Link
US (1) US11274993B2 (ja)
EP (1) EP3591369A4 (ja)
JP (1) JP7009713B2 (ja)
KR (1) KR102236682B1 (ja)
CN (1) CN110462363B (ja)
TW (1) TWI734901B (ja)
WO (1) WO2018180974A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063093B2 (ja) * 2018-05-01 2022-05-09 横浜ゴム株式会社 タイヤ製造情報把握方法および装置
WO2020122407A1 (ko) 2018-12-14 2020-06-18 (주) 엘지화학 비닐시안 화합물-공액디엔 화합물-방향족 비닐 화합물 그라프트 공중합체의 제조방법 및 이 그라프트 공중합체를 포함하는 열가소성 수지 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229171A (ja) * 1985-04-04 1986-10-13 Bridgestone Corp タイヤ情報読取方法および装置
JP2001159584A (ja) * 1999-09-22 2001-06-12 Bridgestone Corp タイヤ検査方法及び検査装置
JP2006143078A (ja) * 2004-11-22 2006-06-08 Kobe Steel Ltd ユニフォミティ装置とユニフォミティ検査ライン
US20140260583A1 (en) * 2013-03-15 2014-09-18 Kobelco Stewart Bolling, Inc. Tire testing machine
JP2015203673A (ja) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 タイヤ試験機

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1038533A (ja) * 1996-04-22 1998-02-13 Toyo Tire & Rubber Co Ltd タイヤの形状測定装置とその方法
JP2000222517A (ja) * 1998-11-27 2000-08-11 Denso Corp 2次元コ―ド読取方法、2次元コ―ド読取装置及び記録媒体
JP3516144B1 (ja) * 2002-06-18 2004-04-05 オムロン株式会社 光学情報コードの読取方法および光学情報コード読取装置
DE602004015453D1 (de) 2003-06-23 2008-09-11 Bridgestone Firestone North Am Verfahren und system zum markieren von reifen
US7213451B2 (en) * 2004-05-26 2007-05-08 Michelin Rechercheqet Technique, S.A. Tire uniformity through compensation between radial run out and stiffness variation
CN2758760Y (zh) * 2004-12-22 2006-02-15 广州华工百川自控科技有限公司 激光散斑轮胎无损检测仪
US7878402B2 (en) * 2005-12-20 2011-02-01 Cognex Technology And Investment Corporation Decoding distorted symbols
JP4890112B2 (ja) * 2006-06-13 2012-03-07 日立コンピュータ機器株式会社 画像処理装置及び画像処理方法
TWI463878B (zh) * 2009-02-19 2014-12-01 Sony Corp Image processing apparatus and method
IN2012DN05235A (ja) * 2010-01-08 2015-10-23 Nippon Telegraph & Telephone
CN201811922U (zh) * 2010-06-30 2011-04-27 软控股份有限公司 工程机械轮胎激光散斑检测装置
JP5940041B2 (ja) * 2013-11-07 2016-06-29 株式会社神戸製鋼所 タイヤ試験機の校正装置及びタイヤ試験機の校正方法
JP6184332B2 (ja) * 2014-01-16 2017-08-23 株式会社神戸製鋼所 回転ドラムのアラインメント確認装置
JP5984863B2 (ja) * 2014-01-29 2016-09-06 京セラドキュメントソリューションズ株式会社 画像処理装置
CN104677649B (zh) * 2015-03-23 2017-02-22 吉林大学 一种轮胎力学特性智能检测装置及其检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229171A (ja) * 1985-04-04 1986-10-13 Bridgestone Corp タイヤ情報読取方法および装置
JP2001159584A (ja) * 1999-09-22 2001-06-12 Bridgestone Corp タイヤ検査方法及び検査装置
JP4540205B2 (ja) 1999-09-22 2010-09-08 株式会社ブリヂストン タイヤ検査方法及び検査装置
JP2006143078A (ja) * 2004-11-22 2006-06-08 Kobe Steel Ltd ユニフォミティ装置とユニフォミティ検査ライン
US20140260583A1 (en) * 2013-03-15 2014-09-18 Kobelco Stewart Bolling, Inc. Tire testing machine
JP2015203673A (ja) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 タイヤ試験機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3591369A4

Also Published As

Publication number Publication date
US20200025650A1 (en) 2020-01-23
US11274993B2 (en) 2022-03-15
CN110462363B (zh) 2021-07-06
KR20190129090A (ko) 2019-11-19
EP3591369A1 (en) 2020-01-08
CN110462363A (zh) 2019-11-15
JP2018165717A (ja) 2018-10-25
TW201901127A (zh) 2019-01-01
EP3591369A4 (en) 2020-12-23
JP7009713B2 (ja) 2022-01-26
KR102236682B1 (ko) 2021-04-06
TWI734901B (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
JP6149337B1 (ja) 表面形状測定装置
US6785973B1 (en) Measuring device comprising a movable measuring probe
EP2426475B1 (en) Method and apparatus for measuring tire performance
EP2793013B1 (en) Automotive shop service apparatus having means for determining the rolling resistance coefficient of a tyre
WO2018180974A1 (ja) タイヤ試験方法及びタイヤ試験装置
CN109654998B (zh) 车轮检测方法及***
JP2010067905A (ja) ウエハのアライメント方法及び装置
GB2547088A (en) Method for carrying out measurements with a test element in a coordinate measuring machine or a machine tool
JP6743351B2 (ja) 真円度測定機の心ずれ量算出方法及び真円度測定機
CN105526868B (zh) 位移测定方法和位移测定装置
JP4897951B2 (ja) 管状体の振れ測定方法及びその装置
JP5581703B2 (ja) ねじれ量測定装置
US8219348B2 (en) Method for calibrating and/or correcting a display device having a needle, the needle being able to move in rotation about an axis of rotation
CN100373127C (zh) 镜片偏芯测定方法及其***
KR20170074594A (ko) 코일의 빌드업 측정 장치
JP3675596B2 (ja) 偏心打栓量測定機
KR20040056097A (ko) 권취 코일의 텔레스코프 측정장치
KR20020066591A (ko) 인쇄기의 피딩 오차 보정장치 및 방법
JP2022150660A (ja) タイヤ用マーク検出器
CN115540797A (zh) 传感数据处理方法
JP2019194525A (ja) 角度測定システム
JP2002090133A (ja) シャフトの測定装置およびその測定方法
JPH0493608A (ja) 水準器の感度測定方法およびその装置
JPS62807A (ja) 円または円弧等の測定機
JP2016218004A (ja) 変位検出装置、および変位検出装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777709

Country of ref document: EP

Effective date: 20190930

ENP Entry into the national phase

Ref document number: 20197030241

Country of ref document: KR

Kind code of ref document: A