WO2018180549A1 - Industrial plant construction method - Google Patents

Industrial plant construction method Download PDF

Info

Publication number
WO2018180549A1
WO2018180549A1 PCT/JP2018/010262 JP2018010262W WO2018180549A1 WO 2018180549 A1 WO2018180549 A1 WO 2018180549A1 JP 2018010262 W JP2018010262 W JP 2018010262W WO 2018180549 A1 WO2018180549 A1 WO 2018180549A1
Authority
WO
WIPO (PCT)
Prior art keywords
modules
plant
module
transport
refrigerant
Prior art date
Application number
PCT/JP2018/010262
Other languages
French (fr)
Japanese (ja)
Inventor
武司 鍛治
小林 健一
誠 山形
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2018180549A1 publication Critical patent/WO2018180549A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the present invention relates to a plant construction method including a plurality of modules.
  • an acid gas removal facility that removes an acid gas contained in a raw material gas that is an object of liquefaction treatment and a moisture contained in the raw material gas are removed.
  • Work for assembling necessary equipment such as moisture removal equipment and compression equipment for refrigerants (mixed refrigerant, propane refrigerant, etc.) used for cooling and liquefaction of raw material gas is performed.
  • the plurality of modules constituting the LNG plant support a support body (supporting the load of each module) previously installed on the plant site when the LNG plant is constructed. It is common to be installed on the foundation).
  • a module is transported from a remote site to a plant site by a transport ship, and further transported to a predetermined position by a transport vehicle in the plant site.
  • the present invention has been devised in view of such problems of the prior art, and mainly provides a method for constructing a plant capable of suppressing the generation of a space dedicated to transportation for a plurality of modules in a plant site. Objective.
  • a method for constructing a plant including a plurality of modules, each of which supports the plurality of modules in a plurality of installation areas in the plant site respectively assigned to the plurality of modules.
  • a support body installation step of installing the support body in a state protruding upward from the ground, and a transport target module of the plurality of modules, from a predetermined entry position to the plant site, of the plurality of installation areas A transporting process for transporting to one of the allocated installation areas by one or more transport vehicles; and a fixing process for fixing the transport target module transported to the allocated installation area to the support in the allocated installation area.
  • the transport vehicle has a plurality of support bodies in the installation area other than the assigned installation area. The by passing a travel path, characterized by transporting the transport object module from the entry position to the allocation mounting region.
  • the transport vehicle obstructs the plurality of supports protruding upward from the ground by passing between the plurality of supports in the installation area other than the assigned installation area as a travel route.
  • the transport target module is transported from the entry position to the plant site to the assigned installation area, so that no dedicated transport space for the transport target module is required on the plant site. Can be suppressed.
  • pairs arranged respectively on the left and right of the travel path are defined by at least a part of the plurality of support bodies so as to define the travel path.
  • a support row formed is formed.
  • a plurality of the transport vehicles are used for transporting the transport target module, and in the support body installation step, the plurality of travel routes are defined respectively.
  • a plurality of pairs of support body rows arranged on the left and right of each travel route are formed.
  • the fourth aspect of the present invention is characterized in that the pair of support body rows includes two linear support body rows arranged in parallel to each other.
  • the plurality of supports are arranged so that the intervals thereof are on the same line with respect to the module group of the same system in a direction orthogonal to the traveling direction of the transport vehicle. To do.
  • the sixth aspect of the present invention is characterized in that, in the plurality of modules, a maximum length in a traveling direction of the transport vehicle is larger than a maximum length in a direction orthogonal to the travel direction of the transport vehicle.
  • the length of the module in the direction orthogonal to the traveling direction of the transport vehicle is reduced, it is possible to more effectively suppress the generation of a space dedicated for transport for a plurality of modules.
  • the plurality of modules include a plurality of modules that respectively use the travel routes that do not overlap with each other in the transporting process, and each of the travel routes extends in the same direction. It is characterized by that.
  • the plant is a natural gas liquefaction plant.
  • At least one of the plurality of modules includes an acid gas removal facility that removes acid gas contained in the source gas, and a moisture removal facility that removes moisture contained in the source gas. And at least one of liquefaction equipment for liquefying the source gas using a refrigerant.
  • an LNG plant including a plurality of facilities (an acid gas removal facility, a moisture removal facility, a liquefaction facility, etc.), it is possible to suppress the generation of space dedicated to transportation for a plurality of modules.
  • the plant comprises a natural gas liquefaction plant
  • the module belonging to at least one of the plurality of modules is an acid that removes acid gas contained in the raw material gas.
  • the one of the plurality of modules A module belonging to another series different from the series includes a refrigerant compression facility for liquefying the raw material gas.
  • the module including the refrigerant compression facility (refrigerant compressor) is separated from the module including the acid gas removal facility, the moisture removal facility, the liquefaction facility, and the like, thereby suppressing an increase in the size of each module.
  • refrigerant compression facility refrigerant compressor
  • FIG. 1 is a schematic configuration diagram of a natural gas liquefaction plant (hereinafter referred to as “LNG plant”) 1 according to an embodiment of the present invention.
  • LNG plant natural gas liquefaction plant
  • FIG. 1 each piping which conveys source gas etc. is typically shown with the line containing the arrow.
  • the LNG plant 1 is composed of a plurality of facilities that cool a raw material gas (natural gas that is a target of liquefaction treatment) to generate liquefied natural gas (LNG).
  • the LNG plant 1 includes an absorption tower 2 that removes the acidic gas contained in the raw material gas, a regeneration tower 3 that regenerates the absorption liquid (solution) used in the absorption tower 2, and moisture contained in the raw material gas.
  • Gas-liquid separation device 4 for separating, moisture removing devices 5A to 5C for removing moisture contained in the source gas, and source gas from which unnecessary components (acid gas, heavy component, moisture, mercury, etc.) have been removed
  • a liquefying device 6 for liquefying is provided.
  • the absorption tower 2 consists of a tray tower provided with shelves at regular intervals inside the tower, and is removed by countercurrent-contacting the absorbent with the raw material gas supplied via the raw material gas transport pipe L1.
  • the target component here, acid gas and heavy component
  • the raw material gas from which the component to be removed is removed in the absorption tower 2 is sent from the top of the tower to the gas-liquid separation device 4 through the raw material gas transport pipe L2.
  • the absorbing liquid that has absorbed the component to be removed is sent to the regeneration tower 3.
  • the regeneration tower 3 is provided with a shelf similar to the absorption tower 2, and the removal target component is separated from the absorption liquid by treating the absorption liquid at a predetermined pressure and temperature.
  • the absorption liquid from the absorption tower 2 is supplied from the upper part of the tower via the absorption liquid transport pipe L3 and falls in the tower.
  • a reboiler 11 serving as a heat source for the regeneration tower 3 is provided in the circulation pipe L4 connected to the bottom of the regeneration tower 3. Thereby, a part of the absorption liquid discharged from the tower bottom is heated by heat exchange with the heat medium supplied to the reboiler 11 from the outside, and then circulates in the regeneration tower 3.
  • An acid gas component such as carbon dioxide is recovered from the discharge pipe L5 connected to the top of the regeneration tower 3.
  • a heavy component (heavy hydrocarbon such as benzene) is recovered from the discharge pipe L6 branched from the circulation pipe L4 of the regeneration tower 3.
  • the absorption liquid from which the component to be removed has been separated in the regeneration tower 3 is supplied again to the upper part of the absorption tower 2 via the absorption liquid transport pipe L7.
  • a heat exchanger 12 is provided between the absorbing liquid transport pipe L3 and the absorbing liquid transport pipe L7, and the lower temperature absorbing liquid flowing through the absorbing liquid transport pipe L3 absorbs the higher temperature than flowing through the absorbing liquid transport pipe L7. After being heated by heat exchange with the liquid, it is supplied to the regeneration tower 3, while the absorbent flowing through the absorbent transport pipe L7 is cooled by the heat exchange and then supplied to the absorption tower 2.
  • the absorption liquid is a known chemical absorbent that absorbs acidic gas components such as carbon dioxide, hydrogen sulfide, mercaptan, and carbonyl sulfide based on a chemical reaction, and heavy hydrocarbons such as benzene, toluene, and xylene contained in the source gas. It is a mixed absorbent containing a known physical absorbent that physically absorbs (heavy content) in a predetermined ratio. Further, the absorbing liquid contains water at a predetermined ratio.
  • the absorption tower 2 and the regeneration tower 3 and the devices and equipment attached thereto constitute an acid gas removal facility 61 that removes the acid gas contained in the raw material gas.
  • the acid gas removal equipment 61 as long as the acid gas contained in the raw material gas can be removed, not only the absorption tower 2 and the regeneration tower 3 described above, but also other known apparatuses and devices are employed. Is possible.
  • the raw material gas removed in the absorption tower 2 until the component to be removed becomes a predetermined concentration or less is cooled by the precooling heat exchanger 15 provided on the raw material gas transport pipe L2, and then sent to the gas-liquid separation device 4. .
  • Propane refrigerant is used for cooling in the precooling heat exchanger 15, whereby moisture in the raw material gas is condensed and discharged to the outside as a liquid phase component in the gas-liquid separator 4 from the discharge pipe L ⁇ b> 8.
  • the source gas separated as the gas phase component in the gas-liquid separator 4 is supplied to the plurality of moisture removing devices 5A to 5C via the source gas transport pipe L9.
  • the water removing devices 5A to 5C are composed of a dehydration tower filled with a known moisture absorbent that physically adsorbs water.
  • the dehydration process is performed until the moisture in the raw material gas is reduced to a predetermined ratio or less in order to prevent troubles caused by freezing in the subsequent liquefaction process.
  • the source gas from which moisture has been removed in the moisture removing devices 5A to 5C is supplied to the liquefying device 6 after being cooled by the precooling heat exchanger 21 using a propane refrigerant provided on the source gas transport pipe L10.
  • the moisture removing devices 5A to 5C and the devices and equipment attached thereto constitute a moisture removing equipment 62 that removes moisture contained in the raw material gas.
  • the moisture removal equipment 62 is not limited to the above-described moisture removal devices 5A to 5C as long as moisture contained in the source gas can be removed, and other known devices and equipment can be employed. is there.
  • the liquefying device 6 is a main heat exchanger that liquefies the raw material gas from which unnecessary components such as acid gas and heavy components are removed by heat exchange with the mixed refrigerant.
  • the liquefying device 6 includes a spool-type heat exchanger in which a heat transfer tube (tube bundle) for flowing a raw material gas and a mixed refrigerant is wound in a coil shape, and is housed in a shell, but is not limited thereto.
  • Other known configurations such as plate fin heat exchange can be used as long as liquefaction of the source gas is possible.
  • the low-temperature (about ⁇ 162 ° C.) raw material gas liquefied by cooling in the liquefying device 6 is sent to a storage LNG tank (not shown) via the LNG transport pipe L11.
  • the raw material gas supplied to the liquefying device 6 may be boosted by a known compressor or the like.
  • the liquefying device 6 and the devices and equipment attached thereto constitute a liquefying facility 63 (see FIG. 2) for liquefying the source gas.
  • the liquefaction facility 63 is not limited to the above-described liquefaction facility 63 and the like as long as moisture contained in the raw material gas can be removed, but other known devices and equipment (for example, plate fin heat exchangers) It is possible to adopt.
  • the Propane pre-cooled Mixed Refrigerant method is adopted in which the raw material gas is cooled (precooled) with propane refrigerant and then cooled (liquefied) using a mixed refrigerant as described above.
  • the LNG plant 1 is provided with a propane precooling system facility for cooling with a propane refrigerant and a mixed refrigerant system facility for cooling with a mixed refrigerant.
  • the propane refrigerant compressed in the refrigerant compressor 31 is cooled and condensed in the plurality of air-cooled heat exchangers 32 and 33 via the refrigerant transport pipe L21 and then introduced into the refrigerant tank 34. Thereafter, the propane refrigerant is introduced into the air-cooled heat exchanger 35 and further cooled, precooling heat exchangers 15 and 21 for precooling the raw material gas, and heat exchangers 55 and 56 for cooling the mixed refrigerant described later. , 57, etc. (herein, collectively referred to as propane refrigerant consumption destination 36), it is used for cooling the source gas or the mixed refrigerant.
  • the propane refrigerant discharged from the propane refrigerant consumption destination 36 is introduced into a gas-liquid separator (here, a knockout drum) 37, and the vapor phase component separated therein is again supplied to the refrigerant compressor 31 via the refrigerant transport pipe L22. It is circulated in.
  • Such circulation of the propane refrigerant is a plurality of pipes (herein, collectively referred to as a first refrigerant circulation pipe L15) including the above-described refrigerant transport pipes L21 and L22 that connect the devices and devices in the propane precooling system. ).
  • a first refrigerant circulation pipe L15 including the above-described refrigerant transport pipes L21 and L22 that connect the devices and devices in the propane precooling system.
  • the propane precooling system equipment is shown independently of other devices.
  • the mixed refrigerant is boosted by the first-stage refrigerant compressor 51 and then cooled by the air-cooled heat exchanger 52, and after being boosted by the second-stage refrigerant compressor 53, the air-cooled type Cooled by the heat exchanger 54. Thereafter, the mixed refrigerant is introduced into a series of cooler groups via the refrigerant transport pipe L24, and is further supplied by high-pressure, medium-pressure, and low-pressure propane refrigerants in the refrigerant heat exchangers 55, 56, and 57 that constitute the cooler group. After being cooled, it is introduced into the refrigerant separator 58.
  • each component is again introduced into the liquefying device 6 and used for cooling the raw material gas.
  • the mixed refrigerant discharged from the liquefying device 6 is introduced into a gas-liquid separation device (here, a knockout drum) 59, and the separated vapor phase component is again supplied to the first stage refrigerant compressor via the refrigerant transport pipe L25. 51 is circulated.
  • Such a circulation of the mixed refrigerant is a plurality of pipes (herein collectively referred to as a second refrigerant circulation pipe L16) including the above-described refrigerant transport pipes L24 and L25 connecting between the devices and devices in the mixed refrigerant system. ).
  • the pre-cooling heat exchangers 15 and 21 and the heat exchangers 55, 56, and 57 and the devices and equipment attached thereto constitute a mixed refrigerant / raw material gas cooling facility 64 that removes moisture contained in the raw material gas.
  • the mixed refrigerant / raw material gas cooling facility 64 is not limited to the above-described precooling heat exchangers 15, 21 and heat exchangers 55, 56, 57, etc. as long as at least one of the mixed refrigerant and the raw material gas can be cooled. Other known devices and equipment can be employed.
  • the propane precooling system refrigerant compressor 31 and the mixed refrigerant system refrigerant compressors 51 and 53, and the devices and equipment attached thereto, are refrigerants used for cooling or liquefying the source gas (here, propane refrigerant, mixed A compression facility for compressing the refrigerant is configured.
  • a first refrigerant compression facility 65 and a second refrigerant compression facility 66 are provided as compression facilities.
  • the compression equipment is not limited to the above-described refrigerant compressors 31, 51, 53, etc., as long as the refrigerant used for cooling or liquefying the source gas can be compressed, and other known devices and equipment are employed. Is possible.
  • the configuration (type, number, and arrangement of each device and equipment) of the refrigerant compressor 31, the air-cooled heat exchangers 32, 33, and 35 and the propane refrigerant consumer 36 in the propane precooling system can be changed as appropriate. It is.
  • the configurations of the refrigerant compressors 51 and 53, the air-cooled heat exchangers 52 and 54, the refrigerant heat exchangers 55, 56, and 57 in the mixed refrigerant system can be changed as appropriate.
  • each of the precooling heat exchanger 21 and the air-cooling heat exchangers 32, 33, 35, 52, and 54 is represented by one symbol, but the pre-cooling heat exchanger 21 and the air-cooling heat exchanger are displayed.
  • Each of 32, 33, 35, 52, 54 may be constituted by a plurality of heat exchangers.
  • the refrigerant compressors 31, 51, and 53 can also be configured by a plurality of compressors.
  • the mixed refrigerant a hydrocarbon mixture containing methane, ethane and propane with nitrogen added is used, but not limited to this, as long as the desired cooling capacity can be secured, other known components may be used. Can be adopted. Further, the cooling method of the source gas is not limited to the one shown here, but a cascade method in which individual refrigeration cycles are constituted by a plurality of refrigerants (methane, ethane, propane, etc.) having different boiling points, and mixed refrigerants such as ethane and propane.
  • refrigerants methane, ethane, propane, etc.
  • DMR Double Mixed Refrigerant
  • MFC Mated Fluid Cascade
  • the raw material gas processed in the LNG plant 1 is not particularly limited.
  • natural gas obtained from a pressurized state collected from shale gas, tight sand gas, coal bed methane, or the like is used as a raw material. It can be used as a gas.
  • a method for supplying the raw material gas to the LNG plant not only the supply from a gas field or the like via a pipe but also a gas once stored in a storage tank or the like may be supplied.
  • source gas in the present specification does not mean that the gas is strictly in a gaseous state, but refers to an object (including a midway of processing) to be liquefied in the LNG plant 1.
  • the LNG plant 1 is not limited to the above-described apparatus but may be provided with other known equipment in order to remove unnecessary components in the raw material gas before the raw material gas is supplied to the liquefying device 6.
  • a mercury removal facility such as a fixed bed type adsorption tower filled with activated carbon
  • a heavy component Liquefied by heavy component removal equipment (expander, scrub column, compressor, rectifier, etc.) and liquefaction device 6 for removing relatively high freezing point components such as benzene and C5 + hydrocarbons
  • a nitrogen removal facility for adjusting the amount of nitrogen contained, and a heat transfer fluid heated by exhaust heat from the gas turbine for driving the compressor are supplied to each facility in the LNG plant 1
  • a gas turbine facility including a fuel gas supply device for adjusting the temperature and pressure of the fuel gas such as a heat
  • FIG. 2 is a plan view showing an arrangement example of main equipment in the LNG plant 1 shown in FIG.
  • the acidic gas removal equipment 61 shown in FIG. 1 is omitted for convenience of explanation.
  • FIG. 2 for the sake of convenience, the configuration of the LNG plant 1 will be described based on the front-rear direction and the left-right direction indicated by arrows in the figure.
  • the plant site 70 is provided with first to sixth modules 71 to 76 including various facilities and piping necessary for the LNG plant 1 as the main part of the LNG plant 1.
  • the first module 71 transports a fluid such as a raw material gas, various components separated from the raw material gas, LNG, a refrigerant for cooling the raw material gas, and the like.
  • a fluid such as a raw material gas, various components separated from the raw material gas, LNG, a refrigerant for cooling the raw material gas, and the like.
  • This is mainly composed of a piping portion 71a including a piping rack in which the piping is provided.
  • the second module 72 relates to a left-side piping part 72a including a piping rack in which piping connected mainly to the downstream side of the piping part 71a of the first module 71, and the moisture removing equipment 62 (see FIG. 1). It is mainly comprised from the right side installation part 72b containing an apparatus and an apparatus.
  • the third module 73 includes a left-side pipe portion 73a including a pipe rack in which pipes connected mainly to the downstream side of the pipe portion 72a of the second module 72, and a mixed refrigerant / raw material gas cooling facility 64 (see FIG. 1) and the right equipment section 73b including the apparatus and equipment.
  • the fourth module 74 is a device related to the left piping unit 74a including a piping rack in which piping connected mainly to the downstream side of the piping unit 73a of the third module 73 and the liquefaction facility 63 (see FIG. 1). And the right equipment part 74b including the equipment.
  • the fifth module 75 and the sixth module 76 are arranged on the left side of the third module 73 and the fourth module 74, respectively, and a first refrigerant compression facility 65 and a first refrigerant that compress refrigerant used for cooling or liquefying the source gas. It is mainly composed of equipment parts 75b and 76b including two refrigerant compression equipment 66 (see FIG. 1).
  • the first refrigerant compression facility 65 and the second refrigerant compression facility 66 include a propane precooling system refrigerant compressor 31, a mixed refrigerant system refrigerant compressors 51 and 53, and devices and equipment attached thereto. It can be arranged regardless of the system.
  • the “module” in this embodiment does not necessarily include the water removal equipment 62, the liquefaction equipment 63, the mixed refrigerant / raw material gas cooling equipment 64, the first refrigerant compression equipment 65, and the second refrigerant compression equipment 66. However, what is necessary is just to include the apparatus and apparatus which comprise the LNG plant 1 at least.
  • each of the pipe portions 71a to 74a main pipes having relatively large diameters such as a raw material gas transport pipe for transporting the raw material gas and an LNG transport pipe for transporting the liquefied LNG are mainly disposed.
  • a refrigerant in this case, including a plurality of air-cooled heat exchangers 32, 33, 52, 54, etc. (see FIG. 1) disposed adjacent to each other in the front-rear direction at the uppermost part of each of the piping parts 71a-74a.
  • An air-cooled heat exchanger group 69 for propane refrigerant (mixed refrigerant) is disposed.
  • a frame that supports devices and equipment related to each equipment is provided so as to be connected to a piping rack.
  • the first to fourth modules 71-74 constitute a module group of the first system 78 arranged so as to form a line in a substantially straight line along the virtual axis line X1 extending in the front-rear direction.
  • Each piping section 71a-74a is in a state of being connected between adjacent modules.
  • Each of the piping portions 71a-74a includes an edge portion extending substantially linearly along the virtual axis line X1 on one end side (here, the left side) of the first to fourth modules 71-74.
  • the first to fourth modules 71-74 are provided so that the widths in the front-rear direction are substantially the same.
  • the second to fourth modules 72-74 are provided so that the left and right widths are substantially the same.
  • the fifth and sixth modules 75 and 76 constitute a module group of the second system 79 arranged so as to be linearly arranged along the virtual axis X2 parallel to the virtual axis X1.
  • the fifth and sixth modules 75 and 76 are separated from each other, and the pipes of the first refrigerant compression facility 65 and the second refrigerant compression facility 66 are the third module 73 and the fourth module 74, respectively. Connected to other pipes.
  • the fifth and sixth modules 75 and 76 are provided so that the width in the front-rear direction and the width in the left-right direction are substantially the same.
  • first to sixth modules 71 to 76 are not necessarily limited to those including only the apparatuses and devices related to the corresponding facilities as described above, and some of the devices and apparatuses related to other facilities corresponding to the adjacent modules. May be included. Further, the number and arrangement of modules in the LNG plant 1 can be appropriately changed as long as the LNG plant 1 can be realized.
  • FIGS. 4A and 4B are explanatory views showing the outline of the transport process and the installation process of the module 73, respectively.
  • FIG. 8 is a side view showing transport vehicles 80A-80D (hereinafter collectively referred to as “transport vehicle 80” when they are not required to be distinguished) used for transporting the module 73;
  • the first to sixth modules 71 to 76 are manufactured (assembled) at a remote place (not shown) and then appropriately transported to the plant site 70 by a known transportation means such as a ship.
  • a foundation construction for installing a plurality of supports (that is, a foundation for supporting the load of each module 71-76) 90, and a transport target module (FIG. 1) among the first to sixth modules 71-76 3A--in FIG. 3C, the module 73) is moved from the predetermined entry position 70a to the plant site 70 to the assigned installation area (installation area 83 in FIGS. 3A-3C) of the installation area 81-86.
  • the transporting process transported by 80D and the transport target module transported to the assigned installation area are transferred to the support 90 in the assigned installation area.
  • each support 90 is installed in a state of protruding upward from the ground (ground) 111 as shown in FIGS. 4A and 4B.
  • a well-known structure can be employ
  • the foundation work only needs to be completed at least before the start of transportation of the first to sixth modules 71-76 in the plant site 70, and can be performed individually for the first system 78 and the second system 79. It is.
  • the plurality of supports 90 are arranged in a row so as to extend along the front-rear direction (traveling direction of the transport vehicles 80A-80D).
  • the support rows 91-95 are configured.
  • the support rows 91-93 are linearly parallel to each other, and are constituted by a plurality of supports 90 in all the installation areas 81-84 related to the first system 78.
  • the support rows 94 and 95 are linearly parallel to each other, and are constituted by a plurality of supports 90 in some installation regions 82-84.
  • the plurality of supports 90 are respectively arranged in a plurality of support rows 96-99 extending in the front-rear direction.
  • the support body rows 96 to 99 are constituted by a plurality of support bodies 90 in the installation areas 85 and 86 related to the second system 79.
  • the modules 73 are transported by transport vehicles 80A-80D arranged in four rows.
  • the modules 71 and 72 located on the far side (downstream side) in the transport direction of the module 73 are already installed in the installation areas 81 and 82.
  • the conveyance process (installation process is also the same) of the module 73 demonstrated here is applicable similarly to the other modules including those modules 71 and 72.
  • the transport vehicles 80A-80D start transporting the module 73 from the entry position 70a of the plant site 70 toward the traveling direction (rearward) indicated by the arrow while supporting the bottom of the module 73 (see FIG. 4A).
  • a known self-propelled multi-axis transport vehicle SPMT: Self-
  • SPMT Self-
  • Propelled (Module) Transporter can be used as the transport vehicle 80.
  • four transport vehicles 80A-80D are used for transporting one module 73, but the number of transport vehicles to be used can be changed as appropriate.
  • the bottom of the module 73 is provided with a plurality of legs 100 (see FIG. 4B) extending downward from the module main body at positions corresponding to the respective supports 90 in the installation region 83.
  • the plurality of leg portions 100 constitute a plurality of leg portion rows 101-105 that form a row along the front-rear direction (the traveling direction of the transport vehicles 80A-80D).
  • the transport vehicles 80A-80D use the traveling path between the plurality of supports 90 in the installation area 84 and the installation area 83 at the transport destination that are located on the upstream side in the transport direction of the module 73.
  • the module 73 is transported from the entry position 70a to the installation area 83 of the transport destination.
  • the transport vehicles 80A-80D pass between the plurality of supports 90 in the installation area 81-86 other than the assigned installation area as a travel path, so that the plurality of supports in a state of protruding upward from the ground.
  • the transport target module is transported from the entry position 70a to the plant site 70 to the assigned installation area, so that no dedicated space for transporting the transport target module is required in the plant site 70. It is possible to suppress the generation of a space dedicated to transportation for the modules 71-74 (here, the space on the right side or the left side of the plant site 70).
  • the traveling route of the transport vehicles 80A-80D is defined by the plurality of supports 90 (or at least a part of the supports 90) constituting the support rows 91-95.
  • the travel path of the transport vehicle 80A is defined as an area (ground or paved surface) between the support rows 91 and 92
  • the travel path of the transport vehicle 80B is defined as an area between the support rows 92 and 93.
  • a travel route of the transport vehicle 80C is defined as an area between the support body rows 93 and 94
  • a travel path of the transport vehicle 80D is defined as an area between the support body rows 94 and 95.
  • the supporting bodies 90 can be efficiently installed in a wider range while securing the travel routes of the plurality of transport vehicles 80A-80D in the plurality of installation regions 81-86.
  • the plurality of supports 90 constituting the support rows 91-95 are spaced apart from the first system module group in the direction (left-right direction) perpendicular to the traveling direction of the transport vehicles 80A-80D. It arrange
  • the entry position 70a to the plant site 70 is set on one end side (here, the front side) in the longitudinal direction of the LNG plant 1, but it is necessary to make the same for all the modules 71-74 of the first system 78. It is sufficient that at least two or more modules are the same. Moreover, in this embodiment, although the same approach position 70a was set about the 1st system
  • the maximum length in the traveling direction (front-rear direction) of the transport vehicles 80A-80D is set larger than the maximum length in the direction (left-right direction) orthogonal to the traveling direction of the transport vehicles 80A-80D.
  • the length of the modules 71-74 in the direction orthogonal to the traveling direction of the transport vehicles 80A-80D is reduced, so that the generation of the space dedicated to transport for the plurality of modules 71-74 can be more effectively suppressed. Is possible.
  • the number of connections between the modules in the longitudinal direction of the LNG plant 1 (the transport direction of each module) can be reduced, and the construction site ( It is possible to improve the efficiency of work on the plant site 70).
  • FIGS. 6A to 6C are explanatory diagrams showing how the modules are transported in the second system 79.
  • the three trucks 80A to 80C first have the module 75 positioned on the far side (downstream side) in the transporting direction. Transported. It should be noted that the transporting process of the module 75 described here (the same applies to the installation process) is applicable to the module 76 as well.
  • the transport vehicles 80A-80C start transporting the module 73 from the entry position 70a of the plant site 70 toward the traveling direction (rearward) indicated by the arrow while supporting the bottom of the module 75. Thereafter, as shown in FIG. 6B, the transport vehicles 80A-80C use the travel path between the plurality of support bodies 90 in the installation area 86 positioned more upstream in the transport direction of the module 75 and the installation area 85 of the transport destination. By passing, the module 75 is transported from the entry position 70a toward the installation area 85 of the transport destination.
  • the traveling route of the transport vehicles 80A-80C is defined by the plurality of supports 90 (or at least a part of the supports 90) constituting the support row 96-99.
  • the travel path of the transport vehicle 80A is defined as an area (ground) between the support rows 96 and 97
  • the travel path of the transport vehicle 80B is defined as an area between the support rows 97 and 98
  • the travel route of the transport vehicle 80C is defined as an area between 98 and 99.
  • the plurality of supports 90 constituting the support rows 96-99 are spaced apart from each other in the second group of modules in the direction (left-right direction) orthogonal to the traveling direction of the transport vehicles 80A-80C. Are arranged on the same line.
  • FIG. 7 is a plan view showing a modification of the module arrangement shown in FIG. 2, and FIG. 8 is an explanatory view showing an arrangement example of the supports in the installation area of each module shown in FIG. 7 and 8, the same reference numerals are given to the same components as those in the above example.
  • the widths in the left-right direction are set to be substantially the same in the modules 72-74.
  • the present invention is not limited to this.
  • the widths in the front-rear direction of the modules 72-74 may be set to different sizes.
  • the sizes of the equipment units 72b-74b included therein can be changed as appropriate.
  • the shape (plan view) of the module is substantially rectangular.
  • a shape other than the rectangular shape is possible as in the module 72 in FIG.
  • a plurality of support bodies 90 are arranged in a row along the front-rear direction in the installation area 81-84. 191 to 196 are provided.
  • the support rows 91-93 are linearly parallel to each other, and are constituted by a plurality of supports 90 in all the installation areas 81-84 related to the first system 78.
  • the support rows 94 and 95 are linearly parallel to each other, and are constituted by a plurality of supports 90 in some installation regions 82-84.
  • the support row 96 has a linear shape substantially parallel to the support row 91-95, and is constituted by a plurality of supports 90 in a part of the installation region 83.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

[Problem] To suppress assignment of space dedicated to transportation for a plurality of modules at an industrial plant site. [Solution] The present invention comprises: a support body installation step for installing, in the state of projecting upward from ground 11, a plurality of support bodies 90 for respectively supporting a plurality of modules 71-76, in a plurality of mounting regions 81-86 that are assigned respectively to the plurality of modules 71-76, and that are located inside an industrial plant site 70; a transportation step for transporting a transportation subject module by at least one transportation vehicle 80 from a predetermined location 70a for entry into the industrial plant site 70 to an assigned mounting region; and a mounting step for fixing, to a support body 90 in the assigned mounting region, the transportation subject module transported to the assigned mounting region, wherein in the transportation step, the transportation vehicle 80 transports the transportation subject module from the location 70a for entry to the assigned mounting region by passing through a travel path extending between support bodies 90 in mounting regions located outside the assigned mounting region.

Description

プラントの建設方法Plant construction method
 本発明は、複数のモジュールを含むプラントの建設方法に関する。 The present invention relates to a plant construction method including a plurality of modules.
 従来、例えば、LNGプラント(天然ガスの液化プラント)の建設では、液化処理の対象である原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備や、原料ガス中に含まれる水分を除去する水分除去設備や、原料ガスの冷却や液化に用いられる冷媒(混合冷媒、プロパン冷媒等)の圧縮設備などの必要な設備を建設現場にて組み立てる作業が行われる。 Conventionally, for example, in the construction of an LNG plant (natural gas liquefaction plant), an acid gas removal facility that removes an acid gas contained in a raw material gas that is an object of liquefaction treatment and a moisture contained in the raw material gas are removed. Work for assembling necessary equipment such as moisture removal equipment and compression equipment for refrigerants (mixed refrigerant, propane refrigerant, etc.) used for cooling and liquefaction of raw material gas is performed.
 一方で、そのようなLNGプラントを構成する各設備や、それら設備に含まれる装置や機器等を予め遠隔地において複数のモジュールとして組み立てた後、それらのモジュールを建設現場に運搬することにより、上述のような建設現場での作業を効率化する技術が知られている(特許文献1参照)。 On the other hand, after assembling each facility that constitutes such an LNG plant and devices and equipment included in these facilities in advance as a plurality of modules, the modules are transported to the construction site to A technique for improving the efficiency of work at a construction site such as is known (see Patent Document 1).
特開2016-514823号公報JP 2016-514823 A
 ところで、上記特許文献1に記載のようなLNGプラントでは、LNGプラントを構成する複数のモジュールは、LNGプラントの建設の際に、プラント用地に予め設置された支持体(各モジュールの荷重を支持する基礎)上に据え付けられるのが一般的である。そのようなモジュールは、遠隔地から運搬船によりプラント用地まで運搬された後、さらに、プラント用地内において運搬車によって所定位置まで運搬される。 By the way, in the LNG plant as described in the above-mentioned Patent Document 1, the plurality of modules constituting the LNG plant support a support body (supporting the load of each module) previously installed on the plant site when the LNG plant is constructed. It is common to be installed on the foundation). Such a module is transported from a remote site to a plant site by a transport ship, and further transported to a predetermined position by a transport vehicle in the plant site.
 しかしながら、上記特許文献1(例えば、図2(a))に記載のようなLNGプラントにおいて、支持体の施工には時間がかかるためモジュールが運搬される前に所定位置及び周囲の支持体施工を終える必要があり、各モジュール用の支持体が設けられた場合、運搬対象のモジュールをプラント用地内の所定位置まで運搬する際には、他のモジュール用の支持体と運搬車との干渉を避ける(すなわち、他のモジュールが設置される領域を通らないルートを運搬する)ために、LNGプラントの長手方向(すなわち、複数のモジュールが配列される方向)と直交する方向に運搬対象のモジュールを移動させる必要がある。 However, in the LNG plant as described in the above-mentioned Patent Document 1 (for example, FIG. 2A), it takes time to construct the support, so that it is necessary to construct the predetermined support and surrounding support before the module is transported. When the support for each module needs to be finished, when the module to be transported is transported to a predetermined position in the plant site, avoid interference between the support for other modules and the transport vehicle. Move the module to be transported in a direction perpendicular to the longitudinal direction of the LNG plant (that is, the direction in which multiple modules are arranged) to transport the route that does not pass through the area where other modules are installed. It is necessary to let
 したがって、そのような従来のモジュールの運搬方法では、各モジュールに対する運搬専用のスペースを確保する必要があるため、LNGプラントの建設のために確保すべきプラント用地が増大するという不都合がある。 Therefore, in such a conventional method of transporting modules, it is necessary to secure a dedicated space for transporting each module, and there is a disadvantage that the plant site to be secured for the construction of the LNG plant increases.
 本発明は、このような従来技術の課題を鑑みて案出されたものであり、プラント用地において、複数のモジュールに対する運搬専用のスペースの発生を抑制可能なプラントの建設方法を提供することを主目的とする。 The present invention has been devised in view of such problems of the prior art, and mainly provides a method for constructing a plant capable of suppressing the generation of a space dedicated to transportation for a plurality of modules in a plant site. Objective.
 本発明の第1の側面では、複数のモジュールを含むプラントの建設方法であって、前記複数のモジュールにそれぞれ割り当てられたプラント用地内の複数の据付領域において、前記複数のモジュールをそれぞれ支持する複数の支持体を地盤から上方に突出した状態で設置する支持体設置工程と、前記複数のモジュールのうちの運搬対象モジュールを、前記プラント用地への所定の進入位置から前記複数の据付領域のうちの割り当て据付領域まで1以上の運搬車によって運搬する運搬工程と、前記割り当て据付領域まで運搬された前記運搬対象モジュールを、前記割り当て据付領内の前記支持体に対して固定する据付工程と、を有し、前記運搬工程では、前記運搬車が、前記割り当て据付領域以外の前記据付領域における前記複数の支持体の間を走行経路として通過することにより、前記進入位置から前記割り当て据付領域まで前記運搬対象モジュールを運搬することを特徴とする。 According to a first aspect of the present invention, there is provided a method for constructing a plant including a plurality of modules, each of which supports the plurality of modules in a plurality of installation areas in the plant site respectively assigned to the plurality of modules. A support body installation step of installing the support body in a state protruding upward from the ground, and a transport target module of the plurality of modules, from a predetermined entry position to the plant site, of the plurality of installation areas A transporting process for transporting to one of the allocated installation areas by one or more transport vehicles; and a fixing process for fixing the transport target module transported to the allocated installation area to the support in the allocated installation area. In the transporting process, the transport vehicle has a plurality of support bodies in the installation area other than the assigned installation area. The by passing a travel path, characterized by transporting the transport object module from the entry position to the allocation mounting region.
 これによれば、運搬工程において、運搬車が、割り当て据付領域以外の据付領域における複数の支持体の間を走行経路として通過することにより、地盤から上方に突出した状態の複数の支持体に阻害されることなく、プラント用地への進入位置から割り当て据付領域まで運搬対象モジュールを運搬する構成としたため、プラント用地において、運搬対象モジュールに対する運搬専用のスペースが不要となり、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 According to this, in the transporting process, the transport vehicle obstructs the plurality of supports protruding upward from the ground by passing between the plurality of supports in the installation area other than the assigned installation area as a travel route. As a result, the transport target module is transported from the entry position to the plant site to the assigned installation area, so that no dedicated transport space for the transport target module is required on the plant site. Can be suppressed.
 本発明の第2の側面では、前記支持体設置工程では、前記複数の支持体のうちの少なくとも一部により、前記走行経路を画定するように、前記走行経路の左右にそれぞれ配置された対をなす支持体列が形成されたことを特徴とする。 In the second aspect of the present invention, in the support body installation step, pairs arranged respectively on the left and right of the travel path are defined by at least a part of the plurality of support bodies so as to define the travel path. A support row formed is formed.
 これによれば、割り当て据付領域以外の据付領域における運搬車の走行経路を確保しつつ、各支持体を効率的に設置することが可能となる。 According to this, it becomes possible to efficiently install each support body while securing the traveling route of the transport vehicle in the installation area other than the assigned installation area.
 本発明の第3の側面では、前記運搬工程では、前記運搬対象モジュールの運搬に複数の前記運搬車が用いられ、前記支持体設置工程では、複数の前記走行経路をそれぞれ画定するように、前記各走行経路の左右にそれぞれ配置された複数組の前記対をなす支持体列が形成されたことを特徴とする。 In the third aspect of the present invention, in the transporting step, a plurality of the transport vehicles are used for transporting the transport target module, and in the support body installation step, the plurality of travel routes are defined respectively. A plurality of pairs of support body rows arranged on the left and right of each travel route are formed.
 これによれば、割り当て据付領域以外の据付領域における複数の運搬車の走行経路を確保しつつ、各支持体をより広い範囲で効率的に設置することが可能となる。 According to this, it is possible to efficiently install each support body in a wider range while securing the traveling routes of the plurality of transport vehicles in the installation area other than the assigned installation area.
 本発明の第4の側面では、前記対をなす支持体列は、互いに平行に配置された直線状の2つの支持体列からなることを特徴とする。 The fourth aspect of the present invention is characterized in that the pair of support body rows includes two linear support body rows arranged in parallel to each other.
 これによれば、複数の据付領域における運搬車の走行が容易な走行経路を確保しつつ、各支持体を簡易かつ効率的に設置することが可能となる。 According to this, it is possible to easily and efficiently install each support body while ensuring a travel route that facilitates traveling of the transport vehicle in a plurality of installation areas.
 本発明の第5の側面では、前記複数の支持体は、前記運搬車の走行方向と直交する方向において、その間隔が同一系統のモジュール群に対し同一線上に位置するよう配置することを特徴とする。 In the fifth aspect of the present invention, the plurality of supports are arranged so that the intervals thereof are on the same line with respect to the module group of the same system in a direction orthogonal to the traveling direction of the transport vehicle. To do.
 これによれば、複数の支持体を簡易かつ効率的に設置しつつ、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 According to this, it becomes possible to suppress the generation of a dedicated space for transporting a plurality of modules while easily and efficiently installing a plurality of supports.
 本発明の第6の側面では、前記複数のモジュールでは、前記運搬車の走行方向における最大長さが前記運搬車の走行方向と直交する方向における最大長さよりも大きいことを特徴とする。 The sixth aspect of the present invention is characterized in that, in the plurality of modules, a maximum length in a traveling direction of the transport vehicle is larger than a maximum length in a direction orthogonal to the travel direction of the transport vehicle.
 これによれば、運搬車の走行方向と直交する方向のモジュールの長さが低減されるため、複数のモジュールに対する運搬専用のスペースの発生をより効果的に抑制することが可能となる。また、より多くのモジュールを用いてプラントを構成する場合には、プラントの長手方向(各モジュールの運搬方向)における各モジュール間の接続部の数を減少させることが可能となり、建設現場での作業を効率化することが可能となる。 According to this, since the length of the module in the direction orthogonal to the traveling direction of the transport vehicle is reduced, it is possible to more effectively suppress the generation of a space dedicated for transport for a plurality of modules. In addition, when configuring a plant using more modules, it is possible to reduce the number of connections between each module in the longitudinal direction of the plant (transport direction of each module), and work on the construction site Can be made more efficient.
 本発明の第7の側面では、前記複数のモジュールは、前記運搬工程において互いに重複しない前記走行経路をそれぞれ利用する複数系列のモジュールを含み、前記走行経路の各々は、互いに同一方向に延在することを特徴とする。 In the seventh aspect of the present invention, the plurality of modules include a plurality of modules that respectively use the travel routes that do not overlap with each other in the transporting process, and each of the travel routes extends in the same direction. It is characterized by that.
 これによれば、複数系列のモジュールを含むプラントにおいて、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 According to this, in a plant including a plurality of series of modules, it is possible to suppress the generation of a dedicated space for the plurality of modules.
 本発明の第8の側面では、前記プラントは、天然ガスの液化プラントからなることを特徴とする。 In the eighth aspect of the present invention, the plant is a natural gas liquefaction plant.
 これによれば、LNGプラントにおいて、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 According to this, in the LNG plant, it becomes possible to suppress the generation of space dedicated for transportation for a plurality of modules.
 本発明の第9の側面では、前記複数のモジュールのうちの少なくとも1つは、原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備、原料ガス中に含まれる水分を除去する水分除去設備、及び冷媒を用いて原料ガスを液化する液化設備のうちの少なくとも1つを含むことを特徴とする。 In a ninth aspect of the present invention, at least one of the plurality of modules includes an acid gas removal facility that removes acid gas contained in the source gas, and a moisture removal facility that removes moisture contained in the source gas. And at least one of liquefaction equipment for liquefying the source gas using a refrigerant.
 これによれば、複数の設備(酸性ガス除去設備、水分除去設備、及び液化設備等)を含むLNGプラントにおいて、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 According to this, in an LNG plant including a plurality of facilities (an acid gas removal facility, a moisture removal facility, a liquefaction facility, etc.), it is possible to suppress the generation of space dedicated to transportation for a plurality of modules.
 本発明の第10の側面では、前記プラントは、天然ガスの液化プラントからなり、前記複数系列のモジュールのうちの少なくとも1つの系列に属するモジュールは、原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備、原料ガス中に含まれる水分を除去する水分除去設備、及び冷媒を用いて原料ガスを液化する液化設備のうちの少なくとも1つを含み、前記複数系列のモジュールのうちの前記1つの系列とは異なる他の系列に属するモジュールは、原料ガスを液化するための冷媒の圧縮設備を含むことを特徴とする。 In a tenth aspect of the present invention, the plant comprises a natural gas liquefaction plant, and the module belonging to at least one of the plurality of modules is an acid that removes acid gas contained in the raw material gas. Including at least one of a gas removal facility, a moisture removal facility for removing moisture contained in the source gas, and a liquefaction facility for liquefying the source gas using a refrigerant, the one of the plurality of modules A module belonging to another series different from the series includes a refrigerant compression facility for liquefying the raw material gas.
 これによれば、複数系列のモジュールを含むLNGプラントにおいて、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。この場合、冷媒の圧縮設備(冷媒用コンプレッサ)を含むモジュールを、酸性ガス除去設備、水分除去設備、及び液化設備等を含むモジュールとは別系統とすることにより、各モジュールの大型化を抑制することができるという利点もある。 According to this, in an LNG plant including a plurality of modules, it is possible to suppress the generation of a dedicated space for the plurality of modules. In this case, the module including the refrigerant compression facility (refrigerant compressor) is separated from the module including the acid gas removal facility, the moisture removal facility, the liquefaction facility, and the like, thereby suppressing an increase in the size of each module. There is also an advantage of being able to.
 このように本発明によれば、簡易な構成により、プラント用地において、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 As described above, according to the present invention, it is possible to suppress the generation of a space dedicated to transportation for a plurality of modules in a plant site with a simple configuration.
実施形態に係る天然ガスの液化プラントの概略構成図Schematic configuration diagram of a natural gas liquefaction plant according to an embodiment 図1に示した天然ガスの液化プラントにおける主要設備の配置例を示す平面図The top view which shows the example of arrangement | positioning of the main equipment in the natural gas liquefaction plant shown in FIG. 第1系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of the conveyance of the module in the 1st system 第1系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of the conveyance of the module in the 1st system 第1系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of the conveyance of the module in the 1st system モジュールの運搬工程および据付工程の概略を示す説明図Explanatory drawing showing the outline of the module transportation process and installation process モジュールの運搬工程および据付工程の概略を示す説明図Explanatory drawing showing the outline of the module transportation process and installation process モジュールの運搬に用いる運搬車を示す側面図Side view showing a transport vehicle used to transport modules 第2系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of transportation of the module in the 2nd system 第2系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of transportation of the module in the 2nd system 第2系統におけるモジュールの運搬の様子を示す説明図Explanatory drawing which shows the mode of transportation of the module in the 2nd system 図2に示したモジュール配置の変形例を示す平面図The top view which shows the modification of the module arrangement | positioning shown in FIG. 図7に示した各モジュールの据付領域における支持体の配置例を示す説明図Explanatory drawing which shows the example of arrangement | positioning of the support body in the installation area | region of each module shown in FIG.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明の実施形態に係る天然ガスの液化プラント(以下、「LNGプラント」という。)1の概略構成図である。図1では、原料ガス等を輸送する各配管が矢印を含む線で模式的に示されている。 FIG. 1 is a schematic configuration diagram of a natural gas liquefaction plant (hereinafter referred to as “LNG plant”) 1 according to an embodiment of the present invention. In FIG. 1, each piping which conveys source gas etc. is typically shown with the line containing the arrow.
 LNGプラント1は、原料ガス(液化処理の対象である天然ガス)を冷却して液化天然ガス(LNG)を生成する複数の設備からなる。LNGプラント1には、原料ガスに含まれる酸性ガスを除去する吸収塔2と、吸収塔2で使用された吸収液(溶液)を再生する再生塔3と、原料ガスに含まれる水分を気液分離する気液分離装置4と、原料ガスに含まれる水分を除去する水分除去装置5A~5Cと、不要な成分(酸性ガス、重質分、水分、及び水銀等)が除去された原料ガスを液化する液化装置6とが設けられている。 The LNG plant 1 is composed of a plurality of facilities that cool a raw material gas (natural gas that is a target of liquefaction treatment) to generate liquefied natural gas (LNG). The LNG plant 1 includes an absorption tower 2 that removes the acidic gas contained in the raw material gas, a regeneration tower 3 that regenerates the absorption liquid (solution) used in the absorption tower 2, and moisture contained in the raw material gas. Gas-liquid separation device 4 for separating, moisture removing devices 5A to 5C for removing moisture contained in the source gas, and source gas from which unnecessary components (acid gas, heavy component, moisture, mercury, etc.) have been removed A liquefying device 6 for liquefying is provided.
 吸収塔2は、塔の内部に一定の間隔で棚段が設けられた棚段塔からなり、原料ガス輸送配管L1を介して供給された原料ガスに吸収液を向流接触させることにより、除去対象成分(ここでは、酸性ガスおよび重質分)を吸収液に吸収させる。吸収塔2において除去対象成分が除去された原料ガスは、その塔頂部から原料ガス輸送配管L2を介して気液分離装置4に送られる。一方、除去対象成分を吸収した吸収液は再生塔3に送られる。 The absorption tower 2 consists of a tray tower provided with shelves at regular intervals inside the tower, and is removed by countercurrent-contacting the absorbent with the raw material gas supplied via the raw material gas transport pipe L1. The target component (here, acid gas and heavy component) is absorbed by the absorption liquid. The raw material gas from which the component to be removed is removed in the absorption tower 2 is sent from the top of the tower to the gas-liquid separation device 4 through the raw material gas transport pipe L2. On the other hand, the absorbing liquid that has absorbed the component to be removed is sent to the regeneration tower 3.
 再生塔3には、吸収塔2と同様に棚段が設けられており、所定の圧力および温度で吸収液を処理することにより、除去対象成分を吸収液から離脱させる。再生塔3では、吸収塔2からの吸収液が吸収液輸送配管L3を介して塔の上部から供給されて塔内を落下する。再生塔3の塔底部に接続された循環配管L4には、再生塔3の熱源となるリボイラ11が設けられている。これにより、塔底部から排出される吸収液の一部は、外部からリボイラ11に供給される熱媒体との熱交換によって加熱された後に、再生塔3内に循環する。再生塔3の塔頂部に接続された排出配管L5からは、二酸化炭素等の酸性ガス成分が回収される。また、再生塔3の循環配管L4から分岐した排出配管L6からは、重質分(ベンゼン等の重質炭化水素)が回収される。 The regeneration tower 3 is provided with a shelf similar to the absorption tower 2, and the removal target component is separated from the absorption liquid by treating the absorption liquid at a predetermined pressure and temperature. In the regeneration tower 3, the absorption liquid from the absorption tower 2 is supplied from the upper part of the tower via the absorption liquid transport pipe L3 and falls in the tower. A reboiler 11 serving as a heat source for the regeneration tower 3 is provided in the circulation pipe L4 connected to the bottom of the regeneration tower 3. Thereby, a part of the absorption liquid discharged from the tower bottom is heated by heat exchange with the heat medium supplied to the reboiler 11 from the outside, and then circulates in the regeneration tower 3. An acid gas component such as carbon dioxide is recovered from the discharge pipe L5 connected to the top of the regeneration tower 3. A heavy component (heavy hydrocarbon such as benzene) is recovered from the discharge pipe L6 branched from the circulation pipe L4 of the regeneration tower 3.
 再生塔3において除去対象成分が分離された吸収液は、吸収液輸送配管L7を介して再び吸収塔2の上部に供給される。吸収液輸送配管L3および吸収液輸送配管L7の間には熱交換器12が設けられており、吸収液輸送配管L3を流れるより低温の吸収液が、吸収液輸送配管L7を流れるより高温の吸収液との熱交換によって加熱された後に再生塔3に供給される一方、吸収液輸送配管L7を流れる吸収液は、その熱交換によって冷却された後に吸収塔2に供給される。 The absorption liquid from which the component to be removed has been separated in the regeneration tower 3 is supplied again to the upper part of the absorption tower 2 via the absorption liquid transport pipe L7. A heat exchanger 12 is provided between the absorbing liquid transport pipe L3 and the absorbing liquid transport pipe L7, and the lower temperature absorbing liquid flowing through the absorbing liquid transport pipe L3 absorbs the higher temperature than flowing through the absorbing liquid transport pipe L7. After being heated by heat exchange with the liquid, it is supplied to the regeneration tower 3, while the absorbent flowing through the absorbent transport pipe L7 is cooled by the heat exchange and then supplied to the absorption tower 2.
 吸収液は、二酸化炭素、硫化水素、メルカプタン、及び硫化カルボニル等の酸性ガス成分を化学反応に基づき吸収する公知の化学吸収剤と、原料ガスに含まれるベンゼン、トルエン及びキシレン等の重質炭化水素(重質分)を物理吸収する公知の物理吸収剤とを所定の割合で含む混合吸収剤である。また、吸収液には所定の割合で水が含まれる。 The absorption liquid is a known chemical absorbent that absorbs acidic gas components such as carbon dioxide, hydrogen sulfide, mercaptan, and carbonyl sulfide based on a chemical reaction, and heavy hydrocarbons such as benzene, toluene, and xylene contained in the source gas. It is a mixed absorbent containing a known physical absorbent that physically absorbs (heavy content) in a predetermined ratio. Further, the absorbing liquid contains water at a predetermined ratio.
 吸収塔2および再生塔3並びにそれらに付設された装置や機器は、原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備61を構成する。ただし、酸性ガス除去設備61としては、原料ガス中に含まれる酸性ガスを除去可能な限りにおいて、上述の吸収塔2および再生塔3等に限らず、他の公知の装置や機器を採用することが可能である。 The absorption tower 2 and the regeneration tower 3 and the devices and equipment attached thereto constitute an acid gas removal facility 61 that removes the acid gas contained in the raw material gas. However, as the acid gas removal equipment 61, as long as the acid gas contained in the raw material gas can be removed, not only the absorption tower 2 and the regeneration tower 3 described above, but also other known apparatuses and devices are employed. Is possible.
 吸収塔2において除去対象成分が所定の濃度以下となるまで取り除かれた原料ガスは、原料ガス輸送配管L2上に設けられた予冷熱交換器15によって冷却された後に気液分離装置4に送られる。予冷熱交換器15での冷却には、プロパン冷媒が用いられ、これにより、原料ガス中の水分が凝縮され、気液分離装置4での液相成分として排出配管L8から外部に排出される。気液分離装置4での気相成分として分離された原料ガスは、原料ガス輸送配管L9を介して複数の水分除去装置5A~5Cにそれぞれ供給される。 The raw material gas removed in the absorption tower 2 until the component to be removed becomes a predetermined concentration or less is cooled by the precooling heat exchanger 15 provided on the raw material gas transport pipe L2, and then sent to the gas-liquid separation device 4. . Propane refrigerant is used for cooling in the precooling heat exchanger 15, whereby moisture in the raw material gas is condensed and discharged to the outside as a liquid phase component in the gas-liquid separator 4 from the discharge pipe L <b> 8. The source gas separated as the gas phase component in the gas-liquid separator 4 is supplied to the plurality of moisture removing devices 5A to 5C via the source gas transport pipe L9.
 水分除去装置5A~5Cは、水分を物理吸着する公知の吸湿剤が充填された脱水塔からなる。水分除去装置5A~5Cでは、後の液化処理における氷結等によるトラブルを防止すべく、原料ガス中の水分を所定の割合以下とするまで脱水処理が行われる。水分除去装置5A~5Cにおいて水分が除去された原料ガスは、原料ガス輸送配管L10上に設けられたプロパン冷媒による予冷熱交換器21によって冷却された後に液化装置6に供給される。 The water removing devices 5A to 5C are composed of a dehydration tower filled with a known moisture absorbent that physically adsorbs water. In the moisture removing devices 5A to 5C, the dehydration process is performed until the moisture in the raw material gas is reduced to a predetermined ratio or less in order to prevent troubles caused by freezing in the subsequent liquefaction process. The source gas from which moisture has been removed in the moisture removing devices 5A to 5C is supplied to the liquefying device 6 after being cooled by the precooling heat exchanger 21 using a propane refrigerant provided on the source gas transport pipe L10.
 水分除去装置5A~5C及びそれらに付設された装置や機器は、原料ガス中に含まれる水分を除去する水分除去設備62を構成する。ただし、水分除去設備62としては、原料ガス中に含まれる水分を除去可能な限りにおいて、上述の水分除去装置5A~5C等に限らず、他の公知の装置や機器を採用することが可能である。 The moisture removing devices 5A to 5C and the devices and equipment attached thereto constitute a moisture removing equipment 62 that removes moisture contained in the raw material gas. However, the moisture removal equipment 62 is not limited to the above-described moisture removal devices 5A to 5C as long as moisture contained in the source gas can be removed, and other known devices and equipment can be employed. is there.
 液化装置6は、酸性ガスや重質分等の不要な成分が除去された原料ガスを混合冷媒との熱交換によって液化する主熱交換器である。液化装置6は、原料ガス及び混合冷媒を流す伝熱管(管束)がコイル状に巻かれた状態でシェルに収められたスプール巻き(Spool Wound)型熱交換器からなるが、これに限らず、少なくとも原料ガスの液化処理が可能な限りにおいて、プレートフィン型熱交換等の他の公知の構成を用いることができる。液化装置6での冷却によって液化された低温(約-162℃)の原料ガスは、LNG輸送配管L11を介して貯蔵用のLNGタンク(図示せず)に送られる。なお、液化装置6における液化処理を容易とするために、液化装置6に供給される原料ガスを公知の圧縮機等によって昇圧してもよい。 The liquefying device 6 is a main heat exchanger that liquefies the raw material gas from which unnecessary components such as acid gas and heavy components are removed by heat exchange with the mixed refrigerant. The liquefying device 6 includes a spool-type heat exchanger in which a heat transfer tube (tube bundle) for flowing a raw material gas and a mixed refrigerant is wound in a coil shape, and is housed in a shell, but is not limited thereto. Other known configurations such as plate fin heat exchange can be used as long as liquefaction of the source gas is possible. The low-temperature (about −162 ° C.) raw material gas liquefied by cooling in the liquefying device 6 is sent to a storage LNG tank (not shown) via the LNG transport pipe L11. In order to facilitate the liquefaction process in the liquefying device 6, the raw material gas supplied to the liquefying device 6 may be boosted by a known compressor or the like.
 液化装置6及びそれらに付設された装置や機器は、原料ガスを液化する液化設備63(図2参照)を構成する。ただし、液化設備63としては、原料ガス中に含まれる水分を除去可能な限りにおいて、上述の液化設備63等に限らず、他の公知の装置や機器(例えば、プレートフィン型熱交換器)を採用することが可能である。 The liquefying device 6 and the devices and equipment attached thereto constitute a liquefying facility 63 (see FIG. 2) for liquefying the source gas. However, the liquefaction facility 63 is not limited to the above-described liquefaction facility 63 and the like as long as moisture contained in the raw material gas can be removed, but other known devices and equipment (for example, plate fin heat exchangers) It is possible to adopt.
 LNGプラント1による原料ガスの冷却・液化処理では、上述のようにプロパン冷媒により原料ガスを冷却(予冷)した後に混合冷媒を用いて冷却(液化)するPropane pre-cooled Mixed Refrigerant方式を採用しており、LNGプラント1には、プロパン冷媒による冷却に関するプロパン予冷系の設備と、混合冷媒による冷却に関する混合冷媒系の設備とが設けられている。 In the cooling and liquefaction treatment of raw material gas by the LNG plant 1, the Propane pre-cooled Mixed Refrigerant method is adopted in which the raw material gas is cooled (precooled) with propane refrigerant and then cooled (liquefied) using a mixed refrigerant as described above. The LNG plant 1 is provided with a propane precooling system facility for cooling with a propane refrigerant and a mixed refrigerant system facility for cooling with a mixed refrigerant.
 プロパン予冷系では、冷媒圧縮機31において圧縮されたプロパン冷媒が、冷媒輸送配管L21を介して複数の空冷式熱交換器32、33において冷却・凝縮された後に冷媒タンク34に導入される。その後、プロパン冷媒は、空冷式熱交換器35に導入されてさらに冷却され、原料ガスを予冷するための予冷熱交換器15、21および後述する混合冷媒を冷却するための熱交換器55、56、57等(ここでは、総称してプロパン冷媒の消費先36とする。)において原料ガスまたは混合冷媒の冷却に用いられる。プロパン冷媒の消費先36から排出されたプロパン冷媒は、気液分離装置(ここでは、ノックアウトドラム)37に導入され、そこで分離された気相成分が冷媒輸送配管L22を介して再び冷媒圧縮機31に循環される。このようなプロパン冷媒の循環は、プロパン予冷系における各装置および機器間を接続する上述の冷媒輸送配管L21、L22を含む複数の配管(ここでは、総称して第1冷媒循環配管L15とする。)によって実現される。なお、図1では、便宜上、プロパン予冷系の設備は他の装置とは独立して示されている。 In the propane precooling system, the propane refrigerant compressed in the refrigerant compressor 31 is cooled and condensed in the plurality of air-cooled heat exchangers 32 and 33 via the refrigerant transport pipe L21 and then introduced into the refrigerant tank 34. Thereafter, the propane refrigerant is introduced into the air-cooled heat exchanger 35 and further cooled, precooling heat exchangers 15 and 21 for precooling the raw material gas, and heat exchangers 55 and 56 for cooling the mixed refrigerant described later. , 57, etc. (herein, collectively referred to as propane refrigerant consumption destination 36), it is used for cooling the source gas or the mixed refrigerant. The propane refrigerant discharged from the propane refrigerant consumption destination 36 is introduced into a gas-liquid separator (here, a knockout drum) 37, and the vapor phase component separated therein is again supplied to the refrigerant compressor 31 via the refrigerant transport pipe L22. It is circulated in. Such circulation of the propane refrigerant is a plurality of pipes (herein, collectively referred to as a first refrigerant circulation pipe L15) including the above-described refrigerant transport pipes L21 and L22 that connect the devices and devices in the propane precooling system. ). In FIG. 1, for the sake of convenience, the propane precooling system equipment is shown independently of other devices.
 また、混合冷媒系では、混合冷媒が、1段目の冷媒圧縮機51によって昇圧された後に空冷式熱交換器52によって冷却され、続く2段目の冷媒圧縮機53によって昇圧された後に空冷式熱交換器54によって冷却される。その後、混合冷媒は、冷媒輸送配管L24を介して一連の冷却器群に導入され、その冷却器群を構成する冷媒熱交換器55、56、57において高圧、中圧、低圧のプロパン冷媒によって更に冷却された後、冷媒セパレータ58に導入される。冷媒セパレータ58では、混合冷媒の気相成分および液相成分が分離された後、各成分が再び液化装置6に導入され、それぞれ原料ガスの冷却に用いられる。液化装置6から排出された混合冷媒は、気液分離装置(ここでは、ノックアウトドラム)59に導入され、そこで分離された気相成分が冷媒輸送配管L25を介して再び1段目の冷媒圧縮機51に循環される。このような混合冷媒の循環は、混合冷媒系における各装置および機器間を接続する上述の冷媒輸送配管L24、L25を含む複数の配管(ここでは、総称して第2冷媒循環配管L16とする。)によって実現される。 In the mixed refrigerant system, the mixed refrigerant is boosted by the first-stage refrigerant compressor 51 and then cooled by the air-cooled heat exchanger 52, and after being boosted by the second-stage refrigerant compressor 53, the air-cooled type Cooled by the heat exchanger 54. Thereafter, the mixed refrigerant is introduced into a series of cooler groups via the refrigerant transport pipe L24, and is further supplied by high-pressure, medium-pressure, and low-pressure propane refrigerants in the refrigerant heat exchangers 55, 56, and 57 that constitute the cooler group. After being cooled, it is introduced into the refrigerant separator 58. In the refrigerant separator 58, after the vapor phase component and the liquid phase component of the mixed refrigerant are separated, each component is again introduced into the liquefying device 6 and used for cooling the raw material gas. The mixed refrigerant discharged from the liquefying device 6 is introduced into a gas-liquid separation device (here, a knockout drum) 59, and the separated vapor phase component is again supplied to the first stage refrigerant compressor via the refrigerant transport pipe L25. 51 is circulated. Such a circulation of the mixed refrigerant is a plurality of pipes (herein collectively referred to as a second refrigerant circulation pipe L16) including the above-described refrigerant transport pipes L24 and L25 connecting between the devices and devices in the mixed refrigerant system. ).
 予冷熱交換器15、21および熱交換器55、56、57並びにそれらに付設された装置や機器は、原料ガス中に含まれる水分を除去する混合冷媒・原料ガス冷却設備64を構成する。ただし、混合冷媒・原料ガス冷却設備64としては、混合冷媒および原料ガスの少なくとも一方を冷却可能な限りにおいて、上述の予冷熱交換器15、21および熱交換器55、56、57等に限らず、他の公知の装置や機器を採用することが可能である。 The pre-cooling heat exchangers 15 and 21 and the heat exchangers 55, 56, and 57 and the devices and equipment attached thereto constitute a mixed refrigerant / raw material gas cooling facility 64 that removes moisture contained in the raw material gas. However, the mixed refrigerant / raw material gas cooling facility 64 is not limited to the above-described precooling heat exchangers 15, 21 and heat exchangers 55, 56, 57, etc. as long as at least one of the mixed refrigerant and the raw material gas can be cooled. Other known devices and equipment can be employed.
 また、プロパン予冷系の冷媒圧縮機31及び混合冷媒系の冷媒圧縮機51、53並びにそれらに付設された装置や機器は、原料ガスの冷却や液化に用いられる冷媒(ここでは、プロパン冷媒、混合冷媒)を圧縮する圧縮設備を構成する。本実施形態では、圧縮設備として第1冷媒圧縮設備65及び第2冷媒圧縮設備66が設けられる。ただし、圧縮設備としては、原料ガスの冷却や液化に用いられる冷媒を圧縮可能な限りにおいて、上述の冷媒圧縮機31、51、53等に限らず、他の公知の装置や機器を採用することが可能である。 Further, the propane precooling system refrigerant compressor 31 and the mixed refrigerant system refrigerant compressors 51 and 53, and the devices and equipment attached thereto, are refrigerants used for cooling or liquefying the source gas (here, propane refrigerant, mixed A compression facility for compressing the refrigerant is configured. In the present embodiment, a first refrigerant compression facility 65 and a second refrigerant compression facility 66 are provided as compression facilities. However, the compression equipment is not limited to the above-described refrigerant compressors 31, 51, 53, etc., as long as the refrigerant used for cooling or liquefying the source gas can be compressed, and other known devices and equipment are employed. Is possible.
 例えば、プロパン予冷系における冷媒圧縮機31、空冷式熱交換器32、33、35及びプロパン冷媒の消費先36の構成(各装置や機器の種類、数、配置)については適宜変更することが可能である。同様に、混合冷媒系における冷媒圧縮機51、53、空冷式熱交換器52、54、及び冷媒熱交換器55、56、57等の構成については適宜変更することが可能である。図1では、予冷熱交換器21および空冷式熱交換器32、33、35、52、54について、それぞれ1つのシンボルで表示されているが、それらの予冷熱交換器21および空冷式熱交換器32、33、35、52、54の各々は、複数の熱交換器によって構成され得る。同様に、冷媒圧縮機31、51、53についても複数の圧縮機によって構成され得る。 For example, the configuration (type, number, and arrangement of each device and equipment) of the refrigerant compressor 31, the air-cooled heat exchangers 32, 33, and 35 and the propane refrigerant consumer 36 in the propane precooling system can be changed as appropriate. It is. Similarly, the configurations of the refrigerant compressors 51 and 53, the air-cooled heat exchangers 52 and 54, the refrigerant heat exchangers 55, 56, and 57 in the mixed refrigerant system can be changed as appropriate. In FIG. 1, each of the precooling heat exchanger 21 and the air- cooling heat exchangers 32, 33, 35, 52, and 54 is represented by one symbol, but the pre-cooling heat exchanger 21 and the air-cooling heat exchanger are displayed. Each of 32, 33, 35, 52, 54 may be constituted by a plurality of heat exchangers. Similarly, the refrigerant compressors 31, 51, and 53 can also be configured by a plurality of compressors.
 また、混合冷媒としては、メタン、エタン及びプロパンを含む炭化水素混合物に窒素を加えたものが用いられるが、これに限らず、所望の冷却能力を確保可能な限りにおいて、他の公知の成分を採用することができる。さらに、原料ガスの冷却方式としては、ここに示すものに限らず、沸点の異なる複数の冷媒(メタン、エタン、プロパン等)によって個別の冷凍サイクルを構成するカスケード方式、エタン及びプロパン等の混合冷媒を予冷プロセスに使用するDMR(Double Mixed Refrigerant)方式、ならびに予冷、液化、及び過冷却の各サイクルについて別系列の混合冷媒を用いて段階的に熱交換を行うMFC(Mixed Fluid Cascade)方式など、他の公知の方式を採用することができる。 As the mixed refrigerant, a hydrocarbon mixture containing methane, ethane and propane with nitrogen added is used, but not limited to this, as long as the desired cooling capacity can be secured, other known components may be used. Can be adopted. Further, the cooling method of the source gas is not limited to the one shown here, but a cascade method in which individual refrigeration cycles are constituted by a plurality of refrigerants (methane, ethane, propane, etc.) having different boiling points, and mixed refrigerants such as ethane and propane. DMR (Double Mixed Refrigerant) method that uses the precooling process, and MFC (Mixed Fluid Cascade) method that performs heat exchange step by step using mixed refrigerants of different series for each cycle of precooling, liquefaction, and supercooling, etc. Other known methods can be employed.
 また、LNGプラント1で処理される原料ガスとしては、特に限定されるものではないが、例えば、シェールガス、タイトサンドガス、コールベッドメタンなどから採取した加圧状態で得られた天然ガスを原料ガスとして用いることができる。さらに、LNGプラント1への原料ガスの供給方法としては、ガス田等からの配管を介した供給のみならず、貯蔵タンク等に一旦貯蔵されたガスを供給してもよい。本明細書における用語「原料ガス」は、厳密に気体の状態にあることを意味するものではなく、LNGプラント1で液化処理される対象(処理途中を含む)を指すものである。 The raw material gas processed in the LNG plant 1 is not particularly limited. For example, natural gas obtained from a pressurized state collected from shale gas, tight sand gas, coal bed methane, or the like is used as a raw material. It can be used as a gas. Furthermore, as a method for supplying the raw material gas to the LNG plant 1, not only the supply from a gas field or the like via a pipe but also a gas once stored in a storage tank or the like may be supplied. The term “source gas” in the present specification does not mean that the gas is strictly in a gaseous state, but refers to an object (including a midway of processing) to be liquefied in the LNG plant 1.
 なお、LNGプラント1には、原料ガスが液化装置6に供給される前に原料ガス中の不要な成分を除去するために、上述の装置に限らず、他の公知の設備を更に設けることも可能である。例えば、水分除去装置5A~5Cと液化装置6との間には、原料ガス中の水銀を除去するための水銀除去設備(活性炭が充填された固定床型吸着塔など)や、重質分(比較的凝固点の高いベンゼンやC5+炭化水素などの高沸点成分)を除去するための重質分除去設備(膨張機、スクラブ塔、圧縮機、及び精留装置など)、液化装置6によって液化された液化天然ガスに含まれる窒素を除去することにより、含有窒素量を調整する窒素除去設備、圧縮機駆動用のガスタービンの排熱で加熱した熱媒液体をLNGプラント1内の各設備に供給するための熱源供給装置および圧縮機駆動用のガスタービン用等の燃料ガスの温度、圧力を調整する燃料ガス供給装置を含むガスタービン用設備などを設けることも可能である。 The LNG plant 1 is not limited to the above-described apparatus but may be provided with other known equipment in order to remove unnecessary components in the raw material gas before the raw material gas is supplied to the liquefying device 6. Is possible. For example, between the water removal devices 5A to 5C and the liquefaction device 6, a mercury removal facility (such as a fixed bed type adsorption tower filled with activated carbon) for removing mercury in the raw material gas, a heavy component ( Liquefied by heavy component removal equipment (expander, scrub column, compressor, rectifier, etc.) and liquefaction device 6 for removing relatively high freezing point components such as benzene and C5 + hydrocarbons By removing nitrogen contained in the liquefied natural gas, a nitrogen removal facility for adjusting the amount of nitrogen contained, and a heat transfer fluid heated by exhaust heat from the gas turbine for driving the compressor are supplied to each facility in the LNG plant 1 It is also possible to provide a gas turbine facility including a fuel gas supply device for adjusting the temperature and pressure of the fuel gas such as a heat source supply device and a gas turbine for driving a compressor.
 図2は図1に示したLNGプラント1における主要設備の配置例を示す平面図である。ここでは、図1に示した酸性ガス除去設備61は、説明の便宜上、省略されている。図2では、便宜上、図中に矢印で示した前後方向および左右方向に基づきLNGプラント1の構成を説明する。 FIG. 2 is a plan view showing an arrangement example of main equipment in the LNG plant 1 shown in FIG. Here, the acidic gas removal equipment 61 shown in FIG. 1 is omitted for convenience of explanation. In FIG. 2, for the sake of convenience, the configuration of the LNG plant 1 will be described based on the front-rear direction and the left-right direction indicated by arrows in the figure.
 図2に示すように、プラント用地70には、LNGプラント1の主要部として、LNGプラント1に必要な各設備や配管を含む第1-第6モジュール71-76が設けられている。 As shown in FIG. 2, the plant site 70 is provided with first to sixth modules 71 to 76 including various facilities and piping necessary for the LNG plant 1 as the main part of the LNG plant 1.
 各モジュール71-76の詳細な構成については図示を省略するが、第1モジュール71は、原料ガス、原料ガスから分離された各種成分、LNG、原料ガス冷却用の冷媒等の流体を輸送するための配管が配設された配管用ラックを含む配管部71aから主として構成される。 Although the detailed configuration of each module 71-76 is not shown, the first module 71 transports a fluid such as a raw material gas, various components separated from the raw material gas, LNG, a refrigerant for cooling the raw material gas, and the like. This is mainly composed of a piping portion 71a including a piping rack in which the piping is provided.
 また、第2モジュール72は、第1モジュール71の配管部71aの主として下流側に連なる配管が配設された配管用ラックを含む左側の配管部72aと、水分除去設備62(図1参照)に関する装置や機器を含む右側の設備部72bとから主として構成される。 Further, the second module 72 relates to a left-side piping part 72a including a piping rack in which piping connected mainly to the downstream side of the piping part 71a of the first module 71, and the moisture removing equipment 62 (see FIG. 1). It is mainly comprised from the right side installation part 72b containing an apparatus and an apparatus.
 また、第3モジュール73は、第2モジュール72の配管部72aの主として下流側に連なる配管が配設された配管用ラックを含む左側の配管部73aと、混合冷媒・原料ガス冷却設備64(図1参照)に関する装置や機器を含む右側の設備部73bとから主として構成される。 In addition, the third module 73 includes a left-side pipe portion 73a including a pipe rack in which pipes connected mainly to the downstream side of the pipe portion 72a of the second module 72, and a mixed refrigerant / raw material gas cooling facility 64 (see FIG. 1) and the right equipment section 73b including the apparatus and equipment.
 また、第4モジュール74は、第3モジュール73の配管部73aの主として下流側に連なる配管が配設された配管用ラックを含む左側の配管部74aと、液化設備63(図1参照)に関する装置や機器を含む右側の設備部74bとから主として構成される。 Further, the fourth module 74 is a device related to the left piping unit 74a including a piping rack in which piping connected mainly to the downstream side of the piping unit 73a of the third module 73 and the liquefaction facility 63 (see FIG. 1). And the right equipment part 74b including the equipment.
 また、第5モジュール75および第6モジュール76は、それぞれ第3モジュール73および第4モジュール74の左側に配置され、原料ガスの冷却や液化に用いられる冷媒を圧縮する第1冷媒圧縮設備65および第2冷媒圧縮設備66(図1参照)を含む設備部75b、76bから主として構成される。ここで、第1冷媒圧縮設備65および第2冷媒圧縮設備66には、プロパン予冷系の冷媒圧縮機31及び混合冷媒系の冷媒圧縮機51、53並びにそれらに付設された装置や機器を、それらの系統に拘わらず配置することができる。 The fifth module 75 and the sixth module 76 are arranged on the left side of the third module 73 and the fourth module 74, respectively, and a first refrigerant compression facility 65 and a first refrigerant that compress refrigerant used for cooling or liquefying the source gas. It is mainly composed of equipment parts 75b and 76b including two refrigerant compression equipment 66 (see FIG. 1). Here, the first refrigerant compression facility 65 and the second refrigerant compression facility 66 include a propane precooling system refrigerant compressor 31, a mixed refrigerant system refrigerant compressors 51 and 53, and devices and equipment attached thereto. It can be arranged regardless of the system.
 なお、本実施形態における「モジュール」は、水分除去設備62、液化設備63、混合冷媒・原料ガス冷却設備64、第1冷媒圧縮設備65および第2冷媒圧縮設備66の設備を含むことが必須ではなく、少なくともLNGプラント1を構成する装置や機器を含むものであればよい。 Note that the “module” in this embodiment does not necessarily include the water removal equipment 62, the liquefaction equipment 63, the mixed refrigerant / raw material gas cooling equipment 64, the first refrigerant compression equipment 65, and the second refrigerant compression equipment 66. However, what is necessary is just to include the apparatus and apparatus which comprise the LNG plant 1 at least.
 各配管部71a-74aには、原料ガスを輸送する原料ガス輸送配管および液化されたLNGを輸送するLNG輸送配管等の比較的大径の主要配管が主として配設される。また、各配管部71a-74aの最上部には、前後方向に隣接して配置された複数の空冷式熱交換器32、33、52、54等(図1参照)を含む冷媒(ここでは、プロパン冷媒、混合冷媒)用の空冷式熱交換器群69が配置されている。 In each of the pipe portions 71a to 74a, main pipes having relatively large diameters such as a raw material gas transport pipe for transporting the raw material gas and an LNG transport pipe for transporting the liquefied LNG are mainly disposed. In addition, a refrigerant (in this case, including a plurality of air-cooled heat exchangers 32, 33, 52, 54, etc. (see FIG. 1) disposed adjacent to each other in the front-rear direction at the uppermost part of each of the piping parts 71a-74a. An air-cooled heat exchanger group 69 for propane refrigerant (mixed refrigerant) is disposed.
 また、設備部72b-76bには、各設備に関する装置や機器を支持する架構が配管用ラックに連結するように設けられている。 In addition, in the equipment sections 72b-76b, a frame that supports devices and equipment related to each equipment is provided so as to be connected to a piping rack.
 第1-第4モジュール71-74は、前後方向に延びる仮想軸線X1に沿って略直線状に列をなすように配置される第1系統78のモジュール群を構成し、図示は省略するが、それぞれの配管部71a-74aは隣接するモジュール間で接続された状態にある。また、各配管部71a-74aは、第1-第4モジュール71-74の一端側(ここでは、左側)において、仮想軸線X1に沿って略直線状に延びる縁部を含む。 The first to fourth modules 71-74 constitute a module group of the first system 78 arranged so as to form a line in a substantially straight line along the virtual axis line X1 extending in the front-rear direction. Each piping section 71a-74a is in a state of being connected between adjacent modules. Each of the piping portions 71a-74a includes an edge portion extending substantially linearly along the virtual axis line X1 on one end side (here, the left side) of the first to fourth modules 71-74.
 本実施形態では、第1-第4モジュール71-74は、前後方向幅が略同一となるように設けられている。また、第2-第4モジュール72-74は、左右幅が略同一となるように設けられている。 In the present embodiment, the first to fourth modules 71-74 are provided so that the widths in the front-rear direction are substantially the same. The second to fourth modules 72-74 are provided so that the left and right widths are substantially the same.
 また、第5および第6モジュール75、76は、仮想軸線X1と平行な仮想軸線X2に沿って直線状に列をなすように配置される第2系統79のモジュール群を構成する。ただし、第5および第6モジュール75、76間は、互いに分離された状態にあり、第1冷媒圧縮設備65および第2冷媒圧縮設備66の配管等は、それぞれ第3モジュール73および第4モジュール74の配管等に接続される。 Further, the fifth and sixth modules 75 and 76 constitute a module group of the second system 79 arranged so as to be linearly arranged along the virtual axis X2 parallel to the virtual axis X1. However, the fifth and sixth modules 75 and 76 are separated from each other, and the pipes of the first refrigerant compression facility 65 and the second refrigerant compression facility 66 are the third module 73 and the fourth module 74, respectively. Connected to other pipes.
 本実施形態では、第5および第6モジュール75、76は、前後方向幅および左右幅が略同一となるように設けられている。 In the present embodiment, the fifth and sixth modules 75 and 76 are provided so that the width in the front-rear direction and the width in the left-right direction are substantially the same.
 なお、第1-第6モジュール71-76は、必ずしも上述のような対応する設備に関する装置および機器のみを含むものに限定されず、隣接するモジュールに対応する他の設備に関する装置や機器の一部を含むものであってもよい。また、LNGプラント1におけるモジュールの数や配置は、LNGプラント1を実現可能な限りにおいて適宜変更することが可能である。 Note that the first to sixth modules 71 to 76 are not necessarily limited to those including only the apparatuses and devices related to the corresponding facilities as described above, and some of the devices and apparatuses related to other facilities corresponding to the adjacent modules. May be included. Further, the number and arrangement of modules in the LNG plant 1 can be appropriately changed as long as the LNG plant 1 can be realized.
 図3A-図3Cは第1系統78におけるモジュール73の運搬の様子を示す説明図であり、図4A、図4Bはそれぞれモジュール73の運搬工程および据付工程の概略を示す説明図であり、図5はモジュール73の運搬に用いる運搬車80A-80D(以下、それらの区別を必要としない場合には「運搬車80」と総称する。)を示す側面図である。 3A to 3C are explanatory views showing how the module 73 is transported in the first system 78, and FIGS. 4A and 4B are explanatory views showing the outline of the transport process and the installation process of the module 73, respectively. FIG. 8 is a side view showing transport vehicles 80A-80D (hereinafter collectively referred to as “transport vehicle 80” when they are not required to be distinguished) used for transporting the module 73;
 上述の第1-第6モジュール71-76は、それぞれ図示しない遠隔地において製造された(組み立てられた)後、船舶等の公知の輸送手段によりプラント用地70まで適宜輸送される。 The first to sixth modules 71 to 76 are manufactured (assembled) at a remote place (not shown) and then appropriately transported to the plant site 70 by a known transportation means such as a ship.
 一方、プラント用地70では、第1-第6モジュール71-76にそれぞれ割り当てられたプラント用地70内の複数の据付領域81-86において、第1-第6モジュール71-76の底部をそれぞれ支持する複数の支持体(すなわち、各モジュール71-76の荷重を支持する基礎)90を設置する基礎工事(支持体設置工程)と、第1-第6モジュール71-76のうちの運搬対象モジュール(図3A-図3Cでは、モジュール73)を、プラント用地70への所定の進入位置70aから据付領域81-86のうちの割り当て据付領域(図3A-図3Cでは、据付領域83)まで運搬車80A-80Dによって運搬する運搬工程と、割り当て据付領域までそれぞれ運搬された運搬対象モジュールを、割り当て据付領内の支持体90に対して固定する据付工程と、が順次実行される。 On the other hand, in the plant site 70, the bottoms of the first to sixth modules 71-76 are respectively supported in the plurality of installation areas 81-86 in the plant site 70 assigned to the first to sixth modules 71-76, respectively. A foundation construction (support body installation step) for installing a plurality of supports (that is, a foundation for supporting the load of each module 71-76) 90, and a transport target module (FIG. 1) among the first to sixth modules 71-76 3A--in FIG. 3C, the module 73) is moved from the predetermined entry position 70a to the plant site 70 to the assigned installation area (installation area 83 in FIGS. 3A-3C) of the installation area 81-86. The transporting process transported by 80D and the transport target module transported to the assigned installation area are transferred to the support 90 in the assigned installation area. A mounting step of and fixed, There are sequentially executed.
 基礎工事では、各支持体90は、図4Aおよび図4Bにも示すように、地盤(地面)111から上方に突出した状態で設置される。なお、各支持体90については、公知の構造を採用することができ、場合によっては、複数の異なる構造の支持体が含まれていてもよい。また、基礎工事は、少なくともプラント用地70内における第1-第6モジュール71-76の運搬開始前に完了していればよく、第1系統78および第2系統79について個別に実施することが可能である。 In foundation work, each support 90 is installed in a state of protruding upward from the ground (ground) 111 as shown in FIGS. 4A and 4B. In addition, about each support body 90, a well-known structure can be employ | adopted and depending on the case, the support body of a several different structure may be contained. The foundation work only needs to be completed at least before the start of transportation of the first to sixth modules 71-76 in the plant site 70, and can be performed individually for the first system 78 and the second system 79. It is.
 第1系統78のモジュール71-74にそれぞれ対応する据付領域81-84では、複数の支持体90は、それぞれ前後方向(運搬車80A-80Dの走行方向)に沿って延びるように列をなす複数の支持体列91-95を構成する。ここで、支持体列91-93は、互いに略平行な直線状をなし、第1系統78に関する全ての据付領域81-84における複数の支持体90によって構成される。また、支持体列94、95は、互いに略平行な直線状をなし、一部の据付領域82-84における複数の支持体90によって構成される。 In the installation areas 81-84 respectively corresponding to the modules 71-74 of the first system 78, the plurality of supports 90 are arranged in a row so as to extend along the front-rear direction (traveling direction of the transport vehicles 80A-80D). The support rows 91-95 are configured. Here, the support rows 91-93 are linearly parallel to each other, and are constituted by a plurality of supports 90 in all the installation areas 81-84 related to the first system 78. The support rows 94 and 95 are linearly parallel to each other, and are constituted by a plurality of supports 90 in some installation regions 82-84.
 同様に、第2系統79のモジュール75、76にそれぞれ対応する据付領域85、86では、複数の支持体90は、それぞれ前後方向に沿って延びるように列をなす複数の支持体列96-99を構成する。ここで、支持体列96-99は、第2系統79に関する据付領域85、86における複数の支持体90によって構成される。 Similarly, in the installation areas 85 and 86 corresponding to the modules 75 and 76 of the second system 79, the plurality of supports 90 are respectively arranged in a plurality of support rows 96-99 extending in the front-rear direction. Configure. Here, the support body rows 96 to 99 are constituted by a plurality of support bodies 90 in the installation areas 85 and 86 related to the second system 79.
 運搬工程では、例えば図3Aに示すように、4列に配置された運搬車80A-80Dによってモジュール73が運搬される。ここでは、モジュール73の運搬方向においてより奥側(下流側)に位置するモジュール71、72は、すでに据付領域81、82に据え付けられた状態にあるものとする。なお、ここで説明するモジュール73の運搬工程(据付工程も同様)は、それらモジュール71、72を含む他のモジュールについても同様に適用可能である。 In the transport process, for example, as shown in FIG. 3A, the modules 73 are transported by transport vehicles 80A-80D arranged in four rows. Here, it is assumed that the modules 71 and 72 located on the far side (downstream side) in the transport direction of the module 73 are already installed in the installation areas 81 and 82. In addition, the conveyance process (installation process is also the same) of the module 73 demonstrated here is applicable similarly to the other modules including those modules 71 and 72. FIG.
 運搬車80A-80Dは、モジュール73の底部を支持した状態で(図4A参照)、プラント用地70の進入位置70aから矢印で示す走行方向(後方)に向けてモジュール73の運搬を開始する。運搬車80としては、図5にも示すように、プラント用地70内の地盤(地面)111を走行するための複数の車輪113を備えた公知の自走式多軸運搬車(SPMT:Self-Propelled Module Transporter)を用いることができる。ここでは、1つのモジュール73の運搬に4台の運搬車80A-80Dを用いる構成としたが、使用する運搬車の数は適宜変更することが可能である。 The transport vehicles 80A-80D start transporting the module 73 from the entry position 70a of the plant site 70 toward the traveling direction (rearward) indicated by the arrow while supporting the bottom of the module 73 (see FIG. 4A). As shown in FIG. 5, as the transport vehicle 80, a known self-propelled multi-axis transport vehicle (SPMT: Self-) equipped with a plurality of wheels 113 for traveling on the ground (ground) 111 in the plant site 70. Propelled (Module) Transporter) can be used. Here, four transport vehicles 80A-80D are used for transporting one module 73, but the number of transport vehicles to be used can be changed as appropriate.
 ここで、モジュール73の底部には、据付領域83の各支持体90にそれぞれ対応する位置においてモジュール本体から下方に向けて延出する複数の脚部100(図4B参照)が設けられている。複数の脚部100は、それぞれ前後方向(運搬車80A-80Dの走行方向)に沿って列をなす複数の脚部列101-105を構成する。 Here, the bottom of the module 73 is provided with a plurality of legs 100 (see FIG. 4B) extending downward from the module main body at positions corresponding to the respective supports 90 in the installation region 83. The plurality of leg portions 100 constitute a plurality of leg portion rows 101-105 that form a row along the front-rear direction (the traveling direction of the transport vehicles 80A-80D).
 その後、運搬車80A-80Dは、図3Bに示すように、モジュール73の運搬方向においてより上流側に位置する据付領域84および運搬先の据付領域83における複数の支持体90の間を走行経路として通過することにより、進入位置70aから運搬先の据付領域83に向けてモジュール73を運搬する。 Thereafter, as shown in FIG. 3B, the transport vehicles 80A-80D use the traveling path between the plurality of supports 90 in the installation area 84 and the installation area 83 at the transport destination that are located on the upstream side in the transport direction of the module 73. By passing, the module 73 is transported from the entry position 70a to the installation area 83 of the transport destination.
 このように、運搬車80A-80Dが、割り当て据付領域以外の据付領域81-86における複数の支持体90の間を走行経路として通過することにより、地盤から上方に突出した状態の複数の支持体90に阻害されることなく、プラント用地70への進入位置70aから割り当て据付領まで運搬対象モジュールを運搬する構成としたため、プラント用地70において、運搬対象モジュールに対する運搬専用のスペースが不要となり、複数のモジュール71-74に対する運搬専用のスペース(ここでは、プラント用地70の右側または左側のスペース)の発生を抑制することが可能となる。 As described above, the transport vehicles 80A-80D pass between the plurality of supports 90 in the installation area 81-86 other than the assigned installation area as a travel path, so that the plurality of supports in a state of protruding upward from the ground. 90, the transport target module is transported from the entry position 70a to the plant site 70 to the assigned installation area, so that no dedicated space for transporting the transport target module is required in the plant site 70. It is possible to suppress the generation of a space dedicated to transportation for the modules 71-74 (here, the space on the right side or the left side of the plant site 70).
 この場合、支持体列91-95を構成する複数の支持体90(または、支持体90うちの少なくとも一部)により、運搬車80A-80Dの走行経路が画定される。例えば、支持体列91、92の間の領域(地面または舗装面)として運搬車80Aの走行経路が画定され、支持体列92、93の間の領域として運搬車80Bの走行経路が画定され、支持体列93、94の間の領域として運搬車80Cの走行経路が画定され、支持体列94、95の間の領域として運搬車80Dの走行経路が画定される。これにより、複数の据付領域81-84における運搬車80A-80Dの走行経路を確保しつつ、各支持体を効率的に設置することが可能となる。 In this case, the traveling route of the transport vehicles 80A-80D is defined by the plurality of supports 90 (or at least a part of the supports 90) constituting the support rows 91-95. For example, the travel path of the transport vehicle 80A is defined as an area (ground or paved surface) between the support rows 91 and 92, and the travel path of the transport vehicle 80B is defined as an area between the support rows 92 and 93. A travel route of the transport vehicle 80C is defined as an area between the support body rows 93 and 94, and a travel path of the transport vehicle 80D is defined as an area between the support body rows 94 and 95. As a result, it is possible to efficiently install each support while securing the travel route of the transport vehicles 80A-80D in the plurality of installation regions 81-84.
 また、この場合、基礎工事により、運搬車80A-80D用の複数の走行経路をそれぞれ画定するように、各走行経路の左右にそれぞれ配置された複数組の対をなす支持体列91-95が形成されるため、複数の据付領域81-86における複数の運搬車80A-80Dの走行経路を確保しつつ、各支持体90をより広い範囲で効率的に設置することが可能となる。 Further, in this case, a plurality of pairs of support body rows 91-95 respectively arranged on the left and right of each travel route so as to define a plurality of travel routes for the transport vehicles 80A-80D by the foundation work, respectively. Thus, the supporting bodies 90 can be efficiently installed in a wider range while securing the travel routes of the plurality of transport vehicles 80A-80D in the plurality of installation regions 81-86.
 また、この場合、支持体列91-95を構成する複数の支持体90は、運搬車80A-80Dの走行方向と直交する方向(左右方向)において、その間隔が第1系統のモジュール群に対し同一線上に位置するよう配置される。これにより、複数の支持体90を簡易かつ効率的に設置しつつ、複数のモジュール71-74に対する運搬専用のスペースの発生を抑制することが可能となる。 In this case, the plurality of supports 90 constituting the support rows 91-95 are spaced apart from the first system module group in the direction (left-right direction) perpendicular to the traveling direction of the transport vehicles 80A-80D. It arrange | positions so that it may be located on the same line. As a result, it is possible to suppress the generation of a space dedicated to transportation for the plurality of modules 71-74 while easily and efficiently installing the plurality of supports 90.
 その後、運搬車80A-80Dが、モジュール73に割り当てられた据付領域83に到達すると、図3Cに示すように、モジュール73を、据付領域83の支持体90に対して固定する据付工程が実行される。このとき、図4Bに示すように、モジュール73の複数の脚部100の下部は、公知の連結方法により、対応する支持体90の上部に連結される。 Thereafter, when the transport vehicles 80A-80D reach the installation area 83 assigned to the module 73, an installation process for fixing the module 73 to the support 90 in the installation area 83 is executed as shown in FIG. 3C. The At this time, as shown in FIG. 4B, the lower portions of the plurality of leg portions 100 of the module 73 are connected to the upper portions of the corresponding supports 90 by a known connection method.
 なお、プラント用地70への進入位置70aは、LNGプラント1の長手方向の一端側(ここでは、前側)に設定されるが、第1系統78の全てのモジュール71-74について同一とする必要はなく、少なくとも2以上のモジュールについて同一であればよい。また、本実施形態では、第1系統78および第2系統79について同一の進入位置70aを設定したが、各系統に対して個別に進入位置を設定してもよい。 The entry position 70a to the plant site 70 is set on one end side (here, the front side) in the longitudinal direction of the LNG plant 1, but it is necessary to make the same for all the modules 71-74 of the first system 78. It is sufficient that at least two or more modules are the same. Moreover, in this embodiment, although the same approach position 70a was set about the 1st system | strain 78 and the 2nd system | strain 79, you may set an approach position separately with respect to each system | strain.
 また、複数のモジュール71-74では、運搬車80A-80Dの走行方向(前後方向)における最大長さが運搬車80A-80Dの走行方向と直交する方向(左右方向)における最大長さよりも大きく設定されている。これにより、運搬車80A-80Dの走行方向と直交する方向のモジュール71-74の長さが低減されるため、複数のモジュール71-74に対する運搬専用のスペースの発生をより効果的に抑制することが可能となる。また、より多くのモジュールを用いてプラントを構成する場合には、LNGプラント1の長手方向(各モジュールの運搬方向)における各モジュール間の接続部の数を減少させることが可能となり、建設現場(プラント用地70)での作業を効率化することが可能となる。 In the plurality of modules 71-74, the maximum length in the traveling direction (front-rear direction) of the transport vehicles 80A-80D is set larger than the maximum length in the direction (left-right direction) orthogonal to the traveling direction of the transport vehicles 80A-80D. Has been. As a result, the length of the modules 71-74 in the direction orthogonal to the traveling direction of the transport vehicles 80A-80D is reduced, so that the generation of the space dedicated to transport for the plurality of modules 71-74 can be more effectively suppressed. Is possible. Further, when a plant is configured using more modules, the number of connections between the modules in the longitudinal direction of the LNG plant 1 (the transport direction of each module) can be reduced, and the construction site ( It is possible to improve the efficiency of work on the plant site 70).
 図6A-図6Cは第2系統79におけるモジュールの運搬の様子を示す説明図である。なお、以下で特に言及しない事項については、図3A-図3Cに示した第1系統78におけるモジュールの場合と同様である。 FIGS. 6A to 6C are explanatory diagrams showing how the modules are transported in the second system 79. FIG. Note that items not specifically mentioned below are the same as those of the modules in the first system 78 shown in FIGS. 3A to 3C.
 プラント用地70では、上述の図3A-図3Cの例に示したように、第1系統78のモジュール71-74が、それぞれ対応する据付領域81-84に据え付けられた後に、第2系統79のモジュール75、76についても同様に運搬工程および据付工程が実施される。 In the plant site 70, as shown in the above-described examples of FIGS. 3A to 3C, after the modules 71-74 of the first system 78 are installed in the corresponding installation areas 81-84, respectively, Similarly, the transportation process and the installation process are performed for the modules 75 and 76.
 第2系統79のモジュール75、76に関する運搬工程では、例えば図6Aに示すように、3台の運搬車80A-80Cにより、まず、運搬方向においてより奥側(下流側)に位置するモジュール75が運搬される。なお、ここで説明するモジュール75の運搬工程(据付工程も同様)は、モジュール76についても同様に適用可能である。 In the transporting process related to the modules 75 and 76 of the second system 79, for example, as shown in FIG. 6A, the three trucks 80A to 80C first have the module 75 positioned on the far side (downstream side) in the transporting direction. Transported. It should be noted that the transporting process of the module 75 described here (the same applies to the installation process) is applicable to the module 76 as well.
 運搬車80A-80Cは、モジュール75の底部を支持した状態で、プラント用地70の進入位置70aから矢印で示す走行方向(後方)に向けてモジュール73の運搬を開始する。その後、運搬車80A-80Cは、図6Bに示すように、モジュール75の運搬方向においてより上流側に位置する据付領域86および運搬先の据付領域85における複数の支持体90の間を走行経路として通過することにより、進入位置70aから運搬先の据付領域85に向けてモジュール75を運搬する。 The transport vehicles 80A-80C start transporting the module 73 from the entry position 70a of the plant site 70 toward the traveling direction (rearward) indicated by the arrow while supporting the bottom of the module 75. Thereafter, as shown in FIG. 6B, the transport vehicles 80A-80C use the travel path between the plurality of support bodies 90 in the installation area 86 positioned more upstream in the transport direction of the module 75 and the installation area 85 of the transport destination. By passing, the module 75 is transported from the entry position 70a toward the installation area 85 of the transport destination.
 この場合、支持体列96-99を構成する複数の支持体90(または、支持体90うちの少なくとも一部)により、運搬車80A-80Cの走行経路が画定される。例えば、支持体列96、97の間の領域(地面)として運搬車80Aの走行経路が画定され、支持体列97、98の間の領域として運搬車80Bの走行経路が画定され、支持体列98、99の間の領域として運搬車80Cの走行経路が画定される。 In this case, the traveling route of the transport vehicles 80A-80C is defined by the plurality of supports 90 (or at least a part of the supports 90) constituting the support row 96-99. For example, the travel path of the transport vehicle 80A is defined as an area (ground) between the support rows 96 and 97, and the travel path of the transport vehicle 80B is defined as an area between the support rows 97 and 98. The travel route of the transport vehicle 80C is defined as an area between 98 and 99.
 また、この場合にも、支持体列96-99を構成する複数の支持体90は、運搬車80A-80Cの走行方向と直交する方向(左右方向)において、その間隔が第2系統のモジュール群に対し同一線上に位置するよう配置される。 Also in this case, the plurality of supports 90 constituting the support rows 96-99 are spaced apart from each other in the second group of modules in the direction (left-right direction) orthogonal to the traveling direction of the transport vehicles 80A-80C. Are arranged on the same line.
 その後、運搬車80A-80Cが、モジュール75に割り当てられた据付領域85に到達すると、図6Cに示すように、モジュール75を、据付領域85の支持体90に対して固定する据付工程が実行される。 Thereafter, when the transport vehicles 80A-80C reach the installation area 85 assigned to the module 75, an installation process for fixing the module 75 to the support 90 in the installation area 85 is executed as shown in FIG. 6C. The
 このように、LNGプラント1の建設において、運搬工程において互いに重複しない運搬車80の走行経路をそれぞれ利用する複数系列(ここでは、第1系統78、第2系統79)のモジュールが用いられ、また、それらの走行経路の各々は、互いに同一方向に延在するため、複数系列のモジュールを含むLNGプラント1において、複数のモジュールに対する運搬専用のスペースの発生を抑制することが可能となる。 In this way, in the construction of the LNG plant 1, a plurality of modules (here, the first system 78 and the second system 79) that use the traveling routes of the transport vehicle 80 that do not overlap each other in the transport process are used. Since each of the travel routes extends in the same direction, it is possible to suppress the generation of a space dedicated to transportation for the plurality of modules in the LNG plant 1 including a plurality of modules.
 図7は図2に示したモジュール配置の変形例を示す平面図であり、図8は図7に示した各モジュールの据付領域における支持体の配置例を示す説明図である。なお、図7および図8において、上述の例と同様の構成要素については、同一の符号が付されている。 FIG. 7 is a plan view showing a modification of the module arrangement shown in FIG. 2, and FIG. 8 is an explanatory view showing an arrangement example of the supports in the installation area of each module shown in FIG. 7 and 8, the same reference numerals are given to the same components as those in the above example.
 図2に示した例では、モジュール72-74では、左右方向の幅を略同一となるように設定したが、これに限らず、例えば、図7に示すように、モジュール72-74が異なる幅を有する構成も可能である。また、図示は省略するが、モジュール72-74の前後方向幅を異なる大きさに設定してもよい。また、図7に示すモジュール72-74のように、それらに含まれる設備部72b-74bの大きさも適宜変更することが可能である。この場合、図2に示した例では、モジュールの形状(平面視)を略矩形としたが、図7中のモジュール72のように、矩形以外の形状も可能である。 In the example shown in FIG. 2, the widths in the left-right direction are set to be substantially the same in the modules 72-74. However, the present invention is not limited to this. For example, as shown in FIG. A configuration having Although not shown, the widths in the front-rear direction of the modules 72-74 may be set to different sizes. Further, as in the modules 72-74 shown in FIG. 7, the sizes of the equipment units 72b-74b included therein can be changed as appropriate. In this case, in the example shown in FIG. 2, the shape (plan view) of the module is substantially rectangular. However, a shape other than the rectangular shape is possible as in the module 72 in FIG.
 図7に示したような構成についても、図8に示すように、基礎工事により、据付領域81-84では、複数の支持体90は、それぞれ前後方向にそって列をなす複数の支持体列191-196を構成するように設けられる。ここで、支持体列91-93は、互いに略平行な直線状をなし、第1系統78に関する全ての据付領域81-84における複数の支持体90によって構成される。また、支持体列94、95は、互いに略平行な直線状をなし、一部の据付領域82-84における複数の支持体90によって構成される。さらに、支持体列96は、支持体列91-95と略平行な直線状をなし、一部の据付領域83における複数の支持体90によって構成される。 Also in the configuration shown in FIG. 7, as shown in FIG. 8, in the installation area 81-84, a plurality of support bodies 90 are arranged in a row along the front-rear direction in the installation area 81-84. 191 to 196 are provided. Here, the support rows 91-93 are linearly parallel to each other, and are constituted by a plurality of supports 90 in all the installation areas 81-84 related to the first system 78. The support rows 94 and 95 are linearly parallel to each other, and are constituted by a plurality of supports 90 in some installation regions 82-84. Further, the support row 96 has a linear shape substantially parallel to the support row 91-95, and is constituted by a plurality of supports 90 in a part of the installation region 83.
 以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。上述の例では、本発明を適用するプラントとしてLNGプラントの例を示したが、これに限らず、複数のモジュールを含むプラントであれば、他のプラント(エチレンプラント、石油化学プラント等)に適用することも可能である。なお、上述の実施形態に示した本発明に係るプラントの建設方法の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。 As mentioned above, although this invention was demonstrated based on specific embodiment, these embodiment is an illustration to the last and this invention is not limited by these embodiment. In the above example, an example of an LNG plant is shown as a plant to which the present invention is applied. However, the present invention is not limited to this, and any plant including a plurality of modules can be applied to other plants (ethylene plant, petrochemical plant, etc.). It is also possible to do. Note that all the components of the plant construction method according to the present invention shown in the above-described embodiment are not necessarily essential, and can be appropriately selected without departing from the scope of the present invention.
1     :LNGプラント
2     :吸収塔
3     :再生塔
4     :気液分離装置
5A-5C :水分除去装置
6     :液化装置
15、21 :予冷熱交換器
31    :冷媒圧縮機
32、33、35:空冷式熱交換器
51、53 :冷媒圧縮機
52、54 :空冷式熱交換器
55、56、57:冷媒熱交換器
58    :冷媒セパレータ
61    :酸性ガス除去設備
62    :水分除去設備
63    :液化設備
64    :混合冷媒・原料ガス冷却設備
65    :第1冷媒圧縮設備
66    :第2冷媒圧縮設備
69    :空冷式熱交換器群
70    :プラント用地
70a   :進入位置
71-76 :モジュール
71a-74a:配管部
72b-76b:設備部
78 :第1系統
79 :第2系統
80 :運搬車
81-86 :据付領域
90    :支持体
91-99 :支持体列
100   :脚部
101-105:脚部列
111   :地盤
113   :車輪
191-196:支持体列
1: LNG plant 2: Absorption tower 3: Regeneration tower 4: Gas-liquid separation device 5A-5C: Water removal device 6: Liquefaction device 15, 21: Precooling heat exchanger 31: Refrigerating compressors 32, 33, 35: Air cooling type Heat exchangers 51, 53: Refrigerant compressors 52, 54: Air-cooled heat exchangers 55, 56, 57: Refrigerant heat exchanger 58: Refrigerant separator 61: Acid gas removal equipment 62: Water removal equipment 63: Liquefaction equipment 64: Mixed refrigerant / raw material gas cooling facility 65: first refrigerant compression facility 66: second refrigerant compression facility 69: air-cooled heat exchanger group 70: plant site 70a: entry position 71-76: module 71a-74a: piping section 72b- 76b: Equipment section 78: First system 79: Second system 80: Transportation vehicle 81-86: Installation area 90: Support body 91-99: Support body row 100 : Legs 101-105: Leg row 111: Ground 113: Wheels 191-196: Support row

Claims (10)

  1.  複数のモジュールを含むプラントの建設方法であって、
     前記複数のモジュールにそれぞれ割り当てられたプラント用地内の複数の据付領域において、前記複数のモジュールをそれぞれ支持する複数の支持体を地盤から上方に突出した状態で設置する支持体設置工程と、
     前記複数のモジュールのうちの運搬対象モジュールを、前記プラント用地への所定の進入位置から前記複数の据付領域のうちの割り当て据付領域まで1以上の運搬車によって運搬する運搬工程と、
     前記割り当て据付領域まで運搬された前記運搬対象モジュールを、前記割り当て据付領域内の前記支持体に対して固定する据付工程と、
    を有し、
     前記運搬工程では、前記運搬車が、前記割り当て据付領域以外の前記据付領域における前記複数の支持体の間を走行経路として通過することにより、前記進入位置から前記割り当て据付領域まで前記運搬対象モジュールを運搬することを特徴とするプラントの建設方法。
    A method for constructing a plant including a plurality of modules,
    In a plurality of installation areas in the plant site assigned to each of the plurality of modules, a support body installation step of installing a plurality of support bodies that respectively support the plurality of modules in a state of protruding upward from the ground;
    A transporting step of transporting the transport target module of the plurality of modules by one or more transporting vehicles from a predetermined entry position to the plant site to an assigned installation region of the plurality of installation regions;
    Fixing the transport object module transported to the assigned installation area to the support in the assigned installation area; and
    Have
    In the transporting process, the transport vehicle passes the plurality of supports in the installation area other than the assigned installation area as a travel route, and moves the transport target module from the entry position to the assigned installation area. A plant construction method characterized by transporting.
  2.  前記支持体設置工程では、前記複数の支持体のうちの少なくとも一部により、前記走行経路を画定するように、前記走行経路の左右にそれぞれ配置された対をなす支持体列が形成されたことを特徴とする請求項1に記載のプラントの建設方法。 In the support body installation step, at least a part of the plurality of support bodies formed a pair of support body rows respectively arranged on the left and right of the travel route so as to define the travel route. The plant construction method according to claim 1.
  3.  前記運搬工程では、前記運搬対象モジュールの運搬に複数の前記運搬車が用いられ、
     前記支持体設置工程では、複数の前記走行経路をそれぞれ画定するように、前記各走行経路の左右にそれぞれ配置された複数組の前記対をなす支持体列が形成されたことを特徴とする請求項2に記載のプラントの建設方法。
    In the transport process, a plurality of transport vehicles are used for transporting the transport target module,
    In the support body installation step, a plurality of pairs of support body rows respectively formed on the left and right sides of each of the travel paths so as to define a plurality of the travel paths are formed. Item 3. A plant construction method according to Item 2.
  4.  前記対をなす支持体列は、互いに平行に配置された直線状の2つの支持体列からなることを特徴とする請求項2または請求項3に記載のプラントの建設方法。 4. The plant construction method according to claim 2 or 3, wherein the pair of support rows includes two linear support rows arranged in parallel to each other.
  5.  前記複数の支持体は、前記運搬車の走行方向と直交する方向において、その間隔が同一系統のモジュール群に対し同一線上に位置するよう配置することを特徴とする請求項1から請求項4のいずれかに記載のプラントの建設方法。 The plurality of supports are arranged so that their intervals are located on the same line with respect to a module group of the same system in a direction orthogonal to the traveling direction of the transport vehicle. The construction method of the plant in any one.
  6.  前記複数のモジュールでは、前記運搬車の走行方向における最大長さが前記運搬車の走行方向と直交する方向における最大長さよりも大きいことを特徴とする請求項1から請求項5のいずれかに記載のプラントの建設方法。 6. The plurality of modules, wherein a maximum length in a traveling direction of the transport vehicle is larger than a maximum length in a direction orthogonal to the travel direction of the transport vehicle. Plant construction method.
  7.  前記複数のモジュールは、前記運搬工程において互いに重複しない前記走行経路をそれぞれ利用する複数系列のモジュールを含み、
     前記走行経路の各々は、互いに同一方向に延在することを特徴とする請求項1から請求項6のいずれかに記載のプラントの建設方法。
    The plurality of modules include a plurality of modules each using the travel routes that do not overlap each other in the transporting process,
    The plant construction method according to any one of claims 1 to 6, wherein each of the travel routes extends in the same direction.
  8.  前記プラントは、天然ガスの液化プラントからなることを特徴とする請求項1から請求項7のいずれかに記載のプラントの建設方法。 The plant construction method according to any one of claims 1 to 7, wherein the plant is a natural gas liquefaction plant.
  9.  前記複数のモジュールのうちの少なくとも1つは、原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備、原料ガス中に含まれる水分を除去する水分除去設備、及び冷媒を用いて原料ガスを液化する液化設備のうちの少なくとも1つを含むことを特徴とする請求項8に記載のプラントの建設方法。 At least one of the plurality of modules includes an acid gas removal facility that removes acid gas contained in the source gas, a moisture removal facility that removes moisture contained in the source gas, and a raw material gas using a refrigerant. The plant construction method according to claim 8, comprising at least one of liquefaction facilities to be liquefied.
  10.  前記プラントは、天然ガスの液化プラントからなり、
     前記複数系列のモジュールのうちの少なくとも1つの系列に属するモジュールは、原料ガス中に含まれる酸性ガスを除去する酸性ガス除去設備、原料ガス中に含まれる水分を除去する水分除去設備、及び冷媒を用いて原料ガスを液化する液化設備のうちの少なくとも1つを含み、 
     前記複数系列のモジュールのうちの前記1つの系列とは異なる他の系列に属するモジュールは、原料ガスを液化するための冷媒の圧縮設備を含むことを特徴とする請求項7に記載のプラントの建設方法。
    The plant comprises a natural gas liquefaction plant,
    A module belonging to at least one of the plurality of modules includes an acid gas removal facility that removes acid gas contained in the raw material gas, a water removal facility that removes moisture contained in the raw material gas, and a refrigerant. Including at least one of the liquefaction equipment used to liquefy the source gas,
    The construction of the plant according to claim 7, wherein a module belonging to another series different from the one series among the plurality of series modules includes a refrigerant compression facility for liquefying the raw material gas. Method.
PCT/JP2018/010262 2017-03-29 2018-03-15 Industrial plant construction method WO2018180549A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017065538A JP2018168568A (en) 2017-03-29 2017-03-29 Construction method of plant
JP2017-065538 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018180549A1 true WO2018180549A1 (en) 2018-10-04

Family

ID=63675448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010262 WO2018180549A1 (en) 2017-03-29 2018-03-15 Industrial plant construction method

Country Status (2)

Country Link
JP (1) JP2018168568A (en)
WO (1) WO2018180549A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070094946A1 (en) * 2005-09-30 2007-05-03 Ohio Transmission Corporation Modular industrial equipment facility
JP2016204966A (en) * 2015-04-22 2016-12-08 クリーンエナジーファクトリー株式会社 Photovoltaic power generation plant construction method and solar string transportation container used in the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070094946A1 (en) * 2005-09-30 2007-05-03 Ohio Transmission Corporation Modular industrial equipment facility
JP2016204966A (en) * 2015-04-22 2016-12-08 クリーンエナジーファクトリー株式会社 Photovoltaic power generation plant construction method and solar string transportation container used in the same

Also Published As

Publication number Publication date
JP2018168568A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
AU2016335111B2 (en) Modularization of a hydrocarbon processing plant
WO2018198573A1 (en) Method for constructing natural gas liquefaction plant
WO2016092593A1 (en) Natural gas liquefaction system
KR101894076B1 (en) Natural gas liquefying system and liquefying method
JP2018531356A6 (en) Modularization of hydrocarbon processing plant
KR20070111531A (en) Plant and method for liquefying natural gas
KR20150135503A (en) Air-cooled modular lng production facility
RU2727948C1 (en) Module for natural gas liquefaction devices, natural gas liquefaction device and method of producing natural gas liquefaction devices
CN100455960C (en) Modular LNG process
WO2018198572A1 (en) Natural gas liquefaction plant
WO2016151636A1 (en) Production system and production method for natural gas
US11162746B2 (en) Liquid drains in core-in-shell heat exchanger
WO2018180549A1 (en) Industrial plant construction method
KR20120005158A (en) Method and apparatus for liquefying natural gas
AU2017419936B2 (en) Natural gas liquefaction device
OA18582A (en) Natural gas liquefaction system
WO2015159546A1 (en) System and method for liquefying natural gas
CN116659182A (en) Method for manufacturing module for natural gas equipment
WO2020075295A1 (en) Natural gas liquefaction device
WO2022089930A2 (en) Compact system and method for the production of liquefied natural gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777819

Country of ref document: EP

Kind code of ref document: A1