WO2018180091A1 - Resin composition, resin sheet, resin cured product, and resin substrate - Google Patents

Resin composition, resin sheet, resin cured product, and resin substrate Download PDF

Info

Publication number
WO2018180091A1
WO2018180091A1 PCT/JP2018/006853 JP2018006853W WO2018180091A1 WO 2018180091 A1 WO2018180091 A1 WO 2018180091A1 JP 2018006853 W JP2018006853 W JP 2018006853W WO 2018180091 A1 WO2018180091 A1 WO 2018180091A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
formula
group
compound
Prior art date
Application number
PCT/JP2018/006853
Other languages
French (fr)
Japanese (ja)
Inventor
広志 首藤
山下 正晃
海老沢 晃
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018180091A1 publication Critical patent/WO2018180091A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin composition containing an epoxy compound, a resin sheet using the resin composition, a cured resin product, and a resin substrate.
  • the sheet-shaped resin composition (resin sheet) is cured. Thereby, the resin substrate containing the cured reaction product (resin cured product) of the resin composition is produced.
  • the proposed resin composition does not have sufficient thermal characteristics, and it is considered that better heat dissipation and heat resistance are required for an electronic device for automobiles.
  • the present invention has been made in view of such problems, and an object thereof is to provide a resin composition, a resin sheet, a cured resin, and a resin substrate capable of obtaining excellent thermal characteristics.
  • the resin composition of the present invention is a resin composition comprising an epoxy compound and a trinaphthylbenzene compound represented by the formula (1-1).
  • A1 to A3 are either naphthyl groups substituted at the 1-position or 2-position, and one or more of R introduced into the naphthyl group represented by A1 in the formula are reactive groups. Yes, one or more of R introduced into the naphthyl group represented by A2 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A3 in the formula are reacted.
  • a reactive group is a hydroxy group or an amino group.
  • the resin sheet of the present invention includes a resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention.
  • the cured resin product of the present invention includes a cured reaction product of the resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention.
  • the resin substrate of the present invention includes a cured reaction product of one or more resin sheets, the resin sheet includes a resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention. Is.
  • the “reactive group” contained in the trinaphthylbenzene compound is a group for causing a reaction (crosslinking reaction) between the epoxy compound and the trinaphthylbenzene compound. Specifically, a hydroxy group (—OH) and an amino group (—NH 2 ).
  • the epoxy compound and trinaphthylbenzene represented by the formula (1-1) are contained, excellent thermal characteristics can be obtained. Moreover, the same effect can be acquired also in the resin sheet of this invention, resin hardened
  • the resin composition is used for producing a resin sheet, a resin cured product, a resin substrate and the like which will be described later. However, the use of the resin composition may be other uses.
  • This resin composition contains an epoxy compound and a trinaphthylbenzene compound represented by the following formula (1-1).
  • A1 to A3 are either naphthyl groups substituted at the 1-position or 2-position, and one or more of R introduced into the naphthyl group represented by A1 in the formula are reactive groups. Yes, one or more of R introduced into the naphthyl group represented by A2 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A3 in the formula are reacted.
  • a reactive group is a hydroxy group or an amino group.
  • the resin composition described here is used to produce an intermediate product such as a resin sheet and a final product (cured resin product) such as a resin substrate.
  • the “intermediate product” means a substance in a state where the curing reaction (crosslinking reaction) of the resin composition is not substantially completed, as will be described later.
  • the “final product” means a substance in a state where the curing reaction of the resin composition is substantially completed, as will be described later.
  • the epoxy compound which is a thermosetting resin is a so-called main agent.
  • a trinaphthylbenzene compound that is used together with an epoxy compound and contains a reactive group (hydroxy group or amino group) is a curing agent for advancing a crosslinking reaction with the epoxy compound using the reactive group as described above. It is.
  • the reason why the resin composition contains the trinaphthylbenzene compound together with the epoxy compound is to improve the thermal conductivity and heat resistance of the cured resin.
  • a resin composition can be used. As the cured product is produced, the thermal conductivity of the cured resin product is improved.
  • a crosslinking reaction proceeds in a network form with an epoxy compound, and the crosslinking density is improved, so that the heat resistance is improved.
  • This resin composition may be in a solid form such as a powder form or a lump form, in a liquid form, or in a state where both are mixed.
  • the state of this resin composition is appropriately determined according to the application.
  • the mixing ratio of the epoxy compound and the trinaphthylbenzene compound is not particularly limited. However, when an epoxy compound containing an epoxy group and a trinaphthylbenzene compound containing a reactive group undergo a crosslinking reaction, generally one epoxy group reacts with one active hydrogen in the reactive group. Therefore, in order to increase the reaction efficiency between the epoxy compound and the trinaphthylbenzene compound, the total number of epoxy groups contained in the epoxy compound and the total number of active hydrogens contained in the trinaphthylbenzene compound are 1:
  • the mixing ratio is preferably set to be 1.
  • the epoxy compound as the main agent has one or more epoxy groups (—C 3 H 5 in one molecule). One or more of the compounds containing O). Especially, it is preferable that the epoxy compound contains two or more epoxy groups in one molecule. This is because the epoxy compound and the trinaphthylbenzene compound easily react.
  • the type of epoxy compound is not particularly limited.
  • glycidyl ether type epoxy compound glycidyl ester type epoxy compound, glycidyl amine type epoxy compound, novolac type epoxy compound, cyclic aliphatic type epoxy compound and long chain aliphatic type epoxy compound Etc.
  • Examples of the glycidyl ether type epoxy compound include a bisphenol A type epoxy compound and a bisphenol F type epoxy compound.
  • Examples of the novolak type epoxy compound include a cresol novolak type epoxy compound and a phenol novolak type epoxy compound.
  • the epoxy compound may be a flame retardant epoxy compound, a hydantoin epoxy resin, an isocyanurate epoxy compound, or the like.
  • a glycidyl ether type epoxy compound will not be specifically limited if it is a compound containing the structure (group) of a glycidyl ether type. As described above, the type is not limited as long as it includes a specific structure, and the same applies to specific examples of other epoxy compounds such as a glycidyl ester type epoxy compound.
  • the epoxy compound preferably includes a mesogenic skeleton in one molecule.
  • the reason is as follows.
  • the distance between the benzene rings becomes small.
  • the density of an epoxy compound improves.
  • the scattering phenomenon of the lattice vibration of the molecule described above is a major factor that lowers the thermal conductivity. Therefore, the scattering phenomenon of the lattice vibration of the molecule is suppressed, so that the decrease of the thermal conductivity is remarkably suppressed. .
  • the benzene ring contained in the mesogen skeleton of the epoxy compound and the benzene contained in the skeleton of the trinaphthylbenzene compound (1,3,5-trinaphthylbenzene)
  • a ring or an aromatic ring such as a naphthalene ring tends to overlap. Therefore, high thermal conductivity is obtained for the same reason as that in the case where the aromatic rings easily overlap each other in the molecules of the epoxy compound described above.
  • This “mesogen skeleton” is a general term for a polycyclic aromatic hydrocarbon skeleton such as naphthalene and anthracene, and an atomic group containing two or more aromatic rings and having rigidity and orientation.
  • Two or more aromatic rings are connected by a single bond or a non-single bond
  • examples of the skeleton connected by a single bond include biphenyl and terphenyl.
  • the type of bond may be only a single bond, only a non-single bond, or a mixture of a single bond and a non-single bond.
  • the type of non-single bond is not limited to only one type.
  • terphenyl may be o-terphenyl, m-terphenyl, or p-terphenyl.
  • Non-single bond is a general term for a divalent group containing one or more constituent elements and one or more multiple bonds. Specifically, the non-single bond includes, for example, any one or more of constituent elements such as carbon (C), nitrogen (N), oxygen (O), and hydrogen (H). . Non-single bonds include one or both of double bonds and triple bonds as multiple bonds.
  • non-single bonds include bonds represented by the following formulas (2-1) to (2-10). Note that the arrows shown in each of the formulas (2-6) and (2-10) represent coordination bonds.
  • the trinaphthylbenzene compound that is a curing agent is one or more of compounds containing a skeleton (1,3,5-trinaphthylbenzene) and a reactive group (hydroxy group or amino group). That is, in the trinaphthylbenzene compound, 1,3,5-trinaphthylbenzene is contained as a skeleton in one molecule, and a hydroxy group or an amino group is introduced into the skeleton.
  • This skeleton (1,3,5-trinaphthylbenzene) has one benzene ring (central benzene ring) located at the center and three naphthalene rings (peripheral naphthalene rings) located around the central benzene ring. Contains.
  • peripheral naphthalene ring represented by A1 is referred to as “first peripheral naphthalene ring”
  • peripheral naphthalene ring represented by A2 is “second peripheral naphthalene ring”
  • peripheral naphthalene ring represented by A3 is referred to as “third peripheral”. Naphthalene ring ".
  • the peripheral naphthalene ring represented by A1 to A3 in the formula may be either a 1-position substituted product or a 2-position substituted product.
  • A1 to A3 are all 2-position substituted products, and in the trinaphthylbenzene compound represented by the formula (1-3), all of A1 to A3 are in 1 position. It is a change.
  • A1-A3 may be a mixture of a 1-position substituent and a 2-position substituent, and the position in that case is not particularly limited.
  • Each type of R introduced into A1 to A3 may be any of a hydrogen atom, an alkyl group, an aryl group, a reactive group, and a halogen, and is not particularly limited.
  • the reactive group is a hydroxy group and an amino group. That is, each R may be a hydrogen atom, an alkyl group, an aryl group, a hydroxy group, an amino group, or a halogen.
  • one or more of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A2 in the formula are reacted.
  • One or more of R introduced into the naphthyl group represented by A3 in the formula is a reactive group.
  • the trinaphthylbenzene compound In order for a trinaphthylbenzene compound to advance a crosslinking reaction in a network using a reactive group (hydroxy group or amino group), the trinaphthylbenzene compound must contain three or more reactive groups. is there.
  • the position at which the one or more reactive groups are introduced into the first peripheral naphthalene ring is not particularly limited.
  • the introduction position of the one or more reactive groups is not limited.
  • the position of one or more reactive groups introduced into the second peripheral naphthalene ring The same applies to the position of one or more reactive groups introduced into the third peripheral naphthalene ring.
  • trinaphthylbenzene compound examples include the following formula (1-4), formula (1-5), formula (1-6), formula (1-7), formula (1-8), formula (1- 9), compounds represented by formula (1-10) and formula (1-11).
  • the number of reactive groups is six, and in the compound represented by formula (1-8), the number of reactive groups is three.
  • This resin composition may contain any one kind or two or more kinds of other materials together with the above-described epoxy compound and trinaphthylbenzene compound.
  • ⁇ Other types of materials are not particularly limited, but examples include additives, solvents, other curing agents, and inorganic particles.
  • Additives include, for example, a curing catalyst and a coupling agent.
  • the curing catalyst include phosphine, imidazole, and derivatives thereof, and the imidazole derivative is, for example, 2-ethyl-4-methylimidazole.
  • the coupling agent include a silane coupling agent and a titanate coupling agent.
  • the solvent is used for dispersing or dissolving the epoxy compound and the trinaphthylbenzene compound in the liquid resin composition.
  • This solvent is one or more of organic solvents, and specific examples of the organic solvent include methyl ethyl ketone, methyl cellosolve, methyl isobutyl ketone, dimethylformamide, propylene glycol monomethyl ether, toluene, xylene, Acetone, 1,3-dioxolane, N-methylpyrrolidone and ⁇ -butyrolactone.
  • curing agents are compounds that do not contain 1,3,5-trinaphthylbenzene as a skeleton, but contain one or more reactive groups, and the reactive groups described here include, for example, hydroxy groups and One or both of the amino groups.
  • Specific examples of the other curing agent include phenol, amine and acid anhydride.
  • the curing agent containing 1,3,5-trinaphthylbenzene has an active hydrogen content of the curing agent containing 1,3,5-trinaphthylbenzene relative to the number of epoxy groups of the epoxy resin. It is preferable that the number is included so as to be at least 50% or more.
  • the inorganic particles are one kind or two or more kinds of particulate inorganic materials.
  • Specific examples of the inorganic particles include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and boron nitride (BN).
  • This resin composition is manufactured, for example, by the following procedure.
  • an epoxy compound and a trinaphthylbenzene compound are mixed.
  • the epoxy compound such as a lump is used, the epoxy compound may be pulverized before mixing.
  • the trinaphthylbenzene compound may be pulverized before mixing. Thereby, a solid resin composition containing an epoxy compound and a trinaphthylbenzene compound is obtained.
  • the resin composition may be molded using a mold or the like, if necessary.
  • a solvent is added to the mixture of the epoxy compound and the trinaphthylbenzene compound described above, and then the solvent is stirred using a stirring device such as a mixer.
  • a stirring device such as a mixer.
  • the epoxy compound and the trinaphthylbenzene compound are dispersed or dissolved in the solvent. Therefore, a liquid resin composition containing an epoxy compound and a trinaphthylbenzene compound is obtained.
  • the solid resin composition when obtaining a liquid resin composition, the solid resin composition may be heated to melt the resin composition. In this case, if necessary, after molding a melt of the resin composition using a mold or the like, the melt may be cooled.
  • an epoxy compound solid compounds, such as a powder form and a lump, may be used, a liquid compound may be used, and both may be used together.
  • a curing agent such as a trinaphthylbenzene compound
  • a solid compound such as powder and lump may be used, a liquid compound may be used, or both may be used in combination.
  • one or more of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and introduced into the naphthyl group represented by A2 in the formula If one or more of R in the formula is a reactive group and one or more of R introduced into the naphthyl group represented by A3 in the formula is a reactive group, an epoxy compound and a trinaphthylbenzene compound Since it becomes easy to react, a higher effect can be acquired.
  • one of R introduced into the naphthyl group represented by A1 in the formula is a reactive group
  • one of R introduced into the naphthyl group represented by A2 in the formula is If one of R introduced into the naphthyl group represented by A3 in the formula is a reactive group, the steric hindrance in the crosslinking reaction between the epoxy compound and the trinaphthylbenzene compound is reduced, and the epoxy Since the crosslinking density of the reaction product between the compound and the trinaphthylbenzene compound is improved, a higher effect can be obtained.
  • the resin sheet contains the resin composition of the present invention.
  • the structure of this resin sheet will not be specifically limited if the resin composition of this invention is included. That is, the resin sheet may not include other components together with the resin composition, or may include other components together with the resin composition.
  • FIG. 1 shows a cross-sectional configuration of the resin sheet 10.
  • the resin sheet 10 is a resin composition (resin composition layer 1) formed into a sheet shape, and more specifically, is a single-layer body including one resin composition layer 1.
  • the thickness of the resin sheet 10 is not particularly limited.
  • the configuration of the resin composition layer 1 is the same as the configuration of the resin composition of the present invention except that it is formed into a sheet shape.
  • FIG. 2 shows a cross-sectional configuration of the resin sheet 20.
  • the resin sheet 20 is a laminate in which a plurality of resin composition layers 1 are laminated.
  • the number of laminated resin composition layers 1 (the number of laminated layers) is not particularly limited as long as it is two or more.
  • stacking of the resin composition layer 1 is 3 layers is shown, for example.
  • the structure of each resin composition layer 1 is not specifically limited. That is, the structure of the resin composition in each resin composition layer 1 may be the same or different. Of course, the structure of the resin composition in some resin composition layers 1 among the plurality of resin composition layers 1 may be the same.
  • FIG. 3 shows a cross-sectional configuration of the resin sheet 30.
  • the resin sheet 30 includes a core material 2 together with a resin composition (resin composition layer 1) formed into a sheet shape.
  • the core material 2 is sandwiched between two resin composition layers 1. It has a three-layer structure.
  • the core material 2 includes, for example, any one or more of a fibrous substance and a non-fibrous substance, and is formed into a sheet shape.
  • the fibrous material include glass fiber, carbon fiber, metal fiber, natural fiber, and synthetic fiber
  • examples of the fibrous material formed into a sheet include a woven fabric and a non-woven fabric.
  • Specific examples of the synthetic fiber include polyester fiber and polyamide fiber.
  • the non-fibrous substance is, for example, a polymer compound
  • the non-fibrous substance formed into a sheet is, for example, a polymer film.
  • the polymer compound include polyethylene terephthalate (PET).
  • the thickness of the core material 2 is not particularly limited, but is preferably 0.03 mm to 0.2 mm, for example, from the viewpoint of mechanical strength and dimensional stability.
  • the resin composition layer 1 used for the resin sheet 30 may be only one layer or two or more layers. It is the same for the core material 2 that one layer or two or more layers may be used.
  • the resin sheet 30 is not limited to a three-layer structure in which the core material 2 is sandwiched between the two resin composition layers 1 but has a two-layer structure in which the resin composition layer 1 and the core material 2 are laminated. May be. Two or more resin sheets 30 may be laminated.
  • the resin composition when a solid resin composition is used, the resin composition is molded so as to be in the form of a sheet to form the resin composition layer 1.
  • the solid resin composition may be molded as it is, or a melt of the solid resin composition may be molded.
  • the melt first, the solid resin composition is heated to melt the resin composition. Subsequently, after molding a melt of the resin composition, the molded product is cooled.
  • the liquid resin composition is applied to the surface of a support such as a polymer film, and then the liquid resin composition is dried. Thereby, since the solvent contained in the liquid resin composition is volatilized, the resin composition is formed into a sheet shape on the surface of the support. That is, the resin composition forms a film on the surface of the support. Therefore, the resin composition layer 1 is formed. After that, the resin composition layer 1 is peeled from the support.
  • the formation procedure of the above-mentioned resin composition layer 1 is repeated, and the several resin composition layer 1 is laminated
  • the laminated body may be pressurized while being heated as necessary. Thereby, the resin composition layers 1 adhere to each other.
  • the liquid resin composition is dried. Thereby, the two resin composition layers 1 are formed so as to sandwich the core material 2.
  • the core material 2 contains a fibrous substance
  • the surface of the core material 2 is covered with the liquid resin composition, and the liquid resin composition A part of the resin composition is impregnated into the core material 2.
  • the surface of the core material 2 is coat
  • the liquid resin composition may be applied only to one side of the core material 2.
  • the solid resin composition may be heated to melt the resin composition, and then the core material 2 may be immersed in the melt. In this case, after the core material 2 is taken out from the melt, the core material 2 is cooled. Thereby, the resin composition layer 1 is formed on both surfaces of the core material 2.
  • the liquid resin composition when used for manufacturing the resin sheets 10 to 30, as described above, the liquid resin composition becomes a film (solidifies) in the drying step.
  • filming (solidification) described here means that a substance in a fluid state (liquid state) changes to a self-sustainable state (solid state), so-called semi-curing. Including state. That is, when the liquid resin composition forms a film, since the curing reaction is not substantially completed, the resin composition is substantially in an uncured state. For this reason, it is preferable that the drying conditions when forming the liquid resin composition into a film are conditions that do not substantially complete the curing reaction.
  • the drying temperature is 60 ° C. to 150 ° C. and the drying time is preferably 1 minute to 120 minutes.
  • the drying temperature is 70 ° C. to 120 ° C. and the drying time is 3 minutes to 90 minutes. More preferably.
  • the conditions under which the curing reaction is not substantially completed in this manner are preferable when the melt of the solid resin composition is used to produce the resin sheets 10 to 30. That is, it is preferable that the heating conditions (heating temperature and heating time) for melting the solid resin composition are conditions that do not substantially complete the curing reaction.
  • the resin cured product includes a curing reaction product of the resin composition described above, and more specifically includes a curing reaction product of an epoxy compound and a trinaphthylbenzene compound.
  • the epoxy group contained in the epoxy compound and the reactive group contained in the trinaphthylbenzene compound undergo a crosslinking reaction, so a so-called crosslinked network is formed.
  • the heating conditions such as the heating temperature and the heating time are not particularly limited, but are preferably conditions that allow the curing reaction to proceed substantially unlike the above-described method for producing a resin sheet.
  • resin substrate of one embodiment of the present invention will be described.
  • resin sheet of the present invention the already explained resin sheet is referred to as “resin sheet of the present invention” and the cured resin product is referred to as “resin cured product of the present invention”.
  • the resin substrate is one example of application of the above-described cured resin, and the resin substrate described here is, for example, a cured reaction product of the resin sheet of the present invention.
  • the structure of the resin substrate is not particularly limited as long as it includes one or two or more resin sheet curing reaction products.
  • FIG. 4 illustrates a cross-sectional configuration of the resin substrate 40.
  • the resin substrate 40 is a cured reaction product of the resin sheet 10 shown in FIG. That is, the resin substrate 40 is a cured reaction product (resin cured product layer 3) of the resin composition layer 1, and more specifically, a single-layer body including one resin cured product layer 3.
  • FIG. 5 shows a cross-sectional configuration of the resin substrate 50.
  • the resin substrate 50 is a cured reaction product of the resin sheet 20 shown in FIG. 2, and more specifically, a laminate in which a plurality of cured reaction products (resin cured product layers 3) of the resin composition layer 1 are laminated. Is the body.
  • the number of laminated resin cured product layers 3 (the number of laminated layers) is not particularly limited as long as it is two or more. In FIG. 5, the case where the number of lamination
  • FIG. 6 shows a cross-sectional configuration of the resin substrate 60.
  • This resin substrate 60 is a cured reaction product of the resin sheet 30 shown in FIG. 3, and more specifically has a three-layer structure in which one core material 2 is sandwiched between two resin cured product layers 3. ing.
  • FIG. 7 shows a cross-sectional configuration of the resin substrate 70.
  • this resin substrate 70 two or more cured reaction products of the resin sheet 30 are laminated.
  • the cured reaction products of three resin sheets 30 are laminated. That is, a three-layer structure in which one core material 2 is sandwiched between two resin cured product layers 3 is formed, and the three-layer structure is stacked in three stages.
  • the number of stacked three-layer structures (the number of stages) is not limited to three, but may be two or four or more.
  • the number of steps can be appropriately set based on conditions such as the thickness and strength of the resin substrate 70.
  • the resin substrate 70 may include a metal layer.
  • the metal layer is provided on the surface of the uppermost resin cured product layer 3 and also on the surface of the lowermost resin cured product layer 3.
  • the metal layer contains, for example, any one or more of copper, nickel, aluminum and the like.
  • the metal layer includes, for example, any one or two or more of metal foil and metal plate, and may be a single layer or a multilayer.
  • the thickness of the metal layer is not particularly limited, but is 3 ⁇ m to 150 ⁇ m, for example.
  • the resin substrate 70 provided with this metal layer is a so-called metal-clad substrate.
  • the metal layer may be provided only on the surface of the uppermost resin cured product layer 3 or may be provided only on the surface of the lowermost resin cured product layer 3.
  • the resin substrate 70 provided with this metal layer may be subjected to any one type or two or more types of various processes such as an etching process and a drilling process as necessary.
  • a multilayer substrate may be formed by stacking the resin substrate 70, the metal layer subjected to the above-described various treatments, and any one or more of the resin sheets 10 to 30.
  • a metal layer or a multi-layer substrate is not limited to the resin substrate 70, but also applies to the resin substrates 40 to 60 described above.
  • the resin sheet 20 is heated. Thereby, as described above, since the curing reaction of the resin composition is substantially completed in each resin composition layer 1, the cured reaction products of the plurality of resin composition layers 1 are used as shown in FIG. 5. A plurality of cured resin layers 3 are formed.
  • the resin sheet 30 is heated. Thereby, as described above, the curing reaction of the resin composition is substantially completed in each resin composition layer 1, and therefore, as shown in FIG. 6, the resin composition layer 1 is formed on both surfaces of the core material 2. A cured resin layer 3 that is a cured reaction product is formed.
  • FIG. 8 shows a cross-sectional configuration corresponding to FIG. 7 in order to explain the method for manufacturing the resin substrate 70.
  • this resin substrate 70 first, as shown in FIG. 8, three resin sheets 30 are laminated. Thereby, the laminated body of the three resin sheets 30 is obtained. Thereafter, the laminate is heated. Thereby, in each resin sheet 30, since the curing reaction of the resin composition is substantially completed in each resin composition layer 1, the resin composition is formed on both surfaces of each core material 2 as shown in FIG. A cured resin layer 3 that is a cured reaction product of the layer 1 is formed.
  • the melting temperature of the resin composition is preferably lower than the temperature at which the curing reaction of the resin composition is substantially completed.
  • the maximum heating temperature (maximum temperature) during molding is about 250 ° C.
  • the melting temperature of a resin composition is a temperature lower than 250 degreeC, and it is more preferable that it is 200 degrees C or less.
  • the “melting temperature” described here is a temperature at which the resin composition changes from a solid state to a fluidized (melted) state while avoiding that the curing reaction of the resin composition is substantially completed.
  • the melting temperature for example, the state of the resin composition is visually observed while heating the resin composition using a heating tool such as a hot plate. In this case, the heating temperature is gradually increased while mixing the resin composition using a spatula or the like. Thereby, the temperature at which the resin composition starts to melt is defined as the melting temperature.
  • the heating temperature at the time of molding is 50 ° C. or more higher than the melting temperature of the resin composition, specifically 100 ° C. to The temperature is 250 ° C. and the heating time is about 1 to 300 minutes.
  • the resin composition may be pressurized using a press or the like, or the pressure in the environment where the resin composition exists may be increased or decreased as necessary.
  • the heating conditions and pressurizing conditions in this case are not particularly limited.
  • the heating temperature is 100 ° C. to 250 ° C.
  • the heating time is 1 minute to 300 minutes
  • the pressurizing pressure is 0.5 MPa to 8 MPa.
  • Examples 1 to 12, Comparative Examples 1 to 3 By the procedure described below, as shown in FIG. 5, a resin substrate 50 made of a laminate in which a plurality of cured resin layers 3 were laminated was manufactured. In addition, content (mass part) demonstrated below is the value converted into solid content.
  • the mixing ratio of the epoxy compound and the curing agent is such that the ratio of the number of epoxy groups contained in the epoxy compound to the number of active hydrogens contained in the curing agent is 1: 1. Adjusted.
  • the types of epoxy compounds and curing agents and the content (parts by mass) in the mixture are as shown in Table 1.
  • epoxy compounds biphenyl type epoxy resins (YL6121H and YX4000H: manufactured by Mitsubishi Chemical Corporation), bisphenol A type epoxy (840-S: manufactured by DIC Corporation), diaminodiphenylmethane type epoxy (YH-434L: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Phosphorus-containing epoxy (FX-289Z: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), trifunctional epoxy (JER-630: manufactured by Mitsubishi Chemical Corporation), bifunctional terphenyl type epoxy (formula 1-12), trifunctional terphenyl type Epoxy (1-13) was used.
  • trinaphthylbenzene compounds represented by the formulas (1-4) to (1-11), BPA novolak (LF6161: manufactured by DIC Corporation), 1,3,5-tris (4-hydroxyphenyl) ) Benzene and 1,5-diaminonaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.) were used.
  • the presence or absence of the “TNB skeleton” shown in Table 1 indicates whether or not the curing agent contains 1,3,5-trinaphthylbenzene as the skeleton.
  • the curing catalyst 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.) was used, and the addition amount of the curing catalyst was 1% by mass with respect to the total of the epoxy compound and the curing agent.
  • the mixture was put into a solvent (methyl ethyl ketone), and then the solvent was stirred. Thereby, since the epoxy compound and the curing agent were dissolved in the solvent, a liquid resin composition was obtained. In this case, the concentration of the solid content (epoxy compound, curing agent) was 65% by mass.
  • the glass transition point (° C.) of the resin substrate 50 was measured using a dynamic viscoelasticity measuring device (DMA). Specifically, first, the resin substrate 50 was cut to produce a rectangular measurement sample (3 mm ⁇ 25 mm). Subsequently, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus (Rheogel-E4000 manufactured by UBM Co., Ltd.) while heating the measurement sample. In this case, the heating temperature was increased from 25 ° C. to 300 ° C. at a rate of temperature increase of 5 ° C./min. Finally, the heating temperature corresponding to the inflection point of the storage modulus was taken as the glass transition point.
  • DMA dynamic viscoelasticity measuring device
  • ⁇ ⁇ Cp ⁇ r (A) ( ⁇ is thermal conductivity (W / (m ⁇ K)), ⁇ is thermal diffusivity (m 2 / s), Cp is specific heat (J / kg ⁇ K), and r is density (kg / m 3 ). .)
  • the thermal conductivity and glass transition point varied greatly depending on the type of curing agent.
  • the curing agent includes a TNB skeleton (Examples 1 to 18), compared with the case where the curing agent does not include a TNB skeleton (Comparative Examples 1 to 3), the thermal conductivity and The glass transition point became high.
  • SYMBOLS 1 Resin composition layer, 2 ... Core material, 3 ... Resin hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epoxy Resins (AREA)

Abstract

Provided is a resin composition that is capable of achieving excellent thermal properties. The resin composition comprises an epoxy compound and a trinaphthylbenzene compound. (Provided that in the trinaphthylbenzene compound, one or more of Rs introduced into a naphthyl group represented by A1 in the formula is a reactive group, one or more of Rs introduced into a naphthyl group represented by A2 in the formula is a reactive group, one or more of Rs introduced into a naphthyl group represented by A3 in the formula is a reactive group, and the reactive group is a hydroxy group or an amino group.)

Description

樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板Resin composition, resin sheet, cured resin and resin substrate
 本発明は、エポキシ化合物を含む樹脂組成物、ならびにその樹脂組成物を用いた樹脂シート、樹脂硬化物および樹脂基板に関する。 The present invention relates to a resin composition containing an epoxy compound, a resin sheet using the resin composition, a cured resin product, and a resin substrate.
 自動車などの高温環境用途に、各種の電子部品が広く用いられる傾向にある。このため、電子部品に用いられる樹脂基板の熱的特性に関して、研究および開発が盛んに行われている。 Various electronic components tend to be widely used for high temperature environment applications such as automobiles. For this reason, research and development are actively conducted on the thermal characteristics of resin substrates used in electronic components.
 樹脂基板の製造工程では、樹脂組成物をシート状に成形したのち、そのシート状の樹脂組成物(樹脂シート)を硬化反応させる。これにより、樹脂組成物の硬化反応物(樹脂硬化物)を含む樹脂基板が製造される。 In the manufacturing process of the resin substrate, after the resin composition is formed into a sheet shape, the sheet-shaped resin composition (resin sheet) is cured. Thereby, the resin substrate containing the cured reaction product (resin cured product) of the resin composition is produced.
 この樹脂組成物の組成などに関しては、既にさまざまな提案がなされている。具体的には、優れた放熱性や耐熱性を得るために、メソゲン基を有する液晶エポキシ樹脂を使用したり、単一分子内に3つ以上のエポキシ基を待つ多官能エポキシ樹脂を使用している。(例えば、特許文献1参照。)。 Various proposals have already been made regarding the composition of the resin composition. Specifically, in order to obtain excellent heat dissipation and heat resistance, a liquid crystal epoxy resin having a mesogenic group is used, or a polyfunctional epoxy resin waiting for three or more epoxy groups in a single molecule is used. Yes. (For example, refer to Patent Document 1).
特開2008-195835号公報JP 2008-195835 A
 しかし、提案されている樹脂組成物に関してはその熱的特性は十分でなく、自動車用電子機器としてはより優れた放熱性および耐熱性が必要と考えられる。 However, the proposed resin composition does not have sufficient thermal characteristics, and it is considered that better heat dissipation and heat resistance are required for an electronic device for automobiles.
 本発明はかかる問題点に鑑みてなされたもので、その目的は、優れた熱的特性を得ることが可能な樹脂組成物、樹脂シート、樹脂硬化物および樹脂基板を提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide a resin composition, a resin sheet, a cured resin, and a resin substrate capable of obtaining excellent thermal characteristics.
 本発明の樹脂組成物は、エポキシ化合物と式(1-1)で表されるトリナフチルベンゼン化合物を含むことを特徴とする樹脂組成物である。 The resin composition of the present invention is a resin composition comprising an epoxy compound and a trinaphthylbenzene compound represented by the formula (1-1).
[規則26に基づく補充 16.03.2018] 
Figure WO-DOC-CHEMICAL-1
(ただし、式中A1~A3は1位または2位が置換されたナフチル基のいずれかであり、式中A1で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A2で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A3で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、反応基はヒドロキシ基またはアミノ基である。)
[Supplement under rule 26 16.03.2018]
Figure WO-DOC-CHEMICAL-1
(In the formula, A1 to A3 are either naphthyl groups substituted at the 1-position or 2-position, and one or more of R introduced into the naphthyl group represented by A1 in the formula are reactive groups. Yes, one or more of R introduced into the naphthyl group represented by A2 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A3 in the formula are reacted. A reactive group is a hydroxy group or an amino group.)
 本発明の樹脂シートは、樹脂組成物を含み、その樹脂組成物が上記した本発明の樹脂組成物と同様の構成を有するものである。 The resin sheet of the present invention includes a resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention.
 本発明の樹脂硬化物は、樹脂組成物の硬化反応物を含み、その樹脂組成物が上記した本発明の樹脂組成物と同様の構成を有するものである。 The cured resin product of the present invention includes a cured reaction product of the resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention.
 本発明の樹脂基板は、1または2以上の樹脂シートの硬化反応物を含み、その樹脂シートが樹脂組成物を含み、その樹脂組成物が上記した本発明の樹脂組成物と同様の構成を有するものである。 The resin substrate of the present invention includes a cured reaction product of one or more resin sheets, the resin sheet includes a resin composition, and the resin composition has the same configuration as the above-described resin composition of the present invention. Is.
 ここで、トリナフチルベンゼン化合物に含まれている「反応基」とは、エポキシ化合物とトリナフチルベンゼン化合物との反応(架橋反応)を進行させるための基である。具体的には、ヒドロキシ基(-OH)およびアミノ基(-NH)である。 Here, the “reactive group” contained in the trinaphthylbenzene compound is a group for causing a reaction (crosslinking reaction) between the epoxy compound and the trinaphthylbenzene compound. Specifically, a hydroxy group (—OH) and an amino group (—NH 2 ).
 本発明の樹脂組成物によれば、エポキシ化合物と式(1-1)に示したトリナフチルベンゼンとを含むので、優れた熱的特性を得ることが出来る。また、本発明の樹脂シート、樹脂硬化物および樹脂基板においても、同様の効果を得ることが出来る。 According to the resin composition of the present invention, since the epoxy compound and trinaphthylbenzene represented by the formula (1-1) are contained, excellent thermal characteristics can be obtained. Moreover, the same effect can be acquired also in the resin sheet of this invention, resin hardened | cured material, and a resin substrate.
本発明の樹脂組成物を用いた樹脂シートの構成を表す断面図である。It is sectional drawing showing the structure of the resin sheet using the resin composition of this invention. 本発明の樹脂組成物を用いた樹脂シートの他の構成を表す断面図である。It is sectional drawing showing the other structure of the resin sheet using the resin composition of this invention. 本発明の樹脂組成物を用いた樹脂シートのさらに他の構成を表す断面図である。It is sectional drawing showing the further another structure of the resin sheet using the resin composition of this invention. 本発明の樹脂硬化物を用いた樹脂基板の構成を表す断面図である。It is sectional drawing showing the structure of the resin substrate using the resin cured material of this invention. 本発明の樹脂硬化物を用いた樹脂基板の他の構成を表す断面図である。It is sectional drawing showing the other structure of the resin substrate using the resin cured material of this invention. 本発明の樹脂硬化物を用いた樹脂基板のさらに他の構成を表す断面図である。It is sectional drawing showing the further another structure of the resin substrate using the resin cured material of this invention. 本発明の樹脂硬化物を用いた樹脂基板のさらに他の構成を表す断面図である。It is sectional drawing showing the further another structure of the resin substrate using the resin cured material of this invention. 図7に示した樹脂基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the resin substrate shown in FIG.
 以下、本発明の一実施形態に関して、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 以下で説明する本発明の一実施形態は、その本発明を説明するための例示である。このため、本発明は、ここで説明する一実施形態だけに限定されない。本発明の一実施形態は、その本発明の要旨を逸脱しない限り、種々の実施形態に変更可能である。 An embodiment of the present invention described below is an example for explaining the present invention. Thus, the present invention is not limited to only one embodiment described herein. One embodiment of the present invention can be changed to various embodiments without departing from the gist of the present invention.
<1.樹脂組成物>
 まず、本発明の一実施形態の樹脂組成物に関して説明する。
<1. Resin composition>
First, the resin composition of one embodiment of the present invention will be described.
 樹脂組成物は、後述する樹脂シート、樹脂硬化物および樹脂基板などを製造するために用いられる。ただし、樹脂組成物の用途は、他の用途でもよい。 The resin composition is used for producing a resin sheet, a resin cured product, a resin substrate and the like which will be described later. However, the use of the resin composition may be other uses.
<1-1.構成>
 この樹脂組成物は、エポキシ化合物と、下記の式(1-1)で表されるトリナフチルベンゼン化合物とを含んでいる。
<1-1. Configuration>
This resin composition contains an epoxy compound and a trinaphthylbenzene compound represented by the following formula (1-1).
[規則26に基づく補充 16.03.2018] 
Figure WO-DOC-CHEMICAL-2
(ただし、式中A1~A3は1位または2位が置換されたナフチル基のいずれかであり、式中A1で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A2で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A3で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、反応基はヒドロキシ基またはアミノ基である。)
[Supplement under rule 26 16.03.2018]
Figure WO-DOC-CHEMICAL-2
(In the formula, A1 to A3 are either naphthyl groups substituted at the 1-position or 2-position, and one or more of R introduced into the naphthyl group represented by A1 in the formula are reactive groups. Yes, one or more of R introduced into the naphthyl group represented by A2 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A3 in the formula are reacted. A reactive group is a hydroxy group or an amino group.)
 ここで説明する樹脂組成物は、上記したように、樹脂シートなどの中間生成物を製造すると共に、樹脂基板などの最終生成物(樹脂硬化物)を製造するために用いられる。この「中間生成物」とは、後述するように、樹脂組成物の硬化反応(架橋反応)が実質的に完了していない状態の物質を意味している。また、「最終生成物」とは、後述するように、樹脂組成物の硬化反応が実質的に完了した状態の物質を意味している。 As described above, the resin composition described here is used to produce an intermediate product such as a resin sheet and a final product (cured resin product) such as a resin substrate. The “intermediate product” means a substance in a state where the curing reaction (crosslinking reaction) of the resin composition is not substantially completed, as will be described later. The “final product” means a substance in a state where the curing reaction of the resin composition is substantially completed, as will be described later.
 熱硬化性樹脂であるエポキシ化合物は、いわゆる主剤である。一方、エポキシ化合物と一緒に用いられると共に反応基(ヒドロキシ基またはアミノ基)を含むトリナフチルベンゼン化合物は、上記したように、反応基を用いてエポキシ化合物との架橋反応を進行させるための硬化剤である。 The epoxy compound which is a thermosetting resin is a so-called main agent. On the other hand, a trinaphthylbenzene compound that is used together with an epoxy compound and contains a reactive group (hydroxy group or amino group) is a curing agent for advancing a crosslinking reaction with the epoxy compound using the reactive group as described above. It is.
 樹脂組成物がエポキシ化合物と共にトリナフチルベンゼン化合物を含んでいるのは、樹脂硬化物の熱伝導性および耐熱性を向上させるからである。 The reason why the resin composition contains the trinaphthylbenzene compound together with the epoxy compound is to improve the thermal conductivity and heat resistance of the cured resin.
 詳細には、優れた熱伝導性を有する骨格(1,3,5-トリナフチルベンゼン)と架橋反応を進行させる反応基とを含むトリナフチルベンゼン化合物を用いることで、樹脂組成物を用いて樹脂硬化物が製造されると共に、その樹脂硬化物の熱伝導性が向上する。 Specifically, by using a trinaphthylbenzene compound containing a skeleton having excellent thermal conductivity (1,3,5-trinaphthylbenzene) and a reactive group that causes a crosslinking reaction to proceed, a resin composition can be used. As the cured product is produced, the thermal conductivity of the cured resin product is improved.
 また、3つ以上の官能基を有し、剛直な骨格のトリナフチルベンゼン化合物を用いることで、エポキシ化合物と網目状に架橋反応が進行し、架橋密度が向上する為、耐熱性が向上する。 In addition, by using a trinaphthylbenzene compound having three or more functional groups and a rigid skeleton, a crosslinking reaction proceeds in a network form with an epoxy compound, and the crosslinking density is improved, so that the heat resistance is improved.
 この樹脂組成物は、粉体状および塊状などの固体状でもよいし、液体状でもよいし、双方が混在する状態でもよい。この樹脂組成物の状態は、用途などに応じて適宜決定される。 This resin composition may be in a solid form such as a powder form or a lump form, in a liquid form, or in a state where both are mixed. The state of this resin composition is appropriately determined according to the application.
 なお、エポキシ化合物とトリナフチルベンゼン化合物との混合比は、特に限定されない。ただし、エポキシ基を含むエポキシ化合物と反応基を含むトリナフチルベンゼン化合物とが架橋反応する場合には、一般的に、1つのエポキシ基と反応基中の1つの活性水素とが反応する。よって、エポキシ化合物とトリナフチルベンゼン化合物との反応効率を高くするためには、エポキシ化合物に含まれているエポキシ基の総数と、トリナフチルベンゼン化合物に含まれている活性水素の総数とが1:1となるように、混合比を設定することが好ましい。 It should be noted that the mixing ratio of the epoxy compound and the trinaphthylbenzene compound is not particularly limited. However, when an epoxy compound containing an epoxy group and a trinaphthylbenzene compound containing a reactive group undergo a crosslinking reaction, generally one epoxy group reacts with one active hydrogen in the reactive group. Therefore, in order to increase the reaction efficiency between the epoxy compound and the trinaphthylbenzene compound, the total number of epoxy groups contained in the epoxy compound and the total number of active hydrogens contained in the trinaphthylbenzene compound are 1: The mixing ratio is preferably set to be 1.
[エポキシ化合物]
 主剤であるエポキシ化合物は、1つの分子の中に1つ以上のエポキシ基(-C3 
 O)を含む化合物のうちのいずれか1種類または2種類以上である。中でも、エポキシ化合物は、1つの分子の中に2つ以上のエポキシ基を含んでいることが好ましい。エポキシ化合物とトリナフチルベンゼン化合物とが反応しやすくなるからである。
[Epoxy compound]
The epoxy compound as the main agent has one or more epoxy groups (—C 3 H 5 in one molecule).
  One or more of the compounds containing O). Especially, it is preferable that the epoxy compound contains two or more epoxy groups in one molecule. This is because the epoxy compound and the trinaphthylbenzene compound easily react.
 エポキシ化合物の種類は、特に限定されないが、例えば、グリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、グリシジルアミン型エポキシ化合物、ノボラック型エポキシ化合物、環状脂肪族型エポキシ化合物および長鎖脂肪族型エポキシ化合物などである。 The type of epoxy compound is not particularly limited. For example, glycidyl ether type epoxy compound, glycidyl ester type epoxy compound, glycidyl amine type epoxy compound, novolac type epoxy compound, cyclic aliphatic type epoxy compound and long chain aliphatic type epoxy compound Etc.
 グリシジルエーテル型エポキシ化合物は、例えば、ビスフェノールA型エポキシ化合物およびビスフェノールF型エポキシ化合物などである。ノボラック型エポキシ化合物は、例えば、クレゾールノボラック型エポキシ化合物およびフェノールノボラック型エポキシ化合物などである。この他、エポキシ化合物の種類は、例えば、難燃性エポキシ化合物、ヒダントイン系エポキシ樹脂およびイソシアヌレート系エポキシ化合物などでもよい。 Examples of the glycidyl ether type epoxy compound include a bisphenol A type epoxy compound and a bisphenol F type epoxy compound. Examples of the novolak type epoxy compound include a cresol novolak type epoxy compound and a phenol novolak type epoxy compound. In addition, the epoxy compound may be a flame retardant epoxy compound, a hydantoin epoxy resin, an isocyanurate epoxy compound, or the like.
 なお、グリシジルエーテル型エポキシ化合物の具体例は、グリシジルエーテル型の構造(基)を含んでいる化合物であれば、特に限定されない。このように特定の構造を含んでいれば種類が限定されないことは、グリシジルエステル型エポキシ化合物などの他のエポキシ化合物の具体例に関しても同様である。 In addition, the specific example of a glycidyl ether type epoxy compound will not be specifically limited if it is a compound containing the structure (group) of a glycidyl ether type. As described above, the type is not limited as long as it includes a specific structure, and the same applies to specific examples of other epoxy compounds such as a glycidyl ester type epoxy compound.
 中でも、エポキシ化合物は、1つの分子の中にメソゲン骨格を含んでいることが好ましい。その理由は、以下の通りである。 Among them, the epoxy compound preferably includes a mesogenic skeleton in one molecule. The reason is as follows.
 第1に、エポキシ化合物の分子同士において、ベンゼン環同士が重なりやすくなるため、そのベンゼン環間の距離が小さくなる。これにより、樹脂組成物では、エポキシ化合物の密度が向上する。また、樹脂硬化物では、分子の格子振動が散乱しにくくなるため、高い熱伝導率が得られる。 First, since the benzene rings easily overlap each other in the molecules of the epoxy compound, the distance between the benzene rings becomes small. Thereby, in the resin composition, the density of an epoxy compound improves. In addition, in the cured resin, it is difficult to scatter the lattice vibration of the molecule, so that high thermal conductivity can be obtained.
 特に、上記した分子の格子振動の散乱現象は、熱伝導率を低下させる大きな要因であるため、その分子の格子振動の散乱現象が抑制されることで、熱伝導率の低下が著しく抑制される。 In particular, the scattering phenomenon of the lattice vibration of the molecule described above is a major factor that lowers the thermal conductivity. Therefore, the scattering phenomenon of the lattice vibration of the molecule is suppressed, so that the decrease of the thermal conductivity is remarkably suppressed. .
 第2に、エポキシ化合物およびトリナフチルベンゼン化合物において、エポキシ化合物のメソゲン骨格に含まれているベンゼン環と、トリナフチルベンゼン化合物の骨格(1,3,5-トリナフチルベンゼン)に含まれているベンゼン環またはナフタレン環といった芳香環とが重なりやすくなる。よって、上記したエポキシ化合物の分子同士において芳香環同士が重なりやすくなる場合と同様の理由により、高い熱伝導率が得られる。 Secondly, in the epoxy compound and the trinaphthylbenzene compound, the benzene ring contained in the mesogen skeleton of the epoxy compound and the benzene contained in the skeleton of the trinaphthylbenzene compound (1,3,5-trinaphthylbenzene) A ring or an aromatic ring such as a naphthalene ring tends to overlap. Therefore, high thermal conductivity is obtained for the same reason as that in the case where the aromatic rings easily overlap each other in the molecules of the epoxy compound described above.
 この「メソゲン骨格」とは、ナフタレン及びアントラセンの様な多環芳香族炭化水素の骨格や、2つ以上の芳香環を含むと共に剛直性および配向性を有する原子団の総称である。 This “mesogen skeleton” is a general term for a polycyclic aromatic hydrocarbon skeleton such as naphthalene and anthracene, and an atomic group containing two or more aromatic rings and having rigidity and orientation.
2つ以上の芳香環は単結合や非単結合により結合されており、単結合により結合された骨格の例はビフェニルやターフェニルなどである。また、結合の種類は単結合だけでもよいし、非単結合だけでもよいし、単結合と非単結合とが混在していてもよい。また、非単結合の種類は1種類だけに限定されない。 Two or more aromatic rings are connected by a single bond or a non-single bond, and examples of the skeleton connected by a single bond include biphenyl and terphenyl. Further, the type of bond may be only a single bond, only a non-single bond, or a mixture of a single bond and a non-single bond. Further, the type of non-single bond is not limited to only one type.
 なお、3つ以上のベンゼン環が結合される場合、その結合の方向性は、特に限定されず、直線状となるように結合されてもよいし、途中で1回以上折れ曲がるように結合されてもよい。ターフェニルを例にあげると、o-ターフェニルでもよいし、m-ターフェニルでもよいし、p-ターフェニルでもよい。 In addition, when three or more benzene rings are bonded, the directionality of the bonding is not particularly limited, and may be bonded so as to be linear, or bonded so as to be bent one or more times in the middle. Also good. For example, terphenyl may be o-terphenyl, m-terphenyl, or p-terphenyl.
 「非単結合」とは、1または2以上の構成元素を含むと共に1または2以上の多重結合を含む2価の基の総称である。具体的には、非単結合は、例えば、炭素(C)、窒素(N)、酸素(O)および水素(H)などの構成元素のうちのいずれか1種類または2種類以上を含んでいる。また、非単結合は、多重結合として、二重結合および三重結合のうちの一方または双方を含んでいる。 “Non-single bond” is a general term for a divalent group containing one or more constituent elements and one or more multiple bonds. Specifically, the non-single bond includes, for example, any one or more of constituent elements such as carbon (C), nitrogen (N), oxygen (O), and hydrogen (H). . Non-single bonds include one or both of double bonds and triple bonds as multiple bonds.
 非単結合の具体例は、下記の式(2-1)~式(2-10)のそれぞれで表される結合などである。なお、式(2-6)および式(2-10)のそれぞれに示した矢印は、配位結合を表している。 Specific examples of non-single bonds include bonds represented by the following formulas (2-1) to (2-10). Note that the arrows shown in each of the formulas (2-6) and (2-10) represent coordination bonds.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[トリナフチルベンゼン化合物]
 硬化剤であるトリナフチルベンゼン化合物は、骨格(1,3,5-トリナフチルベンゼン)と反応基(ヒドロキシ基またはアミノ基)とを含む化合物のうちのいずれか1種類または2種類以上である。すなわち、トリナフチルベンゼン化合物では、1つの分子の中に骨格として1,3,5-トリナフチルベンゼンが含まれていると共に、その骨格にヒドロキシ基またはアミノ基が導入されている。
[Trinaphthylbenzene compounds]
The trinaphthylbenzene compound that is a curing agent is one or more of compounds containing a skeleton (1,3,5-trinaphthylbenzene) and a reactive group (hydroxy group or amino group). That is, in the trinaphthylbenzene compound, 1,3,5-trinaphthylbenzene is contained as a skeleton in one molecule, and a hydroxy group or an amino group is introduced into the skeleton.
 この骨格(1,3,5-トリナフチルベンゼン)は、中心に位置する1つのベンゼン環(中心ベンゼン環)と、その中心ベンゼン環の周囲に位置する3つのナフタレン環(周辺ナフタレン環)とを含んでいる。 This skeleton (1,3,5-trinaphthylbenzene) has one benzene ring (central benzene ring) located at the center and three naphthalene rings (peripheral naphthalene rings) located around the central benzene ring. Contains.
 以下では、A1で表される周辺ナフタレン環を「第1周辺ナフタレン環」、A2で表される周辺ナフタレン環を「第2周辺ナフタレン環」、A3で表される周辺ナフタレン環を「第3周辺ナフタレン環」とする。 Hereinafter, the peripheral naphthalene ring represented by A1 is referred to as “first peripheral naphthalene ring”, the peripheral naphthalene ring represented by A2 is “second peripheral naphthalene ring”, and the peripheral naphthalene ring represented by A3 is referred to as “third peripheral”. Naphthalene ring ".
[規則26に基づく補充 16.03.2018] 
式中A1~A3で表される周辺ナフタレン環は、1位置換体及び2位置換体のどちらでもよい。下記の式(1-2)で表されるトリナフチルベンゼン化合物はA1~A3が全て2位置換体であり、式(1-3)で表されるトリナフチルベンゼン化合物はA1~A3が全て1位置換体である。
Figure WO-DOC-CHEMICAL-4
また、式中A1~A3は1位置換体及び2位置換体が混在しても良く、その場合の位置は特に限定されない。
[Supplement under rule 26 16.03.2018]
The peripheral naphthalene ring represented by A1 to A3 in the formula may be either a 1-position substituted product or a 2-position substituted product. In the trinaphthylbenzene compound represented by the following formula (1-2), A1 to A3 are all 2-position substituted products, and in the trinaphthylbenzene compound represented by the formula (1-3), all of A1 to A3 are in 1 position. It is a change.
Figure WO-DOC-CHEMICAL-4
In the formula, A1-A3 may be a mixture of a 1-position substituent and a 2-position substituent, and the position in that case is not particularly limited.
 A1~A3に導入されているRのそれぞれの種類は、水素原子、アルキル基、アリール基、反応基、ハロゲンのうちいずれでもよく、特に限定されない。反応基はヒドロキシ基及びアミノ基である。すなわち、Rのそれぞれは水素原子でもよいし、アルキル基でもよいし、アリール基でもよいし、ヒドロキシ基でもよいし、アミノ基でもよいし、ハロゲンでもよい。 Each type of R introduced into A1 to A3 may be any of a hydrogen atom, an alkyl group, an aryl group, a reactive group, and a halogen, and is not particularly limited. The reactive group is a hydroxy group and an amino group. That is, each R may be a hydrogen atom, an alkyl group, an aryl group, a hydroxy group, an amino group, or a halogen.
 ただし、式中A1で表されるナフチル基に導入されているRのうち1つ以上は反応基であり、式中A2で表されるナフチル基に導入されているRのうち1つ以上は反応基であり、式中A3で表されるナフチル基に導入されているRのうち1つ以上は反応基である。トリナフチルベンゼン化合物が反応基(ヒドロキシ基またはアミノ基)を用いて網目状に架橋反応を進行させるためには、そのトリナフチルベンゼン化合物が3つ以上の反応基を含んでいなければならないからである。 However, one or more of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and one or more of R introduced into the naphthyl group represented by A2 in the formula are reacted. One or more of R introduced into the naphthyl group represented by A3 in the formula is a reactive group. In order for a trinaphthylbenzene compound to advance a crosslinking reaction in a network using a reactive group (hydroxy group or amino group), the trinaphthylbenzene compound must contain three or more reactive groups. is there.
 この場合において、式中A1で表されるナフチル基に導入されているRのうちの1つ以上が反応基であれば、その1つ以上の反応基が第1周辺ナフタレン環に導入される位置は、特に限定されない。このように、反応基の数が1つ以上である場合において、その1つ以上の反応基の導入位置が限定されないことは、第2周辺ナフタレン環に導入される1つ以上の反応基の位置に関しても同様であると共に、第3周辺ナフタレン環に導入される1つ以上の反応基の位置に関しても同様である。 In this case, if at least one of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, the position at which the one or more reactive groups are introduced into the first peripheral naphthalene ring. Is not particularly limited. Thus, when the number of reactive groups is one or more, the introduction position of the one or more reactive groups is not limited. The position of one or more reactive groups introduced into the second peripheral naphthalene ring The same applies to the position of one or more reactive groups introduced into the third peripheral naphthalene ring.
 トリナフチルベンゼン化合物の具体例は、下記の式(1-4)、式(1-5)、式(1-6)、式(1-7)、式(1-8)、式(1-9)、式(1-10)および式(1-11)のそれぞれで表される化合物などである。式(1-4)に示した化合物において、反応基の数は6つであると共に、式(1-8)に示した化合物において、反応基の数は3つである。 Specific examples of the trinaphthylbenzene compound include the following formula (1-4), formula (1-5), formula (1-6), formula (1-7), formula (1-8), formula (1- 9), compounds represented by formula (1-10) and formula (1-11). In the compound represented by formula (1-4), the number of reactive groups is six, and in the compound represented by formula (1-8), the number of reactive groups is three.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 中でも、式(1-8)、式(1-9)または式(1-10)に示した化合物が好ましい。反応基がそれぞれの周辺ナフタレン環の6位に限定されることにより立体障害の影響が低減され、エポキシ化合物とトリナフチルベンゼン化合物との反応物の架橋密度が向上するからである。 Of these, compounds represented by formula (1-8), formula (1-9) or formula (1-10) are preferred. This is because the influence of steric hindrance is reduced by limiting the reactive group to the 6-position of each peripheral naphthalene ring, and the crosslinking density of the reaction product of the epoxy compound and the trinaphthylbenzene compound is improved.
[他の材料]
 この樹脂組成物は、上記したエポキシ化合物、トリナフチルベンゼン化合物と一緒に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Other materials]
This resin composition may contain any one kind or two or more kinds of other materials together with the above-described epoxy compound and trinaphthylbenzene compound.
 他の材料の種類は、特に限定されないが、例えば、添加剤、溶媒、他の硬化剤および無機粒子などである ¡Other types of materials are not particularly limited, but examples include additives, solvents, other curing agents, and inorganic particles.
 添加剤は、例えば、硬化触媒およびカップリング剤などである。硬化触媒の具体例は、ホスフィン、イミダゾールおよびそれらの誘導体などであり、そのイミダゾールの誘導体は、例えば、2-エチル-4-メチルイミダゾールなどである。カップリング剤の具体例は、シランカップリング剤およびチタネートカップリング剤などである。 Additives include, for example, a curing catalyst and a coupling agent. Specific examples of the curing catalyst include phosphine, imidazole, and derivatives thereof, and the imidazole derivative is, for example, 2-ethyl-4-methylimidazole. Specific examples of the coupling agent include a silane coupling agent and a titanate coupling agent.
 溶媒は、液体状の樹脂組成物において、エポキシ化合物、トリナフチルベンゼン化合物を分散または溶解させるために用いられる。この溶媒は、有機溶剤などのうちのいずれか1種類または2種類以上であり、その有機溶剤の具体例は、メチルエチルケトン、メチルセロソルブ、メチルイソブチルケトン、ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、トルエン、キシレン、アセトン、1,3-ジオキソラン、N-メチルピロリドンおよびγ-ブチロラクトンなどである。 The solvent is used for dispersing or dissolving the epoxy compound and the trinaphthylbenzene compound in the liquid resin composition. This solvent is one or more of organic solvents, and specific examples of the organic solvent include methyl ethyl ketone, methyl cellosolve, methyl isobutyl ketone, dimethylformamide, propylene glycol monomethyl ether, toluene, xylene, Acetone, 1,3-dioxolane, N-methylpyrrolidone and γ-butyrolactone.
 他の硬化剤は、骨格として1,3,5-トリナフチルベンゼンを含んでいないが、1つ以上の反応基を含んでいる化合物であり、ここで説明する反応基は、例えば、ヒドロキシ基およびアミノ基のうちの一方または双方である。この他の硬化剤の具体例は、フェノール、アミンおよび酸無水物などである。 Other curing agents are compounds that do not contain 1,3,5-trinaphthylbenzene as a skeleton, but contain one or more reactive groups, and the reactive groups described here include, for example, hydroxy groups and One or both of the amino groups. Specific examples of the other curing agent include phenol, amine and acid anhydride.
なお、効果の観点から、1,3,5-トリナフチルベンゼンを含む硬化剤は、エポキシ樹脂のエポキシ基の数に対して、1,3,5-トリナフチルベンゼンを含む硬化剤の活性水素の数が少なくとも50%以上となるように含まれることが好ましい。 From the viewpoint of the effect, the curing agent containing 1,3,5-trinaphthylbenzene has an active hydrogen content of the curing agent containing 1,3,5-trinaphthylbenzene relative to the number of epoxy groups of the epoxy resin. It is preferable that the number is included so as to be at least 50% or more.
 無機粒子は、粒子状の無機材料のうちのいずれか1種類または2種類以上である。この無機粒子の具体例は、酸化マグネシウム(MgO)、酸化アルミニウム(Al2 3 )および窒化ホウ素(BN)などである。 The inorganic particles are one kind or two or more kinds of particulate inorganic materials. Specific examples of the inorganic particles include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), and boron nitride (BN).
<1-2.製造方法>
 この樹脂組成物は、例えば、以下の手順により製造される。
<1-2. Manufacturing method>
This resin composition is manufactured, for example, by the following procedure.
 固体状の樹脂組成物を得る場合には、エポキシ化合物と、トリナフチルベンゼン化合物とを混合する。塊状などのエポキシ化合物を用いる場合には、混合前にエポキシ化合物を粉砕してもよい。このように混合前に粉砕してもよいことは、トリナフチルベンゼン化合物に関しても同様である。これにより、エポキシ化合物とトリナフチルベンゼン化合物とを含む固体状の樹脂組成物が得られる。 When obtaining a solid resin composition, an epoxy compound and a trinaphthylbenzene compound are mixed. When an epoxy compound such as a lump is used, the epoxy compound may be pulverized before mixing. As described above, the trinaphthylbenzene compound may be pulverized before mixing. Thereby, a solid resin composition containing an epoxy compound and a trinaphthylbenzene compound is obtained.
 なお、固体状の樹脂組成物を得たのち、必要に応じて、金型などを用いて樹脂組成物を成形してもよい。 In addition, after obtaining a solid resin composition, the resin composition may be molded using a mold or the like, if necessary.
 液体状の樹脂組成物を得る場合には、上記したエポキシ化合物とトリナフチルベンゼン化合物との混合物に溶媒を加えたのち、ミキサなどの撹拌装置を用いて溶媒を撹拌する。これにより、溶媒中にエポキシ化合物、トリナフチルベンゼン化合物が分散または溶解される。よって、エポキシ化合物とトリナフチルベンゼン化合物とを含む液体状の樹脂組成物が得られる。 In the case of obtaining a liquid resin composition, a solvent is added to the mixture of the epoxy compound and the trinaphthylbenzene compound described above, and then the solvent is stirred using a stirring device such as a mixer. As a result, the epoxy compound and the trinaphthylbenzene compound are dispersed or dissolved in the solvent. Therefore, a liquid resin composition containing an epoxy compound and a trinaphthylbenzene compound is obtained.
 この他、液体状の樹脂組成物を得る場合には、固体状の樹脂組成物を加熱して、その樹脂組成物を溶融させてよい。この場合には、必要に応じて、金型などを用いて樹脂組成物の溶融物を成形したのち、その溶融物を冷却してもよい。 In addition, when obtaining a liquid resin composition, the solid resin composition may be heated to melt the resin composition. In this case, if necessary, after molding a melt of the resin composition using a mold or the like, the melt may be cooled.
 なお、エポキシ化合物としては、粉体状および塊状などの固体状の化合物を用いてもよいし、液体状の化合物を用いてもよいし、双方を併用してもよい。同様に、トリナフチルベンゼン化合物などの硬化剤としては、粉体状および塊状などの固体状の化合物を用いてもよいし、液体状の化合物を用いてもよいし、双方を併用してもよい。ここで説明したことは、上記した他の材料に関しても同様である。 In addition, as an epoxy compound, solid compounds, such as a powder form and a lump, may be used, a liquid compound may be used, and both may be used together. Similarly, as a curing agent such as a trinaphthylbenzene compound, a solid compound such as powder and lump may be used, a liquid compound may be used, or both may be used in combination. . What has been described here also applies to the other materials described above.
<1-3.作用および効果>
 この樹脂組成物によれば、エポキシ化合物と、式(1-1)に示したトリナフチルベンゼン化合物とを含んでいる。この場合には、上記したように、樹脂硬化物の優れた熱伝導性に加え、優れた耐熱性といった優れた熱的特性を得ることができる。
<1-3. Action and Effect>
According to this resin composition, the epoxy compound and the trinaphthylbenzene compound represented by the formula (1-1) are included. In this case, as described above, in addition to the excellent thermal conductivity of the cured resin, excellent thermal properties such as excellent heat resistance can be obtained.
 特に、式(1-1)において、式中A1で表されるナフチル基に導入されているRのうちの1つ以上が反応基であり、式中A2で表されるナフチル基に導入されているRのうちの1つ以上が反応基であり、式中A3で表されるナフチル基に導入されているRのうちの1つ以上が反応基であれば、エポキシ化合物とトリナフチルベンゼン化合物とが反応しやすくなるため、より高い効果を得ることができる。この場合には、式中A1で表されるナフチル基に導入されているRのうちの1つが反応基であり、式中A2で表されるナフチル基に導入されているRのうちの1つが反応基であり、式中A3で表されるナフチル基に導入されているRのうちの1つが反応基であれば、エポキシ化合物とトリナフチルベンゼン化合物との架橋反応における立体障害が低減され、エポキシ化合物とトリナフチルベンゼン化合物との反応物の架橋密度が向上する為、さらに高い効果を得ることができる。 In particular, in formula (1-1), one or more of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and introduced into the naphthyl group represented by A2 in the formula If one or more of R in the formula is a reactive group and one or more of R introduced into the naphthyl group represented by A3 in the formula is a reactive group, an epoxy compound and a trinaphthylbenzene compound Since it becomes easy to react, a higher effect can be acquired. In this case, one of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and one of R introduced into the naphthyl group represented by A2 in the formula is If one of R introduced into the naphthyl group represented by A3 in the formula is a reactive group, the steric hindrance in the crosslinking reaction between the epoxy compound and the trinaphthylbenzene compound is reduced, and the epoxy Since the crosslinking density of the reaction product between the compound and the trinaphthylbenzene compound is improved, a higher effect can be obtained.
 <2.樹脂シート>
 次に、本発明の一実施形態の樹脂シートに関して説明する。以下では、既に説明した樹脂組成物を「本発明の樹脂組成物」という。
<2. Resin sheet>
Next, the resin sheet of one embodiment of the present invention will be described. Below, the resin composition already demonstrated is called "resin composition of this invention."
 樹脂シートは、本発明の樹脂組成物を含んでいる。この樹脂シートの構成は、本発明の樹脂組成物を含んでいれば、特に限定されない。すなわち、樹脂シートは、樹脂組成物と一緒に他の構成要素を備えていなくてもよいし、その樹脂組成物と一緒に他の構成要素を備えていてもよい。 The resin sheet contains the resin composition of the present invention. The structure of this resin sheet will not be specifically limited if the resin composition of this invention is included. That is, the resin sheet may not include other components together with the resin composition, or may include other components together with the resin composition.
<2-1.構成>
 図1は、樹脂シート10の断面構成を表している。この樹脂シート10は、シート状に成形された樹脂組成物(樹脂組成物層1)であり、より具体的には、1つの樹脂組成物層1からなる単層体である。樹脂シート10の厚さなどは、特に限定されない。樹脂組成物層1の構成は、シート状に成形されていることを除き、本発明の樹脂組成物の構成と同様である。
<2-1. Configuration>
FIG. 1 shows a cross-sectional configuration of the resin sheet 10. The resin sheet 10 is a resin composition (resin composition layer 1) formed into a sheet shape, and more specifically, is a single-layer body including one resin composition layer 1. The thickness of the resin sheet 10 is not particularly limited. The configuration of the resin composition layer 1 is the same as the configuration of the resin composition of the present invention except that it is formed into a sheet shape.
 図2は、樹脂シート20の断面構成を表している。この樹脂シート20は、複数の樹脂組成物層1が積層された積層体である。樹脂シート20において、樹脂組成物層1が積層される数(積層数)は、2層以上であれば、特に限定されない。図2では、例えば、樹脂組成物層1の積層数が3層である場合を示している。なお、樹脂シート20において、各樹脂組成物層1の構成は、特に限定されない。すなわち、各樹脂組成物層1における樹脂組成物の構成は、同じでもよいし、異なってもよい。もちろん、複数の樹脂組成物層1のうち、一部の樹脂組成物層1における樹脂組成物の構成が同じでもよい。 FIG. 2 shows a cross-sectional configuration of the resin sheet 20. The resin sheet 20 is a laminate in which a plurality of resin composition layers 1 are laminated. In the resin sheet 20, the number of laminated resin composition layers 1 (the number of laminated layers) is not particularly limited as long as it is two or more. In FIG. 2, the case where the number of lamination | stacking of the resin composition layer 1 is 3 layers is shown, for example. In addition, in the resin sheet 20, the structure of each resin composition layer 1 is not specifically limited. That is, the structure of the resin composition in each resin composition layer 1 may be the same or different. Of course, the structure of the resin composition in some resin composition layers 1 among the plurality of resin composition layers 1 may be the same.
 図3は、樹脂シート30の断面構成を表している。この樹脂シート30は、シート状に成形された樹脂組成物(樹脂組成物層1)と一緒に芯材2を備えており、例えば、2つの樹脂組成物層1により芯材2が挟まれた3層構造を有している。 FIG. 3 shows a cross-sectional configuration of the resin sheet 30. The resin sheet 30 includes a core material 2 together with a resin composition (resin composition layer 1) formed into a sheet shape. For example, the core material 2 is sandwiched between two resin composition layers 1. It has a three-layer structure.
 芯材2は、例えば、繊維状物質および非繊維状物質などのうちのいずれか1種類または2種類以上を含んでおり、シート状に成形されている。繊維状物質は、例えば、ガラス繊維、炭素繊維、金属繊維、天然繊維および合成繊維などであり、シート状に成形された繊維状物質は、例えば、織布および不織布などである。合成繊維の具体例は、ポリエステル繊維およびポリアミド繊維などである。非繊維状物質は、例えば、高分子化合物などであり、シート状に成形された非繊維状物質は、例えば、高分子フィルムなどである。高分子化合物の具体例は、ポリエチレンテレフタレート(PET)などである。 The core material 2 includes, for example, any one or more of a fibrous substance and a non-fibrous substance, and is formed into a sheet shape. Examples of the fibrous material include glass fiber, carbon fiber, metal fiber, natural fiber, and synthetic fiber, and examples of the fibrous material formed into a sheet include a woven fabric and a non-woven fabric. Specific examples of the synthetic fiber include polyester fiber and polyamide fiber. The non-fibrous substance is, for example, a polymer compound, and the non-fibrous substance formed into a sheet is, for example, a polymer film. Specific examples of the polymer compound include polyethylene terephthalate (PET).
 芯材2の厚さは、特に限定されないが、機械的強度および寸法安定性などの観点から、例えば、0.03mm~0.2mmであることが好ましい。 The thickness of the core material 2 is not particularly limited, but is preferably 0.03 mm to 0.2 mm, for example, from the viewpoint of mechanical strength and dimensional stability.
 なお、樹脂シート30に用いられる樹脂組成物層1は、1層だけでもよいし、2層以上でもよい。このように1層でも2層以上でもよいことは、芯材2に関しても同様である。 The resin composition layer 1 used for the resin sheet 30 may be only one layer or two or more layers. It is the same for the core material 2 that one layer or two or more layers may be used.
 また、樹脂シート30は、2つの樹脂組成物層1により芯材2が挟まれた3層構造に限らず、樹脂組成物層1と芯材2とが積層された2層構造を有していてもよい。なお、2つ以上の樹脂シート30が積層されていてもよい。 The resin sheet 30 is not limited to a three-layer structure in which the core material 2 is sandwiched between the two resin composition layers 1 but has a two-layer structure in which the resin composition layer 1 and the core material 2 are laminated. May be. Two or more resin sheets 30 may be laminated.
<2-2.製造方法>
 樹脂シート10を製造する場合には、例えば、本発明の樹脂組成物の製造方法と同様の手順を用いる。
<2-2. Manufacturing method>
When manufacturing the resin sheet 10, the procedure similar to the manufacturing method of the resin composition of this invention is used, for example.
 具体的には、固体状の樹脂組成物を用いる場合には、シート状となるように樹脂組成物を成形して、樹脂組成物層1を形成する。この場合には、固体状の樹脂組成物をそのまま成形してもよいし、固体状の樹脂組成物の溶融物を成形してもよい。溶融物を成形する場合には、まず、固体状の樹脂組成物を加熱して、その樹脂組成物を溶融させる。続いて、樹脂組成物の溶融物を成形したのち、その成形物を冷却する。 Specifically, when a solid resin composition is used, the resin composition is molded so as to be in the form of a sheet to form the resin composition layer 1. In this case, the solid resin composition may be molded as it is, or a melt of the solid resin composition may be molded. When molding the melt, first, the solid resin composition is heated to melt the resin composition. Subsequently, after molding a melt of the resin composition, the molded product is cooled.
 液体状の樹脂組成物を用いる場合には、高分子フィルムなどの支持体の表面に液体状の樹脂組成物を塗布したのち、その液体状の樹脂組成物を乾燥させる。これにより、液体状の樹脂組成物に含まれていた溶媒が揮発するため、支持体の表面において樹脂組成物がシート状に成形される。すなわち、支持体の表面において樹脂組成物が膜化する。よって、樹脂組成物層1が形成される。こののち、支持体から樹脂組成物層1を剥離する。 In the case of using a liquid resin composition, the liquid resin composition is applied to the surface of a support such as a polymer film, and then the liquid resin composition is dried. Thereby, since the solvent contained in the liquid resin composition is volatilized, the resin composition is formed into a sheet shape on the surface of the support. That is, the resin composition forms a film on the surface of the support. Therefore, the resin composition layer 1 is formed. After that, the resin composition layer 1 is peeled from the support.
 樹脂シート20を製造する場合には、上記した樹脂組成物層1の形成手順を繰り返して、複数の樹脂組成物層1を積層させる。この場合には、複数の樹脂組成物層1が積層された積層体を形成したのち、必要に応じて加熱しながら、積層体を加圧してもよい。これにより、樹脂組成物層1同士が密着する。 When manufacturing the resin sheet 20, the formation procedure of the above-mentioned resin composition layer 1 is repeated, and the several resin composition layer 1 is laminated | stacked. In this case, after forming a laminated body in which a plurality of resin composition layers 1 are laminated, the laminated body may be pressurized while being heated as necessary. Thereby, the resin composition layers 1 adhere to each other.
 3層構造を有する樹脂シート30を製造する場合には、例えば、液体状の樹脂組成物を芯材2の両面に塗布したのち、その液体状の樹脂組成物を乾燥させる。これにより、芯材2を挟むように2つの樹脂組成物層1が形成される。この液体状の樹脂組成物の塗布工程では、芯材2が繊維状物質を含んでいる場合には、その液体状の樹脂組成物により芯材2の表面が被覆されると共に、その液体状の樹脂組成物の一部が芯材2の内部に含浸する。または、芯材2が非繊維状物質を含んでいる場合には、その液体状の樹脂組成物により芯材2の表面が被覆される。 When manufacturing the resin sheet 30 having a three-layer structure, for example, after applying a liquid resin composition to both surfaces of the core material 2, the liquid resin composition is dried. Thereby, the two resin composition layers 1 are formed so as to sandwich the core material 2. In the application step of the liquid resin composition, when the core material 2 contains a fibrous substance, the surface of the core material 2 is covered with the liquid resin composition, and the liquid resin composition A part of the resin composition is impregnated into the core material 2. Or when the core material 2 contains a non-fibrous substance, the surface of the core material 2 is coat | covered with the liquid resin composition.
 もちろん、2層構造を有する樹脂シート30を製造する場合には、液体状の樹脂組成物を芯材2の片面だけに塗布すればよい。 Of course, when manufacturing the resin sheet 30 having a two-layer structure, the liquid resin composition may be applied only to one side of the core material 2.
 なお、樹脂シート30を製造する場合には、例えば、固体状の樹脂組成物を加熱して、その樹脂組成物を溶融させたのち、その溶融物中に芯材2を浸漬させてもよい。この場合には、溶融物中から芯材2を取り出したのち、その芯材2を冷却する。これにより、芯材2の両面に樹脂組成物層1が形成される。 When manufacturing the resin sheet 30, for example, the solid resin composition may be heated to melt the resin composition, and then the core material 2 may be immersed in the melt. In this case, after the core material 2 is taken out from the melt, the core material 2 is cooled. Thereby, the resin composition layer 1 is formed on both surfaces of the core material 2.
 ここで、樹脂シート10~30を製造するために液体状の樹脂組成物を用いる場合には、上記したように、乾燥工程において液体状の樹脂組成物が膜化(固体化)する。ただし、ここで説明する「膜化(固体化)」とは、流動性を有する状態(液体状態)の物質が自立可能な状態(固体状態)に変化することを意味しており、いわゆる半硬化状態も含む。すなわち、液体状の樹脂組成物が膜化する場合には、硬化反応が実質的に完了していないため、その樹脂組成物が実質的に未硬化の状態にある。このため、液体状の樹脂組成物を膜化させる際の乾燥条件は、硬化反応を実質的に完了させない条件であることが好ましい。具体的には、乾燥温度は60℃~150℃であると共に乾燥時間は1分間~120分間であることが好ましく、乾燥温度は70℃~120℃であると共に乾燥時間は3分間~90分間であることがより好ましい。 Here, when the liquid resin composition is used for manufacturing the resin sheets 10 to 30, as described above, the liquid resin composition becomes a film (solidifies) in the drying step. However, “filming (solidification)” described here means that a substance in a fluid state (liquid state) changes to a self-sustainable state (solid state), so-called semi-curing. Including state. That is, when the liquid resin composition forms a film, since the curing reaction is not substantially completed, the resin composition is substantially in an uncured state. For this reason, it is preferable that the drying conditions when forming the liquid resin composition into a film are conditions that do not substantially complete the curing reaction. Specifically, the drying temperature is 60 ° C. to 150 ° C. and the drying time is preferably 1 minute to 120 minutes. The drying temperature is 70 ° C. to 120 ° C. and the drying time is 3 minutes to 90 minutes. More preferably.
 このように硬化反応を実質的に完了させない条件が好ましいことは、樹脂シート10~30を製造するために固体状の樹脂組成物の溶融物を用いる場合に関しても同様である。すなわち、固体状の樹脂組成物を溶融させる際の加熱条件(加熱温度および加熱時間)は、硬化反応を実質的に完了させない条件であることが好ましい。 The conditions under which the curing reaction is not substantially completed in this manner are preferable when the melt of the solid resin composition is used to produce the resin sheets 10 to 30. That is, it is preferable that the heating conditions (heating temperature and heating time) for melting the solid resin composition are conditions that do not substantially complete the curing reaction.
<2-3.作用および効果>
 この樹脂シートによれば、上記した本発明の樹脂組成物を含んでいるので、その樹脂組成物と同様の理由により、優れた熱的特性を得ることができる。これ以外の作用および効果は、本発明の樹脂組成物と同様である。
<2-3. Action and Effect>
According to this resin sheet, since the above-described resin composition of the present invention is included, excellent thermal characteristics can be obtained for the same reason as that of the resin composition. Other operations and effects are the same as those of the resin composition of the present invention.
<3.樹脂硬化物>
 次に、本発明の一実施形態の樹脂硬化物に関して説明する。
<3. Cured resin>
Next, the cured resin according to an embodiment of the present invention will be described.
<3-1.構成>
 樹脂硬化物は、上記した樹脂組成物の硬化反応物を含んでおり、より具体的には、エポキシ化合物とトリナフチルベンゼン化合物との硬化反応物を含んでいる。この硬化反応物では、エポキシ化合物に含まれているエポキシ基と、トリナフチルベンゼン化合物に含まれている反応基とが架橋反応しているため、いわゆる架橋ネットワークが形成されている。
<3-1. Configuration>
The resin cured product includes a curing reaction product of the resin composition described above, and more specifically includes a curing reaction product of an epoxy compound and a trinaphthylbenzene compound. In this cured reaction product, the epoxy group contained in the epoxy compound and the reactive group contained in the trinaphthylbenzene compound undergo a crosslinking reaction, so a so-called crosslinked network is formed.
<3-2.製造方法>
 この樹脂硬化物を製造する場合には、樹脂組成物を加熱する。これにより、樹脂組成物が硬化反応するため、硬化反応物である樹脂硬化物が得られる。
<3-2. Manufacturing method>
In producing this cured resin, the resin composition is heated. Thereby, since the resin composition undergoes a curing reaction, a cured resin product that is a cured reaction product is obtained.
 加熱温度および加熱時間などの加熱条件は、特に限定されないが、上記した樹脂シートの製造方法とは異なり、硬化反応を実質的に進行させる条件であることが好ましい。 The heating conditions such as the heating temperature and the heating time are not particularly limited, but are preferably conditions that allow the curing reaction to proceed substantially unlike the above-described method for producing a resin sheet.
<3-3.作用および効果>
 この樹脂硬化物によれば、上記した本発明の樹脂組成物の硬化反応物を含んでいるので、その樹脂組成物と同様の理由により、優れた熱的特性を得ることができる。これ以外の作用および効果は、本発明の樹脂組成物と同様である。
<3-3. Action and Effect>
According to the cured resin, since the cured reaction product of the resin composition of the present invention described above is included, excellent thermal characteristics can be obtained for the same reason as that of the resin composition. Other operations and effects are the same as those of the resin composition of the present invention.
<4.樹脂基板>
 次に、本発明の一実施形態の樹脂基板に関して説明する。以下では、既に説明した樹脂シートを「本発明の樹脂シート」、樹脂硬化物を「本発明の樹脂硬化物」とそれぞれ呼称する。
<4. Resin substrate>
Next, the resin substrate of one embodiment of the present invention will be described. Hereinafter, the already explained resin sheet is referred to as “resin sheet of the present invention” and the cured resin product is referred to as “resin cured product of the present invention”.
 樹脂基板は、上記した樹脂硬化物の適用例の1つであり、ここで説明する樹脂基板は、例えば、本発明の樹脂シートの硬化反応物である。この樹脂基板の構成は、1または2以上の樹脂シートの硬化反応物を含んでいれば、特に限定されない。 The resin substrate is one example of application of the above-described cured resin, and the resin substrate described here is, for example, a cured reaction product of the resin sheet of the present invention. The structure of the resin substrate is not particularly limited as long as it includes one or two or more resin sheet curing reaction products.
<4-1.構成>
 図4は、樹脂基板40の断面構成を表している。この樹脂基板40は、図1に示した樹脂シート10の硬化反応物である。すなわち、樹脂基板40は、樹脂組成物層1の硬化反応物(樹脂硬化物層3)であり、より具体的には、1つの樹脂硬化物層3からなる単層体である。
<4-1. Configuration>
FIG. 4 illustrates a cross-sectional configuration of the resin substrate 40. The resin substrate 40 is a cured reaction product of the resin sheet 10 shown in FIG. That is, the resin substrate 40 is a cured reaction product (resin cured product layer 3) of the resin composition layer 1, and more specifically, a single-layer body including one resin cured product layer 3.
 図5は、樹脂基板50の断面構成を表している。この樹脂基板50は、図2に示した樹脂シート20の硬化反応物であり、より具体的には、複数の樹脂組成物層1の硬化反応物(樹脂硬化物層3)が積層された積層体である。樹脂硬化物層3が積層される数(積層数)は、2層以上であれば、特に限定されない。図5では、例えば、樹脂硬化物層3の積層数が3層である場合を示している。 FIG. 5 shows a cross-sectional configuration of the resin substrate 50. The resin substrate 50 is a cured reaction product of the resin sheet 20 shown in FIG. 2, and more specifically, a laminate in which a plurality of cured reaction products (resin cured product layers 3) of the resin composition layer 1 are laminated. Is the body. The number of laminated resin cured product layers 3 (the number of laminated layers) is not particularly limited as long as it is two or more. In FIG. 5, the case where the number of lamination | stacking of the resin cured material layer 3 is 3 layers is shown, for example.
 図6は、樹脂基板60の断面構成を表している。この樹脂基板60は、図3に示した樹脂シート30の硬化反応物であり、より具体的には、2つの樹脂硬化物層3により1つの芯材2が挟まれた3層構造を有している。 FIG. 6 shows a cross-sectional configuration of the resin substrate 60. This resin substrate 60 is a cured reaction product of the resin sheet 30 shown in FIG. 3, and more specifically has a three-layer structure in which one core material 2 is sandwiched between two resin cured product layers 3. ing.
 図7は、樹脂基板70の断面構成を表している。この樹脂基板70では、2つ以上の樹脂シート30の硬化反応物が積層されている。ここでは、例えば、3つの樹脂シート30の硬化反応物が積層されている。すなわち、2つの樹脂硬化物層3により1つの芯材2が挟まれた3層構造が形成されており、その3層構造が3段重ねられている。 FIG. 7 shows a cross-sectional configuration of the resin substrate 70. In this resin substrate 70, two or more cured reaction products of the resin sheet 30 are laminated. Here, for example, the cured reaction products of three resin sheets 30 are laminated. That is, a three-layer structure in which one core material 2 is sandwiched between two resin cured product layers 3 is formed, and the three-layer structure is stacked in three stages.
 なお、上記した3層構造が重ねられる数(段数)は、3段に限らず、2段でもよいし、4段以上でもよい。この段数は、樹脂基板70の厚さおよび強度などの条件に基づいて適宜設定可能である。 Note that the number of stacked three-layer structures (the number of stages) is not limited to three, but may be two or four or more. The number of steps can be appropriately set based on conditions such as the thickness and strength of the resin substrate 70.
 ここでは図示していないが、樹脂基板70は、金属層を備えていてもよい。この金属層は、例えば、最上層の樹脂硬化物層3の表面に設けられると共に、最下層の樹脂硬化物層3の表面に設けられる。 Although not shown here, the resin substrate 70 may include a metal layer. For example, the metal layer is provided on the surface of the uppermost resin cured product layer 3 and also on the surface of the lowermost resin cured product layer 3.
 金属層は、例えば、銅、ニッケルおよびアルミニウムなどのうちのいずれか1種類または2種類以上を含んでいる。また、金属層は、例えば、金属箔および金属板などのうちのいずれか1種類または2種類以上を含んでおり、単層でもよいし、多層でもよい。金属層の厚さは、特に限定されないが、例えば、3μm~150μmである。この金属層を備えた樹脂基板70は、いわゆる金属張り基板である。 The metal layer contains, for example, any one or more of copper, nickel, aluminum and the like. In addition, the metal layer includes, for example, any one or two or more of metal foil and metal plate, and may be a single layer or a multilayer. The thickness of the metal layer is not particularly limited, but is 3 μm to 150 μm, for example. The resin substrate 70 provided with this metal layer is a so-called metal-clad substrate.
 なお、金属層は、最上層の樹脂硬化物層3の表面だけに設けられてもよいし、最下層の樹脂硬化物層3の表面だけに設けられてもよい。 Note that the metal layer may be provided only on the surface of the uppermost resin cured product layer 3 or may be provided only on the surface of the lowermost resin cured product layer 3.
 この金属層を備えた樹脂基板70には、必要に応じて、エッチング処理および穴開け処理などの各種処理のうちのいずれか1種類または2種類以上が施されていてもよい。この場合には、樹脂基板70と、上記した各種処理が施された金属層と、樹脂シート10~30のうちのいずれか1種類または2種類以上とを重ねることで、多層基板としてもよい。 The resin substrate 70 provided with this metal layer may be subjected to any one type or two or more types of various processes such as an etching process and a drilling process as necessary. In this case, a multilayer substrate may be formed by stacking the resin substrate 70, the metal layer subjected to the above-described various treatments, and any one or more of the resin sheets 10 to 30.
 このように、金属層を設けたり、多層基板としてもよいことは、樹脂基板70に限らず、上記した樹脂基板40~60に関しても同様である。 Thus, the provision of a metal layer or a multi-layer substrate is not limited to the resin substrate 70, but also applies to the resin substrates 40 to 60 described above.
<4-2.製造方法>
 樹脂基板40を製造する場合には、樹脂シート10を加熱する。これにより、上記したように、樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図4に示したように、樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。
<4-2. Manufacturing method>
When manufacturing the resin substrate 40, the resin sheet 10 is heated. Thereby, as described above, since the curing reaction of the resin composition is substantially completed in the resin composition layer 1, as shown in FIG. 4, the resin curing that is a curing reaction product of the resin composition layer 1. The physical layer 3 is formed.
 樹脂基板50を製造する場合には、樹脂シート20を加熱する。これにより、上記したように、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図5に示したように、複数の樹脂組成物層1の硬化反応物である複数の樹脂硬化物層3が形成される。 When the resin substrate 50 is manufactured, the resin sheet 20 is heated. Thereby, as described above, since the curing reaction of the resin composition is substantially completed in each resin composition layer 1, the cured reaction products of the plurality of resin composition layers 1 are used as shown in FIG. 5. A plurality of cured resin layers 3 are formed.
 樹脂基板60を製造する場合には、樹脂シート30を加熱する。これにより、上記したように、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図6に示したように、芯材2の両面に樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。 When the resin substrate 60 is manufactured, the resin sheet 30 is heated. Thereby, as described above, the curing reaction of the resin composition is substantially completed in each resin composition layer 1, and therefore, as shown in FIG. 6, the resin composition layer 1 is formed on both surfaces of the core material 2. A cured resin layer 3 that is a cured reaction product is formed.
 図8は、樹脂基板70の製造方法を説明するために、図7に対応する断面構成を表している。この樹脂基板70を製造する場合には、まず、図8に示したように、3つの樹脂シート30を積層させる。これにより、3つの樹脂シート30の積層体が得られる。こののち、積層体を加熱する。これにより、各樹脂シート30では、各樹脂組成物層1中において樹脂組成物の硬化反応が実質的に完了するため、図7に示したように、各芯材2の両面に、樹脂組成物層1の硬化反応物である樹脂硬化物層3が形成される。 FIG. 8 shows a cross-sectional configuration corresponding to FIG. 7 in order to explain the method for manufacturing the resin substrate 70. When manufacturing this resin substrate 70, first, as shown in FIG. 8, three resin sheets 30 are laminated. Thereby, the laminated body of the three resin sheets 30 is obtained. Thereafter, the laminate is heated. Thereby, in each resin sheet 30, since the curing reaction of the resin composition is substantially completed in each resin composition layer 1, the resin composition is formed on both surfaces of each core material 2 as shown in FIG. A cured resin layer 3 that is a cured reaction product of the layer 1 is formed.
 ここで、樹脂シート10~30を製造するために樹脂組成物の溶融物を用いる場合には、上記したように、樹脂組成物の溶融時において硬化反応が実質的に完了することを回避する。このため、樹脂組成物の硬化反応が実質的に完了する温度よりも、溶融物を得るために樹脂組成物を加熱する温度を低くすることが好ましい。言い替えれば、樹脂組成物の溶融温度は、その樹脂組成物の硬化反応が実質的に完了する温度よりも低いことが好ましい。 Here, when using a melt of the resin composition to manufacture the resin sheets 10 to 30, as described above, it is avoided that the curing reaction is substantially completed when the resin composition is melted. For this reason, it is preferable to lower the temperature at which the resin composition is heated to obtain a melt than the temperature at which the curing reaction of the resin composition is substantially completed. In other words, the melting temperature of the resin composition is preferably lower than the temperature at which the curing reaction of the resin composition is substantially completed.
 一例を挙げると、金型を用いた成形工程では、一般的に、成形時の加熱温度の最高値(最高温度)が250℃程度になる。このため、樹脂組成物の溶融温度は、250℃よりも低い温度であることが好ましく、200℃以下であることがより好ましい。 For example, in a molding process using a mold, generally, the maximum heating temperature (maximum temperature) during molding is about 250 ° C. For this reason, it is preferable that the melting temperature of a resin composition is a temperature lower than 250 degreeC, and it is more preferable that it is 200 degrees C or less.
 ここで説明する「溶融温度」とは、樹脂組成物の硬化反応が実質的に完了することを回避しつつ、その樹脂組成物が固体状態から流動(溶融)状態に変化する温度である。この溶融温度を特定するためには、例えば、ホットプレートなどの加熱器具を用いて樹脂組成物を加熱しながら、その樹脂組成物の状態を目視で観察する。この場合には、へらなどを用いて樹脂組成物を混ぜ合わせながら、加熱温度を次第に上昇させる。これにより、樹脂組成物が溶融し始めた温度を溶融温度とする。 The “melting temperature” described here is a temperature at which the resin composition changes from a solid state to a fluidized (melted) state while avoiding that the curing reaction of the resin composition is substantially completed. In order to specify the melting temperature, for example, the state of the resin composition is visually observed while heating the resin composition using a heating tool such as a hot plate. In this case, the heating temperature is gradually increased while mixing the resin composition using a spatula or the like. Thereby, the temperature at which the resin composition starts to melt is defined as the melting temperature.
 上記したように、成形時の最高温度が250℃程度である場合には、例えば、その成形時の加熱温度を樹脂組成物の溶融温度よりも50℃以上高い温度、具体的には100℃~250℃とすると共に、加熱時間を1分間~300分間程度とする。これにより、硬化反応が実質的に完了する温度において樹脂組成物が十分に加熱されるため、その硬化反応が均一に進行する。 As described above, when the maximum temperature at the time of molding is about 250 ° C., for example, the heating temperature at the time of molding is 50 ° C. or more higher than the melting temperature of the resin composition, specifically 100 ° C. to The temperature is 250 ° C. and the heating time is about 1 to 300 minutes. Thereby, since the resin composition is sufficiently heated at a temperature at which the curing reaction is substantially completed, the curing reaction proceeds uniformly.
 なお、金型を用いた成形工程では、必要に応じて、プレス機などを用いて樹脂組成物を加圧してもよいし、その樹脂組成物が存在する環境中の圧力を増減してもよい。 In the molding process using a mold, the resin composition may be pressurized using a press or the like, or the pressure in the environment where the resin composition exists may be increased or decreased as necessary. .
 特に、樹脂基板70を製造する場合には、樹脂シート30の積層方向において積層体を加圧しながら、その積層体を加熱することが好ましい。樹脂シート30同士の密着性などが向上するからである。この場合の加熱条件および加圧条件は、特に限定されない。一例を挙げると、加熱温度は100℃~250℃、加熱時間は1分間~300分間であると共に、加圧圧力は0.5MPa~8MPaである。 In particular, when the resin substrate 70 is manufactured, it is preferable to heat the laminate while pressing the laminate in the lamination direction of the resin sheets 30. This is because the adhesion between the resin sheets 30 is improved. The heating conditions and pressurizing conditions in this case are not particularly limited. For example, the heating temperature is 100 ° C. to 250 ° C., the heating time is 1 minute to 300 minutes, and the pressurizing pressure is 0.5 MPa to 8 MPa.
<4-3.作用および効果>
 この樹脂基板によれば、本発明の樹脂硬化物を含んでいるので、その樹脂硬化物と同様の理由により、優れた熱的特性を得ることができる。これ以外の作用および効果は、本発明の樹脂硬化物と同様である。
<4-3. Action and Effect>
According to this resin substrate, since the cured resin of the present invention is included, excellent thermal characteristics can be obtained for the same reason as that of the cured resin. Other operations and effects are the same as those of the cured resin product of the present invention.
 本発明の実施例に関して、詳細に説明する。 The embodiment of the present invention will be described in detail.
(実施例1~12、比較例1~3)
 以下で説明する手順により、図5に示したように、複数の樹脂硬化物層3が積層された積層体からなる樹脂基板50を製造した。なお、以下で説明する含有量(質量部)は、固形分に換算した値である。
(Examples 1 to 12, Comparative Examples 1 to 3)
By the procedure described below, as shown in FIG. 5, a resin substrate 50 made of a laminate in which a plurality of cured resin layers 3 were laminated was manufactured. In addition, content (mass part) demonstrated below is the value converted into solid content.
 樹脂基板50を製造する場合には、最初に、エポキシ化合物と、硬化剤と、添加剤(硬化触媒)とを混合した。この場合には、エポキシ化合物に含まれているエポキシ基の数と、硬化剤に含まれている活性水素の数との比が1:1になるように、エポキシ化合物と硬化剤との混合比を調整した。 When the resin substrate 50 is manufactured, first, an epoxy compound, a curing agent, and an additive (curing catalyst) are mixed. In this case, the mixing ratio of the epoxy compound and the curing agent is such that the ratio of the number of epoxy groups contained in the epoxy compound to the number of active hydrogens contained in the curing agent is 1: 1. Adjusted.
 エポキシ化合物、硬化剤の種類および混合物中の含有量(質量部)は、表1に示した通りである。エポキシ化合物として、ビフェニル型エポキシ樹脂(YL6121H及びYX4000H:三菱ケミカル株式会社製)、ビスフェノールA型エポキシ(840-S:DIC株式会社製)、ジアミノジフェニルメタン型エポキシ(YH-434L:新日鉄住金化学社製)、リン含有エポキシ(FX-289Z:新日鐵住金化学社製)、3官能エポキシ(JER-630:三菱化学社製)、2官能ターフェニル型エポキシ(式1-12)、3官能ターフェニル型エポキシ(1-13)を用いた。硬化剤として、式(1-4)~式(1-11)のそれぞれに示したトリナフチルベンゼン化合物、BPAノボラック(LF6161:DIC株式会社製)、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼンおよび1,5-ジアミノナフタレン(東京化成株式会社製)を用いた。表1に示した「TNB骨格」の有無は、硬化剤が骨格として1,3,5-トリナフチルベンゼンを含んでいるか否かを表している。硬化触媒として、2-エチル-4-メチルイミダゾール(2E4MZ:四国化成株式会社製)を用いると共に、その硬化触媒の添加量は、エポキシ化合物と硬化剤との合計に対して1質量%とした。 The types of epoxy compounds and curing agents and the content (parts by mass) in the mixture are as shown in Table 1. As epoxy compounds, biphenyl type epoxy resins (YL6121H and YX4000H: manufactured by Mitsubishi Chemical Corporation), bisphenol A type epoxy (840-S: manufactured by DIC Corporation), diaminodiphenylmethane type epoxy (YH-434L: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Phosphorus-containing epoxy (FX-289Z: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), trifunctional epoxy (JER-630: manufactured by Mitsubishi Chemical Corporation), bifunctional terphenyl type epoxy (formula 1-12), trifunctional terphenyl type Epoxy (1-13) was used. As the curing agent, trinaphthylbenzene compounds represented by the formulas (1-4) to (1-11), BPA novolak (LF6161: manufactured by DIC Corporation), 1,3,5-tris (4-hydroxyphenyl) ) Benzene and 1,5-diaminonaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.) were used. The presence or absence of the “TNB skeleton” shown in Table 1 indicates whether or not the curing agent contains 1,3,5-trinaphthylbenzene as the skeleton. As the curing catalyst, 2-ethyl-4-methylimidazole (2E4MZ: manufactured by Shikoku Kasei Co., Ltd.) was used, and the addition amount of the curing catalyst was 1% by mass with respect to the total of the epoxy compound and the curing agent.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 続いて、溶媒(メチルエチルケトン)に混合物を投入したのち、その溶媒を撹拌した。これにより、溶媒中においてエポキシ化合物、硬化剤が溶解されたため、液体状の樹脂組成物が得られた。この場合には、固形分(エポキシ化合物、硬化剤)の濃度を65質量%とした。 Subsequently, the mixture was put into a solvent (methyl ethyl ketone), and then the solvent was stirred. Thereby, since the epoxy compound and the curing agent were dissolved in the solvent, a liquid resin composition was obtained. In this case, the concentration of the solid content (epoxy compound, curing agent) was 65% by mass.
 続いて、支持体(PETフィルム,厚さ=0.05mm)の表面に液体状の樹脂組成物を塗布したのち、その液体状の樹脂組成物を乾燥(温度=100℃)した。これにより、支持体の表面に樹脂組成物層1が形成されたため、図1に示した単層体である樹脂シート10(厚さ=0.1mm)が得られた。こののち、支持体から樹脂シート10を剥離した。 Subsequently, after applying a liquid resin composition to the surface of the support (PET film, thickness = 0.05 mm), the liquid resin composition was dried (temperature = 100 ° C.). Thereby, since the resin composition layer 1 was formed on the surface of the support, the resin sheet 10 (thickness = 0.1 mm) which was a single layer body shown in FIG. 1 was obtained. After that, the resin sheet 10 was peeled from the support.
 続いて、10枚の樹脂シート10を重ねて、図2に示した積層体である樹脂シート20(樹脂組成物層1の積層数=10層)を作製した。最後に、平板プレス機を用いて積層体を加熱(温度=170℃)および加圧(圧力=1MPa,時間=20分間)したのち、さらに積層体を加熱(温度=200℃)および加圧(圧力=4MPa,時間=1時間)した。この加熱工程では、各樹脂組成物層1中において樹脂組成物の反応が実質的に完了したため、その樹脂組成物の硬化反応物を含む樹脂硬化物層3が形成された。これにより、樹脂基板50(樹脂硬化物層3の積層数=10層,厚さ=0.9mm)が完成した。 Subsequently, 10 resin sheets 10 were stacked to produce a resin sheet 20 (the number of laminated resin composition layers 1 = 10 layers) as the laminate shown in FIG. Finally, the laminate is heated (temperature = 170 ° C.) and pressurized (pressure = 1 MPa, time = 20 minutes) using a flat plate press, and then the laminate is further heated (temperature = 200 ° C.) and pressurized ( Pressure = 4 MPa, time = 1 hour). In this heating process, since the reaction of the resin composition was substantially completed in each resin composition layer 1, a cured resin layer 3 containing a cured reaction product of the resin composition was formed. Thus, the resin substrate 50 (the number of laminated resin cured product layers 3 = 10 layers, thickness = 0.9 mm) was completed.
 この樹脂基板50(樹脂硬化物層3)のそれぞれの熱的特性を調べたところ、表1に示した結果が得られた。ここでは、樹脂基板50の耐熱性としてガラス転移点を調べると共に、熱伝導性として熱伝導率を調べた。 When the thermal characteristics of each resin substrate 50 (cured resin layer 3) were examined, the results shown in Table 1 were obtained. Here, the glass transition point was examined as the heat resistance of the resin substrate 50, and the thermal conductivity was examined as the thermal conductivity.
 耐熱性を調べる場合には、動的粘弾性測定装置(DMA)を用いて樹脂基板50のガラス転移点(℃)を測定した。具体的には、最初に、樹脂基板50を切断して、矩形状の測定用試料(3mm×25mm)を作製した。続いて、動的粘弾性測定装置(株式会社ユービーエム製のRheogel-E4000)を用いて、測定用試料を加熱しながら貯蔵弾性率を測定した。この場合には、昇温速度を5℃/分として、加熱温度を25℃から300℃まで上昇させた。最後に、貯蔵弾性率の変曲点に対応する加熱温度をガラス転移点とした。 When examining heat resistance, the glass transition point (° C.) of the resin substrate 50 was measured using a dynamic viscoelasticity measuring device (DMA). Specifically, first, the resin substrate 50 was cut to produce a rectangular measurement sample (3 mm × 25 mm). Subsequently, the storage elastic modulus was measured using a dynamic viscoelasticity measuring apparatus (Rheogel-E4000 manufactured by UBM Co., Ltd.) while heating the measurement sample. In this case, the heating temperature was increased from 25 ° C. to 300 ° C. at a rate of temperature increase of 5 ° C./min. Finally, the heating temperature corresponding to the inflection point of the storage modulus was taken as the glass transition point.
 熱伝導性を調べる場合には、樹脂基板50の熱伝導率(W/(m・K))を測定した。具体的には、最初に、樹脂基板50を切断して、円形状の測定用試料(直径=10mm,厚さ=0.9mm)を作製した。続いて、熱伝導率測定装置(アドバンス理工株式会社(旧アルバック理工株式会社)製のTCシリーズ)を用いて測定用試料の熱拡散係数α(m2 /s)を測定した。また、サファイアを標準試料として、示差走査熱量分析(DSC)を用いて測定用試料の比熱Cp(J/kg・K)を測定した。さらに、アルキメデス法を用いて測定用試料の密度rを測定した。最後に、下記の数式(A)に基づいて、熱伝導率λ(W/(m・K))を算出した。 When examining thermal conductivity, the thermal conductivity (W / (m · K)) of the resin substrate 50 was measured. Specifically, first, the resin substrate 50 was cut to produce a circular measurement sample (diameter = 10 mm, thickness = 0.9 mm). Subsequently, the thermal diffusion coefficient α (m 2 / s) of the measurement sample was measured using a thermal conductivity measuring device (TC series manufactured by Advance Riko Co., Ltd. (formerly ULVAC Riko Co., Ltd.)). Further, specific heat Cp (J / kg · K) of the measurement sample was measured using differential scanning calorimetry (DSC) using sapphire as a standard sample. Furthermore, the density r of the measurement sample was measured using the Archimedes method. Finally, thermal conductivity λ (W / (m · K)) was calculated based on the following mathematical formula (A).
 λ=α×Cp×r ・・・(A)
(λは熱伝導率(W/(m・K))、αは熱拡散率(m2 /s)、Cpは比熱(J/kg・K)、rは密度(kg/m3 )である。)
λ = α × Cp × r (A)
(Λ is thermal conductivity (W / (m · K)), α is thermal diffusivity (m 2 / s), Cp is specific heat (J / kg · K), and r is density (kg / m 3 ). .)
[規則26に基づく補充 16.03.2018] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 16.03.2018]
Figure WO-DOC-TABLE-1
 熱伝導率およびガラス転移点は、硬化剤の種類などに応じて大きく変動した。 The thermal conductivity and glass transition point varied greatly depending on the type of curing agent.
 詳細には、硬化剤がTNB骨格を含んでいる場合(実施例1~18)には、硬化剤がTNB骨格を含んでいない場合(比較例1~3)と比較して、熱伝導率およびガラス転移点が高くなった。 Specifically, when the curing agent includes a TNB skeleton (Examples 1 to 18), compared with the case where the curing agent does not include a TNB skeleton (Comparative Examples 1 to 3), the thermal conductivity and The glass transition point became high.
 表1に示した結果から、樹脂組成物がエポキシ化合物と式(1-1)に示したトリナフチルベンゼン化合物とを含んでいる場合、優れた熱伝導性と耐熱性とが両立された。よって、優れた熱的特性が得られた。 From the results shown in Table 1, when the resin composition contains the epoxy compound and the trinaphthylbenzene compound represented by the formula (1-1), excellent thermal conductivity and heat resistance are compatible. Therefore, excellent thermal characteristics were obtained.
 以上、実施形態および実施例を挙げながら本発明を説明したが、本発明は実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the modes described in the embodiments and examples, and various modifications can be made.
 1…樹脂組成物層、2…芯材、3…樹脂硬化物層、10,20,30…樹脂シート、40,50,60,70…樹脂基板。 DESCRIPTION OF SYMBOLS 1 ... Resin composition layer, 2 ... Core material, 3 ... Resin hardened | cured material layer, 10, 20, 30 ... Resin sheet, 40, 50, 60, 70 ... Resin board | substrate.

Claims (9)

  1. [規則26に基づく補充 16.03.2018] 
     エポキシ化合物と式(1-1)で表されるトリナフチルベンゼン化合物を含むことを特徴とする樹脂組成物。
    Figure WO-DOC-CHEMICAL-1a
    (式中A1~A3は1位または2位が置換されたナフチル基のいずれかであり、式中A1で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A2で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、式中A3で表されるナフチル基に導入されているRのうち一つ以上は反応基であり、反応基はヒドロキシ基またはアミノ基である。)
    [Supplement under rule 26 16.03.2018]
    A resin composition comprising an epoxy compound and a trinaphthylbenzene compound represented by the formula (1-1).
    Figure WO-DOC-CHEMICAL-1a
    (In the formula, A1 to A3 are either naphthyl groups substituted at the 1-position or 2-position, and one or more of R introduced into the naphthyl group represented by A1 in the formula are reactive groups; In the formula, one or more of R introduced into the naphthyl group represented by A2 is a reactive group, and one or more of R introduced into the naphthyl group represented by A3 in the formula is a reactive group. And the reactive group is a hydroxy group or an amino group.)
  2.  前記トリナフチルベンゼン化合物は式中A1で表されるナフチル基に導入されているRのうち一つが反応基であり、式中A2で表されるナフチル基に導入されているRのうち一つが反応基であり、式中A3で表されるナフチル基に導入されているRのうち一つが反応基である請求項1に記載の樹脂組成物。
    (ただし、反応基はヒドロキシ基またはアミノ基のうちいずれか一種類である。)
    In the trinaphthylbenzene compound, one of R introduced into the naphthyl group represented by A1 in the formula is a reactive group, and one of R introduced into the naphthyl group represented by A2 in the formula is reacted. The resin composition according to claim 1, wherein one of R introduced into the naphthyl group represented by A3 in the formula is a reactive group.
    (However, the reactive group is either a hydroxy group or an amino group.)
  3. [規則26に基づく補充 16.03.2018] 
     式(1-2)で表されるトリナフチルベンゼン化合物はR4、R11、R18がそれぞれ反応基である請求項2に記載の樹脂組成物。
    Figure WO-DOC-CHEMICAL-2a
    (ただし、反応基はヒドロキシ基またはアミノ基のうちいずれか一種類である。)
    [Supplement under rule 26 16.03.2018]
    The resin composition according to claim 2, wherein in the trinaphthylbenzene compound represented by the formula (1-2), R4, R11, and R18 are each a reactive group.
    Figure WO-DOC-CHEMICAL-2a
    (However, the reactive group is either a hydroxy group or an amino group.)
  4. [規則26に基づく補充 16.03.2018] 
     式(1-3)で表されるトリナフチルベンゼン化合物はR4、R11,R18がそれぞれ反応基である請求項2に記載の樹脂組成物。
    Figure WO-DOC-CHEMICAL-3
    (ただし、反応基はヒドロキシ基またはアミノ基のうちいずれか一種類である。)
     
    [Supplement under rule 26 16.03.2018]
    The resin composition according to claim 2, wherein in the trinaphthylbenzene compound represented by the formula (1-3), R4, R11, and R18 are each a reactive group.
    Figure WO-DOC-CHEMICAL-3
    (However, the reactive group is either a hydroxy group or an amino group.)
  5. 前記エポキシ化合物がメソゲン骨格を含むことを特徴とする請求項1ないし請求項4のいずれか1項に記載の樹脂組成物。
    (ただし、メソゲン骨格は、ナフタレン及びアントラセンの様な多環芳香族炭化水素の骨格や、2つ以上の芳香環を含むと共に芳香環同士が単結合および下記の式(2-1)~式(2-10)のそれぞれで表される非単結合のうちいずれかを介して結合された骨格である。)
    Figure JPOXMLDOC01-appb-C000004
    The resin composition according to any one of claims 1 to 4, wherein the epoxy compound includes a mesogen skeleton.
    (However, the mesogenic skeleton includes a polycyclic aromatic hydrocarbon skeleton such as naphthalene and anthracene, two or more aromatic rings, and the aromatic rings are single bonds and the following formulas (2-1) to ( 2-10) is a skeleton bonded via any one of the non-single bonds represented by each of
    Figure JPOXMLDOC01-appb-C000004
  6. 請求項1ないし請求項5のいずれか1項に記載の樹脂組成物を含む、樹脂シート。 The resin sheet containing the resin composition of any one of Claim 1 thru | or 5.
  7.  請求項1ないし請求項5のいずれか1項に記載の樹脂組成物の硬化反応物を含む、樹脂硬化物。 A cured resin comprising the cured reaction product of the resin composition according to any one of claims 1 to 5.
  8.  請求項6に記載の樹脂シートの硬化反応物を含む、樹脂基板。 A resin substrate containing the cured reaction product of the resin sheet according to claim 6.
  9.  2以上の前記樹脂シートの硬化反応物を含み、前記2以上の樹脂シートの硬化反応物は、積層されている、請求項8記載の樹脂基板。 The resin substrate according to claim 8, comprising two or more cured reaction products of the resin sheets, wherein the cured reaction products of the two or more resin sheets are laminated.
PCT/JP2018/006853 2017-03-28 2018-02-26 Resin composition, resin sheet, resin cured product, and resin substrate WO2018180091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017062665 2017-03-28
JP2017-062665 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018180091A1 true WO2018180091A1 (en) 2018-10-04

Family

ID=63675291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006853 WO2018180091A1 (en) 2017-03-28 2018-02-26 Resin composition, resin sheet, resin cured product, and resin substrate

Country Status (1)

Country Link
WO (1) WO2018180091A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136781A (en) * 2013-01-18 2014-07-28 Asahi Kasei Chemicals Corp Composition and polymer
WO2015177915A1 (en) * 2014-05-23 2015-11-26 株式会社日立製作所 Epoxy compound and epoxy resin cured product using same
JP2016204602A (en) * 2015-04-28 2016-12-08 Tdk株式会社 Resin composition, resin sheet, resin cured article, and resin substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136781A (en) * 2013-01-18 2014-07-28 Asahi Kasei Chemicals Corp Composition and polymer
WO2015177915A1 (en) * 2014-05-23 2015-11-26 株式会社日立製作所 Epoxy compound and epoxy resin cured product using same
JP2016204602A (en) * 2015-04-28 2016-12-08 Tdk株式会社 Resin composition, resin sheet, resin cured article, and resin substrate

Similar Documents

Publication Publication Date Title
JP6477207B2 (en) Resin composition, resin sheet, cured resin and resin substrate
JP6221634B2 (en) Resin composition, resin sheet, cured resin and substrate
JP6696283B2 (en) Resin composition, resin sheet, cured resin and resin substrate
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP6729562B2 (en) Resin composition, resin sheet, cured resin product and resin substrate
US20200062911A1 (en) Filler-Filled Highly Thermally Conductive Dispersion Composition Having Excellent Segregation Stability, Method for Producing Said Dispersion Composition, Filler-Filled Highly Thermally Conductive Material Using Said Dispersion Composition, Method for Producing Said Material, and Molded Article Obtained using Said Material
JP6477206B2 (en) Resin composition, resin sheet, cured resin and resin substrate
JP6834948B2 (en) Resin composition, resin sheet, cured resin, and resin substrate
JP6497196B2 (en) Resin composition, resin sheet, cured resin and resin substrate
CN108463321A (en) The manufacturing method of prepreg, printed wiring board, semiconductor package body and printed wiring board
JP6641817B2 (en) Thermosetting resin composition, resin film with carrier, and semiconductor device
JP6536158B2 (en) Resin composition, resin sheet, cured resin and resin substrate
TW572926B (en) Phenolic curing agent for epoxy resin and epoxy resin composition using the same
CN108472831A (en) FRP precursors, plywood, metal-clad, printed wiring board, semiconductor package body and their manufacturing method
WO2018180091A1 (en) Resin composition, resin sheet, resin cured product, and resin substrate
KR102059824B1 (en) Insulating resin composition for photo curing and printed circuit board using the same
JP6428470B2 (en) Resin composition, resin sheet, cured resin and resin substrate
JP2016204605A (en) Resin composition, resin sheet, resin cured article, and resin substrate
JP6907504B2 (en) Resin composition, resin sheet, cured resin, and resin substrate
JP2016113493A (en) Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminate, metal substrate and printed wiring board
TW201936878A (en) Thermosetting resin composition for semiconductor pakage, prepreg and metal clad laminate
JP2021095456A (en) Resin sheet and resin cured product
JP2019123834A (en) Resin composition, resin sheet, resin cured product and resin substrate
JP2019147926A (en) Resin composition, resin sheet, and metal-foiled resin sheet
JP2019155667A (en) Substrate and laminated substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP