WO2018179950A1 - Sensor chip for sample detection system - Google Patents

Sensor chip for sample detection system Download PDF

Info

Publication number
WO2018179950A1
WO2018179950A1 PCT/JP2018/005167 JP2018005167W WO2018179950A1 WO 2018179950 A1 WO2018179950 A1 WO 2018179950A1 JP 2018005167 W JP2018005167 W JP 2018005167W WO 2018179950 A1 WO2018179950 A1 WO 2018179950A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
sensor chip
liquid
metal film
excitation light
Prior art date
Application number
PCT/JP2018/005167
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 三宅
洋一 青木
野田 哲也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019508728A priority Critical patent/JP6885458B2/en
Publication of WO2018179950A1 publication Critical patent/WO2018179950A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Definitions

  • the present invention relates to a sensor chip used in an immunoassay (immunoassay) for measuring the presence or absence of a substance to be measured and its amount, and more specifically, a surface plasmon applying a surface plasmon resonance (SPR) phenomenon.
  • the present invention relates to a sensor chip used in a specimen detection system such as a resonance device or a surface plasmon excitation enhanced fluorescence measuring device based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS: Surface Plasmon-field enhanced Fluorescence Spectroscopy).
  • specimen detection methods when detecting a very small substance, various specimen detection methods have been proposed that can detect such a substance by applying a physical phenomenon of the substance.
  • a specimen detection method for example, by using an antigen-antibody reaction between an antigen, which is a measurement target substance contained in a sample solution, and an antibody or antigen labeled with a labeling substance, the presence or absence of the measurement target substance or its Immunoassay methods (immunoassays) for measuring amounts are known.
  • the immunoassay examples include an enzyme immunoassay (EIA) using an enzyme as a labeling substance, and a fluorescence immunoassay (FIA) using a fluorescent substance as a labeling substance.
  • EIA enzyme immunoassay
  • FIA fluorescence immunoassay
  • a specimen detection device using a fluorescence immunoassay method a phenomenon in which high light output is obtained by resonating electrons and light in a fine region such as a nanometer level (SPR: Surface Plasmon Resonance)
  • SPR apparatus surface plasmon resonance apparatus that detects minute alanite in a living body is used.
  • SPFS device based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) using surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher accuracy than SPR equipment.
  • SPFS device The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter also referred to as “SPFS device”) is one of such specimen detection devices.
  • surface plasmon excitation enhanced fluorescence spectroscopy SPFS
  • surface plasmon light is applied to the surface of the metal film under the condition that excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal film.
  • excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal film.
  • ATR total reflection
  • a sensor chip including a dielectric member, a metal film adjacent to the upper surface of the dielectric member, and a liquid holding member disposed on the upper surface of the metal film is used.
  • a reaction field having a ligand for capturing an analyte is provided on a metal film.
  • the analyte By supplying a sample solution containing the analyte to the liquid holding member, the analyte is captured by the ligand (primary reaction). In this state, a liquid (labeling liquid) containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid holding member. In the solution holding member, the analyte captured by the ligand is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
  • the fluorescent material is excited by the surface plasmon light generated on the surface of the metal film, and fluorescence is generated from the fluorescent material. By detecting this fluorescence, the presence or absence of the analyte and the amount thereof can be measured.
  • a well member is used as a liquid holding member, and a sample solution is used in which a sample liquid is stored in the well member, and a sample liquid is used as a liquid holding member.
  • a flow channel chip type hereinafter simply referred to as “flow channel chip” in which a specimen test is performed in a state where the analyte is trapped in a reaction field in the flow channel by flowing the gas through the flow channel.
  • FIG. 7 is a schematic diagram for explaining the structure of a conventional channel chip.
  • the channel chip 200 is formed by bonding a dielectric member 202 and a channel lid 204 with a channel seal 206.
  • the channel lid 204 is provided with an inlet 204a and a reservoir 204b for injecting a sample solution and the like.
  • a space surrounded by the dielectric member 202, the flow path lid 204, and the flow path seal 206 is a flow path 208.
  • a ligand that is an antibody specific to an analyte or a fragment thereof is contained in this flow path 208.
  • a fixed reaction field 210 is provided.
  • the channel 208 has a width of 0.5 mm to 3 mm and a height of 50 ⁇ m to 500 ⁇ m.
  • a circulation type that can improve the reaction efficiency by repeatedly passing the sample solution through the reaction field 210 or A reciprocating liquid feeding method is often used.
  • the liquid L cannot be completely removed from the flow path 208, and the liquid remains near the inlet 204a of the flow path 208 as shown in FIG.
  • the suction of the liquid L is stopped, as shown in FIG. 8C, the liquid L remaining in the vicinity of the injection port 204a may return to the vicinity of the center of the flow path 208 due to capillary action. .
  • the channel lid 204 bends inward, as shown in FIG.
  • bubbles A are often generated.
  • An object of the present invention is to provide a sensor chip for a specimen detection system that can suppress the generation of bubbles in a flow path and prevent a decrease in measurement accuracy in view of the current situation.
  • Sensor chip for A sensor chip having a reaction field inside for capturing an analyte, A flow path having the reaction field; A first through hole formed at one end of the flow path, The channel is provided with a gradient so that the height of the channel near the reaction field is higher than the height of the channel near the first through hole.
  • the flow path structure for keeping the residual liquid in the flow path at a predetermined position suppresses the generation of bubbles due to the residual liquid and prevents the measurement accuracy from being lowered. be able to. Further, since it is possible to suppress the generation of bubbles due to the residual liquid, it is possible to inject and suck the reagent many times in the same flow path, and there is no need to provide an extra flow path in the sensor chip. For this reason, it is possible to reduce the manufacturing cost of the sensor chip and the specimen detection apparatus and contribute to downsizing.
  • FIG. 1 is a schematic diagram for explaining a configuration of a surface plasmon excitation enhanced fluorescence spectrometer (SPFS apparatus) according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a sensor chip used in the SPFS apparatus of FIG.
  • FIG. 3 is a schematic diagram for explaining the state of the liquid when the liquid is reciprocated into the flow path in the sensor chip of FIG.
  • FIG. 4 is a schematic diagram showing a modification of the sensor chip used in the SPFS device of FIG.
  • FIG. 5 is a schematic diagram showing another modification of the sensor chip used in the SPFS device of FIG.
  • FIG. 6 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus of FIG.
  • FIG. 7 is a schematic diagram for explaining the structure of a conventional channel chip.
  • FIG. 8 is a schematic diagram for explaining the state of the liquid when the liquid is reciprocated into the flow path in the flow path chip of FIG.
  • FIG. 1 is a schematic diagram for explaining a configuration of a surface plasmon excitation enhanced fluorescence spectrometer (SPFS apparatus) according to an embodiment of the present invention
  • FIG. 2 is an example of a sensor chip used in the SPFS apparatus of FIG. It is a schematic diagram which shows.
  • the SPFS device 10 includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a liquid feeding unit 40, a transport unit 50, and a control unit 80.
  • the SPFS device 10 is used in a state where the sensor chip 100 is mounted on the chip holder 54 of the transport unit 50.
  • the sensor chip 100 includes a dielectric member 102 having an incident surface 102a, a film formation surface 102b, and an emission surface 102c, a metal film 104 formed on the film formation surface 102b, and a film formation surface 102b or And a flow path forming member 106 fixed on the metal film 104.
  • the sensor chip 100 is replaced for each specimen test.
  • the sensor chip 100 is preferably a structure having a length of several millimeters to several centimeters on each side, but is a smaller structure or a larger structure that is not included in the category of “chip”. It doesn't matter.
  • the dielectric member 102 can be a prism made of a dielectric that is transparent to the excitation light ⁇ .
  • the incident surface 102 a of the dielectric member 102 is a surface on which the excitation light ⁇ irradiated from the excitation light irradiation unit 20 is incident on the inside of the dielectric member 102.
  • a metal film 104 is formed on the film formation surface 102b.
  • the excitation light ⁇ incident on the inside of the dielectric member 102 is reflected at the interface between the metal film 104 and the film formation surface 102b of the dielectric member 102 (hereinafter referred to as “the back surface of the metal film 104” for convenience), and the emission surface.
  • the excitation light ⁇ is emitted to the outside of the dielectric member 102 through 102c.
  • the shape of the dielectric member 102 is not particularly limited, and the dielectric member 102 shown in FIGS. 1 and 2 is a prism formed of a hexahedron having a substantially trapezoidal vertical cross-sectional shape (a truncated quadrangular pyramid shape). Also, a prism having a vertical cross-sectional shape of a triangle (a so-called triangular prism), a semicircular shape, and a semielliptical shape can be used.
  • the incident surface 102 a is formed so that the excitation light ⁇ does not return to the excitation light irradiation unit 20.
  • the light source of the excitation light ⁇ is, for example, a laser diode (hereinafter also referred to as “LD”)
  • LD laser diode
  • the angle of the incident surface 102a is set so that the excitation light ⁇ does not enter the incident surface 102a perpendicularly in the scanning range centered on the ideal enhancement angle.
  • the resonance angle (and the enhancement angle in the vicinity thereof) is generally determined by the design of the sensor chip 100.
  • the design elements are the refractive index of the dielectric member 102, the refractive index of the metal film 104, the film thickness of the metal film 104, the extinction coefficient of the metal film 104, the wavelength of the excitation light ⁇ , and the like.
  • the resonance angle and the enhancement angle are shifted by the analyte immobilized on the metal film 104, but the amount is less than a few degrees.
  • the dielectric member 102 has a considerable amount of birefringence.
  • the material of the dielectric member 102 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and is excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence. Is preferred.
  • the material is not particularly limited as described above. In providing, for example, it is preferably formed from a resin material.
  • the method for manufacturing the dielectric member 102 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
  • the dielectric member 102 is formed from a resin material, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like can be used.
  • PE polyethylene
  • PP polypropylene
  • polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like
  • PC polycarbonate
  • TAC triacetyl cellulose
  • the metal film 104 is formed on the film formation surface 102 b of the dielectric member 102.
  • an interaction (surface plasmon resonance) occurs between the photon of the excitation light ⁇ incident on the film formation surface 102b under the total reflection condition and the free electrons in the metal film 104, and is locally on the surface of the metal film 104. In-situ light can be generated.
  • the material of the metal film 104 is not particularly limited as long as it is a metal capable of causing surface plasmon resonance.
  • a metal capable of causing surface plasmon resonance.
  • at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum is used.
  • Such a metal is suitable as the metal film 104 because it is stable against oxidation and has a large electric field enhancement by surface plasmon light.
  • the method for forming the metal film 104 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. It is done.
  • the sputtering method or the vapor deposition method is used because the adjustment of the metal film forming conditions is easy.
  • the thickness of the metal film 104 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably gold, silver, copper, In the case of platinum, it is preferably in the range of 20 to 70 nm, in the case of aluminum, 10 to 50 nm, and in the case of these alloys, it is preferably in the range of 10 to 70 nm.
  • the thickness of the metal film 104 is within the above range, it is preferable that surface plasmon light is easily generated.
  • the size (length ⁇ width) dimensions and shape are not particularly limited.
  • a ligand for capturing the analyte is immobilized on the surface of the metal film 104 that does not face the dielectric member 102 (hereinafter referred to as “the surface of the metal film 104” for convenience). Has been. By immobilizing the ligand, the analyte can be selectively detected.
  • the ligand is uniformly immobilized in a predetermined region (reaction field 116) on the metal film 104.
  • the type of the ligand is not particularly limited as long as the analyte can be captured.
  • the ligand is an analyte specific antibody or fragment thereof.
  • the flow path forming member 106 is disposed on the film formation surface 102 b of the dielectric member 102 or the metal film 104.
  • the flow path forming member 106 is joined to the dielectric member 102 or the metal film 104 by an adhesive sheet (flow path seal 114) in which through holes are formed, and the dielectric member 102, the flow path forming member 106, A space surrounded by the flow path seal 114, that is, a through hole of the flow path seal 114 is used as the flow path 112.
  • the flow path forming member 106 is not limited to this.
  • a flow path groove is formed on the film formation surface 102 b or the surface facing the metal film 104, and the flow path formation member 106 is formed on the metal film 104.
  • the reaction field 116 is disposed so as to cover the space surrounded by the flow path forming member 106 and the dielectric member 102, that is, the flow path groove, for supplying the sample liquid, the labeling liquid, the cleaning liquid, and the like. It can be used as the channel 112.
  • the flow path forming member 106 can be bonded to the dielectric member 102 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or pressure bonding using a clamp member. it can.
  • the width of the flow path 112 formed in this way in the vicinity of the reaction field 116 is preferably 0.1 mm to 5 mm, and the length is preferably 10 mm to 50 mm.
  • the height of the flow path 112 in the vicinity of the first through hole 110a is preferably 50 ⁇ m to 500 ⁇ m.
  • the flow path forming member 106 has a first through hole 110 a formed at one end of the flow path 112 and a second through hole 110 b formed at the other end of the flow path 112.
  • each of the first through hole 110a and the second through hole 110b has a substantially cylindrical shape.
  • the first through hole 110a and the second through hole 110b serve as an inlet for injecting a sample liquid, a labeling liquid, a cleaning liquid, and the like into the flow path 112, and an outlet for taking out the sample liquid, the labeling liquid, the cleaning liquid, and the like. Function.
  • the material of the flow path forming member 106 is not particularly limited as long as it is formed of a material that is optically transparent to at least the fluorescent ⁇ described later, but the sensor chip 100 that is inexpensive and excellent in handleability is used. In providing, for example, it is preferably formed from a resin material.
  • the manufacturing method of the flow path forming member 106 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
  • the flow path forming member 106 is formed from a resin material, for example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC), Polycyclic olefins such as cyclic olefin polymer (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC) and the like can be used.
  • PET polyethylene terephthalate
  • PP polypropylene
  • COC cyclic olefin copolymer
  • COP Polycyclic olefins
  • vinyl resins such as polyvinyl chlor
  • the flow path forming member 106 is provided with a gradient 118 so that the height h2 in the vicinity of the reaction field 116 of the flow path 112 is higher than the height h1 in the vicinity of the first through hole 110a.
  • the height h2 of the flow path 112 in the vicinity of the reaction field 116 is preferably 0.1 mm to 1 mm.
  • the liquid L is injected from the first through hole 110a into the flow path 112 as shown in FIG. 3A, and the flow path from the first through hole 110a as shown in FIG. 3B. Even if the liquid L in the 112 is sucked and the liquid L remains in the vicinity of the first through hole 110a of the flow path 112, even if the suction is stopped as it is, as shown in FIG. It is possible to prevent the liquid L from staying in the vicinity of the first through hole 110a and returning to the vicinity of the reaction field 116.
  • the gradient 118 provided in the flow path forming member 106 only needs to be configured so that the height of the flow path 112 in the vicinity of the reaction field 116 is higher than the height in the vicinity of the first through hole 110a.
  • the gradient 118 is such that the height in the vicinity of the reaction field 116 is the highest in the flow path 112 and the height of the flow path 112 decreases as it approaches the first through hole 110 a and the second through hole 110 b.
  • a gradient 118 may be provided so that the height of the flow path 112 increases from the first through hole 110a toward the second through hole 110b. .
  • the gradient 118 may be a curved surface. Further, as shown in FIG. 4C, the gradient 118 can be a plurality of planes. However, from the viewpoint of preventing liquid pooling when the liquid is sent to the flow path 112, FIG. 2 and FIG. As shown to (a), it is preferable that the surface which forms the flow path 112 is as smooth as possible.
  • the gradient 118 can be provided on the dielectric member 102 as shown in FIG. Furthermore, as shown in FIG. 5B, a gradient 118 can be provided on both the flow path forming member 106 and the dielectric member 102.
  • the sensor chip 100 configured as described above is mounted on the chip holder 54 of the transport unit 50 of the SPFS apparatus 10, and specimen detection is performed by the SPFS apparatus 10.
  • the SPFS apparatus 10 includes the excitation light irradiation unit 20, the fluorescence detection unit 30, the liquid feeding unit 40, the transport unit 50, and the control unit 80.
  • the excitation light irradiation unit 20 irradiates the sensor chip 100 held by the chip holder 54 with the excitation light ⁇ . As will be described later, when measuring the fluorescence ⁇ , the excitation light irradiation unit 20 directs only the P wave with respect to the metal film 104 toward the incident surface 102a so that the incident angle with respect to the metal film 104 is an angle that causes surface plasmon resonance. And exit.
  • the “excitation light” is light that directly or indirectly excites the fluorescent substance.
  • the excitation light ⁇ is irradiated through the dielectric member 102 at an angle at which surface plasmon resonance occurs on the metal film 104, local field light that excites the fluorescent material is generated on the surface of the metal film 104. Light.
  • the excitation light irradiation unit 20 includes a configuration for emitting the excitation light ⁇ toward the dielectric member 102 and a configuration for scanning the incident angle of the excitation light ⁇ with respect to the back surface of the metal film 104.
  • the excitation light irradiation unit 20 includes a light source unit 21, an angle adjustment mechanism 22, and a light source control unit 23.
  • the light source unit 21 irradiates collimated excitation light ⁇ having a constant wavelength and light amount so that the irradiation spot has a substantially circular shape on the back surface of the metal film 104.
  • the light source unit 21 includes, for example, a light source of excitation light ⁇ , a beam shaping optical system, an APC (Automatic Power-Control) mechanism, and a temperature adjustment mechanism (all not shown).
  • the type of light source is not particularly limited, and includes, for example, a laser diode (LD), a light emitting diode, a mercury lamp, and other laser light sources.
  • LD laser diode
  • the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like.
  • the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like.
  • the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
  • the beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means.
  • the beam shaping optical system may include all of these or only a part thereof.
  • the collimator collimates the excitation light ⁇ irradiated from the light source.
  • the band-pass filter turns the excitation light ⁇ irradiated from the light source into narrowband light having only the center wavelength. This is because the excitation light ⁇ from the light source has a slight wavelength distribution width.
  • the linear polarization filter turns the excitation light ⁇ irradiated from the light source into completely linearly polarized light.
  • the half-wave plate adjusts the polarization direction of the excitation light ⁇ so that the P-wave component is incident on the metal film 104.
  • the slit and zoom means adjust the beam diameter, contour shape, and the like of the excitation light ⁇ so that the shape of the irradiation spot on the back surface of the metal film 104 is a circle having a predetermined size.
  • the APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the excitation light ⁇ with a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
  • the temperature adjustment mechanism is, for example, a heater or a Peltier element.
  • the wavelength and energy of the light emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the light emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
  • the angle adjustment mechanism 22 adjusts the incident angle of the excitation light ⁇ to the metal film 104.
  • the angle adjustment mechanism 22 makes the optical axis of the excitation light ⁇ and the chip holder 54 relative to each other. Rotate.
  • the angle adjusting mechanism 22 rotates the light source unit 21 around an axis (axis perpendicular to the paper surface of FIG. 1) orthogonal to the optical axis of the excitation light ⁇ .
  • the position of the rotation axis is set so that the position of the irradiation spot on the metal film 104 hardly changes even when the incident angle is scanned.
  • the angle at which the maximum amount of plasmon scattered light can be obtained is the enhancement angle.
  • the basic incident condition of the excitation light ⁇ is determined by the material and shape of the dielectric member 102 of the sensor chip 100, the film thickness of the metal film 104, the refractive index of the sample liquid in the flow path 112, and the like.
  • the optimum incident condition varies slightly depending on the type and amount of the analyte in the flow path 112, the shape error of the dielectric member 102, and the like. For this reason, it is preferable to obtain an optimal enhancement angle for each specimen test.
  • the light source control unit 23 controls various devices included in the light source unit 21 to control the irradiation of the excitation light ⁇ of the light source unit 21.
  • the light source control unit 23 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the fluorescence detection unit 30 detects the fluorescence ⁇ generated from the fluorescent material excited by the irradiation of the excitation light ⁇ to the metal film 104. If necessary, the fluorescence detection unit 30 also detects plasmon scattered light generated by the irradiation of the excitation light ⁇ to the metal film 104.
  • the fluorescence detection unit 30 includes, for example, a light receiving unit 31, a position switching mechanism 37, and a sensor control unit 38.
  • the light receiving unit 31 is disposed in the normal direction of the metal film 104 of the sensor chip 100 (z-axis direction in FIG. 1).
  • the light receiving unit 31 includes a first lens 32, an optical filter 33, a second lens 34, and a light receiving sensor 35.
  • the first lens 32 is, for example, a condensing lens and condenses light generated on the metal film 104.
  • the second lens 34 is, for example, an imaging lens, and forms an image of the light collected by the first lens 32 on the light receiving surface of the light receiving sensor 35.
  • the optical path between both lenses 32 and 34 is a substantially parallel optical path.
  • the optical filter 33 is disposed between the lenses 32 and 34.
  • the optical filter 33 guides only the fluorescent component to the light receiving sensor 35 and removes the excitation light component (plasmon scattered light) in order to detect the fluorescent ⁇ with high S / N.
  • the optical filter 33 includes, for example, an excitation light reflection filter, a short wavelength cut filter, and a band pass filter.
  • the optical filter 33 is, for example, a filter including a multilayer film that reflects a predetermined light component, but may be a colored glass filter that absorbs the predetermined light component.
  • the light receiving sensor 35 detects fluorescence ⁇ .
  • the light receiving sensor 35 is not particularly limited as long as it has a high sensitivity and can detect weak fluorescence ⁇ from a fluorescent substance labeled with a very small amount of analyte.
  • a multiplier tube (PMT), an avalanche photodiode (APD), a low noise photodiode (PD), or the like can be used.
  • the position switching mechanism 37 switches the position of the optical filter 33 on or off the optical path in the light receiving unit 31. Specifically, when the light receiving sensor 35 detects the fluorescence ⁇ , the optical filter 33 is disposed on the optical path of the light receiving unit 31, and when the light receiving sensor 35 detects plasmon scattered light, the optical filter 33 is placed on the light receiving unit 31. Place outside the optical path.
  • the position switching mechanism 37 includes, for example, a rotation driving unit and a known mechanism (such as a turntable or a rack and pinion) that moves the optical filter 33 in the horizontal direction by using a rotational motion.
  • the sensor control unit 38 controls detection of an output value of the light receiving sensor 35, management of sensitivity of the light receiving sensor 35 based on the detected output value, change of sensitivity of the light receiving sensor 35 for obtaining an appropriate output value, and the like.
  • the sensor control unit 38 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
  • the liquid feeding unit 40 supplies a sample liquid, a labeling liquid, a cleaning liquid, and the like into the flow path 112 of the sensor chip 100 mounted on the chip holder 54.
  • the liquid feeding unit 40 includes a syringe pump 41, a pipette nozzle 46, a pipette tip 45, and a liquid feeding pump drive mechanism 44.
  • the liquid feeding unit 40 is used with a pipette tip 45 attached to the tip of the pipette nozzle 46. If the pipette tip 45 is replaceable, the pipette tip 45 need not be washed, and contamination of impurities can be prevented.
  • the syringe pump 41 includes a syringe 42 and a plunger 43 that can reciprocate inside the syringe 42. By the reciprocating motion of the plunger 43, the liquid is sucked and discharged quantitatively.
  • the liquid feed pump driving mechanism 44 includes a driving device for the syringe pump 41 and a moving device for the pipette nozzle 46 to which the pipette tip 45 is attached.
  • the drive device of the syringe pump 41 is a device for reciprocating the plunger 43, and includes, for example, a stepping motor.
  • a drive device including a stepping motor is preferable from the viewpoint of managing the remaining liquid amount of the sensor chip 100 because it can manage the liquid feeding amount and the liquid feeding speed of the syringe pump 41.
  • the moving device of the pipette nozzle 46 freely moves the pipette nozzle 46 in two directions, that is, an axial direction (for example, a vertical direction) of the pipette nozzle 46 and a direction crossing the axial direction (for example, a horizontal direction).
  • the moving device of the pipette nozzle 46 is constituted by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
  • the liquid feeding unit 40 is provided at the tip of the pipette tip 45. It is preferable to further have a mechanism for detecting the position.
  • the liquid feeding unit 40 sucks various liquids from a liquid storage unit (not shown) and supplies them into the flow path 112 of the sensor chip 100. At this time, by moving the plunger 43, the liquid reciprocates in the flow path 112 of the sensor chip 100, and the liquid in the flow path 112 is stirred. As a result, it is possible to make the liquid concentration uniform and promote the reaction (for example, antigen-antibody reaction) in the flow path 112.
  • the inlet (first through hole 110a) of the sensor chip 100 is protected by the multilayer film 111 and the first through hole when the pipette chip 45 penetrates the multilayer film.
  • the sensor chip 100 and the pipette chip 45 are preferably configured so that the 110a can be sealed.
  • the lid seal 120 that covers the upper opening of the second through hole 110b is affixed, and serves as a reservoir for temporarily storing the injected liquid through the flow path.
  • the lid seal 120 has a minute hole for air removal.
  • the liquid in the flow path 112 is again sucked by the syringe pump 41 and discharged to a waste liquid portion (not shown).
  • reaction with various liquids, washing, and the like can be performed, and the analyte labeled with the fluorescent substance can be immobilized in the reaction field 116 in the flow path 112.
  • the transport unit 50 transports and fixes the sensor chip 100 mounted on the chip holder 54 to the liquid feeding position or the measurement position by the user.
  • the “liquid feeding position” is a position where the liquid feeding unit 40 supplies the liquid into the flow path 112 of the sensor chip 100 or removes the liquid in the flow path 112.
  • the “measurement position” is a position where the excitation light irradiation unit 20 irradiates the sensor chip 100 with the excitation light ⁇ , and the fluorescence detection unit 30 detects the fluorescence ⁇ generated therewith.
  • the transfer unit 50 includes a transfer stage 52 and a chip holder 54.
  • the chip holder 54 is fixed to the transfer stage 52 and holds the sensor chip 100 in a detachable manner.
  • the shape of the chip holder 54 is not particularly limited as long as it can hold the sensor chip 100 and does not obstruct the optical paths of the excitation light ⁇ and the fluorescence ⁇ .
  • the chip holder 54 is provided with an opening through which excitation light ⁇ and fluorescence ⁇ pass.
  • the transfer stage 52 is configured to be able to move the chip holder 54 in one direction (x-axis direction in FIG. 1) and in the opposite direction.
  • the transport stage 52 is driven by, for example, a stepping motor.
  • FIG. 6 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus 10.
  • the user attaches the sensor chip 100 to the chip holder 54 of the transport unit 50 (S100).
  • the controller 80 operates the transport stage 52 to move the sensor chip 100 mounted on the chip holder 54 to the liquid feeding position (S110).
  • the control unit 80 operates the liquid feeding unit 40 to introduce the cleaning liquid stored in the liquid storage unit (not shown) into the flow path 112, clean the flow path 112, and remove the storage reagent in the flow path 112. It is removed (S120).
  • the cleaning liquid used for cleaning is discharged by the liquid feeding unit 40, and instead, the measurement liquid stored in a liquid storage unit (not shown) is introduced into the flow path 112. If the result of the enhancement angle detection (S140) in the subsequent step is not affected, the preserving reagent cleaning solution and the measurement solution can be used together, and the enhancement angle measurement can be performed without discharging the cleaning solution.
  • control unit 80 operates the transport stage 52 to transport the sensor chip 100 mounted on the chip holder 54 to the measurement position (S130). Then, the control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 with the excitation light ⁇ and to detect and enhance the plasmon scattered light having the same wavelength as the excitation light ⁇ . A corner is detected (S140).
  • control unit 80 operates the excitation light irradiation unit 20 to scan the incident angle of the excitation light ⁇ with respect to the metal film 104 and operates the fluorescence detection unit 30 to detect plasmon scattered light. At this time, the control unit 80 operates the position switching mechanism 37 to place the optical filter 33 outside the optical path of the light receiving unit 31. And the control part 80 determines the incident angle of the excitation light (alpha) when the light quantity of plasmon scattered light is the maximum as an enhancement angle.
  • control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light ⁇ , and outputs the output value (optical blank value) of the light receiving sensor 35. ) Is recorded (S150).
  • control unit 80 operates the angle adjustment mechanism 22 to set the incident angle of the excitation light ⁇ to the enhancement angle. Further, the control unit 80 operates the position switching mechanism 37 to place the optical filter 33 in the optical path of the light receiving unit 31.
  • control unit 80 operates the transport stage 52 to move the sensor chip 100 to the liquid feeding position (S160). Then, the controller 80 operates the liquid feeding unit 40 to discharge the measurement liquid in the flow path 112 and introduce the sample liquid stored in a liquid storage section (not shown) into the flow path 112 (S170). In the channel 112, the analyte is captured in the reaction field on the metal film 104 by the antigen-antibody reaction (primary reaction).
  • sample liquid used here is a liquid prepared using a specimen, and for example, a specimen and a reagent are mixed to perform a treatment for binding a fluorescent substance to an analyte contained in the specimen. Things. Examples of such specimens include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.).
  • the analyte contained in the sample is, for example, a nucleic acid (DNA that may be single-stranded or double-stranded, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., or nucleoside Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Specific examples thereof include a complex, and may be a carcinoembryonic antigen such as AFP ( ⁇ -fetoprotein), a tumor marker, a signal transduction substance, a hormone, and the like, and is not particularly limited.
  • AFP ⁇ -fetoprotein
  • the control unit 80 operates the liquid feeding unit 40 to introduce the labeled liquid stored in a liquid storage unit (not shown) into the flow path 112 (S190).
  • the analyte captured on the metal film 104 is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
  • a liquid containing a secondary antibody labeled with a fluorescent substance can be used as the labeling liquid.
  • the labeling liquid in the flow path 112 is removed, the flow path 112 is washed with the cleaning liquid, and after the cleaning liquid is removed, the measurement liquid is introduced into the flow path 112 (S200).
  • control unit 80 operates the transfer stage 52 to move the sensor chip 100 to the measurement position (S210).
  • control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light ⁇ and to label the analyte captured by the ligand.
  • the fluorescent ⁇ emitted from the fluorescent material to be detected is detected (S220). Based on the intensity of the detected fluorescence ⁇ , it can be converted into the amount or concentration of the analyte as required.
  • the enhancement angle detection (S140) and the optical blank value measurement (S150) are performed before the primary reaction (S170). However, the enhancement angle detection is performed after the primary reaction (S170). (S140) Optical blank value measurement (S150) may be performed.
  • the detection of the enhancement angle (S140) may be omitted.
  • the secondary reaction (S190) for labeling the analyte with a fluorescent substance is performed after the primary reaction (S170) for reacting the analyte and the ligand (two-step method).
  • the timing for labeling the analyte with a fluorescent substance is not particularly limited.
  • a labeling solution may be added to the sample solution to label the analyte with a fluorescent substance in advance.
  • the analyte labeled with the fluorescent substance is captured by the ligand.
  • the analyte is labeled with a fluorescent substance, and the analyte is captured by the ligand.
  • both the primary reaction and the secondary reaction can be completed by introducing the sample solution into the channel 112 (one-step method).
  • the enhancement angle detection (S140) is performed before the antigen-antibody reaction.
  • the SPFS apparatus has been described in the above embodiment, but the sample detection system according to the present invention has an SPR. It can be applied to a specimen detection system using a fluorescent immunoassay (FIA) such as an apparatus, a specimen detection system using an enzyme immunoassay (EIA), etc. Can be changed.
  • FIA fluorescent immunoassay
  • EIA enzyme immunoassay

Abstract

[Problem] To provide a sensor chip that is for a sample detection system and is capable of suppressing the occurrence of bubbles in a flow path and preventing measurement accuracy degradation. [Solution] The flow path is made to have a slope such that the height of the flow path in the vicinity of a reaction site is higher than the height of the flow path in the vicinity of a first through-hole.

Description

検体検出システム用センサーチップSensor chip for specimen detection system
 本発明は、測定対象物質の有無やその量を測定する免疫測定法(イムノアッセイ)で用いられるセンサーチップに関し、より具体的には、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象を応用した表面プラズモン共鳴装置や、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づいた表面プラズモン励起増強蛍光測定装置などの検体検出システムで用いられるセンサーチップに関する。 TECHNICAL FIELD The present invention relates to a sensor chip used in an immunoassay (immunoassay) for measuring the presence or absence of a substance to be measured and its amount, and more specifically, a surface plasmon applying a surface plasmon resonance (SPR) phenomenon. The present invention relates to a sensor chip used in a specimen detection system such as a resonance device or a surface plasmon excitation enhanced fluorescence measuring device based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS: Surface Plasmon-field enhanced Fluorescence Spectroscopy).
 従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出方法が提案されている。
 このような検体検出方法としては、例えば、試料液に含まれる測定対象物質である抗原と、標識物質で標識された抗体または抗原との抗原抗体反応を利用して、測定対象物質の有無やその量を測定する免疫測定法(イムノアッセイ)が知られている。
Conventionally, when detecting a very small substance, various specimen detection methods have been proposed that can detect such a substance by applying a physical phenomenon of the substance.
As such a specimen detection method, for example, by using an antigen-antibody reaction between an antigen, which is a measurement target substance contained in a sample solution, and an antibody or antigen labeled with a labeling substance, the presence or absence of the measurement target substance or its Immunoassay methods (immunoassays) for measuring amounts are known.
 免疫測定法には、標識物質として酵素を用いた酵素免疫測定法(EIA)や、標識物質として蛍光物質を用いた蛍光免疫測定法(FIA)などがある。
 例えば、蛍光免疫測定法を利用した検体検出装置としては、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象)を応用し、例えば、生体内の極微少なアラナイトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」とも言う)が挙げられる。
Examples of the immunoassay include an enzyme immunoassay (EIA) using an enzyme as a labeling substance, and a fluorescence immunoassay (FIA) using a fluorescent substance as a labeling substance.
For example, as a specimen detection device using a fluorescence immunoassay method, a phenomenon in which high light output is obtained by resonating electrons and light in a fine region such as a nanometer level (SPR: Surface Plasmon Resonance) For example, a surface plasmon resonance apparatus (hereinafter, also referred to as “SPR apparatus”) that detects minute alanite in a living body is used.
 また、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高精度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」とも言う)も、このような検体検出装置の一つである。 In addition, based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) using surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher accuracy than SPR equipment. The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter also referred to as “SPFS device”) is one of such specimen detection devices.
 この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属膜表面で全反射減衰(ATR:Attenuated Total Reflectance)する条件において、金属膜表面に表面プラズモン光(疎密波)を発生させることによって、光源より照射した励起光が有するフォトン量を数十倍~数百倍に増やして、表面プラズモン光の電場増強効果を得るようになっている。 In this surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), surface plasmon light is applied to the surface of the metal film under the condition that excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal film. By generating (dense wave), the amount of photons contained in the excitation light irradiated from the light source is increased to several tens to several hundreds times, and the electric field enhancement effect of the surface plasmon light is obtained.
 このようなSPFS装置では、誘電体部材と、誘電体部材の上面に隣接する金属膜と、金属膜の上面に配置される液保持部材とを備えるセンサーチップが用いられる。このようなセンサーチップでは、金属膜上に、アナライトを捕捉するためのリガンドを有する反応場が設けられている。 In such an SPFS device, a sensor chip including a dielectric member, a metal film adjacent to the upper surface of the dielectric member, and a liquid holding member disposed on the upper surface of the metal film is used. In such a sensor chip, a reaction field having a ligand for capturing an analyte is provided on a metal film.
 液保持部材に、アナライトを含む試料液を供給することにより、アナライトがリガンドにより捕捉される(1次反応)。この状態で、蛍光物質で標識された2次抗体を含む液体(標識液)を液保持部材に導入する。溶液保持部材内では、抗原抗体反応(2次反応)によって、リガンドにより捕捉されているアナライトが蛍光物質で標識される。 By supplying a sample solution containing the analyte to the liquid holding member, the analyte is captured by the ligand (primary reaction). In this state, a liquid (labeling liquid) containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid holding member. In the solution holding member, the analyte captured by the ligand is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction).
 この状態で、誘電体部材を介して表面プラズモン共鳴が生じる角度で励起光を金属膜に照射すると、金属膜表面に発生した表面プラズモン光により蛍光物質が励起され、蛍光物質から蛍光が生じる。この蛍光を検出することにより、アナライトの有無やその量を測定することができる。 In this state, when the excitation light is irradiated to the metal film at an angle at which surface plasmon resonance occurs through the dielectric member, the fluorescent material is excited by the surface plasmon light generated on the surface of the metal film, and fluorescence is generated from the fluorescent material. By detecting this fluorescence, the presence or absence of the analyte and the amount thereof can be measured.
 このようなセンサーチップには、液保持部材としてウェル部材を用いて、試料液をウェル部材に貯留した状態で検体検査を行うウェルチップタイプと、液保持部材として流路部材を用いて、試料液を流路に流すことでアナライトを流路中の反応場に捕捉した状態で検体検査を行う流路チップタイプ(以下、単に「流路チップ」と言う)がある。 In such a sensor chip, a well member is used as a liquid holding member, and a sample solution is used in which a sample liquid is stored in the well member, and a sample liquid is used as a liquid holding member. There is a flow channel chip type (hereinafter simply referred to as “flow channel chip”) in which a specimen test is performed in a state where the analyte is trapped in a reaction field in the flow channel by flowing the gas through the flow channel.
 図7は、従来の流路チップの構造を説明するための模式図である。
 図7に示すように、流路チップ200は、誘電体部材202と、流路蓋204とが流路シール206により接着されて成る。流路蓋204には、試料液などを注入するための注入口204a及び貯留部204bを備えている。
FIG. 7 is a schematic diagram for explaining the structure of a conventional channel chip.
As shown in FIG. 7, the channel chip 200 is formed by bonding a dielectric member 202 and a channel lid 204 with a channel seal 206. The channel lid 204 is provided with an inlet 204a and a reservoir 204b for injecting a sample solution and the like.
 ここで、誘電体部材202、流路蓋204、流路シール206により囲繞された空間が流路208であり、この流路208には、アナライトに特異的な抗体またはその断片であるリガンドが固定化された反応場210が設けられている。 Here, a space surrounded by the dielectric member 202, the flow path lid 204, and the flow path seal 206 is a flow path 208. In this flow path 208, a ligand that is an antibody specific to an analyte or a fragment thereof is contained. A fixed reaction field 210 is provided.
 なお、このような流路チップ200において、流路208の幅は0.5mm~3mm、高さは50μm~500μmである。 In such a channel chip 200, the channel 208 has a width of 0.5 mm to 3 mm and a height of 50 μm to 500 μm.
 このような流路チップ200を用いた検体検査では、例えば、特許文献1に開示されるように、流路チップ200の流路208に試料液を流す際に、一回だけ反応場210を通過させるワンパス型、試料液を循環させて繰り返し反応場210を通過させる循環型、試料液を往復させて繰り返し反応場210を通過させる往復型と呼ばれる送液方法が用いられる。 In such a specimen test using the channel chip 200, for example, as disclosed in Patent Document 1, when the sample liquid is allowed to flow through the channel 208 of the channel chip 200, the sample passes through the reaction field 210 only once. There are used one-pass type, a circulating type in which the sample liquid is circulated and repeatedly passed through the reaction field 210, and a reciprocating type in which the sample liquid is reciprocated and repeatedly passed through the reaction field 210.
 特に、少量の試料液であったり、希少なアナライトを含有する試料液であったりする場合には、繰り返し反応場210に試料液を通過させることで反応効率を向上させることができる循環型または往復型の送液方法がよく用いられる。 In particular, in the case of a small amount of sample solution or a sample solution containing a rare analyte, a circulation type that can improve the reaction efficiency by repeatedly passing the sample solution through the reaction field 210 or A reciprocating liquid feeding method is often used.
特開2012-018159号公報JP 2012-018159 A
 ところで、流路チップ200を用いた検体検査では、試料液以外にも、例えば、測定液や洗浄液などの液体を順次注入する必要がある。このため、図8(a)のように流路208に注入した液体Lは、注入口204aから順次吸引して流路208から液体を除去している。 Incidentally, in the specimen inspection using the flow path chip 200, it is necessary to sequentially inject liquids such as a measurement liquid and a cleaning liquid in addition to the sample liquid. For this reason, as shown in FIG. 8A, the liquid L injected into the channel 208 is sequentially sucked from the inlet 204a to remove the liquid from the channel 208.
 しかしながら、液体Lを流路208から完全に除去できないことがあり、図8(b)のように流路208の注入口204a付近に液体が残ってしまう。
 そして、液体Lの吸引を止めると、図8(c)に示すように、毛管現象により、注入口204a付近に残ってしまった液体Lが流路208の中央部付近まで戻ってしまうことがある。
However, the liquid L cannot be completely removed from the flow path 208, and the liquid remains near the inlet 204a of the flow path 208 as shown in FIG.
When the suction of the liquid L is stopped, as shown in FIG. 8C, the liquid L remaining in the vicinity of the injection port 204a may return to the vicinity of the center of the flow path 208 due to capillary action. .
 この状態で、次の液体Lを注入口204aから注入すると、図8(d)に示すように、注入した液体Lが流路208内の残液に引き寄せられてしまい、気泡Aが発生してしまうことがある。また、液体Lの注入時の流路208内にかかる圧力によって、流路208両脇の残液が動いて繋がり、流路208を短手方向に閉塞させることがある。この場合に、注入し流路208内に入ってきた液体Lと閉塞した残液との間に空気層ができ、これが気泡Aとなって発生することがある。 In this state, when the next liquid L is injected from the injection port 204a, the injected liquid L is attracted to the remaining liquid in the flow path 208 as shown in FIG. May end up. Further, the pressure applied in the flow path 208 at the time of injecting the liquid L may cause the remaining liquid on both sides of the flow path 208 to move and be connected to block the flow path 208 in the short direction. In this case, an air layer is formed between the liquid L that has been injected and entered into the flow path 208 and the clogged residual liquid, which may be generated as bubbles A.
 特に、流路チップ200の製造工程において、例えば、誘電体部材202と流路蓋204とを流路シール206を介して接着する際に、流路蓋204が内側に撓み、図7に示すように、流路208の中央部付近の高さが低くなってしまった場合には、気泡Aが発生することが多い。 In particular, in the manufacturing process of the channel chip 200, for example, when the dielectric member 202 and the channel lid 204 are bonded via the channel seal 206, the channel lid 204 bends inward, as shown in FIG. In addition, when the height in the vicinity of the center of the flow path 208 has become low, bubbles A are often generated.
 このように気泡Aが発生し、この気泡Aが流路208内の反応場210に集まってしまうと、アナライトの測定精度が低下してしまう。
 本発明では、このような現状に鑑み、流路内に気泡が発生することを抑制し、測定精度の低下を防止することができる検体検出システム用センサーチップを提供することを目的とする。
Thus, when the bubble A is generated and the bubble A is collected in the reaction field 210 in the flow path 208, the measurement accuracy of the analyte is lowered.
An object of the present invention is to provide a sensor chip for a specimen detection system that can suppress the generation of bubbles in a flow path and prevent a decrease in measurement accuracy in view of the current situation.
 本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した検体検出システム用センサーチップは、
 アナライトを捕捉する反応場を内部に有するセンサーチップであって、
 前記反応場を有する流路と、
 前記流路の一端に形成された第1貫通孔と、を有し、
 前記流路の前記反応場近傍における高さが、前記流路の前記第1貫通孔近傍における高さよりも高くなるように、前記流路に勾配が設けられる。
The present invention has been invented to solve the above-described problems in the prior art, and in order to achieve at least one of the above-described objects, a sample detection system reflecting one aspect of the present invention. Sensor chip for
A sensor chip having a reaction field inside for capturing an analyte,
A flow path having the reaction field;
A first through hole formed at one end of the flow path,
The channel is provided with a gradient so that the height of the channel near the reaction field is higher than the height of the channel near the first through hole.
 本発明によれば、流路内の残液を所定の位置に留めておくための流路構造とすることにより、残液起因の気泡が発生することを抑制し、測定精度の低下を防止することができる。
 また、残液起因の気泡が発生することを抑制できることから、同一流路で何度も試薬の注入・吸引が可能となり、センサーチップに余計な流路を設ける必要がない。このため、センサーチップや検体検出装置の製造コストを低減し、かつ、小型化にも寄与することができる。
According to the present invention, the flow path structure for keeping the residual liquid in the flow path at a predetermined position suppresses the generation of bubbles due to the residual liquid and prevents the measurement accuracy from being lowered. be able to.
Further, since it is possible to suppress the generation of bubbles due to the residual liquid, it is possible to inject and suck the reagent many times in the same flow path, and there is no need to provide an extra flow path in the sensor chip. For this reason, it is possible to reduce the manufacturing cost of the sensor chip and the specimen detection apparatus and contribute to downsizing.
図1は、本発明の一実施形態に係る表面プラズモン励起増強蛍光分光測定装置(SPFS装置)の構成を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a configuration of a surface plasmon excitation enhanced fluorescence spectrometer (SPFS apparatus) according to an embodiment of the present invention. 図2は、図1のSPFS装置で用いられるセンサーチップの一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a sensor chip used in the SPFS apparatus of FIG. 図3は、図2のセンサーチップにおいて、液体を流路に往復送液した際の液体の状態を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the state of the liquid when the liquid is reciprocated into the flow path in the sensor chip of FIG. 図4は、図1のSPFS装置で用いられるセンサーチップの変形例を示す模式図である。FIG. 4 is a schematic diagram showing a modification of the sensor chip used in the SPFS device of FIG. 図5は、図1のSPFS装置で用いられるセンサーチップの別の変形例を示す模式図である。FIG. 5 is a schematic diagram showing another modification of the sensor chip used in the SPFS device of FIG. 図6は、図1のSPFS装置の動作手順の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus of FIG. 図7は、従来の流路チップの構造を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the structure of a conventional channel chip. 図8は、図7の流路チップにおいて、液体を流路に往復送液した際の液体の状態を説明するための模式図である。FIG. 8 is a schematic diagram for explaining the state of the liquid when the liquid is reciprocated into the flow path in the flow path chip of FIG.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本発明の一実施形態に係る表面プラズモン励起増強蛍光分光測定装置(SPFS装置)の構成を説明するための模式図、図2は、図1のSPFS装置で用いられるセンサーチップの一例を示す模式図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail based on the drawings.
FIG. 1 is a schematic diagram for explaining a configuration of a surface plasmon excitation enhanced fluorescence spectrometer (SPFS apparatus) according to an embodiment of the present invention, and FIG. 2 is an example of a sensor chip used in the SPFS apparatus of FIG. It is a schematic diagram which shows.
 図1に示すように、SPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、送液ユニット40、搬送ユニット50及び制御部80を備える。なお、SPFS装置10は、搬送ユニット50のチップホルダー54にセンサーチップ100を装着した状態で使用される。 As shown in FIG. 1, the SPFS device 10 includes an excitation light irradiation unit 20, a fluorescence detection unit 30, a liquid feeding unit 40, a transport unit 50, and a control unit 80. The SPFS device 10 is used in a state where the sensor chip 100 is mounted on the chip holder 54 of the transport unit 50.
 図2に示すように、センサーチップ100は、入射面102a、成膜面102b及び出射面102cを有する誘電体部材102と、成膜面102bに形成された金属膜104と、成膜面102bまたは金属膜104上に固着された流路形成部材106とを有する。通常、センサーチップ100は、検体検査毎に交換されるものである。 As shown in FIG. 2, the sensor chip 100 includes a dielectric member 102 having an incident surface 102a, a film formation surface 102b, and an emission surface 102c, a metal film 104 formed on the film formation surface 102b, and a film formation surface 102b or And a flow path forming member 106 fixed on the metal film 104. Usually, the sensor chip 100 is replaced for each specimen test.
 センサーチップ100は、好ましくは各辺の長さが数mm~数cm程度の構造物であるが、「チップ」の範疇に含まれないようなより小型の構造物又はより大型の構造物であっても構わない。 The sensor chip 100 is preferably a structure having a length of several millimeters to several centimeters on each side, but is a smaller structure or a larger structure that is not included in the category of “chip”. It doesn't matter.
 誘電体部材102は、励起光αに対して透明な誘電体からなるプリズムとすることができる。誘電体部材102の入射面102aは、励起光照射ユニット20から照射される励起光αが誘電体部材102の内部に入射される面である。また、成膜面102b上には、金属膜104が形成されている。誘電体部材102の内部に入射した励起光αは、この金属膜104と誘電体部材102の成膜面102bとの界面(以下、便宜上「金属膜104の裏面」という)において反射され、出射面102cを介して、励起光αは誘電体部材102の外部に出射される。 The dielectric member 102 can be a prism made of a dielectric that is transparent to the excitation light α. The incident surface 102 a of the dielectric member 102 is a surface on which the excitation light α irradiated from the excitation light irradiation unit 20 is incident on the inside of the dielectric member 102. A metal film 104 is formed on the film formation surface 102b. The excitation light α incident on the inside of the dielectric member 102 is reflected at the interface between the metal film 104 and the film formation surface 102b of the dielectric member 102 (hereinafter referred to as “the back surface of the metal film 104” for convenience), and the emission surface. The excitation light α is emitted to the outside of the dielectric member 102 through 102c.
 誘電体部材102の形状は特に限定されるものではなく、図1,2に示す誘電体部材102は、鉛直断面形状が略台形の六面体(截頭四角錐形状)からなるプリズムであるが、例えば、鉛直断面形状を三角形(いわゆる、三角プリズム)、半円形、半楕円形としたプリズムとすることもできる。 The shape of the dielectric member 102 is not particularly limited, and the dielectric member 102 shown in FIGS. 1 and 2 is a prism formed of a hexahedron having a substantially trapezoidal vertical cross-sectional shape (a truncated quadrangular pyramid shape). Also, a prism having a vertical cross-sectional shape of a triangle (a so-called triangular prism), a semicircular shape, and a semielliptical shape can be used.
 入射面102aは、励起光αが励起光照射ユニット20に戻らないように形成される。励起光αの光源が、例えば、レーザーダイオード(以下、「LD」ともいう)である場合、励起光αがLDに戻ると、LDの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまう。このため、理想的な増強角を中心とする走査範囲において、励起光αが入射面102aに対して垂直に入射しないように、入射面102aの角度が設定される。 The incident surface 102 a is formed so that the excitation light α does not return to the excitation light irradiation unit 20. When the light source of the excitation light α is, for example, a laser diode (hereinafter also referred to as “LD”), when the excitation light α returns to the LD, the excitation state of the LD is disturbed, and the wavelength and output of the excitation light α are changed. It will fluctuate. Therefore, the angle of the incident surface 102a is set so that the excitation light α does not enter the incident surface 102a perpendicularly in the scanning range centered on the ideal enhancement angle.
 なお、センサーチップ100の設計により、共鳴角(及びその極近傍にある増強角)が概ね決定される。設計要素は、誘電体部材102の屈折率、金属膜104の屈折率、金属膜104の膜厚、金属膜104の消衰係数、励起光αの波長などである。金属膜104上に固定化されたアナライトによって共鳴角及び増強角がシフトするが、その量は数度未満である。 It should be noted that the resonance angle (and the enhancement angle in the vicinity thereof) is generally determined by the design of the sensor chip 100. The design elements are the refractive index of the dielectric member 102, the refractive index of the metal film 104, the film thickness of the metal film 104, the extinction coefficient of the metal film 104, the wavelength of the excitation light α, and the like. The resonance angle and the enhancement angle are shifted by the analyte immobilized on the metal film 104, but the amount is less than a few degrees.
 誘電体部材102は、複屈折特性を少なからず有する。誘電体部材102の材料は、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーなどが含まれ、化学的安定性、製造安定性、光学的透明性、低複屈折性に優れる材料が好ましい。 The dielectric member 102 has a considerable amount of birefringence. The material of the dielectric member 102 includes, for example, various inorganic materials such as glass and ceramics, natural polymers, synthetic polymers, and the like, and is excellent in chemical stability, manufacturing stability, optical transparency, and low birefringence. Is preferred.
 少なくとも、励起光αに対して光学的に透明で、かつ低複屈折な材料から形成されていれば、その材質は、上記のように特に限定されないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、誘電体部材102の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。 As long as it is made of a material that is at least optically transparent to the excitation light α and low birefringence, the material is not particularly limited as described above. In providing, for example, it is preferably formed from a resin material. The method for manufacturing the dielectric member 102 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
 誘電体部材102を樹脂材料から形成する場合、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリスチレン、ポリカーボネート(PC)、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。 When the dielectric member 102 is formed from a resin material, for example, polyolefins such as polyethylene (PE) and polypropylene (PP), polycyclic olefins such as cyclic olefin copolymer (COC) and cyclic olefin polymer (COP), polystyrene, Polycarbonate (PC), acrylic resin, triacetyl cellulose (TAC), or the like can be used.
 金属膜104は、誘電体部材102の成膜面102b上に形成される。これにより、成膜面102bに全反射条件で入射した励起光αの光子と、金属膜104中の自由電子との間で相互作用(表面プラズモン共鳴)が生じ、金属膜104の表面上に局在場光を生じさせることができる。 The metal film 104 is formed on the film formation surface 102 b of the dielectric member 102. As a result, an interaction (surface plasmon resonance) occurs between the photon of the excitation light α incident on the film formation surface 102b under the total reflection condition and the free electrons in the metal film 104, and is locally on the surface of the metal film 104. In-situ light can be generated.
 金属膜104の材料は、表面プラズモン共鳴を生じさせうる金属であれば、特に限定されるものではなく、例えば、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは金からなり、さらに、これら金属の合金から構成してもよい。このような金属は、酸化に対して安定であり、かつ、表面プラズモン光による電場増強が大きくなるため、金属膜104として好適である。 The material of the metal film 104 is not particularly limited as long as it is a metal capable of causing surface plasmon resonance. For example, at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum is used. Made of gold, more preferably made of gold, and may be made of an alloy of these metals. Such a metal is suitable as the metal film 104 because it is stable against oxidation and has a large electric field enhancement by surface plasmon light.
 また、金属膜104の形成方法としては、特に限定されるものではないが、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、金属膜形成条件の調整が容易であるので望ましい。 Further, the method for forming the metal film 104 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. It is done. Preferably, the sputtering method or the vapor deposition method is used because the adjustment of the metal film forming conditions is easy.
 金属膜104の厚さとしては、特に限定されるものではないが、好ましくは、5~500nmの範囲内とするのが好ましく、電場増強効果の観点から、より好ましくは、金、銀、銅、白金の場合には20~70nm、アルミニウムの場合には、10~50nm、これらの合金の場合には10~70nmの範囲内であることが好ましい。 The thickness of the metal film 104 is not particularly limited, but is preferably in the range of 5 to 500 nm, and more preferably gold, silver, copper, In the case of platinum, it is preferably in the range of 20 to 70 nm, in the case of aluminum, 10 to 50 nm, and in the case of these alloys, it is preferably in the range of 10 to 70 nm.
 金属膜104の厚さが上記範囲内であれば、表面プラズモン光が発生し易く好適である。また、このような厚さを有する金属膜104であれば、大きさ(縦×横)の寸法、形状は、特に限定されない。 If the thickness of the metal film 104 is within the above range, it is preferable that surface plasmon light is easily generated. In addition, as long as the metal film 104 has such a thickness, the size (length × width) dimensions and shape are not particularly limited.
 また、図1,2では図示しないが、金属膜104の誘電体部材102と対向しない面(以下、便宜上「金属膜104の表面」という)には、アナライトを捕捉するためのリガンドが固定化されている。リガンドを固定化することで、アナライトを選択的に検出することが可能となる。 Although not shown in FIGS. 1 and 2, a ligand for capturing the analyte is immobilized on the surface of the metal film 104 that does not face the dielectric member 102 (hereinafter referred to as “the surface of the metal film 104” for convenience). Has been. By immobilizing the ligand, the analyte can be selectively detected.
 本実施形態では、金属膜104上の所定の領域(反応場116)に、リガンドが均一に固定化されている。リガンドの種類は、アナライトを捕捉することができれば特に限定されない。本実施形態では、リガンドは、アナライトに特異的な抗体またはその断片である。 In this embodiment, the ligand is uniformly immobilized in a predetermined region (reaction field 116) on the metal film 104. The type of the ligand is not particularly limited as long as the analyte can be captured. In this embodiment, the ligand is an analyte specific antibody or fragment thereof.
 流路形成部材106は、誘電体部材102の成膜面102bまたは金属膜104上に配置されている。本実施形態において、流路形成部材106は、貫通孔が形成された粘着シート(流路シール114)により誘電体部材102または金属膜104と接合され、誘電体部材102、流路形成部材106、流路シール114に囲繞された空間、すなわち、流路シール114の貫通孔を流路112として用いている。 The flow path forming member 106 is disposed on the film formation surface 102 b of the dielectric member 102 or the metal film 104. In the present embodiment, the flow path forming member 106 is joined to the dielectric member 102 or the metal film 104 by an adhesive sheet (flow path seal 114) in which through holes are formed, and the dielectric member 102, the flow path forming member 106, A space surrounded by the flow path seal 114, that is, a through hole of the flow path seal 114 is used as the flow path 112.
 流路形成部材106としては、これに限定されるものではなく、例えば、成膜面102bまたは金属膜104と対向する面に流路溝を形成し、流路形成部材106は、金属膜104上の反応場116を覆うように配置することで、流路形成部材106と誘電体部材102に囲繞された空間、すなわち、流路溝を、試料液や標識液、洗浄液などを送液するための流路112として用いることができる。 The flow path forming member 106 is not limited to this. For example, a flow path groove is formed on the film formation surface 102 b or the surface facing the metal film 104, and the flow path formation member 106 is formed on the metal film 104. The reaction field 116 is disposed so as to cover the space surrounded by the flow path forming member 106 and the dielectric member 102, that is, the flow path groove, for supplying the sample liquid, the labeling liquid, the cleaning liquid, and the like. It can be used as the channel 112.
 この場合、流路形成部材106は、例えば、接着剤や透明な粘着シートによる接着、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより誘電体部材102または金属膜104と接合することができる。 In this case, the flow path forming member 106 can be bonded to the dielectric member 102 or the metal film 104 by, for example, adhesion using an adhesive or a transparent adhesive sheet, laser welding, ultrasonic welding, or pressure bonding using a clamp member. it can.
 このように形成される流路112の反応場116近傍における幅は0.1mm~5mm、長さは10mm~50mmとすることが好ましい。また、流路112の第1貫通孔110a近傍における高さは50μm~500μmとすることが好ましい。 The width of the flow path 112 formed in this way in the vicinity of the reaction field 116 is preferably 0.1 mm to 5 mm, and the length is preferably 10 mm to 50 mm. The height of the flow path 112 in the vicinity of the first through hole 110a is preferably 50 μm to 500 μm.
 また、流路形成部材106は、流路112の一端に形成された第1貫通孔110aと、流路112の他端に形成された第2貫通孔110bとを有する。本実施形態において、第1貫通孔110a及び第2貫通孔110bは、それぞれ略円柱形状である。また、第1貫通孔110a及び第2貫通孔110bは、流路112へ試料液や標識液、洗浄液などを注入するための注入口及び試料液や標識液、洗浄液などを取り出すための取出口として機能する。 The flow path forming member 106 has a first through hole 110 a formed at one end of the flow path 112 and a second through hole 110 b formed at the other end of the flow path 112. In the present embodiment, each of the first through hole 110a and the second through hole 110b has a substantially cylindrical shape. The first through hole 110a and the second through hole 110b serve as an inlet for injecting a sample liquid, a labeling liquid, a cleaning liquid, and the like into the flow path 112, and an outlet for taking out the sample liquid, the labeling liquid, the cleaning liquid, and the like. Function.
 流路形成部材106の材料としては、少なくとも後述する蛍光γに対して光学的に透明な材料から形成されていれば、特に限定されるものではないが、安価で取り扱い性に優れるセンサーチップ100を提供する上で、例えば、樹脂材料から形成されていることが好ましい。なお、流路形成部材106の製造方法は、特に限定されるものではないが、製造コストの観点から、金型を用いた射出成形が好ましい。 The material of the flow path forming member 106 is not particularly limited as long as it is formed of a material that is optically transparent to at least the fluorescent γ described later, but the sensor chip 100 that is inexpensive and excellent in handleability is used. In providing, for example, it is preferably formed from a resin material. The manufacturing method of the flow path forming member 106 is not particularly limited, but injection molding using a mold is preferable from the viewpoint of manufacturing cost.
 流路形成部材106を樹脂材料から形成する場合、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができ、特に、化学的に安定で、かつ、成型性に優れることからアクリル樹脂を用いることが好ましい。このように、アクリル樹脂を用いることにより、後述するような勾配118を容易に形成することができる。 When the flow path forming member 106 is formed from a resin material, for example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC), Polycyclic olefins such as cyclic olefin polymer (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC) and the like can be used. In particular, it is preferable to use an acrylic resin because it is chemically stable and has excellent moldability. Arbitrariness. Thus, by using an acrylic resin, a gradient 118 as described later can be easily formed.
 本実施形態において、流路形成部材106には、流路112の反応場116近傍における高さh2が、第1貫通孔110a近傍における高さh1よりも高くなるように勾配118が設けられている。流路112の反応場116近傍における高さh2は、0.1mm~1mmとすることが好ましい。 In the present embodiment, the flow path forming member 106 is provided with a gradient 118 so that the height h2 in the vicinity of the reaction field 116 of the flow path 112 is higher than the height h1 in the vicinity of the first through hole 110a. . The height h2 of the flow path 112 in the vicinity of the reaction field 116 is preferably 0.1 mm to 1 mm.
 このように構成することにより、図3(a)のように、第1貫通孔110aから流路112に液体Lを注入し、図3(b)のように、第1貫通孔110aから流路112内の液体Lを吸引して流路112の第1貫通孔110a付近に液体Lが残った場合であっても、このまま吸引を止めても、図3(c)のように、液体は第1貫通孔110a近傍に留まり、反応場116周辺に液体Lが戻るようなことを防止できる。 With this configuration, the liquid L is injected from the first through hole 110a into the flow path 112 as shown in FIG. 3A, and the flow path from the first through hole 110a as shown in FIG. 3B. Even if the liquid L in the 112 is sucked and the liquid L remains in the vicinity of the first through hole 110a of the flow path 112, even if the suction is stopped as it is, as shown in FIG. It is possible to prevent the liquid L from staying in the vicinity of the first through hole 110a and returning to the vicinity of the reaction field 116.
 なお、流路形成部材106に設けられた勾配118は、流路112の反応場116近傍における高さが、第1貫通孔110a近傍における高さよりも高くなるように構成されていればよく、図2に示す一例では、流路112において、反応場116近傍における高さが最も高く、第1貫通孔110a及び第2貫通孔110bに近づくに従って流路112の高さが低くなるように勾配118が設けられているが、例えば、図4(a)に示すように、第1貫通孔110aから第2貫通孔110bに向かって流路112の高さが高くなるように勾配118を設けてもよい。 The gradient 118 provided in the flow path forming member 106 only needs to be configured so that the height of the flow path 112 in the vicinity of the reaction field 116 is higher than the height in the vicinity of the first through hole 110a. In the example shown in FIG. 2, the gradient 118 is such that the height in the vicinity of the reaction field 116 is the highest in the flow path 112 and the height of the flow path 112 decreases as it approaches the first through hole 110 a and the second through hole 110 b. Although provided, for example, as shown in FIG. 4A, a gradient 118 may be provided so that the height of the flow path 112 increases from the first through hole 110a toward the second through hole 110b. .
 また、図4(b)に示すように、勾配118を曲面としてもよい。また、図4(c)に示すように、勾配118を複数の平面とすることもできるが、流路112へ液体を送液した際の液溜まりを防止する観点からは、図2や図4(a)に示すように、流路112を形成する面はなるべく平滑であることが好ましい。 Further, as shown in FIG. 4B, the gradient 118 may be a curved surface. Further, as shown in FIG. 4C, the gradient 118 can be a plurality of planes. However, from the viewpoint of preventing liquid pooling when the liquid is sent to the flow path 112, FIG. 2 and FIG. As shown to (a), it is preferable that the surface which forms the flow path 112 is as smooth as possible.
 また、勾配118は流路形成部材106に設けず、図5(a)に示すように、誘電体部材102に設けることもできる。さらには、図5(b)に示すように、流路形成部材106と誘電体部材102の両方に勾配118を設けることもできる。 Further, the gradient 118 can be provided on the dielectric member 102 as shown in FIG. Furthermore, as shown in FIG. 5B, a gradient 118 can be provided on both the flow path forming member 106 and the dielectric member 102.
 このように構成されるセンサーチップ100は、図1に示すように、SPFS装置10の搬送ユニット50のチップホルダー54に装着され、SPFS装置10によって検体検出が行われる。 As shown in FIG. 1, the sensor chip 100 configured as described above is mounted on the chip holder 54 of the transport unit 50 of the SPFS apparatus 10, and specimen detection is performed by the SPFS apparatus 10.
 次に、SPFS装置10の各構成要素について説明する。前述するように、本実施形態におけるSPFS装置10は、励起光照射ユニット20、蛍光検出ユニット30、送液ユニット40、搬送ユニット50及び制御部80が設けられている。 Next, each component of the SPFS device 10 will be described. As described above, the SPFS apparatus 10 according to the present embodiment includes the excitation light irradiation unit 20, the fluorescence detection unit 30, the liquid feeding unit 40, the transport unit 50, and the control unit 80.
 励起光照射ユニット20は、チップホルダー54に保持されたセンサーチップ100に励起光αを照射する。後述するように、蛍光γの測定時には、励起光照射ユニット20は、金属膜104に対する入射角が表面プラズモン共鳴を生じさせる角度となるように、金属膜104に対するP波のみを入射面102aに向けて出射する。 The excitation light irradiation unit 20 irradiates the sensor chip 100 held by the chip holder 54 with the excitation light α. As will be described later, when measuring the fluorescence γ, the excitation light irradiation unit 20 directs only the P wave with respect to the metal film 104 toward the incident surface 102a so that the incident angle with respect to the metal film 104 is an angle that causes surface plasmon resonance. And exit.
 ここで「励起光」とは、蛍光物質を直接または間接的に励起させる光である。例えば、励起光αは、誘電体部材102を介して金属膜104に表面プラズモン共鳴が生じる角度で照射されたときに、蛍光物質を励起させる局在場光を金属膜104の表面上に生じさせる光である。 Here, the “excitation light” is light that directly or indirectly excites the fluorescent substance. For example, when the excitation light α is irradiated through the dielectric member 102 at an angle at which surface plasmon resonance occurs on the metal film 104, local field light that excites the fluorescent material is generated on the surface of the metal film 104. Light.
 励起光照射ユニット20は、励起光αを誘電体部材102に向けて出射するための構成と、金属膜104の裏面に対する励起光αの入射角度を走査するための構成とを含む。本実施形態では、励起光照射ユニット20は、光源ユニット21、角度調整機構22及び光源制御部23を含む。 The excitation light irradiation unit 20 includes a configuration for emitting the excitation light α toward the dielectric member 102 and a configuration for scanning the incident angle of the excitation light α with respect to the back surface of the metal film 104. In the present embodiment, the excitation light irradiation unit 20 includes a light source unit 21, an angle adjustment mechanism 22, and a light source control unit 23.
 光源ユニット21は、コリメートされ、かつ波長及び光量が一定の励起光αを、金属膜104裏面に対して照射スポットの形状が略円形となるように照射する。光源ユニット21は、例えば、励起光αの光源、ビーム整形光学系、APC(Automatic Power-Control)機構及び温度調整機構(いずれも不図示)を含む。 The light source unit 21 irradiates collimated excitation light α having a constant wavelength and light amount so that the irradiation spot has a substantially circular shape on the back surface of the metal film 104. The light source unit 21 includes, for example, a light source of excitation light α, a beam shaping optical system, an APC (Automatic Power-Control) mechanism, and a temperature adjustment mechanism (all not shown).
 光源の種類は、特に限定されるものではなく、例えば、レーザーダイオード(LD)、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から照射される光がビームでない場合には、光源から照射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から照射される光が単色光でない場合には、光源から照射される光は、回折格子などにより単色光に変換される。さらに、光源から照射される光が直線偏光でない場合には、光源から照射される光は、偏光子などにより直線偏光の光に変換される。 The type of light source is not particularly limited, and includes, for example, a laser diode (LD), a light emitting diode, a mercury lamp, and other laser light sources. When the light emitted from the light source is not a beam, the light emitted from the light source is converted into a beam by a lens, a mirror, a slit, or the like. When the light emitted from the light source is not monochromatic light, the light emitted from the light source is converted into monochromatic light by a diffraction grating or the like. Further, when the light emitted from the light source is not linearly polarized light, the light emitted from the light source is converted into linearly polarized light by a polarizer or the like.
 ビーム整形光学系は、例えば、コリメーターやバンドパスフィルター、直線偏光フィルター、半波長板、スリット、ズーム手段などを含む。ビーム整形光学系は、これらの全てを含んでいてもよいし、一部のみを含んでいてもよい。 The beam shaping optical system includes, for example, a collimator, a band pass filter, a linear polarization filter, a half-wave plate, a slit, and a zoom means. The beam shaping optical system may include all of these or only a part thereof.
 コリメーターは、光源から照射された励起光αをコリメートする。バンドパスフィルターは、光源から照射された励起光αを中心波長のみの狭帯域光にする。光源からの励起光αは、若干の波長分布幅を有しているためである。 The collimator collimates the excitation light α irradiated from the light source. The band-pass filter turns the excitation light α irradiated from the light source into narrowband light having only the center wavelength. This is because the excitation light α from the light source has a slight wavelength distribution width.
 直線偏光フィルターは、光源から照射された励起光αを完全な直線偏光の光にする。半波長板は、金属膜104にP波成分が入射するように励起光αの偏光方向を調整する。スリット及びズーム手段は、金属膜104裏面における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。 The linear polarization filter turns the excitation light α irradiated from the light source into completely linearly polarized light. The half-wave plate adjusts the polarization direction of the excitation light α so that the P-wave component is incident on the metal film 104. The slit and zoom means adjust the beam diameter, contour shape, and the like of the excitation light α so that the shape of the irradiation spot on the back surface of the metal film 104 is a circle having a predetermined size.
 APC機構は、光源の出力が一定となるように光源を制御する。より具体的には、APC機構は、励起光αから分岐させた光の光量を不図示のフォトダイオードなどで検出する。そして、APC機構は、回帰回路で投入エネルギーを制御することで、光源の出力を一定に制御する。 The APC mechanism controls the light source so that the output of the light source is constant. More specifically, the APC mechanism detects the amount of light branched from the excitation light α with a photodiode (not shown) or the like. The APC mechanism controls the input energy by a regression circuit, thereby controlling the output of the light source to be constant.
 温度調整機構は、例えば、ヒーターやペルチェ素子などである。光源の出射光の波長及びエネルギーは、温度によって変動することがある。このため、温度調整機構で光源の温度を一定に保つことにより、光源の出射光の波長及びエネルギーを一定に制御する。 The temperature adjustment mechanism is, for example, a heater or a Peltier element. The wavelength and energy of the light emitted from the light source may vary depending on the temperature. For this reason, the wavelength and energy of the light emitted from the light source are controlled to be constant by keeping the temperature of the light source constant by the temperature adjusting mechanism.
 角度調整機構22は、金属膜104への励起光αの入射角を調整する。角度調整機構22は、誘電体部材102を介して金属膜104の所定の位置に向けて所定の入射角で励起光αを照射するために、励起光αの光軸とチップホルダー54とを相対的に回転させる。 The angle adjustment mechanism 22 adjusts the incident angle of the excitation light α to the metal film 104. In order to irradiate the excitation light α at a predetermined incident angle toward a predetermined position of the metal film 104 via the dielectric member 102, the angle adjustment mechanism 22 makes the optical axis of the excitation light α and the chip holder 54 relative to each other. Rotate.
 例えば、角度調整機構22は、光源ユニット21を励起光αの光軸と直交する軸(図1の紙面に対して垂直な軸)を中心として回動させる。このとき、入射角を走査しても金属膜104上での照射スポットの位置がほとんど変化しないように、回転軸の位置を設定する。回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面102b上の照射位置と入射面102aとの間)に設定することで、照射位置のズレを極小化することができる。 For example, the angle adjusting mechanism 22 rotates the light source unit 21 around an axis (axis perpendicular to the paper surface of FIG. 1) orthogonal to the optical axis of the excitation light α. At this time, the position of the rotation axis is set so that the position of the irradiation spot on the metal film 104 hardly changes even when the incident angle is scanned. By setting the position of the rotation center near the intersection of the optical axes of the two excitation lights α at both ends of the scanning range of the incident angle (between the irradiation position on the film formation surface 102b and the incident surface 102a), the irradiation position Can be minimized.
 金属膜104に対する励起光αの入射角のうち、プラズモン散乱光の最大光量を得られる角度が増強角である。増強角またはその近傍の角度に励起光αの入射角を設定することで、高強度の蛍光γを測定することが可能となる。 Among the incident angles of the excitation light α to the metal film 104, the angle at which the maximum amount of plasmon scattered light can be obtained is the enhancement angle. By setting the incident angle of the excitation light α to an enhancement angle or an angle in the vicinity thereof, it becomes possible to measure high-intensity fluorescence γ.
 なお、センサーチップ100の誘電体部材102の材料及び形状、金属膜104の膜厚、流路112内の試料液の屈折率などにより、励起光αの基本的な入射条件が決定されるが、流路112内のアナライトの種類及び量、誘電体部材102の形状誤差などにより、最適な入射条件はわずかに変動する。このため、検体検査毎に最適な増強角を求めることが好ましい。 The basic incident condition of the excitation light α is determined by the material and shape of the dielectric member 102 of the sensor chip 100, the film thickness of the metal film 104, the refractive index of the sample liquid in the flow path 112, and the like. The optimum incident condition varies slightly depending on the type and amount of the analyte in the flow path 112, the shape error of the dielectric member 102, and the like. For this reason, it is preferable to obtain an optimal enhancement angle for each specimen test.
 光源制御部23は、光源ユニット21に含まれる各種機器を制御して、光源ユニット21の励起光αの照射を制御する。光源制御部23は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The light source control unit 23 controls various devices included in the light source unit 21 to control the irradiation of the excitation light α of the light source unit 21. The light source control unit 23 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 蛍光検出ユニット30は、金属膜104への励起光αの照射により励起された蛍光物質から生じる蛍光γを検出する。また、必要に応じて、蛍光検出ユニット30は、金属膜104への励起光αの照射によって生じたプラズモン散乱光も検出する。蛍光検出ユニット30は、例えば、受光ユニット31、位置切替機構37及びセンサー制御部38を含む。 The fluorescence detection unit 30 detects the fluorescence γ generated from the fluorescent material excited by the irradiation of the excitation light α to the metal film 104. If necessary, the fluorescence detection unit 30 also detects plasmon scattered light generated by the irradiation of the excitation light α to the metal film 104. The fluorescence detection unit 30 includes, for example, a light receiving unit 31, a position switching mechanism 37, and a sensor control unit 38.
 受光ユニット31は、センサーチップ100の金属膜104の法線方向(図1におけるz軸方向)に配置される。受光ユニット31は、第1レンズ32、光学フィルター33、第2レンズ34及び受光センサー35を含む。 The light receiving unit 31 is disposed in the normal direction of the metal film 104 of the sensor chip 100 (z-axis direction in FIG. 1). The light receiving unit 31 includes a first lens 32, an optical filter 33, a second lens 34, and a light receiving sensor 35.
 第1レンズ32は、例えば、集光レンズであり、金属膜104上から生じる光を集光する。第2レンズ34は、例えば、結像レンズであり、第1レンズ32で集光された光を受光センサー35の受光面に結像させる。両レンズ32,34の間の光路は、略平行な光路となっている。光学フィルター33は、両レンズ32,34の間に配置されている。 The first lens 32 is, for example, a condensing lens and condenses light generated on the metal film 104. The second lens 34 is, for example, an imaging lens, and forms an image of the light collected by the first lens 32 on the light receiving surface of the light receiving sensor 35. The optical path between both lenses 32 and 34 is a substantially parallel optical path. The optical filter 33 is disposed between the lenses 32 and 34.
 光学フィルター33は、蛍光成分のみを受光センサー35に導き、高いS/Nで蛍光γを検出するために、励起光成分(プラズモン散乱光)を除去する。光学フィルター33は、例えば、励起光反射フィルター、短波長カットフィルター及びバンドパスフィルターが含まれる。光学フィルター33は、例えば、所定の光成分を反射する多層膜を含むフィルターであるが、所定の光成分を吸収する色ガラスフィルターであってもよい。 The optical filter 33 guides only the fluorescent component to the light receiving sensor 35 and removes the excitation light component (plasmon scattered light) in order to detect the fluorescent γ with high S / N. The optical filter 33 includes, for example, an excitation light reflection filter, a short wavelength cut filter, and a band pass filter. The optical filter 33 is, for example, a filter including a multilayer film that reflects a predetermined light component, but may be a colored glass filter that absorbs the predetermined light component.
 受光センサー35は、蛍光γを検出する。受光センサー35は、微少量のアナライトを標識した蛍光物質からの微弱な蛍光γを検出することが可能な、高い感度を有するものであれば、特に限定されるものではないが、例えば、光電子倍増管(PMT)やアバランシェフォトダイオード(APD)、低ノイズのフォロダイオード(PD)などを用いることができる。 The light receiving sensor 35 detects fluorescence γ. The light receiving sensor 35 is not particularly limited as long as it has a high sensitivity and can detect weak fluorescence γ from a fluorescent substance labeled with a very small amount of analyte. A multiplier tube (PMT), an avalanche photodiode (APD), a low noise photodiode (PD), or the like can be used.
 位置切替機構37は、光学フィルター33の位置を、受光ユニット31における光路上または光路外に切り替える。具体的には、受光センサー35が蛍光γを検出する時には、光学フィルター33を受光ユニット31の光路上に配置し、受光センサー35がプラズモン散乱光を検出する時には、光学フィルター33を受光ユニット31の光路外に配置する。位置切替機構37は、例えば、回転駆動部と、回転運動を利用して光学フィルター33を水平方向に移動させる公知の機構(ターンテーブルやラックアンドピニオンなど)とによって構成される。 The position switching mechanism 37 switches the position of the optical filter 33 on or off the optical path in the light receiving unit 31. Specifically, when the light receiving sensor 35 detects the fluorescence γ, the optical filter 33 is disposed on the optical path of the light receiving unit 31, and when the light receiving sensor 35 detects plasmon scattered light, the optical filter 33 is placed on the light receiving unit 31. Place outside the optical path. The position switching mechanism 37 includes, for example, a rotation driving unit and a known mechanism (such as a turntable or a rack and pinion) that moves the optical filter 33 in the horizontal direction by using a rotational motion.
 センサー制御部38は、受光センサー35の出力値の検出や、検出した出力値による受光センサー35の感度の管理、適切な出力値を得るための受光センサー35の感度の変更などを制御する。センサー制御部38は、例えば、演算装置、制御装置、記憶装置、入力装置及び出力装置を含む公知のコンピュータやマイコンなどによって構成される。 The sensor control unit 38 controls detection of an output value of the light receiving sensor 35, management of sensitivity of the light receiving sensor 35 based on the detected output value, change of sensitivity of the light receiving sensor 35 for obtaining an appropriate output value, and the like. The sensor control unit 38 includes, for example, a known computer or microcomputer including an arithmetic device, a control device, a storage device, an input device, and an output device.
 送液ユニット40は、チップホルダー54に装着されたセンサーチップ100の流路112内に、試料液や標識液、洗浄液などを供給する。送液ユニット40は、シリンジポンプ41、ピペットノズル46、ピペットチップ45及び送液ポンプ駆動機構44を含む。 The liquid feeding unit 40 supplies a sample liquid, a labeling liquid, a cleaning liquid, and the like into the flow path 112 of the sensor chip 100 mounted on the chip holder 54. The liquid feeding unit 40 includes a syringe pump 41, a pipette nozzle 46, a pipette tip 45, and a liquid feeding pump drive mechanism 44.
 送液ユニット40は、ピペットノズル46の先端にピペットチップ45を装着した状態で使用される。ピペットチップ45が交換可能であると、ピペットチップ45の洗浄が不要となり、不純物の混入などを防止することができる。 The liquid feeding unit 40 is used with a pipette tip 45 attached to the tip of the pipette nozzle 46. If the pipette tip 45 is replaceable, the pipette tip 45 need not be washed, and contamination of impurities can be prevented.
 シリンジポンプ41は、シリンジ42と、シリンジ42内を往復動作可能なプランジャー43とによって構成される。プランジャー43の往復運動によって、液体の吸引及び排出が定量的に行われる。 The syringe pump 41 includes a syringe 42 and a plunger 43 that can reciprocate inside the syringe 42. By the reciprocating motion of the plunger 43, the liquid is sucked and discharged quantitatively.
 送液ポンプ駆動機構44は、シリンジポンプ41の駆動装置及びピペットチップ45が装着されたピペットノズル46の移動装置を含む。シリンジポンプ41の駆動装置は、プランジャー43を往復運動させるための装置であり、例えば、ステッピングモーターを含む。ステッピングモーターを含む駆動装置は、シリンジポンプ41の送液量や送液速度を管理できるため、センサーチップ100の残液量を管理する観点から好ましい。ピペットノズル46の移動装置は、例えば、ピペットノズル46を、ピペットノズル46の軸方向(例えば垂直方向)と、軸方向を横断する方向(例えば水平方向)との二方向に自在に移動させる。ピペットノズル46の移動装置は、例えば、ロボットアーム、2軸ステージまたは上下動自在なターンテーブルによって構成される。 The liquid feed pump driving mechanism 44 includes a driving device for the syringe pump 41 and a moving device for the pipette nozzle 46 to which the pipette tip 45 is attached. The drive device of the syringe pump 41 is a device for reciprocating the plunger 43, and includes, for example, a stepping motor. A drive device including a stepping motor is preferable from the viewpoint of managing the remaining liquid amount of the sensor chip 100 because it can manage the liquid feeding amount and the liquid feeding speed of the syringe pump 41. For example, the moving device of the pipette nozzle 46 freely moves the pipette nozzle 46 in two directions, that is, an axial direction (for example, a vertical direction) of the pipette nozzle 46 and a direction crossing the axial direction (for example, a horizontal direction). The moving device of the pipette nozzle 46 is constituted by, for example, a robot arm, a two-axis stage, or a turntable that can move up and down.
 ピペットチップ45とセンサーチップ100との相対的な高さを一定に調整し、センサーチップ100内での残液量を一定に管理する観点からは、送液ユニット40は、ピペットチップ45の先端の位置を検出する機構をさらに有することが好ましい。 From the viewpoint of adjusting the relative height of the pipette tip 45 and the sensor chip 100 to be constant and managing the amount of remaining liquid in the sensor chip 100 to be constant, the liquid feeding unit 40 is provided at the tip of the pipette tip 45. It is preferable to further have a mechanism for detecting the position.
 送液ユニット40は、図示しない液貯留部より各種液体を吸引し、センサーチップ100の流路112内に供給する。このとき、プランジャー43を動かすことで、センサーチップ100の流路112内を液体が往復し、流路112内の液体が攪拌される。これにより、液体の濃度の均一化や、流路112内における反応(例えば抗原抗体反応)の促進などを実現することができる。 The liquid feeding unit 40 sucks various liquids from a liquid storage unit (not shown) and supplies them into the flow path 112 of the sensor chip 100. At this time, by moving the plunger 43, the liquid reciprocates in the flow path 112 of the sensor chip 100, and the liquid in the flow path 112 is stirred. As a result, it is possible to make the liquid concentration uniform and promote the reaction (for example, antigen-antibody reaction) in the flow path 112.
 このような操作を行うことから、センサーチップ100の注入口(第1貫通孔110a)は、多層フィルム111等により保護されており、かつピペットチップ45がこの多層フィルムを貫通した時に第1貫通孔110aを密閉できるように、センサーチップ100及びピペットチップ45が構成されていることが好ましい。 By performing such an operation, the inlet (first through hole 110a) of the sensor chip 100 is protected by the multilayer film 111 and the first through hole when the pipette chip 45 penetrates the multilayer film. The sensor chip 100 and the pipette chip 45 are preferably configured so that the 110a can be sealed.
 一方で、第2貫通孔110bは、その上部開口に蓋をする蓋シール120が貼られており、注入された液体が流路を通過して一時的に貯留される貯留部となる。なお、蓋シール120には空気抜け用の微小な穴が空けられている。 On the other hand, the lid seal 120 that covers the upper opening of the second through hole 110b is affixed, and serves as a reservoir for temporarily storing the injected liquid through the flow path. The lid seal 120 has a minute hole for air removal.
 流路112内の液体は、再びシリンジポンプ41により吸引され、図示しない廃液部などに排出される。これらの動作の繰り返しにより、各種液体による反応、洗浄などを実施し、流路112内の反応場116に、蛍光物質で標識されたアナライトを固定化することができる。 The liquid in the flow path 112 is again sucked by the syringe pump 41 and discharged to a waste liquid portion (not shown). By repeating these operations, reaction with various liquids, washing, and the like can be performed, and the analyte labeled with the fluorescent substance can be immobilized in the reaction field 116 in the flow path 112.
 搬送ユニット50は、ユーザーによりチップホルダー54に装着されたセンサーチップ100を送液位置または測定位置に搬送し、固定する。ここで「送液位置」とは、送液ユニット40がセンサーチップ100の流路112内に液体を供給したり、流路112内の液体を除去したりする位置である。また、「測定位置」とは、励起光照射ユニット20がセンサーチップ100に励起光αを照射し、それに伴い発生する蛍光γを蛍光検出ユニット30が検出する位置である。 The transport unit 50 transports and fixes the sensor chip 100 mounted on the chip holder 54 to the liquid feeding position or the measurement position by the user. Here, the “liquid feeding position” is a position where the liquid feeding unit 40 supplies the liquid into the flow path 112 of the sensor chip 100 or removes the liquid in the flow path 112. The “measurement position” is a position where the excitation light irradiation unit 20 irradiates the sensor chip 100 with the excitation light α, and the fluorescence detection unit 30 detects the fluorescence γ generated therewith.
 搬送ユニット50は、搬送ステージ52及びチップホルダー54を含む。チップホルダー54は、搬送ステージ52に固定されており、センサーチップ100を着脱可能に保持する。チップホルダー54の形状は、センサーチップ100を保持することが可能であり、かつ、励起光α及び蛍光γの光路を妨げない形状であれば、特に限定されるものではない。例えば、チップホルダー54には、励起光α及び蛍光γが通過するための開口が設けられている。 The transfer unit 50 includes a transfer stage 52 and a chip holder 54. The chip holder 54 is fixed to the transfer stage 52 and holds the sensor chip 100 in a detachable manner. The shape of the chip holder 54 is not particularly limited as long as it can hold the sensor chip 100 and does not obstruct the optical paths of the excitation light α and the fluorescence γ. For example, the chip holder 54 is provided with an opening through which excitation light α and fluorescence γ pass.
 搬送ステージ52は、チップホルダー54を一方向(図1におけるx軸方向)及びその逆方向に移動可能に構成される。搬送ステージ52は、例えば、ステッピングモーターなどにより駆動される。 The transfer stage 52 is configured to be able to move the chip holder 54 in one direction (x-axis direction in FIG. 1) and in the opposite direction. The transport stage 52 is driven by, for example, a stepping motor.
 以下、SPFS装置10を用いた検体検出の流れについて説明する。図6は、SPFS装置10の動作手順の一例を示すフローチャートである。
 先ずユーザーは、センサーチップ100を、搬送ユニット50のチップホルダー54に装着する(S100)。
Hereinafter, a flow of specimen detection using the SPFS apparatus 10 will be described. FIG. 6 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus 10.
First, the user attaches the sensor chip 100 to the chip holder 54 of the transport unit 50 (S100).
 制御部80は、搬送ステージ52を操作して、チップホルダー54に装着されたセンサーチップ100を送液位置まで移動する(S110)。
 次いで、制御部80は、送液ユニット40を操作して、図示しない液貯留部に貯留される洗浄液を流路112内に導入し、流路112を洗浄し、流路112内の保存試薬を除去する(S120)。洗浄に用いられた洗浄液は、送液ユニット40により排出され、代わりに図示しない液貯留部に貯留される測定液を流路112内に導入する。なお、後工程の増強角検出(S140)の結果に影響がなければ、保存試薬洗浄液と測定液を兼用し、洗浄液を排出せずそのまま増強角測定を行うこともできる。
The controller 80 operates the transport stage 52 to move the sensor chip 100 mounted on the chip holder 54 to the liquid feeding position (S110).
Next, the control unit 80 operates the liquid feeding unit 40 to introduce the cleaning liquid stored in the liquid storage unit (not shown) into the flow path 112, clean the flow path 112, and remove the storage reagent in the flow path 112. It is removed (S120). The cleaning liquid used for cleaning is discharged by the liquid feeding unit 40, and instead, the measurement liquid stored in a liquid storage unit (not shown) is introduced into the flow path 112. If the result of the enhancement angle detection (S140) in the subsequent step is not affected, the preserving reagent cleaning solution and the measurement solution can be used together, and the enhancement angle measurement can be performed without discharging the cleaning solution.
 次いで、制御部80は、搬送ステージ52を操作して、チップホルダー54に装着されたセンサーチップ100を測定位置まで搬送する(S130)。そして、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、センサーチップ100に励起光αを照射するとともに、励起光αと同一波長のプラズモン散乱光を検出して、増強角を検出する(S140)。 Next, the control unit 80 operates the transport stage 52 to transport the sensor chip 100 mounted on the chip holder 54 to the measurement position (S130). Then, the control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 with the excitation light α and to detect and enhance the plasmon scattered light having the same wavelength as the excitation light α. A corner is detected (S140).
 具体的には、制御部80は、励起光照射ユニット20を操作して、金属膜104に対する励起光αの入射角を走査しつつ、蛍光検出ユニット30を操作してプラズモン散乱光を検出する。この時、制御部80は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路外に配置する。そして、制御部80は、プラズモン散乱光の光量が最大の時の励起光αの入射角を増強角として決定する。 Specifically, the control unit 80 operates the excitation light irradiation unit 20 to scan the incident angle of the excitation light α with respect to the metal film 104 and operates the fluorescence detection unit 30 to detect plasmon scattered light. At this time, the control unit 80 operates the position switching mechanism 37 to place the optical filter 33 outside the optical path of the light receiving unit 31. And the control part 80 determines the incident angle of the excitation light (alpha) when the light quantity of plasmon scattered light is the maximum as an enhancement angle.
 次いで、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、受光センサー35の出力値(光学ブランク値)を記録する(S150)。 Next, the control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light α, and outputs the output value (optical blank value) of the light receiving sensor 35. ) Is recorded (S150).
 この時、制御部80は、角度調整機構22を操作して、励起光αの入射角を増強角に設定する。また、制御部80は、位置切替機構37を操作して、光学フィルター33を受光ユニット31の光路内に配置する。 At this time, the control unit 80 operates the angle adjustment mechanism 22 to set the incident angle of the excitation light α to the enhancement angle. Further, the control unit 80 operates the position switching mechanism 37 to place the optical filter 33 in the optical path of the light receiving unit 31.
 次いで、制御部80は、搬送ステージ52を操作して、センサーチップ100を送液位置に移動させる(S160)。
 そして制御部80は、送液ユニット40を操作して、流路112内の測定液を排出し、図示しない液貯留部に貯留される試料液を流路112内に導入する(S170)。流路112内では、抗原抗体反応(1次反応)によって、金属膜104上の反応場にアナライトが捕捉される。
Next, the control unit 80 operates the transport stage 52 to move the sensor chip 100 to the liquid feeding position (S160).
Then, the controller 80 operates the liquid feeding unit 40 to discharge the measurement liquid in the flow path 112 and introduce the sample liquid stored in a liquid storage section (not shown) into the flow path 112 (S170). In the channel 112, the analyte is captured in the reaction field on the metal film 104 by the antigen-antibody reaction (primary reaction).
 なお、ここで用いられる試料液は、検体を用いて調製された液体であり、例えば、検体と試薬とを混合して検体中に含有されるアナライトに蛍光物質を結合させるための処理をしたものが挙げられる。このような検体としては、例えば、血液、血清、血漿、尿、鼻孔液、唾液、便、体腔液(髄液、腹水、胸水等)などが挙げられる。 Note that the sample liquid used here is a liquid prepared using a specimen, and for example, a specimen and a reagent are mixed to perform a treatment for binding a fluorescent substance to an analyte contained in the specimen. Things. Examples of such specimens include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.).
 また、検体中に含有されるアナライトは、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。 The analyte contained in the sample is, for example, a nucleic acid (DNA that may be single-stranded or double-stranded, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), etc., or nucleoside Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Specific examples thereof include a complex, and may be a carcinoembryonic antigen such as AFP (α-fetoprotein), a tumor marker, a signal transduction substance, a hormone, and the like, and is not particularly limited.
 その後、流路112内の試料液は除去され、流路112内は洗浄液で洗浄される(S180)。 Thereafter, the sample liquid in the flow path 112 is removed, and the flow path 112 is cleaned with a cleaning liquid (S180).
 次いで、制御部80は、送液ユニット40を操作して、図示しない液貯留部に貯留される標識液を流路112内に導入する(S190)。流路112内では、抗原抗体反応(2次反応)によって、金属膜104上に捕捉されているアナライトが蛍光物質で標識される。なお、標識液としては、蛍光物質で標識された2次抗体を含む液体を用いることができる。その後、流路112内の標識液は除去され、流路112内は洗浄液で洗浄され、洗浄液除去後、流路112内に測定液を導入する(S200)。 Next, the control unit 80 operates the liquid feeding unit 40 to introduce the labeled liquid stored in a liquid storage unit (not shown) into the flow path 112 (S190). In the channel 112, the analyte captured on the metal film 104 is labeled with a fluorescent substance by an antigen-antibody reaction (secondary reaction). As the labeling liquid, a liquid containing a secondary antibody labeled with a fluorescent substance can be used. Thereafter, the labeling liquid in the flow path 112 is removed, the flow path 112 is washed with the cleaning liquid, and after the cleaning liquid is removed, the measurement liquid is introduced into the flow path 112 (S200).
 次いで、制御部80は、搬送ステージ52を操作して、センサーチップ100を測定位置に移動させる(S210)。 Next, the control unit 80 operates the transfer stage 52 to move the sensor chip 100 to the measurement position (S210).
 次いで、制御部80は、励起光照射ユニット20及び蛍光検出ユニット30を操作して、測定位置に配置されたセンサーチップ100に励起光αを照射するとともに、リガンドに捕捉されているアナライトを標識する蛍光物質から放出された蛍光γを検出する(S220)。検出された蛍光γの強度に基づき、必要に応じて、アナライトの量や濃度などに換算することができる。 Next, the control unit 80 operates the excitation light irradiation unit 20 and the fluorescence detection unit 30 to irradiate the sensor chip 100 arranged at the measurement position with the excitation light α and to label the analyte captured by the ligand. The fluorescent γ emitted from the fluorescent material to be detected is detected (S220). Based on the intensity of the detected fluorescence γ, it can be converted into the amount or concentration of the analyte as required.
 以上の手順により、試料溶液中のアナライトの存在またはその量を検出することができる。
 なお、本実施形態では、1次反応(S170)の前に、増強角検出(S140)、光学ブランク値測定(S150)を実施しているが、1次反応(S170)の後に、増強角検出(S140)、光学ブランク値測定(S150)を実施するようにしてもよい。
By the above procedure, the presence or amount of the analyte in the sample solution can be detected.
In this embodiment, the enhancement angle detection (S140) and the optical blank value measurement (S150) are performed before the primary reaction (S170). However, the enhancement angle detection is performed after the primary reaction (S170). (S140) Optical blank value measurement (S150) may be performed.
 また、励起光αの入射角があらかじめ決まっている場合は、増強角の検出(S140)を省略してもよい。 Also, when the incident angle of the excitation light α is determined in advance, the detection of the enhancement angle (S140) may be omitted.
 また、上記の説明では、アナライトとリガンドとを反応させる1次反応(S170)の後に、アナライトを蛍光物質で標識する2次反応(S190)を行っている(2工程方式)。しかしながら、アナライトを蛍光物質で標識するタイミングは、特に限定されるものではない。 In the above description, the secondary reaction (S190) for labeling the analyte with a fluorescent substance is performed after the primary reaction (S170) for reacting the analyte and the ligand (two-step method). However, the timing for labeling the analyte with a fluorescent substance is not particularly limited.
 例えば、流路112内に試料液を導入する前に、試料液に標識液を添加してアナライトを予め蛍光物質で標識しておくこともできる。また、流路112内に試料液と標識液を同時に注入することで、蛍光物質で標識されたアナライトがリガンドに捕捉されることとなる。この場合、アナライトが蛍光物質で標識されるとともに、アナライトがリガンドに捕捉される。 For example, before introducing the sample solution into the flow path 112, a labeling solution may be added to the sample solution to label the analyte with a fluorescent substance in advance. In addition, by simultaneously injecting the sample solution and the labeling solution into the channel 112, the analyte labeled with the fluorescent substance is captured by the ligand. In this case, the analyte is labeled with a fluorescent substance, and the analyte is captured by the ligand.
 いずれの場合も、流路112内に試料溶液を導入することで、1次反応及び2次反応の両方を完了することができる(1工程方式)。このように1工程方式を採用する場合は、抗原抗体反応の前に増強角検出(S140)が実施される。 In any case, both the primary reaction and the secondary reaction can be completed by introducing the sample solution into the channel 112 (one-step method). Thus, when adopting the one-step method, the enhancement angle detection (S140) is performed before the antigen-antibody reaction.
 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例ではSPFS装置について説明したが、本発明に係る検体検出システムは、SPR装置などの蛍光免疫測定法(FIA)を利用した検体検出システムや酵素免疫測定法(EIA)を利用した検体検出システムなどにも適用することもできるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。 The preferred embodiment of the present invention has been described above. However, the present invention is not limited to this. For example, the SPFS apparatus has been described in the above embodiment, but the sample detection system according to the present invention has an SPR. It can be applied to a specimen detection system using a fluorescent immunoassay (FIA) such as an apparatus, a specimen detection system using an enzyme immunoassay (EIA), etc. Can be changed.
10    SPFS装置
20    励起光照射ユニット
21    光源ユニット
22    角度調整機構
23    光源制御部
30    蛍光検出ユニット
31    受光ユニット
32    第1レンズ
33    光学フィルター
34    第2レンズ
35    受光センサー
37    位置切替機構
38    センサー制御部
40    送液ユニット
41    シリンジポンプ
42    シリンジ
43    プランジャー
44    送液ポンプ駆動機構
45    ピペットチップ
46    ピペットノズル
50    搬送ユニット
52    搬送ステージ
54    チップホルダー
80    制御部
100   センサーチップ
102   誘電体部材
102a  入射面
102b  成膜面
102c  出射面
104   金属膜
106   流路形成部材
110a  第1貫通孔
110b  第2貫通孔
111   多層フィルム
112   流路
114   流路シール
116   反応場
118   勾配
120   蓋シール
200   流路チップ
202   誘電体部材
204   流路蓋
204a  注入口
206   流路シール
208   流路
210   反応場
A     気泡
L     液体
10 SPFS device 20 Excitation light irradiation unit 21 Light source unit 22 Angle adjustment mechanism 23 Light source control unit 30 Fluorescence detection unit 31 Light reception unit 32 First lens 33 Optical filter 34 Second lens 35 Light reception sensor 37 Position switching mechanism 38 Sensor control unit 40 Liquid unit 41 Syringe pump 42 Syringe 43 Plunger 44 Liquid feed pump drive mechanism 45 Pipette tip 46 Pipette nozzle 50 Transport unit 52 Transport stage 54 Chip holder 80 Control unit 100 Sensor chip 102 Dielectric member 102a Incident surface 102b Deposition surface 102c Outgoing Surface 104 Metal film 106 Channel forming member 110a First through hole 110b Second through hole 111 Multilayer film 112 Channel 114 Channel channel 116 Reaction field 118 Gradient 120 Lid seal 200 Channel chip 202 Dielectric member 204 Channel lid 204a Inlet 206 Channel seal 208 Channel 210 Reaction field A Bubble L Liquid

Claims (11)

  1.  アナライトを捕捉する反応場を内部に有するセンサーチップであって、
     前記反応場を有する流路と、
     前記流路の一端に形成された第1貫通孔と、を有し、
     前記流路の前記反応場近傍における高さが、前記流路の前記第1貫通孔近傍における高さよりも高くなるように、前記流路に勾配が設けられるセンサーチップ。
    A sensor chip having a reaction field inside for capturing an analyte,
    A flow path having the reaction field;
    A first through hole formed at one end of the flow path,
    A sensor chip in which a gradient is provided in the flow path so that a height of the flow path in the vicinity of the reaction field is higher than a height of the flow path in the vicinity of the first through hole.
  2.  前記流路の前記反応場近傍における高さが、該流路中において最も高い請求項1に記載のセンサーチップ。 The sensor chip according to claim 1, wherein a height of the flow path in the vicinity of the reaction field is the highest in the flow path.
  3.  前記流路の前記反応場近傍における高さが、0.1mm~1mmである請求項1または2に記載のセンサーチップ。 3. The sensor chip according to claim 1, wherein a height of the flow path in the vicinity of the reaction field is 0.1 mm to 1 mm.
  4.  前記流路の前記反応場近傍における幅が0.1mm~5mmであり、
     前記流路の長さが10mm~50mmである請求項1から3のいずれかに記載のセンサーチップ。
    The width of the flow path in the vicinity of the reaction field is 0.1 mm to 5 mm,
    4. The sensor chip according to claim 1, wherein a length of the flow path is 10 mm to 50 mm.
  5.  誘電体部材と、流路形成部材とが、貫通孔が形成された流路シールにより接合され、
     前記流路が、前記誘電体部材と、前記流路形成部材と、前記流路シールとにより囲繞された空間である請求項1から4のいずれかに記載のセンサーチップ。
    The dielectric member and the flow path forming member are joined by a flow path seal in which a through hole is formed,
    The sensor chip according to claim 1, wherein the flow path is a space surrounded by the dielectric member, the flow path forming member, and the flow path seal.
  6.  誘電体部材と、流路溝が形成された流路形成部材とが接合され、
     前記流路が、前記誘電体部材と、前記流路形成部材とにより囲繞された空間である請求項1から4のいずれかに記載のセンサーチップ。
    The dielectric member and the flow path forming member in which the flow path groove is formed are joined,
    The sensor chip according to any one of claims 1 to 4, wherein the flow path is a space surrounded by the dielectric member and the flow path forming member.
  7.  前記流路形成部材が、光学的に透明性が高く、化学的に安定で、かつ、成型性に優れる材料により形成される請求項5または6に記載のセンサーチップ。 The sensor chip according to claim 5 or 6, wherein the flow path forming member is formed of a material that is optically high in transparency, chemically stable, and excellent in moldability.
  8.  前記勾配が、前記流路形成部材に設けられる請求項5から7のいずれかに記載のセンサーチップ。 The sensor chip according to any one of claims 5 to 7, wherein the gradient is provided in the flow path forming member.
  9.  前記勾配が、前記誘電体部材に設けられる請求項5から8のいずれかに記載のセンサーチップ。 9. The sensor chip according to claim 5, wherein the gradient is provided in the dielectric member.
  10.  前記流路の前記誘電体部材表面に金属膜が形成される請求項5から9のいずれかに記載のセンサーチップ。 10. The sensor chip according to claim 5, wherein a metal film is formed on the surface of the dielectric member in the flow path.
  11.  請求項10に記載のセンサーチップと、
     前記金属膜に前記誘電体部材を介して励起光を照射する励起光照射ユニットと、
     前記金属膜に照射された励起光に基づき、前記反応場に捕捉された蛍光標識された前記アナライトから生じる蛍光を検出する蛍光検出ユニットと、を備える検体検出システム。
    A sensor chip according to claim 10;
    An excitation light irradiation unit for irradiating the metal film with excitation light via the dielectric member;
    An analyte detection system comprising: a fluorescence detection unit that detects fluorescence generated from the fluorescence-labeled analyte trapped in the reaction field based on excitation light irradiated on the metal film.
PCT/JP2018/005167 2017-03-30 2018-02-15 Sensor chip for sample detection system WO2018179950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019508728A JP6885458B2 (en) 2017-03-30 2018-02-15 Sensor chip for sample detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067886 2017-03-30
JP2017067886 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179950A1 true WO2018179950A1 (en) 2018-10-04

Family

ID=63674987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005167 WO2018179950A1 (en) 2017-03-30 2018-02-15 Sensor chip for sample detection system

Country Status (2)

Country Link
JP (1) JP6885458B2 (en)
WO (1) WO2018179950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158192A1 (en) * 2019-01-31 2020-08-06 コニカミノルタ株式会社 Optical measurement method and optical measurement device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071837A (en) * 2005-09-09 2007-03-22 Fujifilm Holdings Corp Measuring device using total reflection attenuation
JP2007071542A (en) * 2005-09-02 2007-03-22 Fujifilm Holdings Corp Measuring cell holding mechanism and biosensor
WO2011062377A2 (en) * 2009-11-23 2011-05-26 Korea Research Institute Of Standards And Science Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
JP2011257266A (en) * 2010-06-09 2011-12-22 Konica Minolta Holdings Inc Optical sensor and chip structure used for optical sensor
WO2014007134A1 (en) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 Sensor chip
US20150253243A1 (en) * 2012-10-15 2015-09-10 Korea Research Institute Of Standards And Science Apparatus and method for simultaneously measuring characteristics of molecular junctions and refractive index of buffer solution
WO2016093039A1 (en) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 Detection chip and detection method
JP2016161546A (en) * 2015-03-05 2016-09-05 キヤノン株式会社 Micro flow channel chip
WO2017003079A1 (en) * 2015-06-30 2017-01-05 한국표준과학연구원 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071542A (en) * 2005-09-02 2007-03-22 Fujifilm Holdings Corp Measuring cell holding mechanism and biosensor
JP2007071837A (en) * 2005-09-09 2007-03-22 Fujifilm Holdings Corp Measuring device using total reflection attenuation
WO2011062377A2 (en) * 2009-11-23 2011-05-26 Korea Research Institute Of Standards And Science Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
JP2011257266A (en) * 2010-06-09 2011-12-22 Konica Minolta Holdings Inc Optical sensor and chip structure used for optical sensor
WO2014007134A1 (en) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 Sensor chip
US20150253243A1 (en) * 2012-10-15 2015-09-10 Korea Research Institute Of Standards And Science Apparatus and method for simultaneously measuring characteristics of molecular junctions and refractive index of buffer solution
WO2016093039A1 (en) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 Detection chip and detection method
JP2016161546A (en) * 2015-03-05 2016-09-05 キヤノン株式会社 Micro flow channel chip
WO2017003079A1 (en) * 2015-06-30 2017-01-05 한국표준과학연구원 Oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device and measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158192A1 (en) * 2019-01-31 2020-08-06 コニカミノルタ株式会社 Optical measurement method and optical measurement device

Also Published As

Publication number Publication date
JPWO2018179950A1 (en) 2020-02-06
JP6885458B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
WO2017082089A1 (en) Method for surface plasmon resonance fluorescence analysis and device for surface plasmon resonance fluorescence analysis
JP7093766B2 (en) Specimen detection system
JP6801656B2 (en) Detection device and detection method
WO2017082069A1 (en) Reaction method
JPWO2016132945A1 (en) Reaction method and reaction apparatus
JP6690655B2 (en) Liquid delivery method, detection system and detection apparatus for performing the same
JP7050776B2 (en) Specimen detection device and sample detection method
JP6520950B2 (en) Reaction method, detection method and detection apparatus
WO2018179950A1 (en) Sensor chip for sample detection system
WO2019221040A1 (en) Specimen detecting chip, and specimen detecting device employing same
JP7121742B2 (en) Optical specimen detection system using diffracted light removal slit
JP6922907B2 (en) Reaction methods, as well as reaction systems and equipment that perform this.
JP7093727B2 (en) Sensor chip position detection method and position detection device in optical sample detection system
JP6642592B2 (en) Liquid sending method, and detection system and detection device for performing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775810

Country of ref document: EP

Kind code of ref document: A1