WO2018179590A1 - 焼結バルブシート - Google Patents

焼結バルブシート Download PDF

Info

Publication number
WO2018179590A1
WO2018179590A1 PCT/JP2017/043303 JP2017043303W WO2018179590A1 WO 2018179590 A1 WO2018179590 A1 WO 2018179590A1 JP 2017043303 W JP2017043303 W JP 2017043303W WO 2018179590 A1 WO2018179590 A1 WO 2018179590A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
valve seat
alloy
hard particles
mass
Prior art date
Application number
PCT/JP2017/043303
Other languages
English (en)
French (fr)
Inventor
公明 橋本
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63675026&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018179590(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to EP17870625.5A priority Critical patent/EP3406865B1/en
Priority to US15/778,039 priority patent/US10584618B2/en
Priority to JP2018505053A priority patent/JP6309700B1/ja
Priority to CN201780005613.6A priority patent/CN108698130B/zh
Publication of WO2018179590A1 publication Critical patent/WO2018179590A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads

Definitions

  • the present invention relates to an engine valve seat, and more particularly, to a press-fit high heat transfer sintered valve seat capable of suppressing an increase in valve temperature.
  • Patent Document 1 discloses a method for manufacturing an engine valve in which a shaft portion of the valve is hollowed and metallic sodium (Na) is sealed in the hollow portion.
  • Patent Document 2 directly deposits on a cylinder head made of an aluminum (Al) alloy using high-density heating energy such as laser light in order to improve the valve cooling ability (hereinafter referred to as “laser cladding”).
  • the valve seat alloy is a method of improving the valve cooling ability, and Fe—Ni-based nitride and nitride particles are dispersed in a copper (Cu) -based matrix and Cu-based. It teaches a dispersion strengthened Cu-based alloy for overlaying in which one or both of Sn and Zn are dissolved in the primary crystal.
  • the above metal Na-enclosed engine valve reduces the valve temperature when the engine is driven by about 150 ° C (valve temperature is about 600 ° C) compared to the solid valve, and the Cu-based alloy valve seat by the laser cladding method is The valve temperature of the solid valve has been reduced by about 50 ° C (the valve temperature is about 700 ° C), making it possible to prevent knocking.
  • metal Na-enclosed engine valves are difficult in terms of cost and have not yet been widely used except for some vehicles.
  • the Cu-based alloy valve seat by the laser cladding method does not have hard particles, it is struck and adhered by wear, and there is a problem that the wear resistance is insufficient, and further, it directly builds up on the cylinder head, There is also a problem that a major review of the cylinder head processing line and capital investment are required.
  • Patent Document 3 discloses a valve contact layer (Cu content: 3 to 20%) containing Cu powder or Cu-containing powder as means for improving heat conduction. Disclosed is an iron-based sintered alloy valve seat with a double-layered valve seat body layer (Cu content 5-25%). Patent Document 4 discloses Cu or Cu alloy in Fe-based sintered alloy in which hard particles are dispersed. Infiltration is disclosed.
  • Patent Document 5 discloses a sintered valve seat made of a Cu-based alloy in which hard particles are further dispersed in a dispersion-hardening Cu-based alloy having excellent heat conduction.
  • the starting powder mixture is composed of 50 to 90% by weight of Cu-containing base powder and 10 to 50% by weight of Mo-containing powdered alloy additive, and Al 2 O 3 dispersion-hardened Cu is used as the Cu-containing base powder. It teaches an alloy powder having a powder, 28-32 wt% Mo, 9-11 wt% Cr, 2.5-3.5 wt% Si, balance Co as Mo-containing powdered alloy additive.
  • Patent Document 5 describes that Al 2 O 3 dispersion-hardened Cu powder can be manufactured by heat-treating Cu-Al alloy powder atomized from a Cu-Al alloy molten metal in an oxidizing atmosphere for selective oxidation of Al.
  • the yield stress decreases, and the problem arises that the valve seat tends to drop off from the cylinder head due to heat settling.
  • valve seat that suppresses the rise in valve temperature, has excellent wear resistance, and is excellent in resistance to falling off from the cylinder head. It has been.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-19421
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-60895
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-184324
  • Patent Document 4 Japanese Patent No. 3786267
  • Patent Document 5 Japanese Patent No. 4272706 Gazette
  • the present inventor has obtained a valve sheet, a high heat conductive sheet layer having excellent heat resistance and wear resistance, and It was conceived that a sintered valve seat having a two-layer structure composed of a highly heat-conductive support layer having excellent deformation resistance and a high valve cooling ability with excellent wear resistance and deformation resistance was obtained.
  • the sintered valve seat of the present invention is a sintered valve seat that is press-fitted into a cylinder head of an internal combustion engine, and the valve seat includes a seat layer that repeatedly contacts the valve face, and a valve seat press-fit hole of the cylinder head.
  • the sheet layer includes at least one selected from Co-based hard particles and Fe-based hard particles in a matrix made of Cu or Cu alloy.
  • the support layer includes a matrix made of Cu or Cu alloy containing at least one selected from Fe particles and Fe alloy particles.
  • the content of at least one selected from the Co-based hard particles and the Fe-based hard particles contained in the sheet layer is preferably 25 to 70% by mass, the Fe particles contained in the support layer and the The content of at least one selected from Fe alloy particles is preferably 30 to 70% by mass.
  • the thermal conductivity of the support layer is preferably higher than the thermal conductivity of the sheet layer.
  • the sintered valve seat of the present invention is a highly heat conductive sheet layer having excellent heat resistance and wear resistance, including Co-based hard particles and / or Fe-based hard particles in a matrix made of Cu or Cu alloy having excellent heat conductivity.
  • a two-layer structure consisting of a highly thermally conductive support layer with excellent deformation resistance containing Fe particles and / or Fe alloy particles makes it possible to improve valve cooling capacity, and engine abnormalities such as knocking By reducing combustion, it is possible to contribute to improving the performance of a high compression ratio, high efficiency engine.
  • fine Cu powder is used as the raw material for Cu powder, even if a relatively large amount of hard particles are present, a network-like Cu matrix is formed and densification is carried out to achieve high thermal conductivity. And strength and wear resistance can be improved.
  • FIG. 3 is a diagram showing an outline of an example of a cross-sectional structure of a sintered valve seat according to the present invention.
  • FIG. 5 is a view showing an outline of another example of the cross-sectional structure of the sintered valve seat of the present invention. It is the figure which showed the outline of the rig testing machine.
  • 2 is a scanning electron micrograph showing the cross-sectional structure of the sheet layer of Example 1.
  • FIG. 2 is a scanning electron micrograph showing the cross-sectional structure of the support layer of Example 1.
  • the sintered valve seat of the present invention is a sintered valve seat that is press-fitted into a cylinder head, and is a seat layer that repeatedly comes into contact with the valve face, and a support that comes into contact with the bottom surface and inner peripheral surface of the valve seat press-fitting hole of the cylinder head. It has a two-layer structure of at least a sheet layer / support layer composed of layers.
  • FIG. 1 shows an outline of an example of a cross-sectional structure of a sintered valve seat (1) of the present invention, in which a ring-shaped sheet layer (2) and a support layer (3) constitute a two-layer structure, The inner surface of the layer (2) has a seat surface (4) that repeatedly contacts the valve face.
  • FIG. 1 shows an outline of an example of a cross-sectional structure of a sintered valve seat (1) of the present invention, in which a ring-shaped sheet layer (2) and a support layer (3) constitute a two-layer structure, The inner surface of the layer (2) has a seat surface (4) that repeatedly contacts the valve face
  • FIG. 2 also shows an outline of another example of the cross-sectional structure of the sintered valve seat of the present invention, but the volume of the seat layer (2) is relatively reduced, and the inner periphery of the valve seat press-fitting hole is shown. It has a configuration in which the area of the support layer (3) portion in contact with the surface, that is, the outer peripheral area of the support layer (3) is increased. As long as the high thermal conductivity of the entire sintered valve seat of the present invention is not hindered, the sheet layer (2) and the support layer (3) are brought close to each other in order to prevent cracks and the like so that the sheet layer (2) and the support layer (3) are supported. An intermediate layer (including a plurality of intermediate layers) is provided between the layers (3), so that a structure of three or more layers can be obtained.
  • the sheet layer of the sintered valve seat of the present invention constitutes a layer having high thermal conductivity and excellent heat resistance and wear resistance
  • the support layer constitutes a layer having high thermal conductivity and high yield strength and excellent deformation resistance.
  • the matrix is composed of Cu or Cu alloy in both the sheet layer and the support layer, and Co-based hard particles that give heat resistance and wear resistance to the sheet layer And / or Fe-base hard particles are dispersed and contained, and the support layer is dispersed and contains Fe particles and / or Fe alloy particles that improve densification and strength and impart deformation resistance.
  • Co-based hard particles and / or Fe-based hard particles are naturally harder than Fe particles and / or Fe alloy particles, and the hardness of Fe particles and / or Fe alloy particles should be less than 350 HV0.1 in terms of Vickers hardness. Is preferred.
  • the content of Co-based hard particles and / or Fe-based hard particles contained in the sheet layer is preferably 25 to 70% by mass, more preferably 30 to 65% by mass, and 35 to 60% by mass. More preferably it is.
  • the content of Fe particles and / or Fe alloy particles contained in the support layer is preferably 30 to 70% by mass, more preferably 35 to 65% by mass, and 40 to 50% by mass. More preferably.
  • the thermal conductivity of the support layer is preferably higher than the thermal conductivity of the sheet layer.
  • the thermal conductivity of the support layer is preferably 55 to 90 mm (W / m) ⁇ K, more preferably 60 to 90 mm (W / m) ⁇ K, and 65 to 90 mm (W / m) ⁇ K is more preferable.
  • the thermal conductivity of the sheet layer is preferably 30 to 70 mm (W / m) ⁇ K, more preferably 35 to 70 mm (W / m) ⁇ K, and 40 to 70 mm (W / m) ⁇ K. More preferably, it is K.
  • the volume ratio of the sheet layer to the support layer is preferably 25/75 to 70/30, more preferably 25/75 to 60/40, and 25/75 to 50/50. Is more preferable.
  • Co-based hard particles and / or Fe-based hard particles contained in the sheet layer, and the Fe particles and / or Fe alloy particles contained in the support layer hardly dissolve in Cu constituting the matrix. . Since Co and Fe hardly dissolve in Cu at 600 ° C. or lower, they can be used as Co-based and Fe-based hard particles. Furthermore, Mo, W, Cr, and V are hardly dissolved in Cu, so they can be used as the main alloying elements. Co-Mo-Cr-Si alloy powder, Co-Cr-WC alloy powder, Fe-based hard particles are used as Co-based hard particles. As the hard particles, Fe—Mo—Cr—Si alloy powder can be used.
  • the Co-based hard particles are, by mass%, Mo: 27.5-30.0%, Cr: 7.5-10.0%, Si: 2.0-4.0%, the remainder Co and inevitable impurities and Co—Mo—Cr—Si alloy.
  • the hardness of these hard particles is preferably 550 to 900 HV0.1 in terms of Vickers hardness, more preferably 600 to 850 HV0.1, and even more preferably 650 to 800 HV0.1. .
  • a part (not all) of at least one hard particle selected from the Co-based hard particles and the Fe-based hard particles is replaced with second hard particles, and the second hard particles are contained in mass%.
  • These second hard particles are preferably softer than the Co-based hard particles and Fe-based hard particles, and preferably have a Vickers hardness of 300 to 650 mm HV0.1. It is more preferably 400 to 630 HV0.1, and further preferably 550 to 610 HV0.1.
  • the substitution amount is preferably 5 to 35% by mass, more preferably 15 to 35% by mass, and further preferably 21 to 35% by mass.
  • a part (not all) of at least one kind of hard particles selected from the Co-based hard particles and the Fe-based hard particles is replaced with third hard particles, and the third hard particles are contained in mass%.
  • These third hard particles preferably have a Vickers hardness of 1100 to 2400 HV0.1. That is, the third hard particles are harder than the Co-based hard particles and Fe-based hard particles, and further improve the wear resistance, but conversely to increase the valve attack, the amount to be replaced depends on the required characteristics Must be adjusted.
  • the support layer of the valve seat of the present invention is hard and difficult to be deformed, and instead of hard particles that tend to inhibit densification, it is easily densified by compression molding.
  • Fe particles and / or Fe alloy particles that form a skeleton in a Cu alloy matrix to improve strength and deformation resistance are used.
  • Fe particles are Fe particles composed of 96 mass% or more of Fe and inevitable impurities
  • Fe alloy particles are Fe-based alloy particles containing 80 mass% or more of Fe, specifically, in mass%, Fe: Cr-0.5-3.0% Fe-Cr alloy particles consisting of Fe and unavoidable impurities, and Cr: 0.5-5.0% Mo: 0.1-2.0% Fe-Cr-Mo consisting of the balance Fe and unavoidable impurities
  • At least one selected from alloy particles is preferable.
  • These Fe particles and Fe alloy particles preferably have a Vickers hardness of less than 350 HV0.1. More preferably, it is less than 300 HV0.1.
  • a part (not all) of at least one selected from the Fe particles and the Fe alloy particles contained in the support layer is replaced with second hard particles, and the second hard particles are contained by mass%.
  • These second hard particles are preferably harder than the Fe particles and Fe alloy particles, and have a Vickers hardness of 300 to 650 HV0.1. It is more preferably 400 to 630 HV0.1, and further preferably 550 to 610 HV0.1.
  • the substitution amount is preferably 3 to 30% by mass, more preferably 5 to 30% by mass, and further preferably 5 to 25% by mass.
  • At least one part (not all) of at least one selected from the Fe particles and the Fe alloy particles is replaced with third hard particles, and the third hard particles are Mo: 40 to 40% by mass. It is preferably at least one selected from Fe—Mo—Si alloy particles comprising 70%, Si: 0.4 to 2.0%, balance Fe and inevitable impurities, Al 2 O 3 particles and SiC particles. These third hard particles preferably have a Vickers hardness of 1100 to 2400 HV0.1. That is, the third hard particles are harder than the second hard particles and further suppresses deformation during compression molding, but conversely increases valve attack, so the amount to be replaced is adjusted according to the required characteristics. There must be.
  • the sintered valve seat of the present invention is preferably added with Fe-P alloy powder aiming at a dense sintered body.
  • Fe-P alloy powder aiming at a dense sintered body.
  • the sheet layer is preferably 0.05 to 2.2% by mass
  • the support layer is preferably 0.1 to 2.2% by mass.
  • Fe-P alloy powder is available from the market in the range of 15 to 32% by mass of P.
  • the upper limit of the P content is more preferably 2.5% by mass, and even more preferably 1.0% by mass.
  • Sn is preferably 0.3 to 2.0% by mass, and more preferably 0.3 to 1.0% by mass.
  • a solid lubricant can be added to the seat layer of the sintered valve seat of the present invention.
  • a direct-injection engine is in a sliding state without lubrication by fuel, and it is necessary to maintain self-lubricating properties and maintain wear resistance by adding a solid lubricant. Therefore, the sintered valve seat of the present invention can contain up to 3% by mass, that is, 0 to 3% by mass of the solid lubricant.
  • the two-layer structure of the sintered valve seat of the present invention is prepared by preparing a mixed powder for a support layer and a mixed powder for a sheet layer, charging the mixed powder for the support layer into a part of the mold, and for the sheet layer thereon It is formed by putting mixed powder, compressing and molding.
  • the mixed powder for the support layer includes Cu powder, Fe particle powder and / or Fe alloy particle powder, and, if necessary, second hard particle powder which replaces part of the Fe particle powder and / or Fe alloy particle powder and Prepared by mixing and / or mixing third hard particle powder and Fe-P alloy powder, mixed powder for sheet layer is Cu powder, Co-based hard particle powder and / or Fe-based hard particle powder, if necessary The second hard particle powder and / or the third hard particle powder, the Fe-P alloy powder, the Sn powder, and the solid lubricant that replace the part of the Co-based hard particle powder and / or the Fe-based hard particle powder. Prepared and mixed.
  • 0.5 to 2% by mass of stearate may be added to each of the mixed powders as a mold release agent.
  • the green compact for a sintered valve seat is fired in a temperature range of 850 to 1070 ° C. in a vacuum or a non-oxidizing or reducing atmosphere.
  • the above-mentioned hard particles, Fe particles, and Fe alloy particles form a skeleton in a soft Cu or Cu alloy matrix, so that the median diameter is preferably 10 to 150 ⁇ m.
  • the median diameter represents a particle diameter d50 corresponding to a cumulative volume of 50% in a curve indicating a relationship between the particle diameter and a cumulative volume (a value obtained by accumulating a particle volume equal to or less than a specific particle diameter), for example, It can be measured using MT3000II series of Microtrack Bell Co., Ltd.
  • the median diameter is more preferably 50 to 100 ⁇ m, and further preferably 65 to 85 ⁇ m.
  • the hard particles, Fe particles, and Fe alloy particles used in the sintered valve seat of the present invention are preferably spherical or non-spherical irregular shapes.
  • a spherical shape is preferable in order to improve filling properties.
  • irregular non-spherical hard particles are preferable from the viewpoint of preventing the drop.
  • the hard particles contained in the sheet layer are selectively used as spherical hard particles and irregular hard particles in accordance with required characteristics.
  • spherical hard particles can be produced by gas atomization, and irregular non-spherical particles can be produced by grinding or water atomization.
  • the Cu powder constituting the matrix it is preferable to use a Cu powder having a median diameter of 45 ⁇ m or less and a purity of 99.5% or more. From the viewpoint of powder packing, by using Cu powder that is relatively smaller than the median diameter of hard particles, it is possible to form a Cu matrix connected in a network even when relatively large amounts of hard particles are present. Become.
  • the median diameter of hard particles is preferably 45 ⁇ m or more, and the median diameter of Cu powder is preferably 30 ⁇ m or less.
  • the Cu powder is preferably a spherical atomized powder.
  • dendritic electrolytic Cu powder having fine protrusions that are easily entangled with each other can be preferably used for forming a network-like connected matrix.
  • Example 1 First, an electrolytic Cu powder having a median diameter of 22 ⁇ m and a purity of 99.8% by mass, a median diameter of 72 ⁇ m, by mass%, Mo: 28.5%, Cr: 8.5%, Si: 2.6%, the remainder Co and inevitable impurities and Co base 50% by mass of hard particles (corresponding to 1A of Co-based hard particles described later) and 1.0% by mass of Fe-P alloy powder having a P content of 26.7% by mass, kneaded, and the sheet layer of the sintered valve seat A mixed powder was prepared.
  • the Co-based hard particles are a mixture of particles having both spherical and irregular shapes.
  • zinc stearate is added to the raw material powder in an amount of 0.5% by mass with respect to the amount of the raw material powder in order to improve the moldability of the forming process.
  • the electrolytic Cu powder has a median diameter of 60 ⁇ m and a purity of 99.8 mass% Fe particle powder (Fe particles or Fe alloy particles described later) 4A) and 2.5% by mass of Fe—P alloy powder were mixed and kneaded to prepare a mixed powder for the support layer of the sintered valve seat.
  • the Fe particles are irregularly shaped particles, and 0.5% by mass of zinc stearate is also added.
  • a predetermined amount of the above mixed powder for the support layer was filled in the molding die, and then the mixed powder for the sheet layer was filled, and compressed and molded at a surface pressure of 640 MPa to produce a valve seat laminated molded body.
  • the laminated interface of the laminated molded body is filled and compressed so as to be perpendicular to the inner and outer peripheral surfaces of the valve seat.
  • the valve seat compact is fired in a vacuum atmosphere at a temperature of 1050 ° C to produce a ring-shaped sintered body with an outer diameter of 40 mm ⁇ , an inner diameter of 18 mmmm, and a thickness of 8 mm.
  • a valve seat sample having an outer diameter of 25.8 mm mm ⁇ , an inner diameter of 21.6 mm mm, and a height of 6 mm having a seat surface inclined by 45 ° was produced.
  • the volume ratio of the seat layer to the support layer of the valve seat was 37/63 as a result of calculation from the dimensions of each layer.
  • As a result of component analysis of the composition of P in the valve seat it was 0.27% by mass in the seat layer and 0.66% by mass in the support layer. This result reflected the added amount of the Fe—P alloy powder. .
  • a test piece of 5 mm mm x 1.3 mm was produced from the mixed powder of each layer through molding, firing, and machining, and laser flash method was used. The thermal conductivity was measured. As a result, the thermal conductivity of the sheet layer is 50 (W / m) ⁇ K, the thermal conductivity of the support layer is 78 (W / m) ⁇ K, and the support layer shows higher thermal conductivity than the sheet layer. It was.
  • a ring-shaped sintered body having an outer diameter of 40 mm ⁇ , an inner diameter of 18 mm ⁇ , and a thickness of 8 mm is produced from the mixed powder of each layer and fired. Then, the firing density and the crushing strength were measured. As a result, the density of the sheet layer is 7.61 Mg / m 3 , the crushing strength is 441 MPa, the density of the support layer is 8.00 Mg / m 3 , and the crushing strength is 710 MPa, and the support layer has a higher density than the sheet layer. And showed the crushing strength.
  • Comparative Example 1 As hard particles, a median diameter of 78 ⁇ m, mass%, Mo: 60.1%, Si: 0.5%, Fe-Mo-Si alloy particle powder consisting of the balance Fe and unavoidable impurities (in 3A of the third hard particles described later) A single-layer valve seat sample having the same shape as in Example 1 was prepared using an Fe-based sintered alloy containing 10% by mass of the equivalent).
  • Comparative Example 2 As hard particles, instead of the Co-based hard particles of 50% by mass used in Example 1, the Co-based hard particles were 35% by mass, the median diameter was 84 ⁇ m, and the mass was C: 0.85%, Si: 0.3% , Mn: 0.3%, Cr: 3.9%, Mo: 4.8%, W: 6.1%, V: 1.9%, a mixed powder for sheet layer containing 15% by mass of alloy steel particles consisting of Fe and inevitable impurities in the balance A single-layer valve seat sample having the same shape as in Example 1 was used.
  • valve cooling capacity (valve temperature) The valve temperature was measured using the rig testing machine shown in Fig. 3 to evaluate the valve cooling capacity.
  • the valve seat sample (11) is press-fitted into the valve seat holder (12) of cylinder head equivalent material (Al alloy, AC4A material) and set in the testing machine. While heating the alloy, JIS G4311), the valve (14) is moved up and down in conjunction with the rotation of the cam (15).
  • the valve cooling capacity was measured by making the heat input constant by keeping the air and gas flow rates and the burner position of the burner (13) constant, and measuring the temperature of the central part of the valve umbrella by thermography (16).
  • the air and gas flow rates (L / min) of the burner (13) were 90 L / min and 5.0 L / min, respectively, and the cam rotation speed was 2500 rpm. 15 minutes after the start of operation, the saturated valve temperature was measured.
  • the valve cooling capacity was evaluated based on the amount of decrease in temperature from the valve temperature of Comparative Example 1 (reduction is indicated by-) instead of evaluation based on the saturation valve temperature that varies depending on the heating conditions and the like.
  • the saturation valve temperature of Comparative Example 1 was a high temperature exceeding 800 ° C.
  • the saturation valve temperature of Example 1 was less than 800 ° C.
  • the valve cooling capacity was ⁇ 58 ° C.
  • the valve cooling capacity of Comparative Example 2 was ⁇ 30 ° C.
  • the amount of wear was evaluated by a relative ratio where the amount of wear in Comparative Example 1 was 1.
  • the amount of wear in Example 1 was 0.71 in valve seat wear and 0.92 in valve wear compared to Comparative Example 1.
  • the wear amount of Comparative Example 2 was 0.86 in valve seat wear amount and 0.88 in valve wear amount.
  • Examples 2-45 the Co-based hard particles and Fe-based hard particles of the type shown in Table 1, the second hard particles of the type shown in Table 2, the third hard particles of the type shown in Table 3, and the table Using the types of Fe particles and Fe alloy particles shown in FIG. 4, in the same manner as in Example 1, the mixed powder for the sheet layer having the compounding amount shown in Table 5 and the mixed powder for the supporting layer having the compounding amount shown in Table 6 were used. Produced. In the mixed powder for sheet layer in Table 5, the blending amounts of Fe-P alloy powder, Sn powder and solid lubricant powder added are also shown.
  • the hard particles have a Vickers hardness of HV0.1 (embedded in a resin, mirror-polished, and a load of 0.1 kg) ), Median diameter, and shape.
  • Sn powder and solid lubricant powder were not added to the mixed powder for support layer in Table 6.
  • valve seat samples were prepared in the same manner as in Example 1 by changing the volume ratio of the sheet layer / support layer with the combination of the sheet layer and the support layer shown in Table 7.
  • measurement of the volume ratio of the sheet layer and the support layer, measurement of the valve cooling ability, wear test, and drop-off resistance test were performed.
  • a laminated molded body having a laminated interface shown in FIG. 2 was prepared by using a pressing die inclined toward a 45 ° inner diameter side at the time of forming a support layer.
  • the cross-sectional structure of the sheet layer and the support layer was observed with a scanning electron microscope.
  • FIG. 4 (a) shows a scanning electron micrograph of the sheet layer of Example 10, and FIG. 4 (b) shows a scanning electron micrograph of the support layer.
  • the microstructure of the sheet layer in FIG. 4 (a) is distributed with the Cu matrix (5) and hard particles (6) (Co-based hard particles [hard particles 1A] and second hard particles [2A]) entangled with each other.
  • the Cu matrix (5) was partially divided, it showed that many were continuously distributed. Since the hard particles (6) are hard and difficult to deform, the shape of the particles is maintained, and it is also observed that there are gaps between the particles or at the particle / Cu matrix interface.
  • the Cu matrix (5) and the Fe particles (7) are entangled and distributed, and the Cu matrix is distributed sufficiently continuously. It showed a state of being. Also, the Fe particle / Cu matrix interface appeared to be closely bonded, and the support layer was thought to be denser than the sheet layer.
  • the size of the structure reflects the size of hard particles dispersed in the sheet layer (d50 is 72 ⁇ m and 84 ⁇ m) and the size of Fe particles dispersed in the support layer (d50 is 60 ⁇ m), and the structure of the support layer is slightly finer. there were.
  • Table 7 shows the results of Examples 2 to 45 of the volume ratio of the seat layer and the support layer, the measurement of the valve cooling capacity, the wear test, and the drop-off resistance test together with the results of Example 1 and Comparative Examples 1 and 2. Shown in
  • the sintered valve seat of the present invention exhibits an abrasion resistance equal to or higher than that of a valve seat made of an Fe-based sintered alloy, and has a two-layer structure including a sheet layer and a support layer. It showed drop-off resistance comparable to that of sintered alloy valve seats. Furthermore, the valve cooling capacity seemed to improve as the volume ratio of the support layer increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

高効率エンジンに使用可能な優れたバルブ冷却能を有し、耐変形性、耐摩耗性及び耐脱落性に優れた焼結バルブシートを提供するため、バルブシートを、バルブフェイスに繰り返し当接するシート層とシリンダヘッドのバルブシート圧入孔の底面及び内周面に当接する支持層とからなるシート層/支持層の2層構造とし、シート層はCu又はCu合金からなるマトリックスにCo基硬質粒子及びFe基硬質粒子から選択された少なくとも1種を含み、支持層はCu又はCu合金からなるマトリックスにFe粒子及びFe合金粒子から選択された少なくとも1種を含むようにする。

Description

焼結バルブシート
 本発明は、エンジンのバルブシートに関し、特に、バルブ温度の上昇を抑制できる圧入型高伝熱焼結バルブシートに関する。
 近年、自動車エンジンの環境対応による燃費の向上と高性能化を両立する手段として、エンジンの排気量を20~50%低減する、いわゆるダウンサイジングが推進され、さらに、高圧縮比を実現する技術として直噴エンジンにターボチャージング(過給)を組合せることが行われている。これらのエンジンの高効率化は必然的にエンジン温度の上昇をもたらすが、温度の上昇は出力低下に繋がるノッキングを招くので、特にバルブ周りの部品の冷却能を向上させることが必要となっている。
 バルブ周りの冷却能を向上させる手段として、エンジンバルブに関し、特許文献1はバルブの軸部を中空化し、その中空部分に金属ナトリウム(Na)を封入するエンジンバルブの製造方法を開示している。また、バルブシートに関しては、特許文献2は、バルブ冷却能を向上させるためレーザー光のような高密度加熱エネルギーを用いてアルミ(Al)合金製のシリンダヘッドに直接肉盛する(以下「レーザークラッド法」という。)というバルブ冷却能を向上させる手段を採用し、そのバルブシート合金としては、銅(Cu)基マトリックス中にFe-Ni系の硅化物及び硅化物の粒子が分散し且つCu基初晶中にSn及びZnの1つあるいは両方を固溶する肉盛用分散強化Cu基合金を教示している。
 上記の金属Na封入エンジンバルブは、中実バルブに比べ、エンジン駆動時のバルブ温度を約150℃程度低下させ(バルブ温度としては約600℃)、また、レーザークラッド法によるCu基合金バルブシートは、中実バルブのバルブ温度を約50℃程度低下させ(バルブ温度としては約700℃)て、ノッキングの防止を可能にした。しかし、金属Na封入エンジンバルブはコストの点で難があり、一部の車を除いて幅広く使用されるまでには至っていない。レーザークラッド法によるCu基合金バルブシートも、硬質粒子を有しないため、叩かれ摩耗で凝着し、耐摩耗性が不十分であるという課題があり、さらに、シリンダヘッドに直接肉盛するため、シリンダヘッド加工ラインの大幅な見直しと設備投資が必要になるという課題も生じてくる。
 一方、シリンダヘッドに圧入されるタイプのバルブシートでは、熱伝導を改善する手段として、特許文献3が、Cu粉末又はCu含有粉末を配合したバルブ当接層(Cu含有量3~20%)とバルブシート本体層(Cu含有量5~25%)に二層化した鉄系焼結合金製バルブシートを開示し、特許文献4は硬質粒子を分散したFe基焼結合金にCu又はCu合金を溶浸することを開示している。
 さらに、特許文献5は、熱伝導に優れた分散硬化型Cu基合金にさらに硬質粒子を分散したCu基合金製焼結バルブシートを開示している。具体的には、出発粉末混合物が50~90重量%のCu含有基礎粉末及び10~50重量%のMo含有粉末状合金添加材からなり、前記Cu含有基礎粉末としてAl2O3分散硬化したCu粉末、Mo含有粉末状合金添加材として28~32重量%Mo、9~11重量%Cr、2.5~3.5重量%Si、残部Coを有する合金粉末を教示している。
 しかし、特許文献5は、Al2O3分散硬化したCu粉末について、Cu-Al合金溶湯からアトマイズしたCu-Al合金粉末をAlの選択酸化のための酸化雰囲気中で熱処理することにより製造できると教示しているが、実際には、Alの固溶したCu-Al合金からAl2O3が分散したCuマトリックスの純度を上げることに限界があるのが実情である。さらに、Cuマトリックスの純度を上げると、降伏応力が低下して、熱ヘタリによりバルブシートがシリンダヘッドから脱落しやすくなるという問題が生じてくる。
 このように、高コストな金属Na封入エンジンバルブを用いるのと同等以上にバルブ温度の上昇を抑制し、耐摩耗性にも優れ、さらにシリンダヘッドからの耐脱落性にも優れたバルブシートが求められている。
特許文献1:特開平7-119421号公報
特許文献2:特開平3-60895号公報
特許文献3:特開平10-184324号公報
特許文献4:特許第3786267号公報
特許文献5:特許第4272706号公報
 上記問題に鑑み、本発明は、高効率エンジンに使用可能な優れたバルブ冷却能を有し、耐変形性、耐摩耗性及び耐脱落性に優れた焼結バルブシートを提供することを課題とする。
 本発明者は、熱伝導に優れたCu又はCu合金中に硬質粒子を分散した焼結バルブシートに関し鋭意研究した結果、バルブシートを、耐熱・耐摩耗性に優れた高熱伝導性シート層と、耐変形性に優れた高熱伝導性支持層からなる2層構造とし、耐摩耗性及び耐変形性に優れた、バルブ冷却能の高い焼結バルブシートが得られることに想到した。
 すなわち、本発明の焼結バルブシートは、内燃機関のシリンダヘッドに圧入される焼結バルブシートであって、前記バルブシートは、バルブフェイスに繰り返し当接するシート層と、シリンダヘッドのバルブシート圧入孔の底面及び内周面に当接する支持層からなる2層構造を有し、前記シート層はCu又はCu合金からなるマトリックスにCo基硬質粒子及びFe基硬質粒子から選択された少なくとも1種を含み、前記支持層はCu又はCu合金からなるマトリックスにFe粒子及びFe合金粒子から選択された少なくとも1種を含むことを特徴とする。前記シート層に含まれる前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の含有量は25~70質量%であることが好ましく、前記支持層に含まれる前記Fe粒子及び前記Fe合金粒子から選択された少なくとも1種の含有量は30~70質量%であることが好ましい。また、前記支持層の熱伝導率は前記シート層の熱伝導率より高いことが好ましい。
 本発明の焼結バルブシートは、熱伝導に優れたCu又はCu合金からなるマトリックス中に、Co基硬質粒子及び/又はFe基硬質粒子を含む耐熱・耐摩耗性に優れた高熱伝導性シート層と、Fe粒子及び/又はFe合金粒子を含む耐変形性に優れた高熱伝導性支持層からなる2層構造とすることによって、バルブ冷却能を向上させることが可能となり、ノッキング等のエンジンの異常燃焼の低減により、高圧縮比、高効率エンジンの性能向上に貢献することができる。また、支持層の緻密化による降伏応力の向上と高熱伝導化により、シリンダヘッドからの脱落を生じにくくすることが可能となる。さらに、Cu粉末原料に微細なCu粉末を使用しているので、比較的多量の硬質粒子が存在しても、ネットワーク状のCuマトリックスを形成し、また緻密化を図ることによって、高い熱伝導率を維持し、強度及び耐摩耗性を向上することができる。
本発明の焼結バルブシートの断面構造の1例の概略を示した図である。 本発明の焼結バルブシートの断面構造の別の1例の概略を示した図である。 リグ試験機の概略を示した図である。 実施例1のシート層の断面組織を示した走査電子顕微鏡写真である。 実施例1の支持層の断面組織を示した走査電子顕微鏡写真である。
 本発明の焼結バルブシートは、シリンダヘッドに圧入される焼結バルブシートであって、バルブフェイスに繰り返し当接するシート層と、シリンダヘッドのバルブシート圧入孔の底面及び内周面に当接する支持層からなる少なくともシート層/支持層の2層構造を有している。図1は、本発明の焼結バルブシート(1)の断面構造の1例の概略を示しており、リング状のシート層(2)と支持層(3)が2層構造を構成し、シート層(2)の内周側にバルブフェイスに繰り返し当接するシート面(4)を有している。図2も、本発明の焼結バルブシートの断面構造の別の1例の概略を示したものであるが、シート層(2)の体積が相対的に縮小され、バルブシート圧入孔の内周面に当接する支持層(3)部分の面積、すなわち、支持層(3)の外周面積が増加した構成を有している。なお、本発明の焼結バルブシート全体の高熱伝導化を阻害しない限り、シート層(2)と支持層(3)の収縮率を近づけて割れ等を防止するため、シート層(2)と支持層(3)の間に中間層(複数の中間層も含む)を設け、3層以上の構造とすることができる。
 本発明の焼結バルブシートのシート層は高熱伝導性で耐熱・耐摩耗性に優れた層を構成し、支持層は高熱伝導性で降伏強度の高い耐変形性に優れた層を構成する。焼結バルブシート全体の高熱伝導性を確保するため、シート層及び支持層の両層において、マトリックスをCu又はCu合金から構成し、シート層には耐熱・耐摩耗性を付与するCo基硬質粒子及び/又はFe基硬質粒子を分散・含有し、支持層には緻密化及び強度を向上して耐変形性を付与するFe粒子及び/又はFe合金粒子を分散・含有する。Co基硬質粒子及び/又はFe基硬質粒子は当然にFe粒子及び/又はFe合金粒子よりも硬く、Fe粒子及び/又はFe合金粒子の硬さはビッカース硬さで350 HV0.1未満であることが好ましい。前記シート層に含まれるCo基硬質粒子及び/又はFe基硬質粒子の含有量は25~70質量%であることが好ましく、30~65質量%であることがより好ましく、35~60質量%であることがさらに好ましい。また、前記支持層に含まれるFe粒子及び/又はFe合金粒子の含有量は30~70質量%であることが好ましく、35~65質量%であることがより好ましく、40~50質量%であることがさらに好ましい。
 特に、支持層の熱伝導率は、シート層の熱伝導率より高いことが好ましい。具体的には、支持層の熱伝導率は55~90 (W/m)・Kであることが好ましく、60~90 (W/m)・Kであることがより好ましく、65~90 (W/m)・Kであることがさらに好ましい。シート層の熱伝導率は、30~70 (W/m)・Kであることが好ましく、35~70 (W/m)・Kであることがより好ましく、40~70 (W/m)・Kであることがさらに好ましい。
 また、前記シート層と前記支持層の体積比は25/75~70/30であることが好ましく、25/75~60/40であることがより好ましく、25/75~50/50であることがさらに好ましい。
 前記シート層に含まれるCo基硬質粒子及び/又はFe基硬質粒子、及び前記支持層に含まれるFe粒子及び/又はFe合金粒子は、マトリックスを構成するCuに殆ど固溶しないことが重要である。Co及びFeは600℃以下でCuに殆ど固溶しないので、Co基及びFe基の硬質粒子として使用できる。さらにMo、W、Cr及びVもCuに殆ど固溶しないので主要な合金元素として使用でき、Co基硬質粒子としてはCo-Mo-Cr-Si合金粉末及びCo-Cr-W-C合金粉末、Fe基硬質粒子としてはFe-Mo-Cr-Si合金粉末を使用することができる。すなわち、前記Co基硬質粒子は、質量%で、Mo:27.5~30.0%、Cr:7.5~10.0%、Si:2.0~4.0%、残部Co及び不可避的不純物からなるCo-Mo-Cr-Si合金粒子、Cr:27.0~32.0%、W:7.5~9.5%、C:1.4~1.7%、残部Co及び不可避的不純物からなるCo-Cr-W-C合金粒子、及び、Cr:28.0~32.0%、W:11.0~13.0%、C:2.0~3.0%、残部Co及び不可避的不純物からなるCo-Cr-W-C合金粒子から選択された少なくとも1種であることが好ましく、前記Fe基硬質粒子は、質量%で、Mo:27.5~30.0%、Cr:7.5~10.0%、Si:2.0~4.0%、残部Fe及び不可避的不純物からなるFe-Mo-Cr-Si合金粒子であることが好ましい。これらの硬質粒子の硬さは、ビッカース硬さで550~900 HV0.1であることが好ましく、600~850 HV0.1であることがより好ましく、650~800 HV0.1であることがさらに好ましい。
 また、前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の硬質粒子の一部(全部でない)は第2の硬質粒子で置換され、前記第2の硬質粒子が、質量%で、C:1.4~1.6%、Si:0.4%以下、Mn:0.6%以下、Cr:11.0~13.0%、Mo:0.8~1.2%、V:0.2~3.0%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.35~0.42%、Si:0.8~1.2%、Mn:0.25~0.5%、Cr:4.8~5.5%、Mo:1~1.5%、V:0.8~1.15%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.8~0.88%、Si:0.45%以下、Mn:0.4%以下、Cr:3.8~4.5%、Mo:4.7~5.2%、W:5.9~6.7%、V:1.7~2.1%、残部がFe及び不可避的不純物からなる合金鋼粒子、及び、C:0.01%以下、Cr:0.3~5.0%、Mo:0.1~2.0%、残部がFe及び不可避的不純物からなる合金鋼粒子から選択された少なくとも1種であることが好ましい。これら第2の硬質粒子は、前記のCo基硬質粒子及びFe基硬質粒子よりも軟らかく、ビッカース硬さで300~650 HV0.1の硬さを有することが好ましい。400~630 HV0.1であることがより好ましく、550~610 HV0.1であることがさらに好ましい。前記のCo基硬質粒子又はFe基硬質粒子の一部(全部でない)を、硬さを抑えた第2の硬質粒子で置換することによって、バルブ攻撃性を緩和することができる。置換量としては、5~35質量%が好ましく、15~35質量%がより好ましく、21~35質量%がさらに好ましい。
 また、前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の硬質粒子の一部(全部でない)は第3の硬質粒子で置換され、前記第3の硬質粒子が、質量%で、Mo:40~70%、Si:0.4~2.0%、残部Fe及び不可避的不純物からなるFe-Mo-Si合金粒子、Al2O3粒子及びSiC粒子から選択された少なくとも1種であることが好ましい。これら第3の硬質粒子は、ビッカース硬さで1100~2400 HV0.1の硬さを有することが好ましい。すなわち、第3の硬質粒子は、Co基硬質粒子及びFe基硬質粒子よりも硬く、さらに耐摩耗性を向上するが、逆にバルブ攻撃性を増大するため、置換する量は要求特性に応じて調整されなければならない。
 一方、本発明のバルブシートの支持層は、シート層に含まれる、硬く、変形し難く、緻密化を阻害する傾向にある硬質粒子の代わりに、圧縮成形で緻密化しやすいが、軟質なCu又はCu合金マトリックス中に骨格を形成して強度と耐変形性を向上するFe粒子及び/又はFe合金粒子を使用する。Fe粒子は、96質量%以上のFe及び不可避的不純物からなるFe粒子であり、Fe合金粒子は、Feを80質量%以上含有するFe基合金粒子であり、具体的には、質量%で、Cr:0.5~3.0%、残部Fe及び不可避的不純物からなるFe-Cr合金粒子、及び、Cr:0.5~5.0%、Mo:0.1~2.0%、残部Fe及び不可避的不純物からなるFe-Cr-Mo合金粒子から選択された少なくとも1種であることが好ましい。これらFe粒子及びFe合金粒子は、ビッカース硬さで350 HV0.1未満の硬さを有することが好ましい。300 HV0.1未満であればより好ましい。
 但し、前記支持層に含まれる前記Fe粒子及び前記Fe合金粒子から選択された少なくとも1種の一部(全部でない)は第2の硬質粒子で置換され、前記第2の硬質粒子が、質量%で、C:1.4~1.6%、Si:0.4%以下、Mn:0.6%以下、Cr:11.0~13.0%、Mo:0.8~1.2%、V:0.2~3.0%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.35~0.42%、Si:0.8~1.2%、Mn:0.25~0.5%、Cr:4.8~5.5%、Mo:1~1.5%、V:0.8~1.15%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.8~0.88%、Si:0.45%以下、Mn:0.4%以下、Cr:3.8~4.5%、Mo:4.7~5.2%、W:5.9~6.7%、V:1.7~2.1%、残部がFe及び不可避的不純物からなる合金鋼粒子、及び、C:0.01%以下、Cr:0.3~5.0%、Mo:0.1~2.0%、残部がFe及び不可避的不純物からなる合金鋼粒子から選択された少なくとも1種であることが好ましい。これら第2の硬質粒子は、前記のFe粒子及びFe合金粒子よりも硬く、ビッカース硬さで300~650 HV0.1の硬さを有することが好ましい。400~630 HV0.1であることがより好ましく、550~610 HV0.1であることがさらに好ましい。前記のFe粒子及びFe合金粒子の一部(全部でない)を、硬さを高めた第2の硬質粒子で置換することによって、圧縮成形時により変形し難くして、層間での分離を防止することと、シート層と支持層の収縮率を近づけることによる層間での歪み、割れを防止することができる。置換量としては、3~30質量%が好ましく、5~30質量%がより好ましく、5~25質量%がさらに好ましい
 また、前記Fe粒子及び前記Fe合金粒子から選択された少なくとも1種の一部(全部でない)は第3の硬質粒子で置換され、前記第3の硬質粒子が、質量%で、Mo:40~70%、Si:0.4~2.0%、残部Fe及び不可避的不純物からなるFe-Mo-Si合金粒子、Al2O3粒子及びSiC粒子から選択された少なくとも1種であることが好ましい。これら第3の硬質粒子は、ビッカース硬さで1100~2400 HV0.1の硬さを有することが好ましい。すなわち、第3の硬質粒子は、前記第2の硬質粒子よりも硬く、さらに圧縮成形時の変形を抑えるが、逆にバルブ攻撃性を増大するため、置換する量は要求特性に応じて調整されなければならない。
 また、本発明の焼結バルブシートは、緻密な焼結体を目指し、Fe-P合金粉末を添加することが好ましい。特に、支持層は、熱伝導率、強度、耐変形性の向上を図るため、緻密化を意図して、Fe-P合金粉末をシート層よりも少し多めに添加することが好ましい。Pの含有量で表せば、シート層には0.05~2.2質量%が好ましく、支持層には0.1~2.2質量%が好ましい。また、Fe-P合金粉末はPが15~32質量%の範囲の合金粉末が市場から入手でき、例えば、Pが26.7質量%のFe-P合金粉末を利用した場合は、Fe-P合金粉末として、シート層で0.2~8.2質量%、支持層で0.4~8.2質量%の添加量とするのが好ましい。PはCo、Cr、Mo等と化合物を作るので、P含有量の上限は2.5質量%がより好ましく、1.0質量%がさらに好ましい。
 さらに、緻密な焼結体を目指し、Fe-P合金粉末と同様に6.5質量%までのSnを含有することができる。Cuマトリックスへの僅かなSnの添加が焼結時に液相を作り緻密化に貢献する。但し、Snが多量に存在すると、Cuマトリックスの熱伝導率を低下させることに加え、靱性の低い低強度のCu3Sn化合物が増加して耐摩耗性を損なうので6.5質量%を上限とする。Snの添加量は、0.3~2.0質量%が好ましく、0.3~1.0質量%がより好ましい。
 本発明の焼結バルブシートのシート層には、必要に応じて固体潤滑材を加えることができる。例えば、直噴エンジンでは燃料による潤滑作用の無い摺動状態となり、固体潤滑材の添加により自己潤滑性を高めて耐摩耗性を維持することも必要となる。よって、本発明の焼結バルブシートは、3質量%までの、すなわち、0~3質量%の固体潤滑材を含有することができる。固体潤滑材は、カーボン、窒化物、酸化物、硫化物及びフッ化物から選択され、特に、C、BN、MnS、CaF2、SiO2、WS2、Mo2Sから選択された少なくとも1種であることが好ましい。
 本発明の焼結バルブシートの2層構造は、支持層用の混合粉末とシート層用の混合粉末を準備し、金型の一部に支持層用混合粉末を投入、その上にシート層用混合粉末を投入して、圧縮、成形することによって形成される。支持層用混合粉末は、Cu粉末、Fe粒子粉末及び/又はFe合金粒子粉末、必要に応じて、前記Fe粒子粉末及び/又はFe合金粒子粉末の一部と置換する第2の硬質粒子粉末及び/又は第3の硬質粒子粉末、Fe-P合金粉末を配合、混合して準備され、シート層用混合粉末は、Cu粉末、Co基硬質粒子粉末及び/又はFe基硬質粒子粉末、必要に応じて、前記Co基硬質粒子粉末及び/又はFe基硬質粒子粉末の一部と置換する第2の硬質粒子粉末及び/又は第3の硬質粒子粉末、Fe-P合金粉末、Sn粉末、固体潤滑材を配合、混合して準備される。成形性を高めるため、混合粉末それぞれに対し、離型剤としてステアリン酸塩を0.5~2質量%配合してもよい。焼結バルブシート用成形圧粉体は、真空又は非酸化性又は還元性の雰囲気中、850~1070℃の温度範囲で焼成される。
 なお、上記の硬質粒子、Fe粒子及びFe合金粒子は、軟質なCu又はCu合金マトリックス中に骨格を形成するため、メジアン径は10~150μmであることが好ましい。ここで、メジアン径は、その粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、50%の累積体積に対応する粒子径d50を表し、例えば、マイクロトラック・ベル株式会社のMT3000IIシリーズを用いて測定できる。メジアン径は50~100μmであることがより好ましく、65~85μmであることがさらに好ましい。
 本発明の焼結バルブシートに使用する硬質粒子、Fe粒子及びFe合金粒子は球形状又は非球状の不規則形状であることが好ましい。特に、Co基硬質粒子及びFe基硬質粒子は、変形し難く緻密化を阻害する傾向にあるので、充填性を上げるためには球形状であることが好ましい。一方、球形状の硬質粒子は摺動面から脱落しやすいため、脱落を防止する意味では不規則な非球形状の硬質粒子が好ましい。特に、シート層に含有する硬質粒子は、要求特性に対応して、球形状の硬質粒子と不規則形状の硬質粒子を使い分けることが好ましい。もちろん、球形状の硬質粒子と不規則形状の硬質粒子を混合して使用することも好ましい。また、硬さの軟らかい軟質側の硬質粒子は、緻密化し易いので、硬質粒子同士の接触を増やして骨格構造を形成する観点で、不規則な非球形状であることが好ましい。球形状の硬質粒子はガスアトマイズにより作製でき、不規則な非球形状の粒子は粉砕又は水アトマイズにより作製できる。
 マトリックスを構成するCu粉末には、メジアン径45μm以下、純度99.5%以上のCu粉末を使用することが好ましい。粉末充填の観点から、硬質粒子のメジアン径より相対的に小さいCu粉末を使用することにより、硬質粒子が比較的多量に存在しても、ネットワーク状に連結したCuマトリックスを形成することが可能になる。例えば、硬質粒子のメジアン径は45μm以上、Cu粉末のメジアン径は30μm以下が好ましい。その点、Cu粉末は球状のアトマイズ粉末が好ましい。また、Cu粉末同士が絡みやすい細かな突起をもった樹枝状の電解Cu粉末もネットワーク状の連結したマトリックスを形成する上で、好ましく使用できる。
実施例1
 まず、メジアン径22μm、純度99.8質量%の電解Cu粉末に、メジアン径72μmの、質量%で、Mo:28.5%、Cr:8.5%、Si:2.6%、残部Co及び不可避的不純物からなるCo基硬質粒子(後述するCo基硬質粒子の1Aに相当)を50質量%、P含有量が26.7質量%のFe-P合金粉末を1.0質量%配合し、混練して、焼結バルブシートのシート層用混合粉末を作製した。ここで、Co基硬質粒子は、球形状と不規則形状の両方の形状の粒子を混合したものを使用している。また、原料粉末には成形工程の型抜き性を良くするためにステアリン酸亜鉛を原料粉末の量に対して0.5質量%加えている。
 次に、シート層用混合粉末に使用した電解Cu粉末とFe-P合金粉末を用い、電解Cu粉末に、メジアン径60μmの、純度99.8質量%のFe粒子粉末(後述するFe粒子又はFe合金粒子の4Aに相当)を45質量%、Fe-P合金粉末を2.5質量%配合し、混練して、焼結バルブシートの支持層用混合粉末を作製した。ここで、Fe粒子は不規則形状粒子で、ステアリン酸亜鉛も0.5質量%加えている。
 上記の支持層用混合粉末を所定量、成形金型に、続いてシート層用混合粉末を充填し、面圧640 MPaで圧縮・成形して、バルブシート積層成形体を作製した。ここで、積層成形体の積層界面は、図1に示すように、バルブシートの内外周面に垂直になるように充填、圧縮している。
 バルブシート成形体は、温度1050℃の真空雰囲気中で焼成して、外径40 mmφ、内径18 mmφ、厚さ8 mmのリング状焼結体を作製し、さらに、機械加工により、軸方向から45°傾斜したシート面を有する外径25.8 mmφ、内径21.6 mmφ、高さ6 mmのバルブシートサンプルを作製した。
 上記バルブシートのシート層と支持層の体積比は、各層の寸法から計算により求めた結果、37/63であった。また、バルブシートのPの組成について成分分析を行った結果、シート層で0.27質量%、支持層で0.66質量%であった、この結果は、Fe-P合金粉末の添加量を反映していた。
 また、上記バルブシートのシート層と支持層の熱伝導率を確認するため、各層の混合粉末から成形、焼成、機械加工を経て、5 mmφ×1.3 mmの試験片を作製し、レーザーフラッシュ法により熱伝導率を測定した。その結果、シート層の熱伝導率は50 (W/m)・K、支持層の熱伝導率は78 (W/m)・Kであり、支持層がシート層よりも高い熱伝導率を示していた。
 さらに、上記バルブシートのシート層と支持層の強度を確認するため、各層の混合粉末から成形、焼成を経て、外径40 mmφ、内径18 mmφ、厚さ8 mmのリング状焼結体を作製し、焼成密度と圧環強さの測定を行った。その結果、シート層の密度は7.61 Mg/m3、圧環強さは441 MPa、支持層の密度は8.00 Mg/m3、圧環強さは710 MPaであり、支持層がシート層よりも高い密度と圧環強さを示していた。
比較例1
 硬質粒子として、メジアン径78μmの、質量%で、Mo:60.1%、Si:0.5%、残部Fe及び不可避的不純物からなるFe-Mo-Si合金粒子粉末(後述する第3の硬質粒子の3Aに相当)を10質量%含有したFe基焼結合金を使用して、実施例1と同形状の単層のバルブシートサンプルを作製した。   
比較例2
 硬質粒子として、実施例1で使用したCo基硬質粒子50質量%の代わりに、同Co基硬質粒子を35質量%に、メジアン径84μmの、質量%で、C:0.85%、Si:0.3%、Mn:0.3%、Cr:3.9%、Mo:4.8%、W:6.1%、V:1.9%、残部がFe及び不可避的不純物からなる合金鋼粒子を15質量%としたシート層用混合粉末を用いて、実施例1と同形状の単層のバルブシートサンプルを作製した。
[1] バルブ冷却能(バルブ温度)の測定
 図3に示したリグ試験機を用いてバルブ温度を測定し、バルブ冷却能を評価した。バルブシートサンプル(11)はシリンダヘッド相当材(Al合金、AC4A材)のバルブシートホルダ(12)に圧入して試験機にセットされ、リグ試験は、バーナー(13)によりバルブ(14)(SUH合金、JIS G4311)を加熱しながら、カム(15)の回転に連動してバルブ(14)を上下させることによって行われる。バルブ冷却能は、バーナー(13)のエアー及びガスの流量とバーナー位置を一定にすることで入熱を一定にし、サーモグラフィー(16)によりバルブの傘中心部の温度を計測することによって測定した。バーナー(13)のエアー及びガスの流量(L/min)は、それぞれ90 L/min及び5.0 L/min、カム回転数は2500 rpmとした。運転開始15分後、飽和したバルブ温度を測定した。なお、本願実施例では、バルブ冷却能は、加熱条件等により変化する飽和バルブ温度で評価する代わりに、比較例1のバルブ温度からの温度低下量(低下を - で表示)により評価した。比較例1の飽和バルブ温度は800℃を超える高温であったが、実施例1の飽和バルブ温度は800℃を下回り、バルブ冷却能は-58℃であった。また、比較例2のバルブ冷却能は-30℃であった。
[2] 摩耗試験
 図3に示したリグ試験機を用いて、バルブ冷却能の評価の後、耐摩耗性を評価した。評価は、バルブシート(11)に埋め込んだ熱電対(17)を用いて、バルブシートの当たり面が所定の温度になるようにバーナー(13)の火力を調節して行った。また、摩耗量は、試験前後のバルブシートとバルブの形状を測定することにより、当たり面の後退量として算出した。ここで、バルブ(14)(SUH合金)は上記バルブシートに適合するサイズのCo合金(Co-20%Cr-8%W-1.35%C-3%Fe)を盛金したものを使用した。試験条件としては、温度300℃(バルブシート当たり面)、カム回転数2500 rpm、試験時間5時間とした。なお、摩耗量は、比較例1の摩耗量を1とした相対比率で評価した。実施例1の摩耗量は、比較例1と比較して、バルブシート摩耗量で0.71、バルブ摩耗量で0.92であった。比較例2の摩耗量は、バルブシート摩耗量で0.86、バルブ摩耗量で0.88であった。
[3] 耐脱落性試験
 耐脱落性試験は、加速試験として、バルブシート(11)を500℃まで加熱し50℃まで空冷するパターンを500サイクル実施し、耐脱落性は冷却後にバルブシートホルダ(12)からのバルブシート抜出荷重を測定して評価した。ここで、図3のリグ試験機において、バルブ(14)は使用せずにバルブシート(11)の下に遮熱板を取り付け、温度はサーモグラフィー(16)を用いてバルブシート当たり面の温度を測定した。また、抜出荷重は万能試験機を使って測定した。耐脱落性は、シート層材料のみでバルブシート全体を形成した比較例2の抜出荷重を1とした相対比率で評価した。実施例1の耐脱落性は、比較例2と比較して、1.94であった。また、Fe基焼結合金である比較例1のバルブシートでは、耐脱落性は1.8であった。
実施例2~45
 実施例2~45においては、表1に示す種類のCo基硬質粒子及びFe基硬質粒子、表2に示す種類の第2の硬質粒子、表3に示す種類の第3の硬質粒子、及び表4に示す種類のFe粒子及びFe合金粒子を用いて、実施例1と同様にして、表5に示す配合量のシート層用混合粉末と、表6に示す配合量の支持層用混合粉末を作製した。表5のシート層用混合粉末には、さらに加えたFe-P合金粉末、Sn粉末及び固体潤滑材粉末の配合量も示した。なお、表1~3のCo基又はFe基硬質粒子、及び、第2、第3の硬質粒子については、硬質粒子のビッカース硬さHV0.1(樹脂に埋め込み、鏡面研磨して、荷重0.1 kgで測定)、メジアン径、及び形状について示した。また、表6の支持層用混合粉末には、Sn粉末及び固体潤滑材粉末は加えていない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例2~32及び36~45について、表7に示すシート層と支持層の組合せで、シート層/支持層の体積比を変えて、実施例1と同様にしてバルブシートサンプルを作製し、実施例1と同様にして、シート層と支持層の体積比の測定、バルブ冷却能の測定、摩耗試験、及び耐脱落性試験を行った。実施例33~35については、支持層成形時、45°内径側に傾斜した押型を使用し、図2に示す積層界面を有する積層成形体を作製した。また、実施例10については、走査電子顕微鏡でシート層と支持層の断面組織を観察した。
 実施例10のシート層の走査電子顕微鏡写真を図4(a)に、支持層の走査電子顕微鏡写真を図4(b)に示す。図4(a)のシート層の顕微鏡組織は、Cuマトリックス(5)及び硬質粒子(6)(Co基硬質粒子[硬質粒子1A]及び第2の硬質粒子[2A])が互いに絡みあって分布し、Cuマトリックス(5)は、一部は分断されているものの、多くが連続して分布している様子を示していた。なお、硬質粒子(6)は硬く変形し難いので、粒子形状を留めており、粒子間又は粒子/Cuマトリックス界面に隙間が存在している様子も観察された。一方、図4(b)の支持層の顕微鏡組織は、Cuマトリックス(5)及びFe粒子(7)(Fe粒子4A)が互いに絡みあって分布し、Cuマトリックスは十分に連続して分布している様子を示していた。また、Fe粒子/Cuマトリックス界面も密接に結合しているようにみえ、支持層はシート層よりも緻密化していると考えられた。また、組織の大きさは、シート層に分散した硬質粒子サイズ(d50が72μm及び84μm)と支持層に分散したFe粒子サイズ(d50が60μm)を反映し、支持層の組織のほうが少し微細であった。
 シート層と支持層の体積比の測定、バルブ冷却能の測定、摩耗試験、及び耐脱落性試験の実施例2~45の結果を、実施例1及び比較例1~2の結果とともに、表7に示す。
Figure JPOXMLDOC01-appb-T000007
 本発明の焼結バルブシートは、Fe基焼結合金製バルブシートと比較して、同等以上の耐摩耗性を示し、また、シート層と支持層からなる2層構造とすることによって、Fe基焼結合金製バルブシートに匹敵する耐脱落性を示した。さらに、バルブ冷却能は、支持層の体積比が大きくなるほど、向上しているようにみえた。
 1   焼結バルブシート
 2   シート層
 3   支持層
 4   シート面
 5   Cuマトリックス
 6   硬質粒子
 7   Fe粒子
11   バルブシートサンプル
12   バルブシートホルダ
13   バーナー
14   バルブ
15   カム
16   サーモグラフィー
17   熱電対

Claims (15)

  1.  内燃機関のシリンダヘッドに圧入される焼結バルブシートであって、前記バルブシートは、バルブフェイスに繰り返し当接するシート層と、シリンダヘッドのバルブシート圧入孔の底面及び内周面に当接する支持層からなる2層構造を有し、前記シート層はCu又はCu合金からなるマトリックスにCo基硬質粒子及びFe基硬質粒子から選択された少なくとも1種を含み、前記支持層はCu又はCu合金からなるマトリックスにFe粒子及びFe合金粒子から選択された少なくとも1種を含むことを特徴とする焼結バルブシート。
  2.  請求項1に記載の焼結バルブシートにおいて、前記シート層に含まれる前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の含有量が25~70質量%であり、前記支持層に含まれる前記Fe粒子及びFe合金粒子から選択された少なくとも1種の含有量が30~70質量%であることを特徴とする焼結バルブシート。
  3.  請求項1又は2に記載の焼結バルブシートにおいて、前記支持層の熱伝導率が前記シート層の熱伝導率よりも高いことを特徴とする焼結バルブシート。
  4.  請求項1~3のいずれかに記載の焼結バルブシートにおいて、前記シート層と前記支持層の体積比が25/75~70/30であることを特徴とする焼結バルブシート。
  5.  請求項1~4のいずれかに記載の焼結バルブシートにおいて、前記シート層に含まれる前記Co基硬質粒子が、質量%で、Mo:27.5~30.0%、Cr:7.5~10.0%、Si:2.0~4.0%、残部Co及び不可避的不純物からなるCo-Mo-Cr-Si合金粒子、Cr:27.0~32.0%、W:7.5~9.5%、C:1.4~1.7%、残部Co及び不可避的不純物からなるCo-Cr-W-C合金粒子、及び、Cr:28.0~32.0%、W:11.0~13.0%、C:2.0~3.0%、残部Co及び不可避的不純物からなるCo-Cr-W-C合金粒子から選択された少なくとも1種であり、前記Fe基硬質粒子が、質量%で、Mo:27.5~30.0%、Cr:7.5~10.0%、Si:2.0~4.0%、残部Fe及び不可避的不純物からなるFe-Mo-Cr-Si合金粒子であることを特徴とする焼結バルブシート。
  6.  請求項1~5のいずれかに記載の焼結バルブシートにおいて、前記支持層に含まれる前記Fe粒子が、質量%で、96%以上のFe及び不可避的不純物からなるFe粒子であり、前記Fe合金粒子が、質量%で、Cr:0.5~3.0%、残部Fe及び不可避的不純物からなるFe-Cr合金粒子、及び、Cr:0.5~5.0%、Mo:0.1~2.0%、残部Fe及び不可避的不純物からなるFe-Cr-Mo合金粒子から選択された少なくとも1種であることを特徴とする焼結バルブシート。
  7.  請求項5に記載の焼結バルブシートにおいて、前記シート層に含まれる前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の一部が、第2の硬質粒子で置換され、前記第2の硬質粒子は、質量%で、C:1.4~1.6%、Si:0.4%以下、Mn:0.6%以下、Cr:11.0~13.0%、Mo:0.8~1.2%、V:0.2~3.0%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.35~0.42%、Si:0.8~1.2%、Mn:0.25~0.5%、Cr:4.8~5.5%、Mo:1~1.5%、V:0.8~1.15%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.8~0.88%、Si:0.45%以下、Mn:0.4%以下、Cr:3.8~4.5%、Mo:4.7~5.2%、W:5.9~6.7%、V:1.7~2.1%、残部がFe及び不可避的不純物からなる合金鋼粒子、及び、C:0.01%以下、Cr:0.3~5.0%、Mo:0.1~2.0%、残部がFe及び不可避的不純物からなる合金鋼粒子から選択された少なくとも1種であることを特徴とする焼結バルブシート。
  8.  請求項7に記載の焼結バルブシートにおいて、前記シート層に含まれる前記Co基硬質粒子及び前記Fe基硬質粒子から選択された少なくとも1種の一部が、第3の硬質粒子で置換され、前記第3の硬質粒子は、質量%で、Mo:40~70%、Si:0.4~2.0%、残部Fe及び不可避的不純物からなるFe-Mo-Si合金粒子、Al2O3粒子及びSiC粒子から選択された少なくとも1種で置換されることを特徴とする焼結バルブシート。
  9.  請求項6に記載の焼結バルブシートにおいて、前記支持層に含まれる前記Fe粒子及び前記Fe合金粒子から選択された少なくとも1種の一部が、第2の硬質粒子で置換され、前記第2の硬質粒子は、質量%で、C:1.4~1.6%、Si:0.4%以下、Mn:0.6%以下、Cr:11.0~13.0%、Mo:0.8~1.2%、V:0.2~3.0%、残部がFe及び不可避的不純物からなる合金鋼粒子、C:0.35~0.42%、Si:0.8~1.2%、Mn:0.25~0.5%、Cr:4.8~5.5%、Mo:1~1.5%、V:0.8~1.15%、残部がFe及び不可避的不純物からなる合金鋼粒子、及び、C:0.8~0.88%、Si:0.45%以下、Mn:0.4%以下、Cr:3.8~4.5%、Mo:4.7~5.2%、W:5.9~6.7%、V:1.7~2.1%、残部がFe及び不可避的不純物からなる合金鋼粒子から選択された少なくとも1種であることを特徴とする焼結バルブシート。
  10.  請求項9に記載の焼結バルブシートにおいて、前記支持層に含まれる前記Fe粒子及び前記Fe合金粒子から選択された少なくとも1種の一部が、第3の硬質粒子で置換され、前記第3の硬質粒子は、質量%で、Mo:40~70%、Si:0.4~2.0%、残部Fe及び不可避的不純物からなるFe-Mo-Si合金粒子、Al2O3粒子及びSiC粒子から選択された少なくとも1種で置換されることを特徴とする焼結バルブシート。
  11.  請求項1~10のいずれかに記載の焼結バルブシートにおいて、前記シート層が0.05~2.2質量%のPを含むことを特徴とする焼結バルブシート。
  12.  請求項1~11のいずれかに記載の焼結バルブシートにおいて、前記支持層が0.1~2.2質量%のPを含むことを特徴とする焼結バルブシート。
  13.  請求項1~12のいずれかに記載の焼結バルブシートにおいて、前記シート層が6.5質量%までのSnを含むことを特徴とする焼結バルブシート
  14.  請求項1~13のいずれかに記載の焼結バルブシートにおいて、前記シート層が3質量%までの固体潤滑材を含むことを特徴とする焼結バルブシート。
  15.  請求項14に記載の焼結バルブシートにおいて、前記固体潤滑材がC、BN、MnS、CaF2、SiO2、WS2及びMo2Sの群から選択された少なくとも1種であることを特徴とする焼結バルブシート。
PCT/JP2017/043303 2017-03-28 2017-12-01 焼結バルブシート WO2018179590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17870625.5A EP3406865B1 (en) 2017-03-28 2017-12-01 Sintered valve seat
US15/778,039 US10584618B2 (en) 2017-03-28 2017-12-01 Sintered valve seat
JP2018505053A JP6309700B1 (ja) 2017-03-28 2017-12-01 焼結バルブシート
CN201780005613.6A CN108698130B (zh) 2017-03-28 2017-12-01 烧结阀座

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-063088 2017-03-28
JP2017063088 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179590A1 true WO2018179590A1 (ja) 2018-10-04

Family

ID=63675026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043303 WO2018179590A1 (ja) 2017-03-28 2017-12-01 焼結バルブシート

Country Status (4)

Country Link
US (1) US10584618B2 (ja)
EP (1) EP3406865B1 (ja)
CN (1) CN108698130B (ja)
WO (1) WO2018179590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059310A1 (ja) * 2020-09-17 2022-03-24 株式会社リケン 焼結バルブシート

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218241A1 (de) * 2018-10-24 2020-04-30 Mahle International Gmbh Verfahren zur Montage eines Ventilsitzrings an einem Zylinderklopf einer Brennkraftmaschine
CN112247140B (zh) * 2020-09-25 2021-08-27 安庆帝伯粉末冶金有限公司 一种耐高温耐磨损粉末冶金气门座圈材料及其制造方法
US11988294B2 (en) 2021-04-29 2024-05-21 L.E. Jones Company Sintered valve seat insert and method of manufacture thereof
DE102021210268A1 (de) * 2021-09-16 2023-03-16 Mahle International Gmbh Schichtgesinterter Ventilsitzring, Verfahren zu dessen Herstellung, Kombinationen damit und deren Verwendung

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671906U (ja) * 1979-11-09 1981-06-13
JPH0233848B2 (ja) * 1984-01-11 1990-07-31 Toyota Jidosha Kk Koontaimamoseibarubushiito
JPH0360895A (ja) 1989-07-31 1991-03-15 Toyota Motor Corp 肉盛用分散強化銅基合金
JPH07119421A (ja) 1993-10-25 1995-05-09 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JPH10184324A (ja) 1996-12-27 1998-07-14 Nippon Piston Ring Co Ltd 鉄系焼結合金製バルブシートの製造方法および鉄系焼結合金製バルブシート
JP2004232088A (ja) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd 鉄基焼結合金製バルブシートおよびその製造方法
JP2005256146A (ja) * 2004-03-15 2005-09-22 Toyota Motor Corp 肉盛耐摩耗性銅合金及びバルブシート
JP3786267B2 (ja) 2002-10-02 2006-06-14 三菱マテリアルPmg株式会社 高面圧付加条件下ですぐれた耐摩耗性を発揮するFe基焼結合金製バルブシートの製造方法
JP4272706B2 (ja) 1996-02-21 2009-06-03 ブライシュタール プロドゥクツィオーンス−ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 高い耐摩耗性を有する弁座環または弁案内部材を粉末冶金的に製造するための材料
JP2015014262A (ja) * 2013-07-05 2015-01-22 株式会社リケン バルブシート及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152982A (ja) * 1982-03-09 1983-09-10 Honda Motor Co Ltd 高剛性を有する二層焼結合金製バルブシ−トリング
EP0411882B1 (en) 1989-07-31 1995-03-22 Toyota Jidosha Kabushiki Kaisha Dispersion strengthened copper-base alloy for overlay
JPH083133B2 (ja) 1990-07-12 1996-01-17 日立粉末冶金株式会社 船外機用バルブシート材およびその製造方法
JPH0717978B2 (ja) * 1991-03-20 1995-03-01 トヨタ自動車株式会社 自己潤滑性に優れる耐摩耗性銅基合金
JP4314226B2 (ja) 2005-09-13 2009-08-12 本田技研工業株式会社 粒子分散銅合金及びその製造方法
US7757396B2 (en) 2006-07-27 2010-07-20 Sanyo Special Steel Co., Ltd. Raw material powder for laser clad valve seat and valve seat using the same
CN201059209Y (zh) * 2007-06-30 2008-05-14 奇瑞汽车有限公司 一种发动机气门座圈结构
JP5649830B2 (ja) * 2010-02-23 2015-01-07 株式会社リケン バルブシート
JP5823697B2 (ja) * 2011-01-20 2015-11-25 株式会社リケン 鉄基焼結合金製バルブシート
DE102012013226A1 (de) 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg Hochwärmeleitender Ventilsitzring
JP6265474B2 (ja) * 2013-12-27 2018-01-24 日本ピストンリング株式会社 熱伝導性に優れる内燃機関用鉄基焼結合金製バルブシートおよびその製造方法
JP6316588B2 (ja) * 2013-12-27 2018-04-25 日本ピストンリング株式会社 内燃機関用バルブとバルブシートの組合せ体
WO2015198932A1 (ja) 2014-06-27 2015-12-30 株式会社リケン 焼結バルブシート及びその製造方法
DE102015213706A1 (de) * 2015-07-21 2017-01-26 Mahle International Gmbh Tribologisches System, umfassend einen Ventilsitzring und ein Ventil
DE102016109539A1 (de) 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Ventilsitzring

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671906U (ja) * 1979-11-09 1981-06-13
JPH0233848B2 (ja) * 1984-01-11 1990-07-31 Toyota Jidosha Kk Koontaimamoseibarubushiito
JPH0360895A (ja) 1989-07-31 1991-03-15 Toyota Motor Corp 肉盛用分散強化銅基合金
JPH07119421A (ja) 1993-10-25 1995-05-09 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JP4272706B2 (ja) 1996-02-21 2009-06-03 ブライシュタール プロドゥクツィオーンス−ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 高い耐摩耗性を有する弁座環または弁案内部材を粉末冶金的に製造するための材料
JPH10184324A (ja) 1996-12-27 1998-07-14 Nippon Piston Ring Co Ltd 鉄系焼結合金製バルブシートの製造方法および鉄系焼結合金製バルブシート
JP3786267B2 (ja) 2002-10-02 2006-06-14 三菱マテリアルPmg株式会社 高面圧付加条件下ですぐれた耐摩耗性を発揮するFe基焼結合金製バルブシートの製造方法
JP2004232088A (ja) * 2003-01-10 2004-08-19 Nippon Piston Ring Co Ltd 鉄基焼結合金製バルブシートおよびその製造方法
JP2005256146A (ja) * 2004-03-15 2005-09-22 Toyota Motor Corp 肉盛耐摩耗性銅合金及びバルブシート
JP2015014262A (ja) * 2013-07-05 2015-01-22 株式会社リケン バルブシート及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406865A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059310A1 (ja) * 2020-09-17 2022-03-24 株式会社リケン 焼結バルブシート
JP2022050275A (ja) * 2020-09-17 2022-03-30 株式会社リケン 焼結バルブシート

Also Published As

Publication number Publication date
US10584618B2 (en) 2020-03-10
CN108698130A (zh) 2018-10-23
US20190360366A1 (en) 2019-11-28
EP3406865A1 (en) 2018-11-28
EP3406865A4 (en) 2019-07-24
CN108698130B (zh) 2019-08-06
EP3406865B1 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2018179590A1 (ja) 焼結バルブシート
JP3926320B2 (ja) 鉄基焼結合金製バルブシートおよびその製造方法
JP6386676B2 (ja) 焼結バルブシート
EP3162475B1 (en) Sintered valve seat and method for manufacturing same
JP4584158B2 (ja) 内燃機関用鉄基焼結合金製バルブシート材
JP6577173B2 (ja) Cu基焼結合金及びその製造方法
JP6305811B2 (ja) バルブシート用鉄基焼結合金材およびその製造方法
JP5887374B2 (ja) 鉄基焼結合金製バルブシート
JPH03502216A (ja) 銅ベースの焼結材料、その用途並びに該焼結材料から成形部材を製造する方法
JP2005248234A (ja) バルブシート用鉄基焼結合金材
JP5658804B1 (ja) 焼結合金製バルブガイド及びその製造方法
JP6315241B2 (ja) 耐摩耗性銅基焼結合金
JP6309700B1 (ja) 焼結バルブシート
JP6392530B2 (ja) 鉄基焼結合金製バルブシート
WO2022059310A1 (ja) 焼結バルブシート
JPH06179937A (ja) バルブシート用焼結合金
JP3942136B2 (ja) 鉄基焼結合金
JP2556113B2 (ja) 耐摩耗性のすぐれた高強度高靭性Cu基焼結合金
JP4223370B2 (ja) すぐれた高温耐酸化性を有する高強度Fe基焼結合金製バルブシート
JP2013173961A (ja) 鉄基焼結合金製バルブシート
JPH0533299B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505053

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE