WO2018179460A1 - Microwave device - Google Patents

Microwave device Download PDF

Info

Publication number
WO2018179460A1
WO2018179460A1 PCT/JP2017/020562 JP2017020562W WO2018179460A1 WO 2018179460 A1 WO2018179460 A1 WO 2018179460A1 JP 2017020562 W JP2017020562 W JP 2017020562W WO 2018179460 A1 WO2018179460 A1 WO 2018179460A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
microwave
heated
microwave device
stirring blade
Prior art date
Application number
PCT/JP2017/020562
Other languages
French (fr)
Japanese (ja)
Inventor
松原 亮
浩嗣 房安
長嶋 貴志
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019508507A priority Critical patent/JP6751858B2/en
Publication of WO2018179460A1 publication Critical patent/WO2018179460A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/74Mode transformers or mode stirrers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present disclosure relates to a microwave device that dielectrically heats an object to be heated.
  • Patent Document 1 discloses a high-frequency heating device (microwave device) including a stirrer fan (blade part) that stirs microwaves oscillated from a high-frequency oscillator. When the stirrer fan stirs the microwave, the object to be heated can be heated uniformly.
  • microwave device microwave device
  • stirrer fan blade part
  • the heated object to be heated is quickly taken out from the microwave device. Therefore, it is desirable that the heated object to be heated is lowered to a temperature at which it can be taken out from the microwave device (for example, a temperature that a person can have).
  • an object of the present disclosure is to provide a microwave device that can take out an object to be heated after heating faster than before.
  • a microwave device includes a housing, a microwave supply unit that supplies the microwave into the housing, and a blade that is disposed in the housing and stirs the microwave And a control unit that performs output control of the microwave supply unit and rotation control of the blade unit. After heating the object to be heated arranged in the housing with microwaves, the control unit stops the microwave output of the microwave supply unit as output control and rotates the blade unit as rotation control to heat the object. Cool things.
  • the heated object to be heated can be taken out earlier than before.
  • FIG. 1A is a perspective view showing an overall configuration of a microwave device according to Embodiment 1.
  • FIG. 1B is a cross-sectional view of the microwave device according to Embodiment 1 taken along line IB-IB in FIG. 1A.
  • FIG. 2 is a block diagram illustrating a functional configuration of the microwave device according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the microwave device according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the inside of the microwave device during heating and cooling of the microwave device according to the first embodiment.
  • FIG. 5A is a perspective view showing an overall configuration of the microwave device according to Embodiment 2.
  • FIG. 5B is a cross-sectional view of the microwave device according to Embodiment 2 corresponding to the IB-IB line in FIG. 1A.
  • 6A is a perspective view showing an overall configuration of a microwave device according to Modification 1 of Embodiment 2.
  • FIG. 6B is a cross-sectional view of the microwave device according to Modification 1 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A.
  • FIG. 7A is a perspective view showing an overall configuration of a microwave device according to Modification 2 of Embodiment 2.
  • FIG. FIG. 7B is a cross-sectional view of the microwave device according to Modification 2 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A.
  • FIG. 8A is a perspective view showing an overall configuration of a microwave device according to Modification 3 of Embodiment 2.
  • FIG. 8B is a cross-sectional view of the microwave device according to Modification 3 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A.
  • the Z axis represents the height direction of the microwave device.
  • the X-axis direction and the Y-axis direction are directions perpendicular to each other on a plane perpendicular to the Z-axis direction.
  • the microwave device 10 is used as an industrial microwave device when performing molding, kneading, granulation and the like.
  • a microwave device 10 for molding a resin material will be described as an example.
  • FIG. 1A is a perspective view showing an overall configuration of a microwave device 10 according to the present embodiment.
  • (a) of FIG. 1A is an overall configuration of the microwave device 10, and mainly illustrates a heating chamber 21 that is formed by the casing 20 and that stores the object to be heated 70.
  • FIG. 1B is an enlarged view of the stirring blade 31 disposed in the heating chamber 21.
  • FIG. 1B is a cross-sectional view of microwave device 10 according to the present embodiment taken along line IB-IB in FIG. 1A.
  • a part of the housing 20 is disassembled from the microwave device 10 to show the heating chamber 21.
  • FIG. 2 is a block diagram showing a functional configuration of the microwave device 10 according to the present embodiment.
  • the microwave device 10 includes a housing 20, a stirring unit 30 including a stirring blade 31 and a shaft portion 32, a magnetron 40, a control unit 50, and a frame 60.
  • the housing 20 constitutes the appearance of the microwave device 10.
  • the housing 20 is a container that houses the stirring blade 31 and the shaft portion 32.
  • casing 20 is comprised from the metal material.
  • the housing 20 includes a heating chamber 21 and a waveguide unit 22.
  • the heating chamber 21 is a substantially rectangular parallelepiped box for dielectric heating (high-frequency heating) of the object to be heated 70 (specifically, the object to be heated 70 spread on the molding die 80).
  • a stirring blade 31 that stirs and radiates microwaves in the heating chamber 21 is also disposed.
  • a door 23 that can be opened and closed for access to the heating chamber 21 is provided on the front surface (X-axis minus side) of the heating chamber 21. Moreover, the window 24 is formed in at least one part of the door 23, and a user can confirm the mode in the heating chamber 21, even if the door 23 is closed.
  • An opening for spatially connecting the heating chamber 21 and the waveguide portion 22 is formed on the back surface (X-axis plus side) of the heating chamber 21, and an axis for connecting the stirring blade 31 and the motor 33 to the opening.
  • the part 32 is arranged.
  • the microwave radiated from the stirring blade 31 and incident on the inner surface 25 can be reflected by the inner surface 25.
  • the to-be-heated material 70 is a resin material for producing a resin molded product, for example, a pellet-shaped resin material.
  • the molding die 80 is made of a material having high heat resistance and generating heat by microwaves.
  • the molding die 80 is made of silicone rubber containing a material that generates heat by microwaves.
  • the molding die 80 includes an upper die 81 and a lower die 82. At least one of the upper mold 81 and the lower mold 82 is formed with a concave or convex portion corresponding to the shape of the resin molded product in advance, and a space formed when the upper mold 81 and the lower mold 82 are combined.
  • the object to be heated 70 is spread on the floor. And the to-be-heated material 70 is heated and melt
  • the mounting table 90 is a table on which the molding die 80 on which the object to be heated 70 is spread is placed.
  • the mounting table 90 is made of a low-loss dielectric material such as a phenol-based resin, ceramic, or glass, and preferably has a property that microwaves can be easily transmitted.
  • the mounting table 90 is detachably attached to the microwave device 10, but the mounting table 90 may be fixed to the microwave device 10 in advance.
  • the waveguide unit 22 is a transmission path that transmits the microwave generated by the magnetron 40 to the heating chamber 21.
  • the microwave oscillated by the magnetron 40 is transmitted to the heating chamber 21 located above the magnetron 40.
  • the waveguide 22 is made of metal.
  • the waveguide portion 22 is disposed on the back side of the heating chamber 21.
  • the waveguide unit 22 has an opening for fixing the magnetron 40 and an opening for inserting the shaft portion 32 connecting the stirring blade 31 and the motor 33.
  • the stirring unit 30 is a device for stirring and radiating microwaves.
  • the stirring unit 30 includes a stirring blade 31 that radiates microwaves, a motor 33 for rotating the stirring blade 31, and a shaft portion 32 that connects the stirring blade 31 and the motor 33.
  • the shaft portion 32 is rotated by driving the motor 33 and the stirring blade 31 is rotated.
  • the stirring blade 31 can stir and radiate the microwave.
  • the stirring blade 31 is provided on the heating chamber 21 side from an opening (joining portion) that spatially joins the heating chamber 21 and the waveguide section 22, and generates a microwave generated by the magnetron 40 and transmitted through the waveguide section 22.
  • This is an antenna that stirs and radiates toward the heating chamber 21.
  • the stirring blade 31 is rotated by the motor 33 via the shaft portion 32 to stir and radiate the microwave.
  • the stirring blade 31 rotates around the rotation axis a.
  • the stirring blade 31 is made of a metal material for stirring and radiating microwaves.
  • the stirring blade 31 is made of a metal such as aluminum or copper.
  • the stirring blade 31 is a propeller arranged so as to overlap at a predetermined angle.
  • the three sheets are arranged so as to overlap at substantially equal angular intervals.
  • the stirring blade 31 is configured so that wind is generated toward the object to be heated 70.
  • the stirring blade 31 is a flat plate and is inclined so that air is generated toward the object to be heated 70. is doing.
  • the stirring blade 31 should just be the structure which a wind produces toward the to-be-heated material 70 in the range which does not have influence in microwave stirring substantially.
  • the shape of the stirring blade 31 has a rotationally asymmetric shape when the stirring blade 31 is viewed from the direction of the rotation axis a.
  • the rotational asymmetry here means the property that when the stirring blade 31 is rotated about the rotation axis a, the same figure is not obtained unless it is rotated once as viewed from the direction of the rotation axis a. Since the shape of the stirring blade 31 has a rotationally asymmetric shape, the microwave can be stirred and radiated more uniformly.
  • the stirring blade 31 is an example of a blade portion.
  • the shaft portion 32 connects the stirring blade 31 and the motor 33, and transmits the rotation of the motor 33 to the stirring blade 31 to rotate the stirring blade 31.
  • the axial part 32 is comprised from electroconductive materials, such as a metal.
  • the motor 33 is a drive device for rotating the stirring blade 31.
  • the motor 33 is disposed outside the housing 20 (specifically, the waveguide portion 22), but is not limited thereto.
  • the magnetron 40 is a high-frequency generator that generates microwaves for heating the article 70 to be heated.
  • the magnetron 40 is a device that oscillates a high frequency of 300 MHz to 300 GHz, for example.
  • the microwave oscillated by the magnetron 40 is radiated to the heating chamber 21 through the waveguide unit 22 and the stirring blade 31. That is, the magnetron 40 supplies microwaves into the housing 20 (heating chamber 21).
  • Magnetron 40 is fixed to the opening of waveguide section 22.
  • the magnetron 40 is connected to the opening of the waveguide section 22 by inserting a magnetron output section 41 as an oscillation antenna in the horizontal direction.
  • the magnetron 40 is an example of a microwave supply unit.
  • the control unit 50 is a control device that performs output control of the magnetron 40 and rotation control of the stirring blade 31 via the motor 33.
  • the output control of the magnetron 40 includes, for example, control for causing the magnetron 40 to start and stop the output of microwaves.
  • the control unit 50 controls the magnetron 40 to start the microwave output when starting the heating of the article 70 to be heated.
  • the control part 50 controls the magnetron 40, and stops the output of a microwave, when complete
  • the rotation control includes control for starting and stopping the rotation of the stirring blade 31 by controlling the motor 33, and control of the rotation speed.
  • the control unit 50 controls the motor 33 to start the rotation of the stirring blade 31 when starting the heating of the article 70 to be heated. Further, the control unit 50 controls the motor 33 to stop the rotation of the stirring blade 31 when the heating of the article 70 to be heated is finished.
  • the control unit 50 is further characterized in that after the heating of the article 70 to be heated, the motor 33 is controlled again to start (restart) the rotation of the stirring blade 31.
  • the control unit 50 is specifically a microcomputer incorporating a program, but may be realized by a processor or a dedicated circuit.
  • the control unit 50 may include a timer that measures the oscillation time of the microwave, a storage unit that stores a control program executed by the control unit 50, and the like.
  • the microwave device 10 may include a timer unit that measures a microwave oscillation time or the like as a component different from the control unit 50 and a storage unit that stores a control program executed by the control unit 50.
  • the frame 60 is an outer frame that covers the housing 20 from below. By providing the frame 60, the microwave device 10 can be stably installed.
  • the frame 60 is not limited to being made of metal.
  • the power supply unit that supplies power to the motor 33 and the magnetron 40 is not shown.
  • the power supply unit may be controlled by the control unit 50 to supply power.
  • FIG. 3 is a flowchart showing the operation of the microwave device 10 according to the present embodiment.
  • This figure is a flowchart showing the operation of the microwave device 10 when receiving a molding start instruction from the user in a state where the molding die 80 laid with the article 70 to be heated is placed on the mounting table 90.
  • the instruction to start molding from the user is an instruction input from the user via an input unit (not shown) provided in the microwave device 10, for example.
  • control unit 50 When the control unit 50 obtains an instruction to start molding, the control unit 50 performs a heating process (S10 to S30) for heating the article 70 to be heated.
  • the control part 50 starts the rotation by the output of the microwave from the magnetron 40, and the 1st rotational speed of the stirring blade 31 (S10).
  • the control unit 50 may read out information related to the output of the microwave and information related to the rotation speed of the stirring blade 31 stored in the built-in storage unit, and may perform step S10 based on the information, An instruction for the wave output and the rotation speed of the stirring blade 31 may be acquired, and step S10 may be performed based on the acquired instruction.
  • the first rotation speed is a rotation speed for stirring and radiating the microwave oscillated from the magnetron 40 toward the heating chamber 21.
  • the first rotation speed is a rotation speed at which the object to be heated 70 can be heated uniformly.
  • the first rotation speed is, for example, one rotation in 15 seconds. According to this, it is hard to generate a wind by rotation of the stirring blade 31, and microwaves can be stirred and radiated.
  • the start of the microwave output and the start of the rotation of the stirring blade 31 may be performed simultaneously or may not be performed simultaneously.
  • the control unit 50 may start the output of the microwave from the magnetron 40 after starting the rotation of the stirring blade 31.
  • the molding die 80 may be evacuated. For example, evacuation is performed so that the molding die 80 has a predetermined degree of vacuum.
  • the predetermined degree of vacuum is a degree of vacuum to the extent that air present in the molding die 80 does not substantially affect the resin molded product when resin molding is performed. Note that vacuuming is not performed on the heating chamber 21 itself.
  • FIG. 4 is a cross-sectional view showing the inside of the microwave device 10 during heating and cooling of the microwave device 10 according to the present embodiment.
  • FIG. 4A is a cross-sectional view showing a state in the microwave device 10 when the microwave device 10 according to the present embodiment is heated.
  • the microwave (see the broken line in the figure) is schematically shown.
  • the microwave is oscillated from the magnetron 40 during heating under the control of the control unit 50, and the stirring blade 31 is rotated by the motor 33. As shown in FIG. Thereby, the microwave is stirred by the stirring blade 31 and radiated into the heating chamber 21.
  • the mounting table 90 is made of a low-loss dielectric material and has a property of easily transmitting microwaves. Therefore, for example, the mounting table 90 of the housing 20 radiated from the stirring blade 31 is installed. The microwave reflected by the surface is transmitted through the mounting table 90 and applied to the molding die 80 and the object 70 to be heated.
  • the control unit 50 stops the rotation due to the microwave output and the first rotation speed of the stirring blade 31 (S30). Thereby, a heating process is complete
  • the end of heating means, for example, the end of microwave oscillation for a predetermined time.
  • the predetermined time is, for example, information included in information related to the output of the microwave that the control unit 50 has. Alternatively, the predetermined time is a time for continuously oscillating the microwave acquired from the user or a time for stopping the oscillation of the microwave. If heating is not completed (No in S20), the process returns to step S20 and heating is continued.
  • the controller 50 When the heating process (S10 to S30) is completed, the controller 50 performs a cooling process (S40 to S60) for cooling and solidifying the heated object 70 to be heated.
  • natural cooling was performed in the cooling process. For example, it was naturally cooled with the door 23 opened after heating.
  • the object to be heated 70 is, for example, about 600 ° C. when heated. Therefore, natural cooling takes time for cooling. For example, natural cooling took about 2 hours.
  • the microwave device 10 causes the wind to rotate by rotating the stirring blade 31 in the cooling process, thereby forcibly cooling the article 70 to be heated.
  • the control unit 50 starts the rotation of the stirring blade 31 at the second rotation speed (S40).
  • the control unit 50 may read out information on the rotational speed at the time of cooling the stirring blade 31 stored in the built-in storage unit, and may perform step S40 based on the information, or may determine the rotational speed of the stirring blade 31 from the user.
  • An instruction may be acquired, and step S40 may be performed based on the acquired instruction.
  • the second rotation speed is a speed different from the first rotation speed, and is a rotation speed for cooling the heated object 70 heated by generating wind in the heating chamber 21.
  • the second rotation speed is a rotation speed at which wind is generated in the heating chamber 21. That is, the second rotation speed is faster than the first rotation speed.
  • the second rotation speed is, for example, several tens of rotations per second, and, for example, 25 rotations per second. That is, the controller 50 makes the rotation speed (second rotation speed) in the cooling process (during cooling) of the stirring blade 31 faster than the rotation speed (first rotation speed) in the heating process (during heating).
  • controller 50 may continuously change the rotation speed from the first rotation speed to the second rotation speed without temporarily stopping the stirring blade 31 rotating at the first rotation speed during heating.
  • the output of only the microwave may be stopped in step S30, and the stirring blade 31 may continue to rotate.
  • FIG. 4B is a cross-sectional view showing the inside of the microwave device 10 during cooling of the microwave device 10 according to the present embodiment.
  • FIG. 4B by the control of the control unit 50, the oscillation of the microwave from the magnetron 40 is stopped at the time of cooling, and the stirring blade 31 is rotated at a faster speed by the motor 33 than at the time of heating. .
  • wind is generated in the heating chamber 21 (see the arrow in FIG. 4B). That is, the heated object 70 and the molding die 80 warmed during heating can be cooled by the wind.
  • FIG. 4B shows an example in which the cooling is performed with the door 23 closed, the cooling may be performed with the door 23 opened.
  • the microwave device 10 is not hermetically sealed but has a gap that does not substantially affect the heating by the microwave (in other words, a hole that spatially connects the inside and the outside of the housing 20). A plurality. Therefore, the air warmed by the molding die 80 (air inside the housing 20) is released to the outside of the housing 20 through the gap. In addition, air flows into the housing 20 from the outside of the housing 20 through another gap. Thereby, the airflow is formed in the housing
  • the control unit 50 stops the rotation of the stirring blade 31 at the second rotation speed (S60). Thereby, a cooling process is complete
  • the end of the cooling means that the rotation of the stirring blade 31 for a predetermined time is ended, for example.
  • the predetermined time is, for example, information included in information related to the rotation speed of the stirring blade 31 stored in the storage unit. Alternatively, the predetermined time is a time for continuing the rotation at the second rotation speed acquired from the user or a time for stopping the rotation at the second rotation speed. If the cooling is not completed (No in S50), the process returns to step S50 and the cooling is continued.
  • the molding die 80 is taken out from the microwave device 10 (S70). The user takes out the resin molded product that has cooled and hardened from the molding die 80 taken out.
  • the microwave device 10 includes the housing 20, the magnetron 40 (an example of the microwave supply unit) that supplies the microwave into the housing 20, and the housing 20. And a control unit 50 that performs output control of the magnetron 40 and rotation control of the stirring blade 31.
  • the controller 50 stops the microwave output of the magnetron 40 as output control and rotates the stirring blade 31 as rotation control after heating the object 70 arranged in the housing 20 by microwaves. Then, the object to be heated 70 is cooled.
  • the stirring blade 31 rotates, and thereby wind is generated in the heating chamber 21. That is, the heated object 70 heated by the wind can be cooled.
  • the microwave device 10 is not hermetically sealed. For example, a plurality of fine gaps are formed so as not to substantially affect the heating of the object to be heated by the microwave.
  • the air heated by the article 70 to be heated can be exhausted from the gap or air can be sucked from the outside of the microwave device 10.
  • the to-be-heated material 70 warmed by heating can be cooled. Therefore, since the time required for cooling can be shortened compared with the case where it is cooled by natural cooling as in the past, according to the microwave device 10 according to the present embodiment, the heated object 70 is heated. It can be taken out faster than before.
  • control unit 50 varies the rotation speed of the stirring blade 31 (an example of the blade unit) depending on whether the object to be heated 70 is heated or cooled.
  • the microwave can be stirred and radiated at the time of heating, and at the time of cooling, the heated object can be heated by generating a wind.
  • the heated object 70 can be cooled.
  • control unit 50 makes the rotation speed at the time of cooling the stirring blade 31 (an example of the blade section) faster than the rotation speed at the time of heating.
  • FIGS. 5A and 5B the microwave device 10a according to the present embodiment will be described with reference to FIGS. 5A and 5B.
  • wing part (stirring blade 31) differs with respect to the microwave apparatus 10 which concerns on Embodiment 1.
  • FIG. The configuration and functional configuration other than the stirring blades are the same as those in the first embodiment, and the description is omitted or simplified.
  • the operation of the microwave device 10a according to the present embodiment is the same as that of the microwave device 10 according to the first embodiment, and a description thereof will be omitted.
  • FIG. 5A is a perspective view showing the blade 131 of the microwave device 10a according to the present embodiment.
  • FIG. 5B is a cross-sectional view of the microwave device 10a according to the present embodiment corresponding to the line IB-IB in FIG. 1A.
  • the blade portion 131 includes a stirring blade 131a (an example of a first blade) and a blower blade 131b (an example of a second blade).
  • the stirring blade 131a has the same configuration as the stirring blade 31 according to the first embodiment. That is, the stirring blade 131a is a propeller for stirring the microwave.
  • the present embodiment is characterized in that the blower blade 131b is provided on the heated object 70 side with respect to the stirring blade 131a.
  • the blower blade 131b will be described.
  • the blower blade 131b is a propeller for generating air in the heating chamber 21 when the object to be heated 70 is cooled.
  • the blower blades 131b are not flat but partly inclined.
  • the shape of the air blowing blade 131b is, for example, an airfoil that generates wind from the blade portion 131 toward the object to be heated 70.
  • wing 131b rotates, and a wind can be raised toward the to-be-heated material 70. That is, an air flow (flow path) can be formed in the heating chamber 21.
  • the stirring blade 131a and the air blowing blade 131b are disposed on the same rotation axis a.
  • the stirring blade 131 a and the blowing blade 131 b are connected to the motor 33 via the shaft portion 32. That is, the motor 33 serves as both a motor that rotates the stirring blade 131a to stir the microwave and a motor that rotates the blower blade 131b to generate wind.
  • the rotation for stirring the microwave and the rotation for generating the wind are controlled by one motor 33.
  • the cooling effect at the time of cooling can be heightened only by replacing
  • both the stirring blade 131a and the blowing blade 131b are connected to the shaft portion 32, both the stirring blade 131a and the blowing blade 131b rotate when the motor 33 operates. That is, during heating, not only the stirring blade 131a but also the blower blade 131b rotates. During cooling, not only the blowing blade 131b but also the stirring blade 131a rotates.
  • the air blowing blade 131b is disposed on the heated object 70 side with respect to the stirring blade 131a. Thereby, since the wind generated by rotating the air blowing blade 131b during cooling is not blocked by the stirring blade 131a, more air can be sent to the object 70 to be heated.
  • the air blowing blade 131b does not affect the microwave radiated from the stirring blade 131a during heating.
  • the blower blade 131b may be made of a material that hardly reflects and absorbs microwaves.
  • the blower blade 131b is made of a non-metallic material.
  • it is made of a thermosetting resin that hardly affects microwaves and has heat resistance.
  • the thermosetting resin is a phenol resin, an epoxy resin, a silicon resin, polyurethane, or the like.
  • the blower blade 131b may be made of ceramic or the like.
  • the shape of the blower blade 131b has, for example, a rotationally symmetric shape when viewed from the direction of the rotation axis a.
  • the rotational symmetry here is 2 ⁇ / n radians (n is a positive integer when viewed from the direction of the rotation axis a when the blower blade 131b is rotated around the rotation axis a.
  • n This means that the same figure is repeated at the rotation angle of 6). That is, the air blowing blade 131b has a shape different from that of the stirring blade 131a.
  • the length Lb of the air blowing blade 131b is longer than the length La of the stirring blade 131a.
  • the length Lb of the blower blade 131b is long, more wind can be sent to the article 70 to be heated. Further, when the blade 131 is viewed from the direction of the rotation axis a, a part of the blower blade 131b does not overlap with the stirring blade 131a, so that the cooling effect by the stirring blade 131a can be further suppressed during cooling.
  • wing 131b are arrange
  • the stirring blade 131a and the air blowing blade 131b may be arranged with a predetermined interval.
  • the stirring blade 131a and the blower blade 131b are disposed so as to overlap, but the present invention is not limited to this.
  • the stirring blade 131a and the blowing blade 131b are preferably arranged so as not to overlap as much as possible.
  • the blade portion 131 of the microwave device 10a includes the stirring blade 131a (an example of the first blade) that stirs the microwave and the blowing blade 131b (second blade) that performs the cooling. Example).
  • stirring blade 131a (an example of the first blade) is metal
  • blower blade 131b (an example of the second blade) is non-metallic.
  • the stirring blade 131a is made of a metal material, the microwave can be stirred and radiated, and since the air blowing blade 131b is made of a non-metallic material, It is hard to be affected and can generate a wind for cooling.
  • stirring blade 131a an example of the first blade
  • blower blade 131b an example of the second blade
  • the stirring blade 131a is disposed on the same rotation shaft (for example, the rotation shaft a).
  • the stirring blade 131a and the blowing blade 131b can be rotated by one motor 33, the configuration of the microwave device 10a can be simplified. Furthermore, the cooling effect can be easily enhanced by simply replacing the blade portion with the existing microwave device attached to the existing microwave device.
  • the air blowing blade 131b (an example of the second blade) is disposed on the heated object 70 side with respect to the stirring blade 131a (an example of the first blade).
  • blower blade 131b is not easily affected by the stirring blade 131a during cooling, the blower blade 131b can suppress a decrease in the cooling effect by the stirring blade 131a.
  • the length of the blowing blade 131b is larger than the length La of the stirring blade 131a. Lb is longer.
  • blowing blade 131b is less susceptible to the influence of the stirring blade 131a during cooling, it is possible to further suppress a decrease in the cooling effect by the stirring blade 131a of the blowing blade 131b.
  • a microwave device 10b according to this modification will be described with reference to FIGS. 6A and 6B.
  • the structure of the blade portion is different from the microwave device 10a according to the second embodiment.
  • the configuration and functional configuration other than the blades are the same as those in the second embodiment, and the description will be omitted or simplified.
  • the operation of the microwave device 10b according to the present modification is the same as that of the microwave device 10 according to the first embodiment, and a description thereof is omitted. The same applies to the following modifications.
  • FIG. 6A is a perspective view showing a blade portion 231 of the microwave device 10b according to this modification.
  • FIG. 6B is a cross-sectional view of the microwave device 10b according to this modification corresponding to the IB-IB line in FIG. 1A.
  • the blade portion 231 includes a stirring blade 131a (an example of a first blade) and a blower blade 131b (an example of a second blade).
  • the positions of the stirring blade 131a and the blower blade 131b are different from those in the second embodiment.
  • the air blowing blade 131b is characterized in that it is disposed on the shaft portion 32 side with respect to the stirring blade 131a.
  • the stirring blade 131a is disposed on the heated object 70 side with respect to the blower blade 131b.
  • emission of the microwave by the stirring blade 131a at the time of a heating can be reduced more. That is, even if it has the cooling blade 131b, the stirring blade 131a can stir and radiate the microwave during heating.
  • the cooling effect due to the stirring blade 131a is greatly reduced during cooling.
  • the blower blade 131b may be arranged so that there are few portions overlapping the stirring blade 131a when viewed from the direction of the rotation axis a.
  • wing 131b are arrange
  • the stirring blade 131a and the air blowing blade 131b may be arranged with a predetermined interval.
  • FIG. 7A is a perspective view showing a blade portion 331 of the microwave device 10c according to the present modification.
  • FIG. 7B is a cross-sectional view of the microwave device 10c according to the present modification corresponding to the IB-IB line in FIG. 1A.
  • the blade portion 331 includes a blade for stirring microwaves (for heating) and a blade for blowing air (for cooling) for generating wind. It is formed with.
  • wing for ventilation is a wing
  • wing for ventilation is arrange
  • the blade portion 331 is made of a metal material. That is, the stirring blade and the blowing blade are made of a metal material. Since the blade portion 331 has metal blades for stirring the microwave, the blade portion 331 rotates during heating, so that the microwave oscillated from the magnetron 40 can be stirred and radiated. Moreover, since the blade
  • wing for ventilation is comprised with the metal material, the influence which acts on a microwave becomes large compared with the case where it is comprised with the resin material. That is, the influence which the blade
  • wing part 331 is not limited to the shape shown to FIG. 7A, What is necessary is just the shape which can stir a microwave and can raise
  • the stirring blade 131a (an example of the first blade) and the blower blade 131b (an example of the second blade) are integrally formed of metal.
  • wing part 331 which has the blade
  • the wing portion 331 can be easily manufactured.
  • wing for ventilation is resin, it can improve the heat resistance of the blade
  • FIG. 8A is a perspective view showing a blade portion 431 of a microwave device 10d according to the present modification.
  • FIG. 8B is a cross-sectional view of the microwave device 10d according to the present modification corresponding to the IB-IB line in FIG. 1A.
  • the blade portion 431 includes a stirring blade 431a (an example of the first blade) that stirs microwaves, and a blower blade 431b (of the second blade) that generates wind.
  • the shape of the blower blade 431 b is, for example, an airfoil that generates wind from the blade portion 431 toward the object to be heated 70.
  • the same plane means that, for example, the stirring blade 431a and the air blowing blade 431b are arranged at substantially the same position in the axial direction of the rotation axis a.
  • a common central portion for example, the fixing shaft portion 431c
  • the stirring blade 431a is made of a metal material
  • the blower blade 431b is made of a resin material. That is, the stirring blade 431a and the blower blade 431b are separate bodies.
  • the blade portion 431 is configured by fixing the stirring blade 431a and the air blowing blade 431b to the fixing shaft portion 431c.
  • the fixing shaft portion 431 c is connected to the shaft portion 32. That is, the stirring blade 431a and the blower blade 431b rotate around the same rotation axis a.
  • wing part 431 has a rotationally asymmetric shape, for example, when it sees from the rotating shaft a direction.
  • the rotational asymmetry here means a property that when the blade portion 431 is rotated around the rotation axis a, the same figure is not obtained unless it is rotated once as viewed from the direction of the rotation axis a.
  • the stirring blade 431a (an example of the first blade) and the blower blade 431b (an example of the second blade) are arranged in the same plane, and It rotates around the same rotation axis a.
  • the stirring blade 431a and the blower blade 431b are arranged on the same plane, the blower blade 431b hardly influences the microwave during heating, and the stirring blade 431a does not affect the wind during cooling. Hard to give. Therefore, by rotating the blade portion 431 at the time of heating, microwaves can be agitated and emitted, and by rotating the blade portion 431 at the time of cooling, wind can be generated. Therefore, since the to-be-heated object 70 can be cooled by rotating the blade
  • wind is generated from the blade to the object to be heated by rotating the blade during cooling
  • the attachment direction of the air blowing blade is reversed, or the rotation direction of the blade part is reversed, so that the air blowing blade is moved from the object to be heated.
  • the wind can be realized.
  • the microwave device is heated at the time of cooling, and the air intake port that takes cooling air from the outside of the housing into the inside of the housing (for example, the heating chamber) during cooling.
  • the intake port is provided in a part of the casing on the motor side from the blade part, and the exhaust port is the window side from the object to be heated. And it is provided in a part of the housing at a position higher than the object to be heated.
  • a lid and a movable part that moves the lid may be provided in each of the exhaust port and the intake port.
  • the lid is moved by the movable part so as to cover the exhaust and intake ports, thereby blocking the flow of air inside and outside the housing.
  • the lid does not cover the intake and exhaust ports by the movable part.
  • blocking the air flow includes forming a gap that does not substantially affect the microwave during heating.
  • the exhaust port and the intake port may be formed with a gap that does not affect the microwave while being covered by the lid.
  • the second rotation speed may be determined according to the temperature of the object to be heated or the molding die measured by a detection unit such as a temperature sensor.
  • the control unit may determine the second rotation speed such that the higher the temperature detected by the temperature sensor, the faster the rotation speed.
  • the end of heating and the end of cooling may be determined based on the detection result of a detection unit such as a temperature sensor.
  • the control unit 50 may determine the end of heating and the end of cooling according to the temperature of an object to be heated or a molding die measured by a detection unit such as a temperature sensor.
  • the present disclosure can be widely used for microwave devices that heat an object to be heated by dielectric heating.
  • it is useful in microwave devices in various industrial applications such as resin molding.
  • Microwave device 20 Housing 21 Heating chamber 22 Waveguide section 23 Door 24 Window 25 Inner surface 30 Stirring section 31, 131a, 431a Stirring blade 32 Shaft section 33 Motor 40 Magnetron (microwave supply section) ) 41 Magnetron output unit 50 Control unit 60 Frame 70 Object to be heated 80 Molding die 81 Upper die 82 Lower die 90 Mounting table 131, 231, 331, 431 Blade portion 131b, 431b Air blower blade 431c Fixing shaft portion a Rotating shaft La, Lb length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)

Abstract

This microwave device (10) comprises a casing (20), a magnetron (40) which supplies microwave to the space within the casing (20), stirrer blades (31) disposed inside the casing (20) and which stir the microwave, and a control unit (50) which performs the output control of the magnetron (40) and the rotation control of the stirrer blades (31). After a heating target (70) disposed inside the casing (20) has been heated by means of microwave, the control unit (50) performs output control by stopping the microwave output from the magnetron (40), and performs rotation control by rotating the stirrer blades (31), thereby cooling the heating target (70).

Description

マイクロ波装置Microwave equipment
 本開示は、被加熱物を誘電加熱するマイクロ波装置に関する。 The present disclosure relates to a microwave device that dielectrically heats an object to be heated.
 従来、被加熱物を、マイクロ波を用いて加熱する加熱装置が知られている。例えば、特許文献1には、高周波発振器から発振されたマイクロ波を攪拌するスターラファン(羽根部)を備える高周波加熱装置(マイクロ波装置)が開示されている。スターラファンがマイクロ波を攪拌することで、被加熱物を均一に加熱することができる。 Conventionally, a heating apparatus for heating an object to be heated using a microwave is known. For example, Patent Document 1 discloses a high-frequency heating device (microwave device) including a stirrer fan (blade part) that stirs microwaves oscillated from a high-frequency oscillator. When the stirrer fan stirs the microwave, the object to be heated can be heated uniformly.
実開昭62―2194号公報Japanese Utility Model Publication No. 62-2194
 ところで、加熱された被加熱物は、マイクロ波装置から早く取り出されることが望まれる。そのため、加熱された被加熱物は、マイクロ波装置から取り出しが可能な温度(例えば、人が持てる温度)まで下がることが望まれる。 By the way, it is desired that the heated object to be heated is quickly taken out from the microwave device. Therefore, it is desirable that the heated object to be heated is lowered to a temperature at which it can be taken out from the microwave device (for example, a temperature that a person can have).
 しかしながら、上記特許文献1では、加熱後の取り出しに関しては考慮されていない。 However, in the above Patent Document 1, no consideration is given to the removal after heating.
 そこで、本開示は、加熱後の被加熱物を従来よりも早く取り出すことができるマイクロ波装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a microwave device that can take out an object to be heated after heating faster than before.
 上記目的を達成するために、本開示の一態様に係るマイクロ波装置は、筐体と、筐体内にマイクロ波を供給するマイクロ波供給部と、筐体内に配置され、マイクロ波を攪拌する羽根部と、マイクロ波供給部の出力制御及び羽根部の回転制御を行う制御部と、を備える。制御部は、筐体内に配置された被加熱物のマイクロ波による加熱の後に、出力制御としてマイクロ波供給部のマイクロ波の出力を停止させ、かつ回転制御として羽根部を回転させることで被加熱物の冷却を行う。 To achieve the above object, a microwave device according to one embodiment of the present disclosure includes a housing, a microwave supply unit that supplies the microwave into the housing, and a blade that is disposed in the housing and stirs the microwave And a control unit that performs output control of the microwave supply unit and rotation control of the blade unit. After heating the object to be heated arranged in the housing with microwaves, the control unit stops the microwave output of the microwave supply unit as output control and rotates the blade unit as rotation control to heat the object. Cool things.
 上記本開示の一態様に係るマイクロ波装置によれば、加熱後の被加熱物を従来よりも早く取り出すことができる。 According to the microwave device according to one embodiment of the present disclosure, the heated object to be heated can be taken out earlier than before.
図1Aは、実施の形態1に係るマイクロ波装置の全体構成を示す斜視図である。1A is a perspective view showing an overall configuration of a microwave device according to Embodiment 1. FIG. 図1Bは、図1AのIB-IB線における実施の形態1に係るマイクロ波装置の断面図である。1B is a cross-sectional view of the microwave device according to Embodiment 1 taken along line IB-IB in FIG. 1A. 図2は、実施の形態1に係るマイクロ波装置の機能構成を示すブロック図である。FIG. 2 is a block diagram illustrating a functional configuration of the microwave device according to the first embodiment. 図3は、実施の形態1に係るマイクロ波装置の動作を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the microwave device according to the first embodiment. 図4は、実施の形態1に係るマイクロ波装置の加熱時及び冷却時におけるマイクロ波装置内の様子を示す断面図である。FIG. 4 is a cross-sectional view showing the inside of the microwave device during heating and cooling of the microwave device according to the first embodiment. 図5Aは、実施の形態2に係るマイクロ波装置の全体構成を示す斜視図である。FIG. 5A is a perspective view showing an overall configuration of the microwave device according to Embodiment 2. FIG. 図5Bは、図1AのIB-IB線に対応する実施の形態2に係るマイクロ波装置の断面図である。FIG. 5B is a cross-sectional view of the microwave device according to Embodiment 2 corresponding to the IB-IB line in FIG. 1A. 図6Aは、実施の形態2の変形例1に係るマイクロ波装置の全体構成を示す斜視図である。6A is a perspective view showing an overall configuration of a microwave device according to Modification 1 of Embodiment 2. FIG. 図6Bは、図1AのIB-IB線に対応する実施の形態2の変形例1に係るマイクロ波装置の断面図である。6B is a cross-sectional view of the microwave device according to Modification 1 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A. 図7Aは、実施の形態2の変形例2に係るマイクロ波装置の全体構成を示す斜視図である。FIG. 7A is a perspective view showing an overall configuration of a microwave device according to Modification 2 of Embodiment 2. FIG. 図7Bは、図1AのIB-IB線に対応する実施の形態2の変形例2に係るマイクロ波装置の断面図である。FIG. 7B is a cross-sectional view of the microwave device according to Modification 2 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A. 図8Aは、実施の形態2の変形例3に係るマイクロ波装置の全体構成を示す斜視図である。FIG. 8A is a perspective view showing an overall configuration of a microwave device according to Modification 3 of Embodiment 2. FIG. 図8Bは、図1AのIB-IB線に対応する実施の形態2の変形例3に係るマイクロ波装置の断面図である。8B is a cross-sectional view of the microwave device according to Modification 3 of Embodiment 2 corresponding to the IB-IB line in FIG. 1A.
 以下では、本開示のマイクロ波装置について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態及び変形例は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態及び変形例で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the microwave device of the present disclosure will be described in detail with reference to the drawings. Note that each of the embodiments and modifications described below shows a preferred specific example of the present disclosure. Accordingly, the numerical values, shapes, materials, components, component arrangement and connection forms, steps, order of steps, and the like shown in the following embodiments and modifications are examples, and are not intended to limit the present disclosure. . Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
 なお、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 It is to be noted that those skilled in the art provide the accompanying drawings and the following description in order to fully understand the present disclosure, and are not intended to limit the claimed subject matter.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description may be abbreviate | omitted or simplified.
 また、以下の実施の形態で説明に用いられる図面においては座標軸が示される場合がある。Z軸は、マイクロ波装置の高さ方向を表している。また、X軸方向及びY軸方向は、Z軸方向に垂直な平面上において、互いに直交する方向である。 In the drawings used for explanation in the following embodiments, coordinate axes may be shown. The Z axis represents the height direction of the microwave device. The X-axis direction and the Y-axis direction are directions perpendicular to each other on a plane perpendicular to the Z-axis direction.
 (実施の形態1)
 以下、本実施の形態に係るマイクロ波装置10について、図1A~図4を参照しながら説明する。なお、マイクロ波装置10は、型成形、混練、造粒などを行う際の工業用のマイクロ波装置として用いられる。本実施の形態では、樹脂材料を成型するマイクロ波装置10を例に挙げて説明する。
(Embodiment 1)
Hereinafter, the microwave device 10 according to the present embodiment will be described with reference to FIGS. 1A to 4. FIG. The microwave device 10 is used as an industrial microwave device when performing molding, kneading, granulation and the like. In the present embodiment, a microwave device 10 for molding a resin material will be described as an example.
 [1.マイクロ波装置の構成]
 まず、本実施の形態に係るマイクロ波装置10の構成について、図1A~図2を参照しながら説明する。
[1. Configuration of microwave device]
First, the configuration of the microwave device 10 according to the present embodiment will be described with reference to FIGS. 1A to 2.
 図1Aは、本実施の形態に係るマイクロ波装置10の全体構成を示す斜視図である。具体的には、図1Aの(a)は、マイクロ波装置10の全体構成であり、筐体20によって形成され、被加熱物70を収納する加熱室21を主に図示している。図1Aの(b)は、加熱室21に配置されている攪拌羽根31を拡大した図である。図1Bは、図1AのIB-IB線における本実施の形態に係るマイクロ波装置10の断面図である。なお、図1Aの(a)では、加熱室21の様子を示すため、筐体20の一部をマイクロ波装置10から分解して示している。図2は、本実施の形態に係るマイクロ波装置10の機能構成を示すブロック図である。 FIG. 1A is a perspective view showing an overall configuration of a microwave device 10 according to the present embodiment. Specifically, (a) of FIG. 1A is an overall configuration of the microwave device 10, and mainly illustrates a heating chamber 21 that is formed by the casing 20 and that stores the object to be heated 70. FIG. 1B is an enlarged view of the stirring blade 31 disposed in the heating chamber 21. FIG. 1B is a cross-sectional view of microwave device 10 according to the present embodiment taken along line IB-IB in FIG. 1A. In FIG. 1A, a part of the housing 20 is disassembled from the microwave device 10 to show the heating chamber 21. FIG. 2 is a block diagram showing a functional configuration of the microwave device 10 according to the present embodiment.
 図1A及び図1Bに示すように、マイクロ波装置10は、筐体20と、攪拌羽根31及び軸部32を含む攪拌部30と、マグネトロン40と、制御部50と、フレーム60とを備える。 1A and 1B, the microwave device 10 includes a housing 20, a stirring unit 30 including a stirring blade 31 and a shaft portion 32, a magnetron 40, a control unit 50, and a frame 60.
 筐体20は、マイクロ波装置10の外観を構成する。筐体20は、攪拌羽根31及び軸部32を収納する収容体である。筐体20は、金属製の材料から構成されている。筐体20は、加熱室21と導波部22とを有する。 The housing 20 constitutes the appearance of the microwave device 10. The housing 20 is a container that houses the stirring blade 31 and the shaft portion 32. The housing | casing 20 is comprised from the metal material. The housing 20 includes a heating chamber 21 and a waveguide unit 22.
 加熱室21は、被加熱物70(具体的には、成型用型80に敷き詰められた被加熱物70)を誘電加熱(高周波加熱)するための略直方体状の箱体である。なお、加熱室21内には、加熱室21内にマイクロ波を攪拌して放射する攪拌羽根31も配置される。 The heating chamber 21 is a substantially rectangular parallelepiped box for dielectric heating (high-frequency heating) of the object to be heated 70 (specifically, the object to be heated 70 spread on the molding die 80). In the heating chamber 21, a stirring blade 31 that stirs and radiates microwaves in the heating chamber 21 is also disposed.
 加熱室21の前面(X軸マイナス側)には、加熱室21へのアクセスのための開閉可能な扉23が設けられている。また、扉23の少なくとも一部には窓24が形成されており、扉23が閉められていてもユーザは加熱室21内の様子を確認することができる。 A door 23 that can be opened and closed for access to the heating chamber 21 is provided on the front surface (X-axis minus side) of the heating chamber 21. Moreover, the window 24 is formed in at least one part of the door 23, and a user can confirm the mode in the heating chamber 21, even if the door 23 is closed.
 加熱室21の背面(X軸プラス側)には、加熱室21と導波部22とを空間的に接続する開口が形成されており、当該開口に攪拌羽根31とモータ33とを接続する軸部32が配置されている。 An opening for spatially connecting the heating chamber 21 and the waveguide portion 22 is formed on the back surface (X-axis plus side) of the heating chamber 21, and an axis for connecting the stirring blade 31 and the motor 33 to the opening. The part 32 is arranged.
 筐体20の内面25(内壁)は、金属から構成されるので、攪拌羽根31から放射され内面25に入射したマイクロ波を当該内面25で反射させることができる。 Since the inner surface 25 (inner wall) of the housing 20 is made of metal, the microwave radiated from the stirring blade 31 and incident on the inner surface 25 can be reflected by the inner surface 25.
 なお、被加熱物70は、樹脂成型品を作製するための樹脂材料であり、例えばペレット状の樹脂材料である。また、成型用型80は、耐熱性が高く、かつマイクロ波により発熱する材料から構成される。本実施の形態では、成型用型80は、マイクロ波により発熱する材料を含むシリコーンゴムから構成されている。成型用型80は、上型81と下型82とからなる。上型81及び下型82の少なくとも一方には予め樹脂成型品の形状に対応した形状の凹部又は凸部が形成されており、上型81と下型82とを合わせたときに形成される空間に被加熱物70が敷き詰められる。そして、被加熱物70がマイクロ波により加熱され溶けて、当該空間内にいきわたる。その後、冷却されることで、溶けた被加熱物70が固まり所定の形状を有する樹脂成型品が作製される。 In addition, the to-be-heated material 70 is a resin material for producing a resin molded product, for example, a pellet-shaped resin material. The molding die 80 is made of a material having high heat resistance and generating heat by microwaves. In the present embodiment, the molding die 80 is made of silicone rubber containing a material that generates heat by microwaves. The molding die 80 includes an upper die 81 and a lower die 82. At least one of the upper mold 81 and the lower mold 82 is formed with a concave or convex portion corresponding to the shape of the resin molded product in advance, and a space formed when the upper mold 81 and the lower mold 82 are combined. The object to be heated 70 is spread on the floor. And the to-be-heated material 70 is heated and melt | dissolved by a microwave, and spreads in the said space. Thereafter, by cooling, the melted heated object 70 is solidified to produce a resin molded product having a predetermined shape.
 また、載置台90は、被加熱物70が敷き詰められた成型用型80を載置する台である。載置台90は、フェノール系の樹脂、セラミック又はガラスなどの低損失誘電材料から構成され、マイクロ波が容易に透過できる性質を有するとよい。なお、本実施の形態では、載置台90はマイクロ波装置10に脱着可能に取り付けられるが、載置台90は予めマイクロ波装置10に固定されていてもよい。 Further, the mounting table 90 is a table on which the molding die 80 on which the object to be heated 70 is spread is placed. The mounting table 90 is made of a low-loss dielectric material such as a phenol-based resin, ceramic, or glass, and preferably has a property that microwaves can be easily transmitted. In the present embodiment, the mounting table 90 is detachably attached to the microwave device 10, but the mounting table 90 may be fixed to the microwave device 10 in advance.
 導波部22は、マグネトロン40で発生したマイクロ波を加熱室21まで伝送する伝送路である。本実施の形態では、マグネトロン40で発振されたマイクロ波を、マグネトロン40より上部に位置する加熱室21まで伝送する。導波部22は、金属から構成される。本実施の形態では、導波部22は加熱室21の背面側に配置されている。また、導波部22は、マグネトロン40を固定するための開口及び攪拌羽根31とモータ33とを接続する軸部32を挿通するための開口を有している。 The waveguide unit 22 is a transmission path that transmits the microwave generated by the magnetron 40 to the heating chamber 21. In the present embodiment, the microwave oscillated by the magnetron 40 is transmitted to the heating chamber 21 located above the magnetron 40. The waveguide 22 is made of metal. In the present embodiment, the waveguide portion 22 is disposed on the back side of the heating chamber 21. The waveguide unit 22 has an opening for fixing the magnetron 40 and an opening for inserting the shaft portion 32 connecting the stirring blade 31 and the motor 33.
 攪拌部30は、マイクロ波を攪拌して放射するための装置である。攪拌部30は、マイクロ波を放射する攪拌羽根31、攪拌羽根31を回転させるためのモータ33、及び攪拌羽根31とモータ33とを接続する軸部32とからなる。モータ33の駆動により軸部32が回転されて攪拌羽根31が回転する構造である。モータ33により攪拌羽根31が回転することで、攪拌羽根31はマイクロ波を攪拌して放射させることができる。 The stirring unit 30 is a device for stirring and radiating microwaves. The stirring unit 30 includes a stirring blade 31 that radiates microwaves, a motor 33 for rotating the stirring blade 31, and a shaft portion 32 that connects the stirring blade 31 and the motor 33. The shaft portion 32 is rotated by driving the motor 33 and the stirring blade 31 is rotated. When the stirring blade 31 is rotated by the motor 33, the stirring blade 31 can stir and radiate the microwave.
 攪拌羽根31は、加熱室21と導波部22とを空間的に接合する開口(結合部分)より加熱室21側に設けられ、マグネトロン40で発生して導波部22を伝送したマイクロ波を加熱室21に向けて攪拌し放射させるアンテナである。例えば、攪拌羽根31は、軸部32を介してモータ33により回転されることで、マイクロ波を攪拌し放射させる。攪拌羽根31は、回転軸aを中心に回転する。 The stirring blade 31 is provided on the heating chamber 21 side from an opening (joining portion) that spatially joins the heating chamber 21 and the waveguide section 22, and generates a microwave generated by the magnetron 40 and transmitted through the waveguide section 22. This is an antenna that stirs and radiates toward the heating chamber 21. For example, the stirring blade 31 is rotated by the motor 33 via the shaft portion 32 to stir and radiate the microwave. The stirring blade 31 rotates around the rotation axis a.
 攪拌羽根31は、マイクロ波を攪拌し放射するため、金属製の材料から構成される。例えば、攪拌羽根31は、アルミニウム又は銅などの金属から構成される。 The stirring blade 31 is made of a metal material for stirring and radiating microwaves. For example, the stirring blade 31 is made of a metal such as aluminum or copper.
 図1Aの(b)に示すように、攪拌羽根31は、所定の角度で重ねて配置されたプロペラである。本実施の形態では、3枚が略等しい角度間隔で重ねて配置されている。なお、攪拌羽根31は、図示しないが被加熱物70に向けて風が起きるように構成されており、例えば、攪拌羽根31は、平板で、被加熱物70に向けて風が起きるように傾斜している。なお、攪拌羽根31は、マイクロ波の攪拌に実質的に影響がない範囲で、被加熱物70に向けて風が起きる構成であればよい。 As shown in (b) of FIG. 1A, the stirring blade 31 is a propeller arranged so as to overlap at a predetermined angle. In the present embodiment, the three sheets are arranged so as to overlap at substantially equal angular intervals. Although not shown, the stirring blade 31 is configured so that wind is generated toward the object to be heated 70. For example, the stirring blade 31 is a flat plate and is inclined so that air is generated toward the object to be heated 70. is doing. In addition, the stirring blade 31 should just be the structure which a wind produces toward the to-be-heated material 70 in the range which does not have influence in microwave stirring substantially.
 また、攪拌羽根31の形状は、攪拌羽根31を回転軸a方向から見た場合、回転非対称の形状を有する。ここでいう回転非対称とは、回転軸aを中心に攪拌羽根31を回転させたとき、回転軸a方向から見て1回転しないと同じ図形とならない性質を意味する。攪拌羽根31の形状が回転非対称の形状を有することで、マイクロ波をより均一に攪拌し放射させることができる。 Further, the shape of the stirring blade 31 has a rotationally asymmetric shape when the stirring blade 31 is viewed from the direction of the rotation axis a. The rotational asymmetry here means the property that when the stirring blade 31 is rotated about the rotation axis a, the same figure is not obtained unless it is rotated once as viewed from the direction of the rotation axis a. Since the shape of the stirring blade 31 has a rotationally asymmetric shape, the microwave can be stirred and radiated more uniformly.
 なお、攪拌羽根31は、羽根部の一例である。 The stirring blade 31 is an example of a blade portion.
 軸部32は、攪拌羽根31とモータ33とを接続し、モータ33の回転を攪拌羽根31に伝えることで攪拌羽根31を回転させる。軸部32は、金属などの導電性材料から構成される。 The shaft portion 32 connects the stirring blade 31 and the motor 33, and transmits the rotation of the motor 33 to the stirring blade 31 to rotate the stirring blade 31. The axial part 32 is comprised from electroconductive materials, such as a metal.
 モータ33は、攪拌羽根31を回転させるための駆動装置である。本実施の形態では、モータ33は、筐体20(具体的には、導波部22)の外側に配置されているが、これに限定されない。 The motor 33 is a drive device for rotating the stirring blade 31. In the present embodiment, the motor 33 is disposed outside the housing 20 (specifically, the waveguide portion 22), but is not limited thereto.
 マグネトロン40は、被加熱物70を加熱するためのマイクロ波を発生する高周波発生装置である。マグネトロン40は、例えば、300MHz以上300GHz以下の高周波を発振する装置である。マグネトロン40が発振したマイクロ波は導波部22及び攪拌羽根31を介して加熱室21に放射される。つまり、マグネトロン40は、筐体20(加熱室21)内にマイクロ波を供給する。 The magnetron 40 is a high-frequency generator that generates microwaves for heating the article 70 to be heated. The magnetron 40 is a device that oscillates a high frequency of 300 MHz to 300 GHz, for example. The microwave oscillated by the magnetron 40 is radiated to the heating chamber 21 through the waveguide unit 22 and the stirring blade 31. That is, the magnetron 40 supplies microwaves into the housing 20 (heating chamber 21).
 マグネトロン40は、導波部22の開口に固定される。例えば、マグネトロン40は、導波部22の開口に対して発振アンテナであるマグネトロン出力部41が水平方向に挿入されて接続されている。なお、マグネトロン40は、マイクロ波供給部の一例である。 Magnetron 40 is fixed to the opening of waveguide section 22. For example, the magnetron 40 is connected to the opening of the waveguide section 22 by inserting a magnetron output section 41 as an oscillation antenna in the horizontal direction. The magnetron 40 is an example of a microwave supply unit.
 図2に示すように、制御部50は、マグネトロン40の出力制御及びモータ33を介して攪拌羽根31の回転制御を行う制御装置である。マグネトロン40の出力制御とは、例えば、マグネトロン40にマイクロ波の出力を開始させる及び停止させる制御を含む。制御部50は、被加熱物70の加熱を開始するときに、マグネトロン40を制御し、マイクロ波の出力を開始させる。また、制御部50は、被加熱物70の加熱を終了するときに、マグネトロン40を制御し、マイクロ波の出力を停止させる。 As shown in FIG. 2, the control unit 50 is a control device that performs output control of the magnetron 40 and rotation control of the stirring blade 31 via the motor 33. The output control of the magnetron 40 includes, for example, control for causing the magnetron 40 to start and stop the output of microwaves. The control unit 50 controls the magnetron 40 to start the microwave output when starting the heating of the article 70 to be heated. Moreover, the control part 50 controls the magnetron 40, and stops the output of a microwave, when complete | finishing the heating of the to-be-heated material 70. FIG.
 また、回転制御とは、モータ33を制御することにより攪拌羽根31の回転の開始及び停止させる制御、並びに、回転速度の制御を含む。制御部50は、被加熱物70の加熱を開始するときに、モータ33を制御し、攪拌羽根31の回転を開始させる。また、制御部50は、被加熱物70の加熱を終了するときに、モータ33を制御し、攪拌羽根31の回転を停止させる。本実施の形態では、制御部50は、さらに、被加熱物70の加熱が終了した後に再度モータ33を制御し、攪拌羽根31の回転を開始させる(再開させる)点に特徴を有する。 Further, the rotation control includes control for starting and stopping the rotation of the stirring blade 31 by controlling the motor 33, and control of the rotation speed. The control unit 50 controls the motor 33 to start the rotation of the stirring blade 31 when starting the heating of the article 70 to be heated. Further, the control unit 50 controls the motor 33 to stop the rotation of the stirring blade 31 when the heating of the article 70 to be heated is finished. In the present embodiment, the control unit 50 is further characterized in that after the heating of the article 70 to be heated, the motor 33 is controlled again to start (restart) the rotation of the stirring blade 31.
 制御部50は、具体的には、プログラムを内蔵するマイクロコンピュータであるが、プロセッサまたは専用回路などにより実現されてもよい。なお、制御部50は、マイクロ波の発振時間などを計測するタイマ、並びに、制御部50が実行する制御プログラムを記憶する記憶部などを内蔵していてもよい。あるいは、マイクロ波装置10は制御部50とは別の構成要素としてマイクロ波の発振時間などを計測するタイマ部、及び制御部50が実行する制御プログラムを記憶する記憶部を備えていてもよい。 The control unit 50 is specifically a microcomputer incorporating a program, but may be realized by a processor or a dedicated circuit. The control unit 50 may include a timer that measures the oscillation time of the microwave, a storage unit that stores a control program executed by the control unit 50, and the like. Alternatively, the microwave device 10 may include a timer unit that measures a microwave oscillation time or the like as a component different from the control unit 50 and a storage unit that stores a control program executed by the control unit 50.
 フレーム60は、筐体20を下側から覆う外枠である。フレーム60が設けられることで、マイクロ波装置10を安定して設置することができる。なお、フレーム60は、金属から構成されることに限定されない。 The frame 60 is an outer frame that covers the housing 20 from below. By providing the frame 60, the microwave device 10 can be stably installed. The frame 60 is not limited to being made of metal.
 なお、上記では、モータ33及びマグネトロン40などに電力を供給する電源部などは、図示を省略している。また、当該電源部は、制御部50により電力の供給の制御が行われてもよい。 In the above description, the power supply unit that supplies power to the motor 33 and the magnetron 40 is not shown. The power supply unit may be controlled by the control unit 50 to supply power.
 [2.マイクロ波装置の動作]
 続いて、マイクロ波装置10の動作について、図3及び図4を参照しながら説明する。
[2. Operation of microwave device]
Next, the operation of the microwave device 10 will be described with reference to FIGS. 3 and 4.
 図3は、本実施の形態に係るマイクロ波装置10の動作を示すフローチャートである。なお、本図は、被加熱物70を敷き詰めた成型用型80を載置台90に載置した状態においてユーザから成型開始の指示を受けた場合のマイクロ波装置10の動作を示すフローチャートである。ユーザからの成型開始の指示とは、例えばマイクロ波装置10が備える入力部(図示しない)を介してユーザから入力される指示である。 FIG. 3 is a flowchart showing the operation of the microwave device 10 according to the present embodiment. This figure is a flowchart showing the operation of the microwave device 10 when receiving a molding start instruction from the user in a state where the molding die 80 laid with the article 70 to be heated is placed on the mounting table 90. The instruction to start molding from the user is an instruction input from the user via an input unit (not shown) provided in the microwave device 10, for example.
 制御部50は、成型開始の指示を取得すると、被加熱物70を加熱する加熱工程(S10~S30)を行う。まず、制御部50は、マグネトロン40からのマイクロ波の出力及び攪拌羽根31の第1の回転速度による回転を開始させる(S10)。制御部50は、内蔵する記憶部に記憶されているマイクロ波の出力に関する情報、及び、攪拌羽根31の回転速度に関する情報を読み出し当該情報に基づいてステップS10を行ってもよいし、ユーザからマイクロ波の出力及び攪拌羽根31の回転速度の指示を取得し、取得した指示に基づいてステップS10を行ってもよい。 When the control unit 50 obtains an instruction to start molding, the control unit 50 performs a heating process (S10 to S30) for heating the article 70 to be heated. First, the control part 50 starts the rotation by the output of the microwave from the magnetron 40, and the 1st rotational speed of the stirring blade 31 (S10). The control unit 50 may read out information related to the output of the microwave and information related to the rotation speed of the stirring blade 31 stored in the built-in storage unit, and may perform step S10 based on the information, An instruction for the wave output and the rotation speed of the stirring blade 31 may be acquired, and step S10 may be performed based on the acquired instruction.
 なお、第1の回転速度とは、マグネトロン40から発振されたマイクロ波を加熱室21に向けて攪拌して放射するための回転速度である。例えば、第1の回転速度は、被加熱物70を均一に加熱できるような回転速度である。第1の回転速度とは、例えば、15秒間で1回転などである。これによれば、攪拌羽根31の回転により風が起こりにくく、かつマイクロ波を攪拌して放射することができる。なお、マイクロ波の出力の開始及び攪拌羽根31の回転の開始は、同時に行われてもよいし、同時に行われなくてもよい。例えば、制御部50は、攪拌羽根31の回転を開始させた後にマグネトロン40からマイクロ波の出力を開始させてもよい。 The first rotation speed is a rotation speed for stirring and radiating the microwave oscillated from the magnetron 40 toward the heating chamber 21. For example, the first rotation speed is a rotation speed at which the object to be heated 70 can be heated uniformly. The first rotation speed is, for example, one rotation in 15 seconds. According to this, it is hard to generate a wind by rotation of the stirring blade 31, and microwaves can be stirred and radiated. The start of the microwave output and the start of the rotation of the stirring blade 31 may be performed simultaneously or may not be performed simultaneously. For example, the control unit 50 may start the output of the microwave from the magnetron 40 after starting the rotation of the stirring blade 31.
 なお、加熱工程(S10~S30)では、成型用型80内に対して真空引きが行われてもよい。例えば、成型用型80内が所定の真空度となるように、真空引きが行われる。所定の真空度とは、樹脂成型を行う上で、成型用型80内に存在する空気が実質的に樹脂成型品に影響を及ぼさない程度の真空度である。なお、加熱室21自体に対しては、真空引きは行われない。 In the heating process (S10 to S30), the molding die 80 may be evacuated. For example, evacuation is performed so that the molding die 80 has a predetermined degree of vacuum. The predetermined degree of vacuum is a degree of vacuum to the extent that air present in the molding die 80 does not substantially affect the resin molded product when resin molding is performed. Note that vacuuming is not performed on the heating chamber 21 itself.
 ここで、加熱時におけるマイクロ波装置10内の様子について、図4を参照しながら説明する。 Here, the inside of the microwave device 10 during heating will be described with reference to FIG.
 図4は、本実施の形態に係るマイクロ波装置10の加熱時及び冷却時におけるマイクロ波装置10内の様子を示す断面図である。具体的には、図4の(a)は、本実施の形態に係るマイクロ波装置10の加熱時におけるマイクロ波装置10内の様子を示す断面図である。なお、マイクロ波(図中の破線参照)は、模式的に示されている。 FIG. 4 is a cross-sectional view showing the inside of the microwave device 10 during heating and cooling of the microwave device 10 according to the present embodiment. Specifically, FIG. 4A is a cross-sectional view showing a state in the microwave device 10 when the microwave device 10 according to the present embodiment is heated. The microwave (see the broken line in the figure) is schematically shown.
 図4の(a)に示すように、制御部50の制御により、加熱時にはマグネトロン40からマイクロ波が発振され、かつモータ33により攪拌羽根31が回転している。これにより、マイクロ波は攪拌羽根31で攪拌され加熱室21内に放射される。なお、上記で説明したように、載置台90は低損失誘電材料からなり、マイクロ波を容易に透過できる性質を有するので、例えば攪拌羽根31から放射され筐体20の載置台90が設置されている面で反射されたマイクロ波は、載置台90を透過して成型用型80及び被加熱物70に照射される。 4A, the microwave is oscillated from the magnetron 40 during heating under the control of the control unit 50, and the stirring blade 31 is rotated by the motor 33. As shown in FIG. Thereby, the microwave is stirred by the stirring blade 31 and radiated into the heating chamber 21. As described above, the mounting table 90 is made of a low-loss dielectric material and has a property of easily transmitting microwaves. Therefore, for example, the mounting table 90 of the housing 20 radiated from the stirring blade 31 is installed. The microwave reflected by the surface is transmitted through the mounting table 90 and applied to the molding die 80 and the object 70 to be heated.
 そして、図3を再び参照して、加熱が終了する(S20でYes)と、制御部50は、マイクロ波の出力及び攪拌羽根31の第1の回転速度による回転を停止させる(S30)。これにより、加熱工程が終了する。加熱の終了は、例えば所定時間のマイクロ波の発振が終了することを意味する。所定時間は、例えば、制御部50が有するマイクロ波の出力に関する情報に含まれる情報である。あるいは、所定時間とは、ユーザから取得したマイクロ波を継続して発振する時間又はマイクロ波の発振を停止する時刻である。なお、加熱が終了していない(S20でNo)と、ステップS20に戻り加熱が継続される。 Referring to FIG. 3 again, when the heating is completed (Yes in S20), the control unit 50 stops the rotation due to the microwave output and the first rotation speed of the stirring blade 31 (S30). Thereby, a heating process is complete | finished. The end of heating means, for example, the end of microwave oscillation for a predetermined time. The predetermined time is, for example, information included in information related to the output of the microwave that the control unit 50 has. Alternatively, the predetermined time is a time for continuously oscillating the microwave acquired from the user or a time for stopping the oscillation of the microwave. If heating is not completed (No in S20), the process returns to step S20 and heating is continued.
 制御部50は、加熱工程(S10~S30)が終了すると、温められた被加熱物70を冷やして固める冷却工程(S40~S60)を行う。 When the heating process (S10 to S30) is completed, the controller 50 performs a cooling process (S40 to S60) for cooling and solidifying the heated object 70 to be heated.
 なお、従来であれば、冷却工程では、自然冷却が行われていた。例えば、加熱後に扉23を開けた状態で自然冷却されていた。被加熱物70は加熱時には、例えば600℃程度となる。そのため、自然冷却では冷却に時間がかかる。例えば、自然冷却であれば2時間程度かかっていた。一方、マイクロ波装置10は、冷却工程において攪拌羽根31を回転させることで風を起こし被加熱物70を強制冷却する。 In the past, natural cooling was performed in the cooling process. For example, it was naturally cooled with the door 23 opened after heating. The object to be heated 70 is, for example, about 600 ° C. when heated. Therefore, natural cooling takes time for cooling. For example, natural cooling took about 2 hours. On the other hand, the microwave device 10 causes the wind to rotate by rotating the stirring blade 31 in the cooling process, thereby forcibly cooling the article 70 to be heated.
 冷却工程では、まず、制御部50は、攪拌羽根31の第2の回転速度による回転を開始させる(S40)。制御部50は、内蔵する記憶部に記憶されている攪拌羽根31の冷却時における回転速度に関する情報を読み出し当該情報に基づいてステップS40を行ってもよいし、ユーザから攪拌羽根31の回転速度の指示を取得し、取得した指示に基づいてステップS40を行ってもよい。 In the cooling process, first, the control unit 50 starts the rotation of the stirring blade 31 at the second rotation speed (S40). The control unit 50 may read out information on the rotational speed at the time of cooling the stirring blade 31 stored in the built-in storage unit, and may perform step S40 based on the information, or may determine the rotational speed of the stirring blade 31 from the user. An instruction may be acquired, and step S40 may be performed based on the acquired instruction.
 第2の回転速度とは、第1の回転速度とは異なる速度であり、加熱室21内に風を起こすことで加熱された被加熱物70を冷却するための回転速度である。例えば、第2の回転速度は、加熱室21内に風が起こる程度の回転速度である。つまり、第2の回転速度は、第1の回転速度より速い。第2の回転速度は、例えば、1秒間に数十回転であり、一例として1秒間に25回転である。つまり、制御部50は、攪拌羽根31の冷却工程(冷却時)における回転速度(第2の回転速度)を、加熱工程(加熱時)における回転速度(第1の回転速度)よりも速くする。 The second rotation speed is a speed different from the first rotation speed, and is a rotation speed for cooling the heated object 70 heated by generating wind in the heating chamber 21. For example, the second rotation speed is a rotation speed at which wind is generated in the heating chamber 21. That is, the second rotation speed is faster than the first rotation speed. The second rotation speed is, for example, several tens of rotations per second, and, for example, 25 rotations per second. That is, the controller 50 makes the rotation speed (second rotation speed) in the cooling process (during cooling) of the stirring blade 31 faster than the rotation speed (first rotation speed) in the heating process (during heating).
 なお、制御部50は、加熱時に第1の回転速度で回転している攪拌羽根31を一旦停止させずに第1の回転速度から第2の回転速度へ連続的に回転速度を変更してもよい。例えば、ステップS30においてマイクロ波のみ出力を停止させ、攪拌羽根31は回転を継続されてもよい。 Note that the controller 50 may continuously change the rotation speed from the first rotation speed to the second rotation speed without temporarily stopping the stirring blade 31 rotating at the first rotation speed during heating. Good. For example, the output of only the microwave may be stopped in step S30, and the stirring blade 31 may continue to rotate.
 ここで、冷却時におけるマイクロ波装置10内の様子について、図4の(b)を参照しながら説明する。 Here, the state in the microwave device 10 during cooling will be described with reference to FIG.
 図4の(b)は、本実施の形態に係るマイクロ波装置10の冷却時におけるマイクロ波装置10内の様子を示す断面図である。 FIG. 4B is a cross-sectional view showing the inside of the microwave device 10 during cooling of the microwave device 10 according to the present embodiment.
 図4の(b)に示すように、制御部50の制御により、冷却時にはマグネトロン40からのマイクロ波の発振が停止され、かつモータ33により攪拌羽根31が加熱時より速い速度で回転している。これにより、加熱室21内に風が起こる(図4の(b)の矢印参照)。つまり、加熱時に温められた被加熱物70及び成型用型80を当該風により冷ますことができる。図4の(b)では、扉23を閉めた状態で冷却が行われている例を示しているが、扉23を開けた状態で冷却が行われてもよい。 As shown in FIG. 4B, by the control of the control unit 50, the oscillation of the microwave from the magnetron 40 is stopped at the time of cooling, and the stirring blade 31 is rotated at a faster speed by the motor 33 than at the time of heating. . As a result, wind is generated in the heating chamber 21 (see the arrow in FIG. 4B). That is, the heated object 70 and the molding die 80 warmed during heating can be cooled by the wind. Although FIG. 4B shows an example in which the cooling is performed with the door 23 closed, the cooling may be performed with the door 23 opened.
 なお、マイクロ波装置10は、密閉されているわけではなく、マイクロ波による加熱に実質的に影響がない程度の隙間(言い換えると、筐体20の内部と外部とを空間的に接続する孔)を複数有する。そのため、成型用型80により温められた空気(筐体20内部の空気)は、隙間から筐体20の外部に放出される。また、別の隙間を介して、筐体20の外部から筐体20の内部に空気が流入する。これにより、冷却時に攪拌羽根31を回転させ風を起こすことで筐体20内に空気の流れが形成され、成型用型80及び被加熱物70を冷やすことができる。 The microwave device 10 is not hermetically sealed but has a gap that does not substantially affect the heating by the microwave (in other words, a hole that spatially connects the inside and the outside of the housing 20). A plurality. Therefore, the air warmed by the molding die 80 (air inside the housing 20) is released to the outside of the housing 20 through the gap. In addition, air flows into the housing 20 from the outside of the housing 20 through another gap. Thereby, the airflow is formed in the housing | casing 20 by rotating the stirring blade 31 at the time of cooling, and generating a wind, and can cool the shaping | molding die 80 and the to-be-heated material 70. FIG.
 そして、図3を再び参照して、冷却が終了する(S50でYes)と、制御部50は、攪拌羽根31の第2の回転速度による回転を停止させる(S60)。これにより、冷却工程が終了する。冷却の終了とは、例えば所定時間の攪拌羽根31の回転が終了することを意味する。所定時間は、例えば、記憶部に記憶されている攪拌羽根31の回転速度に関する情報に含まれる情報である。あるいは、所定時間は、ユーザから取得した第2の回転速度での回転を継続する時間又は第2の回転速度での回転を停止する時刻である。なお、冷却が終了していない(S50でNo)と、ステップS50に戻り冷却が継続される。 Referring to FIG. 3 again, when the cooling is completed (Yes in S50), the control unit 50 stops the rotation of the stirring blade 31 at the second rotation speed (S60). Thereby, a cooling process is complete | finished. The end of the cooling means that the rotation of the stirring blade 31 for a predetermined time is ended, for example. The predetermined time is, for example, information included in information related to the rotation speed of the stirring blade 31 stored in the storage unit. Alternatively, the predetermined time is a time for continuing the rotation at the second rotation speed acquired from the user or a time for stopping the rotation at the second rotation speed. If the cooling is not completed (No in S50), the process returns to step S50 and the cooling is continued.
 そして、冷却工程が終了すると、成型用型80がマイクロ波装置10から取り出される(S70)。ユーザは、取り出した成型用型80から冷却して固まった樹脂成型品を取り出す。 Then, when the cooling process is completed, the molding die 80 is taken out from the microwave device 10 (S70). The user takes out the resin molded product that has cooled and hardened from the molding die 80 taken out.
 [3.効果など]
 以上のように、本実施の形態に係るマイクロ波装置10は、筐体20と、筐体20内にマイクロ波を供給するマグネトロン40(マイクロ波供給部の一例)と、筐体20内に配置され、マイクロ波を攪拌する攪拌羽根31(羽根部の一例)と、マグネトロン40の出力制御及び攪拌羽根31の回転制御を行う制御部50と、を備える。制御部50は、筐体20内に配置された被加熱物70のマイクロ波による加熱の後に、出力制御としてマグネトロン40のマイクロ波の出力を停止させ、かつ回転制御として攪拌羽根31を回転させることで被加熱物70の冷却を行う。
[3. Effect etc.]
As described above, the microwave device 10 according to the present embodiment includes the housing 20, the magnetron 40 (an example of the microwave supply unit) that supplies the microwave into the housing 20, and the housing 20. And a control unit 50 that performs output control of the magnetron 40 and rotation control of the stirring blade 31. The controller 50 stops the microwave output of the magnetron 40 as output control and rotates the stirring blade 31 as rotation control after heating the object 70 arranged in the housing 20 by microwaves. Then, the object to be heated 70 is cooled.
 これにより、加熱が終了した後に、攪拌羽根31が回転することで、加熱室21内に風が起こる。つまり、当該風により加熱された被加熱物70を冷却することができる。また、マイクロ波装置10は密閉されているわけではなく、例えば、マイクロ波による被加熱物の加熱に対する影響が実質的にない程度の細かな隙間が複数形成されている。攪拌羽根31を回転させ風を起こすことで、当該隙間から被加熱物70で温められた空気を排気する又はマイクロ波装置10外部から空気を吸気することができる。これにより、加熱により温められた被加熱物70を冷却することができる。よって、従来のように自然冷却により冷却していた場合に比べ冷却に要する時間を短縮することができるので、本実施の形態に係るマイクロ波装置10によれば、加熱後の被加熱物70を従来よりも早く取り出すことができる。 Thus, after the heating is completed, the stirring blade 31 rotates, and thereby wind is generated in the heating chamber 21. That is, the heated object 70 heated by the wind can be cooled. Further, the microwave device 10 is not hermetically sealed. For example, a plurality of fine gaps are formed so as not to substantially affect the heating of the object to be heated by the microwave. By rotating the stirring blade 31 and generating wind, the air heated by the article 70 to be heated can be exhausted from the gap or air can be sucked from the outside of the microwave device 10. Thereby, the to-be-heated material 70 warmed by heating can be cooled. Therefore, since the time required for cooling can be shortened compared with the case where it is cooled by natural cooling as in the past, according to the microwave device 10 according to the present embodiment, the heated object 70 is heated. It can be taken out faster than before.
 また、制御部50は、回転制御において、被加熱物70の加熱時と冷却時とで、攪拌羽根31(羽根部の一例)の回転速度を異ならせる。 Further, in the rotation control, the control unit 50 varies the rotation speed of the stirring blade 31 (an example of the blade unit) depending on whether the object to be heated 70 is heated or cooled.
 これにより、加熱時及び冷却時で攪拌羽根31の回転速度が適切に設定されることで、加熱時にはマイクロ波を攪拌して放射することができ、かつ冷却時には風を起こすことで加熱された被加熱物70を冷却することができる。 Thus, by appropriately setting the rotation speed of the stirring blade 31 at the time of heating and cooling, the microwave can be stirred and radiated at the time of heating, and at the time of cooling, the heated object can be heated by generating a wind. The heated object 70 can be cooled.
 また、制御部50は、回転制御において、攪拌羽根31(羽根部の一例)の冷却時の回転速度を、加熱時の回転速度よりも速くする。 In the rotation control, the control unit 50 makes the rotation speed at the time of cooling the stirring blade 31 (an example of the blade section) faster than the rotation speed at the time of heating.
 これにより、冷却時に風がより起きやすくなる。よって、冷却時の冷却効果を高めることができる。 This makes it easier for wind to occur during cooling. Therefore, the cooling effect at the time of cooling can be improved.
 (実施の形態2)
 以下、本実施の形態に係るマイクロ波装置10aについて、図5A及び図5Bを参照しながら説明する。本実施の形態では、実施の形態1に係るマイクロ波装置10に対して、羽根部(攪拌羽根31)の構造が異なる。攪拌羽根以外の構成及び機能構成については実施の形態1と同様であり、説明を省略又は簡略化する。さらに、本実施の形態に係るマイクロ波装置10aの動作は実施の形態1に係るマイクロ波装置10と同じであり、説明を省略する。
(Embodiment 2)
Hereinafter, the microwave device 10a according to the present embodiment will be described with reference to FIGS. 5A and 5B. In this Embodiment, the structure of a blade | wing part (stirring blade 31) differs with respect to the microwave apparatus 10 which concerns on Embodiment 1. FIG. The configuration and functional configuration other than the stirring blades are the same as those in the first embodiment, and the description is omitted or simplified. Furthermore, the operation of the microwave device 10a according to the present embodiment is the same as that of the microwave device 10 according to the first embodiment, and a description thereof will be omitted.
 図5Aは、本実施の形態に係るマイクロ波装置10aの羽根部131を示す斜視図である。図5Bは、図1AのIB-IB線に対応する本実施の形態に係るマイクロ波装置10aの断面図である。 FIG. 5A is a perspective view showing the blade 131 of the microwave device 10a according to the present embodiment. FIG. 5B is a cross-sectional view of the microwave device 10a according to the present embodiment corresponding to the line IB-IB in FIG. 1A.
 図5Aに示すように、本実施の形態に係る羽根部131は、攪拌羽根131a(第1の羽根の一例)及び送風羽根131b(第2の羽根の一例)を有する。攪拌羽根131aは、実施の形態1に係る攪拌羽根31と同一の構成である。つまり、攪拌羽根131aは、マイクロ波を攪拌するためのプロペラである。本実施の形態では、攪拌羽根131aに対して被加熱物70側に送風羽根131bを有する点に特徴を有する。以降において、送風羽根131bについて説明する。 As shown in FIG. 5A, the blade portion 131 according to the present embodiment includes a stirring blade 131a (an example of a first blade) and a blower blade 131b (an example of a second blade). The stirring blade 131a has the same configuration as the stirring blade 31 according to the first embodiment. That is, the stirring blade 131a is a propeller for stirring the microwave. The present embodiment is characterized in that the blower blade 131b is provided on the heated object 70 side with respect to the stirring blade 131a. Hereinafter, the blower blade 131b will be described.
 送風羽根131bは、被加熱物70の冷却時に加熱室21内に風を起こすためのプロペラである。例えば、送風羽根131bは平板状ではなく、一部が傾斜して形成されている。送風羽根131bの形状は、例えば、羽根部131から被加熱物70へ向けて風を起こす翼型である。これにより、被加熱物70の冷却時に、送風羽根131bが回転することで、被加熱物70に向けて風を起こすことができる。つまり、加熱室21内に空気の流れ(流路)を形成することができる。 The blower blade 131b is a propeller for generating air in the heating chamber 21 when the object to be heated 70 is cooled. For example, the blower blades 131b are not flat but partly inclined. The shape of the air blowing blade 131b is, for example, an airfoil that generates wind from the blade portion 131 toward the object to be heated 70. Thereby, at the time of cooling the to-be-heated material 70, the ventilation blade | wing 131b rotates, and a wind can be raised toward the to-be-heated material 70. That is, an air flow (flow path) can be formed in the heating chamber 21.
 攪拌羽根131aと送風羽根131bとは、同一の回転軸a上に配置されている。本実施の形態に係るマイクロ波装置10aでは、攪拌羽根131a及び送風羽根131bは、軸部32を介してモータ33に接続されている。つまり、モータ33は、マイクロ波を攪拌するために攪拌羽根131aを回転させるモータと、風を起こすために送風羽根131bを回転させるモータとを兼ねている。言い換えると、1つのモータ33で、マイクロ波を攪拌するための回転及び風を起こすための回転を制御している。これにより、例えば、既存のマイクロ波装置に対して、羽根部131を取り替えるだけで、冷却時の冷却効果を高めることができる。 The stirring blade 131a and the air blowing blade 131b are disposed on the same rotation axis a. In the microwave device 10 a according to the present embodiment, the stirring blade 131 a and the blowing blade 131 b are connected to the motor 33 via the shaft portion 32. That is, the motor 33 serves as both a motor that rotates the stirring blade 131a to stir the microwave and a motor that rotates the blower blade 131b to generate wind. In other words, the rotation for stirring the microwave and the rotation for generating the wind are controlled by one motor 33. Thereby, the cooling effect at the time of cooling can be heightened only by replacing | exchanging the blade | wing part 131 with respect to the existing microwave apparatus, for example.
 なお、本実施の形態では、攪拌羽根131a及び送風羽根131bはともに軸部32に接続されているので、モータ33が動作すると攪拌羽根131a及び送風羽根131bはともに回転する。つまり、加熱時には、攪拌羽根131aだけではなく、送風羽根131bも回転する。また、冷却時には、送風羽根131bだけではなく、攪拌羽根131aも回転する。 In this embodiment, since both the stirring blade 131a and the blowing blade 131b are connected to the shaft portion 32, both the stirring blade 131a and the blowing blade 131b rotate when the motor 33 operates. That is, during heating, not only the stirring blade 131a but also the blower blade 131b rotates. During cooling, not only the blowing blade 131b but also the stirring blade 131a rotates.
 本実施の形態では、送風羽根131bは攪拌羽根131aに対して、被加熱物70側に配置されている。これにより、冷却時に送風羽根131bが回転されることで生じた風が攪拌羽根131aにより遮られることがないので、被加熱物70に対してより多くの風を送ることができる。 In the present embodiment, the air blowing blade 131b is disposed on the heated object 70 side with respect to the stirring blade 131a. Thereby, since the wind generated by rotating the air blowing blade 131b during cooling is not blocked by the stirring blade 131a, more air can be sent to the object 70 to be heated.
 また、送風羽根131bは、加熱時に攪拌羽根131aから放射されたマイクロ波に対して影響を与えないことが望まれる。送風羽根131bは、マイクロ波を反射及び吸収しにくい材料で構成されるとよい。送風羽根131bは、非金属材料から構成される。例えば、マイクロ波に対して影響を与えにくく、かつ耐熱性を有する熱硬化性樹脂から構成される。熱硬化性樹脂とは、フェノール樹脂、エポキシ樹脂、シリコン樹脂、ポリウレタンなどである。また、送風羽根131bは、セラミックなどから構成されていてもよい。 Further, it is desirable that the air blowing blade 131b does not affect the microwave radiated from the stirring blade 131a during heating. The blower blade 131b may be made of a material that hardly reflects and absorbs microwaves. The blower blade 131b is made of a non-metallic material. For example, it is made of a thermosetting resin that hardly affects microwaves and has heat resistance. The thermosetting resin is a phenol resin, an epoxy resin, a silicon resin, polyurethane, or the like. Further, the blower blade 131b may be made of ceramic or the like.
 送風羽根131bの形状は、例えば、回転軸aの方向から見た場合、回転対称の形状を有する。ここでいう回転対称とは、回転軸aを中心に送風羽根131bを回転させたとき、回転軸a方向から見て2π/nラジアン(nは正の整数であり、本実施の形態ではn=6)の回転角度で同じ図形が繰り返される性質を意味する。つまり、送風羽根131bは、攪拌羽根131aとは異なる形状を有する。また、図5Bに示すように、送風羽根131bの長さLbは、攪拌羽根131aの長さLaより長い。送風羽根131bの長さLbが長いことで、より多くの風を被加熱物70に送ることができる。また、回転軸a方向から羽根部131を見た場合、送風羽根131bの一部は攪拌羽根131aと重ならないので、冷却時に攪拌羽根131aによる冷却効果の低下をより抑制することができる。 The shape of the blower blade 131b has, for example, a rotationally symmetric shape when viewed from the direction of the rotation axis a. The rotational symmetry here is 2π / n radians (n is a positive integer when viewed from the direction of the rotation axis a when the blower blade 131b is rotated around the rotation axis a. In this embodiment, n = This means that the same figure is repeated at the rotation angle of 6). That is, the air blowing blade 131b has a shape different from that of the stirring blade 131a. Further, as shown in FIG. 5B, the length Lb of the air blowing blade 131b is longer than the length La of the stirring blade 131a. Since the length Lb of the blower blade 131b is long, more wind can be sent to the article 70 to be heated. Further, when the blade 131 is viewed from the direction of the rotation axis a, a part of the blower blade 131b does not overlap with the stirring blade 131a, so that the cooling effect by the stirring blade 131a can be further suppressed during cooling.
 なお、図5Bに示すように、本実施の形態では、攪拌羽根131aと送風羽根131bとが接触して配置されているが、これに限定されない。例えば、攪拌羽根131aと送風羽根131bとは、所定の間隔をあけて配置されていてもよい。 In addition, as shown to FIG. 5B, in this Embodiment, although the stirring blade | wing 131a and the ventilation blade | wing 131b are arrange | positioned and arrange | positioned, it is not limited to this. For example, the stirring blade 131a and the air blowing blade 131b may be arranged with a predetermined interval.
 なお、図5Aに示すように、本実施の形態では、回転軸a方向から羽根部131を見た場合、攪拌羽根131aと送風羽根131bとが重なるように配置されているが、これに限定されない。回転軸a方向から羽根部131を見た場合、攪拌羽根131aと送風羽根131bとは、極力重ならないように配置されるとよい。これにより、冷却時に攪拌羽根131aにより送風羽根131bに流入する空気が遮られにくくなるので、冷却効果を高めることが可能となる。 As shown in FIG. 5A, in the present embodiment, when the blade 131 is viewed from the direction of the rotation axis a, the stirring blade 131a and the blower blade 131b are disposed so as to overlap, but the present invention is not limited to this. . When the blade portion 131 is viewed from the direction of the rotation axis a, the stirring blade 131a and the blowing blade 131b are preferably arranged so as not to overlap as much as possible. Thereby, since the air which flows into the ventilation blade | wing 131b becomes difficult to be interrupted | blocked by the stirring blade 131a at the time of cooling, it becomes possible to improve a cooling effect.
 以上のように、本実施の形態に係るマイクロ波装置10aの羽根部131は、マイクロ波を攪拌する攪拌羽根131a(第1の羽根の一例)と、冷却を行う送風羽根131b(第2の羽根の一例)とを有する。 As described above, the blade portion 131 of the microwave device 10a according to the present embodiment includes the stirring blade 131a (an example of the first blade) that stirs the microwave and the blowing blade 131b (second blade) that performs the cooling. Example).
 これにより、冷却を行うための送風羽根131bにより効率的に風を起こすことができるので、マイクロ波装置10aの冷却効果を高めることができる。 Thereby, since the air can be efficiently generated by the air blowing blade 131b for cooling, the cooling effect of the microwave device 10a can be enhanced.
 また、攪拌羽根131a(第1の羽根の一例)は金属であり、送風羽根131b(第2の羽根の一例)は非金属である。 Further, the stirring blade 131a (an example of the first blade) is metal, and the blower blade 131b (an example of the second blade) is non-metallic.
 これにより、攪拌羽根131aは金属製の材料で構成されているので、マイクロ波を攪拌して放射することができ、送風羽根131bは非金属製の材料で構成されているので、マイクロ波に対して影響を与えにくく、かつ冷却のための風を起こすことができる。 Thereby, since the stirring blade 131a is made of a metal material, the microwave can be stirred and radiated, and since the air blowing blade 131b is made of a non-metallic material, It is hard to be affected and can generate a wind for cooling.
 また、攪拌羽根131a(第1の羽根の一例)と送風羽根131b(第2の羽根の一例)とは、同一の回転軸(例えば、回転軸a)上に配置されている。 Further, the stirring blade 131a (an example of the first blade) and the blower blade 131b (an example of the second blade) are disposed on the same rotation shaft (for example, the rotation shaft a).
 これにより、1つのモータ33で攪拌羽根131a及び送風羽根131bを回転させることができるので、マイクロ波装置10aの構成を簡略化できる。さらに、既存のマイクロ波装置に対して、既存のマイクロ波装置に取り付けられて羽根部を取り替えるだけで、容易に冷却効果を高めることができる。 Thereby, since the stirring blade 131a and the blowing blade 131b can be rotated by one motor 33, the configuration of the microwave device 10a can be simplified. Furthermore, the cooling effect can be easily enhanced by simply replacing the blade portion with the existing microwave device attached to the existing microwave device.
 また、送風羽根131b(第2の羽根の一例)は、攪拌羽根131a(第1の羽根の一例)に対して被加熱物70側に配置されている。 Further, the air blowing blade 131b (an example of the second blade) is disposed on the heated object 70 side with respect to the stirring blade 131a (an example of the first blade).
 これにより、送風羽根131bは、冷却時に攪拌羽根131aの影響を受けにくいので、送風羽根131bは攪拌羽根131aによる冷却効果の低下を抑制することができる。 Thereby, since the blower blade 131b is not easily affected by the stirring blade 131a during cooling, the blower blade 131b can suppress a decrease in the cooling effect by the stirring blade 131a.
 また、回転軸aの方向から攪拌羽根131a(第1の羽根の一例)及び送風羽根131b(第2の羽根の一例)を見た場合、攪拌羽根131aの長さLaより送風羽根131bの長さLbの方が長い。 Further, when the stirring blade 131a (an example of the first blade) and the blowing blade 131b (an example of the second blade) are viewed from the direction of the rotation axis a, the length of the blowing blade 131b is larger than the length La of the stirring blade 131a. Lb is longer.
 これにより、送風羽根131bは、冷却時に攪拌羽根131aの影響をより受けにくいので、送風羽根131bの攪拌羽根131aによる冷却効果の低下をさらに抑制することができる。 Thereby, since the blowing blade 131b is less susceptible to the influence of the stirring blade 131a during cooling, it is possible to further suppress a decrease in the cooling effect by the stirring blade 131a of the blowing blade 131b.
 (実施の形態2の変形例1)
 以下、本変形例に係るマイクロ波装置10bについて、図6A及び図6Bを参照しながら説明する。本変形例では、実施の形態2に係るマイクロ波装置10aに対して、羽根部の構造が異なる。羽根部以外の構成及び機能構成については実施の形態2と同様であり、説明を省略又は簡略化する。さらに、本変形例に係るマイクロ波装置10bの動作は実施の形態1に係るマイクロ波装置10と同じであり、説明を省略する。なお、以降の変形例においても、同様である。
(Modification 1 of Embodiment 2)
Hereinafter, a microwave device 10b according to this modification will be described with reference to FIGS. 6A and 6B. In this modification, the structure of the blade portion is different from the microwave device 10a according to the second embodiment. The configuration and functional configuration other than the blades are the same as those in the second embodiment, and the description will be omitted or simplified. Furthermore, the operation of the microwave device 10b according to the present modification is the same as that of the microwave device 10 according to the first embodiment, and a description thereof is omitted. The same applies to the following modifications.
 図6Aは、本変形例に係るマイクロ波装置10bの羽根部231を示す斜視図である。図6Bは、図1AのIB-IB線に対応する本変形例に係るマイクロ波装置10bの断面図である。 FIG. 6A is a perspective view showing a blade portion 231 of the microwave device 10b according to this modification. FIG. 6B is a cross-sectional view of the microwave device 10b according to this modification corresponding to the IB-IB line in FIG. 1A.
 図6A及び図6Bに示すように、羽根部231は攪拌羽根131a(第1の羽根の一例)及び送風羽根131b(第2の羽根の一例)を有する。本変形例では、実施の形態2と比べ、攪拌羽根131a及び送風羽根131bの位置が異なる。図6A及び図6Bに示すように、送風羽根131bが、攪拌羽根131aに対して軸部32側に配置されている点に特徴を有する。言い換えると、攪拌羽根131aは、送風羽根131bに対して被加熱物70側に配置されている。これにより、加熱時に送風羽根131bが攪拌羽根131aによるマイクロ波の放射に対して与える影響をより低減することができる。つまり、冷却用の送風羽根131bを有していても、攪拌羽根131aは加熱時にマイクロ波を攪拌して放射することができる。 6A and 6B, the blade portion 231 includes a stirring blade 131a (an example of a first blade) and a blower blade 131b (an example of a second blade). In this modification, the positions of the stirring blade 131a and the blower blade 131b are different from those in the second embodiment. As shown in FIGS. 6A and 6B, the air blowing blade 131b is characterized in that it is disposed on the shaft portion 32 side with respect to the stirring blade 131a. In other words, the stirring blade 131a is disposed on the heated object 70 side with respect to the blower blade 131b. Thereby, the influence which the ventilation blade | wing 131b has with respect to the radiation | emission of the microwave by the stirring blade 131a at the time of a heating can be reduced more. That is, even if it has the cooling blade 131b, the stirring blade 131a can stir and radiate the microwave during heating.
 なお、この場合、実施の形態2に係る羽根部131に比べ、冷却時に攪拌羽根131aによる冷却効果の低下が大きくなる。具体的には、冷却時に送風羽根131bが被加熱物70に向けて風を起こしても、その一部が攪拌羽根131aに遮られてしまうことで、冷却効果が低下する。そのため、攪拌羽根131aによる冷却時の冷却効果の低下を抑制する観点から、回転軸a方向から見た場合に送風羽根131bは攪拌羽根131aと重なる部分が少ないように配置されるとよい。 In this case, as compared with the blade 131 according to the second embodiment, the cooling effect due to the stirring blade 131a is greatly reduced during cooling. Specifically, even when the air blowing blade 131b generates air toward the object to be heated 70 during cooling, a part of the air is blocked by the stirring blade 131a, so that the cooling effect is reduced. Therefore, from the viewpoint of suppressing a decrease in the cooling effect during cooling by the stirring blade 131a, the blower blade 131b may be arranged so that there are few portions overlapping the stirring blade 131a when viewed from the direction of the rotation axis a.
 なお、図6Bに示すように、本変形例では、攪拌羽根131aと送風羽根131bとが接触して配置されているが、これに限定されない。例えば、攪拌羽根131aと送風羽根131bとは、所定の間隔をあけて配置されていてもよい。 In addition, as shown to FIG. 6B, in this modification, although the stirring blade | wing 131a and the ventilation blade | wing 131b are arrange | positioned and arrange | positioned, it is not limited to this. For example, the stirring blade 131a and the air blowing blade 131b may be arranged with a predetermined interval.
 (実施の形態2の変形例2)
 以下、本変形例に係るマイクロ波装置10cについて、図7A及び図7Bを参照しながら説明する。
(Modification 2 of Embodiment 2)
Hereinafter, a microwave device 10c according to this modification will be described with reference to FIGS. 7A and 7B.
 図7Aは、本変形例に係るマイクロ波装置10cの羽根部331を示す斜視図である。図7Bは、図1AのIB-IB線に対応する本変形例に係るマイクロ波装置10cの断面図である。 FIG. 7A is a perspective view showing a blade portion 331 of the microwave device 10c according to the present modification. FIG. 7B is a cross-sectional view of the microwave device 10c according to the present modification corresponding to the IB-IB line in FIG. 1A.
 図7A及び図7Bに示すように、本変形例では、羽根部331は、マイクロ波の攪拌用(加熱用)の羽根と、風を起こすための送風用(冷却用)の羽根とが、一体で形成されている。送風用の羽根の形状は、例えば、羽根部331から被加熱物70へ向けて風を起こす翼型である。なお、送風用の羽根は、攪拌用の羽根に対して被加熱物70側に配置されている。 As shown in FIGS. 7A and 7B, in the present modification, the blade portion 331 includes a blade for stirring microwaves (for heating) and a blade for blowing air (for cooling) for generating wind. It is formed with. The shape of the blade | wing for ventilation is a wing | blade type which raises a wind toward the to-be-heated material 70 from the blade | wing part 331, for example. In addition, the blade | wing for ventilation is arrange | positioned at the to-be-heated material 70 side with respect to the blade | wing for stirring.
 この場合、羽根部331は、金属製の材料から構成される。つまり、攪拌用の羽根及び送風用の羽根は、金属製の材料から構成される。羽根部331はマイクロ波の攪拌用の金属製の羽根を有しているので、加熱時に羽根部331が回転することで、マグネトロン40から発振されたマイクロ波を攪拌して放射することができる。また、羽根部331は風を起こすための送風羽根を有しているので、冷却時に羽根部331が回転することで、風を起こすことができる。例えば、羽根部331は、羽根部331から被加熱物70に向かう風を起こすことができる。 In this case, the blade portion 331 is made of a metal material. That is, the stirring blade and the blowing blade are made of a metal material. Since the blade portion 331 has metal blades for stirring the microwave, the blade portion 331 rotates during heating, so that the microwave oscillated from the magnetron 40 can be stirred and radiated. Moreover, since the blade | wing part 331 has the ventilation blade | wing for raising a wind, it can raise | generate a wind by rotating the blade | wing part 331 at the time of cooling. For example, the blade portion 331 can generate a wind from the blade portion 331 toward the object to be heated 70.
 なお、送風用の羽根は、金属製の材料で構成されているので、樹脂製の材料で構成されている場合に比べ、マイクロ波に与える影響が大きくなる。つまり、送風用の羽根がマイクロ波の攪拌に与える影響が大きくなる。そこで、送風用の羽根は、マイクロ波に影響を与えにくい形状に形成されるとよい。また、羽根部331の形状は、図7Aに示す形状に限定されず、マイクロ波を攪拌でき、かつ風を起こすことができる形状であればよい。 In addition, since the blade | wing for ventilation is comprised with the metal material, the influence which acts on a microwave becomes large compared with the case where it is comprised with the resin material. That is, the influence which the blade | wing for ventilation blows on the stirring of a microwave becomes large. Therefore, it is preferable that the blade for blowing is formed in a shape that does not easily affect the microwave. Moreover, the shape of the blade | wing part 331 is not limited to the shape shown to FIG. 7A, What is necessary is just the shape which can stir a microwave and can raise | generate a wind.
 以上のように、本変形例に係るマイクロ波装置10cは、攪拌羽根131a(第1の羽根の一例)及び送風羽根131b(第2の羽根の一例)は、金属で一体形成されている。 As described above, in the microwave device 10c according to this modification, the stirring blade 131a (an example of the first blade) and the blower blade 131b (an example of the second blade) are integrally formed of metal.
 これにより、マイクロ波の攪拌用の羽根及び風を起こす送風用の羽根を有する羽根部331を一体で形成することができるので、マイクロ波の攪拌用の羽根及び風を起こす送風用の羽根を別体で作製していた場合に比べ、羽根部331の作製が容易となる。また、送風用の羽根が樹脂製であった場合に比べ、送風用の羽根の耐熱性を向上させることができる。 Thereby, since the blade | wing part 331 which has the blade | wing for blowing a microwave and the blade | wing for ventilation which raises a wind can be formed integrally, the blade | wing for microwave stirring and the blade | wing for ventilation which raise | generate a wind are different. Compared to the case where the wing portion 331 is manufactured by a body, the wing portion 331 can be easily manufactured. Moreover, compared with the case where the blade | wing for ventilation is resin, it can improve the heat resistance of the blade | wing for ventilation.
 (実施の形態2の変形例3)
 以下、本変形例に係るマイクロ波装置10dについて、図8A及び図8Bを参照しながら説明する。
(Modification 3 of Embodiment 2)
Hereinafter, a microwave device 10d according to this modification will be described with reference to FIGS. 8A and 8B.
 図8Aは、本変形例に係るマイクロ波装置10dの羽根部431を示す斜視図である。図8Bは、図1AのIB-IB線に対応する本変形例に係るマイクロ波装置10dの断面図である。 FIG. 8A is a perspective view showing a blade portion 431 of a microwave device 10d according to the present modification. FIG. 8B is a cross-sectional view of the microwave device 10d according to the present modification corresponding to the IB-IB line in FIG. 1A.
 図8A及び図8Bに示すように、本変形例では、羽根部431は、マイクロ波を攪拌する攪拌羽根431a(第1の羽根の一例)と、風を起こす送風羽根431b(第2の羽根の一例)とが、同一平面上に形成されている。送風羽根431bの形状は、例えば、羽根部431から被加熱物70へ向けて風を起こす翼型である。なお、同一平面とは、例えば、攪拌羽根431aと送風羽根431bとが回転軸aの軸方向で実質的に同一の位置に配置されていることを意味する。また、例えば、攪拌羽根431aと送風羽根431bとが共通の中心部(例えば、固定用軸部431c)に接続されている場合も同一平面であることを意味する。 As shown in FIG. 8A and FIG. 8B, in this modification, the blade portion 431 includes a stirring blade 431a (an example of the first blade) that stirs microwaves, and a blower blade 431b (of the second blade) that generates wind. Are formed on the same plane. The shape of the blower blade 431 b is, for example, an airfoil that generates wind from the blade portion 431 toward the object to be heated 70. Note that the same plane means that, for example, the stirring blade 431a and the air blowing blade 431b are arranged at substantially the same position in the axial direction of the rotation axis a. In addition, for example, when the stirring blade 431a and the air blowing blade 431b are connected to a common central portion (for example, the fixing shaft portion 431c), it means that they are the same plane.
 この場合、攪拌羽根431aは金属製の材料から構成され、送風羽根431bは樹脂製の材料から構成される。つまり、攪拌羽根431aと送風羽根431bとは別体である。例えば、攪拌羽根431a及び送風羽根431bがそれぞれ、固定用軸部431cに固定されることで羽根部431が構成される。固定用軸部431cは、軸部32と接続されている。つまり、攪拌羽根431aと送風羽根431bとは、同一の回転軸aを中心に回転する。 In this case, the stirring blade 431a is made of a metal material, and the blower blade 431b is made of a resin material. That is, the stirring blade 431a and the blower blade 431b are separate bodies. For example, the blade portion 431 is configured by fixing the stirring blade 431a and the air blowing blade 431b to the fixing shaft portion 431c. The fixing shaft portion 431 c is connected to the shaft portion 32. That is, the stirring blade 431a and the blower blade 431b rotate around the same rotation axis a.
 なお、羽根部431の形状は、例えば、回転軸a方向から見た場合、回転非対称の形状を有する。ここでいう回転非対称とは、回転軸aを中心に羽根部431を回転させたとき、回転軸a方向から見て1回転しないと同じ図形とならない性質を意味する。 In addition, the shape of the blade | wing part 431 has a rotationally asymmetric shape, for example, when it sees from the rotating shaft a direction. The rotational asymmetry here means a property that when the blade portion 431 is rotated around the rotation axis a, the same figure is not obtained unless it is rotated once as viewed from the direction of the rotation axis a.
 以上のように、本変形例に係るマイクロ波装置10dは、攪拌羽根431a(第1の羽根の一例)及び送風羽根431b(第2の羽根の一例)は、同一平面に配置されており、かつ同一の回転軸aを中心に回転する。 As described above, in the microwave device 10d according to this modification, the stirring blade 431a (an example of the first blade) and the blower blade 431b (an example of the second blade) are arranged in the same plane, and It rotates around the same rotation axis a.
 これにより、攪拌羽根431aと送風羽根431bとが同一平面上に配置されているので、加熱時には送風羽根431bはマイクロ波に対して影響を与えにくく、冷却時には攪拌羽根431aは風に対して影響を与えにくい。よって、加熱時に羽根部431を回転させることで、マイクロ波を攪拌して放射でき、かつ冷却時に羽根部431を回転させることで、風を起こすことができる。よって、加熱後に羽根部431を回転させることで被加熱物70を冷却させることができるので、本変形例に係るマイクロ波装置10dによれば、加熱後の被加熱物70を従来よりも早く取り出すことができる。 Thereby, since the stirring blade 431a and the blower blade 431b are arranged on the same plane, the blower blade 431b hardly influences the microwave during heating, and the stirring blade 431a does not affect the wind during cooling. Hard to give. Therefore, by rotating the blade portion 431 at the time of heating, microwaves can be agitated and emitted, and by rotating the blade portion 431 at the time of cooling, wind can be generated. Therefore, since the to-be-heated object 70 can be cooled by rotating the blade | wing part 431 after a heating, according to the microwave apparatus 10d which concerns on this modification, the to-be-heated object 70 after a heating is taken out earlier than before. be able to.
 (他の実施の形態)
 以上のように、本開示における技術の例示として、実施の形態及び変形例を説明した。そのために、添付図面および詳細な説明を提供した。
(Other embodiments)
As described above, the embodiments and the modifications have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態及び変形例は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Moreover, since the above-mentioned embodiment and modification are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims or an equivalent scope thereof. .
 例えば、上記実施の形態及び変形例では、冷却時に羽根部を回転させることで、羽根部から被加熱物に向けて風を起こす例について説明したが、これに限定されない。例えば、冷却時に羽根部を回転させることで、被加熱物から羽根部に向く風を起こしてもよい。これにより、羽根部から被加熱物に向けて風を起こした場合と同様の効果を奏する。なお、羽根部から被加熱物に向けて風を起こしていた場合に対して、送風羽根の取り付け向きを逆にする、又は羽根部の回転方向を逆にすることで、被加熱物から送風羽根に向く風を実現できる。 For example, in the embodiment and the modification described above, an example in which wind is generated from the blade to the object to be heated by rotating the blade during cooling has been described, but the present invention is not limited thereto. For example, you may raise the wind which goes to a blade | wing part from a to-be-heated material by rotating a blade | wing part at the time of cooling. Thereby, there exists an effect similar to the case where a wind is raised toward a to-be-heated material from a blade | wing part. In addition, when the wind is raised from the blade part toward the object to be heated, the attachment direction of the air blowing blade is reversed, or the rotation direction of the blade part is reversed, so that the air blowing blade is moved from the object to be heated. The wind can be realized.
 また、上記実施の形態及び変形例に係るマイクロ波装置は、冷却時に冷却用の空気を筐体の外部から筐体の内部(例えば、加熱室)に取り込む吸気口、及び、冷却時に温められた空気を筐体の内部から筐体の外部へ排気する排気口を備えていてもよい。例えば、図1Bにおいて、冷却時に羽根部から被加熱物へ向かう風を起こす場合、吸気口は羽根部よりモータ側の筐体の一部に設けられ、排気口は被加熱物より窓側であり、かつ被加熱物より高い位置の筐体の一部に設けられる。 In addition, the microwave device according to the above-described embodiment and the modification is heated at the time of cooling, and the air intake port that takes cooling air from the outside of the housing into the inside of the housing (for example, the heating chamber) during cooling. You may provide the exhaust port which exhausts air from the inside of a housing | casing to the exterior of a housing | casing. For example, in FIG. 1B, when the wind from the blade part toward the object to be heated is generated during cooling, the intake port is provided in a part of the casing on the motor side from the blade part, and the exhaust port is the window side from the object to be heated. And it is provided in a part of the housing at a position higher than the object to be heated.
 また、さらに排気口及び吸気口のそれぞれには、蓋部及び蓋部を可動する可動部が設けられてもよい。加熱時には可動部により蓋部が排気口及び吸気口を覆うように可動されることで筐体内外での空気の流れを遮断し、冷却時には可動部により蓋部が吸気口及び排気口を覆わないように可動されることで、筐体内外での空気の流れを可能とする。なお、空気の流れを遮断とは、加熱時にマイクロ波への影響が実質的にない程度の隙間が形成されていることを含む。つまり、排気口及び吸気口は蓋部により蓋をされている状態で、マイクロ波への影響がない程度の隙間が形成されていてもよい。 Further, a lid and a movable part that moves the lid may be provided in each of the exhaust port and the intake port. During heating, the lid is moved by the movable part so as to cover the exhaust and intake ports, thereby blocking the flow of air inside and outside the housing. During cooling, the lid does not cover the intake and exhaust ports by the movable part. By being moved in this manner, the air can flow inside and outside the housing. It should be noted that blocking the air flow includes forming a gap that does not substantially affect the microwave during heating. In other words, the exhaust port and the intake port may be formed with a gap that does not affect the microwave while being covered by the lid.
 また、上記実施の形態及び変形例では、冷却時に羽根部の回転速度(第2の回転速度)は、予め記憶されている情報などにより制御される例について説明したが、これに限定されない。温度センサなどの検知部により計測された被加熱物又は成型用型の温度などに応じて第2の回転速度が決定されてもよい。例えば、制御部は、温度センサが検知した温度が高いほど回転速度が早くなるように第2の回転速度を決定してもよい。また、加熱の終了及び冷却の終了においても、温度センサなどの検知部の検知結果に基づいて判定されてもよい。例えば、制御部50は、温度センサなどの検知部が計測した被加熱物又は成型用型の温度に応じて加熱の終了及び冷却の終了を決定してもよい。 In the embodiment and the modification described above, the example in which the rotation speed of the blade portion (second rotation speed) is controlled by information stored in advance during cooling has been described, but the present invention is not limited to this. The second rotation speed may be determined according to the temperature of the object to be heated or the molding die measured by a detection unit such as a temperature sensor. For example, the control unit may determine the second rotation speed such that the higher the temperature detected by the temperature sensor, the faster the rotation speed. Also, the end of heating and the end of cooling may be determined based on the detection result of a detection unit such as a temperature sensor. For example, the control unit 50 may determine the end of heating and the end of cooling according to the temperature of an object to be heated or a molding die measured by a detection unit such as a temperature sensor.
 また、上記実施の形態及び変形例で示した構成要素及び機能を任意に組み合わせることで実現される形態も本開示の範囲に含まれる。 In addition, forms realized by arbitrarily combining the constituent elements and functions shown in the above embodiments and modifications are also included in the scope of the present disclosure.
 本開示は、誘電加熱により被加熱物を加熱するマイクロ波装置に広く利用可能である。特に、樹脂成型などの各種工業用途におけるマイクロ波装置において有用である。 The present disclosure can be widely used for microwave devices that heat an object to be heated by dielectric heating. In particular, it is useful in microwave devices in various industrial applications such as resin molding.
 10,10a,10b,10c,10d  マイクロ波装置
 20  筐体
 21  加熱室
 22  導波部
 23  扉
 24  窓
 25  内面
 30  攪拌部
 31,131a,431a  攪拌羽根
 32  軸部
 33  モータ
 40  マグネトロン(マイクロ波供給部)
 41  マグネトロン出力部
 50  制御部
 60  フレーム
 70  被加熱物
 80  成型用型
 81  上型
 82  下型
 90  載置台
 131,231,331,431  羽根部
 131b,431b  送風羽根
 431c  固定用軸部
 a  回転軸
 La,Lb  長さ
10, 10a, 10b, 10c, 10d Microwave device 20 Housing 21 Heating chamber 22 Waveguide section 23 Door 24 Window 25 Inner surface 30 Stirring section 31, 131a, 431a Stirring blade 32 Shaft section 33 Motor 40 Magnetron (microwave supply section) )
41 Magnetron output unit 50 Control unit 60 Frame 70 Object to be heated 80 Molding die 81 Upper die 82 Lower die 90 Mounting table 131, 231, 331, 431 Blade portion 131b, 431b Air blower blade 431c Fixing shaft portion a Rotating shaft La, Lb length

Claims (11)

  1.  筐体と、
     前記筐体内にマイクロ波を供給するマイクロ波供給部と、
     前記筐体内に配置され、前記マイクロ波を攪拌する羽根部と、
     前記マイクロ波供給部の出力制御及び前記羽根部の回転制御を行う制御部と、を備え、
     前記制御部は、前記筐体内に配置された被加熱物の前記マイクロ波による加熱の後に、前記出力制御として前記マイクロ波供給部のマイクロ波の出力を停止させ、かつ前記回転制御として前記羽根部を回転させることで前記被加熱物の冷却を行う
     マイクロ波装置。
    A housing,
    A microwave supply unit for supplying microwaves into the housing;
    A blade portion arranged in the housing and stirring the microwave;
    A control unit that performs output control of the microwave supply unit and rotation control of the blade unit,
    The control unit stops the microwave output of the microwave supply unit as the output control after the heating of the object to be heated arranged in the casing by the microwave, and the blade unit as the rotation control A microwave device that cools the object to be heated by rotating the.
  2.  前記羽根部は、前記マイクロ波を攪拌する第1の羽根と、前記冷却を行う第2の羽根とを有する
     請求項1に記載のマイクロ波装置。
    The microwave device according to claim 1, wherein the blade portion includes a first blade that stirs the microwave and a second blade that performs the cooling.
  3.  前記第1の羽根は金属であり、前記第2の羽根は非金属である
     請求項2に記載のマイクロ波装置。
    The microwave device according to claim 2, wherein the first blade is made of metal, and the second blade is made of nonmetal.
  4.  前記第1の羽根と前記第2の羽根とは、同一の回転軸上に配置されている
     請求項2又は3に記載のマイクロ波装置。
    The microwave device according to claim 2 or 3, wherein the first blade and the second blade are disposed on the same rotation axis.
  5.  前記第1の羽根は、前記第2の羽根に対して前記被加熱物側に配置されている
     請求項4に記載のマイクロ波装置。
    The microwave device according to claim 4, wherein the first blade is disposed on the heated object side with respect to the second blade.
  6.  前記第2の羽根は、前記第1の羽根に対して前記被加熱物側に配置されている
     請求項4に記載のマイクロ波装置。
    The microwave device according to claim 4, wherein the second blade is disposed on the heated object side with respect to the first blade.
  7.  前記回転軸の方向から前記第1の羽根及び前記第2の羽根を見た場合、前記第1の羽根の長さより前記第2の羽根の長さの方が長い
     請求項4~6のいずれか1項に記載のマイクロ波装置。
    The length of the second blade is longer than the length of the first blade when the first blade and the second blade are viewed from the direction of the rotation axis. 2. The microwave device according to item 1.
  8.  前記第1の羽根及び前記第2の羽根は、金属で一体形成されている
     請求項2に記載のマイクロ波装置。
    The microwave device according to claim 2, wherein the first blade and the second blade are integrally formed of metal.
  9.  前記第1の羽根及び前記第2の羽根は、同一平面に配置されており、かつ同一の回転軸を中心に回転する
     請求項2又は3に記載のマイクロ波装置。
    The microwave device according to claim 2, wherein the first blade and the second blade are arranged on the same plane and rotate about the same rotation axis.
  10.  前記制御部は、前記回転制御において、前記被加熱物の前記加熱時と前記冷却時とで、前記羽根部の回転速度を異ならせる
     請求項1~9のいずれか1項に記載のマイクロ波装置。
    The microwave device according to any one of claims 1 to 9, wherein, in the rotation control, the control unit varies the rotation speed of the blade portion between the heating and the cooling of the object to be heated. .
  11.  前記制御部は、前記回転制御において、前記羽根部の前記冷却時の回転速度を、前記加熱時の回転速度よりも速くする
     請求項10に記載のマイクロ波装置。
    The microwave device according to claim 10, wherein, in the rotation control, the control unit makes a rotation speed of the blade part at the time of cooling faster than a rotation speed at the time of heating.
PCT/JP2017/020562 2017-03-29 2017-06-02 Microwave device WO2018179460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019508507A JP6751858B2 (en) 2017-03-29 2017-06-02 Microwave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066277 2017-03-29
JP2017066277 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018179460A1 true WO2018179460A1 (en) 2018-10-04

Family

ID=63674887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020562 WO2018179460A1 (en) 2017-03-29 2017-06-02 Microwave device

Country Status (2)

Country Link
JP (1) JP6751858B2 (en)
WO (1) WO2018179460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049161A1 (en) * 2019-09-09 2021-03-18 Tdk株式会社 Electromagnetic stirrer and reflection chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141166A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Cooker
JP2015103726A (en) * 2013-11-27 2015-06-04 東京エレクトロン株式会社 Microwave heat treatment device and microwave heat treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141166A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Cooker
JP2015103726A (en) * 2013-11-27 2015-06-04 東京エレクトロン株式会社 Microwave heat treatment device and microwave heat treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049161A1 (en) * 2019-09-09 2021-03-18 Tdk株式会社 Electromagnetic stirrer and reflection chamber
JP2021043007A (en) * 2019-09-09 2021-03-18 Tdk株式会社 Electromagnetic agitator and reflection box
JP7354705B2 (en) 2019-09-09 2023-10-03 Tdk株式会社 Electromagnetic stirrer and reflection box
US11789056B2 (en) 2019-09-09 2023-10-17 Tdk Corporation Electromagnetic stirrer and reflection chamber

Also Published As

Publication number Publication date
JP6751858B2 (en) 2020-09-09
JPWO2018179460A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
KR100565657B1 (en) microwave oven range
WO2018179460A1 (en) Microwave device
JPWO2012137447A1 (en) Microwave heating device
JP4996994B2 (en) Cooker
JPS6143833B2 (en)
US8258436B2 (en) Heating device
CN105204596A (en) Fan and electronic equipment
CN107289472A (en) Cooking apparatus
JP2007278595A (en) High frequency heating device
JP6854406B2 (en) Microwave device
JP2004263981A (en) High-frequency heating device
JP2004071216A (en) Microwave heating apparatus
JP5542453B2 (en) High frequency heating device
JP2004259646A (en) Radio frequency heating apparatus
JP6739231B2 (en) Cooker
JP2009008296A (en) Heating cooker
KR200179867Y1 (en) Microwave oven
CN220981401U (en) Cooking utensil
CN210590598U (en) Airtight 3D printer structure of heating
JP4524857B2 (en) High frequency heating device
JP5057871B2 (en) Cooker
JP2008170075A (en) Microwave heating device
KR200229356Y1 (en) A insulation structure for over the range
JP2010108711A (en) Microwave oven
JP2003214635A (en) Microwave oven

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903890

Country of ref document: EP

Kind code of ref document: A1