WO2018179114A1 - Wireless device and wireless noise measurement method - Google Patents

Wireless device and wireless noise measurement method Download PDF

Info

Publication number
WO2018179114A1
WO2018179114A1 PCT/JP2017/012773 JP2017012773W WO2018179114A1 WO 2018179114 A1 WO2018179114 A1 WO 2018179114A1 JP 2017012773 W JP2017012773 W JP 2017012773W WO 2018179114 A1 WO2018179114 A1 WO 2018179114A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
transmission
power
radio signal
Prior art date
Application number
PCT/JP2017/012773
Other languages
French (fr)
Japanese (ja)
Inventor
中谷 勇太
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2019508406A priority Critical patent/JP6791363B2/en
Priority to PCT/JP2017/012773 priority patent/WO2018179114A1/en
Publication of WO2018179114A1 publication Critical patent/WO2018179114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a wireless device that performs wireless communication and a wireless noise measurement method.
  • the 2.4 GHz band includes Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile router, amateur radio, and the like.
  • the 5 GHz band includes Wi-Fi, various radars such as weather, amateur radio, and the like.
  • the ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year.
  • the systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain period of time.
  • an object of the present invention is to be able to receive a signal even during signal transmission and to measure interference with other devices.
  • the wireless device is a wireless device that uses the same frequency band as other systems, and includes an antenna that transmits and receives wireless radio waves, a baseband unit that performs signal processing of signals that are transmitted and received, and the baseband unit
  • the transmitter that converts the signal output from the antenna into a radio signal and outputs it to the antenna
  • the receiver that converts the radio signal received by the antenna into a signal and outputs the signal to the baseband unit
  • the transmitter that transmits
  • the circulator for outputting the radio signal to the antenna and outputting the radio signal received by the antenna to the receiver, and the influence of leakage of the radio signal transmitted by the transmitter to the reception side is eliminated.
  • the noise signal measuring unit that measures the power of the radio signal received in the same frequency band as the radio signal transmitted during the transmission of the radio signal by the transmitter , It is a requirement to have a.
  • the wireless device can receive a signal even during signal transmission and can measure interference with other devices.
  • FIG. 1 is a block diagram of a configuration example of the radio apparatus according to the first embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration example of a control unit of the radio apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a power spectrum of the wireless device according to the first embodiment.
  • FIG. 4 is a diagram for explaining processing of the noise signal measurement unit of the radio apparatus according to the first embodiment.
  • FIG. 5 is a flowchart illustrating a processing procedure of noise signal measurement of the wireless device according to the first embodiment.
  • FIG. 6 is a diagram for explaining processing of the noise signal measurement unit of the radio apparatus according to the second embodiment.
  • FIG. 7 is a flowchart illustrating a processing procedure of noise signal measurement of the radio apparatus according to the second embodiment.
  • FIG. 8 is a diagram showing various systems using the ISM band.
  • FIG. 9 is a diagram for explaining that it is difficult to grasp the interference of another system using the existing technology.
  • FIG. 10 is a block diagram illustrating a configuration example of a wireless device according to an existing technology.
  • FIG. 1 is a block diagram of a configuration example of the radio apparatus according to the first embodiment.
  • the wireless device 100 includes a transmission unit 101, a reception unit 102, a circulator 103, an antenna 104, a noise signal measurement unit 105, and a baseband unit (BB) 110.
  • BB baseband unit
  • the transmission unit 101 converts the baseband signal input from the baseband unit 110 into a high-frequency (radio band, RF: Radio Frequency) signal (radio signal), and wirelessly transmits the signal from the antenna 104 via the circulator 103.
  • the transmission unit 101 includes an amplifier (PA: PowerAmp) 114, and the PA 114 amplifies an analog signal to be wirelessly transmitted.
  • PA PowerAmp
  • the receiving unit 102 converts the radio signal received by the antenna 104 and output via the circulator 103 into a baseband signal and outputs the signal to the baseband unit 110.
  • the receiving unit 102 includes a canceller 121 and an amplifier (LNA: LowNoiseAmp) 122.
  • the radio wave received by the antenna 104 is output to the canceller 121 via the circulator 103.
  • the LNA 122 amplifies the received signal and outputs it to the baseband (BB) unit 110.
  • the baseband unit 110 performs signal processing on a device that the wireless device 100 transmits and receives.
  • the baseband unit 110 includes a modulator 111, a digital-analog converter (DAC) 112, and an oscillator 113 as a configuration for processing a transmission signal.
  • DAC digital-analog converter
  • the modulator 111 digitally modulates a digital transmission signal according to a predetermined wireless system.
  • the DAC 112 is supplied with the oscillation signal of the oscillator 113, and converts a digital signal to be wirelessly transmitted into an analog signal.
  • the baseband unit 110 includes an analog-digital converter (ADC) 123, a canceller 124, and a demodulator 125 as a configuration for processing a received signal.
  • ADC analog-digital converter
  • the ADC 123 is supplied with the oscillation signal from the oscillator 113 and converts the received signal from an analog signal to a digital signal.
  • the canceller 124 outputs the reception signal output from the ADC 123 to the demodulator 125, and cancels the leakage of the transmission signal from the transmission unit 101, the modulator 111, and the like included in the reception signal.
  • the demodulator 125 demodulates the received signal.
  • the cancellers 121 and 124 suppress (remove) leakage of transmission signals from the transmission unit 101 to the reception unit 102 side.
  • the canceller 121 outputs the reception signal output from the circulator 103 to the LNA 122 and cancels the leakage of the transmission signal of the transmission unit 101 (PA 114 or the like) included in the reception signal to the reception unit 102 via the circulator 103. .
  • the cancellers 121 and 124 receive a transmission / reception signal on the + side, receive a cancellation signal on the ⁇ side, suppress the cancellation signal, and output a transmission / reception signal.
  • the circulator 103 outputs the input of the port 1 to the port 2 and outputs the input of the port 2 to the port 3 (forward direction). Further, the output of the port 2 in the reverse direction, for example, is not output to the port 1.
  • the circulator 103 connects the PA 114 of the transmission unit 101 to the port 1, connects the antenna 104 to the port 2, and connects the LNA 122 (canceller 121) of the reception unit 102 to the port 3. .
  • the power of the transmission signal is, for example, 100,000 times higher than the power of the reception signal. For this reason, the transmission signal of the transmission part 101 leaks into the receiving part 102 side via the circulator 103 grade
  • the cancellers 121 and 124 suppress the reception signal from being buried due to the noise of the transmission signal.
  • the circulator 103 and the two-stage cancellers 121 and 124 are used in combination. As a result, even during a period in which the transmission unit 101 transmits and transmits a transmission signal, the reception unit 102 receives a signal from another external system and prevents the reception signal from being buried by the transmission signal. Can be received.
  • the noise signal measuring unit 105 receives the output of the received signal from the canceller 124, and measures a noise signal such as interference / noise power that other systems affect the own device based on the received signal.
  • the cancellers 121 and 124 suppress the influence of the transmission signal on the transmission unit 101 side.
  • wireless apparatus 100 can suppress the influence of the transmission signal which self-apparatus is transmitting, can receive the signal used as interference and noise which another system transmits, and can measure the electric power of the received signal. .
  • FIG. 2 is a diagram illustrating a hardware configuration example of a control unit of the wireless device according to the first embodiment.
  • the control unit 200 shown in FIG. performs the function of the noise signal measurement of the noise signal measurement part 105 of FIG.
  • a CPU (Central Processing Unit) 201 shown in FIG. 2 reads and executes a program stored in the memory 202, and at this time, a part of the area of the memory 202 is used as a work area. As a result, the radio apparatus 100 can be controlled in an integrated manner, and the function of the noise signal measuring unit 105 in FIG. 1 can be realized.
  • the memory 202 ROM, RAM, or the like can be used.
  • an extended memory 203 such as an HDD or a flash memory can be used for a data storage area or the like.
  • Reference numeral 204 denotes a bus.
  • the wireless communication unit 205 realizes functions related to wireless communication of the transmission unit 101 and the reception unit 102 in FIG.
  • a communication interface (I / F) unit 206 realizes a function of a communication interface with an external device, and outputs, for example, a measurement result of the noise signal measurement unit 105 to the external device.
  • the interference / noise power measured by the noise signal measuring unit 105 can be stored in the memory 202 or the extended memory 203 functioning as a storage unit.
  • the modulator 111 and the DAC 112, the ADC 123, the canceller 124, and the demodulator 125 shown in FIG. 1 perform baseband (BB) band signal processing, and can be realized by, for example, an IC that integrates these functions.
  • the PA 114 of the transmission unit 101, the canceller 121 and the LNA 122, and the circulator 103 of the reception unit 102 shown in FIG. 1 perform radio band (RF) signal processing, and can be realized by, for example, an IC that integrates these functions. .
  • RF radio band
  • FIG. 3 is a diagram illustrating a power spectrum of the wireless device according to the first embodiment.
  • the horizontal axis represents frequency (frequency band for one channel), and the vertical axis represents power.
  • 3A shows a power spectrum when the wireless device 100 transmits a transmission signal
  • FIG. 3B shows a power spectrum when the wireless device 100 receives a signal.
  • the transmission unit 101 transmits a transmission signal SD within a predetermined transmission data band fs. Further, as shown in FIG. 3B, the received signal RD from another external system that causes interference and noise has a frequency band of one entire channel.
  • a signal (reception signal) that causes interference and noise from other systems using the null band fn. RD) power is measured.
  • the null band fn is a band located on both sides of the transmission data band fs in the frequency band for one channel.
  • FIG. 4 is a diagram for explaining the processing of the noise signal measurement unit of the wireless device according to the first embodiment.
  • the noise signal measurement unit 105 includes a frequency conversion unit (FFT: Fast Fourier Transform) 400, a power measurement unit 1 (401), and a power measurement unit 2 (402). .
  • FFT Fast Fourier Transform
  • the FFT 400 converts the power of the received signal output from the canceller 124 into the frequency axis shown in FIG. 4B by Fourier transform.
  • the FFT 400 outputs the received signal after frequency conversion to the power measurement unit 1 (401) when the own device is receiving, and after frequency conversion to the power measurement unit 2 (402) when the own device is transmitting.
  • the received signal is output.
  • the power measuring unit 1 (401) measures the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel received by the receiving unit 102 of the wireless device 100.
  • FIG. 4B shows a null band fn and a transmission data band fs in a frequency band for one channel.
  • the power measuring unit 2 (402) measures the power of the null band fn in the frequency band for one channel while the device is transmitting.
  • two stages of cancellers 121 and 124 are provided, but at the time of transmission, a part of the transmission signal SD transmitted in the transmission data band fs is transmitted to the reception unit 102 side by the transmission unit 101 via the circulator 103 or the like. It is assumed that it leaks (see FIG. 3A). For this reason, in the first embodiment, during the transmission of the own apparatus, the power of the null band fn excluding the transmission signal SD of the transmission data band fs is obtained as the interference / noise power.
  • a single power measuring unit 401 is used to measure the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel at the time of reception, and switch to measure the power of the null band fn at the time of transmission of the own apparatus. You may go.
  • the electric power by the electric power measurement part 1 (401) and the electric power measurement part 2 (402) is calculated
  • FIG. 5 is a flowchart illustrating a processing procedure of noise signal measurement of the wireless device according to the first embodiment. For example, the processing content of the CPU 201 that realizes the function of the noise signal measurement unit 105 is shown.
  • the noise signal measurement unit 105 converts the frequency of the received signal by the frequency conversion unit 400 (step S501). Next, the noise signal measurement unit 105 determines whether or not the own device is transmitting a transmission signal (step S502). If the own apparatus is transmitting (step S502: Yes), the process proceeds to step S503. If the own apparatus is not transmitting (step S502: No), the process proceeds to step S504.
  • the noise signal measuring unit 105 measures the power of the null band fn by the power measuring unit 2 (402) (see step S503, FIG. 3A). Then, the measured power of the null band fn is stored in the storage unit as interference / noise power (step S505), and the above processing is terminated.
  • the storage unit is the memory 202 or the extended memory 203 shown in FIG. 2, and can accumulate interference and noise power.
  • step S504 since the own apparatus is not transmitting, the noise signal measurement unit 105 measures the power of the transmission data band fs + null band fn by the power measurement unit 1 (401) (see step S504, FIG. 3B). ). Then, the measured power of the transmission data band fs + null band fn is stored as interference / noise power in the storage unit (step S505), and the above processing is terminated.
  • the circulator is used to enable the device to receive a signal even during transmission of the transmission signal.
  • the power of the null band received from the outside is obtained, and this power is measured as interference / noise power.
  • the receiving apparatus is receiving the received signal, the power of the transmission data band + null band, that is, the frequency band for one channel is obtained, and this power is measured as interference / noise power.
  • the device itself can receive interference and noise from other systems by receiving radio waves of the same frequency transmitted by other external systems. Become. At this time, even if the transmission signal being transmitted leaks to the receiving unit, the leakage amount, that is, the power of the null band excluding the transmission data band of the transmission signal is measured, so that it depends on the radio wave transmitted by another external system. Interference and noise power can be measured.
  • the first embodiment it is possible to measure interference / noise from other systems during the transmission of the own apparatus in addition to the reception of the own apparatus, that is, the entire continuous period in which the own apparatus operates. Become.
  • the measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself.
  • sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
  • the period predicted by the other system to transmit is the setting of the period in which the own apparatus does not transmit a transmission signal. It becomes possible to set the period for transmitting the transmission signal.
  • the own apparatus and other systems can efficiently use the same frequency band, and can coexist with many systems using the same frequency band.
  • Embodiment 2 The first embodiment has been described on the assumption that the transmission signal of the radio apparatus 100 leaks into the reception unit 102.
  • Embodiment 2 interference / noise power measurement based on the premise that a transmission signal of radio apparatus 100 does not leak into reception section 102 will be described.
  • the configuration of radio apparatus 100 of the second embodiment is basically the same as the configuration described in the first embodiment (FIG. 1). For example, it can be expected that the transmission signal will not leak into the receiving unit as the performance of the cancellers 121 and 124 is improved and countermeasures against leakage of the transmission signal proceed in the future.
  • FIG. 6 is a diagram for explaining the processing of the noise signal measurement unit of the radio apparatus according to the second embodiment.
  • the noise signal measurement unit 105 includes a frequency conversion unit (FFT: Fast Fourier Transform) 400 and a power measurement unit 601.
  • FFT Fast Fourier Transform
  • FFT 400 converts the reception signal output from canceller 124 to the frequency axis shown in FIG. 6B, as in the first embodiment (see FIG. 4).
  • the power measurement unit 601 measures the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel, regardless of whether the wireless device 100 is transmitting or receiving transmission data.
  • FIG. 6B shows a null band fn and a transmission data band fs in a frequency band for one channel.
  • the power measurement unit 601 performs the entire channel on the premise that the transmission signal SD of the transmission data band fs does not leak into the reception unit 102 during transmission in addition to reception by the own apparatus. Is obtained as interference / noise power.
  • FIG. 7 is a flowchart showing a processing procedure of noise signal measurement of the wireless device of the second embodiment. For example, the processing content of the CPU 201 that realizes the function of the noise signal measurement unit 105 is shown.
  • the noise signal measurement unit 105 performs frequency conversion of the power of the received signal by the frequency conversion unit 400 (step S701). Next, the noise signal measurement unit 105 measures the power of the transmission data band fs + null band fn by the power measurement unit 601 regardless of whether the own apparatus is transmitting a transmission signal or receiving a reception signal (step S702). FIG. 3B). Then, the measured power of the transmission data band fs + null band fn is stored as interference / noise power in the storage unit (step S703), and the above process is terminated.
  • the transmission signal being transmitted by the own apparatus does not leak into the reception unit. For this reason, in any period during signal transmission and reception, power is obtained by effectively using the transmission data band + null band, that is, the entire frequency band for one channel, and this power is used as interference / noise power. taking measurement.
  • the transmission signal does not leak into the reception unit regardless of whether or not the device itself is transmitting the transmission signal. For this reason, it becomes possible to measure the interference / noise power due to the radio wave transmitted by another external system by measuring the power of the received signal during all the transmission and reception periods of the device itself.
  • the second embodiment it becomes possible to measure interference / noise from other systems in the entire continuous period in which the own apparatus operates.
  • the measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself.
  • sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
  • FIG. 8 is a diagram showing various systems using the ISM band.
  • the horizontal axis is frequency.
  • the 2.4 GHz band includes Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile router, amateur radio, medical microwave heating device, microwave oven, and the like.
  • the 5 GHz band includes Wi-Fi, various radars such as weather, fixed / search satellites, radio astronomy, microwave landing guidance, aeronautical radio navigation, amateur radio, and the like.
  • the ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year.
  • the systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain time and create statistical information and the like.
  • FIG. 9 is a diagram for explaining that it is difficult to grasp the interference of other systems using existing technology.
  • the horizontal axis is time, and the vertical axis is power level.
  • signals from other systems can be received and signals transmitted by other systems (reception signal RD in the figure) can be measured.
  • the received signal RD includes a signal that causes interference and noise other than the signal transmitted to the own apparatus.
  • the signal (reception signal RD) from the other system is buried in the transmission signal SD transmitted by the own device, and the received signal from the other system. RD cannot be measured. For this reason, it was not possible to grasp the state of interference in the time zone in which the above-described own system is transmitting.
  • the existing technology in order to grasp the influence of interference and noise on the device itself, it was not possible to measure the radio wave continuously for a certain period of time and statistically analyze the power status of the interference and noise. In other words, the existing technology cannot measure interference and noise from other systems during the transmission period of its own device, so there is not enough information for statistics and sufficient measures cannot be taken. .
  • FIG. 10 is a block diagram illustrating a configuration example of a wireless device according to the existing technology.
  • the wireless device 1000 includes a transmission unit 1001, a switch 1002, an antenna 1003, a reception unit 1004, and a digital signal processing unit 1005.
  • the wireless device 1000 When transmitting a signal, the wireless device 1000 performs wireless transmission processing on the transmission signal subjected to signal processing by the digital signal processing unit 1005 by the transmission unit 1001, switches the switch 1002, and transmits the signal from the antenna 1003 by wireless radio waves.
  • the radio wave received by the antenna 1003 is output to the receiving unit 1004 by switching the switch 1002 to perform reception processing, and the digital signal processing unit 1005 performs signal processing.
  • the wireless device 1000 such as a wireless LAN switches the signal transmission / reception with the switch 1002 as shown in FIG. For this reason, it is a structure which cannot receive the signal of another system, transmitting the signal of an own apparatus.
  • the radio apparatus of each embodiment uses a circulator and can receive a signal even when the apparatus itself is transmitting a transmission signal. Then, during transmission of the transmission signal, the noise signal measurement unit obtains the power of the null band received from the outside, and measures this power as interference / noise power. Further, while the receiving apparatus is receiving the received signal, the power of the transmission data band + null band, that is, the frequency band for one channel is obtained, and this power is measured as interference / noise power.
  • interference / noise from other systems can be measured by receiving radio waves transmitted by other external systems.
  • the leakage amount that is, the power of the null band excluding the transmission data band of the transmission signal is measured, so that it depends on the radio wave transmitted by another external system. Interference and noise power can be measured.
  • the embodiment it is possible to measure interference / noise from other systems during the transmission of the own apparatus in addition to the reception of the own apparatus, that is, the entire continuous period in which the own apparatus operates.
  • the measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself. Thereby, sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
  • a period in which the own apparatus does not transmit a transmission signal is set as a period predicted by another system to transmit by analyzing statistical information.
  • the period during which the own apparatus transmits a transmission signal is set as the period during which the other system does not transmit.
  • each embodiment it is possible to measure the power of another system as an interference source and noise source with a simple configuration, and not affected by interference and noise from other systems using the same frequency.
  • Wireless communication can be performed.
  • communication that becomes an interference source and a noise source can be prevented with respect to another system in which the device itself uses the same frequency.
  • the wireless device described in each embodiment can be applied to various devices that use the same frequency such as the ISM band shown in FIG. 8 for wireless communication, such as a Wi-Fi wireless LAN access point.
  • the wireless noise measurement method described in the present embodiment can be realized by executing a control program prepared in advance by a computer (CPU or the like) of the target device (the wireless device).
  • This control program is recorded on a computer-readable recording medium such as a magnetic disk, an optical disk, or a USB (Universal Serial Bus) flash memory, and is executed by being read from the recording medium by the computer.
  • the control program may be distributed via a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Transceivers (AREA)
  • Noise Elimination (AREA)

Abstract

A wireless device (100) comprises: an antenna (104) for transmitting and receiving wireless radio waves by using the same frequency bandwidth as in other systems; a baseband unit (110) for performing signal processing on signals to be transmitted and received; a transmission unit (101) for converting a signal output from the baseband unit (110) into a wireless signal and outputting the wireless signal to the antenna (104); a reception unit (102) for converting a signal received by the antenna (104) into a wireless signal and outputting the wireless signal to the baseband unit (110); a circulator (103) for outputting the wireless signal transmitted and output by the transmission unit (101) to the antenna (104) and outputting the wireless signal received by the antenna (104) to the reception unit (102); and a noise signal measurement unit (105) for measuring power of a wireless signal received in the same frequency bandwidth as that of a transmitted wireless signal in a period during which the wireless signal is transmitted by the transmission unit (101) while eliminating influence of leakage of the wireless signal transmitted by the transmission unit (101) into the reception unit (102).

Description

無線装置および無線ノイズ測定方法Wireless device and wireless noise measuring method
 本発明は、無線通信を行う無線装置および無線ノイズ測定方法に関する。 The present invention relates to a wireless device that performs wireless communication and a wireless noise measurement method.
 産業科学医療用(ISM:Industry Science Medical)バンドは同一周波数を使用する複数のシステムが存在する。例えば、2.4GHz帯は、Wi-Fi(登録商標)、Bluetooth(登録商標)、モバイルルータ、アマチュア無線等がある。5GHz帯は、Wi-Fi、気象等の各種レーダ、アマチュア無線等がある。 There are a plurality of systems using the same frequency in the Industrial Science and Medical (ISM: Industry Science Medical) band. For example, the 2.4 GHz band includes Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile router, amateur radio, and the like. The 5 GHz band includes Wi-Fi, various radars such as weather, amateur radio, and the like.
 ISMバンドは、無線局免許状と電波利用料が不要であり、このISMバンドを使用するシステムが年々増加しており、ISMバンドの同一周波数において各システムが互いに干渉を起こすことなく共存することが求められる。干渉の状態を把握するためには、一定時間の連続した無線電波を測定する必要がある。 The ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year. The systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain period of time.
 従来、干渉する電波強度を把握するために、受信信号強度を測定し、干渉影響が最小の使用候補チャネルを選択する技術がある(例えば、下記特許文献1参照)。また、送受信をスイッチで切り替える構成に代えて、アクセスポイントが送信部と受信部との間にサーキュレータを配置し、送信と受信をアンテナ共用する技術がある(例えば、下記特許文献2,3参照。)。 Conventionally, there has been a technique for measuring a received signal strength and selecting a use candidate channel with a minimum interference effect in order to grasp the interference radio wave strength (see, for example, Patent Document 1 below). Moreover, instead of the configuration in which transmission and reception are switched by a switch, there is a technique in which an access point arranges a circulator between a transmission unit and a reception unit, and both transmission and reception are shared by antennas (for example, see Patent Documents 2 and 3 below). ).
特開2008-78698号公報JP 2008-78698 A 特開2013-121091号公報JP 2013-121091 A 特開2005-184863号公報JP 2005-184863 A
 しかし、同一周波数において自装置が送信している時間帯は、他のシステムの状況を把握することが困難である。自装置の受信期間中は、他のシステムの信号を受信し、他のシステムが送信した信号を測定可能である。しかし、自装置の送信期間中は、自装置の送信信号の中に他のシステムが送信した信号が埋もれてしまい、他システムが送信した信号を測定することができない。このため、上述した自システムが送信している時間帯における干渉の状態を把握することができなかった。 However, it is difficult to grasp the status of other systems during the time zone when the device is transmitting at the same frequency. During the reception period of its own device, signals from other systems can be received and signals transmitted by other systems can be measured. However, during the transmission period of the own device, the signal transmitted by the other system is buried in the transmission signal of the own device, and the signal transmitted by the other system cannot be measured. For this reason, it was not possible to grasp the state of interference in the time zone in which the above-described own system is transmitting.
 自装置に対する干渉や雑音の影響を把握するためには、一定時間連続して無線電波を測定して干渉や雑音の電力の状況を統計化し、統計情報に基づき対策を施す必要がある。しかし、従来は、自装置の送信の期間中は、他のシステムからの干渉や雑音そのものを測定できないため、統計化のための情報が不足し、十分な対策を施すことができなかった。 In order to grasp the influence of interference and noise on its own device, it is necessary to measure radio waves continuously for a certain period of time, to statistically analyze the power status of interference and noise, and to take measures based on the statistical information. However, conventionally, since the interference and noise from other systems cannot be measured during the transmission period of the own apparatus, information for statistics is insufficient and sufficient measures cannot be taken.
 一つの側面では、本発明は、信号の送信中でも信号を受信でき、他の装置との干渉を測定できることを目的とする。 In one aspect, an object of the present invention is to be able to receive a signal even during signal transmission and to measure interference with other devices.
 一つの案では、無線装置は、他のシステムと同一の周波数帯域を用いる無線装置であって、無線電波を送受信するアンテナと、送受信する信号の信号処理を行うベースバンド部と、前記ベースバンド部が出力する信号を無線信号に変換して前記アンテナに出力する送信部と、前記アンテナが受信した無線信号を信号に変換して前記ベースバンド部に出力する受信部と、前記送信部が送信出力する前記無線信号を前記アンテナに出力し、前記アンテナが受信した前記無線信号を前記受信部に出力するサーキュレータと、前記送信部が送信する前記無線信号の受信側への漏れ込みの影響を排除し、前記送信部による前記無線信号の送信の期間中、送信の前記無線信号と同一周波数帯域で受信した前記無線信号の電力を測定するノイズ信号測定部と、を有することを要件とする。 In one proposal, the wireless device is a wireless device that uses the same frequency band as other systems, and includes an antenna that transmits and receives wireless radio waves, a baseband unit that performs signal processing of signals that are transmitted and received, and the baseband unit The transmitter that converts the signal output from the antenna into a radio signal and outputs it to the antenna, the receiver that converts the radio signal received by the antenna into a signal and outputs the signal to the baseband unit, and the transmitter that transmits The circulator for outputting the radio signal to the antenna and outputting the radio signal received by the antenna to the receiver, and the influence of leakage of the radio signal transmitted by the transmitter to the reception side is eliminated. The noise signal measuring unit that measures the power of the radio signal received in the same frequency band as the radio signal transmitted during the transmission of the radio signal by the transmitter , It is a requirement to have a.
 一つの実施形態によれば、無線装置は、信号の送信中でも信号を受信でき、他の装置との干渉を測定できる。 According to one embodiment, the wireless device can receive a signal even during signal transmission and can measure interference with other devices.
図1は、実施の形態1にかかる無線装置の構成例を示すブロック図である。FIG. 1 is a block diagram of a configuration example of the radio apparatus according to the first embodiment. 図2は、実施の形態1の無線装置の制御部のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating a hardware configuration example of a control unit of the radio apparatus according to the first embodiment. 図3は、実施の形態1の無線装置の電力スペクトラムを示す図である。FIG. 3 is a diagram illustrating a power spectrum of the wireless device according to the first embodiment. 図4は、実施の形態1の無線装置のノイズ信号測定部の処理を説明する図である。FIG. 4 is a diagram for explaining processing of the noise signal measurement unit of the radio apparatus according to the first embodiment. 図5は、実施の形態1の無線装置のノイズ信号測定の処理手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a processing procedure of noise signal measurement of the wireless device according to the first embodiment. 図6は、実施の形態2の無線装置のノイズ信号測定部の処理を説明する図である。FIG. 6 is a diagram for explaining processing of the noise signal measurement unit of the radio apparatus according to the second embodiment. 図7は、実施の形態2の無線装置のノイズ信号測定の処理手順を示すフローチャートである。FIG. 7 is a flowchart illustrating a processing procedure of noise signal measurement of the radio apparatus according to the second embodiment. 図8は、ISMバンドを使用する各種システムを示す図である。FIG. 8 is a diagram showing various systems using the ISM band. 図9は、既存の技術による他のシステムの干渉の把握が困難なことを説明する図である。FIG. 9 is a diagram for explaining that it is difficult to grasp the interference of another system using the existing technology. 図10は、既存の技術による無線装置の構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of a wireless device according to an existing technology.
(実施の形態1)
 図1は、実施の形態1にかかる無線装置の構成例を示すブロック図である。図1(a)に示すように、無線装置100は、送信部101と、受信部102と、サーキュレータ103と、アンテナ104と、ノイズ信号測定部105と、ベースバンド部(BB)110と、を含む。
(Embodiment 1)
FIG. 1 is a block diagram of a configuration example of the radio apparatus according to the first embodiment. As shown in FIG. 1A, the wireless device 100 includes a transmission unit 101, a reception unit 102, a circulator 103, an antenna 104, a noise signal measurement unit 105, and a baseband unit (BB) 110. Including.
 送信部101は、ベースバンド部110から入力されたベースバンド帯域の信号を高周波(無線帯域、RF:RadioFrequecy)の信号(無線信号)に変換し、サーキュレータ103を介してアンテナ104から無線送信する。送信部101は、増幅器(PA:PowerAmp)114を含み、PA114は、無線送信するアナログ信号を増幅する。 The transmission unit 101 converts the baseband signal input from the baseband unit 110 into a high-frequency (radio band, RF: Radio Frequency) signal (radio signal), and wirelessly transmits the signal from the antenna 104 via the circulator 103. The transmission unit 101 includes an amplifier (PA: PowerAmp) 114, and the PA 114 amplifies an analog signal to be wirelessly transmitted.
 受信部102は、アンテナ104が受信し、サーキュレータ103を介して出力された無線信号をベースバンド帯域の信号に変換し、ベースバンド部110に出力する。受信部102は、キャンセラー121と、増幅器(LNA:LowNoiseAmp)122を含む。アンテナ104で受信した無線電波は、サーキュレータ103を介してキャンセラー121に出力される。LNA122は、受信信号を増幅し、ベースバンド(BB)部110に出力する。 The receiving unit 102 converts the radio signal received by the antenna 104 and output via the circulator 103 into a baseband signal and outputs the signal to the baseband unit 110. The receiving unit 102 includes a canceller 121 and an amplifier (LNA: LowNoiseAmp) 122. The radio wave received by the antenna 104 is output to the canceller 121 via the circulator 103. The LNA 122 amplifies the received signal and outputs it to the baseband (BB) unit 110.
 ベースバンド部110は、無線装置100が送受信する装置を信号処理する。このベースバンド部110は、送信信号を処理する構成として、変調器111と、デジタルアナログ変換器(DAC)112と、発振器113と、を含む。 The baseband unit 110 performs signal processing on a device that the wireless device 100 transmits and receives. The baseband unit 110 includes a modulator 111, a digital-analog converter (DAC) 112, and an oscillator 113 as a configuration for processing a transmission signal.
 変調器111は、デジタルの送信信号を所定の無線方式にしたがいデジタル変調する。DAC112には、発振器113の発振信号が供給され、無線送信するデジタル信号をアナログ信号に変換する。 The modulator 111 digitally modulates a digital transmission signal according to a predetermined wireless system. The DAC 112 is supplied with the oscillation signal of the oscillator 113, and converts a digital signal to be wirelessly transmitted into an analog signal.
 また、ベースバンド部110は、受信信号を処理する構成として、アナログデジタル変換器(ADC)123と、キャンセラー124と、復調器125と、を含む。 The baseband unit 110 includes an analog-digital converter (ADC) 123, a canceller 124, and a demodulator 125 as a configuration for processing a received signal.
 ADC123には、発振器113の発振信号が供給され、受信信号をアナログ信号からデジタル信号に変換する。キャンセラー124は、ADC123が出力する受信信号を復調器125に出力し、この際、受信信号に含まれる送信部101や変調器111等の送信信号の漏れ込み分をキャンセルする。復調器125は、受信信号の復調を行う。 The ADC 123 is supplied with the oscillation signal from the oscillator 113 and converts the received signal from an analog signal to a digital signal. The canceller 124 outputs the reception signal output from the ADC 123 to the demodulator 125, and cancels the leakage of the transmission signal from the transmission unit 101, the modulator 111, and the like included in the reception signal. The demodulator 125 demodulates the received signal.
 キャンセラー121,124は、送信部101による送信信号の受信部102側への漏れ込みを抑圧(除去)する。キャンセラー121は、サーキュレータ103が出力する受信信号をLNA122に出力するとともに、受信信号に含まれる送信部101(PA114等)の送信信号がサーキュレータ103を介して受信部102への漏れ込み分をキャンセルする。 The cancellers 121 and 124 suppress (remove) leakage of transmission signals from the transmission unit 101 to the reception unit 102 side. The canceller 121 outputs the reception signal output from the circulator 103 to the LNA 122 and cancels the leakage of the transmission signal of the transmission unit 101 (PA 114 or the like) included in the reception signal to the reception unit 102 via the circulator 103. .
 キャンセラー121,124は、+側に送受信の信号が入力され、-側にキャンセル用の信号が入力され、キャンセル用の信号を抑圧して送受信用の信号を出力する。 The cancellers 121 and 124 receive a transmission / reception signal on the + side, receive a cancellation signal on the − side, suppress the cancellation signal, and output a transmission / reception signal.
 図1(b)に示すように、サーキュレータ103は、ポート1の入力をポート2に出力し、ポート2の入力をポート3に出力する(順方向)。また、逆方向、例えば、ポート2の出力をポート1には出力しない。図1(a)に示すように、サーキュレータ103は、ポート1に送信部101のPA114を接続し、ポート2にアンテナ104を接続し、ポート3に受信部102のLNA122(キャンセラー121)を接続する。 As shown in FIG. 1B, the circulator 103 outputs the input of the port 1 to the port 2 and outputs the input of the port 2 to the port 3 (forward direction). Further, the output of the port 2 in the reverse direction, for example, is not output to the port 1. As shown in FIG. 1A, the circulator 103 connects the PA 114 of the transmission unit 101 to the port 1, connects the antenna 104 to the port 2, and connects the LNA 122 (canceller 121) of the reception unit 102 to the port 3. .
 送信信号の電力は、受信信号の電力に対し、例えば10万倍高い。このため、送信部101の送信信号がサーキュレータ103等を介して受信部102側に漏れ込む。キャンセラー121,124は、送信信号のノイズにより受信信号が埋もれることを抑制する。 The power of the transmission signal is, for example, 100,000 times higher than the power of the reception signal. For this reason, the transmission signal of the transmission part 101 leaks into the receiving part 102 side via the circulator 103 grade | etc.,. The cancellers 121 and 124 suppress the reception signal from being buried due to the noise of the transmission signal.
 実施の形態1では、サーキュレータ103と2段のキャンセラー121,124を組み合わせて用いる。これにより、送信部101が送信信号を送信出力している期間中においても、受信部102により外部の他のシステムからの信号を受信し、かつ、送信信号による受信信号の埋もれを防いで受信信号を受信できるようにしている。 In Embodiment 1, the circulator 103 and the two- stage cancellers 121 and 124 are used in combination. As a result, even during a period in which the transmission unit 101 transmits and transmits a transmission signal, the reception unit 102 receives a signal from another external system and prevents the reception signal from being buried by the transmission signal. Can be received.
 ノイズ信号測定部105は、キャンセラー124による受信信号の出力が入力され、受信信号に基づき、他のシステムが自装置に影響を与える干渉・雑音電力等のノイズ信号測定を行う。ここで、ノイズ信号測定部105は、キャンセラー121,124が送信部101側の送信信号の影響を抑圧する。これにより、無線装置100は、自装置が送信中の送信信号の影響を抑制して、他のシステムが送信する干渉や雑音となる信号を受信し、受信した信号の電力測定を行うことができる。 The noise signal measuring unit 105 receives the output of the received signal from the canceller 124, and measures a noise signal such as interference / noise power that other systems affect the own device based on the received signal. Here, in the noise signal measurement unit 105, the cancellers 121 and 124 suppress the influence of the transmission signal on the transmission unit 101 side. Thereby, the radio | wireless apparatus 100 can suppress the influence of the transmission signal which self-apparatus is transmitting, can receive the signal used as interference and noise which another system transmits, and can measure the electric power of the received signal. .
 図2は、実施の形態1の無線装置の制御部のハードウェア構成例を示す図である。図1には不図示であるが、無線装置100は、図2に記載の制御部200が装置各部を統括制御する。そして、この制御部200は、図1に記載のノイズ信号測定部105のノイズ信号測定の機能を実行する。 FIG. 2 is a diagram illustrating a hardware configuration example of a control unit of the wireless device according to the first embodiment. Although not shown in FIG. 1, in the wireless device 100, the control unit 200 shown in FIG. And this control part 200 performs the function of the noise signal measurement of the noise signal measurement part 105 of FIG.
 図2に示したCPU(Central Processing Unit)201がメモリ202に格納されたプログラムを読み出し実行し、その際、メモリ202の領域の一部を作業領域に使用する。これにより、無線装置100を統括制御し、また、図1のノイズ信号測定部105の機能を実現可能である。メモリ202は、ROM,RAM等を用いることができる。また、HDDやフラッシュメモリ等の拡張メモリ203をデータ格納領域等に用いることもできる。204は、バスである。 2. A CPU (Central Processing Unit) 201 shown in FIG. 2 reads and executes a program stored in the memory 202, and at this time, a part of the area of the memory 202 is used as a work area. As a result, the radio apparatus 100 can be controlled in an integrated manner, and the function of the noise signal measuring unit 105 in FIG. 1 can be realized. As the memory 202, ROM, RAM, or the like can be used. Further, an extended memory 203 such as an HDD or a flash memory can be used for a data storage area or the like. Reference numeral 204 denotes a bus.
 無線通信部205は、図1の送信部101および受信部102の無線通信にかかる機能を実現する。通信インタフェース(I/F)部206は、外部装置との間の通信インタフェースの機能を実現し、例えば、ノイズ信号測定部105の測定結果を外部装置に出力する。ノイズ信号測定部105が測定した干渉・雑音電力は、記憶部として機能するメモリ202や拡張メモリ203に蓄積することができる。 The wireless communication unit 205 realizes functions related to wireless communication of the transmission unit 101 and the reception unit 102 in FIG. A communication interface (I / F) unit 206 realizes a function of a communication interface with an external device, and outputs, for example, a measurement result of the noise signal measurement unit 105 to the external device. The interference / noise power measured by the noise signal measuring unit 105 can be stored in the memory 202 or the extended memory 203 functioning as a storage unit.
 図1に示した変調器111とDAC112、およびADC123とキャンセラー124と復調器125は、ベースバンド(BB)帯域の信号処理を行い、例えばこれらの機能を集積したIC等により実現できる。図1に示した送信部101のPA114、および受信部102のキャンセラー121とLNA122、およびサーキュレータ103は、無線帯域(RF)の信号処理を行い、例えば、これらの機能を集積したIC等により実現できる。 The modulator 111 and the DAC 112, the ADC 123, the canceller 124, and the demodulator 125 shown in FIG. 1 perform baseband (BB) band signal processing, and can be realized by, for example, an IC that integrates these functions. The PA 114 of the transmission unit 101, the canceller 121 and the LNA 122, and the circulator 103 of the reception unit 102 shown in FIG. 1 perform radio band (RF) signal processing, and can be realized by, for example, an IC that integrates these functions. .
 図3は、実施の形態1の無線装置の電力スペクトラムを示す図である。横軸は周波数(1チャネル分の周波数帯域)、縦軸は電力である。図3(a)は、無線装置100が送信信号を送信時の電力スペクトラム、図3(b)は、無線装置100が信号の受信時の電力スペクトラムを示す。 FIG. 3 is a diagram illustrating a power spectrum of the wireless device according to the first embodiment. The horizontal axis represents frequency (frequency band for one channel), and the vertical axis represents power. 3A shows a power spectrum when the wireless device 100 transmits a transmission signal, and FIG. 3B shows a power spectrum when the wireless device 100 receives a signal.
 図3(a)に示すように、送信部101は、所定の送信データ帯域fs内で送信信号SDを送信する。また、図3(b)に示すように、干渉や雑音となる外部の他のシステムからの受信信号RDは1チャネル全体の周波数帯域を有する。 As shown in FIG. 3A, the transmission unit 101 transmits a transmission signal SD within a predetermined transmission data band fs. Further, as shown in FIG. 3B, the received signal RD from another external system that causes interference and noise has a frequency band of one entire channel.
 実施の形態1では、現状の技術では、送信部101が送信する送信信号SDが受信部102へ漏れ込む前提に基づき、ヌル帯域fnを用い他のシステムからの干渉および雑音となる信号(受信信号RD)の電力を測定する。ヌル帯域fnは、1チャネル分の周波数帯域のうち送信データ帯域fsの両側に位置する帯域である。 In the first embodiment, in the current technology, based on the assumption that the transmission signal SD transmitted by the transmission unit 101 leaks to the reception unit 102, a signal (reception signal) that causes interference and noise from other systems using the null band fn. RD) power is measured. The null band fn is a band located on both sides of the transmission data band fs in the frequency band for one channel.
 図4は、実施の形態1の無線装置のノイズ信号測定部の処理を説明する図である。図4(a)に示すように、ノイズ信号測定部105は、周波数変換部(FFT:Fast Fourier Transform)400と、電力測定部1(401)と、電力測定部2(402)と、を含む。 FIG. 4 is a diagram for explaining the processing of the noise signal measurement unit of the wireless device according to the first embodiment. As shown in FIG. 4A, the noise signal measurement unit 105 includes a frequency conversion unit (FFT: Fast Fourier Transform) 400, a power measurement unit 1 (401), and a power measurement unit 2 (402). .
 FFT400は、キャンセラー124が出力する受信信号の電力をフーリエ変換により、図4(b)に示す周波数軸に変換する。FFT400は、自装置が受信中の場合は、電力測定部1(401)に周波数変換後の受信信号を出力し、自装置が送信中の場合は、電力測定部2(402)に周波数変換後の受信信号を出力する。 The FFT 400 converts the power of the received signal output from the canceller 124 into the frequency axis shown in FIG. 4B by Fourier transform. The FFT 400 outputs the received signal after frequency conversion to the power measurement unit 1 (401) when the own device is receiving, and after frequency conversion to the power measurement unit 2 (402) when the own device is transmitting. The received signal is output.
 電力測定部1(401)は、無線装置100の受信部102が受信した1チャネル分の周波数帯域全体である送信データ帯域fs+ヌル帯域fnの電力を測定する。図4(b)には、1チャネル分の周波数帯域におけるヌル帯域fn、および送信データ帯域fsを示す。 The power measuring unit 1 (401) measures the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel received by the receiving unit 102 of the wireless device 100. FIG. 4B shows a null band fn and a transmission data band fs in a frequency band for one channel.
 電力測定部2(402)は、自装置が送信中、1チャネル分の周波数帯域のうち、ヌル帯域fnの電力を測定する。実施の形態1では、2段のキャンセラー121,124を設けているが、送信時には送信データ帯域fsで送信する送信信号SDの一部が送信部101がサーキュレータ103等を介して受信部102側に漏れ込むことを前提としている(図3(a)参照)。このため、実施の形態1では、自装置の送信中は、送信データ帯域fsの送信信号SDを除くヌル帯域fnの電力を干渉・雑音の電力として求める。 The power measuring unit 2 (402) measures the power of the null band fn in the frequency band for one channel while the device is transmitting. In the first embodiment, two stages of cancellers 121 and 124 are provided, but at the time of transmission, a part of the transmission signal SD transmitted in the transmission data band fs is transmitted to the reception unit 102 side by the transmission unit 101 via the circulator 103 or the like. It is assumed that it leaks (see FIG. 3A). For this reason, in the first embodiment, during the transmission of the own apparatus, the power of the null band fn excluding the transmission signal SD of the transmission data band fs is obtained as the interference / noise power.
 上述した説明では、2つの電力測定部1,2(401,402)をそれぞれ設けることとしたが、これに限らない。一つの電力測定部401を用い、受信時には、1チャネル分の周波数帯域全体である送信データ帯域fs+ヌル帯域fnの電力を測定し、自装置の送信時には、ヌル帯域fnの電力を測定する切り替えを行ってもよい。 In the above description, the two power measuring units 1 and 2 (401 and 402) are provided, but the present invention is not limited to this. A single power measuring unit 401 is used to measure the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel at the time of reception, and switch to measure the power of the null band fn at the time of transmission of the own apparatus. You may go.
 電力測定部1(401),電力測定部2(402)による電力は、FFT後の信号を2乗し、その平均を取ることで求める(下記式(1))。 The electric power by the electric power measurement part 1 (401) and the electric power measurement part 2 (402) is calculated | required by squaring the signal after FFT, and taking the average (following formula (1)).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図5は、実施の形態1の無線装置のノイズ信号測定の処理手順を示すフローチャートである。例えば、ノイズ信号測定部105の機能を実現するCPU201の処理内容を示す。 FIG. 5 is a flowchart illustrating a processing procedure of noise signal measurement of the wireless device according to the first embodiment. For example, the processing content of the CPU 201 that realizes the function of the noise signal measurement unit 105 is shown.
 ノイズ信号測定部105は、受信信号を周波数変換部400により周波数変換する(ステップS501)。次に、ノイズ信号測定部105は、自装置が送信信号を送信中であるか判断する(ステップS502)。自装置が送信中であれば(ステップS502:Yes)、ステップS503の処理に移行し、自装置が送信中でなければ(ステップS502:No)、ステップS504の処理に移行する。 The noise signal measurement unit 105 converts the frequency of the received signal by the frequency conversion unit 400 (step S501). Next, the noise signal measurement unit 105 determines whether or not the own device is transmitting a transmission signal (step S502). If the own apparatus is transmitting (step S502: Yes), the process proceeds to step S503. If the own apparatus is not transmitting (step S502: No), the process proceeds to step S504.
 ステップS503では、自装置が送信中であるためノイズ信号測定部105は、電力測定部2(402)によりヌル帯域fnの電力を測定する(ステップS503、図3(a)参照)。そして、測定したヌル帯域fnの電力を干渉・雑音電力として記憶部に保存し(ステップS505)、以上の処理を終了する。記憶部は、図2に示すメモリ202や拡張メモリ203であり、干渉・雑音電力を蓄積していくことができる。 In step S503, since the own apparatus is transmitting, the noise signal measuring unit 105 measures the power of the null band fn by the power measuring unit 2 (402) (see step S503, FIG. 3A). Then, the measured power of the null band fn is stored in the storage unit as interference / noise power (step S505), and the above processing is terminated. The storage unit is the memory 202 or the extended memory 203 shown in FIG. 2, and can accumulate interference and noise power.
 ステップS504では、自装置が送信中ではないためノイズ信号測定部105は、電力測定部1(401)により、送信データ帯域fs+ヌル帯域fnの電力を測定する(ステップS504、図3(b)参照)。そして、測定した送信データ帯域fs+ヌル帯域fnの電力を干渉・雑音電力として記憶部に保存し(ステップS505)、以上の処理を終了する。 In step S504, since the own apparatus is not transmitting, the noise signal measurement unit 105 measures the power of the transmission data band fs + null band fn by the power measurement unit 1 (401) (see step S504, FIG. 3B). ). Then, the measured power of the transmission data band fs + null band fn is stored as interference / noise power in the storage unit (step S505), and the above processing is terminated.
 以上説明した実施の形態1によれば、サーキュレータを用い、自装置が送信信号の送信中においても信号を受信可能にする。そして、送信信号の送信中には、外部から受信したヌル帯域の電力を求め、この電力を干渉・雑音の電力として測定する。また、自装置が受信信号を受信中には、送信データ帯域+ヌル帯域、すなわち1チャネル分の周波数帯域の電力を求め、この電力を干渉・雑音の電力として測定する。 According to the first embodiment described above, the circulator is used to enable the device to receive a signal even during transmission of the transmission signal. During transmission of the transmission signal, the power of the null band received from the outside is obtained, and this power is measured as interference / noise power. Further, while the receiving apparatus is receiving the received signal, the power of the transmission data band + null band, that is, the frequency band for one channel is obtained, and this power is measured as interference / noise power.
 実施の形態1によれば、自装置が送信信号の送信中においても、外部の他のシステムが送信する同一周波数の電波を受信することで、他のシステムからの干渉・雑音を測定できるようになる。この際、送信中の送信信号が受信部に漏れ込んでも、この漏れ込み分、すなわち送信信号の送信データ帯域を除くヌル帯域の電力を測定することで、外部の他のシステムが送信する電波による干渉・雑音電力を測定できるようになる。 According to the first embodiment, even when the device itself is transmitting a transmission signal, it can receive interference and noise from other systems by receiving radio waves of the same frequency transmitted by other external systems. Become. At this time, even if the transmission signal being transmitted leaks to the receiving unit, the leakage amount, that is, the power of the null band excluding the transmission data band of the transmission signal is measured, so that it depends on the radio wave transmitted by another external system. Interference and noise power can be measured.
 このように、実施の形態1によれば、自装置の受信中に加え自装置の送信中、すなわち、自装置が稼働する連続した全期間における他のシステムからの干渉・雑音を測定できるようになる。測定した全期間の干渉・雑音の電力は記憶部に蓄積記憶でき、自装置に対する干渉・雑音の統計情報として用いることができる。これにより、十分な統計情報が得られ、同一周波数を用いる他のシステムによる干渉および雑音の影響を正確に把握し、適切な対策を施すことができるようになる。 As described above, according to the first embodiment, it is possible to measure interference / noise from other systems during the transmission of the own apparatus in addition to the reception of the own apparatus, that is, the entire continuous period in which the own apparatus operates. Become. The measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself. As a result, sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
 例えば、統計情報の解析により、他のシステムが送信すると予測した期間は、自装置が送信信号を送信しない期間の設定や、逆に、他のシステムが送信しないと予測した期間は、自装置が送信信号を送信する期間の設定が行えるようになる。これにより、自装置と他のシステムとが効率的に同一の周波数帯域を使用できるようになり、同一の周波数帯域を使用する多数のシステムと共存することができるようになる。 For example, by analyzing statistical information, the period predicted by the other system to transmit is the setting of the period in which the own apparatus does not transmit a transmission signal. It becomes possible to set the period for transmitting the transmission signal. As a result, the own apparatus and other systems can efficiently use the same frequency band, and can coexist with many systems using the same frequency band.
(実施の形態2)
 実施の形態1では、無線装置100の送信信号が受信部102に漏れ込むことを前提として説明した。実施の形態2では、無線装置100の送信信号が受信部102に漏れ込まないことを前提とする干渉・雑音の電力測定について説明する。
(Embodiment 2)
The first embodiment has been described on the assumption that the transmission signal of the radio apparatus 100 leaks into the reception unit 102. In Embodiment 2, interference / noise power measurement based on the premise that a transmission signal of radio apparatus 100 does not leak into reception section 102 will be described.
 実施の形態2の無線装置100の構成は、基本的に実施の形態1(図1)で説明した構成と同様である。例えば、将来、キャンセラー121、124の性能向上や、送信信号の漏れ対策等が進むことで、送信信号が受信部に漏れ込まないことが期待できる。 The configuration of radio apparatus 100 of the second embodiment is basically the same as the configuration described in the first embodiment (FIG. 1). For example, it can be expected that the transmission signal will not leak into the receiving unit as the performance of the cancellers 121 and 124 is improved and countermeasures against leakage of the transmission signal proceed in the future.
 図6は、実施の形態2の無線装置のノイズ信号測定部の処理を説明する図である。図6(a)に示すように、ノイズ信号測定部105は、周波数変換部(FFT:Fast Fourier Transform)400と、電力測定部601を含む。 FIG. 6 is a diagram for explaining the processing of the noise signal measurement unit of the radio apparatus according to the second embodiment. As shown in FIG. 6A, the noise signal measurement unit 105 includes a frequency conversion unit (FFT: Fast Fourier Transform) 400 and a power measurement unit 601.
 FFT400は、実施の形態1(図4参照)同様に、キャンセラー124が出力する受信信号を図6(b)に示す周波数軸に変換する。 FFT 400 converts the reception signal output from canceller 124 to the frequency axis shown in FIG. 6B, as in the first embodiment (see FIG. 4).
 電力測定部601は、無線装置100が送信データの送信中、および受信中のいずれにおいても、1チャネル分の周波数帯域全体である送信データ帯域fs+ヌル帯域fnの電力を測定する。図6(b)には、1チャネル分の周波数帯域におけるヌル帯域fn、および送信データ帯域fsを示す。 The power measurement unit 601 measures the power of the transmission data band fs + null band fn, which is the entire frequency band for one channel, regardless of whether the wireless device 100 is transmitting or receiving transmission data. FIG. 6B shows a null band fn and a transmission data band fs in a frequency band for one channel.
 このように、実施の形態2では、自装置の受信中に加え送信中においても、送信データ帯域fsの送信信号SDが受信部102に漏れ込まないことを前提として、電力測定部601はチャネル全体の電力を干渉・雑音の電力として求める。 As described above, in the second embodiment, the power measurement unit 601 performs the entire channel on the premise that the transmission signal SD of the transmission data band fs does not leak into the reception unit 102 during transmission in addition to reception by the own apparatus. Is obtained as interference / noise power.
 図7は、実施の形態2の無線装置のノイズ信号測定の処理手順を示すフローチャートである。例えば、ノイズ信号測定部105の機能を実現するCPU201の処理内容を示す。 FIG. 7 is a flowchart showing a processing procedure of noise signal measurement of the wireless device of the second embodiment. For example, the processing content of the CPU 201 that realizes the function of the noise signal measurement unit 105 is shown.
 ノイズ信号測定部105は、受信信号の電力を周波数変換部400により周波数変換する(ステップS701)。次に、ノイズ信号測定部105は、自装置が送信信号の送信中および受信信号の受信中のいずれにおいても、電力測定部601により、送信データ帯域fs+ヌル帯域fnの電力を測定する(ステップS702、図3(b)参照)。そして、測定した送信データ帯域fs+ヌル帯域fnの電力を干渉・雑音電力として記憶部に保存し(ステップS703)、以上の処理を終了する。 The noise signal measurement unit 105 performs frequency conversion of the power of the received signal by the frequency conversion unit 400 (step S701). Next, the noise signal measurement unit 105 measures the power of the transmission data band fs + null band fn by the power measurement unit 601 regardless of whether the own apparatus is transmitting a transmission signal or receiving a reception signal (step S702). FIG. 3B). Then, the measured power of the transmission data band fs + null band fn is stored as interference / noise power in the storage unit (step S703), and the above process is terminated.
 以上説明した実施の形態2によれば、自装置による送信中の送信信号が受信部に漏れ込まない構成である。このため、信号の送信中および受信中のいずれの期間においても、送信データ帯域+ヌル帯域、すなわち1チャネル分の周波数帯域全体を有効に用いて電力を求め、この電力を干渉・雑音の電力として測定する。 According to the second embodiment described above, the transmission signal being transmitted by the own apparatus does not leak into the reception unit. For this reason, in any period during signal transmission and reception, power is obtained by effectively using the transmission data band + null band, that is, the entire frequency band for one channel, and this power is used as interference / noise power. taking measurement.
 実施の形態2によれば、自装置が送信信号の送信中であるか否かにかかわらず、送信信号が受信部に漏れ込むことがない。このため、自装置の送信中および受信中の全ての期間における受信信号の電力を測定することで、外部の他のシステムが送信する電波による干渉・雑音電力を測定できるようになる。 According to the second embodiment, the transmission signal does not leak into the reception unit regardless of whether or not the device itself is transmitting the transmission signal. For this reason, it becomes possible to measure the interference / noise power due to the radio wave transmitted by another external system by measuring the power of the received signal during all the transmission and reception periods of the device itself.
 このように、実施の形態2によれば、自装置が稼働する連続した全期間における他のシステムからの干渉・雑音を測定できるようになる。測定した全期間の干渉・雑音の電力は記憶部に蓄積記憶でき、自装置に対する干渉・雑音の統計情報として用いることができる。これにより、十分な統計情報が得られ、同一周波数を用いる他のシステムによる干渉および雑音の影響を正確に把握し、適切な対策を施すことができるようになる。 As described above, according to the second embodiment, it becomes possible to measure interference / noise from other systems in the entire continuous period in which the own apparatus operates. The measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself. As a result, sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
(既存の技術との対比)
 次に、既存の技術について説明し、上記各実施の形態と対比説明する。図8は、ISMバンドを使用する各種システムを示す図である。横軸は周波数である。ISMバンドは同一周波数を使用する複数のシステムが存在する。例えば、2.4GHz帯は、Wi-Fi(登録商標)、Bluetooth(登録商標)、モバイルルータ、アマチュア無線、医療用マイクロ波加熱装置、電子レンジ等がある。5GHz帯には、Wi-Fi、気象等の各種レーダ、固定/探索の衛星、電波天文、マイクロ波着陸誘導、航空無線航行、アマチュア無線等がある。
(Contrast with existing technology)
Next, the existing technology will be described and compared with the above embodiments. FIG. 8 is a diagram showing various systems using the ISM band. The horizontal axis is frequency. There are multiple systems using the same frequency in the ISM band. For example, the 2.4 GHz band includes Wi-Fi (registered trademark), Bluetooth (registered trademark), mobile router, amateur radio, medical microwave heating device, microwave oven, and the like. The 5 GHz band includes Wi-Fi, various radars such as weather, fixed / search satellites, radio astronomy, microwave landing guidance, aeronautical radio navigation, amateur radio, and the like.
 ISMバンドは、無線局免許状と電波利用料が不要であり、このISMバンドを使用するシステムが年々増加しており、ISMバンドの同一周波数において各システムが互いに干渉を起こすことなく共存することが求められる。干渉の状態を把握するためには、一定時間の連続した無線電波を測定し、統計情報等を作成する必要がある。 The ISM band does not require a radio station license or radio wave usage fee, and the number of systems using this ISM band is increasing year by year. The systems may coexist without causing interference with each other at the same frequency of the ISM band. Desired. In order to grasp the state of interference, it is necessary to measure continuous radio waves for a certain time and create statistical information and the like.
 図9は、既存の技術による他のシステムの干渉の把握が困難なことを説明する図である。横軸は時間、縦軸は電力レベルである。図9(a)に示すように、自装置の受信期間中は、他のシステムの信号を受信し、他のシステムが送信した信号(図の受信信号RD)を測定可能である。受信信号RDは、自装置に対して送信された信号以外の干渉・ノイズの要因となる信号を含む。 FIG. 9 is a diagram for explaining that it is difficult to grasp the interference of other systems using existing technology. The horizontal axis is time, and the vertical axis is power level. As shown in FIG. 9A, during the reception period of the own apparatus, signals from other systems can be received and signals transmitted by other systems (reception signal RD in the figure) can be measured. The received signal RD includes a signal that causes interference and noise other than the signal transmitted to the own apparatus.
 しかし、図9(b)に示す自装置の送信期間中は、自装置が送信する送信信号SDの中に他のシステムからの信号(受信信号RD)が埋もれてしまい、他システムからの受信信号RDを測定することができない。このため、上述した自システムが送信している時間帯における干渉の状態を把握することができなかった。 However, during the transmission period of the own device shown in FIG. 9B, the signal (reception signal RD) from the other system is buried in the transmission signal SD transmitted by the own device, and the received signal from the other system. RD cannot be measured. For this reason, it was not possible to grasp the state of interference in the time zone in which the above-described own system is transmitting.
 これにより、既存の技術では、自装置に対する干渉や雑音の影響を把握するために、一定時間連続して無線電波を測定して干渉や雑音の電力の状況を統計化することができなかった。すなわち、既存の技術では、自装置の送信の期間中は、他のシステムからの干渉や雑音そのものを測定できないため、統計化のための情報が不足し、十分な対策を施すことができなかった。 Therefore, with the existing technology, in order to grasp the influence of interference and noise on the device itself, it was not possible to measure the radio wave continuously for a certain period of time and statistically analyze the power status of the interference and noise. In other words, the existing technology cannot measure interference and noise from other systems during the transmission period of its own device, so there is not enough information for statistics and sufficient measures cannot be taken. .
 図10は、既存の技術による無線装置の構成例を示すブロック図である。無線装置1000は、送信部1001と、スイッチ1002と、アンテナ1003と、受信部1004と、デジタル信号処理部1005と、を有している。 FIG. 10 is a block diagram illustrating a configuration example of a wireless device according to the existing technology. The wireless device 1000 includes a transmission unit 1001, a switch 1002, an antenna 1003, a reception unit 1004, and a digital signal processing unit 1005.
 無線装置1000は、信号送信時、デジタル信号処理部1005により信号処理した送信信号を送信部1001により無線送信処理を行い、スイッチ1002を切り替えて、アンテナ1003から無線電波により送信する。信号受信時には、アンテナ1003で受信した無線電波をスイッチ1002の切り替えにより受信部1004側に出力して受信処理を行い、デジタル信号処理部1005により信号処理する。 When transmitting a signal, the wireless device 1000 performs wireless transmission processing on the transmission signal subjected to signal processing by the digital signal processing unit 1005 by the transmission unit 1001, switches the switch 1002, and transmits the signal from the antenna 1003 by wireless radio waves. At the time of signal reception, the radio wave received by the antenna 1003 is output to the receiving unit 1004 by switching the switch 1002 to perform reception processing, and the digital signal processing unit 1005 performs signal processing.
 例えば、無線LAN等の無線装置1000は、図10に示したように、信号の送受信をスイッチ1002で切り替えている。このため、自装置の信号を送信しながら、他のシステムの信号を受信することができない構造となっている。 For example, the wireless device 1000 such as a wireless LAN switches the signal transmission / reception with the switch 1002 as shown in FIG. For this reason, it is a structure which cannot receive the signal of another system, transmitting the signal of an own apparatus.
 これに対し、各実施の形態の無線装置では、サーキュレータを用い、自装置が送信信号の送信中においても信号を受信可能である。そして、ノイズ信号測定部により、送信信号の送信中は、外部から受信したヌル帯域の電力を求め、この電力を干渉・雑音の電力として測定する。また、自装置が受信信号を受信中には、送信データ帯域+ヌル帯域、すなわち1チャネル分の周波数帯域の電力を求め、この電力を干渉・雑音の電力として測定する。 On the other hand, the radio apparatus of each embodiment uses a circulator and can receive a signal even when the apparatus itself is transmitting a transmission signal. Then, during transmission of the transmission signal, the noise signal measurement unit obtains the power of the null band received from the outside, and measures this power as interference / noise power. Further, while the receiving apparatus is receiving the received signal, the power of the transmission data band + null band, that is, the frequency band for one channel is obtained, and this power is measured as interference / noise power.
 このように、実施の形態によれば、自装置が送信信号の送信中においても、外部の他のシステムが送信する電波を受信することで、他のシステムからの干渉・雑音を測定できる。この際、送信中の送信信号が受信部に漏れ込んでも、この漏れ込み分、すなわち送信信号の送信データ帯域を除くヌル帯域の電力を測定することで、外部の他のシステムが送信する電波による干渉・雑音電力を測定できる。 As described above, according to the embodiment, even when the device itself is transmitting a transmission signal, interference / noise from other systems can be measured by receiving radio waves transmitted by other external systems. At this time, even if the transmission signal being transmitted leaks to the receiving unit, the leakage amount, that is, the power of the null band excluding the transmission data band of the transmission signal is measured, so that it depends on the radio wave transmitted by another external system. Interference and noise power can be measured.
 したがって、実施の形態によれば、自装置の受信中に加え自装置の送信中、すなわち、自装置が稼働する連続した全期間における他のシステムからの干渉・雑音を測定できる。測定した全期間の干渉・雑音の電力は記憶部に蓄積記憶でき、自装置に対する干渉・雑音の統計情報として用いることができる。これにより、十分な統計情報が得られ、同一周波数を用いる他のシステムによる干渉および雑音の影響を正確に把握し、適切な対策を施すことができる。 Therefore, according to the embodiment, it is possible to measure interference / noise from other systems during the transmission of the own apparatus in addition to the reception of the own apparatus, that is, the entire continuous period in which the own apparatus operates. The measured interference / noise power over the entire period can be accumulated and stored in the storage unit, and can be used as interference / noise statistical information for the device itself. Thereby, sufficient statistical information can be obtained, the influence of interference and noise by other systems using the same frequency can be accurately grasped, and appropriate measures can be taken.
 例えば、統計情報の解析により、他のシステムが送信すると予測した期間は、自装置が送信信号を送信しない期間を設定する。逆に、他のシステムが送信しないと予測した期間は、自装置が送信信号を送信する期間を設定する。これにより、他のシステムと効率的に同一の周波数帯域を使用できるようになり、同一の周波数帯域を使用する多数のシステムと共存することができるようになる。 For example, a period in which the own apparatus does not transmit a transmission signal is set as a period predicted by another system to transmit by analyzing statistical information. On the contrary, the period during which the own apparatus transmits a transmission signal is set as the period during which the other system does not transmit. As a result, the same frequency band can be used efficiently with other systems, and it can coexist with many systems that use the same frequency band.
 このように、各実施の形態によれば、簡単な構成で、他のシステムが干渉源および雑音源となる電力が測定でき、同一周波数を用いる他のシステムからの干渉および雑音の影響を受けずに無線通信が行えるようになる。同時に、自装置が同一周波数を用いる他のシステムに対して干渉源およびノイズ源となる通信を防ぐこともできるようになる。 As described above, according to each embodiment, it is possible to measure the power of another system as an interference source and noise source with a simple configuration, and not affected by interference and noise from other systems using the same frequency. Wireless communication can be performed. At the same time, communication that becomes an interference source and a noise source can be prevented with respect to another system in which the device itself uses the same frequency.
 そして、各実施の形態で説明した無線装置は、例えば、Wi-Fiの無線LANアクセスポイント等、図8に示したISMバンド等の同一周波数を無線通信に使用する各種装置に適用できる。 The wireless device described in each embodiment can be applied to various devices that use the same frequency such as the ISM band shown in FIG. 8 for wireless communication, such as a Wi-Fi wireless LAN access point.
 また、上記各実施の形態では、サーキュレータを用いる例を説明したが、信号の送信と受信を同時に行える機能を有する送受信同時分配器を用いることにより、同様の作用効果を得ることができる。 Also, in each of the above embodiments, an example using a circulator has been described. However, similar effects can be obtained by using a transmission / reception simultaneous distributor having a function capable of simultaneously transmitting and receiving signals.
 なお、本実施の形態で説明した無線ノイズ測定方法は、予め用意された制御プログラムを対象機器(上記無線装置)のコンピュータ(CPU等)が実行することにより実現することができる。本制御プログラムは、磁気ディスク、光ディスク、USB(Universal Serial Bus)フラッシュメモリなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。また、制御プログラムは、インターネット等のネットワークを介して配布してもよい。 The wireless noise measurement method described in the present embodiment can be realized by executing a control program prepared in advance by a computer (CPU or the like) of the target device (the wireless device). This control program is recorded on a computer-readable recording medium such as a magnetic disk, an optical disk, or a USB (Universal Serial Bus) flash memory, and is executed by being read from the recording medium by the computer. The control program may be distributed via a network such as the Internet.
 100 無線装置
 101 送信部
 102 受信部
 103 サーキュレータ
 104 アンテナ
 105 ノイズ信号測定部
 110 ベースバンド(BB)部
 111 変調器
 113 発振器
 114 PA
 121,124 キャンセラー
 122 LNA
 123 DAC
 125 復調器
 200 制御部
 201 CPU
 202 メモリ
 400 FFT
 401,402,601 電力測定部
 RD 受信信号(干渉・雑音信号)
 SD 送信信号
 fn ヌル帯域
 fs 送信データ帯域
DESCRIPTION OF SYMBOLS 100 Radio apparatus 101 Transmission part 102 Reception part 103 Circulator 104 Antenna 105 Noise signal measurement part 110 Baseband (BB) part 111 Modulator 113 Oscillator 114 PA
121,124 Canceller 122 LNA
123 DAC
125 demodulator 200 control unit 201 CPU
202 Memory 400 FFT
401, 402, 601 Power measurement unit RD Received signal (interference / noise signal)
SD transmission signal fn null band fs transmission data band

Claims (10)

  1.  他のシステムと同一の周波数帯域を用いる無線装置であって、
     無線電波を送受信するアンテナと、
     送受信する信号の信号処理を行うベースバンド部と、
     前記ベースバンド部が出力する信号を無線信号に変換して前記アンテナに出力する送信部と、
     前記アンテナが受信した無線信号を信号に変換して前記ベースバンド部に出力する受信部と、
     前記送信部が送信出力する前記無線信号を前記アンテナに出力し、前記アンテナが受信した前記無線信号を前記受信部に出力するサーキュレータと、
     前記送信部が送信する前記無線信号の受信側への漏れ込みの影響を排除し、前記送信部による前記無線信号の送信の期間中、送信の前記無線信号と同一周波数帯域で受信した前記無線信号の電力を測定するノイズ信号測定部と、
     を有することを特徴とする無線装置。
    A wireless device using the same frequency band as other systems,
    An antenna for transmitting and receiving radio waves,
    A baseband unit that performs signal processing of signals to be transmitted and received;
    A transmission unit that converts a signal output from the baseband unit into a radio signal and outputs the signal to the antenna;
    A receiving unit that converts a radio signal received by the antenna into a signal and outputs the signal to the baseband unit;
    A circulator for outputting the radio signal transmitted and output by the transmitter to the antenna, and outputting the radio signal received by the antenna to the receiver;
    The radio signal received in the same frequency band as the radio signal transmitted during the period of transmission of the radio signal by the transmitter, eliminating the influence of leakage of the radio signal transmitted by the transmitter to the reception side A noise signal measurement unit for measuring the power of
    A wireless device comprising:
  2.  前記ノイズ信号測定部は、受信した前記信号の電力を周波数変換するフーリエ変換部と、
     前記送信部による前記無線信号の送信期間中は、前記周波数帯域のうち送信データ帯域を除くヌル帯域で受信した前記無線信号の電力を測定する電力測定部と、
     を有することを特徴とする請求項1に記載の無線装置。
    The noise signal measurement unit is a Fourier transform unit that frequency-converts the power of the received signal,
    During the transmission period of the radio signal by the transmitter, a power measurement unit that measures the power of the radio signal received in a null band excluding a transmission data band among the frequency bands,
    The wireless device according to claim 1, comprising:
  3.  前記ノイズ信号測定部は、さらに、
     前記送信部による前記無線信号を送信していない期間中は、前記周波数帯域の送信データ帯域とヌル帯域で受信した前記無線信号の電力を測定する電力測定部を有することを特徴とする請求項2に記載の無線装置。
    The noise signal measurement unit further includes:
    3. A power measurement unit that measures power of the radio signal received in a transmission data band and a null band of the frequency band during a period in which the radio signal is not transmitted by the transmission unit. A wireless device according to 1.
  4.  前記受信部は、前記送信部が送信する前記無線信号が前記受信部へ漏れ込むことを抑制するキャンセラーを有することを特徴とする請求項1に記載の無線装置。 The radio apparatus according to claim 1, wherein the reception unit includes a canceller that suppresses the radio signal transmitted by the transmission unit from leaking into the reception unit.
  5.  前記ベースバンド部は、前記送信部が送信する前記信号が受信した信号へ漏れ込むことを抑制するキャンセラーを有することを特徴とする請求項4に記載の無線装置。 The wireless device according to claim 4, wherein the baseband unit includes a canceller that suppresses leakage of the signal transmitted by the transmission unit into a received signal.
  6.  前記ノイズ信号測定部は、受信した前記信号の電力を周波数変換するフーリエ変換部と、
     前記送信部の前記無線信号の前記受信部への漏れ込みが生じない場合、前記送信部による送信および前記受信部による受信の期間中は、いずれも前記周波数帯域の送信データ帯域とヌル帯域で受信した前記無線信号の電力を測定する電力測定部と、
     を有することを特徴とする請求項1に記載の無線装置。
    The noise signal measurement unit is a Fourier transform unit that frequency-converts the power of the received signal,
    When the transmission unit does not leak the radio signal to the reception unit, reception is performed in the transmission data band and the null band of the frequency band during transmission by the transmission unit and reception by the reception unit. A power measuring unit for measuring the power of the wireless signal,
    The wireless device according to claim 1, comprising:
  7.  前記ノイズ信号測定部は、前記電力測定部が測定した前記電力の情報をメモリに蓄積記憶することを特徴とする請求項1~6のいずれか一つに記載の無線装置。 The wireless device according to any one of claims 1 to 6, wherein the noise signal measurement unit accumulates and stores information on the power measured by the power measurement unit in a memory.
  8.  他のシステムと同一の周波数帯域を用い、無線信号の送信と受信とを同時に行える無線装置における無線ノイズ測定方法であって、
     送信する前記無線信号の受信側への漏れ込みの影響を排除し、
     前記無線信号の送信の期間中、送信の前記無線信号と同一周波数帯域で受信した前記無線信号の電力を測定する、
     ことを特徴とする無線ノイズ測定方法。
    A wireless noise measurement method in a wireless device that can simultaneously transmit and receive wireless signals using the same frequency band as other systems,
    Eliminate the influence of leakage to the receiving side of the wireless signal to be transmitted,
    Measuring the power of the radio signal received in the same frequency band as the radio signal for transmission during the transmission period of the radio signal;
    A wireless noise measuring method.
  9.  受信した前記無線信号の電力を周波数変換し、
     前記無線信号の送信期間中は、前記周波数帯域のうち送信データ帯域を除くヌル帯域で受信した前記無線信号の電力を測定する、
     ことを特徴とする請求項8に記載の無線ノイズ測定方法。
    Frequency conversion of the power of the received radio signal,
    During the transmission period of the radio signal, the power of the radio signal received in the null band excluding the transmission data band of the frequency band is measured.
    The wireless noise measuring method according to claim 8.
  10.  前記無線信号を送信していない期間中は、前記周波数帯域の送信データ帯域とヌル帯域で受信した前記無線信号の電力を測定する、
     ことを特徴とする請求項9に記載の無線ノイズ測定方法。
    During the period in which the radio signal is not transmitted, the power of the radio signal received in the transmission data band and the null band of the frequency band is measured.
    The wireless noise measuring method according to claim 9.
PCT/JP2017/012773 2017-03-28 2017-03-28 Wireless device and wireless noise measurement method WO2018179114A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019508406A JP6791363B2 (en) 2017-03-28 2017-03-28 Wireless device and wireless noise measurement method
PCT/JP2017/012773 WO2018179114A1 (en) 2017-03-28 2017-03-28 Wireless device and wireless noise measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012773 WO2018179114A1 (en) 2017-03-28 2017-03-28 Wireless device and wireless noise measurement method

Publications (1)

Publication Number Publication Date
WO2018179114A1 true WO2018179114A1 (en) 2018-10-04

Family

ID=63677506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012773 WO2018179114A1 (en) 2017-03-28 2017-03-28 Wireless device and wireless noise measurement method

Country Status (2)

Country Link
JP (1) JP6791363B2 (en)
WO (1) WO2018179114A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274390A (en) * 2006-03-31 2007-10-18 Tokyo Institute Of Technology Radio communication device and method
WO2011065033A1 (en) * 2009-11-27 2011-06-03 富士通東芝モバイルコミュニケーションズ株式会社 Mobile radio terminal, received signal intensity measuring method, and base station searching method
US20160248575A1 (en) * 2013-10-09 2016-08-25 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for Preventing Transmitter Leakage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112059A (en) * 1997-11-12 2000-08-29 Motorola, Inc. Off-channel leakage power monitor apparatus and method
JP2008301235A (en) * 2007-05-31 2008-12-11 Mitsubishi Electric Corp Reader device
JP2010068379A (en) * 2008-09-12 2010-03-25 Toshiba Tec Corp Radio communication device
JP2016208085A (en) * 2015-04-15 2016-12-08 三菱電機株式会社 Canceler circuit, transmitter receiver and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274390A (en) * 2006-03-31 2007-10-18 Tokyo Institute Of Technology Radio communication device and method
WO2011065033A1 (en) * 2009-11-27 2011-06-03 富士通東芝モバイルコミュニケーションズ株式会社 Mobile radio terminal, received signal intensity measuring method, and base station searching method
US20160248575A1 (en) * 2013-10-09 2016-08-25 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus for Preventing Transmitter Leakage

Also Published As

Publication number Publication date
JP6791363B2 (en) 2020-11-25
JPWO2018179114A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP5852223B2 (en) System and method for clear channel evaluation supporting simultaneous transmission over multiple wireless protocols
US9065415B1 (en) Configuring signal boosters
CN103039024B (en) Measuring received signal strength on neighboring frequencies of a channel with interference in a wireless device
CN112204892B (en) Millimeter Wave (MMWAVE) system and method
CN106879062B (en) Apparatus, method and storage medium for a transmit receive system
US20100081391A1 (en) Wireless communication system
US20200374816A1 (en) Transmission power regulation of antennas
EP2907285B1 (en) Vswr estimation using correlation to suppress external interference
WO2018179114A1 (en) Wireless device and wireless noise measurement method
JP2012105185A5 (en)
KR101276740B1 (en) Apparatus for multi-input multi-output full-duplex wireless communication
EP3063993B1 (en) Systems and methods for acquiring service using multiple channels
US10361765B2 (en) Apparatus and method for controlling array antenna device in communication system
JP6891631B2 (en) Communication device, control device, communication system, communication method, and communication control program
US10187807B2 (en) Antenna array uplink sector selection and deselection based on coexistence with other in-device radios
CN102611654A (en) Method and device for determining adjacent channel selectivity
CN101686475A (en) Disturbance detection method and disturbance detection equipment
KR101905434B1 (en) Apparatus for measuring passive intermodulation distortion signal and method for using the same
WO2018179071A1 (en) Wireless device, wireless system, and method of allocating communication frequency
CN114938253B (en) Method, device, equipment and storage medium for detecting communication quality of high-speed moving object
JP6981838B2 (en) Wireless communication system and wireless communication method
US11689243B2 (en) Wireless communication device
CN101867423A (en) Method and device for detecting spatial thermal noise at the position of antenna
US20230176164A1 (en) Ranging by a network device during a beacon interval
JP5385216B2 (en) Wireless communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903354

Country of ref document: EP

Kind code of ref document: A1