WO2018179112A1 - コンプレッサのスクロール形状及び過給機 - Google Patents

コンプレッサのスクロール形状及び過給機 Download PDF

Info

Publication number
WO2018179112A1
WO2018179112A1 PCT/JP2017/012757 JP2017012757W WO2018179112A1 WO 2018179112 A1 WO2018179112 A1 WO 2018179112A1 JP 2017012757 W JP2017012757 W JP 2017012757W WO 2018179112 A1 WO2018179112 A1 WO 2018179112A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
compressor
ratio
scroll portion
shape
Prior art date
Application number
PCT/JP2017/012757
Other languages
English (en)
French (fr)
Inventor
健一郎 岩切
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to JP2019508405A priority Critical patent/JP7018932B2/ja
Priority to US16/478,251 priority patent/US11339797B2/en
Priority to CN201780085058.2A priority patent/CN110234888B/zh
Priority to EP17903151.3A priority patent/EP3561311B1/en
Priority to PCT/JP2017/012757 priority patent/WO2018179112A1/ja
Publication of WO2018179112A1 publication Critical patent/WO2018179112A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/14Casings or housings protecting or supporting assemblies within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a supercharger in which a scroll shape of a compressor and a scroll shape of the compressor are applied in a supercharger in which a turbine and a compressor are connected by a rotating shaft.
  • the exhaust turbine turbocharger is configured such that a compressor and a turbine are integrally connected by a rotating shaft, and the compressor and the turbine are rotatably accommodated in a housing. Then, the exhaust gas is supplied into the housing, and by rotating the turbine, the rotary shaft is driven to rotate and the compressor is driven to rotate.
  • the compressor sucks in air from the outside, pressurizes it with an impeller into compressed air, and supplies this compressed air to an internal combustion engine or the like.
  • a compressor as a centrifugal compressor is configured such that a plurality of blades are fixed to the outer peripheral portion of a compressor impeller, and is accommodated in a compressor housing.
  • the compressor housing is provided with a diffuser, a scroll portion and a discharge port on the outer peripheral side of the compressor.
  • the diffuser has a generally donut shape and restores static pressure by decelerating the fluid discharged from the compressor.
  • the scroll portion is formed on the outer peripheral side thereof so that the passage sectional area spirally expands in the circumferential direction, and collects the fluid over the entire periphery. Therefore, when the compressor rotates, each blade compresses the fluid sucked from the suction port, and the compressed air is discharged from the outer peripheral side of the compressor to the diffuser, and is discharged to the outside from the discharge port through the scroll portion.
  • the passage cross-sectional area gradually increases from the tongue position located approximately 60 ° clockwise to the 360 ° position.
  • the increase rate of the scroll passage cross sectional area is designed so that the flow velocity is substantially constant in the circumferential direction at the design flow rate, but when operating at a flow rate smaller than the design flow rate, The effect of the recirculating flow increases the flow velocity near the tongue. As a result, the flow velocity is relatively lower toward the downstream side.
  • Patent Document 1 there is, for example, one described in Patent Document 1 below.
  • Patent No. 5439423 gazette
  • FIG. 15 is a graph showing volumetric flow rate and flow rate with respect to the scroll angle in the scroll shape of the conventional compressor.
  • the passage cross-sectional area gradually increases from the tongue position at approximately 60 ° of the scroll portion to the position of 360 ° (the alternate long and short dash line in FIG. 15).
  • the flow velocity (solid line shown in FIG. 15) gradually decreases due to the effect of the aforementioned recirculation flow.
  • the flow velocity rises rapidly in the region from the position beyond the tongue position at approximately 60 ° to the position around 180 ° of the scroll portion and drops sharply (see FIG. It was found that the dotted line). This is caused by the fact that the effective flow area of the scroll decreases due to the occurrence of peeling within the scroll due to the rapid deceleration of the flow velocity, and the flow velocity increases locally.
  • the efficiency may decrease and the surge margin may decrease. That is, the separation of the fluid generated in the scroll portion is a fluid from the scroll winding start portion toward the circumferential direction downstream as a result of the flow velocity extremely increasing at the winding start portion where the passage cross sectional area is small. Is estimated to be due to rapid deceleration.
  • An object of the present invention is to solve the problems described above, and to provide a compressor scroll shape and a supercharger, which can improve the efficiency by suppressing the occurrence of fluid separation in the scroll portion.
  • the scroll shape of the compressor of the present invention is a scroll shape of the compressor which spirally forms the flow path of the fluid discharged from the diffuser provided on the downstream side of the fluid flow direction in the compressor.
  • the passage cross sectional area of the scroll portion is A and the radius from the center of the compressor to the center of the passage cross section of the scroll portion is R
  • the ratio in the region from the winding start position to the winding end position of the scroll portion It is characterized in that it is set so that the increase degree of A / R becomes large.
  • the scroll section is designed such that the passage cross-sectional area gradually increases from the winding start position to the winding end position, and the flow velocity is substantially constant in the circumferential direction at the design flow rate, but operates at a flow rate smaller than the design flow rate In this case, a recirculating flow occurs from the winding end side to the winding start side of the scroll portion, the flow velocity is increased on the upstream side, and the passage cross-sectional area is increased on the downstream side. Then, the flow velocity sharply decreases on the downstream side of the winding start position of the scroll portion, and the separation is likely to occur in the scroll portion.
  • the increase degree of the ratio A / R of the radius R to the passage cross sectional area A is set to be large. Therefore, the flow is accelerated by the decrease of the passage cross-sectional area downstream of the winding start position of the scroll portion, the flow velocity difference with the winding start position is reduced, and the deceleration rate of the flow velocity is relaxed. As a result, it is possible to suppress the rapid decrease in the flow velocity downstream of the winding start position of the scroll portion. As a result, the separation of the fluid from the wall surface of the scroll portion is suppressed, and in particular, the efficiency can be improved at the small flow rate operating point.
  • the degree of increase of the ratio A / R is a change rate of the ratio A / R, and the ratio A / R from the winding start position to the winding end position of the scroll portion. It is characterized in that it is set to increase the change rate of
  • the passage cross-sectional area on the downstream side of the winding start position of the scroll portion decreases.
  • the flow speed is increased at this point, the flow velocity difference with the winding start position is reduced, the deceleration rate of the flow velocity is mitigated, and a rapid decrease in the flow velocity downstream of the winding start position of the scroll portion is suppressed. It is possible to suppress the separation of fluid from the wall surface of the scroll portion.
  • the horizontal axis represents the change in area from the winding start position to the winding end position of the scroll portion
  • the vertical axis represents the ratio A / R. It is characterized in that the linear shape has a convex shape toward the 0 side.
  • the ratio A / R in the region of at least 60 ° to 240 ° toward the winding start side of the scroll portion when the angle of the winding end position of the scroll portion is 0 °. Is characterized in that it has a convex shape toward the 0 side.
  • the ratio A / R increase is constant. Deceleration can be promoted in the region where the pressure loss increases with the increase in flow velocity.
  • the scroll shape of the compressor according to the present invention is characterized in that there is no region where the increase in the ratio A / R decreases in the region from the winding start position to the winding end position of the scroll portion.
  • the ratio A / R at the winding start position of the scroll portion is set to 20% or more of the ratio A / R at the winding end position of the scroll portion.
  • the scroll shape of the compressor according to the present invention is a scroll cross-sectional area of the scroll portion in the scroll shape of the compressor in which the flow path of the fluid discharged from the diffuser provided on the downstream side of the fluid flow direction in the compressor is formed in a spiral shape.
  • A is the radius from the center of the compressor to the center of the passage cross section of the scroll portion R
  • the ratio A / R at the winding start position of the scroll portion is 20 of the ratio A / R at the winding end position
  • the ratio A / R is set to increase from the winding start position to the winding end position of the scroll portion.
  • the passage cut at the winding start position of the scroll portion is expanded, and the difference in flow velocity downstream of the winding start position is reduced, and the deceleration rate of the flow velocity is alleviated.
  • the separation of the fluid from the wall surface of the scroll portion is suppressed, and in particular, the efficiency can be improved at the small flow rate operating point.
  • the scroll shape of the compressor according to the present invention is characterized in that the degree of increase of the ratio A / R is set to be constant in a region from the winding start position to the winding end position of the scroll portion.
  • the deceleration can be promoted to reduce the increase in pressure loss due to the increase in flow velocity.
  • the supercharger according to the present invention includes a hollow housing, a rotating shaft rotatably supported by the housing, a turbine provided at one end in the axial direction of the rotating shaft, and an axis of the rotating shaft. And a compressor provided at the other end of the direction, wherein the scroll shape of the compressor is applied to the scroll portion of the compressor in the housing.
  • FIG. 1 is an overall configuration diagram showing an exhaust turbine turbocharger according to a first embodiment.
  • FIG. 2 is a schematic view showing a scroll shape of the compressor of the first embodiment.
  • FIG. 3 is a cross-sectional view showing the scroll portion.
  • FIG. 4 is a schematic view showing a scroll unit.
  • FIG. 5 is a graph showing A / R with respect to the scroll angle.
  • FIG. 6 is a graph showing the flow velocity versus the scroll angle.
  • FIG. 7 is a graph showing A / R with respect to the scroll angle of the modification of the first embodiment.
  • FIG. 8 is a graph showing the flow velocity with respect to the scroll angle in the modification of the first embodiment.
  • FIG. 9 is a graph showing A / R with respect to the scroll angle in the scroll shape of the compressor of the second embodiment.
  • FIG. 10 is a graph showing the flow velocity with respect to the scroll angle in the scroll shape of the compressor of the second embodiment.
  • FIG. 11 is a graph showing A / R with respect to the scroll angle of the modification of the second embodiment.
  • FIG. 12 is a graph showing the flow velocity with respect to the scroll angle in the modification of the second embodiment.
  • FIG. 13 is a graph showing the air supply compression ratio to the air flow rate in the scroll shape of the compressor according to the present embodiment.
  • FIG. 14 is a graph showing the efficiency with respect to the air flow rate in the scroll shape of the compressor of the present embodiment.
  • FIG. 15 is a graph showing volumetric flow rate and flow rate with respect to the scroll angle in the scroll shape of the conventional compressor.
  • FIG. 1 is an overall configuration diagram showing an exhaust turbine turbocharger according to a first embodiment.
  • the exhaust gas turbine supercharger 11 mainly includes a turbine 12, a compressor 13 and a rotating shaft 14, which are accommodated in a housing 15.
  • the housing 15 is hollow inside and forms a first space S1 accommodating the structure of the turbine 12, and a compressor housing 15B forms a second space S2 accommodating the structure of the compressor 13. And a bearing housing 15C forming a third space portion S3 for housing the shaft 14.
  • the third space S3 of the bearing housing 15C is located between the first space S1 of the turbine housing 15A and the second space S2 of the compressor housing 15B.
  • the rotating shaft 14 is rotatably supported at its turbine 12 side end by a journal bearing 21 which is a turbine side bearing, and the compressor 13 side is rotatably supported by a journal bearing 22 which is a compressor side bearing,
  • the axial bearing in which the rotary shaft 14 extends is restricted by the thrust bearing 23.
  • the rotating disk 14 has a turbine disk 24 of the turbine 12 fixed at one end in the axial direction.
  • the turbine disk 24 is accommodated in the first space portion S1 of the turbine housing 15A, and a plurality of axial flow type turbine blades 25 are provided on the outer peripheral portion at predetermined intervals in the circumferential direction.
  • the compressor impeller 26 of the compressor 13 is fixed to the other end in the axial direction of the rotating shaft 14.
  • the compressor impeller 26 is accommodated in the second space portion S2 of the compressor housing 15B, and a plurality of blades 27 are provided on the outer peripheral portion at predetermined intervals in the circumferential direction.
  • the turbine housing 15A is provided with an exhaust gas inlet passage 31 and an exhaust gas outlet passage 32 with respect to the turbine blade 25.
  • the turbine housing 15A is provided with a turbine nozzle 33 between the inlet passage 31 and the turbine blade 25.
  • the axial exhaust gas flow which is static-pressure expanded by the turbine nozzle 33, is transmitted to the plurality of turbine blades 25.
  • the turbine 12 can be driven to rotate.
  • the compressor housing 15 B is provided with a suction port 34 and a compressed air discharge port 35 with respect to the compressor impeller 26.
  • the compressor housing 15 B is provided with a diffuser 36 between the compressor impeller 26 and the compressed air discharge port 35. Air compressed by the compressor impeller 26 is exhausted through the diffuser 36.
  • the exhaust gas discharged from an engine drives the turbine 12, the rotation of the turbine 12 is transmitted to the rotary shaft 14, and the compressor 13 is driven. Compresses the combustion gas and supplies it to the engine. Therefore, the exhaust gas from the engine passes through the exhaust gas inlet passage 31 and is expanded by static pressure by the turbine nozzle 33, and the axial exhaust gas flow is guided to the plurality of turbine blades 25, whereby a plurality of turbine blades 25 are obtained.
  • the turbine 12 is driven to rotate via the turbine disk 24 to which is fixed. Then, the exhaust gas that has driven the plurality of turbine blades 25 is discharged from the outlet passage 32 to the outside.
  • the integral compressor impeller 26 rotates and air is sucked through the suction port 34.
  • the sucked air is pressurized by the compressor impeller 26 to be compressed air, and this compressed air passes through the diffuser 36 and is supplied to the engine from the compressed air discharge port 35.
  • the scroll in the compressor 13 serves as a flow path for compressed air (hereinafter, referred to as fluid), that is, the downstream side of the compressor impeller 26 in the compressor housing 15B, that is, the compressor impeller 26 It is provided as the scroll part 41 which makes a substantially donut shape (swirl shape) on the outer peripheral side.
  • the scroll portion 41 is formed on the outer peripheral side of the diffuser 36 so as to expand in a spiral manner in the winding direction (the direction in which the compressed air flows) in the winding direction. Therefore, the fluid discharged from the compressor impeller 26 is decelerated by the diffuser 36 to recover the static pressure, decelerated and boosted by the scroll portion 41, and discharged from the compressed air discharge port 35 to the outside.
  • FIG. 2 is a schematic view showing the scroll shape of the compressor of the first embodiment
  • FIG. 3 is a cross-sectional view showing the scroll portion
  • FIG. 4 is a schematic view showing the scroll portion.
  • the cross section in the radial direction of the scroll portion 41 is substantially circular, and the passage cross sectional area of the scroll portion 41 is the end point of the scroll portion 41 ( Winding end position) in a range from a position of approximately 60 ° shifted in the winding direction (clockwise direction in FIG. 2) with Z (360 °) as a reference of 0 ° to a position of 360 ° which is the end point Z of the scroll portion It is expanding gradually in a spiral shape.
  • the passage cross section is a plane orthogonal to the center line P1 along the flow direction of the fluid in the scroll portion 41.
  • the scroll portion 41 is a portion substantially corresponding to the winding start position near the 60 ° position in the winding direction, and at the partition edge of the fluid discharged from the diffuser 36 and the fluid flowing through the scroll portion 41 A tongue 42 is provided.
  • the following equation is used on the condition that the amount of angular momentum of the fluid flowing in the scroll portion 41 is constant.
  • the circumferential velocity is V ⁇
  • the radius of the compressor impeller 26 is r.
  • the velocity of the inner fluid is faster than the velocity of the outer fluid at each portion in the flow direction of the fluid in the scroll portion 41, as apparent from the equation (1) between the inside and the outside of the passage cross section. It has become. Therefore, the volume flow rate Q of the fluid flowing in the scroll portion 41 needs to consider the size (shape) of the passage cross section and the radius of the scroll portion 41.
  • the volumetric flow rate Q can be expressed by the following equation (2) from equation (1) Desired.
  • V ⁇ r represents the velocity of the fluid discharged from the compressor impeller 26 at the outer peripheral portion of the diffuser 36, and since it is the same velocity throughout the outer peripheral portion of the diffuser 36, it can be regarded as a constant determined at design. it can. Therefore, the equation (5) takes a value in consideration of the area along the cross-sectional shape of each passage of the scroll portion 41. So, replace it as follows. Then, the volumetric flow rate Q of the equation (4) can be expressed as the equation (7).
  • the flow velocity V is determined by the ratio A / R of the radius R to the passage cross sectional area A, and the ratio A / R is large.
  • the flow velocity V decreases.
  • the radius R is constant and the passage cross-sectional area A is reduced, the flow velocity V of the fluid flowing therethrough increases.
  • FIG. 4 is a tomographic view in which the passage cross-sectional areas at the respective portions ⁇ 1 to ⁇ 6 in the winding direction (flowing direction of the fluid) of the scroll portion 41 are stacked and displayed. It shows the distribution when changed. That is, the cross-sectional areas of the portions ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5 and ⁇ 6 in the circumferential direction of the scroll portion 41 shown in FIG. 2 are stacked.
  • the fluid from the compressor impeller 26 flows in through the diffuser 36 over substantially the entire circumference of the scroll portion 41.
  • the ratio A / R in each passage cross section of the scroll portion 41 is increased as the scroll angle ⁇ increases.
  • FIG. 5 is a graph showing A / R with respect to the scroll angle
  • FIG. 6 is a graph showing flow velocity with respect to the scroll angle.
  • the passage cross sectional area of the scroll portion 41 is A, and the center L1 of the passage cross section of the scroll portion 41 from the center L1 of the compressor impeller 26 P1.
  • the increase ratio of the ratio A / R is set to be large in the region from the winding start position (the position of the tongue portion 42) of the scroll portion 41 to the winding end position.
  • the rate of change of the ratio A / R as the rate of increase of the ratio A / R is set to increase as the scroll angle ⁇ increases from approximately 60 ° to 360 °. ing.
  • the vertical axis represents the ratio A / R
  • the linear shape of the ratio A / R is convex toward the 0 side.
  • the linear of the ratio A / R is a straight line (dotted line), and the ratio A / R has a constant rate of change as the scroll angle ⁇ increases.
  • the linear shape of the ratio A / R in the first embodiment is concave (solid line).
  • FIG. 7 is a graph showing A / R with respect to the scroll angle of the modification of the first embodiment
  • FIG. 8 is a graph showing the flow velocity with respect to the scroll angle of the modification of the first embodiment.
  • the scroll shape of the compressor that spirally forms the flow path of the fluid discharged from the diffuser 36 provided on the downstream side of the flow direction of the fluid in the compressor 13
  • the passage cross sectional area of the scroll portion 41 is A
  • the radius from the center L1 of the compressor impeller 26 to the center P1 of the passage cross section of the scroll portion 41 is R
  • the winding start position to the winding end position of the scroll portion 41 It is set so that the increase degree of ratio A / R becomes large in the area up to.
  • the rate of increase of the ratio A / R is the rate of change of the ratio A / R, and is set such that the rate of change of the ratio A / R increases from the winding start position to the winding end position of the scroll portion 41.
  • the horizontal axis represents the change in area from the winding start position to the winding end position of the scroll unit 41
  • the vertical axis represents the ratio A / R in which the linear ratio A / R is directed toward 0.
  • the winding start position of the scroll portion 41 is set by setting so that the increasing degree of the ratio A / R of the radius R to the passage cross-sectional area A becomes large in the region from the winding start position to the winding end position of the scroll portion 41.
  • the passage cross-sectional area further downstream is reduced to accelerate the flow, the flow velocity difference with the winding start position is reduced, and the deceleration rate of the flow velocity is alleviated.
  • the separation of the fluid from the wall surface of the scroll portion 41 is suppressed, and in particular, the efficiency can be improved at the small flow rate operating point. And the efficiency of the small flow rate operating point is improved, and the surge margin (operating range) can be expanded.
  • the linear shape of the ratio A / R has a convex shape toward the 0 side in a region where the scroll angle of the scroll portion 41 is at least approximately 60 ° to 240 °. Therefore, the rapid decrease in the flow velocity at least in the region on the winding start side of the scroll portion 41 can be suppressed, and the separation of the fluid from the wall surface of the scroll portion 41 can be suppressed.
  • the area in which the ratio A / R increase is large and the ratio A / R increase in the area is constant Area is set. Therefore, while it is possible to suppress a sharp drop in the flow velocity in a region where the ratio A / R increase is large and to suppress fluid separation from the wall surface of the scroll portion 41, the ratio A / R increases The deceleration can be promoted in a constant region to reduce the increase in pressure loss due to the increase in flow velocity.
  • the occurrence of the recirculation flow of fluid is suppressed from causing a rapid drop in the flow velocity at the scroll winding start position, and the fluid separation from the wall surface of the scroll portion 41 is suppressed.
  • the efficiency at the small flow rate operating point can be improved.
  • FIG. 9 is a graph showing A / R with respect to the scroll angle in the scroll shape of the compressor of the second embodiment
  • FIG. 10 is a graph showing the flow velocity with respect to the scroll angle in the scroll shape of the compressor of the second embodiment.
  • the passage cross sectional area of the scroll portion 41 is A
  • the vertical axis represents the ratio A / R
  • the linear shape of the ratio A / R is convex toward the 0 side.
  • the linear of the ratio A / R is a straight line (dotted line), and the ratio A / R has a constant rate of change as the scroll angle ⁇ increases.
  • the linear shape of the ratio A / R in the first embodiment is concave (solid line).
  • FIG. 11 is a graph showing A / R with respect to the scroll angle of the modification of the second embodiment
  • FIG. 12 is a graph showing the flow velocity with respect to the scroll angle of the modification of the second embodiment.
  • the rate of increase (rate of change) of the ratio A / R is set to be constant in the region up to the position of 360 °.
  • the passage cross sectional area of the scroll portion 41 is A
  • the radius from the center L1 of the compressor impeller 26 to the center P1 of the passage cross section of the scroll portion 41 is R
  • the ratio A / R at the winding start position of the scroll portion 41 is set to 20% or more of the ratio A / R at the winding end position of the scroll portion 41 and from the winding start position of the scroll portion 41 to the winding end position. Set the ratio A / R to increase.
  • FIG. 13 is a graph showing the air supply compression ratio with respect to the air flow rate in the scroll shape of the compressor of the present embodiment
  • FIG. 14 is a graph showing the efficiency with respect to the air flow rate in the scroll shape of the compressor of the present embodiment.
  • the air supply pressure ratio with respect to the air flow rate is particularly high in the air supply pressure ratio of the first and second embodiments represented by the solid line. It is possible to improve on the side and expand the working range. Further, as shown in FIG. 14, the efficiency with respect to the air flow rate is improved particularly on the small flow rate side in the first and second embodiments represented by the solid line as compared with the conventional efficiency represented by the dotted line.
  • the ratio A / R of the radius R to the passage cross-sectional area A in the region from the winding start position to the winding end position of the scroll portion 41 is defined. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

コンプレッサのスクロール形状及び排気タービン過給機(11)において、コンプレッサ(13)における流体の流れ方向の下流側に設けられるディフューザ(36)から吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、スクロール部(41)の通路断面積をAとし、コンプレッサ羽根車(26)の中心(L1)からスクロール部(41)の通路断面の中心(P1)までの半径をRとしたとき、スクロール部(41)の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定する。

Description

コンプレッサのスクロール形状及び過給機
 本発明は、タービンとコンプレッサとが回転軸により連結される過給機において、コンプレッサのスクロール形状、このコンプレッサのスクロール形状が適用される過給機に関するものである。
 排気タービン過給機は、コンプレッサとタービンとが回転軸により一体に連結され、このコンプレッサ及びタービンがハウジング内に回転自在に収容されて構成されている。そして、排気ガスがハウジング内に供給され、タービンを回転することで回転軸が駆動回転し、コンプレッサを回転駆動する。コンプレッサは、外部から空気を吸入し、羽根車で加圧して圧縮空気とし、この圧縮空気を内燃機関などに供給する。
 このような排気タービン過給機において、遠心圧縮機としてのコンプレッサは、コンプレッサ羽根車の外周部に複数のブレードが固定されて構成されており、コンプレッサハウジング内に収容されている。このコンプレッサハウジングは、コンプレッサの外周側にディフューザとスクロール部と吐出口が設けられている。ディフューザは、略ドーナツ形状をなし、コンプレッサから吐出される流体を減速させることによって静圧を回復させる。スクロール部は、その外周側に通路断面積が周方向に向かって渦巻状に拡大するように形成され、全周にわたって流体を集める。そのため、コンプレッサが回転すると、各ブレードが吸入口から吸入した流体を圧縮し、圧縮空気がコンプレッサの外周側からディフューザに吐出され、スクロール部を通って吐出口から外部へ送出される。
 従来のスクロール部は、スクロール巻き終り位置を基準の0°とすると、時計回りに略60°にある舌部位置から360°位置にかけて通路断面積が徐々に大きくなっている。スクロール通路断面積の増加率は、設計流量において流速が周方向に略一定になるよう設計されるが、設計流量よりも少ない流量で作動する場合には、スクロール巻き終わり側から舌部側に向かって再循環する流れの効果によって、舌部近傍の流速が増加する。この結果、流速は相対的に下流側ほど低速となる。このようなコンプレッサとしては、例えば、下記特許文献1に記載されたものがある。
特許第5439423号公報
 図15は、従来のコンプレッサのスクロール形状におけるスクロール角度に対する体積流量及び流速を表すグラフである。
 図15に示すように、従来のコンプレッサは、スクロール部の略60°にある舌部位置から360°の位置にかけて通路断面積が徐々に大きくなっている(図15で表す一点鎖線)。設計流量よりも少ない流量で作動する場合には、前述の再循環流れの効果によって流速(図15で表す実線)が徐々に低下する。ところが、実際には、CFD解析により、スクロール部の略60°にある舌部位置を超えた位置から180°の位置あたりまでの領域で、流速が上昇した後に急激に低下(図15で表す二点鎖線)することが分かった。これは、流速の急激な減速によってスクロール内ではく離が生じることでスクロールの有効流路面積が減少し、局所的に流速が増加したことによって生じたものである。
 その結果、効率低下やサージマージン減少をもたらすおそれがある。即ち、スクロール部で発生する流体のはく離は、再循環流の発生に伴って通路断面積の小さな巻き始め部で流速が極端に増加する結果、スクロール巻き始め部から周方向下流側に向かって流体が急減速することに起因すると推定される。
 なお、上述した特許文献1の圧縮機のスクロール形状にあっては、スクロール巻き始め部からスクロール巻き終り位置の領域で、強い減速に伴うはく離が発生したり、減速領域と増速領域とが混在することによって効率が低下してしまうおそれがある。
 本発明は、上述した課題を解決するものであり、スクロール部における流体のはく離の発生を抑制して効率の向上を図るコンプレッサのスクロール形状及び過給機を提供することを目的とする。
 上述の目的を達成するために、本発明のコンプレッサのスクロール形状は、コンプレッサにおける流体の流れ方向の下流側に設けられるディフューザから吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、スクロール部の通路断面積をAとし、前記コンプレッサの中心から前記スクロール部の通路断面の中心までの半径をRとしたとき、前記スクロール部の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定される、ことを特徴とするものである。
 スクロール部は、巻き始め位置から巻き終り位置まで通路断面積が徐々に大きくなっており、設計流量において流速が周方向に略一定になるよう設計されるが、設計流量よりも少ない流量で作動する場合には、スクロール部の巻き終わり側から巻き始め側に再循環する流れが発生し、上流側で流速が増速され、下流側では通路断面積が大きくなることから低速となる。すると、スクロール部の巻き始め位置より下流側で流速が急激に低下してスクロール部ではく離が生じやすくなる。従って、スクロール部の巻き始め位置から巻き終り位置までの領域で、通路断面積Aに対する半径Rの比A/Rの増加度合いが大きくなるように設定する。そのため、スクロール部の巻き始め位置より下流側での通路断面積が減少することで流れが増速され、巻き始め位置との流速差が小さくなり、流速の減速率が緩和される。その結果、スクロール部の巻き始め位置より下流側で流速が急激に低下することが抑制される。その結果、スクロール部の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。
 本発明のコンプレッサのスクロール形状では、前記比A/Rの増加度合いは、前記比A/Rの変化率であり、前記スクロール部の巻き始め位置から巻き終り位置に向かって、前記比A/Rの変化率が大きくなるように設定されることを特徴としている。
 従って、スクロール部の巻き始め位置から巻き終り位置に向かって比A/Rの変化率が大きくなるように設定することで、スクロール部の巻き始め位置より下流側での通路断面積が減少することで流れが増速され、巻き始め位置との流速差が小さくなり、流速の減速率が緩和されることとなり、スクロール部の巻き始め位置より下流側で流速が急激に低下することが抑制され、スクロール部の壁面からの流体のはく離を抑制することができる。
 本発明のコンプレッサのスクロール形状では、横軸を前記スクロール部の巻き始め位置から巻き終り位置までの領域変化とし、縦軸を前記比A/Rとしたときのグラフにおいて、前記比A/Rの線形が0側に向けて凸形状をなすことを特徴としている。
 従って、流速の急激な低下が抑制され、スクロール部の壁面からの流体のはく離を抑制することができる。
 本発明のコンプレッサのスクロール形状では、前記スクロール部の巻き終り位置の角度を0°としたとき、前記スクロール部の巻き始め側に向けて少なくとも60°から240°の領域で、前記比A/Rの線形が0側に向けて凸形状をなすことを特徴としている。
 従って、少なくともスクロール部の巻き始め側の領域での流速の急激な低下が抑制され、スクロール部の壁面からの流体のはく離を抑制することができる。
 本発明のコンプレッサのスクロール形状では、前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが大きくなる領域と、前記比A/Rの増加度合いが一定となる領域が設定されることを特徴としている。
 従って、比A/Rの増加度合いが大きくなる領域で流速の急激な低下を抑制し、スクロール部の壁面からの流体のはく離を抑制することができる一方で、比A/Rの増加度合いが一定となる領域で減速を促進して流速増加に伴う圧損の増加を低減することができる。
 本発明のコンプレッサのスクロール形状では、前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが小さくなる領域が存在しないことを特徴としている。
 従って、流速の急激な変動によるスクロール部の壁面からの流体のはく離を抑制することができる。
 本発明のコンプレッサのスクロール形状では、前記スクロール部の巻き始め位置における前記比A/Rは、前記スクロール部の巻き終り位置における前記比A/Rの20%以上に設定されることを特徴としている。
 従って、スクロール部の巻き始め位置における通路断面積を拡大することで、流速が急激に低下することが抑制され、スクロール部の壁面からの流体のはく離を抑制することができる。
 また、本発明のコンプレッサのスクロール形状は、コンプレッサにおける流体の流れ方向の下流側に設けられるディフューザから吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、スクロール部の通路断面積をAとし、前記コンプレッサの中心から前記スクロール部の通路断面の中心までの半径をRとしたとき、前記スクロール部の巻き始め位置における比A/Rが巻き終り位置における前記比A/Rの20%以上に設定されると共に、前記スクロール部の巻き始め位置から巻き終り位置に向けて前記比A/Rが増加するように設定される、ことを特徴とするものである。
 従って、スクロール部の巻き始め位置における通路断面積Aに対する半径Rの比A/Rを巻き終り位置における前記比A/Rの20%以上に設定することで、スクロール部の巻き始め位置における通路断面積が拡大され、巻き始め位置より下流側との流速差が小さくなり、流速の減速率が緩和される。その結果、スクロール部の巻き始め位置より下流側で流速が急激に低下することが抑制される。その結果、スクロール部の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。
 本発明のコンプレッサのスクロール形状では、前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが一定になるように設定されることを特徴としている。
 従って、減速を促進して流速増加に伴う圧損の増加を低減することができる。
 また、本発明の過給機は、中空形状をなすハウジングと、前記ハウジングに回転自在に支持される回転軸と、前記回転軸における軸方向の一端部に設けられるタービンと、前記回転軸における軸方向の他端部に設けられるコンプレッサと、を備え、前記ハウジングにおける前記コンプレッサのスクロール部に前記コンプレッサのスクロール形状が適用される、ことを特徴とするものである。
 従って、コンプレッサのスクロール部において、スクロール部の巻き始め位置より下流側で流速が急激に低下することが抑制され、スクロール部の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。
 本発明のコンプレッサのスクロール形状及び過給機によれば、スクロール部における流体のはく離の発生を抑制して効率の向上を図ることができる。
図1は、第1実施形態の排気タービン過給機を表す全体構成図である。 図2は、第1実施形態のコンプレッサのスクロール形状を表す概略図である。 図3は、スクロール部を表す断面図である。 図4は、スクロール部を表す概略図である。 図5は、スクロール角度に対するA/Rを表すグラフである。 図6は、スクロール角度に対する流速を表すグラフである。 図7は、第1実施形態の変形例のスクロール角度に対するA/Rを表すグラフである。 図8は、第1実施形態の変形例のスクロール角度に対する流速を表すグラフである。 図9は、第2実施形態のコンプレッサのスクロール形状におけるスクロール角度に対するA/Rを表すグラフである。 図10は、第2実施形態のコンプレッサのスクロール形状におけるスクロール角度に対する流速を表すグラフである。 図11は、第2実施形態の変形例のスクロール角度に対するA/Rを表すグラフである。 図12は、第2実施形態の変形例のスクロール角度に対する流速を表すグラフである。 図13は、本実施形態のコンプレッサのスクロール形状における空気流量に対する給気圧縮比を表すグラフである。 図14は、本実施形態のコンプレッサのスクロール形状における空気流量に対する効率を表すグラフである。 図15は、従来のコンプレッサのスクロール形状におけるスクロール角度に対する体積流量及び流速を表すグラフである。
 以下に添付図面を参照して、本発明に係るコンプレッサのスクロール形状及び過給機の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
[第1実施形態]
 図1は、第1実施形態の排気タービン過給機を表す全体構成図である。
 図1に示すように、排気タービン過給機11は、主に、タービン12と、コンプレッサ13と、回転軸14とにより構成され、これらがハウジング15内に収容されている。
 ハウジング15は、内部が中空に形成され、タービン12の構成を収容する第一空間部S1をなすタービンハウジング15Aと、コンプレッサ13の構成を収容する第二空間部S2をなすコンプレッサハウジング15Bと、回転軸14を収容する第三空間部S3をなすベアリングハウジング15Cとを有している。ベアリングハウジング15Cの第三空間部S3は、タービンハウジング15Aの第一空間部S1とコンプレッサハウジング15Bの第二空間部S2との間に位置している。
 回転軸14は、タービン12側の端部がタービン側軸受であるジャーナル軸受21により回転自在に支持され、コンプレッサ13側の端部がコンプレッサ側軸受であるジャーナル軸受22により回転自在に支持され、且つ、スラスト軸受23により回転軸14が延在する軸方向への移動を規制されている。回転軸14は、軸方向における一端部にタービン12のタービンディスク24が固定されている。タービンディスク24は、タービンハウジング15Aの第一空間部S1に収容され、外周部に軸流型をなす複数のタービン翼25が周方向に所定間隔で設けられている。また、回転軸14は、軸方向における他端部にコンプレッサ13のコンプレッサ羽根車26が固定されている。コンプレッサ羽根車26は、コンプレッサハウジング15Bの第二空間部S2に収容され、外周部に複数のブレード27が周方向に所定間隔で設けられている。
 タービンハウジング15Aは、タービン翼25に対して排気ガスの入口通路31と排気ガスの出口通路32が設けられている。そして、タービンハウジング15Aは、入口通路31とタービン翼25との間にタービンノズル33が設けられており、このタービンノズル33により静圧膨張された軸方向の排気ガス流が複数のタービン翼25に導かれることで、タービン12を駆動回転することができる。コンプレッサハウジング15Bは、コンプレッサ羽根車26に対して吸入口34と圧縮空気吐出口35が設けられている。そして、コンプレッサハウジング15Bは、コンプレッサ羽根車26と圧縮空気吐出口35との間にディフューザ36が設けられている。コンプレッサ羽根車26により圧縮された空気は、ディフューザ36を通って排出される。
 そのため、この排気タービン過給機11は、エンジン(図示せず)から排出された排ガスによりタービン12が駆動し、タービン12の回転が回転軸14に伝達されてコンプレッサ13が駆動し、このコンプレッサ13が燃焼用気体を圧縮してエンジンに供給する。従って、エンジンからの排気ガスは、排気ガスの入口通路31を通り、タービンノズル33により静圧膨張され、軸方向の排気ガス流が複数のタービン翼25に導かれることで、複数のタービン翼25が固定されたタービンディスク24を介してタービン12が駆動回転する。そして、複数のタービン翼25を駆動した排気ガスは、出口通路32から外部に排出される。一方、タービン12により回転軸14が回転すると、一体のコンプレッサ羽根車26が回転し、吸入口34を通って空気が吸入される。吸入された空気は、コンプレッサ羽根車26で加圧されて圧縮空気となり、この圧縮空気は、ディフューザ36を通り、圧縮空気吐出口35からエンジンに供給される。
 上述した排気タービン過給機11にて、コンプレッサ13におけるスクロールは、圧縮空気(以下、流体と称する)の流路として、コンプレッサハウジング15Bにおけるコンプレッサ羽根車26より下流側、つまり、コンプレッサ羽根車26の外周側に略ドーナツ形状(渦巻き形状)をなすスクロール部41として設けられている。このスクロール部41は、ディフューザ36の外周側に断面積が巻き方向(圧縮空気が流れる方向)に向かって渦巻状に拡大するように形成されている。そのため、コンプレッサ羽根車26から吐出される流体は、ディフューザ36により減速されて静圧が回復され、スクロール部41により減速して昇圧され、圧縮空気吐出口35から外部に排出される。
 ここで、第1実施形態のコンプレッサのスクロール形状について説明する。図2は、第1実施形態のコンプレッサのスクロール形状を表す概略図、図3は、スクロール部を表す断面図、図4は、スクロール部を表す概略図である。
 図2に示すように、第1実施形態のコンプレッサのスクロール形状は、スクロール部41のラジアル方向における断面が略円形状をしており、スクロール部41の通路断面積は、スクロール部41の終点(巻き終り位置)Z(360°)を0°の基準として、巻き方向(図2の時計回り方向)に移行した略60°の位置からスクロール部の終点Zである360°の位置までの領域で渦巻状に漸次拡大している。ここで、通路断面とは、スクロール部41における流体の流れ方向に沿う中心線P1に直交する面である。
 また、スクロール部41は、巻き方向の60°の位置付近に巻き始め位置にほぼ一致する部位で、且つ、ディフューザ36から吐出される流体とスクロール部41を流れてきた流体との隔壁端縁である舌部42が設けられている。
 ところで、通常、スクロール部41内を流れる流体は、角運動量が一定であることを条件として以下の式が用いられる。ここで、周方向速度をVθ、コンプレッサ羽根車26の半径をrとする。
Figure JPOXMLDOC01-appb-M000001
 この場合、スクロール部41における流体の流れ方向における各部位にて、通路断面の内側と外側とでは、(1)式からも明らかなように、内側の流体の速度が外側の流体の速度より速くなっている。そのため、スクロール部41内を流れる流体の体積流量Qは、通路断面の大きさ(形状)とスクロール部41の半径を考慮する必要がある。
 そのため、図3に示すように、体積流量Qは、スクロール部41の通路断面を半径一定riの帯状の領域(断面積Ai)に分割することで、(1)式より次式(2)で求められる。
Figure JPOXMLDOC01-appb-M000002
 一方、(1)式より、Vθi×ri=Vθ×rが成立する。
Figure JPOXMLDOC01-appb-M000003
 そして、(3)式を(2)式に代入する。
Figure JPOXMLDOC01-appb-M000004
 (4)式からVθrは、コンプレッサ羽根車26から吐出される流体のディフューザ36の外周部における速度を示し、ディフューザ36の外周部全域において同じ速度であることから、設計時に決まる定数とみなすことができる。
 従って、(5)式は、スクロール部41の各通路断面形状に沿った面積を考慮した値となる。
Figure JPOXMLDOC01-appb-M000005
 そこで、下記のように置き換える。
Figure JPOXMLDOC01-appb-M000006
 すると、(4)式の体積流量Qは(7)式として表すことができる。
Figure JPOXMLDOC01-appb-M000007
 スクロール部41の各通路断面を通過する体積流量Qは、各通路断面において一定とすると、その流速Vは、通路断面積Aに対する半径Rの比A/Rによって決まり、比A/Rが大きいと流速Vは減少する。また、半径Rが一定で通路断面積Aを小さくすると、ここを流れる流体の流速Vは増加する。
 そして、図4は、スクロール部41の巻き方向(流体の流れる方向)における各部位θ1からθ6での通路断面積を積層して表示した断層図であり、比A/Rの断面積拡大比率を変えた場合の分布を示している。即ち、図2に現したスクロール部41の周方向における各部位θ1、θ2、θ3、θ4、θ5、θ6までの断面積を積層したものである。スクロール部41は、スクロール部41のほぼ全周にわたってコンプレッサ羽根車26からの流体がディフューザ36を介して流入する。本実施形態では、スクロール部41の各通路断面における比A/Rをスクロール角度θの増加に伴って増加させている。
 図5は、スクロール角度に対するA/Rを表すグラフ、図6は、スクロール角度に対する流速を表すグラフである。
 第1実施形態のコンプレッサのスクロール形状は、図2に示すように、スクロール部41の通路断面積をAとし、コンプレッサ羽根車26の中心L1からスクロール部41の通路断面の中心(中心線)P1までの半径をRとしたとき、スクロール部41の巻き始め位置(舌部42の位置)から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定される。
 即ち、図5に示すように、スクロール部41の巻き終り位置0°に対して巻き方向に移行したスクロール角度θ=略60°の位置から、スクロール部41の巻き終り位置であるスクロール角度θ=360°の位置までの領域で、比A/Rの増加度合いとしての比A/Rの変化率は、スクロール角度θが略60°から360°に増加するのに伴って大きくなるように設定されている。
 つまり、横軸をスクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域変化とし、縦軸を比A/Rとしたとき、比A/Rの線形は、0側に向けて凸形状をなしている。ここで、従来、比A/Rの線形は、直線(点線)であり、比A/Rは、スクロール角度θの増加に伴って変化率が一定である。一方、第1実施形態の比A/Rの線形は、凹形状(実線)となっている。ここで、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、比A/Rの増加度合い(変化率)が小さくなる領域は存在しない。
 そのため、図6に示すように、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、点線で表す従来のスクロール形状による流速は、スクロール角度θ=略60°より下流側で流速が急激に減速する。そのため、スクロール角度θ=略60°から180°領域ではく離が発生しやすい。一方、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、実線で表す本実施形態のスクロール形状による流速は、ほぼ一定に減速する。そのため、スクロール角度θ=略60°より下流側の領域ではく離が発生しにくい。
 なお、スクロール部41の巻き始め位置から巻き終り位置まで移行する領域で、比A/Rの変化率は上述したものに限定されるものではない。図7は、第1実施形態の変形例のスクロール角度に対するA/Rを表すグラフ、図8は、第1実施形態の変形例のスクロール角度に対する流速を表すグラフである。
 第1実施形態の変形例のスクロール形状は、図7に示すように、スクロール部41の巻き始め位置となるスクロール角度θ=略60°から巻き終り位置となるスクロール角度θ=240°までの領域で、比A/Rの増加度合い(変化率)が大きくなるように設定される。即ち、少なくともスクロール角度θ=略60°の位置からスクロール角度θ=240°の位置までの領域で、比A/Rの線形が0側に向けて凸形状をなしている。そして、スクロール角度θ=240°の位置からスクロール角度θ=360°の位置までの領域で、比A/Rの増加度合い(変化率)が一定となることで、比A/Rの線形が直線状をなしている。この変形例では、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなる領域と、比A/Rの増加度合いが一定となる領域が設定されている。この場合でも、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合い(変化率)が小さくなる領域は存在しない。
 そのため、図8に示すように、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、点線で表す従来のスクロール形状による流速は、スクロール角度θ=略60°より下流側で流速が急激に減速する。そのため、スクロール角度θ=略60°から180°領域ではく離が発生しやすい。一方、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、実線で表す本実施形態のスクロール形状による流速は、変化率が小さくなる。そのため、この領域ではく離が発生しにくい。
 このように第1実施形態のコンプレッサのスクロール形状にあっては、コンプレッサ13における流体の流れ方向の下流側に設けられるディフューザ36から吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、スクロール部41の通路断面積をAとし、コンプレッサ羽根車26の中心L1からスクロール部41の通路断面の中心P1までの半径をRとしたとき、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定している。
 この場合、比A/Rの増加度合いは、比A/Rの変化率であり、スクロール部41の巻き始め位置から巻き終り位置に向かって比A/Rの変化率が大きくなるように設定している。具体的には、横軸をスクロール部41の巻き始め位置から巻き終り位置までの領域変化とし、縦軸を比A/Rとしたときのグラフにおいて、比A/Rの線形が0側に向けて凸形状をなしている。
 従って、スクロール部41の巻き始め位置から巻き終り位置までの領域で、通路断面積Aに対する半径Rの比A/Rの増加度合いが大きくなるように設定することで、スクロール部41の巻き始め位置より下流側での通路断面積が減少して流れが増速され、巻き始め位置との流速差が小さくなり、流速の減速率が緩和される。その結果、スクロール部41の巻き始め位置より下流側で、流速が急激に低下することが抑制される。その結果、スクロール部41の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。そして、小流量作動点の効率が向上し、サージマージン(作動レンジ)を拡大することができる。
 第1実施形態のコンプレッサのスクロール形状では、スクロール部41のスクロール角度が少なくとも略60°から240°の領域で、比A/Rの線形が0側に向けて凸形状をなす。従って、少なくともスクロール部41の巻き始め側の領域での流速の急激な低下が抑制され、スクロール部41の壁面からの流体のはく離を抑制することができる。
 第1実施形態のコンプレッサのスクロール形状では、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなる領域と、比A/Rの増加度合いが一定となる領域を設定している。従って、比A/Rの増加度合いが大きくなる領域で流速の急激な低下を抑制し、スクロール部41の壁面からの流体のはく離を抑制することができる一方で、比A/Rの増加度合いが一定となる領域で減速を促進して流速増加に伴う圧損の増加を低減することができる。
 第1実施形態のコンプレッサのスクロール形状では、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが小さくなる領域を設けていない。従って、流速の急激な変動によるスクロール部41の壁面からの流体のはく離を抑制することができる。
 また、第1実施形態の過給機にあっては、中空形状をなすハウジング15と、ハウジング15に回転自在に支持される回転軸14と、回転軸14における軸方向の一端部に設けられるタービン12と、回転軸における軸方向の他端部に設けられるコンプレッサ13とを備え、ハウジング15におけるコンプレッサ13のスクロール部41にて、スクロール部41の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定する。
 従って、コンプレッサ13のスクロール部41において、流体の再循環流の発生によりスクロール巻き始め位置で流速が急激に低下することが抑制され、スクロール部41の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。
[第2実施形態]
 図9は、第2実施形態のコンプレッサのスクロール形状におけるスクロール角度に対するA/Rを表すグラフ、図10は、第2実施形態のコンプレッサのスクロール形状におけるスクロール角度に対する流速を表すグラフである。
 第2実施形態のコンプレッサのスクロール形状は、図9に示すように、スクロール部41の通路断面積をAとし、コンプレッサ羽根車26の中心L1からスクロール部41の通路断面の中心P1までの半径をRとしたとき、スクロール部41の巻き始め位置となるスクロール角度θ=略60°の位置から、巻き終り位置となるスクロール角度θ=360°の位置までの領域で、比A/Rの増加度合い(変化率)が大きくなるように設定されている。
 つまり、横軸をスクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域変化とし、縦軸を比A/Rとしたとき、比A/Rの線形は、0側に向けて凸形状をなしている。ここで、従来、比A/Rの線形は、直線(点線)であり、比A/Rは、スクロール角度θの増加に伴って変化率が一定である。一方、第1実施形態の比A/Rの線形は、凹形状(実線)となっている。
 また、第2実施形態のコンプレッサのスクロール形状は、スクロール部41の巻き始め位置となるスクロール角度θ=略60°の位置での比A/Rが、スクロール部41の巻き終り位置となるスクロール角度θ=360°の位置での比A/Rの20%以上に設定されている。つまり、第1実施形態のスクロール部41における比A/Rの線形(実線)は、スクロール角度θ=略60°~360°の領域で、従来のスクロール部における比A/Rの線形(点線)より高く設定されている。但し、スクロール部41における比A/Rの線形の一部が従来のスクロール部における比A/Rの線形(点線)より低くてもよい。
 そのため、図10に示すように、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、実線で表す本実施形態のスクロール形状による流速は、スクロール部41の巻き始め位置(スクロール角度θ=略60°)で従来(点線)より低値となり、ほぼ一定に減速する。そのため、この領域ではく離が発生しにくい。
 なお、スクロール部41の巻き始め位置から巻き終り位置まで移行する領域で、比A/Rの変化率は上述したものに限定されるものではない。図11は、第2実施形態の変形例のスクロール角度に対するA/Rを表すグラフ、図12は、第2実施形態の変形例のスクロール角度に対する流速を表すグラフである。
 第2実施形態の変形例のコンプレッサのスクロール形状は、図11に示すように、スクロール部41の巻き始め位置となるスクロール角度θ=略60°の位置から、巻き終り位置となるスクロール角度θ=360°の位置までの領域で、比A/Rの増加度合い(変化率)が一定に設定されている。また、スクロール部41の巻き始め位置となるスクロール角度θ=略60°の位置での比A/Rが、スクロール部41の巻き終り位置となるスクロール角度θ=360°の位置での比A/Rの20%以上に設定されている。
 そのため、図12に示すように、スクロール部41の巻き始め位置(スクロール角度θ=略60°)から巻き終り位置(スクロール角度θ=360°)までの領域で、実線で表す本実施形態のスクロール形状による流速は、スクロール部41の巻き始め位置(スクロール角度θ=略60°)で従来(点線)より低値となり、変化率が小さくなる。そのため、この領域ではく離が発生しにくい。
 このように第2実施形態のコンプレッサのスクロール形状にあっては、スクロール部41の通路断面積をAとし、コンプレッサ羽根車26の中心L1からスクロール部41の通路断面の中心P1までの半径をRとしたとき、スクロール部41の巻き始め位置における比A/Rがスクロール部41の巻き終り位置における比A/Rの20%以上に設定すると共に、スクロール部41の巻き始め位置から巻き終り位置に向けて比A/Rが増加するように設定する。
 従って、スクロール部41の巻き始め位置における通路断面積Aに対する半径Rの比A/Rを巻き終り位置における比A/Rの20%以上に設定することで、スクロール部41の巻き始め位置における通路断面積が拡大され、巻き始め位置より下流側との流速差が小さくなり、流速の減速率が緩和される。その結果、スクロール部41の巻き始め位置より下流側で流速が急激に低下することが抑制される。その結果、スクロール部41の壁面からの流体のはく離が抑制され、特に、小流量作動点における効率の向上を図ることができる。
[実施形態の効果]
 図13は、本実施形態のコンプレッサのスクロール形状における空気流量に対する給気圧縮比を表すグラフ、図14は、本実施形態のコンプレッサのスクロール形状における空気流量に対する効率を表すグラフである。
 図13に示すように、空気流量に対する給気圧力比は、点線で表す従来の給気圧力比に比べて、実線で表す第1、第2実施形態の給気圧力比は、特に、高回転側で向上し、作動レンジを拡大することができる。また、図14に示すように、空気流量に対する効率は、点線で表す従来の効率に比べて、実線で表す第1、第2実施形態の効率は、特に、小流量側で向上している。
 なお、上述した実施形態では、スクロール部41の巻き始め位置から巻き終り位置までの領域における通路断面積Aに対する半径Rの比A/Rを規定したが、通路断面積Aで規定してもよい。
 11 排気タービン過給機
 12 タービン
 13 コンプレッサ
 14 回転軸
 15 ハウジング
 21,22 ジャーナル軸受
 23 スラスト軸受
 24 タービンディスク
 25 タービン翼
 26 コンプレッサ羽根車
 27 ブレード
 34 吸入口
 35 圧縮空気吐出口
 36 ディフューザ
 41 スクロール部
 42 舌部

Claims (10)

  1.  コンプレッサにおける流体の流れ方向の下流側に設けられるディフューザから吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、
     スクロール部の通路断面積をAとし、前記コンプレッサの中心から前記スクロール部の通路断面の中心までの半径をRとしたとき、
     前記スクロール部の巻き始め位置から巻き終り位置までの領域で、比A/Rの増加度合いが大きくなるように設定される、
     ことを特徴とするコンプレッサのスクロール形状。
  2.  前記比A/Rの増加度合いは、前記比A/Rの変化率であり、前記スクロール部の巻き始め位置から巻き終り位置に向かって、前記比A/Rの変化率が大きくなるように設定されることを特徴とする請求項1に記載のコンプレッサのスクロール形状。
  3.  横軸を前記スクロール部の巻き始め位置から巻き終り位置までの領域変化とし、縦軸を前記比A/Rとしたときのグラフにおいて、前記比A/Rの線形が0側に向けて凸形状をなすことを特徴とする請求項1または請求項2に記載のコンプレッサのスクロール形状。
  4.  前記スクロール部の巻き終り位置の角度を0°としたとき、前記スクロール部の巻き始め側に向けて少なくとも略60°から240°の領域で、前記比A/Rの線形が0側に向けて凸形状をなすことを特徴とする請求項3に記載のコンプレッサのスクロール形状。
  5.  前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが大きくなる領域と、前記比A/Rの増加度合いが一定となる領域が設定されることを特徴とする請求項1から請求項4のいずれか一項に記載のコンプレッサのスクロール形状。
  6.  前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが小さくなる領域が存在しないことを特徴とする請求項1から請求項5のいずれか一項に記載のコンプレッサのスクロール形状。
  7.  前記スクロール部の巻き始め位置における前記比A/Rは、前記スクロール部の巻き終り位置における前記比A/Rの20%以上に設定されることを特徴とする請求項1から請求項6のいずれか一項に記載のコンプレッサのスクロール形状。
  8.  コンプレッサにおける流体の流れ方向の下流側に設けられるディフューザから吐出される流体の流路を渦巻き状に形成するコンプレッサのスクロール形状において、
     スクロール部の通路断面積をAとし、前記コンプレッサの中心から前記スクロール部の通路断面の中心までの半径をRとしたとき、
     前記スクロール部の巻き始め位置における比A/Rが前記スクロール部の巻き終り位置における前記比A/Rの20%以上に設定されると共に、前記スクロール部の巻き始め位置から巻き終り位置に向けて前記比A/Rが増加するように設定される、
     ことを特徴とするコンプレッサのスクロール形状。
  9.  前記スクロール部の巻き始め位置から巻き終り位置までの領域で、前記比A/Rの増加度合いが一定になるように設定されることを特徴とする請求項8に記載のコンプレッサのスクロール形状。
  10.  中空形状をなすハウジングと、
     前記ハウジングに回転自在に支持される回転軸と、
     前記回転軸における軸方向の一端部に設けられるタービンと、
     前記回転軸における軸方向の他端部に設けられるコンプレッサと、
     を備え、
     前記ハウジングにおける前記コンプレッサのスクロール部に請求項1から請求項9のいずれか一項に記載のコンプレッサのスクロール形状が適用される、
     ことを特徴とする過給機。
PCT/JP2017/012757 2017-03-28 2017-03-28 コンプレッサのスクロール形状及び過給機 WO2018179112A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019508405A JP7018932B2 (ja) 2017-03-28 2017-03-28 コンプレッサのスクロール形状及び過給機
US16/478,251 US11339797B2 (en) 2017-03-28 2017-03-28 Compressor scroll shape and supercharger
CN201780085058.2A CN110234888B (zh) 2017-03-28 2017-03-28 压缩机的涡旋形状以及增压器
EP17903151.3A EP3561311B1 (en) 2017-03-28 2017-03-28 Compressor scroll shape and supercharger
PCT/JP2017/012757 WO2018179112A1 (ja) 2017-03-28 2017-03-28 コンプレッサのスクロール形状及び過給機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012757 WO2018179112A1 (ja) 2017-03-28 2017-03-28 コンプレッサのスクロール形状及び過給機

Publications (1)

Publication Number Publication Date
WO2018179112A1 true WO2018179112A1 (ja) 2018-10-04

Family

ID=63677372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012757 WO2018179112A1 (ja) 2017-03-28 2017-03-28 コンプレッサのスクロール形状及び過給機

Country Status (5)

Country Link
US (1) US11339797B2 (ja)
EP (1) EP3561311B1 (ja)
JP (1) JP7018932B2 (ja)
CN (1) CN110234888B (ja)
WO (1) WO2018179112A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022123839A1 (ja) * 2020-12-09 2022-06-16
DE112020006913T5 (de) 2020-05-21 2023-01-19 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Schneckengehäuse und zentrifugalverdichter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439423B2 (ja) 1977-12-23 1979-11-28
JP2002202098A (ja) * 2000-12-28 2002-07-19 Calsonic Kansei Corp 遠心式送風機及びそれを用いた空気調和装置
JP2015183670A (ja) * 2014-03-26 2015-10-22 株式会社Ihi スクロール及びターボ圧縮機
JP6053993B1 (ja) * 2015-10-29 2016-12-27 三菱重工業株式会社 スクロールケーシング及び遠心圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479316B2 (ja) * 2010-12-28 2014-04-23 三菱重工業株式会社 遠心圧縮機のスクロール構造
JP5517981B2 (ja) * 2011-03-17 2014-06-11 三菱重工業株式会社 遠心圧縮機のスクロール構造
JP5439423B2 (ja) * 2011-03-25 2014-03-12 三菱重工業株式会社 遠心圧縮機のスクロール形状
JP5870083B2 (ja) 2013-12-27 2016-02-24 三菱重工業株式会社 タービン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439423B2 (ja) 1977-12-23 1979-11-28
JP2002202098A (ja) * 2000-12-28 2002-07-19 Calsonic Kansei Corp 遠心式送風機及びそれを用いた空気調和装置
JP2015183670A (ja) * 2014-03-26 2015-10-22 株式会社Ihi スクロール及びターボ圧縮機
JP6053993B1 (ja) * 2015-10-29 2016-12-27 三菱重工業株式会社 スクロールケーシング及び遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561311A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020006913T5 (de) 2020-05-21 2023-01-19 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Schneckengehäuse und zentrifugalverdichter
US11982292B2 (en) 2020-05-21 2024-05-14 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Scroll casing and centrifugal compressor
JPWO2022123839A1 (ja) * 2020-12-09 2022-06-16
WO2022123839A1 (ja) * 2020-12-09 2022-06-16 株式会社Ihi 遠心圧縮機および過給機
JP7452708B2 (ja) 2020-12-09 2024-03-19 株式会社Ihi 遠心圧縮機および過給機
US11965524B2 (en) 2020-12-09 2024-04-23 Ihi Corporation Centrifugal compressor and turbocharger

Also Published As

Publication number Publication date
US20200217329A1 (en) 2020-07-09
EP3561311A4 (en) 2020-01-15
US11339797B2 (en) 2022-05-24
CN110234888B (zh) 2022-09-27
EP3561311A1 (en) 2019-10-30
JPWO2018179112A1 (ja) 2019-11-07
EP3561311B1 (en) 2022-05-04
CN110234888A (zh) 2019-09-13
JP7018932B2 (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
WO2011007467A1 (ja) インペラおよび回転機械
EP3564537B1 (en) Centrifugal compressor and turbocharger
KR101743376B1 (ko) 원심 압축기
WO2013111761A1 (ja) 遠心圧縮機
JP6128230B2 (ja) 遠心圧縮機及び過給機
JPWO2014115417A1 (ja) 遠心回転機械
JP5029024B2 (ja) 遠心圧縮機
WO2011007466A1 (ja) インペラおよび回転機械
WO2018181343A1 (ja) 遠心圧縮機
EP3196477A1 (en) Centrifugal impeller and centrifugal compressor
JP6763804B2 (ja) 遠心圧縮機
WO2018179112A1 (ja) コンプレッサのスクロール形状及び過給機
WO2018155458A1 (ja) 遠心回転機械
EP4234946A1 (en) Multiblade centrifugal fan
JP6349645B2 (ja) 遠心圧縮機及び多段圧縮装置
US20220372992A1 (en) Rotating machinery
US10844863B2 (en) Centrifugal rotary machine
JP6935312B2 (ja) 多段遠心圧縮機
JP2017044164A (ja) 遠心圧縮機、ターボチャージャ
JP6768172B1 (ja) 遠心圧縮機
JP5428962B2 (ja) 軸流圧縮機及びガスタービンエンジン
JP2017057779A (ja) ターボチャージャ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508405

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017903151

Country of ref document: EP

Effective date: 20190724

NENP Non-entry into the national phase

Ref country code: DE