WO2018179079A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2018179079A1
WO2018179079A1 PCT/JP2017/012576 JP2017012576W WO2018179079A1 WO 2018179079 A1 WO2018179079 A1 WO 2018179079A1 JP 2017012576 W JP2017012576 W JP 2017012576W WO 2018179079 A1 WO2018179079 A1 WO 2018179079A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
outer edge
insulator
electrolyte
Prior art date
Application number
PCT/JP2017/012576
Other languages
French (fr)
Japanese (ja)
Inventor
由磨 五行
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/012576 priority Critical patent/WO2018179079A1/en
Publication of WO2018179079A1 publication Critical patent/WO2018179079A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery.
  • a lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery, has a high energy density and is therefore used as a power source for portable devices such as notebook computers and mobile phones.
  • Lithium ion secondary batteries are also used as power storage power supplies or electric vehicle power supplies, but lithium ion secondary batteries with high output are required for use in these applications.
  • a method for increasing the output of the lithium ion secondary battery is, for example, a method of connecting a plurality of unit cells in series. However, when the cells are connected in series, the outer body of the cells may become an electric resistance, and the output may be reduced. Moreover, when the number of series increases, the volume and weight of the exterior body which does not participate in charging / discharging increase, and an energy density may fall.
  • a bipolar battery in which a bipolar electrode having a positive electrode mixture layer on one surface of a current collector and a negative electrode mixture layer on the other surface and an electrolyte is proposed.
  • Patent Document 1 a bipolar battery in which a bipolar electrode having a positive electrode mixture layer on one surface of a current collector and a negative electrode mixture layer on the other surface and an electrolyte is proposed.
  • Patent Document 2 a bipolar battery using a solid electrolyte such as an inorganic solid electrolyte or an organic polymer solid electrolyte as an electrolyte layer has been proposed as means for suppressing the occurrence of liquid junction.
  • JP 2008-269972 A Japanese Patent Laid-Open No. 2000-1000047
  • an object of the present invention is to provide a secondary battery that can suppress the occurrence of a liquid junction due to contact between electrolyte layers and the occurrence of a short circuit due to contact between electrode layers.
  • the present invention provides a secondary battery comprising a first electrode layer, a first electrolyte layer, a bipolar electrode layer, a second electrolyte layer, and a second electrode layer in this order.
  • a second insulator layer provided adjacent to one of the second electrode layers, and the first insulator layer has a first through-hole penetrating in the stacking direction.
  • the second insulator layer has a second through-hole penetrating in the stacking direction, and when viewed from the stacking direction, the outer edge portion of the first insulator layer is the outer edge of the first electrolyte layer. And the outer edge of the first electrode layer or bipolar electrode layer adjacent to the first insulator layer, and the edge of the first through hole is The outer edge portion of the first electrolyte layer and the outer edge portion of the first electrode layer adjacent to the first insulator layer or the outer edge portion of the bipolar electrode layer are located on the inner side.
  • the outer edge of the electrolyte layer and the outer edge of the bipolar electrode layer or the second electrode layer adjacent to the second insulator layer, and the edge of the second through-hole is the second electrolyte layer And the bipolar electrode adjacent to the second insulator layer or the outer edge of the second electrode layer.
  • the first insulator layer and the second insulator layer have the first through hole and the second through hole, respectively, so that the electrolyte layer, the first electrode layer, An electrical connection between the bipolar electrode layer or the second electrode layer is ensured.
  • the insulators constituting the first insulator layer and the second insulator layer are the outer edges of the first electrode layer, the first electrolyte layer, the second electrolyte layer, or the second electrode layer, respectively. Are arranged so that no exposure of the portion to the bipolar electrode layer side or exposure of the outer edge portion of the bipolar electrode layer to the first electrode layer or the second electrode layer side occurs. The layers are difficult to touch. Therefore, in this secondary battery, the occurrence of a liquid junction due to contact between the electrolyte layers and the occurrence of a short circuit due to contact between the electrode layers can be suppressed.
  • the first insulator layer may be provided adjacent to the first electrolyte layer and the first electrode layer.
  • the insulator constituting the first insulator layer is formed such that the outer edge portion of the first electrode layer and the first electrolyte layer are not exposed so that the outer edge portion of the first electrode layer is not exposed to the bipolar electrode layer side.
  • the second insulator layer in the second aspect may be provided adjacent to the second electrolyte layer and the bipolar electrode layer.
  • the insulator constituting the second insulator layer is exposed to the first electrolyte layer side of the outer edge portion of the second electrolyte layer, and the second electrode layer side of the outer edge portion of the bipolar electrode layer.
  • the liquid crystal is caused by contact between the electrolyte layers and the electrode layer by being interposed between the outer edge of the second electrolyte layer and the outer edge of the bipolar electrode layer. Generation
  • production of the short circuit by mutual contact can be suppressed still more suitably.
  • the outer edge of the first electrolyte layer and the outer edge of the second electrolyte layer in the second aspect may be located inside the outer edge of the bipolar electrode layer.
  • the 1st electrode layer in a 1st aspect and a 2nd aspect may be a positive electrode layer
  • a 2nd electrode layer may be a negative electrode layer.
  • the first insulator layer in the first aspect is provided adjacent to the first electrolyte layer and the bipolar electrode layer, and the second insulator layer includes the second electrolyte layer and the second electrolyte layer. It may be provided adjacent to the bipolar electrode layer.
  • the insulator constituting the first insulator layer and the second insulator layer is exposed to the bipolar electrode layer side of the outer edge portion of the first electrolyte layer or the outer edge portion of the second electrolyte layer, and
  • the outer edge portion of the bipolar electrode layer is arranged so as not to be exposed to both the first electrode layer and the second electrode layer, the occurrence of liquid junction due to contact between the electrolyte layers, and the electrode Generation
  • the first insulator layer and the second insulator layer in each aspect described above may be independently formed of at least one selected from the group consisting of polyolefin and ceramic.
  • the present invention it is possible to provide a secondary battery capable of suppressing the occurrence of a liquid junction due to contact between electrolyte layers and the occurrence of a short circuit due to contact between electrode layers.
  • FIG. 1 It is a perspective view which shows the secondary battery which concerns on one Embodiment. It is a disassembled perspective view which shows one Embodiment of the electrode group of the secondary battery shown in FIG. It is a schematic cross section which shows one Embodiment of the electrode group of the secondary battery shown in FIG. It is a schematic cross section which shows other embodiment of an electrode group. It is a schematic cross section which shows other embodiment of an electrode group. It is a schematic cross section which shows other embodiment of an electrode group. It is a schematic cross section which shows other embodiment of an electrode group. It is a schematic cross section which shows other embodiment of an electrode group. It is a schematic cross section which shows other embodiment of an electrode group.
  • FIG. 1 is a perspective view showing a secondary battery according to an embodiment.
  • the secondary battery 1 includes an electrode group 2 including a positive electrode layer, a negative electrode layer, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2.
  • a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided in the positive electrode layer and the negative electrode layer, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode layer and the negative electrode layer can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG.
  • the electrode group 2 ⁇ / b> A includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, and a bipolar electrode.
  • the layer 9, the second insulator layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 are provided in this order.
  • the positive electrode layer (first electrode layer) 6 includes a positive electrode current collector 13 and a positive electrode mixture layer 14 provided on the positive electrode current collector 13.
  • the positive electrode current collector 13 is provided with a positive electrode current collector tab 4.
  • the positive electrode current collector 13 is made of, for example, aluminum, stainless steel, titanium, or the like.
  • the thickness of the positive electrode current collector 13 is, for example, 10 to 100 ⁇ m.
  • the positive electrode mixture layer 14 contains, for example, a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer 14 is, for example, 20 to 200 ⁇ m.
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be lithium manganate, lithium nickelate, lithium cobaltate, or the like.
  • Lithium transition metal oxide is a part of transition metals such as Mn, Ni, Co, etc. contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may also be used.
  • Lithium transition metal phosphate is LiFePO 4 , LiMnPO 4 , LiMn x M 1-x PO 4 (0.3 ⁇ x ⁇ 1, M is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr) Or at least one element selected from the group).
  • the conductive agent may be carbon black, graphite, carbon fiber, carbon nanotube, or the like.
  • the binder is not limited as long as it does not decompose on the surface of the positive electrode layer 6.
  • the first electrolyte layer 8 and the second electrolyte layer 11 each contain, for example, a polymer, oxide particles, an ionic liquid, and an electrolyte.
  • the thicknesses of the first electrolyte layer 8 and the second electrolyte layer 11 are each 10 to 200 ⁇ m, for example.
  • the first electrolyte layer 8 and the second electrolyte layer 11 may be the same as or different from each other.
  • the polymer is, for example, a polymer having a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  • the polymer may be a copolymer further having a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate.
  • the polymer may comprise at least two types of polymers, a first polymer having a first structural unit and a second polymer having a second structural unit.
  • the oxide particles are, for example, Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr.
  • the average particle diameter of the oxide particles is, for example, 0.02 to 5 ⁇ m.
  • the anionic component of the ionic liquid includes halogen anions such as Cl ⁇ , Br ⁇ and I ⁇ , inorganic anions such as BF 4 ⁇ and N (SO 2 F) 2 ⁇ , B (C 6 H 5 ) 4 ⁇ , and CH 3.
  • Organic anions such as SO 3 ⁇ , CF 3 SO 3 ⁇ , N (C 4 F 9 SO 2 ) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 CF 2 CF 3 ) 2 — It's okay.
  • the cation component of the ionic liquid may be a chain quaternary ammonium cation, a piperidinium cation, a pyrrolidinium cation, an imidazolium cation, or the like.
  • Examples of the electrolyte include LiBF 4 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3) may be 2 such as lithium salt.
  • the negative electrode layer (second electrode layer) 12 includes a negative electrode current collector 15 and a negative electrode mixture layer 16 provided on the negative electrode current collector 15.
  • the negative electrode current collector 15 is provided with a negative electrode current collecting tab 5.
  • the negative electrode current collector 15 is made of, for example, copper, stainless steel, titanium, nickel, or the like.
  • the thickness of the negative electrode current collector 15 is, for example, 10 to 100 ⁇ m.
  • the negative electrode mixture layer 16 contains, for example, a negative electrode active material and a binder.
  • the thickness of the negative electrode mixture layer 16 is, for example, 10 to 200 ⁇ m.
  • the negative electrode active material examples include carbon-based materials (graphite and amorphous carbon), conductive polymer materials (for example, polyacene, polyparaphenylene, polyaniline, and polyacetylene), lithium composite oxides (for example, lithium titanate: Li 4 Ti 5 O 12,), metallic lithium, metal lithium alloyed (e.g., aluminum, silicon, or a tin).
  • the binder may be the same as the binder in the positive electrode mixture layer 14.
  • the bipolar electrode layer 9 includes a bipolar electrode current collector 17, a positive electrode mixture layer 14 provided on the surface of the bipolar electrode current collector 17 on the negative electrode layer 12 side, and a positive electrode layer 6 side of the bipolar electrode current collector 17. And a negative electrode mixture layer 16 provided on the surface.
  • the bipolar electrode layer 9 may be formed by providing each of the positive electrode mixture layer 14 and the negative electrode mixture layer 16 on the bipolar electrode current collector 17, or the positive electrode layer 6 and the negative electrode layer 12 may be connected to the positive electrode current collector. It may be formed by bonding the body 13 and the negative electrode current collector 15 so as to contact each other.
  • the bipolar electrode current collector 17 is made of, for example, a single metal such as aluminum, stainless steel, or titanium, or a clad material formed by rolling and joining aluminum and copper or stainless steel and copper.
  • the bipolar electrode current collector 17 may be formed by laminating the same material as the positive electrode current collector 13 and the same material as the negative electrode current collector 15 described above.
  • the thickness of the bipolar electrode current collector 17 is, for example, 10 to 100 ⁇ m.
  • the positive electrode mixture layer 14 and the negative electrode mixture layer 16 in the bipolar electrode layer 9 may be the same as the positive electrode mixture layer 14 in the positive electrode layer 6 and the negative electrode mixture layer 16 in the negative electrode layer 12, respectively.
  • the first insulator layer 7 is provided adjacent to and between the first electrode layer 6 and the first electrolyte layer 8.
  • the first insulator layer 7 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, a second insulator layer 10, and a second insulator layer 7.
  • the first through hole 18 penetrates in the laminating direction in which the electrolyte layer 11 and the negative electrode layer (second electrode layer) 12 are laminated (hereinafter simply referred to as “lamination direction”).
  • the planar shape of the first through-hole 18 (the shape when viewed from the stacking direction) is substantially similar to the planar shape of the first insulator layer 7 (substantially rectangular in this embodiment).
  • the first through hole 18 has a long side and a short side that form the outer edge portion 7 a of the first insulator layer 7 and a length that forms the edge portion 18 a of the first through hole 18 when viewed from the stacking direction.
  • the side and the short side are formed at substantially the center of the first insulator layer 7 so as to be substantially parallel to each other.
  • the ratio of the first through holes 18 in the first insulator layer 7 may be, for example, 25 to 99.5%.
  • the first insulator layer 7 is an insulator capable of electrical insulation, such as polyolefin, fluororesin (for example, a polymer of olefin containing fluorine atoms), polyamide such as polyacryl, polyimide, and aramid, ceramic ( Insulating material).
  • the first insulator layer 7 is preferably formed of at least one selected from the group consisting of polyolefin and ceramic.
  • the polyolefin is preferably polyethylene or polypropylene.
  • the second insulator layer 10 is provided adjacent to and between the bipolar electrode layer 9 and the second electrolyte layer 11.
  • the second insulator layer 10 has a second through hole 19 penetrating in the stacking direction.
  • the configurations of the second insulator layer 10 and the second through hole 19 may be the same as those of the first insulator layer 7 and the first through hole 18, respectively.
  • the outer edge portion 8a of the first electrolyte layer 8 is located on the inner side of the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction.
  • the outer edge portion 11 a of the second electrolyte layer 11 is located on the inner side of the outer edge portion 9 a of the bipolar electrode layer 9.
  • the outer edge portion 7 a of the first insulator layer 7 is positioned outside the outer edge portion 6 a of the first electrode layer 6 and the outer edge portion 8 a of the first electrolyte layer 8.
  • the edge 18 a of the first through hole 18 in the first insulator layer 7 is located inside the outer edge 6 a of the first electrode layer 6 and the outer edge 8 a of the first electrolyte layer 8.
  • the insulator constituting the first insulator layer 7 is formed so that the outer edge portion 6a of the first electrode layer 6 and the outer edge portion 6a of the first electrode layer 6 are not exposed to the bipolar electrode layer 9 side. It is interposed between the outer edge portion 8a of one electrolyte layer 8.
  • the first insulator layer 7 has the first through hole 18, the first electrode layer 6 and the first electrolyte layer 8 correspond to the first through hole 18. Allowing them to touch each other in position.
  • the outer edge portion 10a of the second insulator layer 10 is located outside the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 11a of the second electrolyte layer 11 when viewed from the stacking direction.
  • the edge 19 a of the second through hole 19 in the second insulator layer 10 is located inside the outer edge 9 a of the bipolar electrode layer 9 and the outer edge 11 a of the second electrolyte layer 11. That is, the insulator that constitutes the second insulator layer 10 is formed so that the outer edge portion 9a of the bipolar electrode layer 9 and the second edge portion 9a of the bipolar electrode layer 9 are not exposed to the second electrode layer 12 side. It is interposed between the outer edge portion 11 a of the electrolyte layer 11.
  • the bipolar electrode layer 9 and the second electrolyte layer 11 are located at positions corresponding to the second through hole 19. Allowing them to touch each other.
  • the first insulator layer 7 and the second insulator layer 10 have the first through hole 18 and the second through hole 19, respectively. This ensures electrical connection between the first electrode layer 6 and the first electrolyte layer 8 and between the bipolar electrode layer 9 and the second electrolyte layer 11.
  • the insulator constituting the first insulator layer 7 does not expose the outer edge 6a of the first electrode layer 6 to the bipolar electrode layer 9 side. By interposing between the outer edge portion 6a and the outer edge portion 8a of the first electrolyte layer 8, the first electrode layer 6 and the bipolar electrode layer 9 are difficult to contact each other.
  • the outer edge portion 9a of the bipolar electrode layer 9 prevents the insulator constituting the second insulator layer 10 from exposing the outer edge portion 9a of the bipolar electrode layer 9 to the second electrode layer 12 side.
  • the outer edge portion 11a of the second electrolyte layer 11 make it difficult for the bipolar electrode layer 9 and the second electrode layer 12 to contact each other. Therefore, in the secondary battery including the electrode group 2A shown in FIG. 3, the occurrence of a short circuit due to contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
  • the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are located inside the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction.
  • the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are the outer edge portion 9a of the bipolar electrode layer 9. It may be located on the outer side.
  • the first electrode layer 6 and the bipolar electrode layer 9 are respectively formed by the insulators constituting the first insulator layer 7 and the second insulator layer 10.
  • the bipolar electrode layer 9 and the second electrode layer 12 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2B shown in FIG. 4, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 occurs. Can be suppressed.
  • the bipolar electrode layer 9 prevents the insulator constituting the second insulator layer 10 from exposing the outer edge portion 11a of the second electrolyte layer 11 to the first electrolyte layer 8 side. Between the outer edge portion 9a of the second electrolyte layer 11 and the outer edge portion 11a of the second electrolyte layer 11. Therefore, in the secondary battery including the electrode group 2 ⁇ / b> B illustrated in FIG. 4, the occurrence of a liquid junction due to the contact between the electrolyte layers between the second electrolyte layer 11 and the first electrolyte layer 8 can be suppressed.
  • the electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator.
  • first electrode layer positive electrode layer
  • second electrode layer negative electrode layer
  • the stacking order with 11 may be interchanged with each other.
  • an electrode group 2C includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, and a bipolar layer.
  • An electrode layer 9, a second electrolyte layer 11, a second insulator layer 10, and a negative electrode layer (second electrode layer) 12 are provided in this order.
  • the outer edge portion 7 a of the first insulator layer 7 is the outer edge portion 6 a of the first electrode layer 6 and the first electrolyte layer 8.
  • the edge 18a of the first through-hole 18 in the first insulator layer 7 is located outside the outer edge 8a, and the outer edge 6a of the first electrode layer 6 and the outer edge of the first electrolyte layer 8 It is located inside the portion 8a.
  • the insulator constituting the first insulator layer 7 is formed so that the outer edge portion 6a of the first electrode layer 6 and the outer edge portion 6a of the first electrode layer 6 are not exposed to the bipolar electrode layer 9 side.
  • first insulator layer 7 has the first through hole 18, the first electrode layer 6 and the first electrolyte layer 8 correspond to the first through hole 18. Allowing them to touch each other in position.
  • the outer edge portion 10a of the second insulator layer 10 is positioned outside the outer edge portion 11a of the second electrolyte layer 11 and the outer edge portion 12a of the second electrode layer 12.
  • the edge 19a of the second through hole 19 in the second insulator layer 10 is located on the inner side of the outer edge 11a of the second electrolyte layer 11 and the outer edge 12a of the second electrode layer 12. Yes. That is, the insulator that constitutes the second insulator layer 10 is separated from the outer edge portion 11a of the second electrolyte layer 11 and the second electrode layer 12 so that the outer edge portion 12a of the second electrode layer 12 is not exposed to the bipolar electrode layer 9 side.
  • the second insulator layer 10 includes the second through hole 19
  • the second electrolyte layer 11 and the second electrode layer 12 correspond to the second through hole 19. Allowing them to touch each other in position.
  • the insulator constituting the first insulator layer 7 is exposed to the bipolar electrode layer 9 side of the outer edge portion 6a of the first electrode layer 6.
  • the outer edge of the second electrolyte layer 11 is prevented so that the insulator constituting the second insulator layer 10 does not expose the outer edge 12a of the second electrode layer 12 to the bipolar electrode layer 9 side.
  • the second electrode layer 12 and the bipolar electrode layer 9 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2 ⁇ / b> C shown in FIG. 5, a short circuit occurs due to contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9. Can be suppressed.
  • the electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator.
  • first electrode layer positive electrode layer
  • second electrode layer negative electrode layer
  • the stacking order with 8 may be interchanged.
  • an electrode group 2D includes a positive electrode layer (first electrode layer) 6, a first electrolyte layer 8, a first insulator layer 7, and a bipolar layer.
  • the electrode layer 9, the second insulator layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 are provided in this order.
  • the outer edge portion 7a of the first insulator layer 7 when viewed from the stacking direction, includes the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion of the bipolar electrode layer 9.
  • the edge 18a of the first through hole 18 in the first insulator layer 7 is located outside of the outer edge 9a of the first electrolyte layer 8 and the outer edge 9a of the bipolar electrode layer 9. Is located.
  • the insulator constituting the first insulator layer 7 is bipolar with the outer edge portion 8a of the first electrolyte layer 8 so that the outer edge portion 9a of the bipolar electrode layer 9 is not exposed to the first electrode layer 6 side.
  • the first electrolyte layer 8 and the bipolar electrode layer 9 are located at positions corresponding to the first through hole 18. Allowing them to touch each other.
  • the outer edge portion 10a of the second insulator layer 10 is located outside the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 11a of the second electrolyte layer 11 when viewed from the stacking direction.
  • the edge 19 a of the second through hole 19 in the second insulator layer 10 is located inside the outer edge 9 a of the bipolar electrode layer 9 and the outer edge 11 a of the second electrolyte layer 11. That is, the insulator that constitutes the second insulator layer 10 is formed so that the outer edge portion 9a of the bipolar electrode layer 9 and the second edge portion 9a of the bipolar electrode layer 9 are not exposed to the second electrode layer 12 side. It is interposed between the outer edge portion 11 a of the electrolyte layer 11.
  • the bipolar electrode layer 9 and the second electrolyte layer 11 are located at positions corresponding to the second through hole 19. Allowing them to touch each other.
  • the insulator constituting the first insulator layer 7 and the insulator constituting the second insulator layer 10 are respectively the outer edges of the bipolar electrode layer 9.
  • the bipolar electrode layer 9 and the outer edge portion 8a of the first electrolyte layer 8, the outer edge portion 11a of the second electrolyte layer 11, and the bipolar electrode layer 9 so that the portion 9a is not exposed to the first electrode layer 6 side and the second electrode layer 12 side.
  • the bipolar electrode layer 9 and the first electrode layer 6 or the second electrode layer 12 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2D shown in FIG. 6, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
  • the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are located inside the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction.
  • the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are bipolar electrode layers. 9 may be located outside the outer edge portion 9a.
  • the bipolar electrode layer 9 and the first insulating layer 7 are separated by the insulator constituting the first insulator layer 7 and the insulator constituting the second insulator layer 10.
  • the electrode layer 6 or the second electrode layer 12 is difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2E shown in FIG. 7, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
  • the insulators that constitute the first insulator layer 7 and the second insulator layer 10 are the outer edge portion 8a of the first electrolyte layer 8 and the second electrolyte layer 11, respectively. Between the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 8a of the first electrolyte layer 8, and between the outer edge portion 9a of the bipolar electrode layer 9 and the second electrolyte layer so that the outer edge portion 11a does not contact each other. 11 between the outer edge portion 11a and the outer edge portion 11a. Therefore, in the secondary battery including the electrode group 2 ⁇ / b> E illustrated in FIG. 7, the occurrence of a liquid junction due to the contact between the electrolyte layers between the first electrolyte layer 8 and the second electrolyte layer 11 can be suppressed.
  • the electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator.
  • the layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 were provided in this order, in other embodiments, as in the electrode group 2F shown in FIG.
  • an electrode group 2F includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, 1 bipolar electrode layer 9, third insulator layer 20, third electrolyte layer 21, second bipolar electrode layer 22, second insulator layer 10, second electrolyte layer 11, And a negative electrode layer (second electrode layer) 12 in this order.
  • the configuration of the second bipolar electrode layer 22 may be the same as that of the first bipolar electrode layer 9, and is provided on the surface of the bipolar electrode current collector 17 and the negative electrode layer 12 side of the bipolar electrode current collector 17.
  • a positive electrode mixture layer 14 and a negative electrode mixture layer 16 provided on the surface of the bipolar electrode current collector 17 on the first bipolar electrode layer 9 side are provided.
  • the configuration of the third electrolyte layer 21 may be the same as that of the first electrolyte layer 8 and the second electrolyte layer 11.
  • the third insulator layer 20 is provided adjacent to and between the first bipolar electrode layer 9 and the third electrolyte layer 21.
  • the third insulator layer 20 has a third through hole 23 that penetrates in the stacking direction.
  • the third insulator layer 20 may have the same configuration as the first insulator layer 7 and the second insulator layer 10, and the third through hole 23 includes the first through hole 18 and the second insulator layer 20.
  • the same structure as the through-hole 19 may be used.
  • the outer edge portion 21a of the third electrolyte layer 21 when viewed from the stacking direction, includes the outer edge portion 9a of the first bipolar electrode layer 9 and the second bipolar electrode layer. 22 is located inside the outer edge 22a.
  • the outer edge portion 8 a of the first electrolyte layer 8 when viewed from the stacking direction, is located inside the outer edge portion 9 a of the first bipolar electrode layer 9, and the outer edge of the second electrolyte layer 11.
  • the part 11 a is located inside the outer edge part 22 a of the second bipolar electrode layer 22.
  • the outer edge portion 20a of the third insulator layer 20 is positioned outside the outer edge portion 9a of the first bipolar electrode layer 9 and the outer edge portion 21a of the third electrolyte layer 21.
  • the edge 23 a of the third through-hole 23 in the third insulator layer 20 is located inside the outer edge 9 a of the first bipolar electrode layer 9 and the outer edge 21 a of the third electrolyte layer 21. is doing. That is, the insulator constituting the third insulator layer 20 is formed so that the outer edge portion 9a of the first bipolar electrode layer 9 is not exposed to the second bipolar electrode layer 22 side.
  • the third insulator layer 20 has the third through hole 23
  • the first bipolar electrode layer 9 and the third electrolyte layer 21 correspond to the third through hole 23. It is possible to contact each other at the position to be.
  • the positional relationship between the second insulator layer 10 and the second bipolar electrode layer 22 is the same as the positional relationship between the second insulator layer 10 and the bipolar electrode 9 in the electrode group 2A shown in FIG. is there.
  • the third insulator layer 20 has the third through-hole 23 as in the above-described embodiment, so that the first bipolar electrode layer 9 and the second The electrical connection between the three electrolyte layers 21 is ensured.
  • the first bipolar electrode is formed such that the insulator constituting the third insulator layer 20 does not expose the outer edge portion 9a of the first bipolar electrode layer 9 to the second bipolar electrode layer 22 side. It is interposed between the outer edge portion 9 a of the layer 9 and the outer edge portion 21 a of the third electrolyte layer 21. This makes it difficult for the first bipolar electrode layer 9 and the second bipolar electrode layer 22 to contact each other. Therefore, even in a secondary battery including the electrode group 2F shown in FIG. 8, occurrence of a short circuit due to contact between the electrode layers can be suppressed.
  • each layer constituting the electrode group 2 is a substantially rectangular shape, but the planar shape of each layer constituting the electrode group is another shape such as a substantially square shape or a substantially circular shape. Also good.
  • the planar shape of the 1st through-hole 18, the 2nd through-hole 19, and the 3rd through-hole 23 is the 1st insulator layer 7, the 2nd insulator layer 10, and the 3rd insulation, respectively.
  • the planar shape of the body layer 20 was substantially similar to that of the body layer 20, but the planar shapes of the first through hole, the second through hole, and the third through hole were the first insulator layer and the second insulator, respectively.
  • the shape may be different from the planar shape of the layer and the third insulator layer.
  • the 1st insulator layer 7, the 2nd insulator layer 10, and the 3rd insulator layer 20 are respectively the 1st through-hole 18, the 2nd through-hole 19, and the 3rd through-hole.
  • the first insulator layer, the second insulator layer, and the third insulator layer have the first through hole, the second through hole, and the third through hole, respectively. You may have two or more.
  • the first electrode layer 6 is a positive electrode layer and the second electrode layer 12 is a negative electrode layer.
  • the first electrode layer is a negative electrode layer and the second electrode layer is a positive electrode layer. It may be.
  • the bipolar electrode layer 9 (the first bipolar electrode layer 9 and the second bipolar electrode layer 22 in the electrode group 2F) has a configuration in which the positive electrode mixture layer 14 and the negative electrode mixture layer 16 are interchanged. .
  • SYMBOLS 1 ... Secondary battery 6 ... 1st electrode layer (positive electrode layer), 6a ... Outer edge part of 1st electrode layer, 7 ... 1st insulator layer, 7a ... Outer edge part of 1st insulator layer, DESCRIPTION OF SYMBOLS 8 ... 1st electrolyte layer, 8a ... Outer edge part of 1st electrolyte layer, 9 ... Bipolar electrode layer, 9a ... Outer edge part of bipolar electrode layer, 10 ... 2nd insulator layer, 10a ... 2nd insulator Layer outer edge, 11 ... second electrolyte layer, 11a ... second electrolyte layer outer edge, 12 ... second electrode layer (negative electrode layer), 12a ... second electrode layer outer edge, 18 ... first 1 through-hole, 18a... Edge of first through-hole, 19... Second through-hole, 19a... Edge of second through-hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a secondary battery that is equipped with a first electrode layer 6, a first electrolyte layer 8, a bipolar electrode layer 9, a second electrolyte layer 11, and a second electrode layer 12 in this order. The secondary battery is also equipped with: a first insulating material layer 7 that is provided adjacent to the first electrolyte layer 8 and the like; and a second insulating material layer 10 that is provided adjacent to the second electrolyte layer 11 and the like. The first insulating material layer 7 has a first through hole 18, the second insulating material layer 10 has a second through hole 19, an outer end portion 7a of the first insulating material layer 7 is positioned further toward the outer side than an outer end portion 8a of the first electrolyte layer 8, and the like, an end portion 18a of the first through hole 18 is positioned further toward the inner side than the outer end portion 8a of the first electrolyte layer 8, and the like, an outer end portion 10a of the second insulating material layer 10 is positioned further toward the outer side than an outer end portion 11a of the second electrolyte layer 11, and the like, and an end portion 19a of the second through hole 19 is positioned further toward the inner side than the outer end portion 11a of the second electrolyte layer 11, and the like.

Description

二次電池Secondary battery
 本発明は、二次電池に関する。 The present invention relates to a secondary battery.
 近年、携帯型電子機器等の普及により、高性能な二次電池が必要とされている。非水電解質二次電池の一種であるリチウムイオン二次電池は、高いエネルギー密度を有するため、ノートパソコン、携帯電話等のポータブル機器の電源に使用されている。また、リチウムイオン二次電池は、電力貯蔵用電源又は電気自動車用電源としても使用されているが、これらの用途に使用するためには、出力の大きなリチウムイオン二次電池が求められる。リチウムイオン二次電池の出力を高める方法は、例えば、複数の単電池を直列接続する方法である。しかし、単電池を直列接続する場合、単電池の外装体が電気抵抗となり、出力が低下することがある。また、直列数が多くなると、充放電に関与しない外装体の体積及び重量が増加して、エネルギー密度が低下することもある。 In recent years, with the spread of portable electronic devices, high performance secondary batteries are required. A lithium ion secondary battery, which is a kind of non-aqueous electrolyte secondary battery, has a high energy density and is therefore used as a power source for portable devices such as notebook computers and mobile phones. Lithium ion secondary batteries are also used as power storage power supplies or electric vehicle power supplies, but lithium ion secondary batteries with high output are required for use in these applications. A method for increasing the output of the lithium ion secondary battery is, for example, a method of connecting a plurality of unit cells in series. However, when the cells are connected in series, the outer body of the cells may become an electric resistance, and the output may be reduced. Moreover, when the number of series increases, the volume and weight of the exterior body which does not participate in charging / discharging increase, and an energy density may fall.
 このような問題を解決するために、集電体の一方の面に正極合剤層を有し、他方の面に負極合剤層を有するバイポーラ電極と、電解質とを積層したバイポーラ電池が提案されている(例えば、特許文献1)。しかし、バイポーラ電池において通常のリチウムイオン二次電池で用いられる電解液を使用すると、電解液を通じて電極層同士が接続され、イオン的短絡(液絡)が生じ得る。そこで、液絡の発生を抑制する手段として、無機固体電解質、有機高分子固体電解質といった固体電解質を電解質層として用いたバイポーラ電池が提案されている(例えば、特許文献2)。 In order to solve such a problem, a bipolar battery in which a bipolar electrode having a positive electrode mixture layer on one surface of a current collector and a negative electrode mixture layer on the other surface and an electrolyte is proposed. (For example, Patent Document 1). However, when an electrolytic solution used in a normal lithium ion secondary battery is used in a bipolar battery, the electrode layers are connected through the electrolytic solution, and an ionic short circuit (liquid junction) may occur. Therefore, a bipolar battery using a solid electrolyte such as an inorganic solid electrolyte or an organic polymer solid electrolyte as an electrolyte layer has been proposed as means for suppressing the occurrence of liquid junction (for example, Patent Document 2).
特開2008-269972号公報JP 2008-269972 A 特開2000-100471号公報Japanese Patent Laid-Open No. 2000-1000047
 しかし、電解質層に固体電解質を用いたバイポーラ電池においても、電解質層同士の外縁部を完全に揃えて積層しなければ、電解質層同士が接触して液絡が生じ得る。特に、有機高分子固体電解質の一種であるゲルポリマ電解質は電解液を含浸させて使用するため、積層した際にゲルポリマ電解質に含まれる電解液が染み出し、液絡が生じ得る。さらに、積層される電解質層が電極層よりも小さい場合、電極層同士が接触して短絡が生じることもある。 However, even in a bipolar battery using a solid electrolyte as the electrolyte layer, if the outer edge portions of the electrolyte layers are not completely aligned and laminated, the electrolyte layers may come into contact with each other and a liquid junction may occur. In particular, since a gel polymer electrolyte, which is a kind of organic polymer solid electrolyte, is used by impregnating an electrolytic solution, the electrolyte contained in the gel polymer electrolyte oozes out when laminated, and a liquid junction may occur. Furthermore, when the electrolyte layer laminated | stacked is smaller than an electrode layer, electrode layers may contact and a short circuit may arise.
 そこで本発明は、電解質層同士の接触による液絡の発生、及び、電極層同士の接触による短絡の発生を抑制できる二次電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a secondary battery that can suppress the occurrence of a liquid junction due to contact between electrolyte layers and the occurrence of a short circuit due to contact between electrode layers.
 本発明は、第1の態様において、第1の電極層と、第1の電解質層と、バイポーラ電極層と、第2の電解質層と、第2の電極層と、をこの順に備える二次電池であって、第1の電解質層と、第1の電極層及びバイポーラ電極層のいずれか一方とに隣接して設けられた第1の絶縁体層と、第2の電解質層と、バイポーラ電極層及び第2の電極層のいずれか一方とに隣接して設けられた第2の絶縁体層と、を更に備え、第1の絶縁体層は、積層方向に貫通する第1の貫通孔を有し、第2の絶縁体層は、積層方向に貫通する第2の貫通孔を有し、積層方向から見たときに、第1の絶縁体層の外縁部は、第1の電解質層の外縁部、及び第1の絶縁体層に隣接する第1の電極層又はバイポーラ電極層の外縁部より外側に位置し、第1の貫通孔の縁部は、第1の電解質層の外縁部、及び第1の絶縁体層に隣接する第1の電極層又はバイポーラ電極層の外縁部より内側に位置し、第2の絶縁体層の外縁部は、第2の電解質層の外縁部、及び第2の絶縁体層に隣接するバイポーラ電極層又は第2の電極層の外縁部より外側に位置し、第2の貫通孔の縁部は、第2の電解質層の外縁部、及び第2の絶縁体層に隣接するバイポーラ電極層又は第2の電極層の外縁部より内側に位置する、二次電池である。 In the first aspect, the present invention provides a secondary battery comprising a first electrode layer, a first electrolyte layer, a bipolar electrode layer, a second electrolyte layer, and a second electrode layer in this order. A first electrolyte layer, a first insulator layer provided adjacent to one of the first electrode layer and the bipolar electrode layer, a second electrolyte layer, and a bipolar electrode layer And a second insulator layer provided adjacent to one of the second electrode layers, and the first insulator layer has a first through-hole penetrating in the stacking direction. The second insulator layer has a second through-hole penetrating in the stacking direction, and when viewed from the stacking direction, the outer edge portion of the first insulator layer is the outer edge of the first electrolyte layer. And the outer edge of the first electrode layer or bipolar electrode layer adjacent to the first insulator layer, and the edge of the first through hole is The outer edge portion of the first electrolyte layer and the outer edge portion of the first electrode layer adjacent to the first insulator layer or the outer edge portion of the bipolar electrode layer are located on the inner side. The outer edge of the electrolyte layer and the outer edge of the bipolar electrode layer or the second electrode layer adjacent to the second insulator layer, and the edge of the second through-hole is the second electrolyte layer And the bipolar electrode adjacent to the second insulator layer or the outer edge of the second electrode layer.
 この二次電池では、第1の絶縁体層及び第2の絶縁体層がそれぞれ第1の貫通孔及び第2の貫通孔を有していることにより、電解質層と、第1の電極層、バイポーラ電極層又は第2の電極層との間の電気的な接続が確保される。その上で、第1の絶縁体層及び第2の絶縁体層を構成する絶縁体が、それぞれ第1の電極層、第1の電解質層、第2の電解質層若しくは第2の電極層の外縁部のバイポーラ電極層側への露出、又は、バイポーラ電極層の外縁部の第1の電極層又は第2の電極層側への露出が生じないように配置されているため、電解質層同士又は電極層同士が接触しにくくなっている。したがって、この二次電池では、電解質層同士の接触による液絡の発生、及び、電極層同士の接触による短絡の発生を抑制できる。 In this secondary battery, the first insulator layer and the second insulator layer have the first through hole and the second through hole, respectively, so that the electrolyte layer, the first electrode layer, An electrical connection between the bipolar electrode layer or the second electrode layer is ensured. In addition, the insulators constituting the first insulator layer and the second insulator layer are the outer edges of the first electrode layer, the first electrolyte layer, the second electrolyte layer, or the second electrode layer, respectively. Are arranged so that no exposure of the portion to the bipolar electrode layer side or exposure of the outer edge portion of the bipolar electrode layer to the first electrode layer or the second electrode layer side occurs. The layers are difficult to touch. Therefore, in this secondary battery, the occurrence of a liquid junction due to contact between the electrolyte layers and the occurrence of a short circuit due to contact between the electrode layers can be suppressed.
 第2の態様として、第1の絶縁体層が、第1の電解質層と第1の電極層とに隣接して設けられていてよい。この場合、第1の絶縁体層を構成する絶縁体が、第1の電極層の外縁部がバイポーラ電極層側に露出しないように、第1の電極層の外縁部と第1の電解質層の外縁部との間に介在していることにより、第1の電極層とバイポーラ電極層とが互いに接触しにくくなっている。したがって、この二次電池では、電極層同士の接触による短絡の発生をより好適に抑制できる。 As a second aspect, the first insulator layer may be provided adjacent to the first electrolyte layer and the first electrode layer. In this case, the insulator constituting the first insulator layer is formed such that the outer edge portion of the first electrode layer and the first electrolyte layer are not exposed so that the outer edge portion of the first electrode layer is not exposed to the bipolar electrode layer side. By interposing between the outer edge portion, the first electrode layer and the bipolar electrode layer are difficult to contact each other. Therefore, in this secondary battery, generation | occurrence | production of the short circuit by contact of electrode layers can be suppressed more suitably.
 第2の態様における第2の絶縁体層は、第2の電解質層とバイポーラ電極層とに隣接して設けられていてよい。この場合、第2の絶縁体層を構成する絶縁体が、第2の電解質層の外縁部の第1の電解質層側への露出、及び、バイポーラ電極層の外縁部の第2の電極層側への露出の両方が生じないように、第2の電解質層の外縁部とバイポーラ電極層の外縁部との間に介在していることにより、電解質層同士の接触による液絡の発生及び電極層同士の接触による短絡の発生をより一層好適に抑制できる。 The second insulator layer in the second aspect may be provided adjacent to the second electrolyte layer and the bipolar electrode layer. In this case, the insulator constituting the second insulator layer is exposed to the first electrolyte layer side of the outer edge portion of the second electrolyte layer, and the second electrode layer side of the outer edge portion of the bipolar electrode layer. In order to prevent both exposure to the electrode, the liquid crystal is caused by contact between the electrolyte layers and the electrode layer by being interposed between the outer edge of the second electrolyte layer and the outer edge of the bipolar electrode layer. Generation | occurrence | production of the short circuit by mutual contact can be suppressed still more suitably.
 積層方向から見たときに、第2の態様における第1の電解質層の外縁部及び第2の電解質層の外縁部は、バイポーラ電極層の外縁部より内側に位置していてよい。また、第1の態様及び第2の態様における第1の電極層は正極層であり、第2の電極層は負極層であってよい。 When viewed from the stacking direction, the outer edge of the first electrolyte layer and the outer edge of the second electrolyte layer in the second aspect may be located inside the outer edge of the bipolar electrode layer. Moreover, the 1st electrode layer in a 1st aspect and a 2nd aspect may be a positive electrode layer, and a 2nd electrode layer may be a negative electrode layer.
 第3の態様として、第1の態様における第1の絶縁体層は、第1の電解質層とバイポーラ電極層とに隣接して設けられ、第2の絶縁体層は、第2の電解質層とバイポーラ電極層とに隣接して設けられていてよい。この場合、第1の絶縁体層及び第2の絶縁体層を構成する絶縁体が、第1の電解質層の外縁部又は第2の電解質層の外縁部のバイポーラ電極層側への露出、及び、バイポーラ電極層の外縁部の第1の電極層及び第2の電極層側への露出の両方が生じないように配置されているため、電解質層同士の接触による液絡の発生、及び、電極層同士の接触による短絡の発生をより一層好適に抑制できる。 As a third aspect, the first insulator layer in the first aspect is provided adjacent to the first electrolyte layer and the bipolar electrode layer, and the second insulator layer includes the second electrolyte layer and the second electrolyte layer. It may be provided adjacent to the bipolar electrode layer. In this case, the insulator constituting the first insulator layer and the second insulator layer is exposed to the bipolar electrode layer side of the outer edge portion of the first electrolyte layer or the outer edge portion of the second electrolyte layer, and In addition, since the outer edge portion of the bipolar electrode layer is arranged so as not to be exposed to both the first electrode layer and the second electrode layer, the occurrence of liquid junction due to contact between the electrolyte layers, and the electrode Generation | occurrence | production of the short circuit by the contact of layers can be suppressed much more suitably.
 上記の各態様における第1の絶縁体層及び第2の絶縁体層は、それぞれ独立に、ポリオレフィン及びセラミックからなる群より選ばれる少なくとも1種で形成されていてよい。 The first insulator layer and the second insulator layer in each aspect described above may be independently formed of at least one selected from the group consisting of polyolefin and ceramic.
 本発明によれば、電解質層同士の接触による液絡の発生、及び、電極層同士の接触による短絡の発生を抑制できる二次電池を提供することができる。 According to the present invention, it is possible to provide a secondary battery capable of suppressing the occurrence of a liquid junction due to contact between electrolyte layers and the occurrence of a short circuit due to contact between electrode layers.
一実施形態に係る二次電池を示す斜視図である。It is a perspective view which shows the secondary battery which concerns on one Embodiment. 図1に示した二次電池の電極群の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the electrode group of the secondary battery shown in FIG. 図1に示した二次電池の電極群の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the electrode group of the secondary battery shown in FIG. 電極群の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of an electrode group. 電極群の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of an electrode group. 電極群の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of an electrode group. 電極群の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of an electrode group. 電極群の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of an electrode group.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the components are not essential unless otherwise specified. The size of the component in each figure is conceptual, and the relative relationship of the size between the components is not limited to that shown in each figure.
 図1は、一実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極層、負極層及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極層及び負極層には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極層及び負極層が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。 FIG. 1 is a perspective view showing a secondary battery according to an embodiment. As shown in FIG. 1, the secondary battery 1 includes an electrode group 2 including a positive electrode layer, a negative electrode layer, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2. A positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided in the positive electrode layer and the negative electrode layer, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery exterior body 3 to the outside so that the positive electrode layer and the negative electrode layer can be electrically connected to the outside of the secondary battery 1, respectively.
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery outer package 3 may be formed of, for example, a laminate film. The laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した二次電池1の電極群2の一実施形態を示す分解斜視図である。図3は、図1に示した二次電池1の電極群2の一実施形態を示す模式断面図である。図2,3に示すように、一実施形態に係る電極群2Aは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、バイポーラ電極層9と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えている。 FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG. FIG. 3 is a schematic cross-sectional view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG. As shown in FIGS. 2 and 3, the electrode group 2 </ b> A according to one embodiment includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, and a bipolar electrode. The layer 9, the second insulator layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 are provided in this order.
 正極層(第1の電極層)6は、正極集電体13と、正極集電体13上に設けられた正極合剤層14とを備えている。正極集電体13には、正極集電タブ4が設けられている。 The positive electrode layer (first electrode layer) 6 includes a positive electrode current collector 13 and a positive electrode mixture layer 14 provided on the positive electrode current collector 13. The positive electrode current collector 13 is provided with a positive electrode current collector tab 4.
 正極集電体13は、例えば、アルミニウム、ステンレス鋼、チタン等で形成されている。正極集電体13の厚さは、例えば10~100μmである。正極合剤層14は、例えば、正極活物質と、導電剤と、バインダとを含有する。正極合剤層14の厚さは、例えば20~200μmである。 The positive electrode current collector 13 is made of, for example, aluminum, stainless steel, titanium, or the like. The thickness of the positive electrode current collector 13 is, for example, 10 to 100 μm. The positive electrode mixture layer 14 contains, for example, a positive electrode active material, a conductive agent, and a binder. The thickness of the positive electrode mixture layer 14 is, for example, 20 to 200 μm.
 正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。 The positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate. The lithium transition metal oxide may be lithium manganate, lithium nickelate, lithium cobaltate, or the like. Lithium transition metal oxide is a part of transition metals such as Mn, Ni, Co, etc. contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may also be used. Lithium transition metal phosphate is LiFePO 4 , LiMnPO 4 , LiMn x M 1-x PO 4 (0.3 ≦ x ≦ 1, M is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr) Or at least one element selected from the group).
 導電剤は、カーボンブラック、黒鉛、炭素繊維、カーボンナノチューブ等であってよい。バインダは、正極層6の表面で分解しないものであれば制限されないが、例えば、ポリフッ化ビニリデン、スチレン・ブタジエンゴム、カルボキシル・メチルセルロース、フッ素ゴム、エチレン・プロピレンゴム、ポリアクリル酸、ポリイミド、ポリアミド等のポリマであってよい。 The conductive agent may be carbon black, graphite, carbon fiber, carbon nanotube, or the like. The binder is not limited as long as it does not decompose on the surface of the positive electrode layer 6. For example, polyvinylidene fluoride, styrene / butadiene rubber, carboxyl / methylcellulose, fluororubber, ethylene / propylene rubber, polyacrylic acid, polyimide, polyamide, etc. It may be a polymer.
 第1の電解質層8及び第2の電解質層11はそれぞれ、例えば、ポリマと、酸化物粒子と、イオン液体と、電解質とを含有している。第1の電解質層8及び第2の電解質層11の厚さはそれぞれ、例えば10~200μmである。第1の電解質層8及び第2の電解質層11は、互いに同じであっても異なっていてもよい。 The first electrolyte layer 8 and the second electrolyte layer 11 each contain, for example, a polymer, oxide particles, an ionic liquid, and an electrolyte. The thicknesses of the first electrolyte layer 8 and the second electrolyte layer 11 are each 10 to 200 μm, for example. The first electrolyte layer 8 and the second electrolyte layer 11 may be the same as or different from each other.
 ポリマは、例えば、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有するポリマである。ポリマは、第1の構造単位に加えて、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート及びメチルメタクリレートからなる群より選ばれる第2の構造単位を更に有するコポリマであってもよい。ポリマは、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマからなっていてもよい。 The polymer is, for example, a polymer having a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride. In addition to the first structural unit, the polymer may be a copolymer further having a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. The polymer may comprise at least two types of polymers, a first polymer having a first structural unit and a second polymer having a second structural unit.
 酸化物粒子は、例えば、Li、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Rb、Sr、Y、Nb、Zr、Mo、Ag、Cd、In、Sn、Sb、Cs、Ba、La、Ta、Hf、W、Ir、Tl、Pb及びBiなる群より選ばれる少なくとも1種を含む無機酸化物粒子である。酸化物粒子の平均粒子径は、例えば0.02~5μmである。 The oxide particles are, for example, Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Y, Nb, Zr. Inorganic oxide particles containing at least one selected from the group consisting of Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Ta, Hf, W, Ir, Tl, Pb and Bi. The average particle diameter of the oxide particles is, for example, 0.02 to 5 μm.
 イオン液体のアニオン成分は、Cl、Br、I等のハロゲンのアニオン、BF4-、N(SOF) 等の無機アニオン、B(C 、CHSO 、CFSO 、N(CSO 、N(SOCF 、N(SOCFCF 等の有機アニオンなどであってよい。イオン液体のカチオン成分は、鎖状四級アンモニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、イミダゾリウムカチオン等であってよい。 The anionic component of the ionic liquid includes halogen anions such as Cl , Br and I , inorganic anions such as BF 4− and N (SO 2 F) 2 , B (C 6 H 5 ) 4 , and CH 3. Organic anions such as SO 3 , CF 3 SO 3 , N (C 4 F 9 SO 2 ) 2 , N (SO 2 CF 3 ) 2 , and N (SO 2 CF 2 CF 3 ) 2 It's okay. The cation component of the ionic liquid may be a chain quaternary ammonium cation, a piperidinium cation, a pyrrolidinium cation, an imidazolium cation, or the like.
 電解質は、例えば、LiBF、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOF)、LiN(SOCF、LiN(SOCFCF等のリチウム塩であってよい。 Examples of the electrolyte include LiBF 4 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3) may be 2 such as lithium salt.
 負極層(第2の電極層)12は、負極集電体15と、負極集電体15上に設けられた負極合剤層16とを備えている。負極集電体15には、負極集電タブ5が設けられている。 The negative electrode layer (second electrode layer) 12 includes a negative electrode current collector 15 and a negative electrode mixture layer 16 provided on the negative electrode current collector 15. The negative electrode current collector 15 is provided with a negative electrode current collecting tab 5.
 負極集電体15は、例えば、銅、ステンレス鋼、チタン、ニッケル等で形成されている。負極集電体15の厚さは、例えば10~100μmである。負極合剤層16は、例えば、負極活物質とバインダとを含有する。負極合剤層16の厚さは、例えば10~200μmである。 The negative electrode current collector 15 is made of, for example, copper, stainless steel, titanium, nickel, or the like. The thickness of the negative electrode current collector 15 is, for example, 10 to 100 μm. The negative electrode mixture layer 16 contains, for example, a negative electrode active material and a binder. The thickness of the negative electrode mixture layer 16 is, for example, 10 to 200 μm.
 負極活物質は、例えば、炭素系材料(黒鉛、非晶質炭素)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、リチウム複合酸化物(例えば、チタン酸リチウム:LiTi12、)、金属リチウム、リチウムと合金化する金属(例えば、アルミニウム、シリコン、スズ)であってよい。バインダは、正極合剤層14におけるバインダと同様であってよい。 Examples of the negative electrode active material include carbon-based materials (graphite and amorphous carbon), conductive polymer materials (for example, polyacene, polyparaphenylene, polyaniline, and polyacetylene), lithium composite oxides (for example, lithium titanate: Li 4 Ti 5 O 12,), metallic lithium, metal lithium alloyed (e.g., aluminum, silicon, or a tin). The binder may be the same as the binder in the positive electrode mixture layer 14.
 バイポーラ電極層9は、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極層12側の面に設けられた正極合剤層14と、バイポーラ電極集電体17の正極層6側の面に設けられた負極合剤層16とを備えている。バイポーラ電極層9は、バイポーラ電極集電体17に正極合剤層14と負極合剤層16とをそれぞれ設けることにより形成されてもよいし、正極層6と負極層12とを、正極集電体13と負極集電体15とが互いに接触するように貼り合わせることにより形成されてもよい。 The bipolar electrode layer 9 includes a bipolar electrode current collector 17, a positive electrode mixture layer 14 provided on the surface of the bipolar electrode current collector 17 on the negative electrode layer 12 side, and a positive electrode layer 6 side of the bipolar electrode current collector 17. And a negative electrode mixture layer 16 provided on the surface. The bipolar electrode layer 9 may be formed by providing each of the positive electrode mixture layer 14 and the negative electrode mixture layer 16 on the bipolar electrode current collector 17, or the positive electrode layer 6 and the negative electrode layer 12 may be connected to the positive electrode current collector. It may be formed by bonding the body 13 and the negative electrode current collector 15 so as to contact each other.
 バイポーラ電極集電体17は、例えばアルミニウム、ステンレス鋼、チタン等の金属単体、アルミニウムと銅又はステンレス鋼と銅を圧延接合してなるクラッド材などで形成されている。バイポーラ電極集電体17は、上述した正極集電体13と同様の材料と、負極集電体15と同様の材料とを積層することにより形成されていてもよい。バイポーラ電極集電体17の厚さは、例えば10~100μmである。バイポーラ電極層9における正極合剤層14及び負極合剤層16は、それぞれ正極層6における正極合剤層14及び負極層12における負極合剤層16と同様であってよい。 The bipolar electrode current collector 17 is made of, for example, a single metal such as aluminum, stainless steel, or titanium, or a clad material formed by rolling and joining aluminum and copper or stainless steel and copper. The bipolar electrode current collector 17 may be formed by laminating the same material as the positive electrode current collector 13 and the same material as the negative electrode current collector 15 described above. The thickness of the bipolar electrode current collector 17 is, for example, 10 to 100 μm. The positive electrode mixture layer 14 and the negative electrode mixture layer 16 in the bipolar electrode layer 9 may be the same as the positive electrode mixture layer 14 in the positive electrode layer 6 and the negative electrode mixture layer 16 in the negative electrode layer 12, respectively.
 第1の絶縁体層7は、第1の電極層6と第1の電解質層8とに隣接して両者の間に設けられている。第1の絶縁体層7は、正極層(第1の電極層)6と第1の絶縁体層7と第1の電解質層8とバイポーラ電極層9と第2の絶縁体層10と第2の電解質層11と負極層(第2の電極層)12とが積層された積層方向(以下、単に「積層方向」という)に貫通する第1の貫通孔18を有している。 The first insulator layer 7 is provided adjacent to and between the first electrode layer 6 and the first electrolyte layer 8. The first insulator layer 7 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, a second insulator layer 10, and a second insulator layer 7. The first through hole 18 penetrates in the laminating direction in which the electrolyte layer 11 and the negative electrode layer (second electrode layer) 12 are laminated (hereinafter simply referred to as “lamination direction”).
 第1の貫通孔18の平面形状(積層方向から見たときの形状)は、第1の絶縁体層7の平面形状(本実施形態では略長方形状)と略相似形状となっている。第1の貫通孔18は、積層方向から見たときに、第1の絶縁体層7の外縁部7aを形成する長辺及び短辺と第1の貫通孔18の縁部18aを形成する長辺及び短辺とがそれぞれ互いに略平行となるように、第1の絶縁体層7の略中央に形成されている。第1の絶縁体層7に占める第1の貫通孔18の割合(積層方向から見たときの面積割合)は、例えば25~99.5%であってよい。 The planar shape of the first through-hole 18 (the shape when viewed from the stacking direction) is substantially similar to the planar shape of the first insulator layer 7 (substantially rectangular in this embodiment). The first through hole 18 has a long side and a short side that form the outer edge portion 7 a of the first insulator layer 7 and a length that forms the edge portion 18 a of the first through hole 18 when viewed from the stacking direction. The side and the short side are formed at substantially the center of the first insulator layer 7 so as to be substantially parallel to each other. The ratio of the first through holes 18 in the first insulator layer 7 (area ratio when viewed from the stacking direction) may be, for example, 25 to 99.5%.
 第1の絶縁体層7は、ポリオレフィン、フッ化樹脂(例えば、フッ素原子を含むオレフィンの重合体)、ポリアクリル、ポリイミド、アラミド等のポリアミド、セラミックなどの電気的な絶縁が可能な絶縁体(絶縁材料)で形成されている。第1の絶縁体層7は、好ましくは、ポリオレフィン及びセラミックからなる群より選ばれる少なくとも1種で形成されている。ポリオレフィンは、好ましくは、ポリエチレン又はポリプロピレンである。 The first insulator layer 7 is an insulator capable of electrical insulation, such as polyolefin, fluororesin (for example, a polymer of olefin containing fluorine atoms), polyamide such as polyacryl, polyimide, and aramid, ceramic ( Insulating material). The first insulator layer 7 is preferably formed of at least one selected from the group consisting of polyolefin and ceramic. The polyolefin is preferably polyethylene or polypropylene.
 第2の絶縁体層10は、バイポーラ電極層9と第2の電解質層11とに隣接して両者の間に設けられている。第2の絶縁体層10は、積層方向に貫通する第2の貫通孔19を有している。第2の絶縁体層10及び第2の貫通孔19の構成は、それぞれ第1の絶縁体層7及び第1の貫通孔18と同様であってよい。 The second insulator layer 10 is provided adjacent to and between the bipolar electrode layer 9 and the second electrolyte layer 11. The second insulator layer 10 has a second through hole 19 penetrating in the stacking direction. The configurations of the second insulator layer 10 and the second through hole 19 may be the same as those of the first insulator layer 7 and the first through hole 18, respectively.
 本実施形態では、積層方向から見たときに、第1の電解質層8の外縁部8aは、バイポーラ電極層9の外縁部9aより内側に位置している。同様に、積層方向から見たときに、第2の電解質層11の外縁部11aは、バイポーラ電極層9の外縁部9aより内側に位置している。 In this embodiment, the outer edge portion 8a of the first electrolyte layer 8 is located on the inner side of the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction. Similarly, when viewed from the stacking direction, the outer edge portion 11 a of the second electrolyte layer 11 is located on the inner side of the outer edge portion 9 a of the bipolar electrode layer 9.
 一方、積層方向から見たときに、第1の絶縁体層7の外縁部7aは、第1の電極層6の外縁部6a及び第1の電解質層8の外縁部8aより外側に位置しており、第1の絶縁体層7における第1の貫通孔18の縁部18aは、第1の電極層6の外縁部6a及び第1の電解質層8の外縁部8aより内側に位置している。すなわち、第1の絶縁体層7を構成する絶縁体は、第1の電極層6の外縁部6aがバイポーラ電極層9側に露出しないように、第1の電極層6の外縁部6aと第1の電解質層8の外縁部8aとの間に介在している。加えて、第1の絶縁体層7は、第1の貫通孔18を有していることにより、第1の電極層6と第1の電解質層8とが第1の貫通孔18に対応する位置で互いに接触することを可能にしている。 On the other hand, when viewed from the stacking direction, the outer edge portion 7 a of the first insulator layer 7 is positioned outside the outer edge portion 6 a of the first electrode layer 6 and the outer edge portion 8 a of the first electrolyte layer 8. The edge 18 a of the first through hole 18 in the first insulator layer 7 is located inside the outer edge 6 a of the first electrode layer 6 and the outer edge 8 a of the first electrolyte layer 8. . In other words, the insulator constituting the first insulator layer 7 is formed so that the outer edge portion 6a of the first electrode layer 6 and the outer edge portion 6a of the first electrode layer 6 are not exposed to the bipolar electrode layer 9 side. It is interposed between the outer edge portion 8a of one electrolyte layer 8. In addition, since the first insulator layer 7 has the first through hole 18, the first electrode layer 6 and the first electrolyte layer 8 correspond to the first through hole 18. Allowing them to touch each other in position.
 同様に、積層方向から見たときに、第2の絶縁体層10の外縁部10aは、バイポーラ電極層9の外縁部9a及び第2の電解質層11の外縁部11aより外側に位置しており、第2の絶縁体層10における第2の貫通孔19の縁部19aは、バイポーラ電極層9の外縁部9a及び第2の電解質層11の外縁部11aより内側に位置している。すなわち、第2の絶縁体層10を構成する絶縁体は、バイポーラ電極層9の外縁部9aが第2の電極層12側に露出しないように、バイポーラ電極層9の外縁部9aと第2の電解質層11の外縁部11aとの間に介在している。加えて、第2の絶縁体層10は、第2の貫通孔19を有していることにより、バイポーラ電極層9と第2の電解質層11とが第2の貫通孔19に対応する位置で互いに接触することを可能にしている。 Similarly, the outer edge portion 10a of the second insulator layer 10 is located outside the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 11a of the second electrolyte layer 11 when viewed from the stacking direction. The edge 19 a of the second through hole 19 in the second insulator layer 10 is located inside the outer edge 9 a of the bipolar electrode layer 9 and the outer edge 11 a of the second electrolyte layer 11. That is, the insulator that constitutes the second insulator layer 10 is formed so that the outer edge portion 9a of the bipolar electrode layer 9 and the second edge portion 9a of the bipolar electrode layer 9 are not exposed to the second electrode layer 12 side. It is interposed between the outer edge portion 11 a of the electrolyte layer 11. In addition, since the second insulator layer 10 has the second through hole 19, the bipolar electrode layer 9 and the second electrolyte layer 11 are located at positions corresponding to the second through hole 19. Allowing them to touch each other.
 以上説明したとおり、二次電池1における電極群2Aでは、第1の絶縁体層7及び第2の絶縁体層10がそれぞれ第1の貫通孔18及び第2の貫通孔19を有していることにより、第1の電極層6と第1の電解質層8との間、及び、バイポーラ電極層9と第2の電解質層11との間の電気的な接続が確保される。その上で、第1の絶縁体層7を構成する絶縁体が、第1の電極層6の外縁部6aのバイポーラ電極層9側への露出が生じないように、第1の電極層6の外縁部6aと第1の電解質層8の外縁部8aとの間に介在していることにより、第1の電極層6とバイポーラ電極層9とが互いに接触しにくくなっている。同様に、第2の絶縁体層10を構成する絶縁体が、バイポーラ電極層9の外縁部9aの第2の電極層12側への露出が生じないように、バイポーラ電極層9の外縁部9aと第2の電解質層11の外縁部11aとの間に介在していることにより、バイポーラ電極層9と第2の電極層12とが互いに接触しにくくなっている。したがって、図3に示した電極群2Aを備える二次電池においては、第1の電極層6又は第2の電極層12とバイポーラ電極層9との間の電極層同士の接触による短絡の発生を抑制できる。 As described above, in the electrode group 2A in the secondary battery 1, the first insulator layer 7 and the second insulator layer 10 have the first through hole 18 and the second through hole 19, respectively. This ensures electrical connection between the first electrode layer 6 and the first electrolyte layer 8 and between the bipolar electrode layer 9 and the second electrolyte layer 11. In addition, the insulator constituting the first insulator layer 7 does not expose the outer edge 6a of the first electrode layer 6 to the bipolar electrode layer 9 side. By interposing between the outer edge portion 6a and the outer edge portion 8a of the first electrolyte layer 8, the first electrode layer 6 and the bipolar electrode layer 9 are difficult to contact each other. Similarly, the outer edge portion 9a of the bipolar electrode layer 9 prevents the insulator constituting the second insulator layer 10 from exposing the outer edge portion 9a of the bipolar electrode layer 9 to the second electrode layer 12 side. And the outer edge portion 11a of the second electrolyte layer 11 make it difficult for the bipolar electrode layer 9 and the second electrode layer 12 to contact each other. Therefore, in the secondary battery including the electrode group 2A shown in FIG. 3, the occurrence of a short circuit due to contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
 上記実施形態では、積層方向から見たときに、第1の電解質層8の外縁部8a及び第2の電解質層11の外縁部11aがバイポーラ電極層9の外縁部9aより内側に位置していたが、他の実施形態では、図4に示す電極群2Bのように、第1の電解質層8の外縁部8a及び第2の電解質層11の外縁部11aは、バイポーラ電極層9の外縁部9aより外側に位置していてもよい。 In the above embodiment, the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are located inside the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction. However, in other embodiments, as in the electrode group 2B shown in FIG. 4, the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are the outer edge portion 9a of the bipolar electrode layer 9. It may be located on the outer side.
 図4に示した電極群2Bの場合であっても、第1の絶縁体層7及び第2の絶縁体層10を構成する絶縁体によって、それぞれ、第1の電極層6とバイポーラ電極層9、及び、バイポーラ電極層9と第2の電極層12とが互いに接触しにくくなっている。したがって、図4に示した電極群2Bを備える二次電池においても、第1の電極層6又は第2の電極層12とバイポーラ電極層9との間の電極層同士の接触による短絡の発生を抑制できる。 Even in the case of the electrode group 2 </ b> B shown in FIG. 4, the first electrode layer 6 and the bipolar electrode layer 9 are respectively formed by the insulators constituting the first insulator layer 7 and the second insulator layer 10. In addition, the bipolar electrode layer 9 and the second electrode layer 12 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2B shown in FIG. 4, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 occurs. Can be suppressed.
 さらに、電極群2Bにおいては、第2の絶縁体層10を構成する絶縁体が、第2の電解質層11の外縁部11aが第1の電解質層8側に露出しないように、バイポーラ電極層9の外縁部9aと第2の電解質層11の外縁部11aとの間に介在している。したがって、図4に示した電極群2Bを備える二次電池では、第2の電解質層11と第1の電解質層8との間の電解質層同士の接触による液絡の発生を抑制できる。 Furthermore, in the electrode group 2B, the bipolar electrode layer 9 prevents the insulator constituting the second insulator layer 10 from exposing the outer edge portion 11a of the second electrolyte layer 11 to the first electrolyte layer 8 side. Between the outer edge portion 9a of the second electrolyte layer 11 and the outer edge portion 11a of the second electrolyte layer 11. Therefore, in the secondary battery including the electrode group 2 </ b> B illustrated in FIG. 4, the occurrence of a liquid junction due to the contact between the electrolyte layers between the second electrolyte layer 11 and the first electrolyte layer 8 can be suppressed.
 図3に示した電極群2Aは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、バイポーラ電極層9と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えていたが、他の実施形態では、第2の絶縁体層10と第2の電解質層11との積層順は相互に入れ替えられていてもよい。 The electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator. Although the layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 were provided in this order, in other embodiments, the second insulator layer 10 and the second electrolyte layer were provided. The stacking order with 11 may be interchanged with each other.
 すなわち、図5に示すように、他の実施形態に係る電極群2Cは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、バイポーラ電極層9と、第2の電解質層11と、第2の絶縁体層10と、負極層(第2の電極層)12とをこの順に備えている。 That is, as shown in FIG. 5, an electrode group 2C according to another embodiment includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, and a bipolar layer. An electrode layer 9, a second electrolyte layer 11, a second insulator layer 10, and a negative electrode layer (second electrode layer) 12 are provided in this order.
 図5に示した電極群2Cにおいても、積層方向から見たときに、第1の絶縁体層7の外縁部7aは、第1の電極層6の外縁部6a及び第1の電解質層8の外縁部8aより外側に位置しており、第1の絶縁体層7における第1の貫通孔18の縁部18aは、第1の電極層6の外縁部6a及び第1の電解質層8の外縁部8aより内側に位置している。すなわち、第1の絶縁体層7を構成する絶縁体は、第1の電極層6の外縁部6aがバイポーラ電極層9側に露出しないように、第1の電極層6の外縁部6aと第1の電解質層8の外縁部8aとの間に介在している。加えて、第1の絶縁体層7は、第1の貫通孔18を有していることにより、第1の電極層6と第1の電解質層8とが第1の貫通孔18に対応する位置で互いに接触することを可能にしている。 Also in the electrode group 2 </ b> C shown in FIG. 5, when viewed from the stacking direction, the outer edge portion 7 a of the first insulator layer 7 is the outer edge portion 6 a of the first electrode layer 6 and the first electrolyte layer 8. The edge 18a of the first through-hole 18 in the first insulator layer 7 is located outside the outer edge 8a, and the outer edge 6a of the first electrode layer 6 and the outer edge of the first electrolyte layer 8 It is located inside the portion 8a. In other words, the insulator constituting the first insulator layer 7 is formed so that the outer edge portion 6a of the first electrode layer 6 and the outer edge portion 6a of the first electrode layer 6 are not exposed to the bipolar electrode layer 9 side. It is interposed between the outer edge portion 8a of one electrolyte layer 8. In addition, since the first insulator layer 7 has the first through hole 18, the first electrode layer 6 and the first electrolyte layer 8 correspond to the first through hole 18. Allowing them to touch each other in position.
 同様に、積層方向から見たときに、第2の絶縁体層10の外縁部10aは、第2の電解質層11の外縁部11a及び第2の電極層12の外縁部12aより外側に位置しており、第2の絶縁体層10における第2の貫通孔19の縁部19aは、第2の電解質層11の外縁部11a及び第2の電極層12の外縁部12aより内側に位置している。すなわち、第2の絶縁体層10を構成する絶縁体は、第2の電極層12の外縁部12aがバイポーラ電極層9側に露出しないように、第2の電解質層11の外縁部11aと第2の電極層12の外縁部12aとの間に介在している。加えて、第2の絶縁体層10は、第2の貫通孔19を有していることにより、第2の電解質層11と第2の電極層12とが第2の貫通孔19に対応する位置で互いに接触することを可能にしている。 Similarly, when viewed from the stacking direction, the outer edge portion 10a of the second insulator layer 10 is positioned outside the outer edge portion 11a of the second electrolyte layer 11 and the outer edge portion 12a of the second electrode layer 12. The edge 19a of the second through hole 19 in the second insulator layer 10 is located on the inner side of the outer edge 11a of the second electrolyte layer 11 and the outer edge 12a of the second electrode layer 12. Yes. That is, the insulator that constitutes the second insulator layer 10 is separated from the outer edge portion 11a of the second electrolyte layer 11 and the second electrode layer 12 so that the outer edge portion 12a of the second electrode layer 12 is not exposed to the bipolar electrode layer 9 side. It is interposed between the outer edge portion 12 a of the two electrode layers 12. In addition, since the second insulator layer 10 includes the second through hole 19, the second electrolyte layer 11 and the second electrode layer 12 correspond to the second through hole 19. Allowing them to touch each other in position.
 図5に示した電極群2Cの場合であっても、第1の絶縁体層7を構成する絶縁体が、第1の電極層6の外縁部6aのバイポーラ電極層9側への露出が生じないように、第1の電極層6の外縁部6aと第1の電解質層8の外縁部8aとの間に介在していることにより、第1の電極層6とバイポーラ電極層9とが互いに接触しにくくなっている。同様に、第2の絶縁体層10を構成する絶縁体が、第2の電極層12の外縁部12aのバイポーラ電極層9側への露出が生じないように、第2の電解質層11の外縁部11aと第2の電極層12の外縁部12aとの間に介在していることにより、第2の電極層12とバイポーラ電極層9とが互いに接触しにくくなっている。したがって、図5に示した電極群2Cを備える二次電池においても、第1の電極層6又は第2の電極層12とバイポーラ電極層9との間の電極層同士の接触による短絡の発生を抑制できる。 Even in the case of the electrode group 2C shown in FIG. 5, the insulator constituting the first insulator layer 7 is exposed to the bipolar electrode layer 9 side of the outer edge portion 6a of the first electrode layer 6. In order to prevent the first electrode layer 6 and the bipolar electrode layer 9 from interposing between the outer edge portion 6a of the first electrode layer 6 and the outer edge portion 8a of the first electrolyte layer 8, It is difficult to touch. Similarly, the outer edge of the second electrolyte layer 11 is prevented so that the insulator constituting the second insulator layer 10 does not expose the outer edge 12a of the second electrode layer 12 to the bipolar electrode layer 9 side. By interposing between the portion 11a and the outer edge portion 12a of the second electrode layer 12, the second electrode layer 12 and the bipolar electrode layer 9 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2 </ b> C shown in FIG. 5, a short circuit occurs due to contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9. Can be suppressed.
 図3に示した電極群2Aは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、バイポーラ電極層9と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えていたが、他の実施形態では、第1の絶縁体層7と第1の電解質層8との積層順は相互に入れ替えられていてもよい。 The electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator. Although the layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 were provided in this order, in other embodiments, the first insulator layer 7 and the first electrolyte layer were provided. The stacking order with 8 may be interchanged.
 すなわち、図6に示すように、他の実施形態に係る電極群2Dは、正極層(第1の電極層)6と、第1の電解質層8と、第1の絶縁体層7と、バイポーラ電極層9と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えている。 That is, as shown in FIG. 6, an electrode group 2D according to another embodiment includes a positive electrode layer (first electrode layer) 6, a first electrolyte layer 8, a first insulator layer 7, and a bipolar layer. The electrode layer 9, the second insulator layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 are provided in this order.
 図6に示した電極群2Dにおいては、積層方向から見たときに、第1の絶縁体層7の外縁部7aは、第1の電解質層8の外縁部8a及びバイポーラ電極層9の外縁部9aより外側に位置しており、第1の絶縁体層7における第1の貫通孔18の縁部18aは、第1の電解質層8の外縁部8a及びバイポーラ電極層9の外縁部9aより内側に位置している。すなわち、第1の絶縁体層7を構成する絶縁体は、バイポーラ電極層9の外縁部9aが第1の電極層6側に露出しないように、第1の電解質層8の外縁部8aとバイポーラ電極層9の外縁部9aの間に介在している。加えて、第1の絶縁体層7は、第1の貫通孔18を有していることにより、第1の電解質層8とバイポーラ電極層9とが第1の貫通孔18に対応する位置で互いに接触することを可能にしている。 In the electrode group 2D shown in FIG. 6, when viewed from the stacking direction, the outer edge portion 7a of the first insulator layer 7 includes the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion of the bipolar electrode layer 9. The edge 18a of the first through hole 18 in the first insulator layer 7 is located outside of the outer edge 9a of the first electrolyte layer 8 and the outer edge 9a of the bipolar electrode layer 9. Is located. In other words, the insulator constituting the first insulator layer 7 is bipolar with the outer edge portion 8a of the first electrolyte layer 8 so that the outer edge portion 9a of the bipolar electrode layer 9 is not exposed to the first electrode layer 6 side. It is interposed between the outer edge portions 9 a of the electrode layer 9. In addition, since the first insulator layer 7 has the first through hole 18, the first electrolyte layer 8 and the bipolar electrode layer 9 are located at positions corresponding to the first through hole 18. Allowing them to touch each other.
 同様に、積層方向から見たときに、第2の絶縁体層10の外縁部10aは、バイポーラ電極層9の外縁部9a及び第2の電解質層11の外縁部11aより外側に位置しており、第2の絶縁体層10における第2の貫通孔19の縁部19aは、バイポーラ電極層9の外縁部9a及び第2の電解質層11の外縁部11aより内側に位置している。すなわち、第2の絶縁体層10を構成する絶縁体は、バイポーラ電極層9の外縁部9aが第2の電極層12側に露出しないように、バイポーラ電極層9の外縁部9aと第2の電解質層11の外縁部11aとの間に介在している。加えて、第2の絶縁体層10は、第2の貫通孔19を有していることにより、バイポーラ電極層9と第2の電解質層11とが第2の貫通孔19に対応する位置で互いに接触することを可能にしている。 Similarly, the outer edge portion 10a of the second insulator layer 10 is located outside the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 11a of the second electrolyte layer 11 when viewed from the stacking direction. The edge 19 a of the second through hole 19 in the second insulator layer 10 is located inside the outer edge 9 a of the bipolar electrode layer 9 and the outer edge 11 a of the second electrolyte layer 11. That is, the insulator that constitutes the second insulator layer 10 is formed so that the outer edge portion 9a of the bipolar electrode layer 9 and the second edge portion 9a of the bipolar electrode layer 9 are not exposed to the second electrode layer 12 side. It is interposed between the outer edge portion 11 a of the electrolyte layer 11. In addition, since the second insulator layer 10 has the second through hole 19, the bipolar electrode layer 9 and the second electrolyte layer 11 are located at positions corresponding to the second through hole 19. Allowing them to touch each other.
 図6に示した電極群2Dの場合であっても、第1の絶縁体層7を構成する絶縁体及び第2の絶縁体層10を構成する絶縁体が、それぞれ、バイポーラ電極層9の外縁部9aが第1の電極層6側及び第2の電極層12側へ露出しないように、第1の電解質層8の外縁部8a及び第2の電解質層11の外縁部11aとバイポーラ電極層9の外縁部9aとの間に介在していることにより、バイポーラ電極層9と第1の電極層6又は第2の電極層12とが互いに接触しにくくなっている。したがって、図6に示した電極群2Dを備える二次電池においても、第1の電極層6又は第2の電極層12とバイポーラ電極層9との間の電極層同士の接触による短絡の発生を抑制できる。 Even in the case of the electrode group 2D shown in FIG. 6, the insulator constituting the first insulator layer 7 and the insulator constituting the second insulator layer 10 are respectively the outer edges of the bipolar electrode layer 9. The bipolar electrode layer 9 and the outer edge portion 8a of the first electrolyte layer 8, the outer edge portion 11a of the second electrolyte layer 11, and the bipolar electrode layer 9 so that the portion 9a is not exposed to the first electrode layer 6 side and the second electrode layer 12 side. By interposing it between the outer edge portion 9a, the bipolar electrode layer 9 and the first electrode layer 6 or the second electrode layer 12 are difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2D shown in FIG. 6, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
 図6に示した電極群2Dは、積層方向から見たときに、第1の電解質層8の外縁部8a及び第2の電解質層11の外縁部11aがバイポーラ電極層9の外縁部9aより内側に位置していたが、他の実施形態では、図7に示す電極群2Eのように、第1の電解質層8の外縁部8a及び第2の電解質層11の外縁部11aは、バイポーラ電極層9の外縁部9aより外側に位置していてもよい。 In the electrode group 2D shown in FIG. 6, the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are located inside the outer edge portion 9a of the bipolar electrode layer 9 when viewed from the stacking direction. However, in another embodiment, as in the electrode group 2E shown in FIG. 7, the outer edge portion 8a of the first electrolyte layer 8 and the outer edge portion 11a of the second electrolyte layer 11 are bipolar electrode layers. 9 may be located outside the outer edge portion 9a.
 図7に示した電極群2Eの場合であっても、第1の絶縁体層7を構成する絶縁体及び第2の絶縁体層10を構成する絶縁体によって、バイポーラ電極層9と第1の電極層6又は第2の電極層12とが互いに接触しにくくなっている。したがって、図7に示した電極群2Eを備える二次電池においても、第1の電極層6又は第2の電極層12とバイポーラ電極層9との間の電極層同士の接触による短絡の発生を抑制できる。 Even in the case of the electrode group 2 </ b> E shown in FIG. 7, the bipolar electrode layer 9 and the first insulating layer 7 are separated by the insulator constituting the first insulator layer 7 and the insulator constituting the second insulator layer 10. The electrode layer 6 or the second electrode layer 12 is difficult to contact each other. Therefore, even in the secondary battery including the electrode group 2E shown in FIG. 7, the occurrence of a short circuit due to the contact between the electrode layers between the first electrode layer 6 or the second electrode layer 12 and the bipolar electrode layer 9 is prevented. Can be suppressed.
 さらに、電極群2Eにおいては、第1の絶縁体層7及び第2の絶縁体層10を構成する絶縁体が、それぞれ、第1の電解質層8の外縁部8aと第2の電解質層11の外縁部11aとが互いに接触しないように、バイポーラ電極層9の外縁部9aと第1の電解質層8の外縁部8aとの間、及び、バイポーラ電極層9の外縁部9aと第2の電解質層11の外縁部11aとの間に介在している。したがって、図7に示した電極群2Eを備える二次電池では、第1の電解質層8と第2の電解質層11との間の電解質層同士の接触による液絡の発生を抑制できる。 Furthermore, in the electrode group 2E, the insulators that constitute the first insulator layer 7 and the second insulator layer 10 are the outer edge portion 8a of the first electrolyte layer 8 and the second electrolyte layer 11, respectively. Between the outer edge portion 9a of the bipolar electrode layer 9 and the outer edge portion 8a of the first electrolyte layer 8, and between the outer edge portion 9a of the bipolar electrode layer 9 and the second electrolyte layer so that the outer edge portion 11a does not contact each other. 11 between the outer edge portion 11a and the outer edge portion 11a. Therefore, in the secondary battery including the electrode group 2 </ b> E illustrated in FIG. 7, the occurrence of a liquid junction due to the contact between the electrolyte layers between the first electrolyte layer 8 and the second electrolyte layer 11 can be suppressed.
 図3に示した電極群2Aは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、バイポーラ電極層9と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えていたが、他の実施形態では、図8に示す電極群2Fのように、バイポーラ電極層(第1のバイポーラ電極層)9と第2の絶縁体層10との間に、バイポーラ電極層(第1のバイポーラ電極層)9側から、第3の絶縁体層20と、第3の電解質層21と、第2のバイポーラ電極層22とをこの順に更に備えてもよい。 The electrode group 2A shown in FIG. 3 includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, a bipolar electrode layer 9, and a second insulator. Although the layer 10, the second electrolyte layer 11, and the negative electrode layer (second electrode layer) 12 were provided in this order, in other embodiments, as in the electrode group 2F shown in FIG. From the bipolar electrode layer (first bipolar electrode layer) 9 side between the layer (first bipolar electrode layer) 9 and the second insulator layer 10, the third insulator layer 20, An electrolyte layer 21 and a second bipolar electrode layer 22 may be further provided in this order.
 すなわち、図8に示すように、他の実施形態に係る電極群2Fは、正極層(第1の電極層)6と、第1の絶縁体層7と、第1の電解質層8と、第1のバイポーラ電極層9と、第3の絶縁体層20と、第3の電解質層21と、第2のバイポーラ電極層22と、第2の絶縁体層10と、第2の電解質層11と、負極層(第2の電極層)12とをこの順に備えている。 That is, as shown in FIG. 8, an electrode group 2F according to another embodiment includes a positive electrode layer (first electrode layer) 6, a first insulator layer 7, a first electrolyte layer 8, 1 bipolar electrode layer 9, third insulator layer 20, third electrolyte layer 21, second bipolar electrode layer 22, second insulator layer 10, second electrolyte layer 11, And a negative electrode layer (second electrode layer) 12 in this order.
 第2のバイポーラ電極層22の構成は、第1のバイポーラ電極層9と同様であってよく、バイポーラ電極集電体17と、バイポーラ電極集電体17の負極層12側の面に設けられた正極合剤層14と、バイポーラ電極集電体17の第1のバイポーラ電極層9側の面に設けられた負極合剤層16とを備えている。第3の電解質層21の構成は、第1の電解質層8及び第2の電解質層11と同様であってよい。 The configuration of the second bipolar electrode layer 22 may be the same as that of the first bipolar electrode layer 9, and is provided on the surface of the bipolar electrode current collector 17 and the negative electrode layer 12 side of the bipolar electrode current collector 17. A positive electrode mixture layer 14 and a negative electrode mixture layer 16 provided on the surface of the bipolar electrode current collector 17 on the first bipolar electrode layer 9 side are provided. The configuration of the third electrolyte layer 21 may be the same as that of the first electrolyte layer 8 and the second electrolyte layer 11.
 第3の絶縁体層20は、第1のバイポーラ電極層9と第3の電解質層21とに隣接して両者の間に設けられている。第3の絶縁体層20は、積層方向に貫通する第3の貫通孔23を有している。第3の絶縁体層20は、第1の絶縁体層7及び第2の絶縁体層10と同様の構成であってよく、第3の貫通孔23は、第1の貫通孔18及び第2の貫通孔19と同様の構成であってよい。 The third insulator layer 20 is provided adjacent to and between the first bipolar electrode layer 9 and the third electrolyte layer 21. The third insulator layer 20 has a third through hole 23 that penetrates in the stacking direction. The third insulator layer 20 may have the same configuration as the first insulator layer 7 and the second insulator layer 10, and the third through hole 23 includes the first through hole 18 and the second insulator layer 20. The same structure as the through-hole 19 may be used.
 本実施形態では、図8に示すように、積層方向から見たときに、第3の電解質層21の外縁部21aは、第1のバイポーラ電極層9の外縁部9a及び第2のバイポーラ電極層22の外縁部22aよりも内側に位置している。同様に、積層方向から見たときに、第1の電解質層8の外縁部8aは、第1のバイポーラ電極層9の外縁部9aより内側に位置しており、第2の電解質層11の外縁部11aは、第2のバイポーラ電極層22の外縁部22aより内側に位置している。 In the present embodiment, as shown in FIG. 8, when viewed from the stacking direction, the outer edge portion 21a of the third electrolyte layer 21 includes the outer edge portion 9a of the first bipolar electrode layer 9 and the second bipolar electrode layer. 22 is located inside the outer edge 22a. Similarly, when viewed from the stacking direction, the outer edge portion 8 a of the first electrolyte layer 8 is located inside the outer edge portion 9 a of the first bipolar electrode layer 9, and the outer edge of the second electrolyte layer 11. The part 11 a is located inside the outer edge part 22 a of the second bipolar electrode layer 22.
 一方、積層方向から見たときに、第3の絶縁体層20の外縁部20aは、第1のバイポーラ電極層9の外縁部9a及び第3の電解質層21の外縁部21aよりも外側に位置しており、第3の絶縁体層20における第3の貫通孔23の縁部23aは、第1のバイポーラ電極層9の外縁部9a及び第3の電解質層21の外縁部21aより内側に位置している。すなわち、第3の絶縁体層20を構成する絶縁体は、第1のバイポーラ電極層9の外縁部9aが第2のバイポーラ電極層22側に露出しないように、第1のバイポーラ電極層9の外縁部9aと第3の電解質層21の外縁部21aとの間に介在している。加えて、第3の絶縁体層20は、第3の貫通孔23を有していることにより、第1のバイポーラ電極層9と第3の電解質層21とが第3の貫通孔23に対応する位置で互いに接触することを可能にしている。なお、第2の絶縁体層10と第2のバイポーラ電極層22との位置関係は、上述した図3の電極群2Aにおける第2の絶縁体層10とバイポーラ電極9との位置関係と同様である。 On the other hand, when viewed from the stacking direction, the outer edge portion 20a of the third insulator layer 20 is positioned outside the outer edge portion 9a of the first bipolar electrode layer 9 and the outer edge portion 21a of the third electrolyte layer 21. The edge 23 a of the third through-hole 23 in the third insulator layer 20 is located inside the outer edge 9 a of the first bipolar electrode layer 9 and the outer edge 21 a of the third electrolyte layer 21. is doing. That is, the insulator constituting the third insulator layer 20 is formed so that the outer edge portion 9a of the first bipolar electrode layer 9 is not exposed to the second bipolar electrode layer 22 side. It is interposed between the outer edge portion 9 a and the outer edge portion 21 a of the third electrolyte layer 21. In addition, since the third insulator layer 20 has the third through hole 23, the first bipolar electrode layer 9 and the third electrolyte layer 21 correspond to the third through hole 23. It is possible to contact each other at the position to be. The positional relationship between the second insulator layer 10 and the second bipolar electrode layer 22 is the same as the positional relationship between the second insulator layer 10 and the bipolar electrode 9 in the electrode group 2A shown in FIG. is there.
 以上の構成を備える電極群2Fにおいては、上述した実施形態と同様に、第3の絶縁体層20が第3の貫通孔23を有していることにより、第1のバイポーラ電極層9と第3の電解質層21との間の電気的な接続が確保される。また、第3の絶縁体層20を構成する絶縁体が、第1のバイポーラ電極層9の外縁部9aの第2のバイポーラ電極層22側への露出が生じないように、第1のバイポーラ電極層9の外縁部9aと第3の電解質層21の外縁部21aとの間に介在している。これにより、第1のバイポーラ電極層9と第2のバイポーラ電極層22とが互いに接触しにくくなっている。したがって、図8に示した電極群2Fを備える二次電池においても、電極層同士の接触による短絡の発生を抑制できる。 In the electrode group 2F having the above configuration, the third insulator layer 20 has the third through-hole 23 as in the above-described embodiment, so that the first bipolar electrode layer 9 and the second The electrical connection between the three electrolyte layers 21 is ensured. Further, the first bipolar electrode is formed such that the insulator constituting the third insulator layer 20 does not expose the outer edge portion 9a of the first bipolar electrode layer 9 to the second bipolar electrode layer 22 side. It is interposed between the outer edge portion 9 a of the layer 9 and the outer edge portion 21 a of the third electrolyte layer 21. This makes it difficult for the first bipolar electrode layer 9 and the second bipolar electrode layer 22 to contact each other. Therefore, even in a secondary battery including the electrode group 2F shown in FIG. 8, occurrence of a short circuit due to contact between the electrode layers can be suppressed.
 以上説明した実施形態は、以下のような種々の変形態様をとり得る。上記実施形態では、電極群2を構成する各層の平面形状は略長方形状であったが、電極群を構成する各層の平面形状は、略正方形状、略円形状等の他の形状であってもよい。 The embodiment described above can take various modifications as follows. In the above embodiment, the planar shape of each layer constituting the electrode group 2 is a substantially rectangular shape, but the planar shape of each layer constituting the electrode group is another shape such as a substantially square shape or a substantially circular shape. Also good.
 上記実施形態では、第1の貫通孔18、第2の貫通孔19及び第3の貫通孔23の平面形状はそれぞれ第1の絶縁体層7、第2の絶縁体層10及び第3の絶縁体層20の平面形状と略相似形状であったが、第1の貫通孔、第2の貫通孔及び第3の貫通孔の平面形状は、それぞれ第1の絶縁体層、第2の絶縁体層及び第3の絶縁体層の平面形状と異なる形状であってもよい。 In the said embodiment, the planar shape of the 1st through-hole 18, the 2nd through-hole 19, and the 3rd through-hole 23 is the 1st insulator layer 7, the 2nd insulator layer 10, and the 3rd insulation, respectively. The planar shape of the body layer 20 was substantially similar to that of the body layer 20, but the planar shapes of the first through hole, the second through hole, and the third through hole were the first insulator layer and the second insulator, respectively. The shape may be different from the planar shape of the layer and the third insulator layer.
 上記実施形態では、第1の絶縁体層7、第2の絶縁体層10及び第3の絶縁体層20は、それぞれ第1の貫通孔18、第2の貫通孔19及び第3の貫通孔23を一つ有していたが、第1の絶縁体層、第2の絶縁体層及び第3の絶縁体層は、それぞれ第1の貫通孔、第2の貫通孔及び第3の貫通孔を複数有していてもよい。 In the said embodiment, the 1st insulator layer 7, the 2nd insulator layer 10, and the 3rd insulator layer 20 are respectively the 1st through-hole 18, the 2nd through-hole 19, and the 3rd through-hole. The first insulator layer, the second insulator layer, and the third insulator layer have the first through hole, the second through hole, and the third through hole, respectively. You may have two or more.
 上記実施形態では、第1の電極層6が正極層であり、第2の電極層12が負極層であったが、第1の電極層が負極層であり、第2の電極層が正極層であってもよい。この場合、バイポーラ電極層9(電極群2Fにおいては、第1のバイポーラ電極層9及び第2のバイポーラ電極層22)は、正極合剤層14と負極合剤層16とが入れ替わった構成をとる。 In the above embodiment, the first electrode layer 6 is a positive electrode layer and the second electrode layer 12 is a negative electrode layer. However, the first electrode layer is a negative electrode layer and the second electrode layer is a positive electrode layer. It may be. In this case, the bipolar electrode layer 9 (the first bipolar electrode layer 9 and the second bipolar electrode layer 22 in the electrode group 2F) has a configuration in which the positive electrode mixture layer 14 and the negative electrode mixture layer 16 are interchanged. .
1…二次電池、6…第1の電極層(正極層)、6a…第1の電極層の外縁部、7…第1の絶縁体層、7a…第1の絶縁体層の外縁部、8…第1の電解質層、8a…第1の電解質層の外縁部、9…バイポーラ電極層、9a…バイポーラ電極層の外縁部、10…第2の絶縁体層、10a…第2の絶縁体層の外縁部、11…第2の電解質層、11a…第2の電解質層の外縁部、12…第2の電極層(負極層)、12a…第2の電極層の外縁部、18…第1の貫通孔、18a…第1の貫通孔の縁部、19…第2の貫通孔、19a…第2の貫通孔の縁部。 DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 6 ... 1st electrode layer (positive electrode layer), 6a ... Outer edge part of 1st electrode layer, 7 ... 1st insulator layer, 7a ... Outer edge part of 1st insulator layer, DESCRIPTION OF SYMBOLS 8 ... 1st electrolyte layer, 8a ... Outer edge part of 1st electrolyte layer, 9 ... Bipolar electrode layer, 9a ... Outer edge part of bipolar electrode layer, 10 ... 2nd insulator layer, 10a ... 2nd insulator Layer outer edge, 11 ... second electrolyte layer, 11a ... second electrolyte layer outer edge, 12 ... second electrode layer (negative electrode layer), 12a ... second electrode layer outer edge, 18 ... first 1 through-hole, 18a... Edge of first through-hole, 19... Second through-hole, 19a... Edge of second through-hole.

Claims (7)

  1.  第1の電極層と、第1の電解質層と、バイポーラ電極層と、第2の電解質層と、第2の電極層と、をこの順に備える二次電池であって、
     前記第1の電解質層と、前記第1の電極層及び前記バイポーラ電極層のいずれか一方とに隣接して設けられた第1の絶縁体層と、
     前記第2の電解質層と、前記バイポーラ電極層及び前記第2の電極層のいずれか一方とに隣接して設けられた第2の絶縁体層と、を更に備え、
     前記第1の絶縁体層は、積層方向に貫通する第1の貫通孔を有し、
     前記第2の絶縁体層は、積層方向に貫通する第2の貫通孔を有し、
     積層方向から見たときに、
     前記第1の絶縁体層の外縁部は、前記第1の電解質層の外縁部、及び前記第1の絶縁体層に隣接する前記第1の電極層又は前記バイポーラ電極層の外縁部より外側に位置し、
     前記第1の貫通孔の縁部は、前記第1の電解質層の外縁部、及び前記第1の絶縁体層に隣接する前記第1の電極層又は前記バイポーラ電極層の外縁部より内側に位置し、
     前記第2の絶縁体層の外縁部は、前記第2の電解質層の外縁部、及び前記第2の絶縁体層に隣接する前記バイポーラ電極層又は前記第2の電極層の外縁部より外側に位置し、
     前記第2の貫通孔の縁部は、前記第2の電解質層の外縁部、及び前記第2の絶縁体層に隣接する前記バイポーラ電極層又は前記第2の電極層の外縁部より内側に位置する、二次電池。
    A secondary battery comprising a first electrode layer, a first electrolyte layer, a bipolar electrode layer, a second electrolyte layer, and a second electrode layer in this order,
    A first insulator layer provided adjacent to the first electrolyte layer and one of the first electrode layer and the bipolar electrode layer;
    The second electrolyte layer; and a second insulator layer provided adjacent to one of the bipolar electrode layer and the second electrode layer,
    The first insulator layer has a first through hole penetrating in the stacking direction,
    The second insulator layer has a second through-hole penetrating in the stacking direction,
    When viewed from the stacking direction,
    The outer edge of the first insulator layer is located outside the outer edge of the first electrolyte layer and the outer edge of the first electrode layer or the bipolar electrode layer adjacent to the first insulator layer. Position to,
    The edge portion of the first through hole is located inside the outer edge portion of the first electrolyte layer and the outer edge portion of the first electrode layer or the bipolar electrode layer adjacent to the first insulator layer. And
    The outer edge part of the second insulator layer is located outside the outer edge part of the second electrolyte layer and the outer edge part of the bipolar electrode layer or the second electrode layer adjacent to the second insulator layer. Position to,
    The edge of the second through hole is located inside the outer edge of the second electrolyte layer and the outer edge of the bipolar electrode layer or the second electrode layer adjacent to the second insulator layer. Secondary battery.
  2.  前記第1の絶縁体層が、前記第1の電解質層と前記第1の電極層とに隣接して設けられている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the first insulator layer is provided adjacent to the first electrolyte layer and the first electrode layer.
  3.  前記第2の絶縁体層が、前記第2の電解質層と前記バイポーラ電極層とに隣接して設けられている、請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the second insulator layer is provided adjacent to the second electrolyte layer and the bipolar electrode layer.
  4.  積層方向から見たときに、前記第1の電解質層の外縁部及び前記第2の電解質層の外縁部が、前記バイポーラ電極層の外縁部より内側に位置する、請求項3に記載の二次電池。 4. The secondary according to claim 3, wherein when viewed from the stacking direction, the outer edge of the first electrolyte layer and the outer edge of the second electrolyte layer are located inside the outer edge of the bipolar electrode layer. battery.
  5.  前記第1の電極層が正極層であり、第2の電極層が負極層である、請求項1~4のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the first electrode layer is a positive electrode layer and the second electrode layer is a negative electrode layer.
  6.  前記第1の絶縁体層が、前記第1の電解質層と前記バイポーラ電極層とに隣接して設けられ、
     前記第2の絶縁体層が、前記第2の電解質層と前記バイポーラ電極層とに隣接して設けられている、請求項1に記載の二次電池。
    The first insulator layer is provided adjacent to the first electrolyte layer and the bipolar electrode layer;
    The secondary battery according to claim 1, wherein the second insulator layer is provided adjacent to the second electrolyte layer and the bipolar electrode layer.
  7.  前記第1の絶縁体層及び前記第2の絶縁体層が、それぞれ独立に、ポリオレフィン及びセラミックからなる群より選ばれる少なくとも1種で形成されている、請求項1~6のいずれか一項に記載の二次電池。 The first insulator layer and the second insulator layer are each independently formed of at least one selected from the group consisting of polyolefin and ceramic. The secondary battery as described.
PCT/JP2017/012576 2017-03-28 2017-03-28 Secondary battery WO2018179079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012576 WO2018179079A1 (en) 2017-03-28 2017-03-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012576 WO2018179079A1 (en) 2017-03-28 2017-03-28 Secondary battery

Publications (1)

Publication Number Publication Date
WO2018179079A1 true WO2018179079A1 (en) 2018-10-04

Family

ID=63674606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012576 WO2018179079A1 (en) 2017-03-28 2017-03-28 Secondary battery

Country Status (1)

Country Link
WO (1) WO2018179079A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506926A (en) * 1993-02-24 1996-07-23 トロジャン バッテリー カンパニー Electrode plate structure
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506926A (en) * 1993-02-24 1996-07-23 トロジャン バッテリー カンパニー Electrode plate structure
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
JP2006210002A (en) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd Electrode for battery
WO2012164642A1 (en) * 2011-05-27 2012-12-06 トヨタ自動車株式会社 Bipolar all-solid-state battery

Similar Documents

Publication Publication Date Title
JP7070052B2 (en) All solid state battery
JP5451694B2 (en) Non-aqueous electrolyte battery module
WO2018154989A1 (en) Secondary battery and method for producing same
WO2020256023A1 (en) Secondary battery
US20190074535A1 (en) Secondary battery
US20210020895A1 (en) Secondary battery and manufacturing method thereof
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP7215570B2 (en) secondary battery
JP7405243B2 (en) Current collector, power storage element and power storage module
US20200295397A1 (en) Lithium secondary battery
WO2020218214A1 (en) Secondary battery
WO2018179079A1 (en) Secondary battery
US20210288351A1 (en) Secondary battery
US20200328476A1 (en) Secondary battery
US20200295348A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR102134650B1 (en) Secondary battery
CN110088967B (en) Secondary battery
JP2011258435A (en) Electrode for battery, electrode for bipolar battery and bipolar battery
JP2021099949A (en) All-solid battery
WO2018154987A1 (en) Secondary battery and method for producing same
WO2018155035A1 (en) Lithium ion battery
WO2018131398A1 (en) Secondary cell
KR20160039902A (en) Pouch-Type Secondary Battery
WO2022168835A1 (en) Electrochemical cell
JP2019029183A (en) Separator-equipped secondary battery electrode, secondary battery, and their manufacturing methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP